Science.gov

Sample records for potentiometric anion selectivity

  1. Potentiometric sensors for the selective determination of sulbutiamine.

    PubMed

    Ahmed, M A; Elbeshlawy, M M

    1999-11-01

    Five novel polyvinyl chloride (PVC) matrix membrane sensors for the selective determination of sulbutiamine (SBA) cation are described. These sensors are based on molybdate, tetraphenylborate, reineckate, phosphotun gestate and phosphomolybdate, as possible ion-pairing agents. These sensors display rapid near-Nernstian stable response over a relatively wide concentration range 1x10(-2)-1x10(-6) M of sulbutiamine, with calibration slopes 28 32.6 mV decade(-1) over a reasonable pH range 2-6. The proposed sensors proved to have a good selectivity for SBA over some inorganic and organic cations. The five potentiometric sensors were applied successfully in the determination of SBA in a pharmaceutical preparation (arcalion-200) using both direct potentiometry and potentiometric titration. Direct potentiometric determination of microgram quantities of SBA gave average recoveries of 99.4 and 99.3 with mean standard deviation of 0.7 and 0.3 for pure SBA and arcalion-200 formulation respectively. Potentiometric titration of milligram quantities of SBA gave average recoveries of 99.3 and 98.7% with mean standard deviation of 0.7 and 1.2 for pure SBA and arcalion-200 formulation, respectively. PMID:10703998

  2. Potentiometric determination of pantoprazole using an ion-selective sensor based on polypyrrole doped films.

    PubMed

    Noronha, Bárbara V; Bindewald, Eduardo H; de Oliveira, Michelle C; Papi, Maurício A P; Bergamini, Márcio F; Marcolino-Jr, Luiz H

    2014-10-01

    The present work reports for the first time the use of polypyrrole (PPy) doped film for development of a potentiometric disposable sensor for determination of pantoprazole (PTZ), a drug used for ulcer treatment. Selective potentiometric response has been found by using a membrane of PPy doped with PTZ anions prepared under galvanostatic conditions at graphite pencil electrode (GPEM/PPy-PTZ) surface. Potentiometric response has been influenced for conditions adopted in polymerization and measurement step. After optimization of experimental (e.g. pH and time of conditioning) and instrumental parameters (e.g. current density and electrical charge) a linear analytical curve from 1.0 × 10(-5) to 1.1 × 10(-2) mol L(-1) with a slope of calibration of the 57.6 mV dec(-1) and limit of detection (LOD) of 6.9 × 10(-6) mol L(-1) was obtained. The determination of the PTZ content in pharmaceutical samples using the proposed methodology and official method recommended by Brazilian Pharmacopeia are in agreement at the 95% confidence level and within an acceptable range of error. PMID:25175244

  3. Potentiometric Sensors Based on Fluorous Membranes Doped with Highly Selective Ionophores for Carbonate

    PubMed Central

    Chen, Li D.; Mandal, Debaprasad; Pozzi, Gianluca; Gladysz, John A.; Bühlmann, Philippe

    2011-01-01

    Manganese(III) complexes of three fluorophilic salen derivatives were used to prepare ion-selective electrodes (ISEs) with ionophore-doped fluorous sensing membranes. Because of their extremely low polarity and polarizability, fluorous media are not only chemically very inert but also solvate potentially interfering ions poorly, resulting in a much improved discrimination of such ions. Indeed, the new ISEs exhibited selectivities for CO32− that exceed those of previously reported ISEs based on non-fluorous membranes by several orders of magnitude. In particular, the interference from chloride and salicylate was reduced by two and six orders of magnitude, respectively. To achieve this, the selectivities of these ISEs were fine-tuned by addition of non-coordinating hydrophobic ions (i.e., ionic sites) into the sensing membranes. Stability constants of the anion–ionophore complexes were determined from the dependence of the potentiometric selectivities on the charge sign of the ionic sites and the molar ratio of ionic sites and the ionophore. For this purpose, a previously introduced fluorophilic tetraphenylborate and a novel fluorophilic cation with a bis(triphenylphosphoranylidene)ammonium group, (Rf6(CH2)3)3PN+P(Rf6(CH2)3)3, were utilized. The optimum CO32− selectivities were found for sensing membranes composed of anionic sites and ionophore in a 1:4 molar ratio, which results in the formation of 2:1 complexes with CO32− with stability constants up to 4.1 × 1015. As predicted by established theory, the site-to-ionophore ratios that provide optimum potentiometric selectivity depend on the stoichiometries of the complexes of both the primary and the interfering ions. However, the ionophores used in this study give examples of charges and stoichiometries previously neither explicitly predicted by theory nor shown by experiment. The exceptional selectivity of fluorous membranes doped with these carbonate ionophores suggests their use not only for

  4. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography.

    PubMed

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-04-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na(+)), potassium (K(+)), ammonium (NH4 (+)), chloride (Cl(-)) and nitrate (NO3 (-)) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  5. [Characteristics of ion selective electrodes with hetero-poly anion sites].

    PubMed

    Nie, L H; Ma, W L; Xiang, X C; Yao, S Z

    1989-01-01

    Drug ion-selective electrodes made with hetero-poly anion as exchange site exhibit better performances than the respective electrodes of conventional tetraphenylboron type, yielding low detection limits and fast responses. Functions of propantheline, berberine, dibazol, thiamine, streptomycin, moroxydine, tetracycline, oxytetracycline, doxycycline, erythromycin, carbetapentane, benzydamine, tetramisole and trifluoperazine electrodes are reported. The electrodes can be used in potentiometric determinations of the respective drugs in aqueous solutions, urine and mixture of water and organic solvents. PMID:2609985

  6. Strontium (II)-Selective Potentiometric Sensor Based on Ester Derivative of 4-tert-butylcalix(8)arene in PVC Matrix

    PubMed Central

    Jain, Ajay K.; Gupta, Vinod K.; Raisoni, Jitendra R.

    2004-01-01

    Membranes of 4-tert-butylcalix(8)arene-octaacetic acid octaethyl ester (I) as an electroactive material, sodium tetraphenyl borate (NaTPB) as an anion excluder, and tri-n-butyl phosphate (TBP) as a solvent mediator in poly(vinyl chloride) (PVC) matrix have been tried for a strontium-selective sensor. The best performance was exhibited by the membrane having a composition 5:100:150:2 (I: PVC: TBP: NaTPB (w/w)). This sensor exhibits a good potentiometric response to Sr2+ over a wide concentration range (3.2 × 10 –5 –1.0 × 10 –1 M) with a Nernstian slope (30 mV/ decade). The response time of the sensor is 10 s and it has been used for a period of four months without any drift in potentials. The selectivity coefficient values are in the order of 0.01 for mono-, bi-, and trivalent cations which indicate a good selectivity for Sr2+ over a large number of cations. The useful pH range for the sensor was found to be 3-10 and it works well in mixtures with non-aqueous content up to 25 % (v/v). The sensor has been used as an indicator electrode in the potentiometric titration of Sr2+ against EDTA.

  7. Potentiometric titration of bisarenechromium compounds with an ion-selective electrode

    SciTech Connect

    Gur'ev, I.A.; Gur'eva, Z.M.; Sankova, E.V.; Sirotkin, N.I.

    1986-06-10

    A liquid-membrane ion-selective electrode was developed for determining bisbenzene-chromium and its electrochemical and analytical characteristics studied. Methods have also been developed for determining bisarenechromium compounds in the industrial product and its waste waters by potentiometric titration with sodium tetraphenylborate solution.

  8. Anion conductance selectivity mechanism of the CFTR chloride channel.

    PubMed

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively. PMID:26779604

  9. New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes.

    PubMed

    Moret, Joséphine; Moreira, Felismina T C; Almeida, Sofia A A; Sales, M Goreti F

    2014-10-01

    Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~1×10(-4)mol L(-1), at pH5, and a detection limit of ~8×10(-5)mol L(-1). Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples. PMID:25175239

  10. Selectivity characteristics of potentiometric carbon dioxide sensors with various gas membrane materials

    SciTech Connect

    Kobos, R.K.; Parks, S.J.; Meyerhoff, M.E.

    1982-10-01

    The selectivity characteristics of potentiometric carbon dioxide sensors with regard to various organic and inorganic acid interferences have been systematically examined. When used in conjunction with a standard silicone rubber CO/sub 2/ permeable membrane, the sensor displays surprisingly large response to several organic acids having low volatility, e.g., benzoic, cinnamic, and salicylic acids. If the outer membrane is changed to a microporous Teflon material, the response to these substances is diminished, but poor selectivity over volatile organics and acidic gases results. The use of a new homogeneous Teflon-like membrane meterial is shown to offer dramatic improvement in selectivity for CO/sub 2/ over all of the compounds tested. The mechanistic reasons for this enhanced selectivity are discussed as are alternate methods for reducing organic acid interferences when using more conventional membrane materials. 4 figures, 1 table.

  11. Bioanalysis with Potentiometric Membrane Electrodes.

    ERIC Educational Resources Information Center

    Rechnitz, G. A.

    1982-01-01

    Discusses major themes and interrelationships common to bioselective potentiometric membrane electrodes including the nature of bioselective electrodes, applications, and future prospects. Includes tables on traditional ion-selective membrane electrodes, nontraditional electrodes, and typical biocatalytic potentiometric electrodes. (Author/JN)

  12. Instrument-free control of the standard potential of potentiometric solid-contact ion-selective electrodes by short-circuiting with a conventional reference electrode.

    PubMed

    Vanamo, Ulriika; Bobacka, Johan

    2014-11-01

    A simple, instrument-free method to control the standard potential (E°) of potentiometric solid-contact ion-selective electrodes (SC-ISE) is described. In this method, the electrode potential of a SC-ISE is reset by short-circuiting the electrode with a metallic wire to a conventional Ag/AgCl/3 M KCl reference electrode (RE) in a solution containing primary ions. The method is studied experimentally for SC-ISEs where the conducting polymer poly(3,4-ethylenedioxythiophene) doped with the bulky anion poly(sodium 4-styrenesulfonate), PEDOT(PSS), is used as the solid contact. Three different types of ion-selective membranes (ISMs) are studied: two potassium-selective membranes, with and without the lipohilic additive tetradodecylammonium tetrakis(4-chlorophenyl)borate (ETH-500) and a cation-sensitive membrane without an ionophore. When the SC-ISE is short-circuited with the RE, the PEDOT(PSS) layer is oxidized or reduced, thereby shifting the potential of the SC-ISE to the proximity of the potential of the RE so that the potential difference between these two electrodes becomes zero or close to zero. The slope of the calibration curve is preserved after the short-circuit treatment of the SC-ISEs. The short-circuiting method is an important step toward calibration-free potentiometric analysis. PMID:25284311

  13. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  14. Anion selectivity and pumping mechanism of halorhodopsin.

    PubMed

    Otomo, J

    1995-01-01

    Comparison of the amino acid sequences in the A-B and B-C interhelical loop segments in all bacteriorhodopsins and halorhodopsins has shed light on the anion selectivity and pumping mechanism of halorhodopsin. The nucleotide sequences of two haloopsins from two new halobacterial strains, shark and port, have been determined, and shark halorhodopsin was functionally overexpressed in Halobacterium halobium. Although a series of six amino acid residues (EMPAGH) in the B-C interhelical loop segment was substituted by QMPPGH, all putative charged residues were conserved. It was also shown that His-95 mutants had lower pumping activity in low chloride concentrations. These results further support the hypothesis that His-95 is important in the halorhodopsin function. PMID:7662863

  15. Lead-selective membrane potentiometric sensor based on a recently synthesized bis(anthraquinone) sulfide derivative

    SciTech Connect

    Pouretedal, H.R.; Forghaniha, A.; Sharghi, H.; Shamsipur, M.

    1998-12-01

    The need for monitoring of toxic heavy metal ions in environmental samples has prompted the development of ion-selective electrodes for these ions. A new PVC membrane electrode for lead ions, based on bis[(1-hydroxy-9,10-anthraquinone)-2-methyl]sulfide as membrane carrier, was prepared. The sensor exhibits a Nernstian response for Pb{sup 2+} over a wide concentration range (5.6 {times} 10{sup {minus}3}--4.0 {times} 10{sup {minus}6} M). It has a response time of about 30 s and can be used for at least 3 months without any divergence in potentials. The proposed membrane sensor revealed good selectivities for Pb{sup 2+} over a wide variety of other metal ions. It was used as an indicator electrode in potentiometric titration of lead ion.

  16. An Ion-selective Electrode for Anion Perchlorate in Thick-film Technology

    PubMed Central

    Segui, María Jesús; Lizondo-Sabater, Josefa; Martínez-Máñez, Ramon; Sancenon, Félix; Soto, Juan; Garcia-Breijo, Eduardo; Gil, Luis

    2006-01-01

    The ionophore 1,4,7,10,13-penta(n-octyl)-1,4,7,10,13-pentaazacyclopentadecane (L1) was used for the development of miniaturised perchlorate-selective electrodes in thick-film technology. Different PVC membranes containing L1 and the plasticizers o-nitrophenyl octyl ether (NPOE), dibutyl phthalate (DBP), bis(2-ethylhexyl)sebacate (DOS) and dibutyl sebacate (DBS) were prepared and placed on a graphite working electrode manufactured by using thick film serigraphic technology. The perchlorate selective electrode containing DBS as plasticizer showed a potentiometric Nernstian response of -57 mV per decade in a range of perchlorate concentration from 1 × 10-4 to 1 × 10-1 M with a detection limit of 5 × 10-5 M. The ion selective electrodes containing DBP and NPOE as plasticizers exhibit a working range from 6.3 × 10-5 to 1 × 10-1 M and 7.4 × 10-5 to 1 × 10-1 M for perchlorate, respectively, with a detection limit of ca. 2.2 × 10-5 M. For all three electrodes a response time of ca. 5 s was found. The prepared electrodes do not show appreciable decay of the slope for at least 25 days. Potentiometric selectivity coefficients (log KpotClO4-,X-) with respect to the primary anion perchlorate were evaluated using the fixed interference method. These coefficients are of the order of 10-1.7 or smaller, indicating the relatively poor interference of the different anions studied.

  17. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-12-11

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  18. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical and structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.

  19. Interaction between biphenols and anions: selective receptor for dihydrogenphosphate.

    PubMed

    Ito, Kazuaki; Nishiki, Makoto; Ohba, Yoshihiro

    2005-10-01

    Biphenol was shown to bind dihydrogenphosphate (H2PO4-) selectively over various other anions (MeCO2-, Cl-, Br-, I-, NO3-, HSO4-). The highly selectivity of biphenol toward dihydrogenphosphate is explained in terms of the basicity and shape of the guest anion. PMID:16205002

  20. Anion, cation, and zwitterion selectivity of phospholemman channel molecules.

    PubMed Central

    Kowdley, G C; Ackerman, S J; Chen, Z; Szabo, G; Jones, L R; Moorman, J R

    1997-01-01

    Phospholemman (PLM), a 72-amino acid membrane protein with a single transmembrane domain, forms taurine-selective ion channels in lipid bilayers. Because taurine forms zwitterions, a taurine-selective channel might have binding sites for both anions and cations. Here we show that PLM channels indeed allow fluxes of both cations and anions, making instantaneous and voltage-dependent transitions among conformations with drastically different ion selectivity characteristics. This surprising and novel ion channel behavior offers a molecular explanation for selective taurine flux across cell membranes and may explain why molecules in the phospholemman family can induce cation- or anion-selective conductances when expressed in Xenopus oocytes. PMID:8994599

  1. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    The supramolecular chemistry of selective anion recognition by synthetic polyammonium macrocycles will be explored in a comprehensive, long term program designed to provide new solutions to problems critical to the environmental initiative of DOE. Highly shape- and charge selecti...

  2. New selective anion-exchange resins for nitrate removal from contaminated drinking water and studies on analytical anion-exchange chromatography

    SciTech Connect

    Lockridge, J.E.

    1989-01-01

    Phosphonium resins and ammonium resins of composition resin-R{sub 3}P{sup +}A{sup {minus}} where R is varied from methyl to pentyl were evaluated for nitrate/sulfate selectivity, capacity and nitrate decontamination of drinking water. Phosphonium resins were found to be more nitrate selective and have higher capacities than ammonium resins. A mixed bed process, where nitrate removal and water softening is accomplished in a single column, was also evaluated. A small piece of silver wire, coated with an insoluble silver salt, works well as a selective potentiometric detector for halide ions in ion chromatography. A silver-silver chloride electrode was found to be a selective and reproducible detector for chloride, bromide, iodide, thiocyanate and thiosulfate anions separated by ion chromatography. Calibration curves were non-linear and had slopes ranging from 40 to 60 mV/log concentrations. A working range of 0.05 to 2 mM was used. Two methods for the determination of aluminum by anion chromatography are presented. In the first method, a standard excess of fluoride ion is added to the sample. Evidence is given for the formation of a strong complex of neutral aluminum trifluoride which elutes very quickly from an anion exchange column. The excess fluoride is retained and can be determined. The aluminum concentration can then be related to the difference in fluoride peak height between the sample and standard. In a second method, Al(III) is determined directly by anion chromatography when sodium phthalate is used as an eluent. It was found that Al(III)-phthalate complexes thus formed would show some retention on an anion exchange column. The method is uniquely insensitive to the presence of many foreign cations. Al(III) was successfully determined, by this method, in a 40-fold molar excess of iron(III).

  3. Determination of phosphorous in titanium bearing minerals by potentiometric titration using Pb-ion selective electrode.

    PubMed

    Ramadoss, K; Murty, D S; Mahanta, P L; Gomathy, B; Rangaswamy, R

    2000-01-24

    A method for phosphorous determination in titanium bearing minerals by potentiometric titration using a Pb-ion selective electrode has been developed. Sample decomposition is achieved by means of K(2)CO(3) fusion in a platinum crucible at 800 degrees C for 30 min in a muffle furnace, and subsequent leaching with water of the fused melt. The aqueous leachate is neutralised with HClO(4) and subsequent boiling. The obtained solution is used for titration with Pb(ClO(4))(2), and the Pb-ion selective electrode detects the end point. The lowest concentration determinable is 0.02% P(2)O(5) in a solid sample. The method was applied on in-house titanium bearing mineral samples and on IGS-31 ilmenite sample (British Geological Survey, UK). Synthetic samples were prepared and analysed, and phosphorous recovery is in the range 98-106%. The recovery and accuracy of the present method have been validated by spiking experiments and by comparing with the spectrophotometric values, respectively. The precision of the proposed method in terms of relative standard deviation is 2.0%. PMID:18967837

  4. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE PAGESBeta

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Csmore » + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 − 3 and 1 × 10 − 4  M+ , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5  M+ , a conventional lower detection limit of 8.1 × 10 − 6  M+ , and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less

  5. Highly selective and sensitized spectrophotometric determination of iron (III) following potentiometric study.

    PubMed

    Shokrollahi, Ardeshir; Ghaedi, Mehrorang; Rajabi, Hamid Reza

    2007-09-01

    A simple, selective and sensitized spectrophotometric method for determination of trace amounts of Fe3+ ion in tap and waste water solutions has been described. The spectrophotometric determination of Fe3+ ion using Ferron in the presence of N,N-Dodecytrimethylammonium bromide (DTAB) has been carried out. The Beer's law is obeyed over the concentration range of 0.05-2.6 microg mL(-1) of Fe3+ ion with the relative standard deviation (RSD %) <0.2% and the molar absorptivity of complexes in pH 3.5 is 3.8 x 10(3) L mol(-1) cm(-1). Potentiometric pH titration has been used for prediction of protonation constants of ferron, and evaluating its stoichiometry and respective stability constant with Fe3+ ion. As it is obvious the most likely species of ferron alone and its complexes are LH (log = 7.64), LH2 (logK = 10.52), LH3 (logK = 11.74) and ML2 (logbeta = 23.68), ML3 (logbeta = 23.68), ML3H (logbeta = 23.68), ML3H2 (logbta = 23.68) and ML(OH)2 (logbeta = 23.68) respectively. PMID:17970298

  6. Ion-selective electrodes in potentiometric titrations; a new method for processing and evaluating titration data.

    PubMed

    Granholm, Kim; Sokalski, Tomasz; Lewenstam, Andrzej; Ivaska, Ari

    2015-08-12

    A new method to convert the potential of an ion-selective electrode to concentration or activity in potentiometric titration is proposed. The advantage of this method is that the electrode standard potential and the slope of the calibration curve do not have to be known. Instead two activities on the titration curve have to be estimated e.g. the starting activity before the titration begins and the activity at the end of the titration in the presence of large excess of titrant. This new method is beneficial when the analyte is in a complexed matrix or in a harsh environment which affects the properties of the electrode and the traditional calibration procedure with standard solutions cannot be used. The new method was implemented both in a method of linearization based on the Grans's plot and in determination of the stability constant of a complex and the concentration of the complexing ligand in the sample. The new method gave accurate results when using titrations data from experiments with samples of known composition and with real industrial harsh black liquor sample. A complexometric titration model was also developed. PMID:26320956

  7. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix.

    PubMed

    Gupta, Vinod K; Jain, Ajay K; Maheshwari, Gaurav

    2007-06-15

    Al(3+) selective sensor has been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier morin as ionophore. Best performance was exhibited by the membrane having composition as morin:PVC:sodium tetraphenyl borate:tri-n-butylphosphate in the ratio 5:150:5:150 (w/w, mg). This membrane worked well over a wide activity range of 5.0x10(-7) to 1.0x10(-1)M of Al(3+) with a Nernstian slope of 19.7+/-0.1mV/decade of Al(3+) activity and a limit of detection 3.2x10(-7)M. The response time of the sensor is approximately 5s and membrane could be used over a period of 2 months with good reproducibility. The proposed sensor works well over a pH range (3.5-5.0) and demonstrates good discriminating power over a number of mono-, di- and trivalent cations. The sensor can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has also been used in the potentiometric titration of Al(3+) with EDTA and for its determination in zinc plating mud and red mud. PMID:19071785

  8. Supramolecular chemistry of selective anion recognition for anions of environmental relevance. 1998 annual progress report

    SciTech Connect

    Bowman-James, K.; Wilson, G.S.; Kuczera, K.; Moyer, B.

    1998-06-01

    'This project has as its focus the design and synthesis of polyammonium macrocyclic receptors for oxoanions of environmental importance. The basic research aspects of this project involve: (1) synthesis (and the search for improved synthetic methods); (2) solid state structure determination and thermodynamics studies (to ascertain structural criteria for and strength of anion binding); and (3) molecular dynamics simulations (to assess solution characteristics of the interactions between anions and their receptors). Applications-oriented goals include the fabrication of more selective anion-selective electrodes and the use of these compounds in liquid-liquid separations. The latter goal comprises the subcontract with Dr. Bruce Moyer at Oak Ridge National Laboratory. This report summarizes work after 1 year and 7 months of a 3-year project. To date, the authors have focussed on the design and synthesis of selective receptors for nitrate and phosphate.'

  9. Bacteriological analysis of water by potentiometric measurement of lipoic acid reduction: preliminary assays for selective detection of indicator organisms.

    PubMed Central

    Charriere, G; Jouenne, T; Lemeland, J F; Selegny, E; Junter, G A

    1984-01-01

    The practical task of adapting an original potentiometric technique to the bacteriological analysis of water is discussed. Various laboratory strains of organisms belonging to the usual aquatic flora were inoculated one by one in a minimal lactose broth supplied with lipoic (thioctic) acid. The time evolution of the redox potential of the cultures was followed during incubation by combined gold versus reference electrodes. When the incubation temperature was regulated at 36 degrees C, most organisms were able to grow and to reduce the coenzyme, generating changes in the redox potential of the culture. However, very few organisms developed significant reductive activity when the temperature was increased to 41 degrees C and when the broth was provided with sodium deoxycholate. Among the fecal coliform organisms, only Escherichia coli and Klebsiella pneumoniae exhibited early but reproducible potential-time responses. Positive potentiometric responses were also recorded with Acinetobacter calcoaceticus. E. coli showed rapid potentiometric signals as compared with K. pneumoniae. The time required for 100-mV shift of potential to be detected was related to the logarithm of the initial concentration of E. coli or K. pneumoniae in the culture broth. Experiments on natural surface water samples showed the the potentiometric method, associated with the selective incubation conditions, mainly detected E. coli among the bacterial flora of the tested environmental water. The calibration curve relating the time required for a 100-mV shift of potential to be detected to the number of fecal coliforms, as determined by control fecal coliform-selective plate counts, was consistent with the composite standard curve of detection times obtained with six different laboratory strains of E. coli.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6421230

  10. Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes.

    PubMed

    Jansod, Sutida; Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2016-05-15

    We report on an electrochemical protocol based on perm-selective membranes to provide valuable information about the speciation of ionizable drugs, with phenytoin as a model example. Membranes containing varying amounts of tetradodecylammonium chloride (TDDA) were read out at zero current (potentiometry) and with applied current techniques (chronopotentiometry). Potentiometry allows one to assess the ionized form of phenytoin (pKa~8.2) that corresponds to a negatively monocharged ion. A careful optimization of the membrane components resulted in a lower limit of detection (~1.6 µM) than previous reports. Once the pH (from 9 to 10) or the concentration of albumin is varied in the sample (from 0 to 30 g L(-1)), the potentiometric signal changes abruptly as a result of reducing/increasing the ionized concentration of phenytoin. Therefore, potentiometry as a single technique is by itself not sufficient to obtain information about the concentration and speciation of the drug in the system. For this reason, a tandem configuration with chronopotentiometry as additional readout principle was used to determine the total and ionized concentration of phenytoin. In samples containing excess albumin the rate-limiting step for the chronopotentiometry readout appears to be the diffusion of ionized phenytoin preceded by comparatively rapid deprotonation and decomplexation reactions. This protocol was applied to measure phenytoin in pharmaceutical tables (100mg per tablet). This tandem approach can likely be extended to more ionizable drugs and may eventually be utilized in view of pharmacological monitoring of drugs during the delivery process. PMID:26703989

  11. The Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Sessler, Jonathan L.

    2004-12-01

    In this first year of funding, progress has been made towards the stated project goal of generating useful sulfate extractants. A new series of bispyrrole-pyridine sulfate anion receptors was discovered and found to show very high sulfate-to-nitrate selectivity, a key prerequisite to generating a useful extractant. Progress was made towards developing the synthetic methodology needed to solubilize this system and other known receptors prepared by project collaborator, Prof. Kristin Bowman-James.

  12. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  13. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  14. Determination of selected anions in water by ion chromatography

    USGS Publications Warehouse

    Fishman, Marvin J.; Pyen, Grace

    1979-01-01

    Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rainwater and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram. Minimum detection limits range from 0.01 mg/L for fluoride to 0.20 mg/L for chloride and sulfate. Relative standard deviations were less than 9% for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 mg/L in rainfall samples. Precision for fluoride ranged from 12 to 22%, but is attributed to the low concentrations in these samples. The other anions were not detected. To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103%. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104%. No recovery data were obtained for nitrite. Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography. (USGS).

  15. Effect of side-arm variation in dibenzo-16-crown-5 compounds on the potentiometric selectivity for sodium ion

    SciTech Connect

    Ohki, Akira; Lu, J.P.; Bartsch, R.A. )

    1994-03-01

    The influence of attaching one or two pendent groups to the central carbon of the three-carbon bridge in dibenzo-16-crown-5 upon the potentiometric response of the ionophore to Li[sup +], Na[sup +], and K[sup +] in solvent polymeric membranes has been assessed. Side-arm variation includes alkyl, OCH[sub 3], OCH[sub 2]CO[sub 2]H, OCH[sub 2]CO[sub 2]C[sub 2]H[sub 5] and OCH[sub 2]C(O)N(C[sub 2]H[sub 5])[sub 2] units. The Na[sup +]/K[sup +] selectivity of the electrodes is increased by enhanced oxygen basicity in the side arm of the ionophore. Attachment of an alkyl group to the polyether ring carbon, which bears an oxygen-containing side arm, produces a substantial increase in the Na[sup +]/K[sup +] selectivity due to preorganization of the binding site. The Na[sup +]/Li[sup +] selectivity responds to side-arm variation within the ionophore quite differently than does the Na[sup +]/K[sup +] selectivity. 28 refs., 4 figs., 2 tabs.

  16. New conventional coated-wire ion-selective electrodes for flow-injection potentiometric determination of chlordiazepoxide.

    PubMed

    Issa, Y M; Abdel-Ghani, N T; Shoukry, A F; Ahmed, Howayda M

    2005-09-01

    New chlordiazepoxide hydrochloride (Ch-Cl) ion-selective electrodes (conventional type) based on ion associates, chlordiazepoxidium-phosphomolybdate (I) and chlordiazepoxidium-phosphotungstate (II), were prepared. The electrodes exhibited mean slopes of calibration graphs of 59.4 mV and 60.8 mV per decade of (Ch-Cl) concentration at 25 degrees C for electrodes (I) and (II), respectively. Both electrodes could be used within the concentration range 3.16 x 10(-6)-1 x 10(-2) M (Ch-Cl) within the pH range 2.0-4.5. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficients of the electrodes, which were 0.00139 and 0.00093 V degrees C(-1) for electrodes (I) and (II), respectively. The electrodes showed a very good selectivity for Ch-Cl with respect to the number of inorganic cations, amino acids and sugars. The electrodes were applied to the potentiometric determination of the chlordiazepoxide ion and its pharmaceutical preparation under batch and flow injection conditions. Also, chlordiazepoxide was determined by conductimetric titrations. Graphite, copper and silver coated wires were prepared and characterized as sensors for the drug under investigation. PMID:16363470

  17. A novel cobalt(II)-selective potentiometric sensor based on p-(4-n-butylphenylazo)calix[4]arene.

    PubMed

    Kumar, Pankaj; Shim, Yoon-Bo

    2009-01-15

    A new poly(vinyl chloride)-based membranes containing p-(4-n-butylphenylazo)calix[4]arene (I) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and dibutyl(butyl)phosphonate in the ratio 10:100:1:200 (I:DBBP:NaTPB:PVC) (w/w) was used to fabricate a new cobalt(II)-selective sensor. It exhibited a working concentration range of 9.2 x 10(-6) to 1.0 x 10(-1)M, with a Nernstian slope of 29.0+/-1.0 mV/decade of activity and the response time of 25s. This sensor shows the detection limit of 4.0 x 10(-6)M. Its potential response remains unaffected of pH in the range, 4.0-7.2, and the cell assembly can be used successfully in partially non-aqueous medium (up to 10%, v/v) without significant change in the slope of working concentration range. The sensor has a lifetime of about 3 months and exhibits excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. It can be used as an indicator electrode for the end point determination in the potentiometric titration of cobalt ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of cobalt ion concentration in real samples. PMID:19064091

  18. ANNUAL REPORT. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    This project involves the design and synthesis of receptors for anions of environmental importance, including emphasis on high level and low activity waste. Polyammonium macrocycles as receptors and nitrate as target anion were the focus of the first phase of this project. A seco...

  19. Selectivity Control in Synergistic Liquid-Liquid Anion Exchange of Univalent Anions via Structure-Specific Cooperativity between Quaternary Ammonium Cations and Anion Receptors

    SciTech Connect

    Borman, Christopher J; Bonnesen, Peter V; Moyer, Bruce A

    2012-01-01

    Two anion receptors enhance liquid-liquid anion exchange when added to quaternary alkylammonium chloride anion exchangers, but with a striking dependence upon the structure of the alkylammonium cation. Two anion receptors were investigated, meso-octamethylcalix[4]pyrrole (C4P) and the bisthiourea tweezer 1,1'-(propane-1,3-diyl)bis(3-(4-sec-butylphenyl)thiourea (BTU). C4P has the unique ability in its cone anion-binding conformation to accept an appropriately sized electropositive species in the resulting cup formed by its four electron-rich pyrrole groups, while BTU is not expected to be predisposed for a specific host-guest interaction with the quaternary ammonium cations. It was therefore hypothesized that synergism between C4P and methyltri(C8,10)alkylammonium chloride (Aliquat 336) would be uniquely pronounced owing to insertion of the methyl group of the Aliquat cation into the C4P cup, and we present herein data supporting this expectation. While synergism is comparatively weak for both exchangers with the BTU receptor, synergism between C4P and Aliquat 336 is indeed so strong that anion exchange prefers chloride over more extractable nitrate and trifluoroacetate, effectively overcoming the ubiquitous Hofmeister bias. A thermochemical analysis of synergistic anion exchange has been provided for the first time, unraveling the observed selectivity behavior and resulting in the estimation of binding constants for C4P with the ion pairs of A336+ with Cl , Br , OAcF3 , NO3 , and I . The uniquely strong positive cooperativity between A336 and C4P underscores the advantage of a supramolecular approach in the design of synergistic anion exchange systems.

  20. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Jonathan L. Sessler

    2007-09-21

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  1. Selective crystallization of urea-functionalized capsules with tunable anion-binding cavities

    SciTech Connect

    Custelcean, Radu; Remy, Priscilla

    2009-01-01

    Herein we report crystallization of self-assembled capsules functionalized with urea hydrogen-bonding groups as a means for selective separation of sulfate anion. The high complementarity and the rigid environment found in such crystalline systems impart strong discrimination between anions of different shape, like sulfate and sulfite, or anions of the same shape but slightly different size, like sulfate and selenate, with selectivity that exceeds that observed in sulfate-binding protein. Similar to natural receptors, these crystalline capsules completely isolate the anions from the aqueous solvent by encapsulating them inside rigid cavities lined with complementary hydrogen-bonding groups. Furthermore, the capsules are made from flexible building blocks, whose structure and relative orientation in the crystal can be allosterically regulated to fine-tune the anion selectivity. These characteristics suggest that crystallization of such urea-functionalized capsules from simple and flexible components represents a particularly promising approach for selective anion separation from highly competitive aqueous environments.

  2. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed Central

    Linsdell, P; Evagelidis, A; Hanrahan, J W

    2000-01-01

    Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues. PMID:10827976

  3. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed

    Linsdell, P; Evagelidis, A; Hanrahan, J W

    2000-06-01

    Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues. PMID:10827976

  4. Potentiometric responses of ion-selective microelectrode with bovine serum albumin adsorption.

    PubMed

    Goda, Tatsuro; Yamada, Eriko; Katayama, Yurika; Tabata, Miyuki; Matsumoto, Akira; Miyahara, Yuji

    2016-03-15

    There is a growing demand for an in situ measurement of local pH and ion concentrations in biological milieu to monitor ongoing process of bioreaction and bioresponse in real time. An ion-selective microelectrode can meet the requirements. However, the contact of the electrode with biological fluids induces biofouling by protein adsorption to result in a noise signal. Therefore, we investigated the relationship between the amount of nonspecific protein adsorption and the electrical signals in potentiometry by using ion-selective microelectrodes, namely silver/silver chloride (Ag/AgCl), iridium/iridium oxides (Ir/IrOx), and platinum/iridium oxides (Pt/IrOx). The microelectrodes reduced a potential change following the adsorption of bovine serum albumin (BSA) by comparison with the original metal microelectrodes without oxide layers. Suppression in the noise signal was attributed to the increased capacitance at the electrode/solution interface due to the formation of granulated metal oxide layer rather than a decrease in the amount of protein adsorbed. Ion sensitivity was maintained for Ir/IrOx against proton, but it was not for Ag/AgCl against chloride ion (Cl(-)), because of the interference of the equilibrium reaction by adsorbed BSA molecules on the electrode surface at<10(-2)M [Cl(-)] in the solution. The results open up the application of the Ir/IrOx microelectrode for measuring local pH in realistic dirty samples with a limited influence of electrode pollution by protein adsorption. PMID:26409020

  5. Highly selective electrode for potentiometric analysis of methadone in biological fluids and pharmaceutical formulations.

    PubMed

    Ardeshiri, Moslem; Jalali, Fahimeh

    2016-06-01

    In order to develop a fast and simple procedure for methadone analysis in biological fluids, a graphite paste electrode (GPE) was modified with the ion-pair of methadone-phosphotungstic acid, and multiwalled carbon nanotubes (MWCNTs). Optimized composition of the electrode with respect to graphite powder:paraffin oil:MWCNTs:ion pair, was 58:30:8:4 (w/w%). The electrode showed a near-Nernstian slope of 58.9 ± 0.3 mV/decade for methadone in a wide linear range of 1.0 × 10(-8)-4.6 × 10(-3)M, with a detection limit of 1.0 × 10(-8)M. The electrode response was independent of pH in the range of 5-11, with a fast response time (~4s) at 25 °C. The sensor showed high selectivity and was successfully applied to the determination of sub-micromolar concentrations of methadone in human blood serum and urine samples, with recoveries in the range of 95-99.8%. The average recovery of methadone from tablets (5 mg/tablet) by using the proposed method was 98%. The life time of the modified electrode was more than 5 months, due to the characteristic of GPE which can be cut off and fresh electrode surface be available. A titration procedure was performed for methadone analysis by using phosphotungstic acid, as titrating agent, which showed an accurate end point and 1:1 stoichiometry for the ion-pair formed (methadone:phosphotungstic acid). The simple and rapid procedure as well as excellent detection limit and selectivity are some of the advantages of the proposed sensor for methadone. PMID:27040192

  6. PROGRESS REPORT. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    This project involves the design and synthesis of receptors for oxoanions of environmental importance and specifically those found in high level waste tanks. Polyammonium macrocycles as receptors and nitrate as anion were the focus of the first phase of this project. A second pha...

  7. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-09-22

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange.

  8. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed.

  9. New Gel-Like Polymers as Selective Weak-Base Anion Exchangers

    PubMed Central

    Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej

    2015-01-01

    A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220

  10. Selectivity Principles in Anion Separation by Crystallization of Hydrogen-Bonding Capsules

    SciTech Connect

    Custelcean, Radu; Bock, Aurelien; Moyer, Bruce A

    2010-01-01

    The fundamental factors controlling anion selectivity in the crystallization of hydrogen-bonding capsules [Mg(H2O)6][X L2] (X = SO42-, 1a; SeO42-, 1b; SO32-, 1c; CO32-, 1d; L = tris[2-(3-pyridylurea)ethyl]-amine) from water have been investigated by solution and solid-state thermodynamic measurements, anion competition experiments, and X-ray structural analysis. The crystal structures of 1a-d are isomorphous, thereby simplifying the interpretation of the observed selectivities based on differences in anion coordination geometries. The solubilities of 1a-d in water follow the order: 1a < 1b < 1c < 1d, which is consistent with the selectivity for the tetrahedral sulfate and selenate anions observed in competitive crystallization experiments. Crystallization of the capsules is highly exothermic, with the most favorable {Delta}H{sub cryst}{sup o} of -99.1 and -108.5 kJ/mol corresponding to SO42- and SeO42-, respectively, in agreement with the X-ray structural data showing shape complementarity between these tetrahedral anions and the urea-lined cavities of the capsules. Sulfite, on the other hand, has a significantly less negative {Delta}H{sub cryst}{sup o} of -64.6 kJ/mol, which may be attributed to its poor fit inside the capsules, involving repulsive interactions. The more favorable entropy of crystallization for this anion, however, partly offsets the enthalpic disadvantage, resulting in a solubility product very similar to that of the selenate complex. Because of their very similar shape and size, SO42- and SeO42- have a propensity to form solid solutions, which limits the selectivity between these two anions in competitive crystallizations. In the end, a comprehensive picture of contributing factors to anion selectivity in crystalline hydrogen-bonding capsules emerges.

  11. Dissolved oxygen: method comparison with potentiometric stripping analysis

    SciTech Connect

    Fayyad, M.; Tutunji, M.; Ramakrishna, R.S.; Taha, Z.

    1987-04-01

    Three methods for determination of dissolved oxygen in samples of natural water are compared; potentiometric stripping analysis, PSA compares well with oxygen selective electrodes. Although potentiometric stripping analysis and oxygen selective electrode methods are found to be simple, rapid and of higher reproducibility than the usual Winkler procedure, the use of oxygen selective electrodes has many disadvantages.

  12. Novel anthracene-based fluorescent sensor for selective recognition of acetate anions in protic media

    NASA Astrophysics Data System (ADS)

    Xu, Kuoxi; Kong, Huajie; Li, Qian; Song, Pan; Dai, Yanpeng; Yang, Li

    2015-02-01

    Novel 9-substituted anthracene derivatives were synthesized and characterized by IR, HRMS, 1H and 13C NMR. The fluorescence titration experiments were explored to study the interaction between the compounds and some anions, such as H2PO4-, P2O74-, F-, Cl-, Br-, I-, AcO- in H2O (0.01 M HEPES, pH = 7.4) under imitated physiological conditions. One of these compounds, bearing a phenylalaninol unit, showed specific fluorescence enhancement with acetate anion. The sensor L1 was found to present good selective fluorescence sensing ability to acetate anion through photoinduced electron-transfer mechanism in protic media.

  13. High CO2 Solubility, Permeability and Selectivity in Ionic Liquids with the Tetracyanoborate Anion

    SciTech Connect

    Mahurin, Shannon Mark; Hillesheim, Patrick C; Yeary, Joshua S; Jiang, Deen; Dai, Sheng

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm-1 to 0.148 mol L-1 atm-1. In addition, CO2 permeability and CO2/N2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of the tetracyanoborate, [B(CN)4], anion for the separation of CO2.

  14. High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion

    SciTech Connect

    Mahurin, SM; Hillesheim, PC; Yeary, JS; Jiang, DE; Dai, S

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm(-1) to 0.148 mol L-1 atm(-1). In addition, CO2 permeability and CO2/N-2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of ionic liquids with the tetracyanoborate, [B(CN)(4)], anion for the separation of CO2.

  15. Potentiometric sensors with ion-exchange Donnan exclusion membranes.

    PubMed

    Grygolowicz-Pawlak, Ewa; Crespo, Gastón A; Ghahraman Afshar, Majid; Mistlberger, Günter; Bakker, Eric

    2013-07-01

    Potentiometric sensors that exhibit a non-Hofmeister selectivity sequence are normally designed by selective chemical recognition elements in the membrane. In other situations, when used as detectors in separation science, for example, membranes that respond equally to most ions are preferred. With so-called liquid membranes, a low selectivity is difficult to accomplish since these membranes are intrinsically responsive to lipophilic species. Instead, the high solubility of sample lipids in an ionophore-free sensing matrix results in a deterioration of the response. We explore here potentiometric sensors on the basis of ion-exchange membranes commonly used in fuel cell applications and electrodialysis, which have so far not found their way into the field of ion-selective electrodes. These membranes act as Donnan exclusion membranes as the ions are not stripped of their hydration shell as they interact with the membrane. Because of this, lipophilic ions are no longer preferred over hydrophilic ones, making them promising candidates for the detection of abundant ions in the presence of lipophilic ones or as detectors in separation science. Two types of cation-exchanger membranes and one anion-exchange membrane were characterized, and potentiometric measuring ranges were found to be Nernstian over a wide range down to about 10 μM concentrations. Depending on the specific membrane, lipophilic ions gave equal response to hydrophilic ones or were even somewhat discriminated. The medium and long-term stability and reproducibility of the electrode signals were found to be promising when evaluated in synthetic and whole blood samples. PMID:23731350

  16. Investigations of new potentiometric gas sensing systems

    SciTech Connect

    Yim, Hyoung-Sik

    1992-01-01

    Research concerning the development of new and/or improved potentiometric gas sensing systems is described. Studies relating to the development of reversible potentiometric oxygen sensors based on polymeric and metallic film electrodes are presented. In addition, the design and analytical utility of a novel differential ion-selective membrane electrode-based potentiometric gas sensing cell with enhanced sensitivity is documented. The performance of a reversible potentiometric oxygen gas sensor based on a polymeric membrane doped with cobalt-complexes is described. For such sensors, the potentiometric oxygen response is attributed to a mixed potential originating from the underlying platinum electrode surface as well as the Co(II)-tetren doped film. This leads to a short term oxygen response of nearly the theoretical slope value of 118 mV/decade, below 10% O[sub 2]. In the presence of the Co(II)-tetren/PVC film, an analytically useful response is observed for approx. 6-8 days. Thin films of metallic copper, electrochemically deposited on platinum and sputtered on a single crystal silicon wafer, are also examined for reversible potentiometric oxygen sensing. The long-term reversibility and potentiometric stability of such copper film-based sensors is enhanced (up to one month) by preventing the formation of cuprous oxide on the surfaces via the application of an external non-polarizing cathodic current through the working electrode, or by specifically using sputtered copper films that have [100] crystal structures as determined by X-ray diffraction. Finally, the development and application of a differential ion-selective membrane electrode-based potentiometric gas sensing cell is described. The prospects of fabricating differential detection arrangements for CO[sub 2], NO[sub 2], and SO[sub 2], NH[sub 3] are also discussed.

  17. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics

    DOEpatents

    Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.

    2000-01-01

    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  18. Incorporating β-cyclodextrin with ZnO nanorods: a potentiometric strategy for selectivity and detection of dopamine.

    PubMed

    Elhag, Sami; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    We describe a chemical sensor based on a simple synthesis of zinc oxide nanorods (ZNRs) for the detection of dopamine molecules by a potentiometric approach. The polar nature of dopamine leads to a change of surface charges on the ZNR surface via metal ligand bond formation which results in a measurable electrical signal. ZNRs were grown on a gold-coated glass substrate by a low temperature aqueous chemical growth (ACG) method. Polymeric membranes incorporating β-cyclodextrin (β-CD) and potassium tetrakis (4-chlorophenyl) borate was immobilized on the ZNR surface. The fabricated electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The grown ZNRs were well aligned and exhibited good crystal quality. The present sensor system displays a stable potential response for the detection of dopamine in 10(-2) mol·L(-1) acetic acid/sodium acetate buffer solution at pH 5.45 within a wide concentration range of 1 × 10(-6) M(-1) × 10(-1) M, with sensitivity of 49 mV/decade. The electrode shows a good response time (less than 10 s) and excellent repeatability. This finding can contribute to routine analysis in laboratories studying the neuropharmacology of catecholamines. Moreover, the metal-ligand bonds can be further exploited to detect DA receptors, and for bio-imaging applications. PMID:24445413

  19. Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias

    SciTech Connect

    Fowler, Christopher J; Haverlock, Tamara; Moyer, Bruce A; Shriver, James A.; Gross, Mr. Dustin E.; Marquez, Manuel; Sessler, Jonathan L.; Hossain, Alamgir; Bowman-James, Kristin

    2008-01-01

    Synergism in liquid-liquid extraction, typified by the combination of a neutral extractant with a cation-exchanger to enhance selectively cation extraction strength, has been used and understood for over five decades.1 Surprisingly, analogous synergism in anion extraction has not yet been developed. In this Communication we present a simple way to achieve non-Hofmeister selectivity in liquid-liquid anion exchange by combining a synthetic hydrogen-bond-donating (HBD) anion receptor with a standard quaternary ammonium type extractant. Specifically, we show that the fluorinated calixpyrroles 1 and 22 and the tetraamide macrocycles 3 5,3 may be used to enhance the solvent extraction of sulfate from nitrate by Aliquat 336-nitrate (A336-nitrate).

  20. New potentiometric transducer based on a Mn(II) [2-formylquinoline thiosemicarbazone] complex for static and hydrodynamic assessment of azides.

    PubMed

    Kamel, Ayman H

    2015-11-01

    A new potentiometric transducer for selective recognition of azide is characterized and developed. The PVC plasticized based sensor incorporates Mn(II) [2-formylquinoline thiosemicarbazone] complex in the presence of tri dodecyl methyl ammonium chloride (TDMAC) as a lipophilic cationic additive. The sensor displayed a near-Nernstian response for azide over 1.0×10(-2)-1.0×10(-5) mol L(-1), with an anionic slope of -55.8±0.6 mV decade(-1) and lower limit of detection 0.34 µg mL(-1). The sensor was pH independent in the range 5.5-9 and presented good selectivity features towards several inorganic anions, and it is easily used in a flow injection system and compared with a tubular detector. The intrinsic characteristics of the detector in a low dispersion manifold were determined and compared with data obtained under a hydrodynamic mode of operation. This simple and inexpensive automation, with a good potentiometric detector, enabled the analysis of ~33 samples h(-1) without requiring pre-treatment procedures. The proposed method is also applied to the analysis of trace levels of azide in primer mixtures. Significantly improved accuracy, precision, response time, stability and selectivity were offered by these simple and cost-effective potentiometric sensor compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to determine azide ions. PMID:26452931

  1. Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridged diiron complexes.

    PubMed

    Zhou, Yuhan; Dong, Xiaoliang; Zhang, Yixin; Tong, Peng; Qu, Jingping

    2016-04-28

    A new ligand bearing anthracene and its Fe(III) and Ru(III) derivatives have been synthesized and characterized exactly. The studies show that these dinuclear metal complexes serve as candidates of fluorescence chemosensors for anions. The interactions between these complexes and anions have been investigated by means of UV-Vis absorption spectra, fluorescence spectra, titration studies and (1)H-NMR. The results illustrated that two diiron complexes, [Cp*Fe(μ-SR)2(μ-η(2)-L)FeCp*][PF6] (, R = Me; , R = Et; L = 4-(3-(anthracen-9-ylmethyl)ureido)benzoate), showed rapid and selective recognition for the fluoride ion over other anions with strong enhancement of emission intensities. The sensing mechanisms indicate that the hydrogen bonding interaction has been observed between chemosensors and F(-). PMID:26619793

  2. 1,3-Alternate Tetraamido-Azacalix[4]arenes as Selective Anion Receptors.

    PubMed

    Canard, Gabriel; Edzang, Judicaelle Andeme; Chen, Zhongrui; Chessé, Matthieu; Elhabiri, Mourad; Giorgi, Michel; Siri, Olivier

    2016-04-11

    Six tetraaza[1.1.1.1]cyclophane derivatives bearing peripheral amide groups were prepared according to two distinct synthetic strategies that depend on the connection pattern between the aryl units. NMR experiments combined with the X-ray structures of two tetraamide derivatives 4 b and 10 show that these cavitands adopt a 1,3-alternate conformation both in solution and in the solid state. Consequently, the four amide groups of the aza[1.1.1.1]-m,m,m,m-cyclophane isomer 10 can contribute to the same recognition process towards neutral water molecules or anion guests. NMR experiments, mass spectrometry analyses and single-crystal X-ray structures confirm the anion-binding ability of this receptor. Absorption spectrophotometric titrations in nonpolar solvents provided evidence for the selectivity of 10 to chloride anions in the halide series, with a corresponding association constant Ka reaching 2.5 × 10(6) m(-1). PMID:26938487

  3. Multistep Mechanism of Chloride Translocation in a Strongly Anion-Selective Porin Channel

    PubMed Central

    Zachariae, Ulrich; Helms, Volkhard; Engelhardt, Harald

    2003-01-01

    The strongly anion-selective porin channel Omp32 from the bacterium Delftia acidovorans differs from other unspecific porins by its pronounced selectivity for anions and its particularly small channel cross-section. Multinanosecond molecular dynamics simulations of chloride ion movement in this pore protein suggest that translocated anions interact intimately with the charges of a “basic ladder”, whose dynamics lead the anions in a stepwise manner through the constriction zone of the channel. The ladder-steps comprise the central clustered arginine groups and flanking basic residues at its exoplasmic and periplasmic sides. The computed free energy profile of ion movement in and around the constriction zone shows a corresponding succession of free energy minima and barriers. A number of polar atoms from other amino acids contribute to the coordination of Cl− at certain sites and to its temporary immobilization in the channel. A special binding site occurs at the transition of the constriction zone to the periplasmic funnel, binding the chloride ion over significant lengths of time. The results from our MD study offer a possible explanation for the nonlinear conductance properties and unusual salt-dependent characteristics of Omp32 observed earlier in experimental measurements. PMID:12885642

  4. Interaction of vitamin B1 with bovine serum albumin investigation using vitamin B1-selective electrode: potentiometric and molecular modeling study.

    PubMed

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2016-09-01

    Vitamin B1 or thiamin is one of the B vitamins. All B vitamins help the body to convert food (carbohydrates) into fuel (glucose), which produces energy. The B vitamins are necessary for healthy skin, eyes, hair, and liver. It also could help the nervous system function properly, and is necessary for brain functions. Drug interactions with protein can affect the distribution of the drug and eliminate the drug in living systems. In this study, the binding of thiamine hydrochloride (vitamin B1) to bovine serum albumin (BSA) was evaluated using a new proposed vitamin B1 (thiamine)-selective membrane electrode under various experimental conditions, such as pH, ionic strength, and protein concentration; in addition molecular modeling was applied as well. The binding isotherms plotted based on potentiometric data and analyzed using the Wyman binding potential concept. The apparent binding constant was determined and used for the calculation of intrinsic Gibbs free energy of binding. According to the electrochemical and molecular docking results, it can be concluded that the hydrophobic interactions and hydrogen binding are major interactions between BSA and vitamin B1. PMID:26372107

  5. Selectivity control in synergistic liquid-liquid anion exchange of univalent anions via structure-specific cooperativity between quaternary ammonium cations and anion receptors.

    PubMed

    Borman, Christopher J; Bonnesen, Peter V; Moyer, Bruce A

    2012-10-01

    Two anion receptors enhance liquid-liquid anion exchange when added to quaternary alkylammonium chloride anion exchangers, but with a striking dependence on the structure of the alkylammonium cation that suggests a supramolecular cooperative effect. Two anion receptors were investigated, meso-octamethylcalix[4]pyrrole (C4P) and the bisthiourea tweezer 1,1'-(propane-1,3-diyl)bis(3-(4-sec-butylphenyl)thiourea (BTU). Whereas synergism is comparatively weak when either methyltri(C(8,10))alkylammonium chloride (Aliquat 336) or tetraheptylammonium chloride is used with the BTU receptor, synergism between C4P and Aliquat 336 is so pronounced that anion exchange prefers chloride over more extractable nitrate and trifluoroacetate, effectively overcoming the ubiquitous Hofmeister bias. A thermochemical analysis of synergistic anion exchange has been provided for the first time, resulting in the estimation of binding constants for C4P with the ion pairs of A336(+) with Cl(-), Br(-), OAc(F3)(-), NO(3)(-), and I(-). PMID:22931168

  6. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.

    PubMed

    Harahuc, L; Lizama, H M; Suzuki, I

    2000-07-20

    Bacterial leaching of sulfide ores using Thiobacillus ferrooxidans, Thiobacillus thiooxidans, or a combination of the two was studied at various concentrations of specific anions. Selective zinc and copper solubilization was obtained by inhibiting iron oxidation without affecting sulfur/sulfide oxidation. Phosphate reduced iron solubilization from a pyrite (FeS(2))-sphalerite (ZnS) mixture without significantly affecting zinc solubilization. Copper leaching from a chalcopyrite (CuFeS(2))-sphalerite mixture was stimulated by phosphate, whereas chloride accelerated zinc extraction. In a complex sulfide ore containing pyrite, chalcopyrite, and sphalerite, both phosphate and chloride reduced iron solubilization and increased copper extraction, whereas only chloride stimulated zinc extraction. Maximum leaching obtained was 100% zinc and 50% copper. Time-course studies of copper and zinc solubilization suggest the possibility of selective metal recovery following treatment with specific anions. PMID:10861398

  7. Anion selective optodes: development of a fluorescent fiber optic sensor for the determination of nitrite activity

    NASA Astrophysics Data System (ADS)

    Barker, Susan L. R.; Shortreed, Michael R.; Kopelman, Raoul

    1996-12-01

    The response of state of the art anion optodes often cannot be described in a thermodynamically exact manner because the ionic strength within the membrane phase of such optodes changes during the course of a titration. Incorporating lipophilic charge sites in the anion optode membranes provides a constant ionic strength in the membrane phase, the ability to measure anion activities, and a more thermodynamically describable system. This configuration has been used to create a micrometer-sized nitrite-selective optode. Recent elucidation of the many biological roles of nitric oxide (NO) has spurred interest in sensitive and selective detection of this molecule. In biological systems NO is converted to NO2- within 30 sec and the biological concentration of NO2- is normally on the micromolar level. The optode we have prepared contains a selective vitamin B12 derivative ionophore, a fluorescent chromoionophore (ETH 2439 or ETH 5350), and lipophilic charge sites. These components are entrapped in a highly plasticized PVC matrix which is placed on the distal end of the fiber. Sensor characteristics such as limit of detection and reversibility are presented.

  8. Structure and selectivity trends in crystalline urea-functionalized anion-binding capsules

    SciTech Connect

    Rajbanshi, Arbin; Custelcean, Radu

    2012-01-01

    A tripodal trisurea receptor (L1) persistently self-assembles with various divalent oxoanion salts M{sub n}X (M = Na, K, Mg, Ca, Cd; X = SO{sub 4}{sup 2-}, SO{sub 3}{sup 2-}, SeO{sub 4}{sup 2-}, CrO{sub 4}{sup 2-}) into isomorphous series of crystalline frameworks in three different compositions: MX(L1){sub 2}(H{sub 2}O){sub 6} (M = Mg, Ca, Cd) (1), Na{sub 2}X(L1){sub 2}(H{sub 2}O){sub 4} (2) and K{sub 2}X(L1){sub 2}(H{sub 2}O){sub 2} (3). Single-crystal X-ray structural analysis revealed that all three series of structures adopt a NaCl-type topology, consisting of alternating anionic X(L1){sub 2}{sup 2-} capsules and M(H{sub 2}O){sub 6}{sup 2+}, Na{sub 2}(H{sub 2}O){sub 4}{sup 2+} or K{sub 2}(H{sub 2}O){sub 2}{sup 2+} hydrated cations. The capsules provide a complementary environment to tetrahedral oxoanions via 12 hydrogen bonds from six urea groups lining the cavities of the capsules. The persistent formation of the capsules facilitated the investigation of structural trends and structure-selectivity relationships across series 1-3. First, it was found that the size of the capsules is relatively unresponsive to the change in the encapsulated anion, resulting in good shape and size recognition in the separation of anions by competitive crystallizations. Second, it was found that the size of the capsules varies linearly with the size of the external cation, which provides a way for tuning the anion encapsulation selectivity. However, no straightforward dependence was found between the size of the capsules and the relative selectivity for different-sized tetrahedral oxoanions in competitive crystallizations.

  9. Wavelength selective excitation of surface oxygen anions on highly dispersed MgO

    NASA Astrophysics Data System (ADS)

    Diwald, Oliver; Sterrer, Martin; Knözinger, Erich; Sushko, Peter V.; Shluger, Alexander L.

    2002-01-01

    Monochromatic UV light in the spectral interval between 4.0 and 5.5 eV is used in order to selectively excite 3- and 4-coordinated oxygen anion sites on the surface of MgO nanoparticles exposed to O2 gas. As a result, two different paramagnetic O- surface species and also ozonide anions O3- are observed by electron paramagnetic resonance (EPR) spectroscopy. The relative abundance of each of the O- species exhibits a specific dependence on the energy of the exciting photons. EPR data together with the results of theoretical modeling suggest that both O- species are located at 3-coordinated sites having different local environments. At sufficiently high O2 pressures molecular oxygen does not only act as an electron trap, favoring the O- formation, but it also contributes to UV induced O3- formation with a maximum efficiency at 4.2 eV.

  10. Vacuolar malate uptake is mediated by an anion-selective inward rectifier.

    PubMed

    Hafke, Jens B; Hafke, Yuliya; Smith, J Andrew C; Lüttge, Ulrich; Thiel, Gerhard

    2003-07-01

    Electrophysiological studies using the patch-clamp technique were performed on isolated vacuoles from leaf mesophyll cells of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana to characterize the malate transport system responsible for nocturnal malic acid accumulation. In the presence of malate on both sides of the membrane, the current-voltage relations of the tonoplast were dominated by a strongly inward-rectifying anion-selective channel that was active at cytoplasmic-side negative voltages. Rectification of the macroscopic conductance was reflected in the voltage-dependent gating of a 3-pS malate-selective ion channel, which showed a half-maximal open probability at -43 mV. Also, the time-averaged unitary currents following a step to a negative voltage corresponded to the time-dependent kinetics of the macroscopic currents, suggesting that the activity of this channel underlies the anion-selective inward rectifier. The inward rectifier showed saturation kinetics with respect to malate (apparent Km of 2.5 mm malate2- activity), a selectivity sequence of fumarate2- > malate2- > Cl- > maleate2- approximately citrate3-, and greater activity at higher pH values (with an apparent pK of 7.1 and maximum activity at around pH 8.0). All these properties were in close agreement with the characteristics of malate transport observed in isolated tonoplast vesicles. Further, 100 microM niflumate reversibly blocked the activity of the 3-pS channel and inhibited both macroscopic currents and malate transport into tonoplast vesicles to the same extent. The macroscopic current densities recorded at physiological voltages and the estimated channel density of 0.2 microm-2 are sufficient to account for the observed rates of nocturnal malic acid accumulation in this CAM plant, suggesting that the 3-pS, inward-rectifying, anion-selective channel represents the principal pathway for malate influx into the vacuole. PMID:12834407

  11. Selective separation behavior of graphene flakes in interaction with halide anions in the presence of an external electric field.

    PubMed

    Farajpour, E; Sohrabi, B; Beheshtian, J

    2016-03-14

    The adsorption of halide anions in the absence, and presence, of a perpendicularly external electric field on the C54H18 graphene surface has been investigated using M06-2X/6-31G(d,p) density functional theory (DFT). The structural characteristics, charge transfer, electric surface potential (ESP) maps, equilibrium distances between ions and the graphene surface and dipole moments of the ion-graphene complexes were investigated. The optimized structures show that halide anions (F(-) and Br(-)) adsorb on the graphene surface in contrast to the chloride anion that was stabilized on the edge area of the graphene flake. To clarify this unexpected behavior, diffusion of the chloride anion on the graphene surface was analyzed. The observations suggest that the moving of the chloride halide anion between barrier energies on the graphene flake has been facilitated as a result of the applied external electric field. In addition, an effective anion-π interaction between the fluoride anion and the graphene surface in the presence of an electric field holds out the capability of these anion-graphene complexes to design anion-selective nanoscale materials. PMID:26899635

  12. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2013

    USGS Publications Warehouse

    Staley, Andrew W.; Andreasen, David C.; Curtin, Stephen E.

    2014-01-01

    The potentiometric surface maps show water levels ranging from 165 feet above sea level to 199 feet below sea level. Water levels have declined by as much as 113 feet in the Aquia aquifer since 1982, 81 feet in the Magothy aquifer since 1975, and 61 and 95 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990.

  13. Potentiometric estimation of the stability constants of ion-lonophore complexes in ion-selective membranes by the sandwich membrane method: theory, advantages, and limitations.

    PubMed

    Shultz, Mikhail M; Stefanova, Olga K; Mokrov, Sergey B; Mikhelson, Konstantin N

    2002-02-01

    Segmented sandwich membrane method of studying stoichiometry and stability constants of ion-ionophore complexes in ion-selective membranes is considered in detail. The experimental data (reported earlier in Russian) concerning complexes of various ions with valinomycin, with H+-selective neutral ionophore hexabutyltriamidophosphate, and with anion-binding neutral ionophore p-hexyl trifluoroacetylbenzoate is presented in a compact form. Advantages of titration technique in the sandwich membrane method (the presence of an internal criterion of reliability, and the possibility of direct determination of complex stoichiometry coefficients) are specially addressed. Biases of the estimates of the constants caused by ion-pair formation in real membranes and by diffusion potential are analyzed by means of computer simulations. The possibility of revealing two coexisting complexes with different compositions is also discussed. PMID:11838668

  14. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.

    PubMed

    de Gennaro, Bruno; Catalanotti, Lilia; Bowman, Robert S; Mercurio, Mariano

    2014-09-15

    Lately, the functionalization of industrial minerals with high technological properties, such as natural zeolites, is shaping as a promising approach in environmental sphere. In fact, under the specific conditions, the surface functionalization via adsorption of cationic surfactants reverses the surface charge of the mineral, enabling zeolites to simultaneously interact either with organic contaminants or inorganic anions. This aspect allows zeolites to be used in the remediation of contaminated fluids. The present research shed new light on some still not fully understood aspects concerning exchange kinetics such as anion-exchange mechanisms and selectivity of surface modified minerals. For this purpose the mineralogical characterization and the surface properties evaluation (X Ray Powder Diffraction, chemical analysis, thermal analysis, ECEC and AEC) of a clinoptilolite-rich tuff were performed, and the anion exchange isotherms of the sample, modified with hexadecyltrimethylammonium chloride or bromide (HDTMA-Cl/-Br), were determined. Ion-exchange equilibrium data of uni-uni valent reaction were obtained by solutions containing Br(-), Cl(-), NO3(-) or ClO4(-). Liquid phase was analysed via high performance liquid chromatography. Thermodynamic quantities (Ka and ΔG(0)) were determined and compared with the Hofmeister series. The value of the ECEC, calculated in batch conditions, was about 137 mmol/kg, in good agreement with that evaluated in dynamic conditions, while the AEC data were different for the SMNZ-Br and -Cl samples, amounting to 137 and 106 mmol/kg, respectively, thus indicating a different compactness of the bilayer formed in the two cases. Moreover, the anion isotherm results and the mathematical evaluation of the thermodynamic parameters, demonstrated the good affinity of SMNZ-Br towards chloride, nitrate and perchlorate, and of SMNZ-Cl for nitrate and perchlorate, also endorsing the possibility of using the same thermodynamic approach developed to

  15. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    SciTech Connect

    Moyer, Bruce A; Sloop Jr, Frederick {Fred} V; Fowler, Christopher J; Haverlock, Tamara; Kang, Hyun Ah; Delmau, Laetitia Helene; Bau, Diadra; Hossain, Alamgir; Bowman-James, Kristin; Shriver, James A.; Gross, Mr. Dustin E.; Bill, Nathan; Marquez, Manuel; Lynch, Vincent M.; Sessler, Jonathan L.

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1 receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.

  16. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective.

    PubMed Central

    Keramidas, A; Moorhouse, A J; French, C R; Schofield, P R; Barry, P H

    2000-01-01

    Three mutations in the M2 transmembrane domains of the chloride-conducting alpha1 homomeric glycine receptor (P250Delta, A251E, and T265V), which normally mediate fast inhibitory neurotransmission, produced a cation-selective channel with P(Cl)/P(Na), = 0.27 (wild-type P(Cl)/P(Na) = 25), a permeability sequence P(Cs) > P(K) > P(Na) > P(Li), an impermeability to Ca(2+), and a reduced glycine sensitivity. Outside-out patch measurements indicated reversed and accentuated rectification with extremely low mean single channel conductances of 3 pS (inward current) and 11 pS (outward current). The three inverse mutations, to those analyzed in this study, have previously been shown to make the alpha7 acetylcholine receptor channel anion-selective, indicating a common location for determinants of charge selectivity of inhibitory and excitatory ligand-gated ion channels. PMID:10866951

  17. Potentiometric Surfaces and Changes in Groundwater Levels in Selected Bedrock Aquifers in the Twin Cities Metropolitan Area, March-August 2008 and 1988-2008

    USGS Publications Warehouse

    Sanocki, Christopher A.; Langer, Susan K.; Menard, Jason C.

    2008-01-01

    This report depicts potentiometric surfaces and groundwater- level changes in three aquifers that underlie the seven-county Twin Cities Metropolitan Area. Approximately 350 groundwater levels were measured in wells from the three aquifers-the Prairie du Chien-Jordan, the Franconia-Ironton-Galesville, and the Mount Simon-Hinckley aquifers-in March and August of 2008. The report presents maps, associated data tables, and 22 geographic information system datasets. The maps presented in this report show the potentiometric surfaces in March and August of 2008 for all three aquifers, groundwater-level changes from March to August 2008 for each aquifer, and revised potentiometric-surface contours for the winter of 1988-89 for the Prairie du Chien-Jordan and the Mount Simon-Hinckley aquifers, and the estimated long-term (winter of 1988-89 to March 2008) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers. This report documents the methods used to construct the maps and provides a context for the period of the measurements. Although withdrawal demand is increasing in the Twin Cities Metropolitan area, particularly in the Prairie du Chien-Jordan aquifer, year-to-year changes in withdrawals can be substantial, and the relation between potentiometric surfaces in the major aquifers and year-to-year withdrawals is not well established. The estimated long-term (19-year) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers have not been large based on data and maps produced during this study, despite the large seasonal fluctuations shown by the March and August 2008 synoptic measurements.

  18. A highly sensitive and selective fluorescent probe for fluoride anions based on intramolecular charge transfer.

    PubMed

    Liu, Jingkai; Xu, Zhenghe; Liu, Caiyun; Xu, Lirong; Wang, Zhongpeng; Zhu, Baocun

    2016-08-01

    Currently, there is a great need to develop methods for the selective detection of fluoride anions (F(-) ) owing to their toxicity in the environment and biological function in living systems. In this study, we developed a new fluorescent probe (probe 1) employing a Si-O bond as a highly selective recognition receptor for detecting F(-) via intramolecular charge transfer. Probe 1 could detect F(-) quantitatively using the turn-on fluorescence spectroscopy method with excellent sensitivity in the range of 4-38 μM and a detection limit of 0.26 μM; the detection time was < 17 min. We anticipate that probe 1 would be used widely to monitor F(-) in the environment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26467672

  19. Flow injection potentiometric determination of pipazethate hydrochloride.

    PubMed

    Abdel-Ghani, N T; Shoukry, A F; el Nashar, R M

    2001-01-01

    New plastic membrane electrodes for pipazethate hydrochloride based on pipazethatium phosphotungstate, pipazethatium phosphomolybdate and a mixture of the two were prepared. The electrodes were fully characterized in terms of composition, life span, pH and temperature and were then applied to the potentiometric determination of the pipazethate ion in its pure state and pharmaceutical preparations under batch and flow injection conditions. The selectivity of the electrodes towards many inorganic cations, sugars and amino acids was also tested. PMID:11205518

  20. Potentiometric titrations using pencil and graphite sensors

    SciTech Connect

    Selig, W.S.

    1984-01-01

    The cost of various commercial indicating electrodes ranges from about $40 for pH electrodes to as much as $355 for a potassium ion-selective electrode. This cost can be reduced to less than $1.50, and in some cases to mere pennies by making sensors from graphite rods and pencils for use in potentiometric titrations. The same sensor can be used for many types of these titrations (acid/base, compleximetric, precipitation, and redox). 8 references, 2 tables.

  1. Theoretical study on the radical anions and reductive dechlorination of selected polychlorinated dibenzo-p-dioxins.

    PubMed

    Luo, Jin; Hu, Jiwei; Zhuang, Yuan; Wei, Xionghui; Huang, Xianfei

    2013-05-01

    For the effective use of remediation technologies for PCDDs contamination, it is essential to study the reactivity and dechlorination pathways of these compounds. In this study, density functional theory (DFT) calculations (B3LYP/6-31+G(d), B3LYP/6-311+G(d,p)) were performed to investigate the neutrals and different anionic states of selected PCDD congeners. The calculated adiabatic electron affinities and frontier orbital energies of the PCDD congeners (in gas-phase and in solution) are significantly correlated with the reported dechlorination rate constants, showing that this kind of reductive cleavage reaction is kinetically controlled by the electron transfer step. The predicted major dechlorination pathways of 1,2,3,4-TeCDD and its daughter products based on the energies of the anionic states were found to be satisfactorily consistent with the reported experimental results. Simulation of the 1,2,3,4-TeCDD dechlorination process showed that not only the dechlorination regioselectivity but also the reactivity of the PCDDs played an important role in the distribution of dechlorinated products. An exponential correlation was found between the sum of the concentration of the PCDD congeners and the reaction time in the simulation, indicating that the time required for the conversion of the PCDD congeners to the fully dechlorinated product (dibenzo-p-dioxin) might not be significantly dependent on the initial concentration of 1,2,3,4-TeCDD. PMID:23499218

  2. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation.

    PubMed

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-11-21

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m(-2) h(-1) bar(-1)) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles. PMID:24072040

  3. Data on heavy metals and selected anions in the Persian popular herbal distillates.

    PubMed

    Keshtkar, Mozhgan; Dobaradaran, Sina; Soleimani, Farshid; Karbasdehi, Vahid Noroozi; Mohammadi, Mohammad Javad; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji

    2016-09-01

    In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including [Formula: see text] , [Formula: see text], [Formula: see text] and [Formula: see text] in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain ("Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran" (Dobaradaran et al., 2013) [1]; "Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf" (Abadi et al., 2015) [2]) as well as some other environmental pollutions, "Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity" (Arfaeinia et al., 2016) [3]. The concentration levels of heavy metals and anions in herbal distillates samples were determined using flame atomic absorption spectrometry (FAAS, Varian AA240, Australia) and a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK) respectively. PMID:27274526

  4. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic.

    PubMed

    Galzi, J L; Devillers-Thiéry, A; Hussy, N; Bertrand, S; Changeux, J P; Bertrand, D

    1992-10-01

    Introduction by site-directed mutagenesis of three amino acids from the MII segment of glycine or gamma-aminobutyric acid (GABAA) receptors into the MII segment of alpha 7 nicotinic receptor was sufficient to convert a cation-selective channel into an anion-selective channel gated by acetylcholine. A critical mutation was the insertion of an uncharged residue at the amino-terminal end of MII, stressing the importance of protein geometrical constraints on ion selectivity. PMID:1383829

  5. Non-coordinating-Anion-Directed Reversal of Activation Site: Selective C-H Bond Activation of N-Aryl Rings.

    PubMed

    Wang, Dawei; Yu, Xiaoli; Xu, Xiang; Ge, Bingyang; Wang, Xiaoli; Zhang, Yaxuan

    2016-06-13

    An Rh-catalyzed selective C-H bond activation of diaryl-substituted anilides is described. In an attempt to achieve C-H activation of C-aryl rings, we unexpectedly obtained an N-aryl ring product under non-coordinating anion conditions, whereas the C-aryl ring product was obtained in the absence of a non-coordinating anion. This methodology has proved to be an excellent means of tuning and adjusting selective C-H bond activation of C-aryl and N-aryl rings. The approach has been rationalized by mechanistic studies and theoretical calculations. In addition, it has been found and verified that the catalytic activity of the rhodium catalyst is obviously improved by non-coordinating anions, which provides an efficient strategy for obtaining a highly chemoselective catalyst. Mechanistic experiments also unequivocally ruled out the possibility of a so-called "silver effect" in this transformation involving silver. PMID:27159169

  6. Selective Anion Exchange Resins for the Removal of Perchlorate [(CIO{sub 4}{sup -})] from Groundwater

    SciTech Connect

    Gu, B.

    1999-05-20

    The primary objective of this project was to evaluate a novel bifunctional anion exchange resin for the cost-effective, in situ treatment of groundwater contaminated with perchlorate (ClO{sub 4}{sup -}). Both laboratory and field studies were performed to determine the selectivity and capacity of the bifunctional synthetic resins to sorb ClO{sub 4}{sup -} from simulated or actual contaminated groundwater. A number of synthetic bifunctional resins, including two commercial versions made by Purolite International and three commercially available, mono-functional resins, were tested. Initial laboratory batch and column breakthrough studies determined the best synthetic resins and the optimal conditions for the field experiment. Laboratory results indicated that the bifunctional synthetic resins, D-3696 and RO-02-119 were highly selective toward ClO{sub 4}{sup -} and performed {approx}5 times better than the best commercial nitrate resin (Purolite{reg_sign} A-520E) and more than an order of magnitude better than some nonselective commercial resins (e.g. Amberlite{reg_sign} IRA-900). The bifunctional resins were particularly effective in removing trace quantities of ClO{sub 4}{sup -} in groundwater to below the detection limit ({approx} 3 {micro}g/L). A field trial demonstrated that the bifunctional resin (D-3696) was able to treat {approx} 110,000 bed volumes of groundwater before a 10% breakthrough of ClO{sub 4}{sup -} occurred under the column flow-through conditions (running at {approx} 2 bed volumes per minute). On the other hand, the Purolite{reg_sign} A-520E resin was able to treat {approx} 23,000 bed volumes of groundwater under the same experimental conditions. No pretreatment was needed to remove either dissolved organic matter or other competing anions (such as SO{sub 4}{sup 2-} or NO{sub 3}{sup -}) in the groundwater, and the treatment process did not alter the water quality by removing or adding secondary by-products because of the high selectivity of the

  7. Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection.

    PubMed

    Ghahraman Afshar, Majid; Crespo, Gastón A; Bakker, Eric

    2016-04-01

    We report here on the development of a chronopotentiometric readout for ion-selective electrodes that allows one to record transition times in continuous flow conditions without the necessity to stop the flow. A sample plug of 150 μL is injected into the carrier solution (0.5 mM NaCl) and subsequently transported to the detection cell (∼20 μL) at moderate flow rates (∼0.5 mL min(-1)), where a short current pulse (5s) is applied between the ionophore-based working electrode and a biocompatible and nonpolarizable Donnan exclusion anion-exchanger membrane reference/counter electrode. Flow conditions bear an influence on the thickness of the aqueous diffusion layer and result in a shift of the chronopotentiometric transition time with respect to stopped flow. Two models based on rotating disk electrodes and flow chronopotentiometry at metal-based electrodes were used to corroborate the data. The method was successfully applied to the determination of calcium, chloride, alkalinity, acidity, and protamine with a range of ion-selective membranes. Because of the limiting exposure time of ca. 20 s of the membranes with the sample, this approach is demonstrated to be useful for the detection of protamine in the therapeutic range of undiluted human blood. PMID:26932542

  8. A microporous anionic metal-organic framework for a highly selective and sensitive electrochemical sensor of Cu(2+) ions.

    PubMed

    Jin, Jun-Cheng; Wu, Ju; Yang, Guo-Ping; Wu, Yun-Long; Wang, Yao-Yu

    2016-06-28

    We first reported an anionic metal-organic framework for electrode material for the electrochemical detection of Cu(2+). The modified electrode shows an excellent selectivity, high stability and sensitivity, wide linear range and lower detection limit. This strategy for generating new electrode materials will be useful for preparing new sensors and reporters for biological systems. PMID:27315447

  9. Potentiometric titration of metal ions in ethanol.

    PubMed

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented. PMID:16961382

  10. Potentiometric surfaces, summer 2013 and winter 2015, and select hydrographs for the Southern High Plains aquifer, Cannon Air Force Base, Curry County, New Mexico

    USGS Publications Warehouse

    Collison, Jake

    2016-01-01

    Cannon Air Force Base (Cannon AFB) is located in the High Plains physiographic region of east-central New Mexico, about 5 miles west of Clovis, New Mexico. The area surrounding Cannon AFB is primarily used for agriculture, including irrigated cropland and dairies. The Southern High Plains aquifer is the principal source of water for Cannon AFB, for the nearby town of Clovis, and for local agriculture and dairies. The Southern High Plains aquifer in the vicinity of Cannon AFB consists of three subsurface geological formations: the Chinle Formation of Triassic age, the Ogallala Formation of Tertiary age, and the Blackwater Draw Formation of Quaternary age. The Ogallala Formation is the main water-yielding formation of the Southern High Plains aquifer. Groundwater-supplied, center-pivot irrigation dominates pumping from the Southern High Plains aquifer in the area surrounding Cannon AFB, where the irrigation season typically extends from early March through October. The U.S. Geological Survey has been monitoring groundwater levels in the vicinity of Cannon AFB since 1954 and has developed general potentiometric-surface maps that show groundwater flow from northwest to southeast in the study area. While previous potentiometric-surface maps show the general direction of groundwater flow, a denser well network is needed to show details of groundwater flow at a local scale. Groundwater levels were measured in 93 wells during summer 2013 and 100 wells during winter 2015.The summer and winter potentiometric-surface maps display the presence of what is interpreted to be a groundwater trough trending from the northwest to the southeast through the study area. This groundwater trough may be the hydraulic expression of a Tertiary-age paleochannel. Groundwater north of the trough flows in a southerly direction into the trough, and groundwater south of the trough flows in an easterly direction into the trough.During the 18-month period between summer 2013 and winter 2015, changes

  11. Differential potentiometric determination of perchlorate and iodide ions in industrial wastes

    SciTech Connect

    Kolbyagin, N.P.; Vlasova, E.G.; Zhilina, O.D.; Renkova, Z.S.

    1986-12-01

    The determination of perchlorates and iodides present together in industrial wastes is hampered by the fact that these anions either are precipitated by the same organic reagents or form colored complexes with similar absorption maxima. Determining them by separation or by deducting one from their sum is a multi-step analysis which takes more time and decreases accuracy. In this paper, the authors report a rapid, single-step determination of co-present perchlorate and iodide by precipitative titration with nitron solution and potentiometric indication of the equivalence point by a perchlorate-selective membrane electrode. The perchlorate and iodide determinations were unaffected by surfactant, suspensions, and ions not precipitated with nitron. A single analysis takes 15-20 minutes. This method may also be used for analyzing single salts.

  12. Two different hydrogen bond donor ligands together: a selectivity improvement in organometallic {Re(CO)3} anion hosts.

    PubMed

    Ion, Laura; Nieto, Sonia; Pérez, Julio; Riera, Lucía; Riera, Víctor; Díaz, Jesús; López, Ramón; Anderson, Kirsty M; Steed, Jonathan W

    2011-09-01

    Rhenium(I) compounds [Re(CO)(3)(Hdmpz)(2)(ampy)]BAr'(4) and [Re(CO)(3)(N-MeIm)(2)(ampy)]BAr'(4) (Hdmpz = 3,5-dimethylpyrazole, N-MeIm = N-methylimidazole, ampy = 2-aminopyridine or 3-aminopyridine) have been prepared stepwise as the sole reaction products in good yields. The cationic complexes feature two different types of hydrogen bond donor ligands, and their anion binding behavior has been studied both in solution and in the solid state. Compounds with 2-ampy ligands are labile in the presence of nearly all of the anions tested. The X-ray structure of the complex [Re(CO)(3)(Hdmpz)(2)(ampy)](+) (2) shows that the 2-ampy ligand is metal-coordinated through the amino group, a fact that can be responsible for its labile character. The 3-ampy derivatives (coordinated through the pyridinic nitrogen atom) are stable toward the addition of several anions and are more selective anion hosts than their tris(pyrazole) or tris(imidazole) counterparts. This selectivity is higher for compound [Re(CO)(3)(N-MeIm)(2)(MeNA)]BAr'(4) (5·BAr'(4), MeNA = N-methylnicotinamide) that features an amido moiety, which is a better hydrogen bond donor than the amino group. Some of the receptor-anion adducts have been characterized in the solid state by X-ray diffraction, showing that both types of hydrogen bond donor ligands of the cationic receptor participate in the interaction with the anion hosts. DFT calculations suggest that coordination of the ampy ligands is more favorable through the amino group only for the cationic complex 2, as a consequence of the existence of a strong intramolecular hydrogen bond. In all other cases, the pyridinic coordination is clearly favored. PMID:21834508

  13. High Guanidinium Permeability Reveals Dehydration-Dependent Ion Selectivity in the Plasmodial Surface Anion Channel

    PubMed Central

    Bokhari, Abdullah A. B.; Mita-Mendoza, Neida K.; Fuller, Alexandra; Pillai, Ajay D.; Desai, Sanjay A.

    2014-01-01

    Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC), an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development. PMID:25243175

  14. Principles of activation and permeation in an anion-selective Cys-loop receptor.

    PubMed

    Hibbs, Ryan E; Gouaux, Eric

    2011-06-01

    Fast inhibitory neurotransmission is essential for nervous system function and is mediated by binding of inhibitory neurotransmitters to receptors of the Cys-loop family embedded in the membranes of neurons. Neurotransmitter binding triggers a conformational change in the receptor, opening an intrinsic chloride channel and thereby dampening neuronal excitability. Here we present the first three-dimensional structure, to our knowledge, of an inhibitory anion-selective Cys-loop receptor, the homopentameric Caenorhabditis elegans glutamate-gated chloride channel α (GluCl), at 3.3 Å resolution. The X-ray structure of the GluCl-Fab complex was determined with the allosteric agonist ivermectin and in additional structures with the endogenous neurotransmitter L-glutamate and the open-channel blocker picrotoxin. Ivermectin, used to treat river blindness, binds in the transmembrane domain of the receptor and stabilizes an open-pore conformation. Glutamate binds in the classical agonist site at subunit interfaces, and picrotoxin directly occludes the pore near its cytosolic base. GluCl provides a framework for understanding mechanisms of fast inhibitory neurotransmission and allosteric modulation of Cys-loop receptors. PMID:21572436

  15. Micromechanical potentiometric sensors

    DOEpatents

    Thundat, Thomas G.

    2000-01-01

    A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

  16. Extraction of selected organic bases by bis 1,2-dicarbollylcobaltate anion from water into chloroform

    NASA Astrophysics Data System (ADS)

    Navrátil, O.; Skaličan, Z.; Kobliha, Z.; Halámek, E.

    1999-01-01

    Bis-1,2-dicarbollylcobaltate anion, labelled by 60Co, forms ionic associates with cations of some organic bases and quaternary salts, especially those causing psychic effect on human organism. Their stability and partition between aqueous 0,1 mol. L-1 HCl and chloroform were investigated radiometrically. A method of competitive extraction was proposed for some anions of dyes which were so far used for extraction-spectrophotometric determination of some bases.

  17. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    PubMed

    Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo

    2014-01-01

    Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities. PMID:25084457

  18. Identification of Novel Anionic Phospholipid Binding Domains in Neutral Sphingomyelinase 2 with Selective Binding Preference*

    PubMed Central

    Wu, Bill X.; Clarke, Christopher J.; Matmati, Nabil; Montefusco, David; Bartke, Nana; Hannun, Yusuf A.

    2011-01-01

    Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites. PMID:21550973

  19. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.

    PubMed

    Lenik, Joanna; Łyszczek, Renata

    2016-04-01

    Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. PMID:26838835

  20. Potentiometric surface and water-level difference maps of selected confined aquifers of Southern Maryland and Maryland's Eastern Shore, 1975-2011

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2012-01-01

    Groundwater is the principal source of freshwater supply in most of Southern Maryland and Maryland's Eastern Shore. It is also the source of freshwater supply used in the operation of the Calvert Cliffs, Chalk Point, and Morgantown power plants. Increased groundwater withdrawals over the last several decades have caused groundwater levels to decline. This report presents potentiometric surface maps of the Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent aquifers using water levels measured during September 2011. Water-level difference maps also are presented for the first four of these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2011, whereas the water-level differences in the Magothy aquifer are presented using data from 1975 and 2011. Water-level difference maps in both the upper Patapsco and lower Patapsco aquifers are presented using data from 1990 and 2011. These maps show cones of depression ranging from 25 to 198 feet (ft) below sea level centered on areas of major withdrawals. Water levels have declined by as much as 112 ft in the Aquia aquifer since 1982, 85 ft in the Magothy aquifer since 1975, and 47 and 71 ft in the upper Patapsco and lower Patapsco aquifers, respectively, since 1990.

  1. Unexpected role of anionic ligands in the ruthenium-catalyzed base-free selective hydrogenation of aldehydes.

    PubMed

    Dupau, Philippe; Bonomo, Lucia; Kermorvan, Laurent

    2013-10-18

    Bigger and better: The replacement of anionic chloride ligands in Noyori-type [(diamine)(diphosphine)RuCl2 ] catalysts with bulky carboxylate ligands enabled the efficient selective hydrogenation of a variety of aldehydes under base-free conditions. Turnover numbers of up to 100 000 were reached in the presence of a bulky carboxylic acid co-catalyst. This type of catalytic system probably operates through an inner-sphere mechanism. PMID:24038827

  2. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    PubMed

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  3. Selective co-deposition of anionic silica particles at hydrophobic surfaces from formulations of oppositely charged polymers and surfactants.

    PubMed

    Wang, Wei; Johnson, Eric S; Nylander, Tommy; Ellingson, Pete; Schubert, Beth; Piculell, Lennart

    2016-04-01

    The surface-selective surface deposition of anionic hydrophilic silica particles from aqueous polymer-surfactant formulations was investigated by in-situ null-ellipsometry. The formulations, with or without silica particles, contained anionic sodium dodecylsulfate (SDS) and a cationic polymer, cationic hydroxyethyl cellulose (cat-HEC) or a copolymer of acrylamide and methacrylamidopropyl trimethylammonium chloride (AAm/MAPTAC). Surface deposition from the formulations onto model surfaces of either anionic hydrophilic, or hydrophobized, silica was induced by controlled dilution of the formulations into the coacervation region, and was monitored with time by ellipsometry. The dilution simulated a rinsing process in a typical application. In all cases a steady-state surface layer remained after extensive dilution. An enhanced deposition from the silica-containing formulations was found on the hydrophobized silica surface, indicating a substantial co-deposition of silica particles. Much less co-deposition, or none at all, was found on hydrophilic silica. The opposite trend, enhanced co-deposition on hydrophilic silica, was previously found in similar experiments with hydrophobic silicone oil droplets as co-deposants (Clauzel et al., 2011). The amphiphilic cationic polymers evidently favor a "mismatched" co-deposition of anionic particles to hydrophobic surfaces, or vice versa. The findings suggest a strategy for surface-specific delivery of particles to surfaces. PMID:26802279

  4. Epitaxial InN/InGaN quantum dots on Si: Cl‑ anion selectivity and pseudocapacitor behavior

    NASA Astrophysics Data System (ADS)

    Rodriguez, Paul E. D. Soto; Mari, Claudio Maria; Sanguinetti, Stefano; Ruffo, Riccardo; Nötzel, Richard

    2016-08-01

    Epitaxial InN quantum dots (QDs) on In-rich InGaN, applied as an electrochemical electrode, activate Cl‑-anion-selective surface attachment, bringing forth faradaic/pseudocapacitor-like behavior. In contrast to traditional pseudocapacitance, here, no chemical reaction of the electrode material occurs. The anion attachment is explained by the unique combination of the surface and quantum properties of the InN QDs. A high areal capacitance is obtained for this planar electrode together with rapid and reversible charge/discharge cycles. With the growth on cheap Si substrates, the InN/InGaN QD electrochemical electrode has great potential, opening up new application fields for III–nitride semiconductors.

  5. Performance of selected anion exchange resins for the treatment of a high DOC content surface water.

    PubMed

    Humbert, Hugues; Gallard, Hervé; Suty, Hervé; Croué, Jean-Philippe

    2005-05-01

    The objective of this study was first to compare the performance of four strong anion exchange resins (AERs) (MIEX from Orica Pty Ltd, DOWEX-11 and DOWEX-MSA from DOW chemical and IRA-938 from Rohm and Haas) for their application in drinking water treatment (natural organic matter (NOM), mineral anions (nitrate, sulfate and bromide) and pesticide removal) using bench-scale experimental procedures on a high DOC content surface water. The efficiency of MIEX for NOM and mineral anions removal was furthermore evaluated using bench-scale dose-response experiments on raw, clarified and post-ozonated waters. NOM removal was assessed using the measurement of dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254) and the use of high-performance size exclusion chromatography with UV (HPSEC/UV) and fluorescence detection (HPSEC/FLUO). The MIEX and IRA938 anionic resins exhibit a faster removal of NOM and mineral anions compared to the DOWEX11 and MSA AERs. All the resins were found to be very effective with similar performances after 30 to 45 min of contact time. As expected, only limited sorption of atrazine and isoproturon (C0=1 microg/L) occurred with MIEX, DOWEX11 and MSA AERs. MIEX resin proved to be very efficient in eliminating NOM of high-molecular weight but also a large part of the smallest UV absorbing organic compounds which were refractory to coagulation/flocculation treatment. Remaining DOC levels after 30 min of contact with MIEX were found similar in raw water, clarified water and even post-ozonated water implying no DOC benefit can be gained by employing conventional treatment prior to MIEX treatment. Removal of bromide (initial concentration 110 microg/L) was also observed and ranged from 30% to 65% for resin dose increasing from 2 to 8 mL/L. T PMID:15899268

  6. Heterometallic modular metal-organic 3D frameworks assembled via new tris-β-diketonate metalloligands: nanoporous materials for anion exchange and scaffolding of selected anionic guests.

    PubMed

    Carlucci, Lucia; Ciani, Gianfranco; Maggini, Simona; Proserpio, Davide M; Visconti, Marco

    2010-11-01

    -48% of the cell volume and include the anions and many guest solvent molecules. The guest solvent molecules can be reversibly removed by thermal activation with retention of the framework structure, which proved to be stable up to about 270°C, as confirmed by TGA and powder XRD monitoring. The anions could be easily exchanged in single-crystal to single-crystal processes, thereby allowing the insertion of selected anions into the framework channels. PMID:20938934

  7. Selective removal of alkali metal cations from multiply-charged ions via gas-phase ion/ion reactions using weakly coordinating anions.

    PubMed

    Luongo, Carl A; Bu, Jiexun; Burke, Nicole L; Gilbert, Joshua D; Prentice, Boone M; Cummings, Steven; Reed, Christopher A; McLuckey, Scott A

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations. PMID:25560986

  8. Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions

    NASA Astrophysics Data System (ADS)

    Luongo, Carl A.; Bu, Jiexun; Burke, Nicole L.; Gilbert, Joshua D.; Prentice, Boone M.; Cummings, Steven; Reed, Christopher A.; McLuckey, Scott A.

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 -), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 -). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.

  9. Selective chromatographic fractionation of catechol estrogens on anion exchangers in borate form.

    PubMed

    Fotsis, T; Heikkinen, R

    1983-03-01

    The borate form of anion exchangers has been investigated for its utility in the field of estrogen analysis. The borate form of a weak (DEAE-Sephadex A-25) and a strong (QAE-Sephadex A-25) anion exchanger was easily prepared by appropriate washing of the gels, without the need of time consuming immobilization techniques. Estrogens with vicinal cis-hydroxyls were strongly retained in both gels through formation of borate complexes and readily separated from estrogens not possessing such groups. Moreover, borate complex formation with the labile o-dihydroxyphenyl moiety of catechol estrogens fully protected them from decomposition during chromatography. Quantitative recovery of catechol estrogens was thereby obtained without use of antioxidants. The borate form of QAE-Sephadex A-25 was capable, in addition, of separating estrogens not possessing vicinal cis-hydroxyls from the corresponding neutral steroids. PMID:6298506

  10. Potentiometric analysis using solutions of cerium sulfates

    SciTech Connect

    Pugin., G.V.; Pisarevskii, A.M.; Polozova, I.P.; Shults, M.M.

    1986-06-01

    In a previous work the authors outlined the bases of a new method of instrumental determination of the chemical oxygen consumption (COC): The analysis is performed within the framework of the umpire analysis of COC, but the consumption of the oxidizing agent is continuously recorded according to the change in the emf of the galvanic cell (glass pH-metric electrode; cerium (IV,III) sulfates, potassium bichromate, 7.5 M H/sub 2/SO/sub 4/; and glass redoximetric electrode EO-021. The authors contend that potentiometric recording permits not only a simplication of the determination of COC but also the removal of the rigid limitations on the time of boiling of the sample. Additional information may be obtained on the corresponding and difficultly oxidized substances in the sample to be analyzed. It is noted after a discussion of main peculiarities of the cell that the selection of the conditions of analysis is dictated largely by the requirements set in the determinations of COC which permits a number of shortcomings of the potentiometric method to be determined.

  11. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions.

    PubMed

    Shi, Minjie; Kou, Shengzhong; Yan, Xingbin

    2014-11-01

    Graphene sheet (GS)-ionic liquid (IL) supercapacitors are receiving intense interest because their specific energy density far exceeds that of GS-aqueous electrolytes supercapacitors. The electrochemical properties of ILs mainly depend on their diverse ions, especially anions. Therefore, identifying suitable IL electrolytes for GSs is currently one of the most important tasks. The electrochemical behavior of GSs in a series of ILs composed of 1-ethyl-3-methylimidazolium cation (EMIM(+)) with different anions is systematically studied. Combined with the formula derivation and building models, it is shown that the viscosity, ion size, and molecular weight of ILs affect the electrical conductivity of ILs, and thus, determine the electrochemical performances of GSs. Because the EMIM-dicyanamide IL has the lowest viscosity, ion size, and molecular weight, GSs in it exhibit the highest specific capacitance, smallest resistance, and best rate capability. In addition, because the tetrafluoroborate anion (BF4(-)) has the best electrochemical stability, the GS-[EMIM][BF4] supercapacitor has the widest potential window, and thus, displays the largest energy density. These results may provide valuable information for selecting appropriate ILs and designing high-performance GS-IL supercapacitors to meet different needs. PMID:25146489

  12. Textile-based sampling for potentiometric determination of ions.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Ruzgas, Tautgirdas; Bobacka, Johan

    2015-06-01

    Potentiometric sensing utilizing textile-based micro-volume sampling was applied and evaluated for the determination of clinically (Na(+), K(+), Cl(-)) and environmentally (Cd(2+), Pb(2+) and pH) relevant analytes. In this technological design, calibration solutions and samples were absorbed into textiles while the potentiometric cells (ion-selective electrodes and reference electrode) were pressed against the textile. Once the liquid, by wicking action, reached the place where the potentiometric cell was pressed onto the textile, hence closing the electric circuit, the potentiometric response was obtained. Cotton, polyamide, polyester and their blends with elastane were applied for micro-volume sampling. The textiles were found to influence the determination of pH in environmental samples with pH close to neutral and Pb(2+) at low analyte concentrations. On the other hand, textile-based micro-volume sampling was successfully applied in measurements of Na(+) using solid-contact sodium-selective electrodes utilizing all the investigated textiles for sampling. It was found that in order to extend the application of textile-based sampling toward environmental analysis of ions it will be necessary to tailor the physio-chemical properties of the textile materials. In general, textile-based sampling opens new possibilities for direct chemical analysis of small-volume samples and provide a simple and low-cost method to screen various textiles for their effects on samples to identify which textiles are the most suitable for on-body sensing. PMID:26002212

  13. Use of anionic surfactants for selective polishing of silicon dioxide over silicon nitride films using colloidal silica-based slurries

    NASA Astrophysics Data System (ADS)

    Penta, Naresh K.; Amanapu, H. P.; Peethala, B. C.; Babu, S. V.

    2013-10-01

    Four different anionic surfactants, sodium dodecyl sulfate, dodecyl benzene sulfonic acid (DBSA), dodecyl phosphate and Sodium lauroyl sarcosine, selected from the sulfate, phosphate, and carboxylic family, were investigated as additives in silica dispersions for selective polishing of silicon dioxide over silicon nitride films. We found that all these anionic surfactants suppress the nitride removal rates (RR) for pH ≤4 while more or less maintaining the oxide RRs, resulting in high oxide-to-nitride RR selectivity. The RR data obtained as a function of pH were explained based on pH dependent distributions of surfactant species, change in the zeta potentials of oxide and nitride surfaces, and thermogravimetric data. It appears that the negatively charged surfactant species preferentially adsorb on the positively charged nitride surface below IEP through its electrostatic interactions and form a bilayer adsorption, resulting in the suppression of nitride RRs. In contrast to the surfactants, K2SO4 interacts only weakly with the nitride surface and hence cannot suppress its RR.

  14. Inactivation and Anion Selectivity of Volume-regulated Anion Channels (VRACs) Depend on C-terminal Residues of the First Extracellular Loop.

    PubMed

    Ullrich, Florian; Reincke, S Momsen; Voss, Felizia K; Stauber, Tobias; Jentsch, Thomas J

    2016-08-12

    Canonical volume-regulated anion channels (VRACs) are crucial for cell volume regulation and have many other important roles, including tumor drug resistance and release of neurotransmitters. Although VRAC-mediated swelling-activated chloride currents (ICl,vol) have been studied for decades, exploration of the structure-function relationship of VRAC has become possible only after the recent discovery that VRACs are formed by differently composed heteromers of LRRC8 proteins. Inactivation of ICl,vol at positive potentials, a typical hallmark of VRACs, strongly varies between native cell types. Exploiting the large differences in inactivation between different LRRC8 heteromers, we now used chimeras assembled from isoforms LRRC8C and LRRC8E to uncover a highly conserved extracellular region preceding the second LRRC8 transmembrane domain as a major determinant of ICl,vol inactivation. Point mutations identified two amino acids (Lys-98 and Asp-100 in LRRC8A and equivalent residues in LRRC8C and -E), which upon charge reversal strongly altered the kinetics and voltage dependence of inactivation. Importantly, charge reversal at the first position also reduced the iodide > chloride permeability of ICl,vol This change in selectivity was stronger when both the obligatory LRRC8A subunit and the other co-expressed isoform (LRR8C or -E) carried such mutations. Hence, the C-terminal part of the first extracellular loop not only determines VRAC inactivation but might also participate in forming its outer pore. Inactivation of VRACs may involve a closure of the extracellular mouth of the permeation pathway. PMID:27325695

  15. Coumarin-Spiropyran Dyad with a Hydrogenated Pyran Moiety for Rapid, Selective, and Sensitive Fluorometric Detection of Cyanide Anion.

    PubMed

    Shiraishi, Yasuhiro; Nakamura, Masaya; Hayashi, Naoto; Hirai, Takayuki

    2016-07-01

    We synthesized a coumarin-spiropyran dyad with a hydrogenated pyran moiety (2), behaving as an off-on type fluorescent receptor for rapid, selective, and sensitive detection of cyanide anion (CN(-)) in aqueous media. The receptor itself shows almost no fluorescence with a quantum yield < 0.01, due to the delocalization of π-electrons over the molecule. Selective nucleophilic addition of CN(-) to the spirocarbon of the molecule rapidly promotes spirocycle opening within only 3 min. This leads to localization of π-electrons on the coumarin moiety and exhibits strong light-blue fluorescence at 459 nm with very high quantum yield (0.52). As a result of this, the receptor facilitates rapid, selective, and sensitive fluorometric detection of CN(-) as low as 1.0 μM. PMID:27268123

  16. Stable and selective scintillating anion-exchange sensors for quantification of 99TcO4- in natural freshwaters.

    PubMed

    Seliman, Ayman F; Helariutta, Kerttuli; Wiktorowicz, Szymon J; Tenhu, Heikki; Harjula, Risto

    2013-12-01

    New dual functionality scintillating anion-exchange resins were developed for selective determination of (99)TcO4(-) in various natural freshwater samples. Stable scintillating particles were formed by preparing the vinyl monomer 2-[4-(4'-vinylbiphenylyl)]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (vPBD), starting with the commercial organic flour TBut-PBD and its subsequent copolymerization with styrene, divinylbenzene, and p-chloromethylstyrene mixture. To integrate the radiochemical separation and radiometric detection steps within the same bead, the chloromethyl groups of the scintillating resins were subjected to amination reactions with dioctylamine (DOA) and trioctylamine (TOA). On-line quantification of (99)TcO4(-) was achieved by packing the scintillating anion-exchange resin into Teflon tubing for quantification by a flow scintillation analyzer (FSA). The two functionalized resins were selective for pertechnetate over the common anions in natural freshwaters, especially Cl(-) and SO4(2-) with up to 1000 ppm and with up to 10 ppm I(-) and Cr2O7(2-). The uptake efficiency of the TOA sensor decreased from 97.88% to 85.08% in well water and river water, respectively, while the counting efficiency was almost constant (69.50%). The DOA performance showed lower efficiency in the two water types relative to TOA. On the other hand, the DOA sensor could be regenerated by 5 M HNO3 for reuse at least four times without losing its chemical or optical performance. The detection limit was 1.45 Bq which could be achieved by loading 45 mL from well and tap water containing the maximum contaminant level (MCL) of (99)Tc (33 Bq/L). PMID:24012764

  17. Mass selected anion-zero kinetic energy photoelectron spectroscopy (anion-ZEKE): Ground and low excited states of FeO

    NASA Astrophysics Data System (ADS)

    Drechsler, G.; Boesl, U.; Bäßmann, C.; Schlag, E. W.

    1997-08-01

    Photodetachment-photoelectron (PD-PES) and anion-zero kinetic energy photoelectron (anion-ZEKE) spectra of FeO have been measured. The vibrational progression bands of the X 5Δi(FeO)←X5Δ7/2(FeO-) transition in the PD-PES spectrum exhibit substructure which could not be resolved in earlier PD-PES spectra. A comparison with the high resolution anion-ZEKE spectrum clearly shows the existence of a second low energetic electronic state which could be the a 7Σ+ of neutral FeO proposed by several authors. In addition, for the A 5Σ+ state of FeO an excess energy of 4050 cm-1 was found. Vibrational frequencies for the X 5Δ, a 7Σ+, and A 5Σ+ states have been determined as 882, 887, and 800 cm-1. All spin orbit splittings of the neutral and anionic ground states could be measured directly or deduced from spin orbit combination transitions. We succeeded in resolving the rotational envelope of the vibrational origin of the neutral-anion ground states transition with indicated single rotational lines of the ΔJ =+3/2 branch.

  18. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine.

    PubMed

    Nery, Emilia Witkowska; Kubota, Lauro T

    2016-04-28

    The following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc. New system was thoroughly characterized and the ion-selective potentiometric sensors presented performance close to theoretical. An electronic tongue, composed of electrodes sensitive to sodium, calcium, ammonia and a cross-sensitive, anion-selective electrode was used to analyze 34 beer samples (12 types, 19 brands). This system was able to discriminate beers from different brands, and types, indicate presence of stabilizers and antioxidants, dyes or even unmalted cereals and carbohydrates added to the fermentation wort. Samples could be classified by type of fermentation (low, high) and system was able to predict pH and in part also alcohol content of tested beers. In the next step sample volume was minimalized by the use of paper sample pads and measurement in flow conditions. In order to test the impact of this advancement a four electrode system, with cross-sensitive (anion-selective, cation-selective, Ca(2+)/Mg(2+), K(+)/Na(+)) electrodes was applied for the analysis of 11 types of wine (4 types of grapes, red/white, 3 countries). Proposed matrix was able to group wines produced from different varieties of grapes (Chardonnay, Americanas, Malbec, Merlot) using only 40 μL of sample. Apart from that, storage stability studies were performed using a multimeter, therefore showing that not only fabrication but also detection can be accomplished by means of off-the-shelf components. This manuscript not only describes new

  19. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS).

    PubMed

    Paroder-Belenitsky, Monika; Maestas, Matthew J; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L Mario; Carrasco, Nancy

    2011-11-01

    I(-) uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na(+)/I(-) symporter (NIS) with an electrogenic 2Na(+):1I(-) stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I(-) transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the K(m) for the anion substrates. Unlike WT NIS, which mediates symport of Na(+) and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 21 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na(+)/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot. PMID:22011571

  20. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS)

    PubMed Central

    Paroder-Belenitsky, Monika; Maestas, Matthew J.; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L. Mario; Carrasco, Nancy

    2011-01-01

    I- uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na+/I- symporter (NIS) with an electrogenic 2Na+ : 1I- stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I- transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the Km for the anion substrates. Unlike WT NIS, which mediates symport of Na+ and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 2∶1 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na+/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot. PMID:22011571

  1. Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes.

    PubMed Central

    Armstrong, S K; Parr, T R; Parker, C D; Hancock, R E

    1986-01-01

    The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS. Images PMID:2420780

  2. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  3. Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles.

    PubMed

    Patra, Abhay Shankar; Ghorai, Soumitra; Ghosh, Shankhamala; Mandal, Barun; Pal, Sagar

    2016-01-15

    A novel nanocomposite derived from cationically modified guar gum and in-situ incorporated SiO2 NP (cat-GG/SiO2) has been developed. The cat-GG has been synthesised by grafting poly(2-(diethylamino)ethyl methacrylate) on GG backbone. Various analyses endorse the suitability of cat-GG as well-organized template for the development of homogeneous SiO2 NPs. Dye adsorption studies predict that cat-GG/SiO2 efficiently and selectively adsorb anionic dyes (reactive blue-RB and Congo red-CR) from mixture of dye solutions. This is because of high surface area, multifunctional chelating H-bonding interactions and electrostatic interactions of cationic adsorbent with anionic dyes. Dyes adsorbed on the composite surface are desorbed reversibly using pH 10 stripping solution. Besides, cat-GG/SiO2 has been recycled efficiently with no prominent loss of dye uptake capacity, even after 4 adsorption-desorption cycles. PMID:26348145

  4. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin

    PubMed Central

    Prueksaritanont, Thomayant; Chu, Xiaoyan; Evers, Raymond; Klopfer, Stephanie O; Caro, Luzelena; Kothare, Prajakti A; Dempsey, Cynthia; Rasmussen, Scott; Houle, Robert; Chan, Grace; Cai, Xiaoxin; Valesky, Robert; Fraser, Iain P; Stoch, S Aubrey

    2014-01-01

    Aims Rosuvastatin and pitavastatin have been proposed as probe substrates for the organic anion-transporting polypeptide (OATP) 1B, but clinical data on their relative sensitivity and selectivity to OATP1B inhibitors are lacking. A clinical study was therefore conducted to determine their relative suitability as OATP1B probes using single oral (PO) and intravenous (IV) doses of the OATP1B inhibitor rifampicin, accompanied by a comprehensive in vitro assessment of rifampicin inhibitory potential on statin transporters. Methods The clinical study comprised of two separate panels of eight healthy subjects. In each panel, subjects were randomized to receive a single oral dose of rosuvastatin (5 mg) or pitavastatin (1 mg) administered alone, concomitantly with rifampicin (600 mg) PO or IV. The in vitro transporter studies were performed using hepatocytes and recombinant expression systems. Results Rifampicin markedly increased exposures of both statins, with greater differential increases after PO vs. IV rifampicin only for rosuvastatin. The magnitudes of the increases in area under the plasma concentration–time curve were 5.7- and 7.6-fold for pitavastatin and 4.4- and 3.3-fold for rosuvastatin, after PO and IV rifampicin, respectively. In vitro studies showed that rifampicin was an inhibitor of OATP1B1 and OATP1B3, breast cancer resistance protein and multidrug resistance protein 2, but not of organic anion transporter 3. Conclusions The results indicate that pitavastatin is a more sensitive and selective and thus preferred clinical OATP1B probe substrate than rosuvastatin, and that a single IV dose of rifampicin is a more selective OATP1B inhibitor than a PO dose. PMID:24617605

  5. Synthesis of nano-sized arsenic-imprinted polymer and its use as As(3+) selective ionophore in a potentiometric membrane electrode: part 1.

    PubMed

    Alizadeh, Taher; Rashedi, Mariyam

    2014-09-16

    In this study, a new strategy was proposed for the preparation of As (III)-imprinted polymer by using arsenic (methacrylate)3 as template. Precipitation polymerization was utilized to synthesize nano-sized As (III)-imprinted polymer. Methacrylic acid and ethylene glycol dimethacrylate were used as the functional monomer and cross-linking agent, respectively. In order to assembly functional monomers around As (III) ion, sodium arsenite and methacrylic acid were heated in the presence of hydroquinone, leading to arsenic (methacrylate)3. The nano-sized As (III) selective polymer was characterized by FT-IR and scanning electron microscopy techniques (SEM). It was demonstrated that arsenic was recognized as As(3+) by the selective cavities of the synthesized IIP. Based on the prepared polymer, the first arsenic cation selective membrane electrode was introduced. Membrane electrode was constructed by dispersion of As (III)-imprinted polymer nanoparticles in poly(vinyl chloride), plasticized with di-nonylphthalate. The IIP-modified electrode exhibited a Nernstian response (20.4±0.5 mV decade(-1)) to arsenic ion over a wide concentration range (7.0×10(-7) to 1.0×10(-1) mol L(-1)) with a lower detection limit of 5.0×10(-7) mol L(-1). Unlike this, the non-imprinted polymer (NIP)-based membrane electrode was not sensitive to arsenic in aqueous solution. The selectivity of the developed sensor to As (III) was shown to be satisfactory. The sensor was used for arsenic determination in some real samples. PMID:25150692

  6. Polymeric Membrane Electrodes with Improved Fluoride Selectivity and Lifetime Based on Zr(IV)- and Al(III)- Tetraphenylporphyrin Derivatives

    PubMed Central

    Pietrzak, Mariusz; Meyerhoff, Mark E.; Malinowska, Elżbieta

    2007-01-01

    Novel aluminum(III)- and zirconium(IV)-tetraphenylporhyrin (TPP) derivatives are examined as fluoride selective ionophores for preparing polymer membrane-based ion-selective electrodes (ISEs). The influence of t-butyl— or dichloro— phenyl ring substituents as well as the nature of the metal ion center (Al(III) vs. Zr(IV)) on the anion complexation constants of TPP derivative ionophores are reported. The anion binding stability constants of the ionophores are characterized by the so-called “sandwich membrane” method. All of the metalloporphyrins examined form their strongest anion complexes with fluoride. The influence of plasticizer as well as the type of lipophilic ionic site additive and their amounts in the sensing membrane are discussed. It is shown that membrane electrodes formulated with the metalloporphyrin derivatives and appropriate anionic or cationic additives exhibit enhanced potentiometric response toward fluoride over all other anions tested. Since selectivity toward fluoride is enhanced in the presence of both anionic and cationic additives, the metalloporphyrins can function as either charged or neutral carriers within the organic membrane phase. In contrast to previously reported fluoride-selective polymeric membrane electrodes based on metalloporphyrins, nernstian or near-nernstian (−51.2 to −60.1 mV decade−1) as well as rapid (t < 80s) and fully reversible potentiometric fluoride responses are observed. Moreover, use of aluminum(III)—t-butyltetraphenylporphyrin as the ionophore provides fluoride sensors with prolonged (7 months) functional life-time. PMID:17631098

  7. Ion recognition: application of symmetric and asymmetric schiff bases and their complexes for the fabrication of cationic and anionic membrane sensors to determine ions in real samples.

    PubMed

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz

    2007-08-01

    Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors. PMID:17979636

  8. Potentiometric aptasensing of Listeria monocytogenes using protamine as an indicator.

    PubMed

    Ding, Jiawang; Lei, Jiahong; Ma, Xia; Gong, Jun; Qin, Wei

    2014-10-01

    Exposure to pathogens in recreational or drinking water is a serious public health concern. It is important to rapidly determine and identify trace levels of pathogens in real environmental samples. We report here on a label-free potentiometric aptasensor for rapid, sensitive, and selective detection of Listeria monocytogenes (LM), a pathogen widely distributed in the environment. An aptamer binds specifically to internalin A, a surface protein present in LM cells. The target-binding event prevents the aptamer from electrostatically interacting with protamine, which can be sensitively detected using a polycation-sensitive membrane electrode. Using this method, LM can be detected down to 10 CFU mL(-1). Coupled to an online filtration system, the bioassay has been evaluated with spiked coastal seawater samples and shows good recovery and high accuracy. This work demonstrates the possibility of developing potentiometric aptasensors for determination and identification of various bacteria in environmental samples. PMID:25220163

  9. A potentiometric study of lithium complexation with catecholamines.

    PubMed

    Sandmann, B J; Luk, H T

    1986-01-01

    A potentiometric study of lithium complexation with tyramine, dopamine, norepinephrine, and 5-hydroxytryptamine was undertaken using monovalent cationic selective and pH glass electrodes. The conditional stability constants for the lithium catecholamine complexes were calculated for a range of pH values from direct potentiometric measurement of the free lithium ion concentration. The ionic strength was maintained at 0.5 with tetramethylammonium chloride and glycine buffers. Temperature was maintained at 25 degrees C. Titration data for the catecholamines and lithium-catecholamine complexes at the same temperature and ionic strength were also obtained using tetramethylammonium hydroxide as titrant. All solutions were maintained essentially oxygen free during the analytical procedure. Alkali metals are generally recognized as being weakly complexed in aqueous solution. The magnitude of the stability constants determined in this study indicates there is a weak interaction of lithium with catecholamines. PMID:3958910

  10. Organic anion transporter 2 transcript variant 1 shows broad ligand selectivity when expressed in multiple cell lines

    PubMed Central

    Hotchkiss, Adam G.; Berrigan, Liam; Pelis, Ryan M.

    2015-01-01

    Organic anion transporter 2 (OAT2) is likely important for renal and hepatic drug elimination. Three variants of the OAT2 peptide sequence have been described – OAT2 transcript variant 1 (OAT2-tv1), OAT2 transcript variant 2 (OAT2-tv2), and OAT2 transcript variant 3 (OAT2-tv3). Early studies helping to define the ligand selectivity of OAT2 failed to identify the variant used, and the studies used several heterologous expression systems. In preliminary studies using OAT2-tv1, we failed to observe transport of several previously identified substrates, leading us to speculate that ligand selectivity of OAT2 differs with variant and/or heterologous expression system. The purpose was to further investigate the ligand selectivity of the OAT2 variants expressed in multiple cell types. We cloned OAT2-tv1 and OAT2-tv2, but were unsuccessful at amplifying mRNA for OAT2-tv3 from human kidney. OAT2-tv1 and OAT2-tv2 were individually expressed in human embryonic kidney (HEK), Madin-Darby canine kidney (MDCK), or Chinese hamster ovary (CHO) cells. mRNA for OAT2-tv1 and OAT2-tv2 was demonstrated in each cell type transfected with the respective construct, indicating their expression. OAT2-tv1 trafficked to the plasma membrane of all three cell types, but OAT2-tv2 did not. OAT2-tv1 transported penciclovir in all three cell types, but failed to transport para-aminohippurate, succinate, glutarate, estrone-3-sulfate, paclitaxel or dehydroepiandrosterone sulfate – previously identified substrates of OAT2-tv2. Not surprising given its lack of plasma membrane expression, OAT2-tv2 failed to transport any of the organic solutes examined, including penciclovir. Penciclovir transport by OAT2-tv1 was sensitive to large (e.g., cyclosporine A) and small (e.g., allopurinol) organic compounds, as well as organic anions, cations and neutral compounds, highlighting the multiselectivity of OAT2-tv1. The potencies with which indomethacin, furosemide, cyclosporine A and cimetidine inhibited OAT2

  11. Encapsulation and selective recognition of sulfate anion in an azamacrocycle in water†

    PubMed Central

    Mendy, John S.; Pilate, Marcy L.; Horne, Toyketa; Day, Victor W.; Hossain, Md. Alamgir

    2011-01-01

    Structural characterization of a sulfate complex with an azamacrocycle suggests that one sulfate is encapsulated in the macrocyclic cavity with eight hydrogen bonds; a significant selectivity of the host was observed for sulfate over halides, nitrate and perchlorate as evaluated by 1H NMR studies in water. PMID:20652195

  12. Isosorbide-2-benzyl carbamate-5-salicylate, a peripheral anionic site binding subnanomolar selective butyrylcholinesterase inhibitor.

    PubMed

    Carolan, Ciaran G; Dillon, Gerald P; Khan, Denise; Ryder, Sheila A; Gaynor, Joanne M; Reidy, Sean; Marquez, Juan F; Jones, Mike; Holland, Valerie; Gilmer, John F

    2010-02-11

    Isosorbide-2-benzyl carbamate-5-benzoate is a highly potent and selective BuChE inhibitor. Meanwhile, isosorbide-2-aspirinate-5-salicylate is a highly effective aspirin prodrug that relies on the salicylate portion to interact productively with human BuChE. By integrating the salicylate group into the carbamate design, we have produced isosorbide-2-benzyl carbamate-5-salicylate, an inhibitor of high potency (150 pM) and selectivity for human BuChE over AChE (666000) and CES2 (23000). Modeling and mutant studies indicate that it achieves its exceptional potency because of an interaction with the polar D70/Y332 cluster in the PAS of BuChE in addition to pseudosubstrate interactions with the active site. PMID:20067290

  13. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz

    2008-01-01

    Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed.

  14. Side selective surface modification of chitin nanofibers on anionically modified cotton fabrics.

    PubMed

    Wijesena, Ruchira N; Tissera, Nadeeka; Perera, Rangana; de Silva, K M Nalin

    2014-08-30

    Chitin nanofibers have been prepared from crab shell as a chitin source using ultrasound assisted fibrillation. Atomic force microscopy (AFM) study showed that the prepared nanofibers were having diameters and lengths primarily in the range of 2-20 nm and 0.3-4 μm respectively. These nanofibers were selectively grafted on one side of a 100% cotton fabric using a special apparatus. Prior to the grafting, cotton fabrics were modified with partial carboxymethylation to encourage cotton fiber nanofiber interactions. The surface modification was confirmed by Fourier transform infrared spectroscopy (FT-IR) peaks at 1,594 cm(-1) and 1,735 cm(-1) due to the presence of carboxylic acid functionality in modified cotton fabrics. Scanning electron microscope (SEM) study of the nanofiber grafted cotton fabrics showed that nanofibers were adhered to the cotton fabrics. Elemental analysis confirmed that side selective grafting of nanofiber has taken place due to the peak at 0.394 keV which attributes to the presence of nitrogen element in chitin nanofibers. This peak was absent in the other side of the fabric which was not coated with chitin nanofibers. Amount of adhered nanofibers was seen to increase with the increase of nanofiber concentration used in grafting as confirmed by Kjeldahl analysis. A possible mechanism of cotton fiber-nanofiber interactions is introduced. PMID:24815401

  15. PRINCIPAL AQUIFERS, CURRENT POTENTIOMETRIC SURFACE MAPS, NC

    EPA Science Inventory

    Web page from North Carolina Department of Environment and Natural Resources (NC-DENR) to maps of potentiometric surfaces by aquifer in NC.
    http://www.dwr.ehnr.state.nc.us/hms/gwbranch/charact.htm

  16. Development of anion- and nitric oxide-selective chemical sensors and biosensors

    NASA Astrophysics Data System (ADS)

    Barker, Susan Lynn Ritenour

    1999-11-01

    The biological roles of chloride, nitrite, and nitric oxide create the need for techniques which can provide fast, sensitive, and selective detection of these analytes. Small sensor size is advantageous in biological applications, and the coupling of fluorescence transduction with optical fiber technology has allowed the preparation of micrometer and submicromter sized chemical sensors and biosensors with good selectivity, fast response times, and excellent signal to noise ratios, which are utilized for in vitro and cellular applications. Micrometer and submicrometer size fiber optic nitrite and chloride sensors have been prepared, based on immobilized metalloporphyrins, using the ion correlation principle, and characterized with respect to selectivity, sensitivity, and reproducibility. The chloride sensors were applied in vitro to rat conceptuses. The hemoprotein cytochrome c' and the heme domain of soluble guanylate cyclase (sGC) have been labeled with a fluorescent dye and utilized for intensity and fluorescence lifetime-based nitric oxide sensing. Ratiometric fiber optic sensors have been prepared by attaching the dye-labeled cytochrome c' or heme domain of sGC to the fiber along with reference dye spheres. In addition, the fluorescence lifetime of the dye-labeled cytochrome c' in solution has been monitored. A second class of nitric oxide sensors has also been developed. These are dye-based chemical sensors with a response based on the interaction of nitric oxide with a fluorophore adsorbed on a gold surface. Such chemical sensors have the advantage of commercially available components and long-term stability. The nitric oxide bio- and chemical sensors have excellent signal to noise ratios and linear responses down to low micromolar nitric oxide. The various sensors show minimal interference from numerous other chemicals that are commonly found in the cellular environment. In addition, the sensors have low micromolar limits of detection, subsecond response

  17. Tandem electrochemical desalination-potentiometric nitrate sensing for seawater analysis.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Bakker, Eric

    2015-08-18

    We report on a methodology for the direct potentiometric determination of nitrate in seawater by in-line coupling to an electrochemical desalination module. A microfluidic custom-fabricated thin layer flat cell allows one to electrochemically reduce the chloride concentration of seawater more than 100-fold, from 600 mM down to ∼2.8 mM. The desalinator operates by the exhaustive electrochemical plating of the halides from the thin layer sample onto a silver element as silver chloride, which is coupled to the transfer of the counter cations across a permselective ion-exchange membrane to an outer solution. As a consequence of suppressing the major interference of an ion-exchanger based membrane, the 80 μL desalinated sample plug is passed to a potentiometric flow cell of 13 μL volume. The potentiometric sensor is composed of an all-solid-state nitrate selective electrode based on lipophilic carbon nanotubes (f-MWCNTs) as an ion-to-electron transducer (slope of -58.9 mV dec(-1), limit of detection of 5 × 10(-7) M, and response time of 5 s in batch mode) and a miniaturized reference electrode. Nitrate is successfully determined in desalinated seawater using ion chromatography as the reference method. It is anticipated that this concept may form an attractive platform for in situ environmental analysis of a variety of ions that normally suffer from interference by the high saline level of seawater. PMID:26201537

  18. Protein-salt binding data from potentiometric titrations of lysozyme in aqueous solutions containing KCl

    SciTech Connect

    Engmann, J.; Blanch, H.W.; Prausnitz, J.M. |

    1997-03-01

    An existing method for potentiometric titrations of proteins was improved, tested and applied to titrations of the enzyme hen-egg-white lysozyme in aqueous solutions containing KCl at ionic strengths from 0.1 M to 2.0 M at 25 C. Information about the protein`s net charge dependence on pH and ionic strength were obtained and salt binding numbers for the system were calculated using a linkage concept. For the pH range 2.5--11.5, the net charge slightly but distinctly increases with increasing ionic strength between 0.1 M and 2.0 M. The differences are most distinct in the pH region below 5. Above pH 11.35, the net charge decreases with increasing ionic strength. Preliminary calculation of binding numbers from titration curves at 0.1 M and 1.0 M showed selective association of chloride anions and expulsion of potassium ions at low pH. Ion-binding numbers from this work will be used to evaluate thermodynamic properties and to correlate crystallization or precipitation phase-equilibrium data in terms of a model based on the integral-equation theory of fluids which is currently under development.

  19. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer

    PubMed Central

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L−1 to 2 mg L−1, the sensitivity and detection limit of the sensor is 3.191 μA/mg L−1 and 1.97 μg L−1, respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection. PMID:27278795

  20. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer

    NASA Astrophysics Data System (ADS)

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-06-01

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L‑1 to 2 mg L‑1, the sensitivity and detection limit of the sensor is 3.191 μA/mg L‑1 and 1.97 μg L‑1, respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection.

  1. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer.

    PubMed

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L(-1) to 2 mg L(-1), the sensitivity and detection limit of the sensor is 3.191 μA/mg L(-1) and 1.97 μg L(-1), respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection. PMID:27278795

  2. Effect of fluoride, chloride, bromide, and thiocynate on potentiometric titrations of iron(II)-tin(II) mixtures with cerium(IV)

    SciTech Connect

    Kwok, Y.M.

    1980-07-31

    A two-step curve is expected in the potentiometric titration of Fe(II)-Sn(II) mixtures with Ce(IV) in H/sub 2/SO/sub 4/. Each end point should indicate the respective oxidation of Sn(II) and Fe(II). However, experimentally only one end point was found; it corresponded to the total oxidation of Sn(II) and Fe(II). When this oxidation-reduction reaction was carried out in the presence of Cl/sup -/, the theoretical behavior was observed. The present study was done to ascertain if monovalent anions other than Cl/sup -/ have a similar effect on this oxidation-reduction system. The monovalent species F/sup -/, Br/sup -/, and SCN/sup -/ were selected for this study, and the results indicate that each affects the rate of reaction relative to the ease of oxidation of the individual ions.

  3. Mechanistic Investigation of Solvent Extraction Based on Anion-Functionalized Ionic Liquids for Selective Separation of Rare-Earth Ions

    SciTech Connect

    Sun, Xiaoqi; Luo, Huimin; Dai, Sheng

    2013-01-01

    In this study, solvation has been found to be a dominant mechanism in a comprehensive ionic liquid based extraction system for rare earth elements (REEs). Trioctylmethylammonium di(2-ethylhexyl)phosphate ([TOMA][DEHP]), an ionic-liquid extractant, was used in 1-alkyl-3-methylimidizolium bis[(trifluoromethyl)sulfonyl]imide ([Cnmim][NTf2], n = 4, 6, 8, 10) and 1-alkyl-3-methylimidizolium bis(perfluoroethanesulfonyl)imide ([Cnmim][BETI], n = 4, 6, 8, 10) for the separation of REEs. Surprisingly, a very similar extraction behavior was observed even as the carbon chain length on the ionic-liquid (IL) cation increased from butyl (C4) to hexyl (C6), to octyl (C8), to decyl (C10). This behavior is in sharp contrast to that exhibited by the conventional neutral extractants, whose extraction efficiencies are strongly dependent on the hydrophobicity of IL cations. Furthermore, the addition of IL cations ([Cnmim]+) or IL anions ([NTf2]- or [BETI]-) to the aqueous phase had little effect on the extraction behavior of the above extraction system, ruling out the strong involvement of the ion-exchange mechanism associated with traditional IL-based extraction systems. Results showed that the extractabilities and selectivities of REEs using [TOMA][DEHP] in [C10mim][NTf2]/[BETI] are several orders of magnitude better than those achieved using conventional organic solvent, diisopropylbenzene (DIPB). This study highlights the potential of developing a comprehensive IL-based extraction strategy for REEs separations.

  4. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity.

    PubMed

    Burke, Colin M; Pande, Vikram; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

    2015-07-28

    Among the "beyond Li-ion" battery chemistries, nonaqueous Li-O2 batteries have the highest theoretical specific energy and, as a result, have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O2 batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than fourfold) in Li-O2 cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using (7)Li NMR and modeling, we confirm that this improvement is a result of enhanced Li(+) stability in solution, which, in turn, induces solubility of the intermediate to Li2O2 formation. Using this strategy, the challenging task of identifying an electrolyte solvent that possesses the anticorrelated properties of high intermediate solubility and solvent stability is alleviated, potentially providing a pathway to develop an electrolyte that affords both high capacity and rechargeability. We believe the model and strategy presented here will be generally useful to enhance Coulombic efficiency in many electrochemical systems (e.g., Li-S batteries) where improving intermediate stability in solution could induce desired mechanisms of product formation. PMID:26170330

  5. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity

    PubMed Central

    Burke, Colin M.; Pande, Vikram; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D.

    2015-01-01

    Among the “beyond Li-ion” battery chemistries, nonaqueous Li–O2 batteries have the highest theoretical specific energy and, as a result, have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li–O2 batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than fourfold) in Li–O2 cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using 7Li NMR and modeling, we confirm that this improvement is a result of enhanced Li+ stability in solution, which, in turn, induces solubility of the intermediate to Li2O2 formation. Using this strategy, the challenging task of identifying an electrolyte solvent that possesses the anticorrelated properties of high intermediate solubility and solvent stability is alleviated, potentially providing a pathway to develop an electrolyte that affords both high capacity and rechargeability. We believe the model and strategy presented here will be generally useful to enhance Coulombic efficiency in many electrochemical systems (e.g., Li–S batteries) where improving intermediate stability in solution could induce desired mechanisms of product formation. PMID:26170330

  6. Substituent directed selectivity in anion recognition by a new class of simple osmium-pyrazole derived receptors.

    PubMed

    Das, Ankita; Mondal, Prasenjit; Dasgupta, Moumita; Kishore, Nand; Lahiri, Goutam Kumar

    2016-02-14

    The present article deals with the structurally, spectroscopically and electrochemically characterised osmium-bipyridyl derived complexes [(bpy)2Os(II)(HL1)Cl]ClO4 [1]ClO4 and [(bpy)2Os(II)(HL2)Cl]ClO4 [2]ClO4 incorporating neutral and monodentate pyrazole derivatives (HL) with one free NH function (bpy = 2,2'-bipyridine, HL1 = pyrazole, HL2 = 3,5-dimethylpyrazole). The crystal structures of [1]ClO4 and [2]ClO4 reveal intramolecular hydrogen bonding interactions between the free NH proton of HL and the equatorially placed Cl(-) ligand (N-HCl) with donor-acceptor distances of 3.114(7) Å and 3.153(6) Å as well as intermolecular hydrogen bonding interactions between the NH proton and one of the oxygen atoms of ClO4(-) (N-HO) with donor-acceptor distances of 2.870(10) Å and 3.024(8) Å, respectively. The effect of hydrogen bonding interactions has translated into the less acidic nature of the NH proton of the coordinated HL with estimated pKa > 12. 1(+) and 2(+) exhibit reversible Os(II)/(III) and irreversible Os(III)/(IV) processes in CH3CN within ± 2.0 V versus SCE. The effect of 3,5-dimethyl substituted HL2 on 2(+) has been reflected in the appreciable lowering (40 mV) of the Os(II/III) potential, along with the further decrease in the acidity of the NH proton (pKa > 13.0) with regard to HL1 coordinated 1(+) (pKa: ∼ 12.3). The electronic spectral features of Os(ii) (1(+)/2(+)) and electrochemically generated Os(III) (1(2+)/2(2+)) derived complexes have been analysed by TD-DFT calculations. The efficacy of the 1(+) and 2(+) encompassing free NH proton towards the anion recognition process has been evaluated by different experimental investigations using a wide variety of anions. It however establishes that receptor 1(+) can recognise both F(-) and OAc(-) in acetonitrile solution, while 2(+) is exclusively selective for the F(-) ion. PMID:26733437

  7. Spray-coated all-solid-state potentiometric sensors.

    PubMed

    Jaworska, Ewa; Schmidt, Morten; Scarpa, Giuseppe; Maksymiuk, Krzysztof; Michalska, Agata

    2014-11-21

    A novel fully spray coating-based method of the preparation of all-solid-state ion-selective electrodes of simplified construction is proposed. This method is an alternative for screen-printed electrodes used sometimes in potentiometric applications. The benefits of the herein-proposed approach include fully automatic sensor preparation and minimized use of chemicals allowing for the production of low-cost sensors that can be applied as disposables. A layer of spray-coated carbon nanotubes on an inert support was used both as an electrical lead and as a transducer, to simplify sensor layout and to avoid the possible problems of changing in-time composition of this layer, as previously observed in the case of screen-printed supporting electrodes in potentiometric applications. The ion-selective poly(vinyl chloride)-based membrane and the insulator layer were also spray-coated. The obtained sensors, as the model system potassium-selective sensors were prepared and characterized with analytical parameters well comparable with that of conventional, all-solid-state, ion-selective electrodes. In addition, the applicability of the herein-proposed approach to prepare other ion-selective electrodes was tested on examples of H(+) and Cl(-) sensors. PMID:25270688

  8. An Amide-Functionalized Dynamic Metal-Organic Framework Exhibiting Visual Colorimetric Anion Exchange and Selective Uptake of Benzene over Cyclohexane.

    PubMed

    Karmakar, Avishek; Desai, Aamod V; Manna, Biplab; Joarder, Biplab; Ghosh, Sujit K

    2015-05-01

    A novel porous metal-organic framework (MOF) architecture is formed by a neutral amide-functionalized ligand and copper(II). Upon desolvation, this compound undergoes a dynamic structural transformation from a one-dimensional (1D) porous phase to a two-dimensional (2D) non-porous phase that shows selective uptake of benzene over cyclohexane. The as-synthesized compound also acts as a visual colorimetric anion sensor for thiocyanate. PMID:25808598

  9. Cation-Selective and Anion-Controlled Fluorogenic Behaviors of a Benzothiazole-Attached Macrocycle That Correlate with Structural Coordination Modes.

    PubMed

    Ju, Huiyeong; Chang, Duk Jin; Kim, Seulgi; Ryu, Hyunsoo; Lee, Eunji; Park, In-Hyeok; Jung, Jong Hwa; Ikeda, Mari; Habata, Yoichi; Lee, Shim Sung

    2016-08-01

    We report how the metal cation and its counteranions cooperate in the complexation-based macrocyclic chemosensor to monitor the target metal ion via the specific coordination modes. The benzothiazolyl group bearing NO2S2-macrocycle L was synthesized, and its mercury(II) selectivity (for perchlorate salt) as a dual-probe channel (UV-vis and fluorescence) chemosensor exhibiting the largest blue shift and the fluorescence turn-off was observed. In the mercury(II) sensing with different anions, except ClO4(-) and NO3(-), no responses for mercury(II) were observed with other anions such as Cl(-), Br(-), I(-), SCN(-), OAc(-), and SO4(2-). A crystallographic approach for the mononuclear mercury(II) perchlorate complex [Hg(L)(ClO4)2]·0.67CH2Cl2 (1) and polymeric mercury(II) iodide complex [Hg(L)I2]n (2) revealed that the observed anion-controlled mercury(II) sensing in the fluorescence mainly stems from the endo- and exocoordination modes, depending on the anion coordinating ability, which induces either the Hg-Ntert bond formation or not. The detailed complexation process with mercury(II) perchlorate associated with the cation sensing was also monitored with the titration methods by UV-vis, fluorescence spectroscopy, and cold-spray ionization mass spectrometry. PMID:27391394

  10. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    PubMed

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  11. Anion-π Enzymes

    PubMed Central

    2016-01-01

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pKa of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pKa of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  12. Anion-π Enzymes.

    PubMed

    Cotelle, Yoann; Lebrun, Vincent; Sakai, Naomi; Ward, Thomas R; Matile, Stefan

    2016-06-22

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pK a of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pK a of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  13. A novel reaction-based colorimetric and ratiometric fluorescent sensor for cyanide anion with a large emission shift and high selectivity.

    PubMed

    Wang, Shaodan; Fei, Xiaoliang; Guo, Jing; Yang, Qingbiao; Li, Yaoxian; Song, Yan

    2016-02-01

    A hybrid carbazole-hemicyanine dye (Cac) has been developed as a novel colorimetric and ratiometric fluorescent sensor for cyanide detection. Upon treatment with cyanide, Cac displayed a remarkable fluorescence ratiometric response, with the emission wavelength displaying a very large emission shift (214 nm). The detection of cyanide was performed via the nucleophilic addition of cyanide anion to the indolium group of the sensor, which resulted in the blocking of the intramolecular charge transfer (ICT) process in the sensor, inducing a ratiometric fluorescence change and simultaneously an obvious color change. Furthermore, competitive anions did not showed any significant changes both in color and emission intensity ratio (I381/I595), indicating the high selectivity of the sensor to CN(-). PMID:26653444

  14. Aggregation-Induced Emission Active Metal-Free Chemosensing Platform for Highly Selective Turn-On Sensing and Bioimaging of Pyrophosphate Anion.

    PubMed

    Gogoi, Abhijit; Mukherjee, Sandipan; Ramesh, Aiyagari; Das, Gopal

    2015-07-01

    We report the synthesis of a metal-free chemosensor for highly selective sensing of pyrophosphate (PPi) anion in physiological medium. The novel phenylbenzimidazole functionalized imine containing chemosensor (L; [2,6-bis(((4-(1H-benzo[d]imidazol-2-yl)phenyl)imino) methyl)-4 methyl phenol]) could sense PPi anion through "turn-on" colorimetric and fluorimetric responses in a very competitive environment. The overall sensing mechanism is based on the aggregation-induced emission (AIE) phenomenon. Moreover, a real time in-field device application was demonstrated by sensing PPi in paper strips coated with L. Interestingly, detection of intracellular PPi ions in model human cells could also be possible by fluorescence microscopic studies without any toxicity to these cells. PMID:26059015

  15. Potentiometric sensor for the high throughput determination of tetramisole hydrochloride.

    PubMed

    Gupta, Vinod Kumar; Singh, Ashok Kumar; Gupta, Barkha

    2007-08-01

    The electrochemical response characteristics of poly(vinyl)chloride (PVC) based membrane sensors for determination of tetramisole hydrochloride (TmCl) is described. The membranes of these electrodes consist of tetramisole-tetraphenyl borate (Tm-TPB), chlorophenyl borate (Tm-ClPB), and phosphotungstate (Tm(3)-PT) ion associations dispersed in a PVC matrix with dibutylpthalate as a plasticizer. The electrodes were fully characterized in terms of composition, life span, usable pH range, and working concentration range and ionic strength. The electrodes showed Nernstian response over the concentration ranges of 7.4 x 10(-7) to 1.0 x 10(-2) M, 1.7 x 10(-6) to 1.0 x 10(-2) M, and 5.6 x 10(-6) to 1.0 x 10(-2) M TmCl, respectively, and were applied to the potentiometric determination of tetramisole ion in pure solutions and pharmaceutical preparations. The potentiometric determination was also used in the determination of tetramisole in pharmaceutical preparations in four batches of different expiration dates. The electrodes exhibited good selectivity for TmCl with respect to a large number of excipients such as inorganic cations, organic cations, amino acids, and sugars. The solubility product of the ion-pair and the formation constant of the precipitation reaction leading to the ion-pair formation were determined conductometrically. The new potentiometric method offers the advantages of high-throughput determination, simplicity, accuracy, automation feasibility, and applicability to turbid and colored sample solutions. PMID:17979641

  16. Potentiometric titration of gold, platinum, and some other precious metals

    SciTech Connect

    Selig, W.S.

    1991-02-04

    Gold, platinum, and several other platinum metals can be determined by titration with cetylpyridinium chloride (CPC). CPC forms a precipitate with AuCl{sub 4}{sup {minus}} and PtCl{sub 6}{sup 2{minus}}. Differentiation of AuCl{sub 4{minus}} and PtCl{sub 6}{sup 2{minus}} with this titrant is not possible; however, their sum can be determined. Titration with tetraphenylarsonium chloride at pH 1 is selective for tetrachloroaurate, which thus can be determined in the presence of hexachloroplatinate. Hexachloroosmate(IV), tetrachloroplatinite(II), tetrachloropalladate(II), hexachloropalladate(IV), and hexachloroiridate(IV) can also be determined potentiometrically vs. CPC. The indicating electrode is prepared by coating a spectroscopic graphite rod with a solution of poly(vinyl chloride) (PVC) and dioctylphthalate (DOP) in tetrahydrofuran (THF). Gold in gold cyanide plating baths and in potassium aurocyanide can be determined by potentiometric titration vs standard silver nitrate, using a silver ion-selective indicating electrode. The monovalent gold need not be converted to the trivalent state with aqua regia, resulting in a considerable saving of time and effort. Free cyanide and aurocyanide can be titrated sequentially by this method. Chloride does not interfere and can, in fact, also be sequentially determined. 17 refs., 2 figs., 3 tabs.

  17. Simple Potentiometric Determination of Reducing Sugars

    ERIC Educational Resources Information Center

    Moresco, Henry; Sanson, Pedro; Seoane, Gustavo

    2008-01-01

    In this article a potentiometric method for reducing sugar quantification is described. Copper(II) ion reacts with the reducing sugar (glucose, fructose, and others), and the excess is quantified using a copper wire indicator electrode. In order to accelerate the kinetics of the reaction, working conditions such as pH and temperature must be…

  18. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily.

    PubMed

    Gunthorpe, M J; Lummis, S C

    2001-06-15

    The 5-hydroxytryptamine(3) (5-HT(3)) receptor is a member of a superfamily of ligand-gated ion channels, which includes nicotinic acetylcholine, gamma-aminobutyric acid, and glycine receptors. The receptors are either cation or anion selective, leading to their distinctive involvement in either excitatory or inhibitory neurotransmission. Using a combination of site-directed mutagenesis and electrophysiological characterization of homomeric 5-HT(3A) receptors expressed in HEK293 cells, we have identified a set of mutations that convert the ion selectivity of the 5-HT(3A) receptor from cationic to anionic; these were substitution of V13'T in M2 together with neutralization of glutamate residues (E-1'A) and the adjacent insertion of a proline residue (P-1') in the M1-M2 loop. Mutant receptors showed significant chloride permeability (P(Cl)/P(Na) = 12.3, P(Na)/P(Cl) = 0.08), whereas WT receptors are predominantly permeable to sodium (P(Na)/P(Cl) > 20, P(Cl)/P(Na) < 0.05). Since the equivalent mutations have previously been shown to convert alpha7 nicotinic acetylcholine receptors from cationic to anionic (Galzi J.-L., Devillers-Thiery, A, Hussy, N., Bertrand, S. Changeux, J. P., and Bertrand, D. (1992) Nature 359, 500-505) and, recently, the converse mutations have allowed the construction of a cation selective glycine receptor (Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) Biophys. J. 78, 247-259), it appears that the determinants of ion selectivity represent a conserved feature of the ligand-gated ion channel superfamily. PMID:11439930

  19. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily.

    PubMed

    Gunthorpe, M J; Lummis, S C

    2001-04-01

    The 5-hydroxytryptamine(3) (5-HT(3)) receptor is a member of a superfamily of ligand-gated ion channels, which includes nicotinic acetylcholine, gamma-aminobutyric acid, and glycine receptors. The receptors are either cation or anion selective, leading to their distinctive involvement in either excitatory or inhibitory neurotransmission. Using a combination of site-directed mutagenesis and electrophysiological characterization of homomeric 5-HT(3A) receptors expressed in HEK293 cells, we have identified a set of mutations that convert the ion selectivity of the 5-HT(3A) receptor from cationic to anionic; these were substitution of V13'T in M2 together with neutralization of glutamate residues (E-1'A) and the adjacent insertion of a proline residue (P-1') in the M1-M2 loop. Mutant receptors showed significant chloride permeability (P(Cl)/P(Na) = 12.3, P(Na)/P(Cl) = 0.08), whereas WT receptors are predominantly permeable to sodium (P(Na)/P(Cl) > 20, P(Cl)/P(Na) < 0.05). Since the equivalent mutations have previously been shown to convert alpha7 nicotinic acetylcholine receptors from cationic to anionic (Galzi J.-L., Devillers-Thiery, A, Hussy, N., Bertrand, S. Changeux, J. P., and Bertrand, D. (1992) Nature 359, 500-505) and, recently, the converse mutations have allowed the construction of a cation selective glycine receptor (Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) Biophys. J. 78, 247-259), it appears that the determinants of ion selectivity represent a conserved feature of the ligand-gated ion channel superfamily. PMID:11139582

  20. Probing the selective separation of potassium ion from sodium ion with cyclopentadienyl anion as receptor: a computational study.

    PubMed

    Desai, Mittal L; Si, Mrinal Kanti; Lo, Rabindranath; Ganguly, Bishwajit

    2015-08-01

    A systematic computational study has been carried out using post-Hartree-Fock and density functional theory methods on half sandwich (M-Cp), sandwich (Cp-M-Cp), inversed sandwich (M-Cp-M), and multi-decker chain complexes of alkali metal ions (Na(+), and K(+)). The binding affinity of cyclopentadienyl anion (Cp) with K(+) and Na(+) ions has been studied in half sandwich, sandwich, inversed sandwich, and multi-decker chain complexes. These complexes have been examined in the aqueous phase. The calculated results show that Cp anion can preferentially bind with Na(+) ion over K(+) ion in aqueous phase. The results obtained from DFT calculations have been compared with the crystal structures of Cp-Na and Cp-K complexes. The Bader's atoms in molecule (AIM) analysis were performed to characterize the non-covalent cation-π interactions in the Cp-M complexes. The calculated electron density at cage critical point indicates the strength of the Cp-M complexes. Energy decomposition analysis (EDA) has also been performed to investigate the origins of these interactions. The electrostatic interaction contributes significantly to the total interaction energy in Cp-M complexes. The relative stability difference of cyclopentadienyl anion (Cp) with K(+) and Na(+) ions in aqueous phase can be exploited for the separations from mixture such as sea bittern. The lower stability of K-Cp complex can induce to precipitate the K(+) ions more easily than the corresponding Na(+) ions. Graphical Abstract Potassium ion from sodium ion with cyclopentadienyl anion as receptor. PMID:26232185

  1. Polymeric Optical Sensors for Selective and Sensitive Nitrite Detection Using Cobalt(III) Corrole and Rh(III) Porphyrin as Ionophores

    PubMed Central

    Yang, Si; Wo, Yaqi; Meyerhoff, Mark E.

    2014-01-01

    Cobalt(III) 5, 10, 15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl)porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-penicillamine. PMID:25150700

  2. A Ho(III) potentiometric polymeric membrane sensor based on a new four dentate neutral ion carrier.

    PubMed

    Zamani, Hassan Ali; Zanganeh-Asadabadi, Abbas; Rohani, Mitra; Zabihi, Mohammad Saleh; Fadaee, Javad; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia

    2013-03-01

    In this research, we report a new Ho(3+)-PVC membrane electrode based on N-(4,5-dimethyl-2-(picolinamido)phenyl)picolinamide (H(2)Me(2)bpb) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of H(2)Me(2)bpb with oleic acid (OA) as anionic additives, and o-nitrophenyloctyl ether (NPOE) as plasticized solvent mediator. The sensor exhibits a Nernstian slope of 20.1 ± 0.2 mV decade(-1) over the concentration range of 1.0 × 10(-6) to 1.0 × 1(-2) mol L(-1), and a detection limit of 5.0 × 10(-7) mol L(-1) of Ho(3+) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 3.5-9.4. It has a very short response time, in the whole concentration range (<10s), and can be used for at least eight weeks. The proposed electrode shows a good selectivity towards Ho(3+) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. To assess its analytical applicability the proposed Ho(3+) sensor was successfully applied as an indicator electrode in the titration of Ho(3+) ion solutions in certified reference materials, alloy samples and for the determination of the fluoride ion in two mouthwash preparations. PMID:25427515

  3. Potentiometric sensors with carbon black supporting platinum nanoparticles.

    PubMed

    Paczosa-Bator, Beata; Cabaj, Leszek; Piech, Robert; Skupień, Krzysztof

    2013-11-01

    For the first time, a single-piece, all-solid-state ion-selective electrode was fabricated with carbon black supporting platinum nanoparticles (PtNPs-CB) and a polymeric membrane. The PtNPs-CB, as an intermediate layer, was drop-casted directly on the solid substrate, and then an ionophore-doped solvent polymeric membrane was added in order to form a sensor. The performance of the newly developed electrodes was evaluated on the basis of potassium and nitrate ions. The stability of the electrical potential for the electrodes was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric aqueous-layer test. Fabricated potassium- and nitrate-selective electrodes displayed a Nernstian slope and several outstanding properties such as high long-term potential stability, potential repeatability, and reproducibility. PMID:24094044

  4. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    PubMed

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. PMID:21683568

  5. ION CHROMATOGRAPHY OF ANIONS

    EPA Science Inventory

    A Dionex Model 10 Ion Chromatograph was evaluated for the measurement of anionic species in water. The theoretical effect of hydrogen ion activity (pH) on the elution time of phosphate and arsenate was tested and empirical selectivity coefficients were determined for the major pr...

  6. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  7. A novel porous anionic metal-organic framework with pillared double-layer structure for selective adsorption of dyes

    NASA Astrophysics Data System (ADS)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin; Zhao, Cui; Yang, Fan; Zhao, Min-Jian; Xie, Ya-Bo; Li, Jian-Rong

    2016-01-01

    A novel porous anionic metal-organic framework, (Me2NH2)2[Zn2L1.5bpy]·2DMF (BUT-201; H4L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO3)2·6H2O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH3)2NH2+, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acid Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO3.

  8. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl− channel expressed in mammalian cell lines

    PubMed Central

    Linsdell, Paul; Zheng, Shu-Xian; Hanrahan, John W

    1998-01-01

    The effects of individually mutating two adjacent threonine residues in the sixth membrane-spanning region (TM6) of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel on permeation properties were examined using patch clamp recording from mammalian cell lines stably expressing human CFTR.A number of mutations of T338 significantly affected the permeation properties of the channel. Increases and decreases in single channel conductance were observed for different mutants. Anion selectivity was strongly affected, with no two channel variants sharing the same selectivity sequence. Several mutations led to strong inward rectification of the macroscopic current-voltage relationship. The effects of these mutations on permeation properties were correlated with the size of the amino acid side chain substituted, rather than its chemical nature.Most mutations of T339 resulted in a lack of functional channel expression and apparent misprocessing of the protein. One mutant, T339V, was characterized in detail; its permeation properties were significantly altered, although these effects were not as strong as for T338 mutations.These results suggest an important role for T338 in controlling the permeation properties of the CFTR Cl− channel. It is suggested that mutation of this residue alters the interaction between permeating anions and the channel pore via an indirect effect on the orientation of the TM6 helix. PMID:9729613

  9. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines.

    PubMed

    Linsdell, P; Zheng, S X; Hanrahan, J W

    1998-10-01

    1. The effects of individually mutating two adjacent threonine residues in the sixth membrane-spanning region (TM6) of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel on permeation properties were examined using patch clamp recording from mammalian cell lines stably expressing human CFTR. 2. A number of mutations of T338 significantly affected the permeation properties of the channel. Increases and decreases in single channel conductance were observed for different mutants. Anion selectivity was strongly affected, with no two channel variants sharing the same selectivity sequence. Several mutations led to strong inward rectification of the macroscopic current-voltage relationship. The effects of these mutations on permeation properties were correlated with the size of the amino acid side chain substituted, rather than its chemical nature. 3. Most mutations of T339 resulted in a lack of functional channel expression and apparent misprocessing of the protein. One mutant, T339V, was characterized in detail; its permeation properties were significantly altered, although these effects were not as strong as for T338 mutations. 4. These results suggest an important role for T338 in controlling the permeation properties of the CFTR Cl- channel. It is suggested that mutation of this residue alters the interaction between permeating anions and the channel pore via an indirect effect on the orientation of the TM6 helix. PMID:9729613

  10. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    PubMed

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands. PMID:25390494

  11. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    PubMed

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%). PMID:26471519

  12. Nickel(II) and copper(II) complexes with humic acid anions and their derivatives

    SciTech Connect

    Ryabova, I.N.

    2008-01-15

    Complexation of Ni(II) and Cu(II) in aqueous solutions with anions of humic acids, extracted from naturally oxidized coal, and with their hydroxymethyl derivatives is studied spectrophotometrically and potentiometrically. The complexation stoichiometry and the stability constants of the complexes are determined.

  13. Potentiometric detection and removal of copper using porphyrins

    PubMed Central

    2013-01-01

    Background Copper is an essential trace element with a great importance in industry, environment and biological systems. The great advantage of ion-selective sensors in comparison with other proposed techniques is that they are measuring the free metal ion activity which is responsible for their toxicity. Porphyrins are known to be among the best ionophores in formulation of ion-selective sensors. Results A symmetrically substituted meso-porphyrin, namely: 5,10,15,20-tetrakis(4-allyloxyphenyl)porphyrin (TAPP) was used in the construction of a new copper selective-sensor and was also tested for the removal of copper from waste waters. The potentiometric response characteristics (slope and selectivity) of copper-selective electrodes based on TAPP in o-nitrophenyloctylether (o-NPOE), dioctyl phtalate (DOP) and dioctyl sebacate (DOS) plasticized with poly(vinyl chloride) membranes are compared. Conclusions The best results were obtained for the membrane plasticized with DOP. The sensor has linear response in the range 1x10-7 – 1x10-1 M with 28.4 ± 0.4 mV/decade near-Nernstian slope towards copper ions and presents good selectivity. Due to its chelating nature, the same porphyrin was also tested for the retention of copper from synthetic copper samples, showing a maximum adsorption capacity of 280 mg/g. PMID:23829792

  14. Potentiometric determination of anhydrous aluminum chloride

    SciTech Connect

    Kofman, A.G.; Chernysh, G.V.; Vorozhtsov, G.N.

    1987-12-20

    Anhydrous aluminum chloride is a strong Lewis acid, widely used as a catalyst, in the synthesis and analysis of organic products. The aim of this article is to develop a potentiometric method of determining anhydrous AlCl/sub 3/. To estimate the validity of the results of the determination, use was made of French, Japanese, and Soviet samples of AlCl/sub 3/ with a known content of the main substance. The titration was performed in ethylene glycol. The procedure makes it possible to investigate the activity of AlCl/sub 3/ as a catalyst in different organic solvents

  15. Selective determination of ammonium ions by high-speed ion-exclusion chromatography on a weakly basic anion-exchange resin column.

    PubMed

    Mori, Masanobu; Tanaka, Kazuhiko; Helaleh, Murad I H; Xu, Qun; Ikedo, Mikaru; Ogura, Yutaka; Sato, Shinji; Hu, Wenzhi; Hasebe, Kiyoshi

    2003-05-16

    This paper describes an ion-exclusion chromatographic system for the rapid and selective determination of ammonium ion. The optimized ion-exclusion chromatographic system was established with a polymethacrylate-based weakly basic anion-exchange resin column (TSKgel DEAE-5PW) as the separation column, an aqueous solution containing 0.05 mM tetramethylammonium hydroxide (pH 9.10) as eluent with conductimetric detection for the analyte determination. Under the optimum chromatographic conditions, ammonium ion was determined within 2.3 min with a detection limit (S/N=3) better than 0.125 microM. Ammonium ion in rain and river waters was precisely determined using this ion-exclusion chromatographic system. PMID:12830892

  16. A highly selective ratiometric visual and red-emitting fluorescent dual-channel probe for imaging fluoride anions in living cells.

    PubMed

    Zhu, Baocun; Kan, He; Liu, Jingkai; Liu, Hanqing; Wei, Qin; Du, Bin

    2014-02-15

    Recently, growing attention has been paid to the accurate determination of fluoride anion (F(-)) in the environment and living systems for its toxicity and biological function investigation. In this paper, we developed a ratiometric visual and red-emitting fluorescent dual-channel probe (1) employed Si-O bond as a highly selective recognition receptor for imaging F(-) in living cells. Probe 1 possesses a potential internal charge transfer (ICT) structure, and displays a large (158 nm) red-shifted absorption spectrum and the color changes from yellow to blue upon addition of F(-) in the aqueous solution. In addition, probe 1 can be used to detect F(-) quantitatively by the ratiometric absorption and turn-on fluorescence spectroscopy methods with excellent sensitivity. Finally, the results of its application to bioimaging of F(-) in living cells show that probe 1 would be of great benefit to biomedical researchers for investigating the effects of fluoride in biological systems. PMID:24080208

  17. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  18. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors.

    PubMed

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  19. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    NASA Astrophysics Data System (ADS)

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-07-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs.

  20. Potentiometric determination of uranium in organic extracts

    SciTech Connect

    Bodnar, L.Z.

    1980-05-01

    The potentimetric determination of uranium in organic extracts was studied. A mixture of 30% TBP, (tributylphosphate), in carbon tetrachloride was used, with the NBL (New Brunswick Laboratory) titrimetric procedure. Results include a comparative analysis performed on organic extracts of fissium alloys vs those performed on aqueous samples of the same alloys which had been treated to remove interfering elements. Also comparative analyses were performed on sample solutions from a typical scrap recovery operation common in the uranium processing industry. A limited number of residue type materials, calciner products, and presscakes were subjected to analysis by organic extraction. The uranium extraction was not hindered by 30% TBP/CCl/sub 4/. To fully demonstrate the capabilities of the extraction technique and its compatibility with the NBL potentiometric uranium determination, a series of uranium standards was subjected to uranium extraction with 30% TBP/CCl/sub 4/. The uranium was then stripped out of the organic phase with 40 mL of H/sub 3/PO/sub 4/, 15 mL of H/sub 2/0, and 1 mL of 1M FeSO/sub 4/ solution. The uranium was then determined in the aqueous phosphoric phase by the regular NBL potentiometric method, omitting only the addition of another 40 mL of H/sub 3/PO/sub 4/. Uranium determinations ranging from approximately 20 to 150 mg of U were successfully made with the same accuracy and precision normally achieved. 8 tables. (DP)

  1. Detection and purification of two antibody-antigen complexes via selective adsorption on lowly activated anion exchangers.

    PubMed

    Fuentes, Manuel; Pessela, Benevides C C; Mateo, Cesar; Munilla, Roberto; Guisán, Jose M; Fernandez-Lafuente, Roberto

    2004-12-01

    Taken advantage of the mechanism of adsorption of macro-molecules on ionic exchangers, (a multipoint interaction between the protein and the support), it is possible to selectively adsorb large proteins leaving small ones in the supernatant. Associated proteins should present a significant difference in its size as compared to the non-associated forms. Thus, the protein complexes may have much larger surfaces to interact with the support. Here, by selecting the support with the highest activation degree that was unable to adsorb the non-associated proteins, we have shown the simple and selective adsorption of immuno complexes (as a model), while antibodies and antigens remained in the supernatant. Therefore, it was possible to selectively adsorb on lowly activated supports (e.g., agarose 4BCL having only 1 micromol of amino groups per g of support) rabbit IgG/anti-rabbit immunoglobulins (immuno complex), while these supports were unable to adsorb the individual immunoglobulines. Similarly, horseradish peroxidase (HRP)/anti-HRP were selectively adsorbed on lowly activated supports, while the individual proteins were not adsorbed at all. Afterwards, the adsorbed associated proteins (purified at least from the non-associated counterparts and concentrated by the adsorption on the support) may be cross-linked with aldehyde-dextran and be desorbed from the matrix for their analysis. This strategy may permit very simple experiments to detect the presence of protein-protein complexes. Finally, we have shown the advantages of this technique compared to the use of one of the proteins previous immobilized on a support. PMID:15628128

  2. Selective recovery of Ag(I) coordination anion from simulate nickel electrolyte using corn stalk based adsorbent modified by ammonia-thiosemicarbazide.

    PubMed

    Xiong, Ying; Wan, Li; Xuan, Jing; Wang, Yongwei; Xing, Zhiqing; Shan, Weijun; Lou, Zhenning

    2016-01-15

    In nickel electrolyte, Ag(I) was present at trace level concentration (10-20 mg L(-1)) and existed in the form of AgCli(1-i) coordination anion, instead of Ag(+) positive ion usually in several sources. In the present study, TSC-NH3-OCS adsorbent based on natural corn stalk modified by ammonia (NH3)-thiosemicarbazide (TSC) was synthesized and characterized using some instrumental techniques. The TSC-NH3-OCS adsorbent could selectively adsorb Ag(I) as AgCl(i)(1-i) coordination anion from the Ag(I)-Cu(II)-Ni(II) simulate nickel electrolyte, especially in the case of the very high levels of Cu(II) and Ni(II), which significantly outperforms the commercial available resins. The adsorption mechanism was believed to be electrostatic interaction of the protonated bands of AgCl4(3-) with protonated thiol form of the thioamide units by FTIR and XPS analysis. The maximum adsorption capacity in the Ag(I) single and Ag(I)-Cu(II)-Ni(II) ternary system were obtained and calculated as 153.54 and 46.69 mg g(-1), respectively. The reasons that the maximum adsorption capacity of AgCl(i)(1-i) from the single and ternary system varied widely could be explained by adsorption kinetic and thermodynamic results. In addition, three successive sorption/desorption cycle runs from ternary system were performed which indicated that the TSC-NH3-OCS adsorbent has a good performance for recovery Ag(I) from simulate nickel electrolyte. PMID:26368801

  3. Corynebacterium jeikeium jk0268 Constitutes for the 40 Amino Acid Long PorACj, Which Forms a Homooligomeric and Anion-Selective Cell Wall Channel

    PubMed Central

    Norouzy, Amir; Schulz, Robert; Nau, Werner M.; Kleinekathöfer, Ulrich; Tauch, Andreas; Benz, Roland

    2013-01-01

    Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed. PMID:24116064

  4. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    SciTech Connect

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  5. Potentiometric map of the Cockfield Aquifer in Mississippi, fall, 1980

    USGS Publications Warehouse

    Wasson, B.E.

    1981-01-01

    This potentiometric map of the Cockfield aquifer is the eleventh in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources , Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop area of the Cockfield quifer the potentiometric surface is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer by streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by large ground-water withdrawals in the Jackson and Greenville areas. Historically, water levels in or near the outcrop of the Cockfield aquifer have shown little or no long-term changes, but in much of the confined part of the aquifer during the past 20 years, water levels have declined from 1 to 2 feet per year. (USGS)

  6. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline.

    PubMed

    Moreira, Felismina T C; Kamel, Ayman H; Guerreiro, Joana R L; Sales, M Goreti F

    2010-10-15

    A novel biomimetic sensor for the potentiometric transduction of oxytetracycline is presented. The artificial host was imprinted in methacrylic acid and/or acrylamide based polymers. Different amounts of molecularly imprinted and non-imprinted polymers were dispersed in different plasticizing solvents and entrapped in a poly(vinyl chloride) matrix. Only molecularly imprinted based sensors allowed a potentiometric transduction, suggesting the existence of host-guest interactions. These sensors exhibited a near-Nernstian response in steady state evaluations; slopes and detection limits ranged 42-63 mV/decade and 2.5-31.3 μg/mL, respectively. Sensors were independent from the pH of test solutions within 2-5. Good selectivity was observed towards glycine, ciprofloxacin, creatinine, acid nalidixic, sulfadiazine, cysteine, hydroxylamine and lactose. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (65 mV/decade), wide linear range (5.0×10(-5) to 1.0×10(-2) mol/L), low detection limit (19.8 μg/mL), and a stable baseline for a 5×10(-3) M citrate buffer (pH 2.5) carrier. The sensors were successfully applied to the analysis of drugs and urine. This work confirms the possibility of using molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction. PMID:20688507

  7. Mitochondrial Injury after Mechanical Stretch of Cortical Neurons in vitro: Biomarkers of Apoptosis and Selective Peroxidation of Anionic Phospholipids

    PubMed Central

    Ji, Jing; Tang, Minke; Feng, Weihong; Stolz, Donna B.; Clark, Robert S.B.; Meaney, David F.; Kochanek, Patrick M.; Kagan, Valerian E.

    2012-01-01

    Abstract Mechanical injury of neurites accompanied by rupture of mitochondrial membranes may lead to immediate nonspecific release and spreading of pro-apoptotic factors and activation of proteases, that is, execution of apoptotic program. In the current work, we studied the time course of the major biomarkers of apoptosis as they are induced by exposure of rat cortical neurons to mechanical stretch. By using transmission electron microscopy, we found that mitochondria in the neurites were damaged early (1 h) after mechanical stretch injury whereas somal mitochondria were significantly more resistant and demonstrated structural damage and degenerative mitochondrial changes at a later time point after stretch (12 h). We also report that the stretch injury caused immediate activation of reactive oxygen species production followed by selective oxidation of a mitochondria-specific phospholipid, cardiolipin, whose individual peroxidized molecular species have been identified and quantified by electrospray ionization mass spectrometry analysis. Most abundant neuronal phospholipids – phosphatidylcholine, phophatidylethanolamine – did not undergo oxidative modification. Simultaneously, a small-scale release of cytochrome c was observed. Notably, caspase activation and phosphatidylserine externalization – two irreversible apoptotic events designating a point of no return – are substantially delayed and do not occur until 6–12 h after the initial impact. The early onset of reactive oxygen species production and cytochrome c release may be relevant to direct stretch-induced damage to mitochondria. The delayed emergence of apoptotic neuronal death after the immediate mechanical damage to mitochondria suggests a possible window of opportunity for targeted therapies. PMID:21895519

  8. Creating potentiometric surfaces from combined water well and oil well data in the midcontinent of the United States

    USGS Publications Warehouse

    Gianoutsos, Nicholas J.; Nelson, Philip H.

    2013-01-01

    For years, hydrologists have defined potentiometric surfaces using measured hydraulic-head values in water wells from aquifers. Down-dip, the oil and gas industry is also interested in the formation pressures of many of the same geologic formations for the purpose of hydrocarbon recovery. In oil and gas exploration, drillstem tests (DSTs) provide the formation pressure for a given depth interval in a well. These DST measurements can be used to calculate hydraulic-head values in deep hydrocarbon-bearing formations in areas where water wells do not exist. Unlike hydraulic-head measurements in water wells, which have a low number of problematic data points (outliers), only a small subset of the DST data measure true formation pressures. Using 3D imaging capabilities to view and clean the data, we have developed a process to estimate potentiometric surfaces from erratic DST data sets of hydrocarbon-bearing formations in the midcontinent of the U.S. The analysis indicates that the potentiometric surface is more readily defined through human interpretation of the chaotic DST data sets rather than through the application of filtering and geostatistical analysis. The data are viewed as a series of narrow, 400-mile-long swaths and a 2D viewer is used to select a subset of hydraulic-head values that represent the potentiometric surface. The user-selected subsets for each swath are then combined into one data set for each formation. These data are then joined with the hydraulic-head values from water wells to define the 3D potentiometric surfaces. The final product is an interactive, 3D digital display containing: (1) the subsurface structure of the formation, (2) the cluster of DST-derived hydraulic head values, (3) the user-selected subset of hydraulic-head values that define the potentiometric surface, (4) the hydraulic-head measurements from the corresponding shallow aquifer, (5) the resulting potentiometric surface encompassing both oil and gas and water wells, and (6

  9. Tailoring the Pore Environment of Metal-Organic and Molecular Materials Decorated with Inorganic Anions: Platforms for Highly Selective Carbon Capture

    NASA Astrophysics Data System (ADS)

    Nugent, Patrick S.

    Due to their high surface areas and structural tunability, porous metal-organic materials, MOMs, have attracted wide research interest in areas such as carbon capture, as the judicious choice of molecular building block (MBB) and linker facilitates the design of MOMs with myriad topologies and allows for a systematic variation of the pore environment. Families of MOMs with modular components, i.e. MOM platforms, are eminently suitable for targeting the selective adsorption of guest molecules such as CO2 because their pore size and pore functionality can each be tailored independently. MOMs with saturated metal centers (SMCs) that promote strong yet reversible CO2 binding in conjunction with favorable adsorption kinetics are an attractive alternative to MOMs containing unsaturated metal centers (UMCs) or amines. Whereas MOMs with SMCs and exclusively organic linkers typically have poor CO2 selectivity, it has been shown that a versatile, long known platform with SMCs, pillared square grids with inorganic anion pillars and pcu topology, exhibits high and selective CO 2 uptake, a moderate CO2 binding affinity, and good stability under practical conditions. As detailed herein, the tuning of pore size and pore functionality in this platform has modulated the CO2 adsorption properties and revealed variants with unprecedented selectivity towards CO 2 under industrially relevant conditions, even in the presence of moisture. With the aim of tuning pore chemistry while preserving pore size, we initially explored the effect of pillar substitution upon the carbon capture properties of a pillared square grid, [Cu(bipy)2(SiF6)] (SIFSIX-1-Cu). Room temperature CO2, CH4, and N 2 adsorption isotherms revealed that substitution of the SiF6 2- ("SIFSIX") inorganic pillar with TiF6 2- ("TIFSIX") or SnF62- ("SNIFSIX") modulated CO2 uptake, CO2 affinity (heat of adsorption, Qst), and selectivity vs. CH4 and N2. TIFSIX-1-Cu and SNIFSIX-1-Cu were calculated to exhibit the highest CO2/N 2

  10. Injectable gels of anionic collagen:rhamsan composites for plastic correction: preparation, characterization, and rheological properties.

    PubMed

    de Paula, Márcio; Goissis, Gilberto; Martins, Virgínia C A; da Silva Trindade, José Carlos

    2005-11-01

    The present article describes the preparation and characterization of anionic collagen gels obtained from porcine intestinal submucosa after 72 h of alkaline treatment and in the form of rhamsan composites to develop injectable biomaterials for plastic reconstruction. All materials were characterized by SDS/polyacrylamide gel electrophoresis, infrared spectroscopy, thermal stability, potentiometric titration, rheological properties, and fluidity tests. Biocompatibility was appraised after the injection of anionic collagen: rhamsan composites at 2.5% in 60 North Folk rabbits. Independently of processing, the collagen's secondary structure was preserved in all cases, and after 72 h of hydrolysis the collagen was characterized by a carboxyl group content of 346+/-9, which, at physiological pH, corresponds to an increase of 106+/-17 negative charges, in comparison to native collagen, due to the selective hydrolysis of asparagine and glutamine carboxyamide side chain. Rheological studies of composites at pH 7.4 in concentrations of 2, 4, and 6% (in proportions of 75:1 and 50:1) showed a viscoelastic behavior dependent on the frequency, which is independent of concentration and proportion. In both, the concentration of the storage modulus always predominated over the loss modulus (G'>G'' and delta<45 degrees ). The results from creep experiments confirmed this behavior and showed that anionic collagen:rhamsan composites at pH 7.4 in the proportion of 50:1 are less elastic and more susceptible to deformation in comparison to gels in the proportion of 75:1, independent of concentration. This was further confirmed by flow experiments, indicating that the necessary force for the extrusion of anionic collagen:rhamsan composites, in comparison to anionic collagen, was significantly smaller and with a smooth flow. Biocompatibility studies showed that the tissue reaction of anionic collagen:rhamsan composites at 2.5% in the proportion of 75:1 was compatible with the application

  11. Real-time potentiometric detection of bacteria in complex samples.

    PubMed

    Zelada-Guillén, Gustavo A; Bhosale, Suryakant V; Riu, Jordi; Rius, F Xavier

    2010-11-15

    Detecting and identifying pathogen bacteria is essential to ensure quality at all stages of the food chain and to diagnose and control microbial infections. Traditional detection methods, including those based on cell culturing, are tedious and time-consuming, and their further application in real samples generally implies more complex pretreatment steps. Even though state-of-the-art techniques for detecting microorganisms enable the quantification of very low concentrations of bacteria, to date it has been difficult to obtain successful results in real samples in a simple, reliable, and rapid manner. In this Article, we demonstrate that the label-free detection and identification of living bacteria in real samples can be carried out in a couple of minutes and in a direct, simple, and selective way at concentration levels as low as 6 colony forming units/mL (CFU) in complex matrices such as milk or 26 CFU/mL in apple juice where the pretreatment step of samples is extremely easy. We chose Escherichia coli ( E. coli ) CECT 675 cells as a model organism as a nonpathogenic surrogate for pathogenic E. coli O157:H7 to test the effectiveness of a potentiometric aptamer-based biosensor. This biosensor uses single-walled carbon nanotubes (SWCNT) as excellent ion-to-electron transducers and covalently immobilized aptamers as biorecognition elements. The selective aptamer-target interaction significantly changes the electrical potential, thus allowing for both interspecies and interstrain selectivity and enabling the direct detection of the target. This technique is therefore a powerful tool for the immediate identification and detection of microorganisms. We demonstrate the highly selective detection of living bacteria with an immediate linear response of up to 10(4) CFU/mL. The biosensor can be easily built and used, is regenerated without difficulty, and can be used at least five times with no loss in the minimum amount of detected bacteria. PMID:20961052

  12. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  13. A potentiometric biosensor for rapid on-site disease diagnostics.

    PubMed

    Tarasov, Alexey; Gray, Darren W; Tsai, Meng-Yen; Shields, Niall; Montrose, Armelle; Creedon, Niamh; Lovera, Pierre; O'Riordan, Alan; Mooney, Mark H; Vogel, Eric M

    2016-05-15

    Quantitative point-of-care (POC) devices are the next generation for serological disease diagnosis. Whilst pathogen serology is typically performed by centralized laboratories using Enzyme-Linked ImmunoSorbent Assay (ELISA), faster on-site diagnosis would infer improved disease management and treatment decisions. Using the model pathogen Bovine Herpes Virus-1 (BHV-1) this study employs an extended-gate field-effect transistor (FET) for direct potentiometric serological diagnosis. BHV-1 is a major viral pathogen of Bovine Respiratory Disease (BRD), the leading cause of economic loss ($2 billion annually in the US only) to the cattle and dairy industry. To demonstrate the sensor capabilities as a diagnostic tool, BHV-1 viral protein gE was expressed and immobilized on the sensor surface to serve as a capture antigen for a BHV-1-specific antibody (anti-gE), produced in cattle in response to viral infection. The gE-coated immunosensor was shown to be highly sensitive and selective to anti-gE present in commercially available anti-BHV-1 antiserum and in real serum samples from cattle with results being in excellent agreement with Surface Plasmon Resonance (SPR) and ELISA. The FET sensor is significantly faster than ELISA (<10 min), a crucial factor for successful disease intervention. This sensor technology is versatile, amenable to multiplexing, easily integrated to POC devices, and has the potential to impact a wide range of human and animal diseases. PMID:26765531

  14. Selective anion sensing by a tris-amide CTV derivative: 1H NMR titration, self-assembled monolayers, and impedance spectroscopy.

    PubMed

    Zhang, Sheng; Echegoyen, Luis

    2005-02-16

    A hydrogen-bond forming tris(amide) receptor based on cyclotriveratrylene (CTV) was prepared. Self-assembled monolayers (SAMs) of the receptor were formed on gold surfaces. Desorption experiments show a surface coverage of 2.26 x 10(-10) mol/cm(2). (1)H NMR and UV measurements confirm that the receptor exhibits the highest affinity for acetate ions among the anions studied. Electrochemical impedance was used to investigate anion sensing by the SAMs and proved to be an efficient and convenient technique for detecting anions in aqueous solutions. Upon binding acetate anions, the monolayer-modified gold electrodes show a drastic increase of the R(ct) values when Fe(CN)(6)(3-/4-) is used as the redox probe. When the probe was changed to a positively charged one, Ru(NH3)(6)(3+/2+), the R(ct) values decreased monotonically as the acetate concentration was increased, thus confirming the accumulation of negative surface charge upon anion binding. H(2)PO(4-) shows some interference when sensing AcO-. Other monovalent anions such as Cl-, Br-, NO3(-) and HSO4(-) do not bind to the CTV receptor either in solution or on the surfaces. PMID:15701037

  15. Analysis of Mathematical Modelling on Potentiometric Biosensors

    PubMed Central

    Mehala, N.; Rajendran, L.

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765

  16. Analysis of mathematical modelling on potentiometric biosensors.

    PubMed

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765

  17. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. PMID:25700726

  18. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application

    NASA Astrophysics Data System (ADS)

    Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet

    2016-09-01

    A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.

  19. Flow Injection Potentiometric Assay of Hexoprenaline in Its Pure State, Pharmaceutical Preparations, and Biological Samples

    PubMed Central

    El-Nashar, Rasha M.

    2008-01-01

    Different hexoprenaline (Hx2SO4) conventional and coated wire electrodes were constructed and evaluated. Membranes were based on hexoprenalinium phosphotungstate (Hx-PTA) and hexporenalinium phosphomolybdate (Hx-PMA). The electrodes were fully characterized in terms of their composition, response time, life span, pH, and temperature and then were applied to the potentiometric determination of the hexoprenalinium ion in its pure state, pharmaceutical preparations, and biological samples, urine and plasma, under batch and flow injection conditions. The selectivity of the electrodes towards many inorganic cations, sugars, amino acids, and some other brochodilatures of close chemical composition was also tested. PMID:18483573

  20. Integrated potentiometric detector for use in chip-based flow cells

    PubMed

    Tantra; Manz

    2000-07-01

    A new kind of potentiometric chip sensor for ion-selective electrodes (ISE) based on a solvent polymeric membrane is described. The chip sensor is designed to trap the organic cocktail inside the chip and to permit sample solution to flow past the membrane. The design allows the sensor to overcome technical problems of ruggedness and would therefore be ideal for industrial processes. The sensor performance for a Ba2+-ISE membrane based on a Vogtle ionophore showed electrochemical behavior similar to that observed in conventional electrodes and microelectrode arrangements. PMID:10905321

  1. Potentiometric determination of aminal stability constants.

    PubMed

    Taylor, P D

    1995-02-01

    Potentiometric titration was used to determine the logarithms of the stepwise equilibrium constants for the species formed between morpholine and formaldehyde in aqueous solution, ionic strength 0.5 and 2.5M (KCl) at 25 degrees C. The instrumental and computational techniques developed for metal-ligand stability constant determination were applied. Formaldehyde is equivalent to the metal-ion and is represented by M while neutral morpholine is equivalent to the ligand and is represented by L. The stability constants of the following equilibria were determined by non-linear regression (figures in parentheses are at ionic strength 2.5 M KCl): M + L left arrow over right arrow ML (hemi-aminal) logK(1) = 2.90 +/- 0.02 (2.980 +/- 0.004); ML + L left arrow over right arrow ML(2) (bis-aminal); log K(2) = 1.3 +/- 0.2 (1.41 +/- 0.07); MLH left arrow over right arrow ML + H(+) (protonated hemi-aminal) pK(a) = 5.87 +/- 0.01 (6.411 +/- 0.005); ML(2)H left arrow over right arrow ML(2) + H(+) (protonated bis-aminal) pK(a) = (7.6 +/- 0.2). the pK(a) of the protonated bis-aminal could only be determined at the higher ionic strength. The results are in good agreement with reported values determined using the classic formol titration. The automated titration system acquired the full time course of the pH change upon each titrant addition allowing a kinetic analysis to be performed as well as an equilibrium analysis. The forward and reverse rate constants for M + L left arrow over right arrow ML were 0.77M(-1) sec(-1) and 8.1 x 10(-4) sec(-1). respectively. PMID:18966223

  2. Differential Recognition of Anions with Selectivity towards F(-) by a Calix[6]arene-Thiourea Conjugate Investigated by Spectroscopy, Microscopy, and Computational Modeling by DFT.

    PubMed

    Nehra, Anita; Bandaru, Sateesh; Yarramala, Deepthi S; Rao, Chebrolu Pulla

    2016-06-20

    Anion recognition studies were performed with triazole-appended thiourea conjugates of calix[6]arene (i.e., compound (6) L) by absorption and (1) H NMR spectroscopy by using nineteen different anions. The composition of the species of recognition was derived from ESI mass spectrometry. The absorption spectra of compound (6) L showed a new band at λ=455 nm in the presence of F(-) due to a charge transfer from the anion to the thiourea moiety and the absorbance increases almost linearly in the concentration range 5 to 200 μm. This is associated with a strong visual color change of the solution. Other anions, such as H2 PO4 (-) and HSO4 (-) , exhibit a redshift of the λ=345 nm band and the spectral changes are associated with the formation of an isosbestic point at λ=343 nm. (1) H NMR studies further confirm the binding of F(-) efficiently to the thiourea group among the halides by shifting the thiourea proton signals downfield followed by their disappearance after the addition of more than one equivalent of F(-) . The other anions also showed interactions with compound (6) L, however, their binding strength follows the order F(-) >CO3 (2-) >H2 PO4 (-) ≈CH3 COO(-) >HSO4 (-) . The NMR spectral changes clearly revealed the anion-binding region of the arms in case of all these anions. The anion binding to compound (6) L indeed stabilizes a flattened-cone conformation as deduced based on the calix-aromatic proton signals and was further confirmed by VT (1) H NMR experiments. The stabilization of the flattened-cone conformation was further augmented by the interaction of the butyl moiety of the nBu4 N(+) counterion. The structural features of the anion-bound species were demonstrated by DFT computations and the resultant structures carried the features that were predicted based on the (1) H NMR spectroscopic measurements. In addition, SEM images showed a marigold flower-type morphology for compound (6) L and this has been transformed into a chain

  3. Two analyte calibrations from the transient response of a single potentiometric sensor employed with the SIA technique.

    PubMed

    Cartas, Raul; Mimendia, Aitor; Legin, Andrey; Del Valle, Manel

    2010-01-15

    Simultaneous quantification of Cd(2+) and Pb(2+) in solution has been correctly targeted using the kinetic information from a single non-specific potentiometric sensor. Dual quantification was accomplished from the complex information in the transient response of an electrode used in a Sequential Injection Analysis (SIA) system and recorded after step injection of sample. Data was firstly preprocessed with the Discrete Wavelet Transform (DWT) to extract significant features and then fed into an Artificial Neural Network (ANN) for building the calibration model. DWT stage was optimized regarding the wavelet function and decomposition level, while the ANN stage was optimized on its structure. To simultaneously corroborate the effectiveness of the approach, two different potentiometric sensors were used as study case, one using a glass selective to Cd(2+) and another a PVC membrane selective to Pb(2+). PMID:20006109

  4. Direct potentiometric determination of diastase activity in honey.

    PubMed

    Sak-Bosnar, Milan; Sakač, Nikola

    2012-11-15

    A novel method for the determination of diastase activity is reported. The method is based on a direct potentiometric measurement of triiodide ion that is released when a starch-triiodide complex is hydrolysed by honey diastase. The increase of free triiodide ion concentration in a sample is found to be directly proportional to the diastase activity of the sample. A response mechanism of the platinum redox electrode is proposed, allowing a calculation of the diastase activity factor (F). The sensor and analyte parameters, including F, were obtained by least squares fitting of potentiometric data using the optimisation function of the Solver add-in of Microsoft Excel. The values of F obtained by the new direct potentiometric method were compared with those obtained using the standard Phadebas method (DN values), and the two values were found to agree within experimental error. Finally, the diastase activity of nine varieties of honey was determined using the novel method developed here. PMID:22868165

  5. Tailoring the Pore Environment of Metal-Organic and Molecular Materials Decorated with Inorganic Anions: Platforms for Highly Selective Carbon Capture

    NASA Astrophysics Data System (ADS)

    Nugent, Patrick S.

    Due to their high surface areas and structural tunability, porous metal-organic materials, MOMs, have attracted wide research interest in areas such as carbon capture, as the judicious choice of molecular building block (MBB) and linker facilitates the design of MOMs with myriad topologies and allows for a systematic variation of the pore environment. Families of MOMs with modular components, i.e. MOM platforms, are eminently suitable for targeting the selective adsorption of guest molecules such as CO2 because their pore size and pore functionality can each be tailored independently. MOMs with saturated metal centers (SMCs) that promote strong yet reversible CO2 binding in conjunction with favorable adsorption kinetics are an attractive alternative to MOMs containing unsaturated metal centers (UMCs) or amines. Whereas MOMs with SMCs and exclusively organic linkers typically have poor CO2 selectivity, it has been shown that a versatile, long known platform with SMCs, pillared square grids with inorganic anion pillars and pcu topology, exhibits high and selective CO 2 uptake, a moderate CO2 binding affinity, and good stability under practical conditions. As detailed herein, the tuning of pore size and pore functionality in this platform has modulated the CO2 adsorption properties and revealed variants with unprecedented selectivity towards CO 2 under industrially relevant conditions, even in the presence of moisture. With the aim of tuning pore chemistry while preserving pore size, we initially explored the effect of pillar substitution upon the carbon capture properties of a pillared square grid, [Cu(bipy)2(SiF6)] (SIFSIX-1-Cu). Room temperature CO2, CH4, and N 2 adsorption isotherms revealed that substitution of the SiF6 2- ("SIFSIX") inorganic pillar with TiF6 2- ("TIFSIX") or SnF62- ("SNIFSIX") modulated CO2 uptake, CO2 affinity (heat of adsorption, Qst), and selectivity vs. CH4 and N2. TIFSIX-1-Cu and SNIFSIX-1-Cu were calculated to exhibit the highest CO2/N 2

  6. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    PubMed

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  7. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers

    PubMed Central

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  8. Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis.

    PubMed

    Tanyanyiwa, Jatisai; Leuthardt, Sandro; Hauser, Peter C

    2002-11-01

    Potentiometric detection is rarely used in separation methods but is promising for certain classes of analytes which can only with difficulty be quantified by more standard methods. Conductimetric detection of ions is very versatile and has recently received renewed interest spurned by the introduction of the capacitively coupled contactless configuration. Both are useful and complementary alternatives to the established optical detection methods, and to the more widely known electrochemical method of amperometry. The simplicity of the electrochemical methods makes them particularly attractive for microfabricated devices, but relatively little work has to date been carried out with regard to potentiometric and conductimetric detection. PMID:12432526

  9. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1982-01-01

    The synthesis and fabrication of polymeric anion permselective membranes for redox systems are discussed. Variations of the prime candidate anion membrane formulation to achieve better resistance and/or lower permeability were explored. Processing parameters were evaluated to lower cost and fabricate larger sizes. The processing techniques to produce more membranes per batch were successfully integrated with the fabrication of larger membranes. Membranes of about 107 cm x 51 cm were made in excellent yield. Several measurements were made on the larger sample membranes. Among the data developed were water transport and transference numbers for these prime candidate membranes at 20 C. Other work done on this system included characterization of a number of specimens of candidate membranes which had been returned after service lives of up to sixteen months. Work with new polymer constituents, with new N.P.'s, catalysts and backing fabrics is discussed. Some work was also done to evaluate other proportions of the ingredients of the prime candidate system. The adoption of a flow selectivity test at elevated temperature was explored.

  10. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells.

    PubMed

    Furst, Sylvia M; Khan, K Nasir; Komocsar, Wendy J; Fan, Lian; Mennear, John

    2005-04-01

    Results from earlier experiments in our laboratories revealed that both selective and nonselective inhibitors of cyclooxygenase-2 possess little potential for decreasing in vitro phagocytosis by rat macrophages or canine neutrophils and no potential for decreasing in vivo phagocytosis by the intact murine immune system. We now report the results of studies to assess in vitro and ex vivo effects of the drugs on 1) canine complement activation, 2) generation of superoxide anion and hydrogen peroxide (oxidative burst) by canine neutrophils, and 3) leukocytic chemotaxis and transmigration through endothelial cell monolayers. In vitro concentrations of naproxen sodium, SC-236, SC-245, and SC-791 ranging from 0.1 to 10 muM were tested for their abilities to inhibit canine complement-mediated hemolysis of opsonized sheep erythrocytes and to block phorbol myristate acetate-induced oxidative burst in canine neutrophils. Both models responded to known inhibitory agents, leupeptin in the complement activation test and staurosporine in the superoxide anion assay. In contrast, tested nonsteroidal anti-inflammatory drugs produced only trivial changes in complement activation and superoxide anion production. Experiments on plasma and neutrophils isolated from dogs administered an experimental selective COX-2 inhibitor during a 28-day toxicology study revealed no evidence of drug-associated changes in complement activation or formation of superoxide anion. SC-791 reduced chemotaxis of canine leukocytes toward zymosan-activated dog plasma, but not toward leukotriene B(4). None of the other drugs tested significantly affected leukocytic chemotaxis. Ibuprofen, SC-245 and SC-791 but not SC-236, reduced transmigration of canine leukocytes through endothelial cell monolayers. Based on the results of these experiments and our earlier studies we have concluded that, although high (suprapharmacologic) concentrations of the drugs may induce in vitro evidence of apparent immunomodulation of

  11. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  12. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  13. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  14. Combinatorial screening of potentiometric Pb(II) sensors from polysulfoaminoanthraquinone solid ionophore.

    PubMed

    Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui

    2014-03-10

    A potentiometric Pb(II)-selective sensor was fabricated by a combinatorial screening of electrically conducting polysulfoaminoanthraquinone (PSA) nanoparticles as a solid ionophore, ion exchangers (oleic acid (OA) and NaTPB), plasticizers in a polyvinyl chloride (PVC) matrix, membrane thickness, inner filling ion species, and concentration. The membrane sensor with the composition of PSA/PVC/DOP (dioctyl phthalate)/OA (1.0:33:61:5.0) exhibited the best performance, including a slope of 29.3 mV decade(-1) in the concentration range 10(-6.3)-10(-1.6) M, detection limit of 1.6 × 10(-7) M, response time of 16 s, lifetime of five months, and good response reversibility. The proposed sensor has demonstrated good selectivity for Pb(II) over other monovalent, divalent and trivalent interfering ions, and could be used in a pH range of 3.62-5.22. The Pb(II) sensor has been successfully applied for the determination of Pb(II) concentration in real-world samples and also as an indicator electrode for potentiometric titration of lead ions. PMID:24512280

  15. Potentiometric zinc ion sensor based on honeycomb-like NiO nanostructures.

    PubMed

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  16. A Textile-Based Stretchable Multi-Ion Potentiometric Sensor.

    PubMed

    Parrilla, Marc; Cánovas, Rocío; Jeerapan, Itthipon; Andrade, Francisco J; Wang, Joseph

    2016-05-01

    A textile-based wearable multi-ion potentiometric sensor array is described. The printed flexible sensors operate favorably under extreme mechanical strains (that reflect daily activity) while offering attractive real-time noninvasive monitoring of electrolytes such as sodium and potassium. PMID:26959998

  17. Comparison of HPLC, UV spectrophotometry and potentiometric titration methods for the determination of lumefantrine in pharmaceutical products.

    PubMed

    da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio

    2008-09-10

    This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets. PMID:18571353

  18. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  19. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    PubMed Central

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    2010-01-01

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions. PMID:20871791

  20. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    NASA Astrophysics Data System (ADS)

    Saefurohman, Asep; Buchari, Noviandri, Indra; Syoni

    2014-03-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm-1, 1031 cm-1 and 794.7 cm-1 for P=O stretching and stretching POC from group -OP =O. The result showed shift wave number for P =O stretching of the cluster (-OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm-1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R3P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10-3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10-5 and 10-1 M.

  1. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    SciTech Connect

    Saefurohman, Asep Buchari, Noviandri, Indra; Syoni

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  2. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    PubMed Central

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-01-01

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days. PMID:24322561

  3. Development of a novel MWCNTs-triazene-modified carbon paste electrode for potentiometric assessment of Hg(II) in the aquatic environments.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Ramezani, Soleyman; Rofouei, Mohammad Kazem

    2015-02-01

    In this approach, a new chemically modified carbon paste electrode was assembled for potentiometric assay of mercury(II) ion in the aqueous environments. Hereby, MWCNTs were used in the carbon paste composition to meliorate the electrical conductivity and sensitivity of the carbon paste owing to its exceptional physicochemical characteristics. Likewise, participation of the BEPT as a super-selective ionophore in the carbon paste composition boosted significantly the selectivity of the modified electrode towards Hg(II) ions over a wide concentration range of 4.0 × 10(-9)-2.2 × 10(-3) mol L(-1) with a lower detection limit of 3.1 × 10(-9) mol L(-1). Besides, Nernstian slope of the proposed sensor was 28.9(± 0.4)mV/decade over a pH range of 3.0-5.2 with potentiometric short response time of 10s. In the interim, by storing in the dark and cool dry place during non-usage period, the electrode can be used for at least 30 days without any momentous divergence of the potentiometric response. Eventually, to judge about its practical efficiency, the arranged sensor was utilized successfully as an indicator electrode for potentiometric titration of mercury(II) with standard solution of EDTA. As well, the quantitative analysis of mercury(II) ions in some aqueous samples with sensible accuracy and precision was satisfactorily performed. PMID:25492198

  4. Rapid and Automated Analytical Methods for Redox Species Based on Potentiometric Flow Injection Analysis Using Potential Buffers

    PubMed Central

    Ohura, Hiroki; Imato, Toshihiko

    2011-01-01

    Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280

  5. Anion-selective channelrhodopsin expressed in neuronal cell culture and in vivo in murine brain: Light-induced inhibition of generation of action potentials.

    PubMed

    Dolgikh, D A; Malyshev, A Yu; Salozhin, S V; Nekrasova, O V; Petrovskaya, L E; Roshchin, M V; Borodinova, A A; Feldman, T B; Balaban, P M; Kirpichnikov, M P; Ostrovsky, M A

    2015-01-01

    Anionic channelrhodopsin slow ChloC was expressed in the culture of nerve cells and in vivo in mouse brain. We demonstrated ability of slow ChloC to suppress effectively the activity of the neuron in response to the illumination with the visible light. It has been shown for a first time that slow ChloC works equally efficiently in both neuronal culture and in the whole brain being expressed in vivo. Thus, slow ChloC could be considered as an effective optogenetic tool capable in response to light stimulation to inhibit the generation of action potentials in the neuron. PMID:26728740

  6. Aluminum Zintl anion moieties within sodium aluminum clusters

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K. E-mail: kiran@mcneese.edu; Kiran, Boggavarapu E-mail: kiran@mcneese.edu

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  7. Aluminum Zintl anion moieties within sodium aluminum clusters

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K.; Kiran, Boggavarapu; Bowen, Kit H.

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, NamAln-, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  8. Aluminum Zintl anion moieties within sodium aluminum clusters.

    PubMed

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W; Lee, Mal-Soon; Jena, P; Kandalam, Anil K; Kiran, Boggavarapu; Bowen, Kit H

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, Na(m)Al(n)(-), were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams. PMID:24511934

  9. Synthesis and studies of selective chemosensor for naked-eye detection of anions and cations based on a new Schiff-base derivative.

    PubMed

    Orojloo, Masoumeh; Amani, Saeid

    2016-10-01

    A new chromogenic receptor, 4-((2,4-dichlorophenyl)diazenyl)-2-(3-hydroxypropylimino) methyl)phenol, has been designed and synthesized for quantitative and low-cost detection of various biological anions and cations. The dye was characterized by elemental analyses, infrared, UV-visible spectroscopy, and NMR spectroscopy. Upon the addition of F(-) and H2PO4(-) to the solution of chemosensor in DMSO, the dramatic naked eye detectable color changes were observed from yellow to red and orange with a limit of detection (LOD) of 1.66×10(-6)mol. L(-1) and 1.24×10(-6)mol. L(-1) at room temperature, respectively. The chemosensor showed visual changes towards cations, such as Al(3+), Cu(2+), Fe(3+), and Cr(3+), in DMSO/water (9:1). The detection limit of receptor L for the analysis of Al(3+) ion was calculated to be 3.02×10(-6)mol. L(-1). The anion recognition property of the receptor via proton transfer was monitored by UV-visible titration and (1)HNMR spectroscopy. The binding constant (Ka) and stoichiometry of the host-guest complexes formed were determined by the Benesi-Hildebrand (B-H) plot and Job's method, respectively. PMID:27474311

  10. Electronic tongue based on an array of metallic potentiometric sensors.

    PubMed

    Lvova, Larisa; Martinelli, Eugenio; Mazzone, Emiliano; Pede, Andrea; Paolesse, Roberto; Di Natale, Corrado; D'Amico, Arnaldo

    2006-11-15

    An electronic tongue system based on the array of six metallic potentiometric sensors (metallic wires) was developed and utilized for discrimination of foodstuffs: several types of vinegar and fruit juices. Copper, tin, iron, aluminum, brass and stainless steel wires were included in the array and supplemented by pH glass electrode. The response of potentiometric metallic sensors towards various organic acids has been studied and possible sensitivity mechanisms were discussed. Overall potential changes of metallic sensors were exanimate as complex mixed signals influenced by several components presenting in analyte employing chemometric approach. The multisensor array of such a type can be useful for several applications since of simplicity in handling, low cost of sensors and easy measure procedure. PMID:18970847

  11. Anion solvation in alcohols

    SciTech Connect

    Jonah, C.D.; Xujia, Zhang; Lin, Yi

    1996-03-01

    Anion solvation is measured in alcohols using pump-probe pulse radiolysis and the activation energy of solvation is determined. Solvation of an anion appears to be different than excited state solvation. The continuum dielectric model does not appear to explain the results.

  12. Porous silicon as a substrate material for potentiometric biosensors

    NASA Astrophysics Data System (ADS)

    Thust, Marion; Schöning, M. J.; Frohnhoff, S.; Arens-Fischer, R.; Kordos, P.; Lüth, H.

    1996-01-01

    For the first time porous silicon has been investigated for the purpose of application as a substrate material for potentiometric biosensors operating in aqueous solutions. Porous silicon was prepared from differently doped silicon substrates by a standard anodic etching process. After oxidation, penicillinase, an enzyme sensitive to penicillin, was bound to the porous structure by physical adsorption. To characterize the electrochemical properties of the so build up penicillin biosensor, capacitance - voltage (C - V) measurements were performed on these field-effect structures.

  13. Automated potentiometric electrolyte analysis system. [for use in weightlessness

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.

  14. Redox potential of shallow groundwater by 1-month continuous in situ potentiometric measurements

    NASA Astrophysics Data System (ADS)

    Ioka, Seiichiro; Muraoka, Hirofumi; Suzuki, Yota

    2016-06-01

    One-month continuous in situ potentiometric measurements of redox potential (Eh) were used to investigate the dominant redox processes in the shallow groundwater (i.e., <10 m) of a Holocene aquifer, Aomori City, northern Japan. The Eh values, which were determined using a platinum electrode, were -163, -169 and -173 mV, respectively, for three monitoring campaigns. The temperatures and pH values of shallow groundwater during all three periods were approximately 12 °C and 6.6, respectively. Dissolved oxygen and sulfide ion concentrations were not detected. Chemical analyses showed that the shallow groundwater is Na-Fe-HCO3 type, and contains over 40 mg/L of Fe (the dominant cation) and over 200 mg/L of HCO3 - (the dominant anion). A good fit was found between measured Eh values and Eh values calculated using thermodynamic data of fine-grained goethite. This suggests that Fe redox system is related to the Eh values of shallow groundwater in the Aomori City aquifer.

  15. Potentiometric-surface map, 1993, Yucca Mountain and vicinity, Nevada

    SciTech Connect

    Tucci, P.; Burkhardt, D.J.

    1995-12-31

    The revised potentiometric surface map here, using mainly 1993 average water levels, updates earlier maps of this area. Water levels are contoured with 20-m intervals, with additional 0.5-m contours in the small-gradient area SE of Yucca Mountain. Water levels range from 728 m above sea level SE of Yucca to 1,034 m above sea level north of Yucca. Potentiometric levels in the deeper parts of the volcanic rock aquifer range from 730 to 785 m above sea level. The potentiometric surface can be divided into 3 regions: A small gradient area E and SE of Yucca, a moderate-gradient area on the west side of Yucca, and a large-gradient area to the N-NE of Yucca. Water levels from wells at Yucca were examined for yearly trends (1986-93) using linear least-squares regression. Of the 22 wells, three had significant positive trends. The trend in well UE-25 WT-3 may be influenced by monitoring equipment problems. Tends in USW WT-7 and USW WTS-10 are similar; both are located near a fault west of Yucca; however another well near that fault exhibited no significant trend.

  16. Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate.

    PubMed

    Byrne, Joseph P; Blasco, Salvador; Aletti, Anna B; Hessman, Gary; Gunnlaugsson, Thorfinnur

    2016-07-25

    We report the remarkable ability of 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) compounds 2 with appended olefin amide arms to self-template the formation of interlocked [2]catenane structures 3 in up to 50 % yield when subjected to olefin ring-closing metathesis in CH2 Cl2 . X-ray diffraction crystallography enabled the structural characterization of both the [2]catenane 3 a and the non-interlocked macrocycle 4 a. These [2]catenanes showed selective triazolyl hydrogen-bonding interactions with the tetrahedral phosphate anion when screened against a range of ions; 3 a,b are the first examples of selective [2]catenane hosts for phosphate. PMID:27295556

  17. A Cyanuric Acid Platform Based Tripodal Bis-heteroleptic Ru(II) Complex of Click Generated Ligand for Selective Sensing of Phosphates via C-H···Anion Interaction.

    PubMed

    Chowdhury, Bijit; Dutta, Ranjan; Khatua, Snehadrinarayan; Ghosh, Pradyut

    2016-01-01

    A new bis-heteroleptic trinuclear Ru(II) complex (1[PF6]6) has been synthesized from electron deficient cyanuric acid platform based copper-catalyzed azide-alkyne cycloaddition, i.e., CuAAC click generated ligand, 1,3,5-tris [(2-aminoethyl-1H-1,2,3-triazol-4-yl)-pyridine]-1,3,5-triazinane-2,4,6-trione (L1). Complex 1[PF6]6 displays weak luminescence (ϕf = 0.002) at room temperature with a short lifetime of ∼5 ns in acetonitrile. It shows selective sensing of hydrogen pyrophosphate (HP2O7(3-)) through 20-fold enhanced emission intensity (ϕf = 0.039) with a 15 nm red shift in emission maxima even in the presence of a large excess of various competitive anions like F(-), Cl(-), AcO(-), BzO(-), NO3(-), HCO3(-), HSO4(-), HO(-), and H2PO4(-) in acetonitrile. Selective change in the decay profile as well as in the lifetime of 1[PF6]6 in the presence of HP2O7(3-) (108 ns) further supports its selectivity toward HP2O7(3-). UV-vis and photoluminescence titration profiles and corresponding Job's plot analyses suggest 1:3 host-guest stoichiometric binding between 1[PF6]6 and HP2O7(3-). High emission enhancement of 1[PF6]6 in the presence of HP2O7(3-) has resulted in the detection limit of the anion being as low as 0.02 μM. However, 1[PF6]6 shows selectivity toward higher analogues of phosphates (e.g., ATP, ADP, and AMP) over HP2O7(3-)/H2PO4(-) in 10% Tris HCl buffer (10 mM)/acetonitrile medium. Downfield shifting of the triazole C-H in a (1)H NMR titration study confirms that the binding of HP2O7(3-)/H2PO4(-) is occurring via C-H···anion interaction. The single crystal X-ray structure of complex 1 having NO3(-) counteranion, 1[NO3]6 shows binding of NO3(-) with complex 1 via C-H···NO3(-) interactions. PMID:26653882

  18. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore

    PubMed Central

    Linsdell, Paul

    2001-01-01

    Anion binding within the pores of wild-type and mutant cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels, expressed in two different mammalian cell lines, was assayed using patch clamp recording. Specifically, experiments measured both the conductance of different anions and the ability of other permeant anions to block Cl− permeation through the pore. Under symmetrical ionic conditions, wild-type CFTR channels showed the conductance sequence Cl− >NO3− >Br−≥formate >F− >SCN−≈ ClO4−. High SCN− conductance was not observed, nor was there an anomalous mole fraction effect of SCN− on conductance under the conditions used. Iodide currents could not be measured under symmetrical ionic conditions, but under bi-ionic conditions I− conductance appeared low. Chloride currents through CFTR channels were blocked by low concentrations (10 mM) of SCN−, I− and ClO4−, implying relatively tight binding of these anions within the pore. Two mutations in CFTR which alter the anion permeability sequence, F337S and T338A, also altered the anion conductance sequence. Furthermore, block by SCN−, I− and ClO4− were weakened in both mutants. Both these effects are consistent with altered anion binding within the pore. The effects of mutations on anion permeability and relative anion conductance suggested that, for most anions, increased permeability was associated with increased conductance. This indicates that the CFTR channel pore does not achieve its anion selectivity by selective anion binding within the mutated region. Instead, it is suggested that entry of anions into the region around F337 and T338 facilitates their passage through the pore. In wild-type CFTR channels, anion entry into this crucial pore region is probably dominated by anion hydration energies. PMID:11179391

  19. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed

    Linsdell, P

    2001-02-15

    1. Anion binding within the pores of wild-type and mutant cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, expressed in two different mammalian cell lines, was assayed using patch clamp recording. Specifically, experiments measured both the conductance of different anions and the ability of other permeant anions to block Cl- permeation through the pore. 2. Under symmetrical ionic conditions, wild-type CFTR channels showed the conductance sequence Cl- > NO3- > Br- > or = formate > F- > SCN- congruent to ClO4-. 3. High SCN- conductance was not observed, nor was there an anomalous mole fraction effect of SCN- on conductance under the conditions used. Iodide currents could not be measured under symmetrical ionic conditions, but under bi-ionic conditions I- conductance appeared low. 4. Chloride currents through CFTR channels were blocked by low concentrations (10 mM) of SCN-, I- and ClO4-, implying relatively tight binding of these anions within the pore. 5. Two mutations in CFTR which alter the anion permeability sequence, F337S and T338A, also altered the anion conductance sequence. Furthermore, block by SCN-, I- and ClO4- were weakened in both mutants. Both these effects are consistent with altered anion binding within the pore. 6. The effects of mutations on anion permeability and relative anion conductance suggested that, for most anions, increased permeability was associated with increased conductance. This indicates that the CFTR channel pore does not achieve its anion selectivity by selective anion binding within the mutated region. Instead, it is suggested that entry of anions into the region around F337 and T338 facilitates their passage through the pore. In wild-type CFTR channels, anion entry into this crucial pore region is probably dominated by anion hydration energies. PMID:11179391

  20. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.

    PubMed

    Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M

    2014-10-01

    Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. PMID:24799245

  1. Potentiometric titration of sulfate with lead and barium ions with various indicating electrodes

    SciTech Connect

    Selig, W.S.

    1984-01-01

    Several types of graphite were used as sensors in the potentiometric titration of 25 to 75 ..mu..mol of sulfate vs. lead(II) and barium(II) and compared with titrations obtained with a lead ion-selective electrode (ISE). Pyrolytic graphite and high-density graphite, conditioned in neutral potassium permanganate, were found to be good alternatives to the lead ISE. A qualitative study was made of a variety of commercially available ISE's and other materials as sensors in the titration of 5 ..mu..mol of sulfate vs lead(II). Every ISE and conducting material tested yielded a usable response. While that of the commonly used lead ISE was largest, some other ISE's and metal rods also function satisfactorily as sensors in this titration. All titrations were carried out in a partially nonaqueous medium, which is required even for the lead ISE at the low sulfate levels investigated. 18 references, 4 figures, 5 tables.

  2. Potentiometric sensor fabrication having 2D sarcosine memories and analytical features.

    PubMed

    Özkütük, Ebru Birlik; Diltemiz, Sibel Emir; Avcı, Şeyma; Uğurağ, Deniz; Aykanat, Rabia Berna; Ersöz, Arzu; Say, Rıdvan

    2016-12-01

    In this study, a simple, rapid and sensitive method based on novel molecular imprinted polymeric sensor has been developed and validated for the determination of prostate cancer metabolite biomarker. The molecularly imprinted polymer (MIP) has been synthesized by emulsion polymerization, using sarcosine as template molecule, methacryloylamido histidine (MAH) as functional monomer and ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The performance of the developed sarcosine sensor has been evaluated, and the results have indicated that a sensitive potentiometric sensor has been fabricated. The sarcosine sensor has showed high-selectivity, shorter response time (<2min), wider linear range (10(-2)-10(-6)mM), lower detection limit (1.35×10(-7)mM), and satisfactory long-term stability (>5.5months). PMID:27612708

  3. Microtitration of various anions with quaternary ammonium halides using solid-state electrodes

    SciTech Connect

    Selig, W.

    1980-01-01

    Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate is also feasible. Some titrations are feasible in a partially nonaqueous medium.

  4. Probing and evaluating anion-π interaction in meso-dinitrophenyl functionalized calix[4]pyrrole isomers.

    PubMed

    Kim, Ajeong; Ali, Rashid; Park, Seok Ho; Kim, Yong-Hoon; Park, Jung Su

    2016-09-25

    We investigate anion-π binding modes in a cis-isomer of 3,5-dinitrophenyl-substituted calix[4]pyrrole with various anions via X-ray crystallographic analyses and compare its binding affinities with those of the corresponding trans-isomer. Sandwich-type anion-π interactions prove to not only enhancing anion binding abilities but also altering the anion-binding selectivity of the calix[4]pyrrole framework. PMID:27549578

  5. Intrinsic anion oxidation potentials.

    PubMed

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  6. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  7. Effects of Select Anions from the Hofmeister Series on the Gas-Phase Conformations of Protein Ions Measured with Traveling-Wave Ion Mobility Spectrometry/Mass Spectrometry

    PubMed Central

    Merenbloom, Samuel I.; Flick, Tawnya G.; Daly, Michael P.; Williams, Evan R.

    2011-01-01

    The gas-phase conformations of ubiquitin, cytochrome c, lysozyme, and ↦-lactalbumin ions, formed by electrospray ionization (ESI) from aqueous solutions containing 5 mM ammonium perchlorate, ammonium iodide, ammonium sulfate, ammonium chloride, ammonium thiocyanate, or guanidinium chloride, are examined using traveling-wave ion mobility spectrometry (TWIMS) coupled to time-of-flight (TOF) mass spectrometry (MS). For ubiquitin, cytochrome c, and ↦-lactalbumin, adduction of multiple acid molecules results in no significant conformational changes to the highest and lowest charge states formed from aqueous solutions, whereas the intermediate charge states become more compact. The transition to more compact conformers for the intermediate charge states occurs with fewer bound H2SO4 molecules than HClO4 or HI molecules, suggesting ion-ion or salt-bridge interactions are stabilizing more compact forms of the gaseous protein. However, the drift time distributions for protein ions of the same net charge with the highest levels of adduction of each acid are comparable, indicating that these protein ions all adopt similarly compact conformations or families of conformers. No change in conformation is observed upon the adduction of multiple acid molecules to charge states of lysozyme. These results show that the attachment of HClO4, HI, or H2SO4 to multiply protonated proteins can induce compact conformations in the resulting gas-phase protein ions. In contrast, differing Hofmeister effects are observed for the corresponding anions in solution at higher concentrations. PMID:21952780

  8. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    PubMed

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH. PMID:24877792

  9. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.

    PubMed Central

    Becker, B F; Duhm, J

    1978-01-01

    1. The passive net transport of Li+ and Na+ across the human red cell membrane was accelerated by the divalent anions carbonate, sulphite, oxalate, phosphite and malonate. Phthalate, maleate, sulphate and succinate were found additionally to stimulate downhill transport of K+. Marked differences in anion efficacy and selectivity were observed. 2. The effects of these 'carbonate type' anions were reversible and fully blocked by SITS, dipyridamole and other inhibitors of anion transfer. 3. Cation transport acceleration induced by the monovalent anions salicylate, benzoate, thiocyanate and 2,4-dinitrophenol were inhibited by dipyridamole, but not affected by SITS. A great number of mono- and polyvalent anions were without detectable influence on Li+ transport. 4. Li+ net uptake induced by oxalate exhibited a pH dependence similar to that reported for halide self exchange. 5. Transport acceleration by carbonate type anions displayed a linear, 1:1 dependence on the concentrations of both the anion and the cation and was symmetric with respect to the two sides of the membrane. 6. It is concluded that the divalent carbonate type anions form singly charged, negative 1:1 ion pairs with the respective alkali metal cations, the ion pairs traversing the red cell membrane via the anion exchange pathway. This concept of anionic formation of some of the ion pairs considered. The relative efficacies and cation selectivities of polyvalent anions can largely be explained on the basis of electrostatic interactions governing ion pair formation. However, the chelating properties, structural flexibility, polarizability of the anions and the accessibility of the ion pairs to the anion exchange pathway need also be considered. 7. An exchange of NaCO-3 ion pairs for internal HCO-3 or Cl- is discussed as a possible mode of cellular pH regulation. PMID:31458

  10. Solid state potentiometric gaseous oxide sensor

    NASA Technical Reports Server (NTRS)

    Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)

    2003-01-01

    A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.

  11. Creating a monthly time series of the potentiometric surface in the Upper Floridan aquifer, Northern Tampa Bay area, Florida, January 2000-December 2009

    USGS Publications Warehouse

    Lee, Terrie M.; Fouad, Geoffrey G.

    2014-01-01

    semivariograms decreased markedly between 2002 and 2003, timing that coincided with decreases in well-field pumping. Cross-validation results suggest that the kriging interpolation may smooth over the drawdown of the potentiometric surface near production wells. The groundwater monitoring network of 197 wells yielded an average kriging error in the potentiometric-surface elevations of 2 feet or less over approximately 70 percent of the map area. Additional data collection within the existing monitoring network of 260 wells and near selected well fields could reduce the error in individual months. Reducing the kriging error in other areas would require adding new monitoring wells. Potentiometric-surface elevations fluctuated by as much as 30 feet over the study period, and the spatially averaged elevation for the entire surface rose by about 2 feet over the decade. Monthly potentiometric-surface elevations describe the lateral groundwater flow patterns in the aquifer and are usable at a variety of spatial scales to describe vertical groundwater recharge and discharge conditions for overlying surface-water features.

  12. Potentiometric surface of the Lloyd aquifer on Long Island, New York, in January 1975

    USGS Publications Warehouse

    Rich, Charles A.; Prince, Keith R.; Spinello, Anthony G.

    1975-01-01

    A map showing the potentiometric surface of the Lloyd aquifer was drawn from water-level measurements made in January 1975. Altitude of the potentiometric surface ranged from more than 20 feet below mean sea level in Queens County to more than 40 feet above mean sea level in Suffolk County.

  13. Investigation of the impact of substrate selection on in vitro organic anion transporting polypeptide 1B1 inhibition profiles for the prediction of drug-drug interactions.

    PubMed

    Izumi, Saki; Nozaki, Yoshitane; Maeda, Kazuya; Komori, Takafumi; Takenaka, Osamu; Kusuhara, Hiroyuki; Sugiyama, Yuichi

    2015-02-01

    The risk assessment of organic anion transporting polypeptide (OATP) 1B1-mediated drug-drug interactions (DDIs) is an indispensable part of drug development. We previously reported that in vitro inhibitory potencies of several inhibitors on OATP1B1 depend on the substrates when prototypical substrates, estradiol-17β-glucuronide (E₂G), estrone-3-sulfate, and sulfobromophthalein were used as test substrates. The purpose of this study was to comprehensively investigate this substrate-dependent inhibition of OATP1B1 using clinically relevant OATP1B1 inhibitors and substrate drugs. Effects of cyclosporine A (CsA), rifampin, and gemfibrozil on OATP1B1-mediated uptake of 12 substrate drugs were examined in OATP1B1-expressing human embryonic kidney 293 cells. The Ki values (μM) for CsA varied from 0.0771 to 0.486 (6.3-fold), for rifampin from 0.358 to 1.23 (3.4-fold), and for gemfibrozil from 9.65 to 252 (26-fold). Except for the inhibition of torasemide uptake by CsA and that of nateglinide uptake by gemfibrozil, the Ki values were within 2.8-fold of those obtained using E₂G as a substrate. Preincubation potentiated the inhibitory effect of CsA on OATP1B1 with similar magnitude regardless of the substrates. R values calculated based on a static model showed some variation depending on the Ki values determined with various substrates, and such variability could have an impact on the DDI predictions particularly for a weak-to-moderate inhibitor (gemfibrozil). OATP1B1 substrate drugs except for torasemide and nateglinide, or E₂G as a surrogate, is recommended as an in vitro probe in the inhibition experiments, which will help mitigate the risk of false-negative DDI predictions potentially caused by substrate-dependent Ki variation. PMID:25414411

  14. Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer.

    PubMed

    Meyer zu Schwabedissen, Henriette E; Tirona, Rommel G; Yip, Cindy S; Ho, Richard H; Kim, Richard B

    2008-11-15

    The ligand-activated nuclear receptor pregnane X receptor (PXR) is known to play a role in the regulated expression of drug metabolizing enzymes and transporters. Recent studies suggest a potential clinically relevant role of PXR in breast cancer. However, the relevant pathway or target genes of PXR in breast cancer biology and progression have not yet been fully clarified. In this study, we show that mRNA expression of organic anion transporter polypeptide 1A2 (OATP1A2), a transporter capable of mediating the cellular uptake of estrogen metabolites, is nearly 10-fold greater in breast cancer compared with adjacent healthy breast tissues. Immunohistochemistry revealed exclusive expression of OATP1A2 in breast cancer tissue. Interestingly, treatment of breast cancer cells in vitro with the PXR agonist rifampin induced OATP1A2 expression in a time-dependent and concentration-dependent manner. Consistent with its role as a hormone uptake transporter, induction of OATP1A2 was associated with increased uptake of estrone 3-sulfate. The rifampin response was abrogated after small interfering RNA targeting of PXR. We then identified a PXR response element in the human OATP1A2 promoter, located approximately 5.7 kb upstream of the transcription initiation site. The specificity of PXR-OATP1A2 promoter interaction was confirmed using chromatin immunoprecipitation. Importantly, we used a novel potent and specific antagonist of PXR (A-792611) to show the reversal of the rifampin effect on the cellular uptake of E(1)S. These data provide important new insights into the interplay between a xenobiotic nuclear receptor PXR and OATP1A2 that could contribute to the pathogenesis of breast cancer and may also prove to be heretofore unrecognized targets for breast cancer treatment. PMID:19010908

  15. Semi-automated potentiometric titration method for uranium characterization.

    PubMed

    Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T

    2012-07-01

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. PMID:22154105

  16. The use of graphite electrodes in potentiometric titrations

    SciTech Connect

    Selig, W.S.

    1987-04-01

    The use of various types of graphite as indicator electrodes in potentiometry has been limited to acid-base and redox titrations. We have expanded the range of feasible titrations to: (1) precipitation titrations; (2) acid-base titrations; (3) compleximetric titrations; and (4) redox titrations. Graphite covered with an organic membrane containing poly(vinyl chloride) (PVC) and a plasticizer is particularly useful in monitoring the endpoints of titrations in which insoluble ion-pairs are formed. The potentiometric titration of fluoride vs La(III) or Th(IV), or of sulfate vs Pb (II) or Ba(II), which can be monitored with a plain carbon rod, is discussed.

  17. Structural Design Criteria for Anion Hosts: Strategies for Achieving Anion Shape Recognition through the Complementary Placement of Urea Donor Groups

    SciTech Connect

    Hay, Benjamin P.; Firman, Timothy K.; Moyer, Bruce A.

    2005-02-16

    The arrangement of urea ligands about different shaped anions has been evaluated with electronic structure calculations. Geometries and binding energies are reported for urea complexes with Cl{sup -}, NO{sub 3}{sup -}, and ClO{sub 4}{sup -}. The results yield new insight into the nature of urea-anion interactions and provide structural criteria for the deliberate design of anion selective receptors containing two or more urea donor groups.

  18. Potentiometric surface of Floridan aquifer May 1975, and change of potentiometric surface 1969 to 1975, Southwest Florida Water Management District and adjacent areas

    USGS Publications Warehouse

    Mills, L.R.; Laughlin, C.P.

    1976-01-01

    Maps showing the potentiometric surface of the Floridan aquifer for May 1975, and changes of potentiometric surface from 1964 to 1975 were prepared for areas in southwest Florida. Contours and color codes describe water-level changes. The larger map, scale 1:500,000, reflects the water-level changes from 1969-75. The smaller map shows the changes from January 1964 to May 1969. (Woodard-USGS)

  19. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  20. Anion and ion-pair binding by a G-2 poly(ethylene imine) dendrimer.

    PubMed

    Bazzicalupi, Carla; Bianchi, Antonio; Giorgi, Claudia; Gratteri, Paola; Mariani, Palma; Valtancoli, Barbara

    2013-09-14

    The second-generation poly(ethylene imine) dendrimer (L), based on ammonia as the initiating core molecule, forms anion and ion-pair complexes in aqueous solution. Speciation of the complex species formed and determination of the relevant stability constants were performed by means of potentiometric titration in a 0.10 M NMe4Cl solution at 298.1 K. Protonated forms of L interact with NO3(-), SO4(2-), SeO4(2-), HPO4(2-) and H2PO4(-) forming stable 1 : 1 anion complexes. The dendritic structure endows the molecule with a greater anion binding ability relative to analogous linear polyamines. It was previously reported that L forms stable metal complexes. We show here that protonated forms of the mononuclear complexes with Cu(2+), Zn(2+) and Cd(2+) bind these anions, and Pb(2+) complexes bind NO3(-). The resulting ion-pair complexes show considerable stability thanks to the cooperative effect of the oppositely charged partners. Molecular modelling calculations show that both anion-ligand and anion-metal ion interactions can participate in stabilizing such ion-pair complexes. PMID:23538528

  1. Potentiometric titration and equivalent weight of humic acid

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  2. Improving the limits of detection in potentiometric sensors

    NASA Astrophysics Data System (ADS)

    van der Bent, J. F.; Puik, E. C. N.; Tong, H. D.; van Rijn, C. J. M.

    2015-12-01

    Potentiometric sensors will generally suffer from unwanted responses as a result to changing temperatures by generating an electromotive force. Typically, this voltage drift has a non-linear character and therefore it is difficult to compensate using linear algorithms implemented in the analogue domain. A solution is proposed to improve the sensor characteristics by combining the digitized output of two CO2 rubidium silver iodide sensors with a specially designed digital algorithm to improve the limits of detection (LOD). Experiments show that this method has the capability to improve the LOD of the sensor with a factor 4.5x during temperature variations of 22 °C over a measurement period of 22 h. It enables potentiometric sensors to be used in low power wireless sensor networks for long term air quality control. Furthermore, the influence of depletion of the rubidium silver iodide electrolyte layer can be effectively compensated by determining the decay of the active layer according to the Nernst equation. Knowing the function of depletion over time helps to correct the sensor output and thereby improves the accuracy of the sensor.

  3. Halogen bonding anion recognition.

    PubMed

    Brown, Asha; Beer, Paul D

    2016-07-01

    A halogen bond is an attractive non-covalent interaction between an electrophilic region in a covalently bonded halogen atom and a Lewis base. While these interactions have long been exploited as a tool in crystal engineering their powerful ability to direct supramolecular self-assembly and molecular recognition processes in solution has, until recently, been overlooked. During the last decade however an ever-increasing number of studies on solution-phase halogen-bond-mediated anion recognition processes has emerged. This Feature Article summarises advancements which have been made thus far in this rapidly developing research area. We survey the use of iodoperfluoroarene, haloimidazolium and halotriazole/triazolium halogen-bond-donor motifs in anion receptor design, before providing an account of our research into the application of mechanically interlocked rotaxane and catenane frameworks as halogen bonding anion host systems. PMID:27273600

  4. Vanadogermanate cluster anions.

    PubMed

    Whitfield, T; Wang, X; Jacobson, A J

    2003-06-16

    Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. PMID:12793808

  5. Supramolecular organization of calix[4]pyrrole with a methyl-trialkylammonium anion exchanger leads to remarkable reversal of selectivity for sulfate extraction vs. nitrate

    SciTech Connect

    Borman, Christopher J; Custelcean, Radu; Hay, Benjamin; Bill, Nathan; Sessler, Jonathan L.; Moyer, Bruce A

    2011-01-01

    meso-Octamethylcalix[4]pyrrole (C4P) enhances sulfate selectivity in solvent extraction by Aliquat 336N, an effect ascribed to the supramolecular preorganization and thermodynamic stability imparted by insertion of the methyl group of the Aliquat cation into the cup of C4P in its cone conformation.

  6. Cesium cation templated selective synthesis of a "cone-shaped" sugar macrotricyclic cryptand: A dual anion-cation molecular recognition of potassium tartrate.

    PubMed

    Porwanski, S; Moretti, F; Dumarcay-Charbonnier, F; Marsura, A

    2016-05-01

    Cesium templated Staudinger-aza-Wittig tandem reaction (S.A.W.) has been used in the synthesis of a bis-diazacrown-bis-cellobiosyl-tetra-ureido cryptand. A novel macrotricyclic compound having a "cone-shaped" configuration was selectively obtained. Additionally, first results on potential recognition properties of the cryptand are also given. PMID:26826794

  7. Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins.

    PubMed

    Düzgün, Ali; Maroto, Alicia; Mairal, Teresa; O'Sullivan, Ciara; Rius, F Xavier

    2010-05-01

    A facile, solid-contact selective potentiometric aptasensor exploiting a network of single-walled carbon nanotubes (SWCNT) acting as a transducing element is described in this work. The molecular properties of the SWCNT surface have been modified by covalently linking aptamers as biorecognition elements to the carboxylic groups of the SWCNT walls. As a model system to demonstrate the generic application of the approach, a 15-mer thrombin aptamer interacts with thrombin and the affinity interaction gives rise to a direct potentiometric signal that can be easily recorded within 15 s. The dynamic linear range, with a sensitivity of 8.0 mV/log a(Thr) corresponds to the 10(-7)-10(-6) M range of thrombin concentrations, with a limit of detection of 80 nM. The aptasensor displays selectivity against elastase and bovine serum albumin and is easily regenerated by immersion in 2 M NaCl. The aptasensor demonstrates the capacity of direct detection of the recognition event avoiding the use of labels, mediators, or the addition of further reagents or analyte accumulation. PMID:20419254

  8. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    PubMed

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform. PMID:25910442

  9. Estimated 2012 groundwater potentiometric surface and drawdown from predevelopment to 2012 in the Santa Fe Group aquifer system in the Albuquerque metropolitan area, central New Mexico

    USGS Publications Warehouse

    Powell, Rachel I.; McKean, Sarah E.

    2014-01-01

    Historically, the water-supply requirements of the Albuquerque metropolitan area of central New Mexico were met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. In response to water-level declines, the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began diverting water from the San Juan-Chama Drinking Water Project in December 2008 to reduce the use of groundwater to meet municipal demand. Modifications in the demand for water and the source of the supply of water for the Albuquerque metropolitan area have resulted in a variable response in the potentiometric surface of the production zone (the interval of the aquifer, from within about 200 feet below the water table to 900 feet or more, in which supply wells generally are screened) of the Santa Fe Group aquifer system. Analysis of the magnitude and spatial distribution of water-level change can help improve the understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies’ efforts to minimize future water-level declines and improve sustainability. The U.S. Geological Survey (USGS), in cooperation with the ABCWUA, has developed an estimate of the 2012 potentiometric surface of the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. This potentiometric surface is the latest in a series of reports depicting the potentiometric surface of the area. This report presents the estimated potentiometric surface during winter (from December to March) of water year 2012 and the estimated changes in potentiometric surface between predevelopment (pre-1961) and water year 2012 for the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. Hydrographs from selected piezometers are included to provide details of historical water-level changes. In general, water-level measurements used for this report were

  10. Electron anions and the glass transition temperature.

    PubMed

    Johnson, Lewis E; Sushko, Peter V; Tomota, Yudai; Hosono, Hideo

    2016-09-01

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. PMID:27559083

  11. Potentiometric-level monitoring program: Mississippi and Louisiana. Annual status report for fiscal year 1984

    SciTech Connect

    Not Available

    1986-07-01

    Potentiometric-level data presented in this report were collected from October 1983 through September 1984 at 79 wells in Mississippi and Louisiana. These wells are located near Richton and Cypress Creek Domes in Mississippi and Vacherie Dome in Louisiana. Fourteen wells were added to the program during this period. Two of these wells were not measurable. Two wells previously unmeasurable were located and measured. One well was destroyed during military maneuvers in the area. Analysis of the data indicated minimal, if any, change in potentiometric levels during the past year in the Citronelle, Hattiesburg, Cockfield, Sparta, and Wilcox Formations in Mississippi. A continuing decline in potentiometric levels, ranging from 0.3 to 0.6 foot per year, occurred in the wells screened in the caprock at Richton and Cypress Creek Domes. The Catahoula Formation experienced a continuing decline in potentiometric levels of about 2 feet per year. Two wells in the Cook Mountain Formation showed a continuing rise in potentiometric levels ranging from 8 to 30 ft during the past fiscal year. Wells screened in the Austin Formation in Louisiana showed a fall in potentiometric levels of 2 to 3 ft over the past fiscal year. Other formations in Louisiana generally showed no change in potentiometric levels over the past year. 26 refs., 2 figs., 3 tabs.

  12. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions.

    PubMed

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-13

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca(2+), Li(+), Na(+), NH4(+)) at concentrations up to 25 mM. This material can be combined further with disposable chips, demonstrating its promise as an effective ion-selective sensing component for practical applications. PMID:26703780

  13. Map showing the potentiometric surface of the Aquia Aquifer, May 19-23, 1980

    USGS Publications Warehouse

    Chapelle, Frank; Drummond, Dave; Curley, Tracey

    1981-01-01

    The map is based on water level measurements made May 19-23, 1980. The well network used included 83 wells which have been screened in the Aquia aquifer (Aquia Formation of Paleocene Age). Highest levels of the potentiometric surface, 20 to 35 feet above sea level, were measured near the outcrop or subcrop of the aquifer in the topographically high areas of Anne Arundel and Prince Georges Counties. The potentiometric surface slopes to the southeast. Four separate and extensive cones of depression have developed in the potentiometric surface in the vicinities of Lexington Park, Leonardtown, Prince Frederick, and Chesapeake Beach. The cones of Leonardtown and Lexington Park seem to be merging. (USGS)

  14. Photoelectron spectroscopy and theoretical studies of anion-π interactions: binding strength and anion specificity.

    PubMed

    Zhang, Jian; Zhou, Bin; Sun, Zhen-Rong; Wang, Xue-Bin

    2015-02-01

    Proposed in theory and then their existence confirmed, anion-π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, anion-π interaction strengths that are free from complications of condensed-phase environments have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic, was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl(-), Br(-), I(-), linear thiocyanate SCN(-), trigonal planar nitrate NO3(-), pyramidic iodate IO3(-), and tetrahedral sulfate SO4(2-)). The binding energies of the resultant gaseous 1 : 1 complexes (1·Cl(-), 1·Br(-), 1·I(-), 1·SCN(-), 1·NO3(-), 1·IO3(-) and 1·SO4(2-)) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion-specific effects. The binding strengths of Cl(-), NO3(-), IO3(-) with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal mol(-1), but only about 40% of that between 1 and SO4(2-). Quantum chemical calculations reveal that all the anions reside in the center of the cavity of 1 with an anion-π binding motif in the complexes' optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and charge distribution analyses further support anion-π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron

  15. Potentiometric studies at ORNL with hydrogen electrode concentration cells

    SciTech Connect

    Mesmer, R.E.; Palmer, D.A.; Wesolowski, D.J.

    1994-12-31

    The absence of suitably stable reference electrodes for and to 300 C led ORNL to develop hydrogen electrode concentration cells for studies of equilibria of interest in reactor and steam generator systems to about 300 C during the late 1960`s and seventies. During the intervening two dozen years over twenty scientists have participated in potentiometric studies at Oak Ridge and much of that work will be summarized in this paper. A description of hydrogen electrode concentration cells developed in the late sixties and currently in use at Oak Ridge is given. The method of measurement, data interpretation, and published results are reviewed for studies of acid-base ionization, metal ion hydrolysis, and metal complexation reactions using principally such cells in titration or flow modes. 41 refs.

  16. Potentiometric analysis of water soluble cutting fluid-metal combinations

    SciTech Connect

    Kelley, E.E.

    1991-12-01

    The results of corrosion studies conducted by the University of Kansas under Contract G257763 for Allied-Signal Inc., Kansas City Division (KCD), are given. These potentiometric studies evaluate the corrosivity of two water soluble cutting fluids at varying concentrations on samples of 304 stainless steel, 6061-T6 aluminum, and beryllium copper. This testing serves two purposes: (1) to develop effective test procedures adaptable to existing KCD corrosion measurement equipment for corrosion analysis of cutting fluid-metals combinations, and (2) to understand the relative corrosiveness of the varying water soluble cutting fluids on different metals. The tests used were adapted from the American Society of Testing Materials (ASTM). Future testing will identify polarization techniques for establishing corrosion rates which will be used in evaluating both water soluble cutting fluids and other aqueous solutions used at KCD.

  17. Derivative analysis of potentiometric titration data to obtain protonation constants

    SciTech Connect

    Chen, J.F.; Xia, Y.X.; Choppin, G.R.

    1996-11-15

    A methodology is described to calibrate glass electrodes and to analyze potentiometric titration data to calculate protonation constants. The analysis uses the variation of dV/dpH with titrant addition in terms of two physical parameters which involve the concentrations of H{sup +}, OH{sup -}, and H{sub m}A. The data for titration of acetic acid and 8-hydroxyquinoline in 0.10-5.0 m NaCl media are analyzed by this method to obtain the stoichiometric protonation constants of the acids, the ionization constants of water, and the parameters s and b in the pH electrode calibration equation, pcH = spH{sub m} + b, where pcH = -log[H{sup +}], pH{sub m} is the pH meter reading. 31 refs., 3 figs., 6 tabs.

  18. Modeling potentiometric measurements in topological insulators including parallel channels

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Diep, Vinh; Datta, Supriyo; Chen, Yong P.

    2012-08-01

    The discovery of spin-polarized states at the surface of three-dimensional topological insulators (TI) like Bi2Te3 and Bi2Se3 motivates intense interests in possible electrical measurements demonstrating unique signatures of these unusual states. Here we show that a three-terminal potentiometric set-up can be used to probe them by measuring the voltage change of a detecting magnet upon reversing its magnetization. We present numerical results using a nonequilibrium Green's function (NEGF)-based model to show the corresponding signal quantitatively in various transport regimes. We then provide an analytical expression for the resistance (the measured voltage difference divided by an applied current) that agrees with NEGF results well in both ballistic and diffusive limits. This expression is applicable to TI surface states, two-dimensional electrons with Rashba spin-split bands, and any combination of multiple channels, including bulk parallel states in TI, which makes it useful in analyzing experimental results.

  19. Microdroplet-Based Potentiometric Redox Measurements on Gold Nanoporous Electrodes.

    PubMed

    Freeman, Christopher J; Farghaly, Ahmed A; Choudhary, Hajira; Chavis, Amy E; Brady, Kyle T; Reiner, Joseph E; Collinson, Maryanne M

    2016-04-01

    Potentiometric redox measurements were made in subnanoliter droplets of solutions using an optically transparent nanoporous gold electrode strategically mounted on the stage of an inverted microscope. Nanoporous gold was prepared via dealloying gold leaf with concentrated nitric acid and was chemisorbed to a standard microscope coverslip with (3-mercaptopropyl)trimethoxysilane. The gold surface was further modified with 1-hexanethiol to optimize hydrophobicity of the surface to allow for redox measurements to be made in nanoscopic volumes. Time traces of the open-circuit potential (OCP) were used to construct Nernst plots to evaluate the applicability of the droplet-based potentiometric redox measurement system. Two poised one-electron transfer systems (potassium ferricyanide/ferrocyanide and ferrous/ferric ammonium sulfate) yielded Nernstian slopes of -58.5 and -60.3 mV, respectively, with regression coefficients greater than 0.99. The y-intercepts of the two agreed well to the formal potential of the two standard oxidation-reduction potential (ORP) calibrants, ZoBell's and Light's solution. The benzoquinone and hydroquinone redox couple was examined as a representative two-electron redox system; a Nernst slope of -30.8 mV was obtained. Additionally, two unpoised systems (potassium ferricyanide and ascorbic acid) were studied to evaluate the system under conditions where only one form of the redox couple is present in appreciable concentrations. Again, slopes near the Nernstian values of -59 and -29 mV, respectively, were obtained. All experiments were carried out using solution volumes between 280 and 1400 pL with injection volumes between 8 and 100 pL. The miniscule volumes allowed for extremely rapid mixing (<305 ms) as well. The small volumes and rapid mixing along with the high accuracy and sensitivity of these measurements lend support to the use of this approach in applications where time is a factor and only small volumes are available for testing. PMID

  20. ELECTROACTIVE MATERIALS FOR ANION SEPARATION-TECHNETIUM FROM NITRATE

    EPA Science Inventory

    The proposed research will provide the basis for using electroactive ion exchange materials to remove anionic contaminants from HLW wastes and process streams. An ion exchange process using electroactive materials sorbs contaminants selectively and then expels (elutes) them elec...

  1. Synthesis of unsymmetrical N-carboranyl NHCs: directing effect of the carborane anion.

    PubMed

    Asay, Matthew J; Fisher, Steven P; Lee, Sarah E; Tham, Fook S; Borchardt, Dan; Lavallo, Vincent

    2015-03-28

    The syntheses of unsymmetrical N-heterocyclic carbenes (NHCs) that contain a single N-bound icosahedral carborane anion substituent are reported. Both anionic C-2 and doubly deprotonated dianionic C-2/C-5 NHC lithium complexes are isolated. The latter species is formed selectively, which reveals a surprising directing effect conveyed by icosahedral carborane anion substituents. PMID:25387660

  2. Protein Detection with Potentiometric Aptasensors: A Comparative Study between Polyaniline and Single-Walled Carbon Nanotubes Transducers

    PubMed Central

    Imran, Hassan; Levon, Kalle; Rius, F. Xavier

    2013-01-01

    A comparison study on the performance characteristics and surface characterization of two different solid-contact selective potentiometric thrombin aptasensors, one exploiting a network of single-walled carbon nanotubes (SWCNTs) and the other the polyaniline (PANI), both acting as a transducing element, is described in this work. The molecular properties of both SWCNT and PANI surfaces have been modified by covalently linking thrombin binding aptamers as biorecognition elements. The two aptasensors are compared and characterized through potentiometry and electrochemical impedance spectroscopy (EIS) based on the voltammetric response of multiply charged transition metal cations (such as hexaammineruthenium, [Ru(NH3)6]3+) bound electrostatically to the DNA probes. The surface densities of aptamers were accurately determined by the integration of the peak for the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+. The differences and the similarities, as well as the transduction mechanism, are also discussed. The sensitivity is calculated as 2.97 mV/decade and 8.03 mV/decade for the PANI and SWCNTs aptasensors, respectively. These results are in accordance with the higher surface density of the aptamers in the SWCNT potentiometric sensor. PMID:23533345

  3. Studies of oxide anions

    NASA Astrophysics Data System (ADS)

    Castleman, A. W., Jr.

    1991-06-01

    Several metal and metal oxide anion sources were used to investigate the formation and reactivity of species of relevance to the AFGL program. A new class of reactions were identified between anions of the form H(x)M(y)O(z) for several metals including M=W, Ta, Ti, Mo, and HCl. The reactions have analogy to acid-base reactions. In another series of experiments, reactions of Al(n)(-), and these clusters bound with V and or Nb, with O2 were investigated. It was found that the Jellium model, though by no means a compendious concept, provides a good guide to the electronic structure of clusters and their general patterns of reactivity.

  4. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  5. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  6. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  7. Anion permselective membrane

    NASA Astrophysics Data System (ADS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-07-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  8. Design and characterization of novel all-solid-state potentiometric sensor array dedicated to physiological measurements.

    PubMed

    Toczyłowska-Mamińska, Renata; Kloch, Monika; Zawistowska-Deniziak, Anna; Bala, Agnieszka

    2016-10-01

    A novel construction of all-solid-state potentiometric sensor array designed for physiological measurements has been presented. The planar construction and elimination of liquid phase creates broad opportunities for the modifications in the sensing part of the sensor. The designed construction is based on all-solid-state ion-selective electrodes integrated with the ionic-liquid based reference electrode. Work parameters of the sensor arrays were characterized. It has been shown that presented sensor design indicates high sensitivity (55.2±1mV/dec, 56.3±2mV/dec, 58.4±1mV/dec and 53.5±1mV/pH for sodium-, potassium-, chloride- and pH-selective electrodes, respectively in 10(-5)-10(-1.5)M range of primary ions), low response time (t95 did not exceed 10s), high potential stability (potential drift in 28-h measurement was ca. ±2mV) and potential repeatability ca. ±1mV. The system was successfully applied to the simultaneous determination of K(+), Cl(-), Na(+) and pH in the model physiological solution and for the ion flux studies in human colon epithelium Caco-2 cell line as well. PMID:27474272

  9. Performance Evaluation of a Novel Potentiometric Membrane Sensor for Determination of Atorvastatin in Pharmaceutical Preparations

    PubMed Central

    Ahmadi, Farhad; Asaadi, Nasim

    2013-01-01

    A novel potentiometric ion-selective PVC membrane sensor for analysis of atorvastatin (AT) in pharmaceutical preparations based on atorvastatin-(tetraphenyl borate), (AT-(TPB)2) as sensing element, tetraphenyl borate as additive and tris-2-ethyl-hexyl phosphate (TOP) as plasticizer solvent was prepared. The electrode shows a good Nernestian response over the concentration range of 0.09–5586 μg mL-1of AT with slope of 30.1±0.1 mV/decade and limit of detection0.056μg mL-1.The response time of sensor is fats (less than 10 sec) and could be used for about one month in the pH range of 4.5–8.0. The electrode exhibit good selectivity for the AT in the presence of large amount of co-drugs and inorganic cations. The method is precise and accurate with mean relative standard deviation of <2%.Atorvastatin is determined successfully in several tablets by the proposed membrane. PMID:24523744

  10. Potentiometric surface of Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, May 1979

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1979-01-01

    A May 1979 potentiometric-surface map depicts the annual low water-level period. Potentiometric levels declined 4 to 21 feet between September 1978 and May 1979, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level declines ranged from 0 to 6 feet in coastal, northern, and southern areas of the Water Management District. Generally potentiometric levels were higher than previous May levels due to heavy rains in April and May. In parts of Hillsborough, Pasco, and Pinellas Counties, May 1979 potentiometric levels were 18 feet higher than those of September 1978. (USGS)

  11. Going Beyond, Going Further: Knives, Forks, and Beer Cans as Potentiometric Sensors.

    ERIC Educational Resources Information Center

    Selig, Walter S.

    1985-01-01

    Background information, materials needed, and procedures used are provided for potentiometric fluoride, halide, orthophosphate, and sulfate titrations. Typical results obtained are also provided for each type of titration. (JN)

  12. Potentiometric map of the Coffee Sand Aquifer in northeastern Mississippi, October and November 1978

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    This potentiometric map of the Coffee Sand aquifer in northeastern Mississippi is the fourth in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop areas the potentiometric surface is strongly affected by recharge from precipitation, topography, and drainage of the aquifer by streams. The potentiometric surface slopes generally to the west away from the area of outcrop and is mildly affected by moderate ground-water withdrawals by wells in Tippah and Union County. Historically, water levels in or near the outcrop of the Coffee Sand have shown little or no long-term changes as shown by a hydrograph of one well in Alcorn County. In the downdip part of the aquifer water-level declines of 2 feet per year are common. (USGS)

  13. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation

    NASA Astrophysics Data System (ADS)

    Soldatkin, Oleksandr O.; Shelyakina, Margaryta K.; Arkhypova, Valentyna N.; Soy, Esin; Kirdeciler, Salih Kaan; Ozansoy Kasap, Berna; Lagarde, Florence; Jaffrezic-Renault, Nicole; Akata Kurç, Burcu; Soldatkin, Alexei P.; Dzyadevych, Sergei V.

    2015-02-01

    A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared.

  14. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices.

    PubMed

    Hu, Jinbo; Ho, Kieu T; Zou, Xu U; Smyrl, William H; Stein, Andreas; Bühlmann, Philippe

    2015-03-01

    Reference electrodes are used in almost every electroanalytical measurement. Here, all-solid-state reference electrodes are described that employ colloid-imprinted mesoporous (CIM) carbon as solid contact and a poly(vinyl chloride) reference membrane to contact the sample. Such a reference membrane is doped with a moderately hydrophilic ionic liquid and a hydrophobic redox couple, leading to well-defined constant potentials at the interfaces of this membrane to the sample and to the solid contact, respectively. Due to the intrinsic properties of CIM carbon, reference electrodes with a CIM carbon solid contact exhibit excellent resistance to common interfering agents such as light and O2, with outstanding potential stability in continuous potentiometric measurements. The potential drift of CIM carbon-based reference electrodes without redox couple is as low as 1.7 μV/h over 110 h, making them the most stable all-solid-state reference electrodes reported so far. To demonstrate the compatibility of CIM carbon-based reference electrodes with miniaturized potentiometric systems, these reference electrodes were integrated into paper-based potentiometric sensing devices, successfully replacing the conventional reference electrode with its reference electrolyte solution. As a proof of concept, disposable paper-based Cl(-) sensing devices that contain stencil-printed Ag/AgCl-based Cl(-) selective electrodes and CIM carbon-based reference electrodes were constructed. These sensing devices are inexpensive, easy to use, and offer highly reproducible Cl(-) measurements with sample volumes as low as 10 μL. PMID:25630744

  15. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  16. Potentiometric-level monitoring program - Mississippi and Louisiana: annual status report for fiscal year 1983

    SciTech Connect

    Not Available

    1984-03-01

    Potentiometric-level data presented in this report were collected from October 1982 to September 1983 at 62 wells in Mississippi and Louisiana near Richton and Vacherie Domes, respectively. Six wells were added to the monitoring program during this period, and one previously measured well was damaged and has been deleted from the monitoring program. Analysis of the data indicates that most of the potentiometric-level changes recorded during fiscal year 1983 were small (less than 2 feet) and attributable to seasonal fluctuations. Of the 62 wells monitored, 18 exhibited potentiometric-level changes in excess of 2 feet. In Mississippi, the data generally indicate that a long-term, potentiometric-level increase is occurring in the Sparta, Kosciusko, Hattiesburg, Wilcox, and Citronelle Formations. Only seasonal fluctuations in potentiometric levels were observed in the caprock, and in the Catahoula and Cockfield Formations. In Louisiana, a long-term, potentiometric-level decline was observed for the Lower Austin Formation while an increase was observed for the Sparta and Upper Austin Formations. Seasonal fluctuations were observed in the Wilcox, Carrizo, and Nacatoch Formations. This work is a continuation of that described in ONWI-478 for fiscal year 1982. 24 references, 2 figures, 3 tables.

  17. Anion Chemistry On Titan: Probing the Destruction Mechanisms of Nitrile Anions by Interaction with Photons

    NASA Astrophysics Data System (ADS)

    Zabka, J.; Polášek, M.; Bradyová, M.; Flenerová, Z.; Obluková, M.; Ascenzi, D.; Vuitton, V.; Giuliani, A.; Nahon, L.; Milosavljevic, A.; Romanzin, C.; Alcaraz, C.

    2013-09-01

    The aim of this work is to study the interaction with VUV photons of mass-selected negative ions relevant for the understanding of Titan atmosphere. Characterization of their formation [1] and destruction rate is of fundamental importance for modeling Titan ionosphere chemistry and understanding the observations of heavy anions by the CAPS/ELS spectrometer on board of the CASSINI spacecraft. The objective here is to measure their transformation into smaller anions through photodissociation and their destruction through photodetachment. The parent anions CN- are produced from CH3CN in the APCI source of a commercial mass spectrometer LTQ XL (Thermo Scientific) [2,3] and reacted with HC3N in the trap to produce heavier anions through the CN-+ x HC3N(HC3N)yC2p+1 N-+ z HCN processes. These product anions are then mass-selected in the trap and irradiated with VUV photons (5-21 eV) from the DESIRS beamline. Their decay is followed as a function of irradiation time as illustrated in Figure 1.

  18. [Potentiometric methods for determining boron, hydrogen cyanide and hydrogen chloride compounds and their use in controlling the quality of manufacturing and natural environments].

    PubMed

    Markova, O L; Dubeĭkovskaia, L S; D'iakonova, O I

    1998-01-01

    The authors present basic science for, elaborate and set as methodic recommendations some potentiometric methods using ion-selective electrodes. Efficiency of those methods was proved in experiments with such substances as boron compounds, hydrogen cyanide, hydrogen chloride. High sensitivity, selectivity, accuracy and rapidity of the methods with handy technique make the facilities available for analysis of air at workplace, ambient atmosphere, water and biologic materials, detecting wide range of concentrations. Practical application of the methods enabled to specify measures to preserve health of workers and general population, helped in hygienic evaluation of work conditions in composition materials production, high-temperature soldering, optic glass industry. PMID:9885500

  19. Inhibitive potentiometric detection of trace metals with ultrathin polypyrrole glucose oxidase biosensor.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2015-05-01

    A method, based on the inhibition of an ultrathin polypyrrole-glucose oxidase (PPy-GOx) potentiometric biosensor response, is described for the detection of Cu(2+), Hg(2+), Cd(2+) and Pb(2+) ions. Based on experimental conditions (0.2 M pyrrole, 500 U mL(-1) GOx, and an applied current density of 0.05 mA cm(-2) and a polymerization period of 500s) previously published by us, PPy-GOx films of approximately 55 nm thick were used to demonstrate the inhibitive potentiometric detection of selected trace metals down to 0.079 μM Cu(2+), 0.025 μM Hg(2+), 0.024 μM Pb(2+) and 0.044 μM Cd(2+). Furthermore, good linear concentration ranges were achieved for Cu(2+) (0.079-16 μM), Hg(2+) (0.025-5 μM), Pb(2+) (0.10-15 μM) and Cd(2+) (0.04-62 μM). The analysis of the nature of the inhibition of glucose oxidase in the PPy-GOx biosensor by these metals was achieved by Dixon and Cornish-Bowden plots. The shapes of the curves (exponential decay, parabolic and linear) obtained for the inhibitors suggest that the inhibition by the metal ions may not be exclusively directed at the essential -SH group, but involve additional binding sites of the enzyme. Dixon and Cornish-Bowden plots suggest that the inhibition is competitive for Cd(2+), while non-competitive inhibition was observed for other metal ions. The ultra-thin PPy-GOx film enabled improved permeability to the metal inhibitors than possible with conventional biosensors with thicker films and, hence, better reflects the actual inhibition effect of the trace metals on the enzyme activity. The use of the ultra-thin film also eliminated the usual need for incubation of the enzyme electrode for a long period in the presence of the inhibitors. Furthermore, a rapid recovery of the enzyme activity was achieved by simply washing the electrode with water and storing in phosphate buffer for 10-15 min. The proposed biosensing approach was successfully used for the detection of individual trace metals in tap water, achieving a 98

  20. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  1. Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles.

    PubMed

    Yang, Zhengpeng; Zhang, Chunjing; Zhang, Jianxin; Bai, Wanbei

    2014-01-15

    Core-shell Fe3O4-enzyme-polypyrrole (Ppy) nanoparticles with excellent magnetism and conductivity were successfully prepared via the surface modification and enzyme self-encapsulation within Ppy. A novel potentiometric glucose biosensor has been constructed by effectively attaching the proposed Fe3O4-enzyme-Ppy nanoparticles to the surface of the magnetic glassy carbon electrode (MGCE). The optimum biosensing conditions could be provided with polymerization time of pyrrole for 6h and 0.42 mg immobilization amount of Fe3O4-enzyme-Ppy nanoparticles on MGCE. The performance of the developed glucose biosensor was evaluated and the results indicated that a sensitive glucose biosensor could be fabricated. The obtained glucose biosensor presents shorter response time (6 s), wider linear range (0.5 μM to 34 mM), lower limit of detection (LOD, 0.3 μM), high-selectivity monitoring of glucose and good stability (with about 98.1% of the initial response signal retained after 20 days). The analytical application of the glucose biosensor confirms the feasibility of glucose detection in serum sample. PMID:23974157

  2. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.

    PubMed

    Sekhar, Praveen K; Brosha, Eric L; Mukundan, Rangachary; Linker, Kevin L; Brusseau, Charles; Garzon, Fernando H

    2011-06-15

    In this article, selective and sensitive detection of trace amounts of pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) is demonstrated. The screening system is based on a sampling/concentrator front end and electrochemical potentiometric gas sensors as the detector. Preferential hydrocarbon and nitrogen oxide(s) mixed potential sensors based on lanthanum strontium chromite and Pt electrodes with yttria stabilized zirconia (YSZ) solid electrolyte were used to capture the signature of the explosives. Quantitative measurements based on hydrocarbon and nitrogen oxide sensor responses indicated that the detector sensitivity scaled proportionally with the mass of the explosives (1-3 μg). Moreover, the results showed that PETN, TNT, and RDX samples could be discriminated from each other by calculating the ratio of nitrogen oxides to hydrocarbon integrated area under the peak. Further, the use of front-end technology to collect and concentrate the high explosive (HE) vapors make intrinsically low vapor pressure of the HE less of an obstacle for detection while ensuring higher sensitivity levels. In addition, the ability to use multiple sensors each tuned to basic chemical structures (e.g., nitro, amino, peroxide, and hydrocarbon groups) in HE materials will permit the construction of low-cost detector systems for screening a wide spectrum of explosives with lower false positives than present-day technologies. PMID:21435779

  3. A Disposable Planar Paper-Based Potentiometric Ion-Sensing Platform.

    PubMed

    Hu, Jinbo; Stein, Andreas; Bühlmann, Philippe

    2016-06-20

    Ion-selective electrodes (ISEs) are widely used tools for fast and accurate ion sensing. Herein their design is simplified by embedding a potentiometric cell into paper, complete with an ISE, a reference electrode, and a paper-based microfluidic sample zone that offer the full function of a conventional ISE setup. The disposable planar paper-based ion-sensing platform is suitable for low-cost point-of-care and in-field testing applications. The design is symmetrical and each interfacial potential within the cell is well defined and reproducible, so that the response of the device can be theoretically predicted. For a demonstration of clinical applications, paper-based Cl(-) and K(+) sensors are fabricated with highly reproducible and linear responses towards different concentrations of analyte ions in aqueous and biological samples. The single-use devices can be fabricated by a scalable method, do not need any pretreatment prior to use, and only require a sample volume of 20 μL. PMID:27184778

  4. A potentiometric biosensor for the detection of notch 3 using functionalized ZnO nanorods.

    PubMed

    Ibupoto, Z H; Khun, K; Liu, X; Willander, M

    2014-09-01

    The notch signalling plays a vital and radical role for the activity of cellular proliferation, differentiation and apoptosis. In this study, for the first time a particular biosensor is developed for the detection of notch 3. ZnO nanorods were fabricated on the gold coated glass substrate by hydrothermal method and afterwards were decorated with the gold nanoparticles by electrodepositing technique. Scanning electron microscopy (SEM) has shown the perpendicular to the substrate growth pattern of ZnO nanorods. X-ray diffraction (XRD) studies showed the c-axis oriented growth direction with wurtzite crystal structure of ZnO nanorods. X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray (EDX) techniques have shown the presence of Zn, O and Au atoms in the prepared functional material. Furthermore, the anti-notch 3 was physically adsorbed on the gold nanoparticles functionalized ZnO nanorods. The developed potentiometric immunosensor has shown response to the wide range of notch 3 molecules. The detected range included 1.00 x 10(-5)-1.50 x 10(0 ) μg/mL with a sensitivity of 23.15 ± 0.31 mV/decade. The analytical parameters including reproducibility, stability, and selectivity were also investigated and the observed results indicate the acceptable performance of the notch 3 biosensor. Moreover, the proposed notch 3 biosensor exhibited a fast response time of 10 s. PMID:25924320

  5. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  6. Pseudorotation in fullerene anions

    NASA Astrophysics Data System (ADS)

    Dunn, Janette L.; Hands, Ian D.; Bates, Colin A.

    2007-07-01

    Jahn-Teller (JT) problems are often characterised by an adiabatic potential energy surface (APES) containing either a set of isoenergetic wells or a trough of equivalent-energy points, which may be warped by higher-order coupling terms or anisotropic effects. In all three cases, the JT effect will be dynamic. Either tunnelling between the wells or rotation (of a distortion) around the trough will restore the original symmetry of the system. This motion is referred to as pseudorotation. It should be possible to observe a JT system in a distorted geometry if measurements are made on a sufficiently short timescale. In various cubic systems, this timescale has been calculated to be the order of picoseconds. Such timescales are accessible using modern methods of ultrafast spectroscopy. Measurements of pseudorotation rates can lead to important information on the strength and nature of the JT coupling present. We will present analytical calculations that allow the rate of pseudorotation to be determined in terms of the vibronic coupling parameters. We will show how these results can be applied to E ⊗ e systems and then to the more complicated system applicable to C60- anions. This is of particular interest because of the high icosahedral symmetry of fullerene ions and also because of the many potential uses of materials containing these ions. We conclude by outlining experiments that should be capable of measuring pseudorotation in C 60 anions.

  7. Ultimate strain measurement of micromachined membranes using a potentiometric technique

    NASA Astrophysics Data System (ADS)

    Goforth, R. C.; Ulrich, R. K.; Leong, Y. K.; Zhao, G.

    A potentiometric method for the measurement of ultimate strain of thin films is presented. In this method, an electric potential is applied between two electrodes located one on each side of the thin film under investigation. The electrodes are immersed in an electrolytic solution. The thin film acts as an electrical current barrier. To determine the ultimate strain, a controlled load is applied to the film. Cracking of the film causes a sharp rise in the current from an initial small leakage value. The applied load at the onset of cracking is used to calculate the ultimate strain. We have previously demonstrated the feasibility of the method for thin silicon nitride films deposited on aluminum strips. The method is very sensitive and can detect cracks too small to be observed with a microscope. We discuss extension of the method to the measurement of the ultimate strain of micromachined membranes. The load is applied by pressuring one side of the membrane. Micromachined structures are used to determine residual stresses.

  8. Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions.

    PubMed

    Calvo-López, Antonio; Arasa-Puig, Eva; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2013-12-01

    The construction and evaluation of a Low Temperature Co-fired Ceramics (LTCC)-based continuous flow potentiometric microanalyzer prototype to simultaneously monitor the presence of two ions (potassium and nitrate) in samples from the water recycling process for future manned space missions is presented. The microsystem integrates microfluidics and the detection system in a single substrate and it is smaller than a credit card. The detection system is based on two ion-selective electrodes (ISEs), which are built using all-solid state nitrate and potassium polymeric membranes, and a screen-printed Ag/AgCl reference electrode. The obtained analytical features after the optimization of the microfluidic design and hydrodynamics are a linear range from 10 to 1000 mg L(-1) and from 1.9 to 155 mg L(-1) and a detection limit of 9.56 mg L(-1) and 0.81 mg L(-1) for nitrate and potassium ions respectively. PMID:24267081

  9. Computational simulation study on the anion recognition properties of functionalized tetraphenyl porphyrins.

    PubMed

    Xie, Ju; Chen, Xuesong; Huang, Zhiling; Zuo, Tongfei

    2015-06-01

    The anion recognitions of tetra-(2-formamido) phenyl porphyrin (APP), tetra-(2-ureido) phenyl porphyrin (UPP), and their zinc derivatives (ZnAPP and ZnUPP) to three anions (Cl(-), H2PO4 (-), CH3COO(-)) were studied using quantum mechanical calculations (QM) and molecular dynamics (MD) simulations. The density functional theory (DFT) calculations at M06-2X/6-31G (d, p) level indicated that the anion recognition ability of ZnAPP was better than that of APP, and the anion selectivity was in the order Cl(-) < H2PO4 (-) < CH3COO(-). The selectivity trends for ZnUPP and UPP were found to be H2PO4 (-) < Cl(-) < CH3COO(-). The structures, thermodynamic properties, and recognition mechanisms were discussed in detail. The 2 ns MD simulations were then carried out for anion@ZnAPP and anion@ZnUPP complexes in mixed solvent DMSO/water. The MD simulation results showed that anion@ZnUPP complexes exhibited higher stability than anion@ZnAPP, which was in good agreement with QM results. H-bonds formed between the anions and the side-chains of receptors, and zinc coordination bonds with anions contributed significantly to the stability of complexes. The anion selectivity of ZnAPP and ZnUPP in the solvent phase were also discussed and compared with those in the gas phase. PMID:25957659

  10. Organic Anion Transporting Polypeptides

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2013-01-01

    Organic anion transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs, and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs, and finally, covers the transcriptional and posttranscriptional regulation of OATPs. PMID:24745984

  11. Potentiometric map of the Winona-Tallahatta Aquifer in northwestern Mississippi, fall 1979

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    The potentiometric map of the Winona-Tallahatta aquifer is one of a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources , Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop area of the Winona-Tallahatta aquifer the potentiometric surface is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer by streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer by streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by pumpage from wells in Leflore, Sunflower , and Bolivar Counties, Historically, water levels in or near the outcrop of the Winona-Tallahatta have shown little or no long-term changes, but the heavy withdrawals in the confined part of the aquifer have caused long-term water-level declines of 1 to 2 feet per year. (USGS)

  12. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  13. Potentiometric titrations of rutile suspensions to 250 C

    SciTech Connect

    Machesky, M.L.; Wesolowski, D.J.; Palmer, D.A.; Ichiro-Hayashi, Ken

    1998-04-15

    A stirred hydrogen electrode concentration cell was used to conduct potentiometric titrations of rutile suspensions from 25 to 250 C in NaCl and tetramethylammonium chloride media (0.03 to 1.1 m). Hydrothermal pretreatment of the rutile improved titration reproducibility, decreased titration hysteresis, and facilitated determination of the point of zero net proton charge (pHznpc). These pHznpc values are 5.4, 5.1, 4.7, 4.4, 4.3 ({+-} 0.2 pH units), and 4.2 ({+-} 0.3 pH units) at 25, 50, 100, 150, 200, and 250 C, respectively. The difference between these pHznpc values and 1/2 pK{sub w} (the neutral pH of water) is rather constant between 25 and 250 C ({minus} 1.45 {+-} 0.2). This constancy is useful for predictive purposes and, more fundamentally, may reflect similarities between the hydration behavior of surface hydroxyl groups and water. A three-layer, 1pKa surface complexation model with three adjustable parameters (two capacitance values and one counterion binding constant) adequately described all titration data. The most apparent trend in these data for pH values greater than the pHznpc was the increase in proton release (negative surface charge) with increasing temperature. This reflects more efficient screening by Na{sup +} relative to Cl{sup {minus}}. Replacing Na{sup +} with the larger tetramethylammonium cation for some conditions resulted in decreased proton release due to the less efficient screening of negative surface charge by this larger cation.

  14. Potentiometric surface of the Peedee Aquifer in the central coastal plain of North Carolina, December 1986

    USGS Publications Warehouse

    Brockman, Allen R.; Lyke, William L.; Winner, M.D., Jr.

    1989-01-01

    Water level measurements were made in 37 wells open to the Peedee aquifer at the end of 1986 to determine the configuration of its potentiometric surface over an area of about 4,100 square miles in the central Coastal Plain of North Carolina. The potentiometric surface of the Peedee slopes southeastward from an altitude of more than 100 ft above sea level along the western limits of the aquifer to less than 20 ft near the coastline. Several cones of depression have formed in response to the effects of groundwater pumpage. The largest cone occurs near the City of Jacksonville in Onslow County where the potentiometric surface is nearly 70 ft below sea level.

  15. Chemical Modeling of Cometary Anions

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Charnley, S. B.

    2009-09-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not previously been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydrodynamical model of Rodgers & Charnley (2002), we investigate the role of the hydrocarbon and nitrile anions Cn-, CnH- and CnN- in the coma. We calculate the effects of these anions on the charge balance and examine their impact on cometary coma chemistry. References: Chaizy, P. et al. 1991, Nature, 349, 393 Rodgers, S.D. & Charnley, S.B. 2002, MNRAS, 330, 660

  16. Potentiometric surface of the Sparta and Memphis aquifers in eastern Arkansas, April through July 1993

    USGS Publications Warehouse

    Westerfield, Paul W.

    1995-01-01

    A water-level map of the Sparta and Memphis aquifers for 1993 is presented in this map report. The Sparta-Memphis aquifer, consisting of sands of Eocene age, is present in much of southern and eastern Arkansas. The potentiometric surface map and long-term hydrographs illustrate the effects of large withdrawals for industrial and public supply and, to a lesser extent, agricultural use, on water levels in the aquifer. Three cones of depression, centered in Columbia, Jefferson, and Union Counties, occur in the potentiometric surface.

  17. Comparison of methods for accurate end-point detection of potentiometric titrations

    NASA Astrophysics Data System (ADS)

    Villela, R. L. A.; Borges, P. P.; Vyskočil, L.

    2015-01-01

    Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.

  18. Potentiometric surface of the Floridan aquifer in the Northwest Florida Water Management District, May 1980

    USGS Publications Warehouse

    Rosenau, J.C.; Milner, R.S.

    1981-01-01

    A May 1980 potentiometric surface map of the Northwest Florida Water Management District depicts water levels in wells tapping the Floridan aquifer prior to summer pumpage. Compared to earlier potentiometric maps of the area, there are no significant differences in the 1980 map that are the result of hydrologic conditions. The addition of numerous new monitor wells in Jackson, Calhoun, Gadsden, and Liberty Counties, however, permitted refinement or better delineation of contours and a separation of water-bearing zones of the Floridan aquifer in the latter two counties. (USGS)

  19. Design, Fabrication and Characterization of a Miniaturized Series-Connected Potentiometric Oxygen Sensor

    SciTech Connect

    Radhakrishnan, Rajesh; Virkar, Anil V.; Singhal, Subhash C.; Dunham, Glen C.; Marina, Olga A.

    2004-07-24

    Miniaturization of potentiometric sensors facilitates connecting many sensors in series to amplify the output. Miniaturized series-connected potentiometric sensors were developed on silicon (Si) wafer by microfabrication techniques. The sensors consist of a thin nickel-nickel oxide (Ni-NiO) mixture. The open circuit voltage (OCV) was tested in air at 300 C and was found to be lower than expected. The output of the net sensor increased almost linearly by connecting 10 sensors in series. Impedance spectroscopy was used to investigate the electrolyte and electrolyte-electrode interfaces using a two electrode configuration.

  20. Nitrate anion templated synthesis of a [2]catenane for nitrate recognition in organic-aqueous solvent media.

    PubMed

    Langton, Matthew J; Beer, Paul D

    2014-08-01

    The first example of a catenane synthesised using a nitrate anion template is demonstrated. Removal of the templating anion reveals a mechanically interlocked molecular host system which is capable of recognising nitrate selectively over a range of more basic mono-anionic oxoanions in a competitive organic-aqueous solvent mixture. PMID:24926915

  1. Determination of vanadium(V) by direct automatic potentiometric titration with EDTA using a chemically modified electrode as a potentiometric sensor.

    PubMed

    Quintar, S E; Santagata, J P; Cortinez, V A

    2005-10-15

    A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis. PMID:18970248

  2. Adsorption properties of the nanozirconia/anionic polyacrylamide system-Effects of surfactant presence, solution pH and polymer carboxyl groups content

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2016-05-01

    The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.

  3. Anion Transport with Chalcogen Bonds.

    PubMed

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  4. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism

    SciTech Connect

    Knauf, P.A.; Law, F.Y.; Marchant, P.J.

    1983-01-01

    The parallel effects of the anion transport inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'disulfonate) on net chloride flow and on chloride exchange suggest that a major portion of net chloride flow takes place through the anion exchange system. The ''slippage'' model postulates that the rate of net anion flow is determined by the movement of the unloaded anion transport site across the membrane. Both the halide selectivity of net anion flow and the dependence of net chloride flux on chloride concentration over the range of 75 to 300 mM are inconsistent with the slippage model. Models in which the divalent form of the anion exchange carrier or water pores mediate net anion flow are also inconsistent with the data. The observations that net chloride flux increases with chloride concentration and that the DIDS-sensitive component tends to saturate suggest a model in which net anion flow involves ''transit'' of anions through the diffusion barriers in series with the transport site, without any change in transport site conformation such as normally occurs during the anion exchange process. This model is successful in predicting that the anion exchange inhibitor NAP-taurine, which binds to the modifier site and inhibits the conformational change, has less effect on net chloride flow than on chloride exchange.

  5. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Li, Xiang; Kiran, Boggavarapu E-mail: kiran@mcneese.edu; Kandalam, Anil K.

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  6. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H.; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K.

    2014-04-01

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz-, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  7. Photoelectron spectroscopy of boron aluminum hydride cluster anions.

    PubMed

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz(-), were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms. PMID:24784280

  8. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  9. Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong

    2007-01-01

    This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…

  10. Reversible potentiometric oxygen sensors based on polymeric and metallic film electrodes.

    PubMed

    Yim, H S; Meyerhoff, M E

    1992-09-01

    Various materials and sensor configurations that exhibit reversible potentiometric responses to the partial pressure of oxygen at room temperature in neutral pH solution are examined. In one arrangement, platinum electrodes are coated with plasticized poly(vinyl chloride) films doped with a cobalt(II) tetraethylene pentamine complex. For such sensors, potentiometric oxygen response is attributed to a mixed potential originating from the underlying platinum electrode surface as well as a change in redox potential of the Co(II)-tetren-doped film as the complex binds oxygen reversibly. The response due to the platinum surface is prolonged by the presence of the Co(II)-tetren/PVC film. Alternately, thin films of metallic copper, electrochemically deposited on platinum and/or sputtered or vapor deposited on a single crystal silicon substrate, may be used for reversible oxygen sensing. The long-term reversibility and potentiometric stability of such copper film-based sensors is enhanced (up to 1 month) by preventing the formation of cuprous oxide on the surfaces via the application of an external nonpolarizing cathodic current through the working electrode or by specifically using sputtered copper films that have [100] preferred crystal structures as determined by X-ray diffraction. The implications of these findings in relation to fabricating analytically useful potentiometric oxygen sensors are discussed. PMID:1416035

  11. Lead in Hair and in Red Wine by Potentiometric Stripping Analysis: The University Students' Design.

    ERIC Educational Resources Information Center

    Josephsen, Jens

    1985-01-01

    A new program for training upper secondary school chemistry teachers (SE 537 693) depends heavily on student project work. A project in which lead in hair and in red wine was examined by potentiometric stripping analysis is described and evaluated. (JN)

  12. Design and Evaluation of Potentiometric Principles for Bladder Volume Monitoring: A Preliminary Study

    PubMed Central

    Chen, Shih-Ching; Hsieh, Tsung-Hsun; Fan, Wen-Jia; Lai, Chien-Hung; Chen, Chun-Lung; Wei, Wei-Feng; Peng, Chih-Wei

    2015-01-01

    Recent advances in microelectronics and wireless transmission technology have led to the development of various implantable sensors for real-time monitoring of bladder conditions. Although various sensing approaches for monitoring bladder conditions were reported, most such sensors have remained at the laboratory stage due to the existence of vital drawbacks. In the present study, we explored a new concept for monitoring the bladder capacity on the basis of potentiometric principles. A prototype of a potentiometer module was designed and fabricated and integrated with a commercial wireless transmission module and power unit. A series of in vitro pig bladder experiments was conducted to determine the best design parameters for implementing the prototype potentiometric device and to prove its feasibility. We successfully implemented the potentiometric module in a pig bladder model in vitro, and the error of the accuracy of bladder volume detection was <±3%. Although the proposed potentiometric device was built using a commercial wireless module, the design principles and animal experience gathered from this research can serve as a basis for developing new implantable bladder sensors in the future. PMID:26039421

  13. BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. 1. POTENTIOMETRIC ENZYME ELECTRODE. (R823663)

    EPA Science Inventory

    A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
    nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
    modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
    OPH ...

  14. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals. PMID:27444048

  15. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  16. An estimated potentiometric surface of the Death Valley region, Nevada and California, developed using geographic information system and automated interpolation techniques

    SciTech Connect

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1998-07-01

    An estimated potentiometric surface was constructed for the Death Valley region, Nevada and California, from numerous, disparate data sets. The potentiometric surface was required for conceptualization of the ground-water flow system and for construction of a numerical model to aid in the regional characterization for the Yucca Mountain repository. Because accurate, manual extrapolation of potentiometric levels over large distances is difficult, a geographic-information-system method was developed to incorporate available data and apply hydrogeologic rules during contour construction. Altitudes of lakes, springs, and wetlands, interpreted as areas where the potentiometric surface intercepts the land surface, were combined with water levels from well data. Because interpreted ground-water recharge and discharge areas commonly coincide with groundwater basin boundaries, these areas also were used to constrain a gridding algorithm and to appropriately place local maxima and minima in the potentiometric-surface map. The resulting initial potentiometric surface was examined to define areas where the algorithm incorrectly extrapolated the potentiometric surface above the land surface. A map of low-permeability rocks overlaid on the potentiometric surface also indicated areas that required editing based on hydrogeologic reasoning. An interactive editor was used to adjust generated contours to better represent the natural water table conditions, such as large hydraulic gradients and troughs, or ``vees``. The resulting estimated potentiometric-surface map agreed well with previously constructed maps. Potentiometric-surface characteristics including potentiometric-surface mounds and depressions, surface troughs, and large hydraulic gradients were described.

  17. Potentiometric levels and water quality in the aquifers underlying Belvidere, Illinois, 1993-96

    USGS Publications Warehouse

    Mills, Patrick C.; Thomas, C.A.; Brown, T.A.; Yeskis, D.J.; Kay, R.T.

    1999-01-01

    In 1992, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency (USEPA), began a study of the hydrogeology and water quality of the aquifers underlying the vicinity of Belvidere, Boone County, Ill. Previously, volatile organic compounds (VOC's) and other constituents of industrial origin were detected in one or more ground-water samples from about 100 of the approximately 700 monitoring and water-supply wells in the area, including the 8 municipal wells in Belvidere. A glacial drift aquifer underlies at least 50 percent of the 80-square-mile study area; bedrock aquifers that underlie virtually all of the study area include the Galena-Platteville, St. Peter Sandstone, Ordovician, and Cambrian-Ordovician aquifers. During 1993, water levels were measured in 152 wells and water-quality samples were collected from 97 wells distributed throughout the study area. During 1994-96, similar data were collected from 31 wells. Potentiometric levels in the glacial drift and Galena-Platteville aquifers are similar and range from about 750 to 900 feet above sea level. The potentiometric surfaces of the aquifers are subdued representations of the land surface. Horizontal ground-water flow in the aquifers primarily is towards the Kishwaukee River, which flows through the central part of the study area, and its principal tributaries. Vertical ground-water flow appears to be downward at most locations in the study area, particularly in the urbanized areas affected by pumping of the Belvidere municipal wells and upland areas remote from the principal surface-water drainages. Flow appears to be upward between the Galena-Platteville and glacial drift aquifers where ground water discharges to the Kishwaukee River and its principal tributaries. All water samples were analyzed for VOC's. Selected samples also were analyzed for trace metals, cyanide, semivolatile organic compounds, or other constituents. VOC's were detected in samples from 50 wells (52

  18. Nitrite-Templated Synthesis of Lanthanide-Containing [2]Rotaxanes for Anion Sensing**

    PubMed Central

    Langton, Matthew J; Blackburn, Octavia A; Lang, Thomas; Faulkner, Stephen; Beer, Paul D

    2014-01-01

    The first anion-templated synthesis of a lanthanide-containing interlocked molecule is demonstrated by utilizing a nitrite anion to template initial pseudorotaxane formation. Subsequent stoppering of the interpenetrated assembly allows for the preparation of a lanthanide-functionalized [2]rotaxane in high yield. Following removal of the nitrite anion template, the europium [2]rotaxane host is demonstrated to recognize and sense fluoride selectively. PMID:24989322

  19. Nitrite-templated synthesis of lanthanide-containing [2]rotaxanes for anion sensing.

    PubMed

    Langton, Matthew J; Blackburn, Octavia A; Lang, Thomas; Faulkner, Stephen; Beer, Paul D

    2014-10-20

    The first anion-templated synthesis of a lanthanide-containing interlocked molecule is demonstrated by utilizing a nitrite anion to template initial pseudorotaxane formation. Subsequent stoppering of the interpenetrated assembly allows for the preparation of a lanthanide-functionalized [2]rotaxane in high yield. Following removal of the nitrite anion template, the europium [2]rotaxane host is demonstrated to recognize and sense fluoride selectively. PMID:24989322

  20. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  1. Ambident reactivities of pyridone anions.

    PubMed

    Breugst, Martin; Mayr, Herbert

    2010-11-01

    The kinetics of the reactions of the ambident 2- and 4-pyridone anions with benzhydrylium ions (diarylcarbenium ions) and structurally related Michael acceptors have been studied in DMSO, CH(3)CN, and water. No significant changes of the rate constants were found when the counterion was varied (Li(+), K(+), NBu(4)(+)) or the solvent was changed from DMSO to CH(3)CN, whereas a large decrease of nucleophilicity was observed in aqueous solution. The second-order rate constants (log k(2)) correlated linearly with the electrophilicity parameters E of the electrophiles according to the correlation log k(2) = s(N + E) (Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957), allowing us to determine the nucleophilicity parameters N and s for the pyridone anions. The reactions of the 2- and 4-pyridone anions with stabilized amino-substituted benzhydrylium ions and Michael acceptors are reversible and yield the thermodynamically more stable N-substituted pyridones exclusively. In contrast, highly reactive benzhydrylium ions (4,4'-dimethylbenzhydrylium ion), which react with diffusion control, give mixtures arising from N- and O-attack with the 2-pyridone anion and only O-substituted products with the 4-pyridone anion. For some reactions, rate and equilibrium constants were determined in DMSO, which showed that the 2-pyridone anion is a 2-4 times stronger nucleophile, but a 100 times stronger Lewis base than the 4-pyridone anion. Quantum chemical calculations at MP2/6-311+G(2d,p) level of theory showed that N-attack is thermodynamically favored over O-attack, but the attack at oxygen is intrinsically favored. Marcus theory was employed to develop a consistent scheme which rationalizes the manifold of regioselectivities previously reported for the reactions of these anions with electrophiles. In particular, Kornblum's rationalization of the silver ion effect, one of the main pillars of the hard and soft acid/base concept of ambident reactivity, has been revised. Ag(+) does not

  2. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  3. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker.

    PubMed

    Liang, Jintao; Guan, Mingyuan; Huang, Guoyin; Qiu, Hengming; Chen, Zhengcheng; Li, Guiyin; Huang, Yong

    2016-06-01

    A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V)=0.00714ChIgG (μg/mL)-0.0147 with a correlation coefficient of 0.9968 over a range 0-150μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications. PMID:27040210

  4. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    NASA Astrophysics Data System (ADS)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  5. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    SciTech Connect

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    illustrates that size-selective photoelectron spectroscopy combined with theoretical calculations represent a powerful technique to probe intrinsic anion–π interactions and has potential to provide quantitative guest-host molecular binding strengths and unravel fundamental insights in specific anion recognitions.

  6. Hydrogen in anion vacancies of semiconductors

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2009-01-01

    Density functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either two-fold or four-fold coordinated, and has either amphoteric or shallow donor character. In general, the multi-coordination of hydrogen in an anion vacancy is the indication of an anionic H, H { ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy.

  7. Altitude and configuration of the potentiometric surface, Casey Village, Warminster and Upper Southampton townships, Bucks County, Pennsylvania, August 3, 1995

    USGS Publications Warehouse

    Sloto, Ronald A.; Grazul, Kevin E.

    1995-01-01

    A map showing the potentiometric surface in Casey Village, Warminster and Upper Southampton Townships, Bucks County, was constructed from water levels measured on August 3, 1995. The potentiometric surface, measured in 17 wells screened between 18 and 64 feet below land surface, ranged from 321.99 to 344.80 feet above sea level. The potentiometric surface, measured in 12 wells screened between 48 and 108 feet below land surface, ranged from 321.95 to 337.50 feet above sea level.

  8. Potentiometric surface of the lower Cape Fear Aquifer in the central coastal plain of North Carolina, December 1986

    USGS Publications Warehouse

    Winner, M.D., Jr.; Lyke, William L.; Brockman, Allen R.

    1989-01-01

    Water level measurements were made in four wells open to the lower Cape Fear aquifer at the end of 1986 to determine the configuration of its potentiometric surface over an area of approximately 4,100 sq mi. Because of the scarcity of data, five earlier measurements were also used to help estimate the position of the potentiometric contours. These were one-time measurements in temporary observation wells. A broad cone of depression has formed in the area between Kinston and New Bern where the potentiometric surface is below sea level and seems likely related to large groundwater withdrawals from the aquifers overlying the lower Cape Fear in that area.

  9. Potentiometric surface of the Upper Floridan aquifer in the Suwannee River Water Management District, Florida, May 2005

    USGS Publications Warehouse

    Verdi, Richard Jay; Sepulveda, A. Alejandro

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the Suwannee River Water Management District (SRWMD) during May 2005. Potentiometric contours are based on water-level measurements taken at more than 400 observation wells during the period of May 1-31, 2005. A potentiometric surface is defined as an areal representation of the levels to which water would rise in tightly cased wells open to an aquifer (Fetter, 1988). Since these water-level measurements from the Upper Floridan aquifer were taken over a 31-day period, they do not represent a 'snapshot' of the conditions at a specific date and time.

  10. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  11. Isobar Separator for Anions: Current status

    NASA Astrophysics Data System (ADS)

    Alary, Jean-François; Javahery, Gholamreza; Kieser, William; Zhao, Xiao-Lei; Litherland, Albert; Cousins, Lisa; Charles, Christopher

    2015-10-01

    The Isobar Separator for Anions (ISA) is an emerging separation technique of isobars applied first to the selective removal of 36S from 36Cl, achieving a relative suppression ratio of 6 orders of magnitude. Using a radio-frequency quadrupole (RFQ) column incorporating low energy gas cells, this innovative technique enables the use of a wide range of low energy ion-molecule reactions and collisional-induced dissociation processes for suppressing specific atomic of molecular anions with a high degree of selectivity. Other elemental pairs (analyte/isobar) successfully separated at AMS level include Ca/K, Sr/(Y, Zr), Cs/Ba, Hf/W and Pu/U. In view of these initial successes, an effort to develop a version of the ISA that can be used as a robust technique for routine AMS analysis has been undertaken. We will discuss the detailed layout of a practical ISA and the functional requirements that a combined ISA/AMS should meet. These concepts are currently being integrated in a pre-commercial ISA system that will be installed soon at the newly established A.E. Lalonde Laboratory in Ottawa, Canada.

  12. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Hale, G.S.; Trudeau, D.A.; Savard, C.S.

    1995-12-01

    The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather than ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.

  13. Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors.

    PubMed

    Dąbrowa, Kajetan; Niedbała, Patryk; Jurczak, Janusz

    2014-12-25

    Herein, we report that thermal Z→E isomerisation of simple azobenzene urea derivatives is selectively and predictably controlled by anion binding. The rate of this process depends strictly on the anion concentration and its binding affinity to the Z-isomer of the azobenzene host, i.e. increased rate constants are observed for higher anion concentration as well as for more strongly bound guests. The origin of this phenomenon is attributed to the electron density transfer from the anion to the host π-system, resulting in increased repulsion between the lone electron pairs in the N=N bond. PMID:25369943

  14. The force field for imidazolium-based ionic liquids: Novel anions with polar residues

    NASA Astrophysics Data System (ADS)

    Fileti, Eudes Eterno; Chaban, Vitaly V.

    2015-07-01

    Many molecules can be converted into ions via relatively simple procedures. These ions can be combined into ionic liquids (ILs). We develop a new force field (FF) for the seven selected AAILs comprising 1-ethyl-3-methylimidazolium cation and amino acid anions with polar residues. All anions were obtained via deprotonation of carboxyl group in analogy with acetate anion. We account for peculiar interactions between the anion and the cation by fitting electrostatic potential for an ion pair, in contrast to isolated ions. Furthermore, we account for hydrogen bonds obtained via electronic structure consideration. The developed model fosters computational investigation of ionic liquids.

  15. Tetrathiafulvalene diindolylquinoxaline: a dual signaling anion receptor with phosphate selectivity†

    PubMed Central

    Bejger, Christopher; Park, Jung Su; Silver, Eric S.; Sessler, Jonathan L.

    2011-01-01

    Incorporation of tetrathiafulvalene into the backbone of a known neutral phosphate receptor, diindolylquinoxaline, yields a dual optical-electrochemical chemosensor for dihydrogen phosphate that functions in dichloromethane. This system shows selectivity for dihydrogen phosphate over other small anions and can be used to detect the presence of this analyte via fluorescence quenching or cyclic voltammetry. PMID:20856940

  16. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System

    PubMed Central

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-01-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor–acceptor and coordinative pyridine–zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane’s interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase 1H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  17. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System.

    PubMed

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-12-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor-acceptor and coordinative pyridine-zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane's interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase (1) H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  18. Potentiometric surface of the Floridan aquifer in the Suwannee River Water Management District, north Florida, May 1980

    USGS Publications Warehouse

    Rosenau, J.C.; Milner, R.S.

    1981-01-01

    A May 1980 potentiometric surface map of the Suwannee River Water Management District area, Florida, depicts water levels in wells tapping the Floridan aquifer. Compared to the May 1976 potentiometric map of the area, there are no significant differences in the general appearance of the contours. Water levels, however, are generally about 10 feet higher than in 1976 along the Suwannee River and for some 20 miles west of the river and in Gilchrist and Levy Counties to the east. (USGS)

  19. Anion Complexes with Tetrazine-Based Ligands: Formation of Strong Anion-π Interactions in Solution and in the Solid State.

    PubMed

    Savastano, Matteo; Bazzicalupi, Carla; Giorgi, Claudia; García-Gallarín, Celeste; López de la Torre, Maria Dolores; Pichierri, Fabio; Bianchi, Antonio; Melguizo, Manuel

    2016-08-15

    Ligands L1 and L2, consisting of a tetrazine ring decorated with two morpholine pendants of different lengths, show peculiar anion-binding behaviors. In several cases, even the neutral ligands, in addition to their protonated HL(+) and H2L(2+) (L = L1 and L2) forms, bind anions such as F(-), NO3(-), PF6(-), ClO4(-), and SO4(2-) to form stable complexes in water. The crystal structures of H2L1(PF6)2·2H2O, H2L1(ClO4)2·2H2O, H2L2(NO3)2, H2L2(PF6)2·H2O, and H2L2(ClO4)2·H2O show that anion-π interactions are pivotal for the formation of these complexes, although other weak forces may contribute to their stability. Complex stability constants were determined by means of potentiometric titration in aqueous solution at 298.1 K, while dissection of the free-energy change of association (ΔG°) into its enthalpic (ΔH°) and entropic (TΔS°) components was accomplished by means of isothermal titration calorimetry measurements. Stability constants are poorly regulated by anion-ligand charge-charge attraction. Thermodynamic data show that the formation of complexes with neutral ligands, which are principally stabilized by anion-π interactions, is enthalpically favorable (-ΔG°, 11.1-17.5 kJ/mol; ΔH°, -2.3 to -0.5 kJ/mol; TΔS°, 9.0-17.0 kJ/mol), while for charged ligands, enthalpy changes are mostly unfavorable. Complexation reactions are invariably promoted by large and favorable entropic contributions. The importance of desolvation phenomena manifested by such thermodynamic data was confirmed by the hydrodynamic results obtained by means of diffusion NMR spectroscopy. In the case of L2, complexation equilibria were also studied in a 80:20 (v/v) water/ethanol mixture. In this mixed solvent of lower dielectric constant than water, the stability of anion complexes decreases, relative to water. Solvation effects, mostly involving the ligand, are thought to be responsible for this peculiar behavior. PMID:27454810

  20. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  1. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

    SciTech Connect

    Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

    2012-07-01

    A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

  2. Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 41 wells. The highest measured water level was 165 feet above sea level near the northwestern boundary and in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured ground-water levels were 81 feet below sea level at Glen Burnie, 47 feet below sea level southwest of Bryans Road, 27 feet below sea level at the Morgantown power plant, and 24 feet below sea level at the Chalk Point power plant.

  3. Determination of two metals from a single potentiometric titration curve The application of two indicator electrodes.

    PubMed

    Parczewski, A

    1988-06-01

    The advantages of applying two indicator electrodes in complexometric potentiometric multicomponent titration are shown by means of simulated titration curves. Two measurement arrangements have been considered, one in which the indicator electrodes are directly connected to a voltmeter and the other in which the electrodes are connected to the voltmeter through a summing operational amplifier. They have been compared with the conventional arrangement of a single indicator electrode and a reference electrode. The influence of the stability constants of the complexes in solution and of the electrode parameters on the shape of titration curves has been examined. It is shown that the use of two indicator electrodes may significantly increase the applicability of multicomponent potentiometric titrations. PMID:18964554

  4. Geostatistical analysis of potentiometric data in the Pennsylvanian aquifer of the Palo Duro Basin, Texas

    SciTech Connect

    Harper, W.V.; Basinger, K.L.; Furr, J.M.

    1988-01-01

    This report details a geostatistical analysis of potentiometric data from the Pennsylvanian aquifer in the Palo Duro Basin, Texas. Such an analysis is a part of an overall uncertainty analysis for a high-level waste repository in salt. Both an expected potentiometric surface and the associated standard error surface are produced. The Pennsylvanian data are found to be well explained by a linear trend with a superimposed spherical semivariogram. A cross-validation of the analysis confirms this. In addition, the cross-validation provides a point-by-point check to test for possible anomalous data. The analysis is restricted to that portion of the Pennsylvanian aquifer that lies to the southwest of the Amarillo Uplift. The Pennsylvanian is absent is some areas across the uplift and data to the northeast were not used in this analysis. The surfaces produced in that analysis are included for comparison. 9 refs., 15 figs.

  5. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 69 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured ground-water levels were as low as 90 feet below sea level in the Waldorf area.

  6. Design, Fabrication and Characterization of a Miniaturized Series-Connected Potentiometric Oxygen Sensor

    SciTech Connect

    Radhakrishnan, Rajesh; Virkar, Anil V.; Singhal, Subhash C.; Dunham, Glen C.; Marina, Olga A.

    2005-03-28

    Miniaturization of potentiometric sensors facilitates connecting many sensors in series to amplify the output. Miniaturized series-connected potentiometric sensors were developed on a silicon wafer by microfabrication techniques. The sensors consist of a thin film yttria stabilized zirconia (YSZ) electrolyte and Pt electrodes. The reference oxygen partial pressure is determined by a nickel - nickel oxide (Ni-NiO) mixture. The open circuit voltage (OCV) was tested in air at 300oC and was found to be lower than expected. The output of the net sensor increased almost linearly by connecting 10 sensors in series. Impedance spectroscopy was used to investigate the electrolyte and electrolyte/electrode interfaces using a two electrode configuration.

  7. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation.

    PubMed

    Soldatkin, Oleksandr O; Shelyakina, Margaryta K; Arkhypova, Valentyna N; Soy, Esin; Kirdeciler, Salih Kaan; Ozansoy Kasap, Berna; Lagarde, Florence; Jaffrezic-Renault, Nicole; Akata Kurç, Burcu; Soldatkin, Alexei P; Dzyadevych, Sergei V

    2015-01-01

    A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A. Changing the concentration of zeolite BEA in membranes, it is possible to extend the biosensor linear measurement range. The two-layer method of deposition of the enzyme with clinoptilolite was found to provide a significant increase in the biosensor sensitivity to substrates, whereas thermal modification of the zeolite BEA crystals can improve analytical characteristics of potentiometric biosensors for detection of toxic substances. These results show that it is possible to regulate the ISFET characteristics for different enzyme-based biosensors by tailoring the electrode surfaces via different zeolites. This makes zeolites strong candidates for integration into biosensors as ISFET modifiers. PMID:25852356

  8. The study of some possible measurement errors in clinical blood electrolyte potentiometric (ISE) analysers.

    PubMed

    Rumenjak, Vlatko; Milardović, Stjepan; Kruhak, Ivan; Grabarić, Bozidar S

    2003-09-01

    The understanding of the most important sources of error in potentiometric blood analyser which might contribute to better instruments measurement repeatability is very often marginalized in fabrications and daily operation of some commercial blood analysers. In this paper ISEs-potentiometric measurements were performed and validated in Clinical Institute of Laboratory Diagnosis of the Zagreb University School of Medicine and Clinical Hospital Centre, using a carefully designed and constructed fully automated (computerised) homemade ISE-based blood electrolyte analyser constructed with an in-line five-channel flow-through measuring cell. The influence of electrolyte concentration of the salt bridge is reported. Special attention has been paid to the reference electrode design, and constructions which can operate in open liquid junction and membrane restricted liquid junction modes are described. PMID:12927687

  9. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds.

    PubMed

    Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T

    2012-09-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. PMID:22406220

  10. Rapid semi-micro potentiometric titration of Ir(IV) with hydrazine sulphate

    SciTech Connect

    Lichtig, J.; ALves, J.C.

    1994-07-01

    A rapid potentiometric titration of Ir(IV) with hydrazine sulphate is described. 1.0 mg, 0.25 mg and 0.10 mg are determined with precision of 0.5%, 0.8% and 3.0%, respectively. Most of the common ions do not interfere as well as Rh(III). Some determinations of Ir(IV) in ores made with good precision and compared with a spectrophotometric method.

  11. Rapid determination of fluoride in potable waters by potentiometric flow injection analysis

    SciTech Connect

    Davey, D.E.; Mulcahy, D.E.; O'Connell, G.R.

    1986-01-01

    A potentiometric flow injection analysis system is described, enabling tap water and other fluoride-bearing matrices of low interferent level to be determined at the rate of 360 samples per hour using an electrode polished with slurried alumina. Important parameters, such as carrier stream composition, sample volume and detector cell design are discussed with respect to their system. Fluoride electrodes regenerated with silver fluoride and silver epoxy are evaluated in flow injection mode, both before and after polishing.

  12. Adsorption behavior of anionic polyelectrolyte for chemical mechanical polishing (CMP).

    PubMed

    Kim, Sarah; So, Jae-Hyun; Lee, Dong-Jun; Yang, Seung-Man

    2008-03-01

    In this work, we investigated the adsorption characteristics of anionic polyelectrolytes, which are used in shallow trench isolation chemical mechanical polishing with ceria abrasives. Specifically, the adsorption isotherms and chain conformation of anionic polyelectrolytes were studied in order to elucidate the difference in removal rates of silicon dioxide (SiO2) and silicon nitride (Si3N4) layers and the high selectivity characteristics of ceria slurry. Adsorption isotherms, FT-IR spectroscopy and contact angle measurements revealed that the anionic polyelectrolyte additives had much better adsorption affinities for the Si3N4 surface than for the SiO2 surface. Moreover, blanket wafer polishing results were successfully correlated with the adsorption isotherms of polyelectrolytes on the oxide particle suspensions. PMID:18078949

  13. Development of coated-wire silver ion selective electrodes on paper using conductive films of silver nanoparticles.

    PubMed

    Janrungroatsakul, Wanwisa; Lertvachirapaiboon, Chutiparn; Ngeontae, Wittaya; Aeungmaitrepirom, Wanlapa; Chailapakul, Orawon; Ekgasit, Sanong; Tuntulani, Thawatchai

    2013-11-21

    Films of silver nanoparticles are used for the first time as an electrical conductor and ion-to-electron transducer to fabricate coated-wire ion selective electrodes (ISEs) on paper. The film of nano silver ink (nano silver film), synthesized from the reduction of AgNO3 by NaBH4, was screen printed on paper. Transmission electron microscopy showed that the synthesized silver nanoparticles (AgNPs) possessed a spherical shape with diameter ca. 5 nm. Energy-dispersive X-ray spectroscopy supported the purity and good stability of the synthesized AgNPs. Nano silver films were sintered at room temperature, 100 °C and 200 °C. Upon increasing the sintering temperature, atomic force microscopy showed that the size of AgNPs of nano silver films increased, but the sheet resistivity decreased. Silver ISEs were then fabricated from nano silver films and o-NPOE-plasticized polymeric membranes containing benzothiazolyl calix[4]arene () as ionophore and KTpClPB as anionic site. The performance of the developed Ag-ISEs was investigated by potentiometric measurements, potentiometric water layer tests, current reversal chronopotentiometry and electrochemical impedance spectroscopy. The coated-wire electrode fabricated from the nano silver film sintering at room temperature showed the best characteristics of Ag-ISEs giving a near Nernstian response slope of 59.7 ± 1.0 mV per decade, 10(-6) to 10(-2) M linear range, detection limit of 4.5 × 10(-7) M, long-term potential stability and good reversibility. PMID:24071789

  14. Hydrogen bonding and molecular association in 2-(quinuclidinium)-butyric acid bromide hydrate studied by X-ray diffraction, DFT calculations, FTIR and NMR spectroscopy, and potentiometric titration

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.; Barczyński, P.

    2010-06-01

    The structure of 2-(quinuclidinium)-butyric acid bromide hydrate (QNBu·H 2O·HBr, 3) has been determined by X-ray diffraction, DFT calculations and characterized by FTIR and NMR spectroscopy. Crystals of 3 are monoclinic, space group P2 1. The water molecule interacts with the carboxylic group of 2-(quinuclidinium)-butyric acid and with the bromide anion by the COOH⋯OH 2 and HOH⋯Br hydrogen bonds of 2.575(3) and 3.293(2) Å, respectively. The structures of monomer ( 4) and dimeric cation ( 5) of the title complex have been optimized by the B3LYP/6-31G(d,p) approach, yielding conformations consistent with this in the crystal. The solid-state FTIR spectra of 3 and its deuterated analogue have been measured and compared with the theoretical spectrum of 4. The assignments of the observed and predicted bands have been proposed. The molecule of 3 has a chiral center at the C(9) atom, which is responsible for the non-magnetically equivalence of the α-ring and C(11)H 2 methylene protons in 1H NMR spectrum. The values of p Ka of quinuclidinium-acetate (quinuclidine betaine), 2-(quinuclidinium)-propionate and 2-(quinuclidinium)-butyrate have been determined by the potentiometric titration of their hydrohalides.

  15. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring.

    PubMed

    Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph

    2014-04-15

    This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains. PMID:24333582

  16. An intracellular anion channel critical for pigmentation

    PubMed Central

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. DOI: http://dx.doi.org/10.7554/eLife.04543.001 PMID:25513726

  17. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. PMID:25513726

  18. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  19. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  20. Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals

    SciTech Connect

    Mimendia, Aitor; Merkoci, Arben; Valle, Manel del; Legin, Andrey

    2009-05-23

    An automated potentiometric electronic tongue (ET) was developed for the quantitative determination of heavy metal mixtures. The Sequential Injection Analysis (SIA) technique was used in order to automate the obtaining of input data, and the combined response was modeled by means of Artificial Neural Networks (ANN). The sensor array was formed by four sensors: two based on chalcogenide glasses Cd sensor and Cu sensor, and the rest on poly(vinyl chloride) membranes Pb sensor and Zn sensor. The Ion Selective Electrode (ISE) sensors were first characterized with respect to one and two analytes, by means of high-dimensionality calibrations, thanks to the use of the automated flow system; this characterization enabled an interference study of great practical utility. To take profit of the dynamic nature of the sensor's response, the kinetic profile of each sensor was compacted by Fast Fourier Transform (FFT) and the extracted coefficients were used as inputs for the ANN in the multidetermination applications. In order to identify the ANN which provided the best model of the electrode responses, some of the network parameters were optimized. Finally analyses were performed employing synthetic samples and water samples of the river Ebro; obtained results were compared with reference methods.

  1. Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals

    NASA Astrophysics Data System (ADS)

    Mimendia, Aitor; Legin, Andrey; Merkoçi, Arben; del Valle, Manel

    2009-05-01

    An automated potentiometric electronic tongue (ET) was developed for the quantitative determination of heavy metal mixtures. The Sequential Injection Analysis (SIA) technique was used in order to automate the obtaining of input data, and the combined response was modeled by means of Artificial Neural Networks (ANN). The sensor array was formed by four sensors: two based on chalcogenide glasses Cd sensor and Cu sensor, and the rest on poly(vinyl chloride) membranes Pb sensor and Zn sensor. The Ion Selective Electrode (ISE) sensors were first characterized with respect to one and two analytes, by means of high-dimensionality calibrations, thanks to the use of the automated flow system; this characterization enabled an interference study of great practical utility. To take profit of the dynamic nature of the sensor's response, the kinetic profile of each sensor was compacted by Fast Fourier Transform (FFT) and the extracted coefficients were used as inputs for the ANN in the multidetermination applications. In order to identify the ANN which provided the best model of the electrode responses, some of the network parameters were optimized. Finally analyses were performed employing synthetic samples and water samples of the river Ebro; obtained results were compared with reference methods.

  2. Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle.

    PubMed

    Řezanka, Michal; Langton, Matthew J; Beer, Paul D

    2015-03-14

    The synthesis of a water soluble [2]rotaxane is reported using hydrophilic secondary rim functionalised permethylated β-cyclodextrin derivatives as the axle stopper groups. The rotaxane recognises halide anions in pure water with impressive selectivity over sulfate. PMID:25682747

  3. Precise, fast, and flexible determination of protein interactions by affinity capillary electrophoresis: part 3: anions.

    PubMed

    Xu, Yuanhong; Redweik, Sabine; El-Hady, Deia Abd; Albishri, Hassan M; Preu, Lutz; Wätzig, Hermann

    2014-08-01

    The binding of physiologically anionic species or negatively charged drug molecules to proteins is of great importance in biochemistry and medicine. Since affinity capillary electrophoresis (ACE) has already proven to be a suitable analytical tool to study the influence of ions on proteins, this technique was applied here for comprehensively studying the influence of various anions on proteins of BSA, β-lactoglobulin, ovalbumin, myoglobin, and lysozyme. The analysis was performed using different selected anions of succinate, glutamate, phosphate, acetate, nitrate, iodide, thiocyanate, and pharmaceuticals (salicylic acid, aspirin, and ibuprofen) that exist in the anionic form at physiological pH 7.4. Due to the excellent repeatability and precision of the ACE measurements, not necessarily strong but significant influences of the anions on the proteins were found in many cases. Different influences in the observed bindings indicated change of charge, mass, or conformational changes of the proteins due to the binding with the studied anions. Combining the mobility-shift and pre-equilibrium ACE modes, rapidity and reversibility of the protein-anion bindings were discussed. Further, circular dichroism has been used as an orthogonal approach to characterize the interactions between the studied proteins and anions to confirm the ACE results. Since phosphate and various anions from amino acids and small organic acids such as succinate or acetate are present in very high concentrations in the cellular environment, even weak influences are certainly relevant as well. PMID:24436007

  4. Potentiometric and NMR complexation studies of phenylboronic acid PBA and its aminophosphonate analog with selected catecholamines

    NASA Astrophysics Data System (ADS)

    Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika

    2013-05-01

    Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.

  5. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  6. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  7. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  8. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  9. Anionic Forensic Signatures for Sample Matching of Potassium Cyanide Using High Performance Ion Chromatography and Chemometrics

    SciTech Connect

    Fraga, Carlos G.; Farmer, Orville T.; Carman, April J.

    2011-01-30

    Potassium cyanide, a known poison, was used a model compound to determine the feasibility of using anionic impurities as a forensic signature for matching KCN samples back to their source. In this study, portions of eight KCN stocks originating from four countries were separately dissolved in water and analyzed by high performance ion chromatography (HPIC) using an anion exchange column and conductivity detection. Sixty KCN aqueous samples were produced from the eight stocks and analyzed for 11anionic impurities. Hierarchal cluster analysis and principal component analysis were used to demonstrate that KCN samples cluster according to source based on the concentrations of their anionic impurities. The F-ratio method and degree-of-class separation (DCS) were used for feature selection on a training set of KCN samples in order to optimize sample clustering. The optimal subset of anions needed for sample classification was determined to be sulfate, oxalate, phosphate, and an unknown anion named unk5. Using K-nearest neighbors (KNN) and the optimal subset of anions, KCN test samples from different KCN stocks were correctly determined to be manufactured in the United States. In addition, KCN samples from stocks manufactured in Belgium, Germany, and the Czech Republic were all correctly matched back to their original stocks because each stock had a unique anionic impurity profile. The application of the F-ratio method and DCS for feature selection improved the accuracy and confidence of sample classification by KNN.

  10. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    SciTech Connect

    Ferguson, Michael James

    2005-12-15

    SFG spectra of ice-like structure we conclude that surface hydroxides are formed and no liquid water is present on the surface. Other than model catalysis, gas phase anion photoelectron spectroscopy of the Cl + H{sub 2} van der Waals well, silicon clusters, germanium clusters, aluminum oxide clusters and indium phosphide clusters were studied. The spectra help to map out the neutral potential energy surfaces of the clusters. For aluminum oxide, the structures of the anions and neutrals were explored and for silicon, germanium and indium phosphide the electronic structure of larger clusters was mapped out.

  11. Transient Anion States of Biomolecules

    NASA Astrophysics Data System (ADS)

    Varella, Marcio

    2012-10-01

    Much of the interest on electron interactions with biomolecules is related to radiation damage [Gohlke and Illenberger, Europhys. News 33, 207 (2002)]. The high energy photons employed in radiology and radiotherapy generate a large number of fast electrons in living cells. These electrons thermalize in a picosecond scale, eventually forming dissociative matestable anions with water and biomolecules. In this work, we employ the parallel version of Schwinger Multichannel Method with Pseudopotentials [Bettega et al., Phys. Rev. A 47, 1111 (1993); Santos et al., J. Phys. Chem. 136, 084307 (2012)] to investigate transient anion states of protein and nucleic acid precursors. We address glycine in both neutral and zwitterionic forms, as well as glycine-water clusters and disulfide bonds. The interest on the two forms of glycine (and other amino acids) relies on the fact that only the neutral form is stable in the gas phase, while the zwitterion is more stable in solution, pointing out limitations of standard gas-phase studies. Electron attachment to disulfide bonds also has potential impact on protein stability. Finally we address transient anion states of substituted uracil molecules in the gas phase. [4pt] In collaboration with M. H. F. Bettega, S. d'A. Sanchez, R. F. da Costa, M. A. P. Lima, J. S. dos Santos, and F. Kossoski.

  12. Poly(phenylene)-based anion exchange membrane

    DOEpatents

    Hibbs, Michael; Cornelius, Christopher J.; Fujimoto, Cy H.

    2011-02-15

    A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.

  13. Exploring bitterness of traditional Chinese medicine samples by potentiometric electronic tongue and by capillary electrophoresis and liquid chromatography coupled to UV detection.

    PubMed

    Yaroshenko, Irina; Kirsanov, Dmitry; Kartsova, Lyudmila; Sidorova, Alla; Sun, Qiyong; Wan, Haitong; He, Yu; Wang, Ping; Legin, Andrey

    2016-05-15

    Instrumental bitterness assessment of traditional Chinese herbal medicine (TCM) preparations was addressed in this study. Three different approaches were evaluated, high-performance liquid chromatography coupled to UV detector (HPLC), capillary electrophoresis coupled to UV detector (CE) and a potentiometric multisensor system - electronic tongue (ET). Most studies involving HPLC and CE separations use these as selective instruments for quantification of individual substances. However we employed these techniques to provide chromatographic or electrophoretic sample profiles. These profiles are somewhat analogous to the profiles produced by the ET. Profiles from all instruments were then related to professional sensory panel evaluations using projections on latent structures (PLS) regression. It was found that all three methods allow for bitterness assessment in TCM samples in terms of human sensory panel with root mean squared errors of prediction ca. 0.9 within bitterness scale from 0 (no bitterness) to 6 (maximal bitterness). PMID:26992500

  14. A Pyrrolyl-based Triazolophane: A Macrocyclic Receptor With CH and NH Donor Groups That Exhibits a Preference for Pyrophosphate Anions

    PubMed Central

    Sessler, Jonathan L.; Cai, Jiajia; Gong, Han-Yuan; Yang, Xiaoping; Arambula, Jonathan F.; Hay, Benjamin P.

    2010-01-01

    A pyrrolyl-based triazolophane, incorporating CH and NH donor groups, acts as a receptor for the pyrophosphate anion in chloroform solution. It shows selectivity for this trianion, followed by HSO4- > H2PO4- > Cl- > Br- (all as the corresponding tetrabutylammonium salts), with NH-anion interactions being more important than CH-anion interactions. In the solid state, the receptor binds the pyrophosphate anion in a clip-like slot via NH and CH hydrogen bonds. PMID:20853896

  15. Gating mechanisms of a natural anion channelrhodopsin

    PubMed Central

    Sineshchekov, Oleg A.; Govorunova, Elena G.; Li, Hai; Spudich, John L.

    2015-01-01

    Anion channelrhodopsins (ACRs) are a class of light-gated channels recently identified in cryptophyte algae that provide unprecedented fast and powerful hyperpolarizing tools for optogenetics. Analysis of photocurrents generated by Guillardia theta ACR 1 (GtACR1) and its mutants in response to laser flashes showed that GtACR1 gating comprises two separate mechanisms with opposite dependencies on the membrane voltage and pH and involving different amino acid residues. The first mechanism, characterized by slow opening and fast closing of the channel, is regulated by Glu-68. Neutralization of this residue (the E68Q mutation) specifically suppressed this first mechanism, but did not eliminate it completely at high pH. Our data indicate the involvement of another, yet-unidentified pH-sensitive group X. Introducing a positive charge at the Glu-68 site (the E68R mutation) inverted the channel gating so that it was open in the dark and closed in the light, without altering its ion selectivity. The second mechanism, characterized by fast opening and slow closing of the channel, was not substantially affected by the E68Q mutation, but was controlled by Cys-102. The C102A mutation reduced the rate of channel closing by the second mechanism by ∼100-fold, whereas it had only a twofold effect on the rate of the first. The results show that anion conductance by ACRs has a fundamentally different structural basis than the relatively well studied conductance by cation channelrhodopsins (CCRs), not attributable to simply a modification of the CCR selectivity filter. PMID:26578767

  16. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  17. The dissociation constants of the cytostatic bosutinib by nonlinear least-squares regression of multiwavelength spectrophotometric and potentiometric pH-titration data.

    PubMed

    Meloun, Milan; Nečasová, Veronika; Javůrek, Milan; Pekárek, Tomáš

    2016-02-20

    Potentiometric and spectrophotometric pH-titration of the multiprotic cytostatics bosutinib for dissociation constants determination were compared. Bosutinib treats patients with positive chronic myeloid leukemia. Bosutinib exhibits four protonatable sites in a pH range from 2 to 11, where two pK are well separated (ΔpK>3), while the other two are near dissociation constants. In the neutral medium, bosutinib occurs in the slightly water soluble form LH that can be protonated to the soluble cation LH4(3+). The molecule LH can be dissociated to still difficultly soluble anion L(-). The set of spectra upon pH from 2 to 11 in the 239.3-375.0nm was divided into two absorption bands: the first one from 239.3 to 290.5nm and the second from 312.3 to 375.0nm, which differ in sensitivity of chromophores to a pH change. Estimates of pK of the entire set of spectra were compared with those of both absorption bands. Due to limited solubility of bosutinib the protonation in a mixed aqueous-methanolic medium was studied. In low methanol content of 3-6% three dissociation constants can be reliably determined with SPECFIT/32 and SQUAD(84) and after extrapolation to zero content of methanol they lead to pKc1=3.43(12), pKc2=4.54(10), pKc3=7.56(07) and pKc4=11.04(05) at 25°C and pKc1=3.44(06), pKc2=5.03(08) pKc3=7.33(05) and pKc4=10.92(06) at 37°C. With an increasing content of methanol in solvent the dissociation of bosutinib is suppressed and the percentage of LH3(2+) decreases and LH prevails. From the potentiometric pH-titration at 25°C the concentration dissociation constants were estimated with ESAB pKc1=3.51(02), pKc2=4.37(02), pKc3=7.97(02) and pKc4=11.05(03) and with HYPERQUAD: pKc1=3.29(12), pKc2=4.24(10), pKc3=7.95(07) and pKc4=11.29(05). PMID:26730513

  18. A titanium nitride nanotube array for potentiometric sensing of pH.

    PubMed

    Liu, Mengyang; Ma, Yanling; Su, Lei; Chou, Kuo-Chih; Hou, Xinmei

    2016-03-01

    A titanium nitride nanotube array (TiN NTA) electrode was fabricated through anodic oxidation of titanium and reduction and nitridation of TiO2 NTA. The microstructure of TiN NTA was characterized to be uniform with inner diameters of about 120 nm, a wall thickness of 15-20 nm and an average length of 10 μm. Open-circuit potentials were measured to evaluate the TiN TNA electrode related to pH sensitivity, response time, stability, selectivity, hysteresis and reproducibility in the pH range of 2.0-11.0 at 20 ± 1 °C. The prepared TiN NTA electrode exhibits a near-Nernstian slope of 55.33 mV per pH with the correlation coefficient value of 0.995. It shows good selectivity for H(+) ions in the presence of cations and anions, especially in fluoride-containing media. It also has good stability and reproducibility with a response time of 4.4 s. These make it a promising candidate as a pH electrode sensor. PMID:26818696

  19. A new anionic exchange stir bar sorptive extraction coating based on monolithic material for the extraction of inorganic anion.

    PubMed

    Huang, Xiaojia; Lin, Jianbing; Yuan, Dongxing

    2010-07-23

    A novel anionic exchange stir bar sorptive extraction (SBSE) coating based on poly(2-(methacryloyloxy)ethyltrimethylammonium chloride-co-divinylbenzene) monolithic material for the extraction of inorganic anion was prepared. The effect of preparation conditions such as ratio of functional monomer to cross-linker, content of porogenic solvent on the extraction efficiencies were investigated in detailed. The monolithic material was characterized by elemental analysis, scanning electron microscopy and infrared spectroscopy. In order to investigate the extraction capacity of the new coating for inorganic anion, the new SBSE was combined with ionic chromatography with conductivity detection, Br-, NO3-, PO4(3-) and SO4(2-) were selected as detected solutes. Several extractive parameters, including pH value and ionic strength in sample matrix, desorption solvent, extraction and desorption time were optimized. The results showed that strongly ionic strength did not favor the extraction of anlaytes. Under the optimum experimental conditions, low detection limits (S/N=3) and quantification limits (S/N=10) of the proposed method for the target anions were achieved within the range of 0.92-2.62 and 3.03-9.25 microg/L, respectively. The method also showed good linearity, simplicity, practicality and low cost for the extraction inorganic anions. Finally, the proposed method was successfully used to detect the two different trademarks of commercial purified water with satisfactory recovery in the range of 70.0-92.6%. To the best of our knowledge, this is the first to use SBSE to enrich inorganic anions. PMID:20576270

  20. Estimated 2008 groundwater potentiometric surface and predevelopment to 2008 water-level change in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico

    USGS Publications Warehouse

    Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.

    2011-01-01

    The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of

  1. Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2015-07-01

    We report a general concept based on a selective electrochemical ion pump used for creating concentration perturbations in thin layer samples (∼40 μL). As a first example, hydrogen ions are released from a selective polymeric membrane (proton pump) and the resulting pH is assessed potentiometrically with a second membrane placed directly opposite. By applying a constant potential modulation for 30 s, an induced proton concentration of up to 350 mM may be realized. This concept may become an attractive tool for in situ titrations without the need for sampling, because the thin layer eventually re-equilibrates with the contacting bulk sample. Acid-base titrations of NaOH and Na2 CO3 are demonstrated. The determination of total alkalinity in a river water sample is carried out, giving levels (23.1 mM) comparable to that obtained by standard methods (23.6 mM). The concept may be easily extended to other ions (cations, anions, polyions) and may become attractive for environmental and clinical applications. PMID:26014101

  2. Electroactive Materials for Anion Separation-Technetium from Nitrate

    SciTech Connect

    Hubler, Timothy L.; McBreen, James; Smyrl, William H.; Lilga, Mike A.; Rassat, Scot D.

    2004-06-29

    The aim of the proposed research is to use electroactive ion exchange materials to remove anionic contaminants from HLW wastes and process streams. An ion exchange process using electroactive materials sorbs contaminants selectively and then expels (elutes) them electrochemically by changing the charge balance through redox reactions in the sorbent as opposed to requiring the addition of a chemical eluent. Such processes can theoretically remove anions (e.g., pertechnetate, chromate, and perchorate) and concentrate them in a separate product stream while adding no process chemicals. A practical implementation in HLW process facilities would be a breakthrough in the ability of DOE to economically minimize waste and prevent pollution throughout the complex. To enable this, our work focuses on manipulating specific properties of redox polymers to control the hydrophobicity and ion-pair properties pertinent to the reversibility, selectivity, stability, intercalation/de-intercalation rates, and capacity of the polymers.

  3. Potentiometric surface of the upper Floridan Aquifer in the St. Johns Water Management District and vicinity, Florida, May 1984

    USGS Publications Warehouse

    Schiner, George R.; Hayes, Eugene C.

    1984-01-01

    This map shows the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1984. The Upper Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 1,000 wells and on several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area a 40-foot interval is used to show a deep cone of depression. The potentiometric surface ranged from 126 feet above sea level in Polk County to 84 feet below sea level in Nassau County. Water levels in key wells were mostly above, or less frequently, slightly below averages for May in response to diverse area rainfall patterns. Most levels in the district were about the same, or more commonly, 1 to 2 feet lower than May 1983 levels. (USGS)

  4. Fusion of Potentiometric & Voltammetric Electronic Tongue for Classification of Black Tea Taste based on Theaflavins (TF) Content

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Nabarun; Legin, Andrey; Papieva, Irina; Sarkar, Subrata; Kirsanov, Dmitry; Kartsova, Anna; Ghosh, Arunangshu; Bandyopadhyay, Rajib

    2011-09-01

    Black tea is an extensively consumed beverage worldwide with an expanding market. The final quality of black tea depends upon number of chemical compounds present in the tea. Out of these compounds, theaflavins (TF), which is responsible for astringency in black tea, plays an important role in determining the final taste of the finished black tea. The present paper reports our effort to correlate the theaflavins contents with the voltammetric and potentiometric electronic tongue (e-tongue) data. Noble metal-based electrode array has been used for collecting data though voltammetric electronic tongue where as liquid filled membrane based electrodes have been used for potentiometric electronic tongue. Black tea samples with tea taster score and biochemical results have been collected from Tea Research Association, Tocklai, India for the analysis purpose. In this paper, voltammetric and potentiometric e-tongue responses are combined to demonstrate improvement of cluster formation among tea samples with different ranges of TF values.

  5. Potentiometric surface of the upper Cape Fear Aquifer in the central coastal plain of North Carolina, December 1986

    USGS Publications Warehouse

    Winner, M.D., Jr.; Lyke, William L.; Brockman, Allen R.

    1989-01-01

    Water-level measurements were made in 84 wells open to the upper Cape Fear aquifer at the end of 1986 to determine the configuration of its potentiometric surface over an area of approximately 5,500 sq mi. The major feature of the potentiometric surface is the development of a large, almost circular cone of depression as a result of the merging of a number of smaller cones. The center of the large cone lies along an axis between Greenville and Kinston. The potentiometric surface in the upper Cape Fear is nearly 100 ft below sea level at Greenville; it is more than 100 ft above sea level south of the Neuse River near Colorado.

  6. Potentiometric surface of the Floridan Aquifer, St. Johns River Water Management District and vicinity, Florida, May 1981

    USGS Publications Warehouse

    Schiner, George R.; Hayes, Eugene C.

    1981-01-01

    This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1981. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made in approximately 1,000 wells and at several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area 20 and 40-foot intervals are used to show a deep cone of depression. The potentiometric surface ranged from 122 feet above NGVD (National Geodetic Vertical Datum of 1929) in Polk County to 125 feet below NGVD in Nassau County. Water levels were at record lows in many counties due to lack of rainfall. Declines were as much as 10 feet and commonly 5 feet from the May 1980 levels. (USGS)

  7. High-capacity anion exchangers based on poly (glycidylmethacrylate-divinylbenzene) microspheres for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Cheng, Heli; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-10-01

    Poly (glycidylmethacrylate-divinylbenzene) microspheres were prepared by the two-staged swelling and polymerization method and applied to prepare anion exchange stationary phases. Methylamine, dimethylamine, trimethylamine, diethylamine and triethylamine were selected to prepare the quaternary ammonium groups of anion exchangers, respectively. The diameters and surface characteristics of microspheres were measured by scanning electron microscope and nitrogen adsorption-desorption measurements. The anion exchangers were characterized by Fourier transform infrared spectrum, elemental analysis and breakthrough curve methods. The chromatographic performances of anion exchangers were illustrated by separating conventional anions, organic weak acids and carbohydrates. The results indicated that the anion exchange capacities were controllable by changing either the content of glycidylmethacrylate in microspheres or the number of bonded quaternary ammonium layer. Meanwhile, the substituents of quaternary ammonium groups greatly influenced the separation properties of anion exchangers. Finally, the three-layer methylamine-quaternized anion exchanger was successfully applied for the determination of fluoride in tea sample. The content of fluoride was detected to be 0.13mgg(-1) without the interference of acetate and formate. PMID:27474308

  8. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District, May 1984

    USGS Publications Warehouse

    Barr, G.L.; Schiner, George R.

    1984-01-01

    A May 1984 potentiometric surface map of the Southwest Florida Water Management District depicts the annual low water-level period. Water levels in most wells measured in May 1984 were lower than in September 1983. May levels averaged about 1 foot lower than September levels in areas north of latitude 28 07'10' ' and about 9 feet lower in southern areas. Generally, water levels in May 1984 were lower when compared to May 1983. Water levels in most wells measured in May 1984 averaged less than 1 foot lower than May 1983 levels in the north and about 2 feet lower in the south. (USGS)

  9. A numerical method of finding potentiometric titration end-points by use of approximative spline functions.

    PubMed

    Ren, K

    1990-07-01

    A new numerical method of determining potentiometric titration end-points is presented. It consists in calculating the coefficients of approximative spline functions describing the experimental data (e.m.f., volume of titrant added). The end-point (the inflection point of the curve) is determined by calculating zero points of the second derivative of the approximative spline function. This spline function, unlike rational spline functions, is free from oscillations and its course is largely independent of random errors in e.m.f. measurements. The proposed method is useful for direct analysis of titration data and especially as a basis for construction of microcomputer-controlled automatic titrators. PMID:18964999

  10. Determination of different valence forms of cerium in glasses using potentiometric titration

    SciTech Connect

    Chesnokova, S.M.; Danilova, I.Yu.; Andreev, P.A.

    1987-09-01

    This paper describes a potentiometric method for the quantitative determination of two cerium oxide forms--cerium dioxide and dicerium trioxide--in glasses where the oxides form a major constituent. The method uses hydroquinone as a reducing agent. Cerium valences are also determined. The sensitivity of the method is tested by analyzing known synthetic mixtures simulating the composition of the glasses. The method has been used to determine the total concentration of cerium and to monitor the redox regime in glass melting furnaces during the melting of cerium-containing glasses.

  11. Underground Test Area Subproject Phase I Data Analysis Task. Volume II - Potentiometric Data Document Package

    SciTech Connect

    1996-12-01

    Volume II of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the potentiometric data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  12. Anion Permeation in Ca2+-Activated Cl− Channels

    PubMed Central

    Qu, Zhiqiang; Hartzell, H. Criss

    2000-01-01

    Ca2+-activated Cl channels (ClCaCs) are an important class of anion channels that are opened by increases in cytosolic [Ca2+]. Here, we examine the mechanisms of anion permeation through ClCaCs from Xenopus oocytes in excised inside-out and outside-out patches. ClCaCs exhibited moderate selectivity for Cl over Na: PNa/PCl = 0.1. The apparent affinity of ClCaCs for Cl was low: Kd = 73 mM. The channel had an estimated pore diameter >0.6 nm. The relative permeabilities measured under bi-ionic conditions by changes in Erev were as follows: C(CN)3 > SCN > N(CN)2 > ClO4 > I > N3 > Br > Cl > formate > HCO3 > acetate = F > gluconate. The conductance sequence was as follows: N3 > Br > Cl > N(CN)2 > I > SCN > COOH > ClO4 > acetate > HCO3 = C(CN)3 > gluconate. Permeant anions block in a voltage-dependent manner with the following affinities: C(CN)3 > SCN = ClO4 > N(CN)2 > I > N3 > Br > HCO3 > Cl > gluconate > formate > acetate. Although these data suggest that anionic selectivity is determined by ionic hydration energy, other factors contribute, because the energy barrier for permeation is exponentially related to anion hydration energy. ClCaCs exhibit weak anomalous mole fraction behavior, implying that the channel may be a multi-ion pore, but that ions interact weakly in the pore. The affinity of the channel for Ca2+ depended on the permeant anion at low [Ca2+] (100–500 nM). Apparently, occupancy of the pore by a permeant anion increased the affinity of the channel for Ca2+. The current was strongly dependent on pH. Increasing pH on the cytoplasmic side decreased the inward current, whereas increasing pH on the external side decreased the outward current. In both cases, the apparent pKa was voltage-dependent with apparent pKa at 0 mV = ∼9.2. The channel may be blocked by OH− ions, or protons may titrate a site in the pore necessary for ion permeation. These data demonstrate that the permeation properties of ClCaCs are different from those of CFTR or ClC-1, and provide

  13. Nonadiabatic dynamics of charge transfer in diatomic anion clusters

    SciTech Connect

    Cho, Eunseog; Shin, Seokmin

    2007-12-28

    We have studied the photodissociation and recombination dynamics of the diatomic anions X{sub 2}{sup -} and XY{sup -} designed to mimic I{sub 2}{sup -} and ICl{sup -}, respectively, by using a one-electron model in size-selected N{sub 2}O clusters. The one-electron model is composed of two nuclei and an extra electron moving in a two-dimensional plane including the two nuclei. The main purpose of this study is to explain the salient features of various dynamical processes of molecular ions in clusters using a simple theoretical model. For heteronuclear diatomic anions, a mass disparity and asymmetric electron affinity between the X and Y atoms lead to different phenomena from the homonuclear case. The XY{sup -} anion shows efficient recombination for a smaller cluster size due to the effect of collision-mediated energy transfer and an inherent potential wall on excited state at asymptotic region, while the recombination for the X{sub 2}{sup -} anion is due to rearrangement of solvent configuration and faster nonadiabatic transitions. The results of the present study illustrate the microscopic details of the electronically nonadiabatic processes which control the photodissociation dynamics of molecular ions in clusters.

  14. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling.

    PubMed

    Gulersonmez, Mehmet Can; Lock, Stephen; Hankemeier, Thomas; Ramautar, Rawi

    2016-04-01

    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity. PMID:26593113

  15. ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES

    DOEpatents

    Hyde, E.K.; Raby, B.A.

    1959-02-10

    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  16. The difference between the potentiometric surfaces of the Aquia Aquifer, September 1982 and September 2003 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreason, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 2003. The map, based on water level measurements in 56 wells, shows that the potentiometric surface during the 21-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 108 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  17. Potentiometric surface, 2013, and water-level differences, 1991-2013, of the Carrizo-Wilcox aquifer in northwest Louisiana

    USGS Publications Warehouse

    Fendick, Robert B., Jr.; Carter, Kayla

    2015-01-01

    This report presents data and maps that illustrate the potentiometric surface of the Carrizo-Wilcox aquifer during March–May 2013 and water-level differences from 1991 to 2013. The potentiometric surface map can be used for determining the direction of groundwater flow, hydraulic gradients, and effects of withdrawals on the groundwater resource. The rate of groundwater movement also can be estimated from the gradient when the hydraulic conductivity is applied. Water-level data collected for this study are stored in the USGS National Water Information System (NWIS) (http://waterdata.usgs.gov/nwis) and are on file at the USGS office in Baton Rouge, La.

  18. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer in Southern Maryland, September 1975 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland between September 1975 and September 2009. The map, based on water level differences obtained from 48 wells, shows that during the 34-year period, the potentiometric surface had little change at the outcrop area, which is in the northernmost part of the study area, but declined 75 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  19. The Difference Between the Potentiometric Surfaces of the Aquia Aquifer in Southern Maryland, September 1982 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 2007. The map, based on water-level measurements in 53 wells, shows that the potentiometric surface during the 25-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 117 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  20. The difference between the potentiometric surfaces of the Magothy Aquifer of September 1986 and September 1988 in southern Maryland

    USGS Publications Warehouse

    Mack, Frederick K.; Andreasen, David C.; Curtin, Stephen E.; Wheeler, Judith C.

    1990-01-01

    A map was prepared that shows the net change in the potentiometric surface of the Magothy aquifer (in the Cretaceous Magothy Formation) in southern Maryland from the fall of 1986 to the fall of 1988. The map, based on water level measurements from 79 observation wells, shows that during the 2 year period the potentiometric surface declined less than 5 ft in most of the northern part of the study area and more than 10 ft in a 4-sq-mi area in northern Charles County. Net water-level rises of as much as 2 ft were measured in central Charles County. (USGS)

  1. The difference between the potentiometric surfaces of the Magothy aquifer, September 1975 and September 2003 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in Southern Maryland for September 1975 and September 2003. The map, based on water level measurements in 51 wells, shows that during the 28-year period, the potentiometric surface had no change at the outcrop area, which is in the northernmost part of the study area, but declined 71 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  2. The Difference Between the Potentiometric Surfaces of the Aquia Aquifer in Southern Maryland, September 1982 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland between September 1982 and September 2009. The map, based on water level differences obtained from 49 wells, shows that the potentiometric surface during the 27-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 111 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  3. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer in Southern Maryland, September 1975 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland for September 1975 and September 2007. The map, based on water-level measurements in 51 wells, shows that during the 32-year period, the potentiometric surface had no change at the outcrop area, which is in the northernmost part of the study area, but declined 90 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  4. The Difference Between the Potentiometric Surfaces of the Upper Patapsco Aquifer in Southern Maryland, September 1990 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland for September 1990 and September 2007. The map, based on water-level measurements in 33 wells, shows that during the 17-year period, the change in the potentiometric surface ranged from zero at the edge of the outcrop area in northern Anne Arundel County to a decline of 28 feet at Crofton Meadows, 38 feet at Arnold, 36 feet at Waldorf, 35 feet at the Chalk Point power plant, and 40 feet at Lexington Park.

  5. Adsorption affinity of anions on metal oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  6. Competitive anion transport in desalting of mixtures of organic acids by batch electrodialysis.

    SciTech Connect

    Moon, P. J.; Parulekar, S. J.; Tsai, S.-P.; Energy Systems; Illinois Inst. of Tech.

    1998-04-01

    Desalting and separation of binary and quaternary acid mixtures via batch electrodialysis are investigated in this article. A monoselective cation exchange membrane and either a non-selective or a monoselective anion exchange membrane are employed in the electrodialysis stack. The effects of current density and composition of the initial feed of the electrodialysis stack (employing a non-selective anion exchange membrane) on its performance are studied in experiments involving mixtures of acetic and succinic acids. The effect of the type of the anion exchange membrane on the process performance is examined in desalting experiments involving a mixture of acetic, formic, lactic, and succinic acids. The trends observed in the experiments are interpreted in terms of species-specific parameters (such as molar concentration, charge on ionic species, molecular weight, degree of ionization, and ionic equivalent conductivity) and characteristics of anion exchange membrane used.

  7. Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen–host interactions

    PubMed Central

    Rambow, Janis; Wu, Binghua; Rönfeldt, Deike; Beitz, Eric

    2014-01-01

    Classically, aquaporins are divided based on pore selectivity into water specific, orthodox aquaporins and solute-facilitating aquaglyceroporins, which conduct, e.g., glycerol and urea. However, more aquaporin-passing substrates have been identified over the years, such as the gasses ammonia and carbon dioxide or the water-related hydrogen peroxide. It became apparent that not all aquaporins clearly fit into one of only two subfamilies. Furthermore, certain aquaporins from both major subfamilies have been reported to conduct inorganic anions, such as chloride, or monoacids/monocarboxylates, such as lactic acid/lactate. Here, we summarize the findings on aquaporin anion transport, analyze the pore layout of such aquaporins in comparison to prototypical non-selective anion channels, monocarboxylate transporters, and formate–nitrite transporters. Finally, we discuss in which scenarios anion conducting aquaporins may be of physiological relevance. PMID:25225485

  8. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.

  9. Dual aptamer-immobilized surfaces for improved affinity through multiple target binding in potentiometric thrombin biosensing.

    PubMed

    Goda, Tatsuro; Higashi, Daiki; Matsumoto, Akira; Hoshi, Toru; Sawaguchi, Takashi; Miyahara, Yuji

    2015-11-15

    We developed a label-free and reagent-less potentiometric biosensor with improved affinity for thrombin. Two different oligomeric DNA aptamers that can recognize different epitopes in thrombin were introduced in parallel or serial manners on the sensing surface to capture the target via multiple contacts as found in many biological systems. The spacer and linker in the aptamer probes were optimized for exerting the best performance in molecular recognition. To gain the specificity of the sensor to the target, an antifouling molecule, sulfobeaine-3-undecanethiol (SB), was introduced on the sensor to form a self-assembled monolayer (SAM). Surface characterization revealed that the aptamer probe density was comparable to the distance of the two epitopes in thrombin, while the backfilling SB SAM was tightly aligned on the surface to resist nonspecific adsorption. The apparent binding parameters were obtained by thrombin sensing in potentiometry using the 1:1 Langmuir adsorption model, showing the improved dissociation constants (Kd) with the limit of detection of 5.5 nM on the dual aptamer-immobilized surfaces compared with single aptamer-immobilized ones. A fine control of spacer and linker length in the aptamer ligand was essential to realize the multivalent binding of thrombin on the sensor surface. The findings reported herein are effective for improving the sensitivity of potentiometric biosensor in an affordable way towards detection of tiny amount of biomolecules. PMID:26067329

  10. Potentiometric assessment of iron release during ferritin reduction by exogenous agents.

    PubMed

    Vladimirova, Lilia S; Kochev, Valery K

    2010-09-01

    This work studied the possibilities for quantitative determination of iron mobilization in connection with ferritin reduction by ascorbic acid (vitamin C) and sodium dithionite in vitro. The iron storage protein was incubated with an excess of reductant in aerobic conditions in the absence of complexing agents in the medium. The release of Fe(2+) was let to go to completion, and the overall content of Fe(2+) in the solution was evaluated with the aid of potentiometric titration using Ce(4+) as an oxidizing titrant. Results suggest a moderate iron efflux under the influence of the chosen reducing agents. Although such a reduction of the protein mineral core by dihydroxyfumarate contributes greatly to the iron mobilization, ferritin behavior with vitamin C and dithionite seems to be different. Although redox properties of dihydroxyfumarate are determined by hydroxyl groups similar to those of ascorbic acid, the two compounds differ significantly in structure, and this could be the basis for an explanation of the specificities in their interaction with ferritin. As revealed by the study, potentiometric titration promises to be a reliable tool for evaluation of the amount of Fe(2+) present in the solution as a result of the reduction of the ferritin's mineral core. PMID:20434425

  11. The potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295C

    SciTech Connect

    Giordano, T.H. ); Drummond, S.E. )

    1991-09-01

    A potentiometric method was used to determine the formation quotients of zinc acetate complexes in aqueous solutions from 50 to 295C at ionic strengths of 0.03, 0.3, and 1.0 m. The potentiometric titrations were carried out in an externally heated, Teflon-lined concentration cell fitted with hydrogen electrodes. Formal sodium acetate concentrations of the experimental solutions ranged from 0.001 to 0.1 m with acetic acid to sodium acetate ratios ranging from 30 to 300. Sodium trifluoromethanesulfonate (F{sub 3}CSO{sub 3}Na) was used as a supporting electrolyte. Stoichiometries and formation quotients for the complexes ZnCH{sub 3}COO{sup +}, Zn(CH{sub 3}COO){sub 2}, and Zn(CH{sub 3}COO){sub 3}{sup {minus}} were derived from the titration data by regression analysis. Stability constants at infinite dilution (K{sub n}) and other relevant thermodynamic quantities were calculated for these three complexes. Calculations of zinc speciation in acetate-chloride solutions show that zinc acetate complexes should have an importance similar to zinc chloride complexes in high acetate waters where chloride to acetate molal ratios are less than about 10.

  12. Potentiometric chemical sensors from lignin-poly(propylene oxide) copolymers doped by carbon nanotubes.

    PubMed

    Rudnitskaya, Alisa; Evtuguin, Dmitry V; Costa, Luis C; Graça, M Pedro F; Fernandes, António J S; Correia, M Rosario P; Gomes, M Teresa S R; Oliveira, J A B P

    2013-01-21

    Hardwood and softwood lignins obtained from industrial sulphite and kraft and laboratory oxygen-organosolv pulping processes were employed in co-polymerization with tolylene 2,4-diisocyanate terminated poly(propylene glycol). The obtained lignin-based polyurethanes were doped with 0.72 w/w% of multiwall carbon nanotubes (MWCNTs) with the aim of increasing their electrical conductivity to the levels suitable for sensor applications. Effects of the polymer doping with MWCNTs were assessed using electrical impedance (EIS) and UV-Resonance Raman (UV-RR) spectroscopy. Potentiometric sensors were prepared by drop casting of liquid polymer on the surface of carbon glass or platinum electrodes. Lignin-based sensors displayed a very low or no sensitivity to all alkali, alkali-earth and transition metal cations ions except Cr(VI) at pH 2. Response to Cr(VI) values of 39, 50 and 53 mV pX(-1) for the sensors based on kraft, organosolv and lignosulphonate lignins, respectively, were observed. Redox sensitivity values close to the theoretical values of 20 and 21 mV pX(-1) for organosolv and lignosulphonate based sensors respectively were detected in the Cr(III)/Cr(VI) solutions while a very low response was observed in the solutions containing Fe(CN)(6)(3-/4-). Conducting composite lignin-based polyurethanes doped with MWCNTs were suggested as being promising materials for Cr(VI)-sensitive potentiometric sensors. PMID:23162814

  13. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, A.; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Israr, M. Q.; Sadaf, J. R.; Ahmed, E.; Nur, O.; Willander, M.

    2013-02-01

    The iron oxide (Fe3O4) magnetic nanoparticles have been fabricated through a simple, cheap and reproducible approach. Scanning electron microscope, x-rays powder diffraction of the fabricated nanoparticles. Furthermore, the fabrication of potentiometric urea biosensor is carried out through drop casting the initially prepared isopropanol and chitosan solution, containing Fe3O4 nanoparticles, on the glass fiber filter with a diameter of 2 cm and a copper wire (of thickness -500 μm) has been utilized to extract the voltage signal from the functionalized nanoparticles. The functionalization of surface of the Fe3O4 nanoparticles is obtained by the electrostatically immobilization of urease onto the nanobiocomposite of the chitosan- Fe3O4 in order to enhance the sensitivity, specificity, stability and reusability of urea biosensor. Electrochemical detection procedure has been adopted to measure the potentiometric response over the wide logarithmic concentration range of the 0.1 mM to 80 mM. The Fe3O4 nanoparticles based urea biosensor depicts good sensitivity with ~42 mV per decade at room temperature. Durability of the biosensor could be considerably enhanced by applying a thin layer of the nafion. In addition, the reasonably stable output response of the biosensor has been found to be around 12 sec.

  14. Generalized potentiometric surface of the aquifers in the Cockfield Formation, southeastern Arkansas, spring 1980

    USGS Publications Warehouse

    Ackerman, D.J.

    1987-01-01

    This map shows the generalized contours of the altitude of water levels in wells completed in the Cockfield Formation in southeastern Arkansas for 1980. Most water levels used in constructing the map were made in the spring of 1980. However, in parts of the State water levels from the spring of 1980 were unavailable. Where data indicated no long-term changes in nearby water levels, measurements from as early as 1952 and as late as 1983 were used. At a few locations the altitude of the water surface in a stream was used to define the potentiometric surface. Available water level data limited the interpretation of potentiometric surface primarily to the area of occurrence of the aquifers south of the Arkansas River. Water level data from Arkansas and adjacent states used in the construction of this map are from the groundwater file of the U.S. Geological Survey 's National Water Data Storage and Retrieval System. This map was prepared as part of the Gulf Coast Regional Aquifer-System Analysis study. (Lantz-PTT)

  15. Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 50 wells. The highest measured water level was 120 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward four cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point-Prince Frederick area, Swan Point subdivision in southern Charles County, and the Lexington Park-St. Inigoes area. The lowest measured ground-water level was 44 feet below sea level at Arnold, 106 feet below sea level south of Waldorf, 54 feet below sea level at Swan Point, 59 feet below sea level at Chalk Point, and 58 feet below sea level at Lexington Park.

  16. Off-On-Off fluorescence behavior of an intramolecular charge transfer probe toward anions and CO2.

    PubMed

    Ali, Rashid; Razi, Syed S; Shahid, Mohammad; Srivastava, Priyanka; Misra, Arvind

    2016-11-01

    The photophysical behavior of a newly developed fluorescent probe, tricyanoethylphenyl phenanthroimidazole (TCPPI) has been studied. Upon interaction of different class of anions TCPPI displayed naked-eye sensitive fluorescence "turn-on" response to detect selectively F(-) (0.98μM, 18.62ppb) and CN(-) (1.12μM, 29.12ppb) anions in acetonitrile (MeCN). Job's plot analysis revealed a 1:1 binding stoichiometry between probe and anions. The spectral data analysis and 1H NMR titration studies suggested about the affinity of F(-) and CN(-) anions with moderately acidic -NH fragment of imidazolyl unit of probe through deprotonation and H-bonding interaction. Moreover, the anion activated probe upon interaction with CO2 revived photophysical properties of probe, "On-Off-On" type fluorescence and enabled anion-induced CO2 sensing in the medium. PMID:27267280

  17. Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor.

    PubMed

    Siqueira, José R; Maki, Rafael M; Paulovich, Fernando V; Werner, Carl F; Poghossian, Arshak; de Oliveira, Maria C F; Zucolotto, Valtencir; Oliveira, Osvaldo N; Schöning, Michael J

    2010-01-01

    The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems. PMID:20041720

  18. Synthesis and evaluation of simple naked-eye colorimetric chemosensors for anions based on azo dye-thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Radchatawedchakoon, Widchaya; Sangsuwan, Withsakorn; Kruanetr, Senee; Sakee, Uthai

    2014-03-01

    A series of novel, highly selective azo dye-thiosemicarbazones based anion sensors (3e-f) have been synthesized from the condensation reaction between thiosemicarbazide and six different azo salicylaldehydes. The structure of the sensors was confirmed by spectroscopic methods. The selectivity and sensitivity in the recognition for acetate anion over other anions such as fluoride, chloride, iodide and dihydrogenphosphate anions were determined by naked-eyes and UV-vis spectra. The color of the solution containing sensor had an obvious change from light yellow to orange only after the addition of acetate anion in aqueous solution (water/dimethylsulfoxide, 7:3, v/v) while other anions did not cause obvious color change. The anion recognition property of the receptor via proton-transfer is monitored by UV-vis titration and 1H NMR spectroscopy. Under condition in aqueous solution of sensor 3e (water/dimethylsulfoxide, 7:3, v/v), linearity range for the quantification of acetate anion was 1-22 μM and limit of detection (LOD) of acetate anion was 0.71 μM.

  19. Potentiometric surface and specific conductance of the Sparta and Memphis aquifers in eastern Arkansas, 1995

    USGS Publications Warehouse

    Stanton, Gregory P.

    1997-01-01

    The Sparta and Memphis aquifers in eastern and south-central Arkansas are a major source of water for industrial, public supply, and agricultural uses. An estimated 240 million gallons per day was withdrawn from the Sparta and Memphis aquifers in 1995, an increase of about 17 million gallons per day from 1990. During the spring and early summer of 1995, the water level in the Sparta and Memphis aquifers was measured in 145 wells, the specific conductance of 101 ground-water samples collected from those aquifers was measured. Maps of areal distribution of potentiometric surface and specific conductance generated from these data reveal spatial trends in these parameters across the eastern and south-central Arkansas study area. The altitude of the potentiometric surface ranged from about 206 feet below sea level in Union County to about 307 feet above sea level in Saline County. The potentiometric surface of the Sparta and Memphis aquifers contains cones of depression descending below sea level in the central and southern portions of the study area, and a potentiometric high along the western study area boundary. Major recharge areas exhibit potentiometric highs greater than 200 feet above sea level and specific conductance values less than 200 microsiemens per centimeter, and generally are located in the outcrop/subcrop areas on the southern one-third of the western boundary and the northern portion of the study area. The regional direction of ground-water flow is from the north and west to the south and east, away from the outcrop and subcrop and northern regions, except near areas affected by intense ground-water withdrawals; such areas are manifested by large cones of depression centered in Columbia, Jefferson, and Union Counties. The cones of depression in adjoining Columbia and Union Counties are coalescing at or near sea level. The lowest water level measured was about 206 feet below sea level in Union County. Increased specific conductance values were measured

  20. Gels based on anion recognition between triurea receptor and phosphate anion.

    PubMed

    Yang, Cuiling; Wu, Biao; Chen, Yongming; Zhang, Ke

    2015-04-01

    Anion recognition between the triurea receptor and phosphate anion is demonstrated as the cross-linkage to build supramolecular polymer gels for the first time. A novel multi-block copolymer (3) is designed to have functional triurea groups as cross-linking units along the polymer main chain. By virtue of anion coordination between the triurea receptor and phosphate anion with a binding mode of 2:1, supramolecular polymer gels are then prepared based on anion recognition using 3 as the building block. PMID:25694389

  1. Counterintuitive interaction of anions with benzene derivatives

    NASA Astrophysics Data System (ADS)

    Quiñonero, David; Garau, Carolina; Frontera, Antonio; Ballester, Pau; Costa, Antonio; Deyà, Pere M.

    2002-06-01

    Ab initio calculations were carried out on complexes between 1,3,5-trinitrobenzene (TNB) and anions, where the anion is positioned over the ring along the C3 axis. This study combines crystallographic and computational evidences to demonstrate an attractive interaction between the anion and the π-cloud of TNB. This interaction is rationalized based on the important role of the quadrupole moment of TNB and the anion-induced polarization. In addition, this study has been extended to 1,3,5-trifluorobenzene (TFB), which possesses a very small quadrupole moment. As a result, minimum energy complexes have been found between TFB and both anions and cations due to the stabilization obtained from the ion-induced polarization.

  2. Creating molecular macrocycles for anion recognition

    PubMed Central

    2016-01-01

    Summary The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures. PMID:27340452

  3. Picosecond dynamics of benzophenone anion solvation

    SciTech Connect

    Lin, Y.; Jonah, C.D. )

    1993-01-14

    The dynamics of benzophenone anion solvation in alcohols are studied by pulse-radiolysis techniques. The solvation process is characterized by the blue shift of the transient absorption spectrum of the anion and is faster for the smaller alcohols. The anion is solvated more slowly than the electron in the same solvent, but the solvation times of both are similar to [tau][sub 2], the solvent dielectric relaxation time. The familiar phenomenological two-state model of solvation was found to be inappropriate for describing the anion solvation process. A multistate process appears to be a more appropriate description. The authors modeled the kinetics of the spectral relaxation. In most cases, nearly quantitative agreement between the calculated and observed spectra is achieved. The characteristic relaxation times for the alcohol solvents around the anions were also reproduced. 50 refs., 8 figs., 3 tabs.

  4. Simulated effects of ground-water development on potentiometric surface of the Floridan Aquifer, west-central Florida

    USGS Publications Warehouse

    Wilson, W.E.; Gerhart, J.M.

    1982-01-01

    A digital model of two-dimensional ground-water flow was used to predict changes in the potentiometric surface of the Floridan aquifer, 1976 to 2000, in a 5,938-square-mile area of west-central Florida. In 1975, ground water withdrawn from the Floridan aquifer for irrigation, phosphate mines, other industries, and municipal supplies averaged about 649 million gallons per day. Rates are projected to increase to about 840 million gallons per day by 2000. The model was calibrated under steady-state and transient conditions. Input parameters included transmissivity and storage coefficient of the Floridan aquifer; thickness, vertical hydraulic conductivity, and storage coefficient of the upper confining bed; altitudes of the water table and potentiometric surface; and ground-water withdrawals. Simulation of May 1976 to May 2000, using projected combined pumping rates for municipal supplies, irrigation, and industry (including existing and proposed phosphate mines), resulted in a rise in the potentiometric surface of about 10 feet in Polk County, and a decline of about 35 feet in parts of Manatee and Hardee Counties. The lowest predicted potentiometric level was about 30 feet below sea level. Predicted declines for November 1976 to October 2000 were generally 5 to 10 feet less than those for May 1976 to May 2000. (USGS)

  5. Potentiometric sensing of aqueous phosphate by competition assays using ion-exchanger doped-polymeric membrane electrodes as transducers.

    PubMed

    Li, Long; Shang, Guoliang; Qin, Wei

    2016-08-01

    Using Zn(2+)-BPMP or Cu(2+)-BPMP as a receptor and o-mercaptophenol as an indicator, potentiometric sensing of aqueous phosphate by competition assays was achieved. With attractive features of portability, low cost and resistance to interference from turbidity and color, this sensor was successfully used for phosphate detection in biological and water samples. PMID:27346241

  6. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  7. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    USGS Publications Warehouse

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic

  8. Catching anions with coloured assemblies: binding of pH indicators by a giant-size polyammonium macrocycle for anion naked-eye recognition.

    PubMed

    Bartoli, Francesco; Bencini, Andrea; Conti, Luca; Giorgi, Claudia; Valtancoli, Barbara; Paoli, Paola; Rossi, Patrizia; Le Bris, Nathalie; Tripier, Raphael

    2016-09-21

    A giant-size polyamine macrocycle L, composed of four 1,4,8,11-tetraazacyclotetradecane (cyclam) units linked by 1,3-dimethylenbenzyl spacers, strongly interacts in aqueous solution with four pH indicators (bromocresol purple (H2BCP), phenol red (H2PR), phenolphthalein (H2PP) and fluorescein (H2F)) in their anionic forms. Besides 1 : 1 complexes, L also forms assemblies with an unusual 1 : 2 receptor to dye stoichiometry, thanks to its large dimensions, which allow for the simultaneous interaction of the receptor protonated forms with two anionic dyes. The formation of the assemblies markedly affects the pKa values of the phenol groups of the dyes, which change colour upon complexation in well-defined pH ranges. This property can be effectively exploited for optical detection of anions. The L-H2BCP 1 : 2 assembly is able to selectively detect the triphosphate anion at slightly acidic pH values, thanks to the release, upon triphosphate coordination, of the dye from the ensemble, with a consequent colour change of the solution from purple-violet (complexed BCP(2-) dye) to yellow (free BCP(2-)). No effect is caused by other inorganic anions. The L-H2BCP 1 : 2 assembly represents a rare case of an optical chemosensor for the triphosphate anion. PMID:27530722

  9. Role of anion polarizability in fluorescence sensitization of DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Shao, Yong; Liu, Lingling; Zhang, Lihua; Fu, Wensheng; Liu, Hua

    2014-06-01

    Fluorescent silver nanoclusters (Ag NCs) as novel fluorophores have received much attention because of their high brightness, good photostability and widely tunable emissions from the visible to the near-infrared range as a result of their size and existing environment. However, efforts are still needed to find the factors that tune the emission of Ag NCs. In this work, Ag NCs that were size-selectively grown on DNA were used to investigate the effect of the electronic properties of coordinating ligands. Halogen anions were used as the paradigm because of their periodicity in element properties. We found that addition of halogen anions did not alter the emission wavelength of Ag NCs, but the fluorescence intensity showed an initial increase at low concentrations of Cl-, Br- and I- followed by a gradual decrease at high concentrations. No increase in fluorescence was observed for F- at either low or high concentration. Such specific halogen-anion sensitization of the fluorescence of Ag NCs suggests that the binding strength/manner and dipole polarizability of these anions synergistically tune the emission behavior of Ag NCs. Less fluorescence sensitization occurred for the anion having high enough polarizability to form a covalent bond with Ag NCs. The anion polarizability-sensitized fluorescence indicates the role of anion electronic properties in tuning the emission behavior of Ag NCs, which should be seriously considered in designing Ag NC-based sensors and devices.

  10. Polymeric membrane neutral phenol-sensitive electrodes for potentiometric G-quadruplex/hemin DNAzyme-based biosensing.

    PubMed

    Wang, Xuewei; Ding, Zhaofeng; Ren, Qingwei; Qin, Wei

    2013-02-01

    The first potentiometric transducer for G-quadruplex/hemin DNAzyme-based biosensing has been developed by using potential responses of electrically neutral oligomeric phenols on polymeric membrane electrodes. In the presence of G-quadruplex/hemin DNAzyme and H(2)O(2), monomeric phenols (e.g., phenol, methylphenols, and methoxyphenols) can be condensed into oligomeric phenols. Because both substrates and products are nonionic under optimal pH conditions, these reactions are traditionally not considered in designing potentiometric biosensing schemes. However, in this paper, the electrically neutral oligomeric phenols have been found to induce highly sensitive potential responses on quaternary ammonium salt-doped polymeric membrane electrodes owing to their high lipophilicities. In contrast, the potential responses to monomeric phenolic substrates are rather low. Thus, the G-quadruplex/hemin DNAzyme-catalyzed oxidative coupling of monomeric phenols can induce large potential signals, and the catalytic activities of DNAzymes can be probed. A comparison of potential responses induced by peroxidations of 13 monomeric phenols indicates that p-methoxyphenol is the most efficient substrate for potentiometric detection of G-quadruplex/hemin DNAzymes. Finally, two label-free and separation-free potentiometric DNA assay protocols based on the G-quadruplex/hemin DNAzyme have been developed with sensitivities higher than those of colorimetric and fluorometric methods. Coupled with other features such as reliable instrumentation, low cost, ease of miniaturization, and resistance to color and turbid interferences, the proposed polymeric membrane-based potentiometric sensor promises to be a competitive transducer for peroxidase-mimicking DNAzyme-involved biosensing. PMID:23289675

  11. Conformation of oligodeoxynucleotides associated with anionic liposomes

    PubMed Central

    Patil, Siddhesh D.; Rhodes, David G.

    2000-01-01

    There has been significant progress in the development of antisense therapeutics for a wide range of medicinal applications. Further improvement will require better understanding of cellular internalization, intracellular distribution mechanisms and interactions of oligodeoxynucleotides with cellular organelles. In many of these processes interactions of oligodeoxynucleotides with lipid assemblies may have a significant influence on their function. Divalent cations have been shown to assist cellular internalization of certain oligodeoxynucleotides and to affect their conformation. In this work we have investigated conformational changes of phosphorothioate oligodeoxynucleotides upon divalent cation-mediated interaction with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) liposomes. For the sequences investigated here the native conformation underwent significant change in the presence of anionic DPPG liposomes only when divalent cations were present. This change is sequence-specific, ion-selective and distinct from previously reported changes in oligodeoxynucleotide structure due to divalent cations alone. The conformation of one oligodeoxynucleotide in the presence of calcium and DPPG yields circular dichroism spectra which suggest C-DNA but which also have characteristics unlike any previously reported spectra of liposome-associated DNA structure. The data suggest the possibility of a unique conformation of liposome-associated ODNs and reflect a surprisingly strong tendency of single-stranded DNA to retain a characteristic conformation even when adsorbed to a surface. This conformation may be related to cellular uptake, transport of oligodeoxynucleotides in cells and/or function. PMID:11058108

  12. Synthetic ion transporters that work with anion-π interactions, halogen bonds, and anion-macrodipole interactions.

    PubMed

    Vargas Jentzsch, Andreas; Hennig, Andreas; Mareda, Jiri; Matile, Stefan

    2013-12-17

    The transport of ions and molecules across lipid bilayer membranes connects cells and cellular compartments with their environment. This biological process is central to a host of functions including signal transduction in neurons and the olfactory and gustatory sensing systems, the translocation of biosynthetic intermediates and products, and the uptake of nutrients, drugs, and probes. Biological transport systems are highly regulated and selectively respond to a broad range of physical and chemical stimulation. A large percentage of today's drugs and many antimicrobial or antifungal agents take advantage of these systems. Other biological transport systems are highly toxic, such as the anthrax toxin or melittin from bee venom. For more than three decades, organic and supramolecular chemists have been interested in developing new transport systems. Over time, curiosity about the basic design has evolved toward developing of responsive systems with applications in materials sciences and medicine. Our early contributions to this field focused on the introduction of new structural motifs with emphasis on rigid-rod scaffolds, artificial β-barrels, or π-stacks. Using these scaffolds, we have constructed selective systems that respond to voltage, pH, ligands, inhibitors, or light (multifunctional photosystems). We have described sensing applications that cover the three primary principles of sensor development: immunosensors that use aptamers, biosensors (an "artificial" tongue), and differential sensors (an "artificial" nose). In this Account, we focus on our recent interest in applying synthetic transport systems as analytical tools to identify the functional relevance of less common noncovalent interactions, anion-π interactions, halogen bonds, and anion-macrodipole interactions. Anion-π interactions, the poorly explored counterpart of cation-π interactions, occur in aromatic systems with a positive quadrupole moment, such as TNT or hexafluorobenzene. To observe

  13. Gas-potentiometric method with solid electrolyte oxygen sensors for the investigation of combustion.

    PubMed

    Lorenz, H; Tittmann, K; Sitzki, L; Trippler, S; Rau, H

    1996-09-01

    Gas-potentiometric analysis using oxide-ion-conducting solid electrolytes as stabilized zirconia is a worthwhile method for the investigation of combustion processes. In the case of gas and oil flames specific parameters like the flame contour, the degree of burn-out and mixing can be determined and information about flame turbulence and reaction density can be gained from the temporal resolution of the sensor signal. Measurements carried out with solid electrolyte oxygen sensors in a fluidized bed show that combustion processes of solid fuels are also analyzable. This analysis results in fuel specific burn-out curves finally leading to burn-out times and to parameters of a macrokinetics of the combustion process as well as to ideas about the burn-out mechanism. From the resulting constants of the effective reaction rate a reactivity relative to bituminous coal coke can be given for any solid fuel. PMID:15048356

  14. Highly efficient potentiometric glucose biosensor based on functionalized InN quantum dots

    NASA Astrophysics Data System (ADS)

    Alvi, N. H.; Soto Rodriguez, P. E. D.; Gómez, V. J.; Kumar, Praveen; Amin, G.; Nur, O.; Willander, M.; Nötzel, R.

    2012-10-01

    We present a fast, highly sensitive, and efficient potentiometric glucose biosensor based on functionalized InN quantum-dots (QDs). The InN QDs are grown by molecular beam epitaxy. The InN QDs are bio-chemically functionalized through physical adsorption of glucose oxidase (GOD). GOD enzyme-coated InN QDs based biosensor exhibits excellent linear glucose concentration dependent electrochemical response against an Ag/AgCl reference electrode over a wide logarithmic glucose concentration range (1 × 10-5 M to 1 × 10-2 M) with a high sensitivity of 80 mV/decade. It exhibits a fast response time of less than 2 s with good stability and reusability and shows negligible response to common interferents such as ascorbic acid and uric acid. The fabricated biosensor has full potential to be an attractive candidate for blood sugar concentration detection in clinical diagnoses.

  15. Generalized potentiometric surface of aquifers of Pleistocene age, Southern Louisiana, 1980

    USGS Publications Warehouse

    Martin, Angel, Jr.; Whiteman, Charles D., Jr.

    1985-01-01

    A map of potentiometric surface defines generalized water levels for 1980 in the Pleistocene aquifers of southern Louisiana. The map was prepared as part of the Western Gulf Coast Regional Aquifer-System Analysis study. The Pleistocene deposits in southern Louisiana consist of alternating beds of sand, gravel, silt, and clay deposited under fluvial, deltaic, and near-short marine conditions. The aquifers are mainly under artesian conditions and the regional flow direction is primarily southward. Areally definable cones of depression result from heavy pumpage in the Baton Rouge, Lake Charles, and New Orleans metropolitan areas and in the rice irrigation area of southwestern Louisiana. Where water levels differ vertically within the aquifer, the lowest water levels in the vertical section were used because these levels represented the thickest and most heavily pumped unit in the aquifer. The map represents regional water levels in the Pleistocene aquifers, and is not intended to show localized variations near pumping centers. (USGS)

  16. Potentiometric Determination of Phytic Acid and Investigations of Phytate Interactions with Some Metal Ions.

    PubMed

    Marolt, Gregor; Pihlar, Boris

    2015-01-01

    Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions. PMID:26085413

  17. Aluminum(III) speciation with acetate and oxalate. A potentiometric and sup 27 Al NMR study

    SciTech Connect

    Thomas, F.; Rouiller, J.; Genevrier, F.; Boudot, D. ); Masion, A.; Bottero, J.Y. )

    1991-09-01

    Aluminum (III) hydrolysis and precipitation in the presence of acetic acid and oxalic acid have been studied by combining potentiometric titration and liquid-state {sup 27}Al NMR. The main aluminum species have thus been identified and quantified: unreacted hydrolyzed, complexed monomers, and the Al{sub 13} tridecamer. A solid species appeared when precipitation occurred and was quantified by difference with the other species. The quantitative evolution of these species was followed for pH values up to 5. Acetate forms weak complexes with aluminum. The precipitated phase was hypothesized to be aggregated Al{sub 13}. Oxalate forms strong multiligand complexes to form Al{sub 13} requires higher hydroxyl content. High oxalate contents (L/M > 1) inhibit tridecamer formation and precipitation occurs only at high pH values. With oxalate the precipitated phase seems to be devoid of Al{sub 13} and of a more condensed nature than it is with acetate.

  18. Nonaqueous potentiometric titration and elemental analysis of high-boiling distillates of Saudi Arabian crude oils

    SciTech Connect

    Ali, M.F.; Ali, M.A. )

    1988-12-01

    Nonaqueous potentiometric titration and elemental analysis were used to study basic and nonbasic functionalities present in high-boiling distillates of four Saudi Arabian crude oils. Model nitrogen compounds were titrated under similar titration conditions to differentiate them into strong, weak and nonbasic species. The strong bses titrated were due to the presence of of pyridine and its benzologs like acridines, phenanthridines and quionolines. The weak bases titrated were due to phenazxines and amides whereas the pyrroles, indoles and carbazoles were found to be nonbasic in nature. The total nitrogen and the total basic nitrogen compounds were generally found to be in very low concentration in the four crude oil distillates. A gradual decrease in the basicity of the distillates was found from Arab Heavy to Arab Extra Light through Arab Medium and Arab Light crude oils.

  19. Open ISEmeter: An open hardware high-impedance interface for potentiometric detection.

    PubMed

    Salvador, C; Mesa, M S; Durán, E; Alvarez, J L; Carbajo, J; Mozo, J D

    2016-05-01

    In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA(+)-DS(-)). The experimental measures of emf indicate Nernstian behaviour with the CTA(+) content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation. PMID:27250474

  20. Two Analyte Calibration From The Transient Response Of Potentiometric Sensors Employed With The SIA Technique

    SciTech Connect

    Cartas, Raul; Mimendia, Aitor; Valle, Manel del; Legin, Andrey

    2009-05-23

    Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes. The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.

  1. Dynamic response characteristics of the potentiometric carbon dioxide sensor for the determination of aspartame.

    PubMed

    Nikolelis, D P; Krull, U J

    1990-07-01

    The dynamic response characteristics of a carbon dioxide gas sensor were studied to determine the potential for application of the device to the kinetic assay of substrate(s) under pseudo first-order kinetics. The dependence of the time constant on the concentration of carbon dioxide was determined by using convolution mathematics to analyse potentiometric changes caused by abrupt alterations of gas concentration. The operational conditions of the CO2 sensor were optimised for the development of enzyme electrodes, so that the mass-transport phenomena occurring during the course of the enzymic reactions were enhanced. As a result, the kinetic analysis of substrate(s) was performed more rapidly (2-6 min), with greater sensitivity and with an improved detection limit (10-5 M). A kinetic reaction-rate method for the determination of aspartame in dietary foodstuffs is proposed as a rapid and inexpensive alternative to a classical high-performance liquid chromatographic method. PMID:2121066

  2. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2007. The map is based on water-level measurements in 85 wells. The highest measured water level was 50 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. A water level measured west of the Cheasapeake Beach area has declined to 57 feet below sea level due to increased withdrawals. The lowest water level measured was 162 feet below sea level at the center of a cone of depression at Lexington Park.

  3. Potentiometric surfaces of the coastal plain aquifers of South Carolina prior to development

    USGS Publications Warehouse

    Aucott, Walter R.; Speiran, Gary K.

    1985-01-01

    Characteristics of the Coastal Plains aquifers of South Carolina are being studied as a part of the Regional Aquifer Systems Analysis program of the U.S. Geological Survey. A framework has been developed to best represent the hydrology of the Coastal Plain aquifers by dividing them into a system of five aquifers. This framework includes a surficial aquifer consisting of coastal terrace deposits, a limestone and stratigraphically equivalent sand aquifer of Eocene age, and three sand aquifers of Cretaceous age. This report presents a general description of the aquifer framework, potentiometric maps for the aquifers of Eocene and Cretaceous age prior to development, and a general description of the flow system prior to development. In the lower Coastal Plain, flow in the aquifer of Eocene age is generally perpendicular to the coast but is almost parallel to the coast in the aquifers of Cretaceous age. (USGS)

  4. New Anion-Exchange Resins for Improved Separations of Nuclear Material

    SciTech Connect

    Barr, Mary E.; Bartsch, Richard A.; Jarvinen, Gordon D.

    2000-06-01

    We are developing bifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding site characteristics. Resin materials that actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. Our implementation of the 'bifunctionality concept' involves N-derivatization of pyridinium units from a base poly(4- vinylpyridine) resin (PVP) with a second cationic site, such that the two anion-exchange sites are linked by 'spacer' arms of varying length and flexibility. The overall objective of our research is to develop a predictive capability that allows the facile design and implementation of multi-functionalized anion-exchange materials to selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials:Tanks, Plutonium; Subsurface Contaminants; Mixed Waste; and Efficient Separations. Sites within the DOE complex which would benefit from the improved anion exchange technology include Hanford, Idaho, Los Alamos, Oak Ridge, and Savannah River.

  5. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    SciTech Connect

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H. E-mail: akandalam@wcupa.edu; Schnoeckel, Hansgeorg; Eichhorn, Bryan W.; Jena, Puru; Kiran, Boggavarapu E-mail: akandalam@wcupa.edu; Kandalam, Anil K. E-mail: akandalam@wcupa.edu

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup −} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup −}, did the aluminum moieties exhibit Zintl anion-like characteristics.

  6. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters.

    PubMed

    Wang, Haopeng; Ko, Yeon Jae; Zhang, Xinxing; Gantefoer, Gerd; Schnoeckel, Hansgeorg; Eichhorn, Bryan W; Jena, Puru; Kiran, Boggavarapu; Kandalam, Anil K; Bowen, Kit H

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of MgmAln (-) (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg3Al11 and Mg2Al12 (-), did the aluminum moieties exhibit Zintl anion-like characteristics. PMID:24697443

  7. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Schnoeckel, Hansgeorg; Eichhorn, Bryan W.; Jena, Puru; Kiran, Boggavarapu; Kandalam, Anil K.; Bowen, Kit H.

    2014-03-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of MgmAln- (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg3Al11 and Mg2Al12-, did the aluminum moieties exhibit Zintl anion-like characteristics.

  8. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  9. Ketoprofen as a photoinitiator for anionic polymerization.

    PubMed

    Wang, Yu-Hsuan; Wan, Peter

    2015-06-01

    A new photoinitiating system for anionic polymerization of acrylates based on the efficient photodecarboxylation of Ketoprofen (1) and the related derivatives 3 and 4 that generate the corresponding carbanion intermediates is presented. Carbanion intermediates are confirmed by deuterium incorporation in the trapped Michael adducts and by spectroscopic detection using laser flash photolysis (LFP). This novel anionic initiating system features excitation in the near UV and visible regions, potential characteristics of photocontrolled living polymerization, and metal-free photoinitiators generated from photoexcitation, different from typical anionic polymerization where the polymerizations are initiated by heat and strong base containing alkali metals. PMID:25917384

  10. Real-time telemetry system for amperometric and potentiometric electrochemical sensors.

    PubMed

    Wang, Wei-Song; Huang, Hong-Yi; Chen, Shu-Chun; Ho, Kuo-Chuan; Lin, Chia-Yu; Chou, Tse-Chuan; Hu, Chih-Hsien; Wang, Wen-Fong; Wu, Cheng-Feng; Luo, Ching-Hsing

    2011-01-01

    A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC), a microcontroller unit (MCU), a graphical user interface (GUI), and a radio frequency (RF) transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA) to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA). The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR) greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment), a small size of 5.6 cm × 8.7 cm, high portability, and high integration. PMID:22164093

  11. Bio-assisted potentiometric multisensor system for purity evaluation of recombinant protein A.

    PubMed

    Voitechovič, Edita; Korepanov, Anton; Kirsanov, Dmitry; Jahatspanian, Igor; Legin, Andrey

    2016-08-15

    Recombinant proteins became essential components of drug manufacturing. Quality control of such proteins is routine task, which usually requires a lot of time, expensive reagents, specialized equipment and highly educated personnel. In this study we propose a new concept for protein purity evaluation that is based on application of bio-assisted potentiometric multisensor system. The model object for analysis was recombinant protein A from Staphylococcus aureus (SpA), which is commonly used for monoclonal antibody purification. SpA solutions with different amount of host cell related impurities (Escherichia coli, bacterial lysate) were analyzed. Two different bio-transducers were employed: proteinase K from Tritirachium album and baker's yeast Saccharomyces cerevisiae. It was shown that both bio-transducers are able to induce changes in pure and lysate-contaminated SpA samples. Different products of yeast digestion and proteolysis with proteinase of pure SpA and lysate were detected with size exclusion high-performance liquid chromatography (SE-HPLC). The induced changes of chemical composition are detectible with potentiometric multisensor system and can be related to SpA purity through projection on latent structures (PLS) regression technique. The proposed method allows for estimation of the impurity content with 12% accuracy using proteinase K and 16% accuracy using baker's yeast. The suggested approach could be useful for early contamination warning at initial protein purification steps. The analysis requires no expensive materials and equipment, no bio-material immobilization, and its duration time is comparable with other commonly used methods like chromatography or electrophoresis though the main part of this time is related to the sample preparation. PMID:27260439

  12. A novel approach for high precision rapid potentiometric titrations: Application to hydrazine assay

    NASA Astrophysics Data System (ADS)

    Sahoo, P.; Malathi, N.; Ananthanarayanan, R.; Praveen, K.; Murali, N.

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ˜2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO3 in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.

  13. [Acidity and interaction with superoxide anion radical of echinochrome and its structural analogs].

    PubMed

    Lebedev, A V; Ivanova, M V; Krasnovid, N I; Kol'tsova, E A

    1999-01-01

    Weak acid properties, autoxidation and interaction of natural polyhydroxy1,4-naphthoquinones (PHNQ) with superoxide anion-radical (O2-.) were studied by methods of potentiometric titration, polarography, and UV- and visible spectrophotometry. Sea urchin pigments 3-acetyl-2,6,7-trihydroxynaphthazarin (spinochrome C), 2,3,6,7-trihydroxynaphthazarin (spinochrome D), 2,3,6,7-trihydroxynaphthazarin (spinochrome E), 6-ethyl-2,3,7-trihydroxynaphthazarin (echinochrome A), synthetic 2,3-dihydroxy-6,7-dimethylnaphthazarin and 6-ethyl-2,3,7-trimethoxynaphthazarin (trimethoxyechinochrome A) were tested. Determined dissociation constants (pKi) were in the range of pH 5.3-8.5 (40% ethanol solvent). PHNQ autoxidation observrd in basic pH were inhibited by superoxide dismutase. Xanthine and xanthine oxidase was applied for O2-. generation. Interaction with O2-. led to sufficient time-dependent changing in spectra of echinochrome A, spinochromes D and E. There was weak O2-. influence on spinochrome C spectrum and no changing in trimethoxyechinochrome A spectrum. The spectra, that were transforming during time of reaction, contained pronounced isobestic point. It means formation the single reaction product. We proposed formation of 1,2,3,4-tetraketones from 2,3,5,8-tetrahydroxy-1,4-naphthoquinones (echinochrome A, spinochromes D and E) due to O2-.-induced oxidation of their OH-groups in 2 and 3 positions. Reaction constants were determined by competition method using nitro blue tetrazolium (NBT). The reaction constants were about 10(4)-10(5) M-1s-1. They were decreased in the order: echinochrome A > spinochrome D > spinochrome C > NBT > trimethoxyechinochrome A. Thus, we concluded that some of the natural PGNQ, containing hydroxyl groups in 2nd and 3rd positions, could operate as powerful superoxide anion-radical scavengers. PMID:10378300

  14. Phosphate removal from wastewaters using a weak anion exchanger prepared from a lignocellulosic residue.

    PubMed

    Anirudhan, T S; Noeline, B F; Manohar, D M

    2006-04-15

    Surface modifications of lignocellulosic residues has become increasingly important for improving their applications as adsorbents. In this study a new adsorbent system (BS-DMAHP) containing dimethylaminohydroxypropyl (DMAHP) weak base groups was prepared by the reaction of banana stem (BS), a lignocellulosic residue with epichlorohydrin and dimethylamine followed by treatment of hydrochloric acid. The original BS and BS-DMAHP were characterized with the help of surface area analyzer, infrared spectroscopy (IR) and scanning electron microscopy (SEM). Surface charge density of the samples as a function of pH was investigated using potentiometric titrations. Adsorbent exhibits very high adsorption potential for phosphate and more than 99.0% removal was achieved in the pH range of 5.0-7.0. Adsorption has been found to be concentration dependent and endothermic and follows a reversible second-order kinetics. The Langmuir and Freundlich isotherm models were applied to describe the equilibrium data. Equilibrium data agreed very well with the Langmuir model. Adsorption experiments were conducted using a commercial chloride form Duolite A-7, a weak base anion exchanger. The removal efficiency was tested using fertilizer industry wastewater. Adsorbed phosphate on BS-DMAHP can be recovered by treating with 0.1 M NaOH solution. A stability test operated for four cycles indicate a capacity loss of < 12.0%. PMID:16683617

  15. Quaternized agricultural by-products as anion exchange resins.

    PubMed

    Wartelle, Lynda H; Marshall, Wayne E

    2006-01-01

    The objectives of this study were the chemical modification of readily available, low-cost agricultural by-products to anion exchange resins and the selection of the best modified by-product for further use in anion removal. Resins were prepared through the quaternization of a series of 12 agricultural by-products with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC). Phosphate ion adsorption assays were conducted at pH 7 in order to compare adsorption properties among the by-products. Quaternized corn stover showed the highest phosphorus adsorption at 0.66 mmole/g. Since corn stover exhibited the best uptake of phosphate ion, it was compared to a commercially available, cellulose-based anion exchange resin. Additionally, adsorption capacities of quaternized corn stover for arsenate, chromate, and selenate were evaluated and adsorption efficiencies were determined in simulated wastewater samples. Our results indicate that modified corn stover demonstrates good adsorption uptake for arsenate and selenate and especially for chromate. PMID:16144735

  16. Anion composition of açaı́ extracts.

    PubMed

    Liao, Hongzhu; Shelor, C Phillip; Chen, Yongjing; Sabaa-Srur, Armando U O; Smith, Robert E; Dasgupta, Purnendu K

    2013-06-26

    Many products labeled açaı́ are presently marketed as natural supplements with various claimed health benefits. Authentic açaı́ is expensive; as a result, numerous products labeled as containing açaı́ are being sold that actually contain little or no açaı́. Authentic açaı́ samples from Brazil and Florida as well as several reputed açaı́ products were analyzed by suppressed conductometric anion chromatography. Columns with different selectivities were used to obtain a complete separation of all anions. Tandem mass spectrometry was used for confirmation of the less common ions. Quinate, lactate, acetate, formate, galacturonate, chloride, sulfate, malate, oxalate, phosphate, citrate, isocitrate, and myo-inositol hexakisphosphate (phytate) were found. Only the Florida açaı́ had detectable levels of hexanoate. No açaı́ sample had any detectable levels of tartrate, which is present in abundance in grape juice, the most common adulterant. The highly characteristic anion profile and in particular the absence of tartrate can readily be used to identify authentic açaı́ products. Açaı́ from Florida had a 6 times greater level of phytate. The present analytical approach for phytate may be superior to extant methods. PMID:23772604

  17. Kinetics and mechanism of exogenous anion exchange in FeFbpA-NTA: significance of periplasmic anion lability and anion binding activity of ferric binding protein A.

    PubMed

    Heymann, Jared J; Gabricević, Mario; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-02-01

    The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA). Here we address the kinetics and mechanism of anion exchange for the FeFbpA-nitrilotriacetate (NTA) assembly with several biologically relevant anions (citrate, oxalate, phosphate, and pyrophosphate), with nonphysiologic NTA serving as a representative synergistic anion/chelator. The kinetic data are consistent with an anion-exchange process that occurs in multiple steps, dependent on the identity of both the entering anion and the leaving anion. The exchange mechanism may proceed either as a direct substitution or through an intermediate FeFbpA-X* assembly based on anion (X) identity. Our kinetic results further develop an understanding of exogenous anion lability in the periplasm, as well as address the final step of the iron-free FbpA (apo-FbpA)/Fe(3+) sequestration mechanism. Our results highlight the kinetic significance of the FbpA anion binding site, demonstrating a correlation between apo-FbpA/anion affinity and the FeFbpA rate of anion exchange, further supporting the requirement of an exogenous anion to complete tight sequestration of iron by FbpA, and developing a mechanism for anion exchange within FeFbpA that is dependent on the identity of both the entering anion and the leaving anion. PMID:19813031

  18. Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form.

    PubMed

    Ragab, Mona T; Abd El-Rahman, Mohamed K; Ramadan, Nesrin K; El-Ragehy, Nariman A; El-Zeany, Badr A

    2015-06-01

    Three sensitive and selective polyvinyl chloride (PVC) matrix membrane electrodes were developed and investigated. Sensor I was developed using tetraheptylammonium bromide (THB) as an anion exchanger with 2-nitrophenyl octyl ether (2-NPOE) as a plasticizer for the determination of the anionic drug pantoprazole sodium sesquihydrate (PAN). To determine the cationic drug itopride hydrochloride (ITH), two electrodes (sensors II and III) were developed using potassium tetrakis(4-chlorophenyl) borate (KTCPB) as a cation exchanger with dioctyl phthalate (DOP) as a plasticizer. Selective molecular recognition components, 2-hydroxypropyl-β-cyclodextrin (2-HP βCD) and 4-tert-butylcalix[8]arene (tBC8), were used as ionophores to improve the selectivity of sensors II and III, respectively. The proposed sensors had a linear dynamic range of 1×10(-5) to 1×10(-2) mol L(-1) with Nernstian slopes of -54.83±0.451, 56.90±0.300, and 51.03±1.909 mV/decade for sensors I, II and III, respectively. The Nernstian slopes were also estimated over the pH ranges of 11-13, 3.5-8 and 4-7 for the three sensors, respectively. The proposed sensors displayed useful analytical characteristics for the determination of PAN and ITH in bulk powder, in laboratory prepared mixtures and in combined dosage forms with clear discrimination from several ions, sugars and some common drug excipients. The method was validated according to ICH guidelines. Statistical comparison between the results from the proposed method and the results from the reference methods showed no significant difference regarding accuracy and precision. PMID:25863367

  19. Molecular physiology of EAAT anion channels.

    PubMed

    Fahlke, Christoph; Kortzak, Daniel; Machtens, Jan-Philipp

    2016-03-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein. PMID:26687113

  20. Potentiometric sensor using sub-micron Cu2O-doped RuO2 sensing electrode with improved antifouling resistance.

    PubMed

    Zhuiykov, Serge; Kats, Eugene; Marney, Donavan

    2010-07-15

    A Cu(2)O-doped RuO(2) sensing electrode (SE) for potentiometric detection of dissolved oxygen (DO) was prepared and its structure and electrochemical properties were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS) and energy-dispersive spectroscopy (EDS) techniques. Cu(2)O-RuO(2)-SE displayed a linear DO response from 0.5 to 8.0 ppm (log[O(2)], -4.73 to -3.59) within a temperature range of 9-30 degrees C. The maximum sensitivity of -47.4 mV/decade at 7.27 pH was achieved at 10 mol% Cu(2)O. Experimental evaluation of the Cu(2)O-doped RuO(2)-SE demonstrated that the doping of RuO(2) not only improves its structure but also enhances both sensor's selectivity and antifouling properties. Selectivity measurements revealed that 10 mol% Cu(2)O-doped RuO(2)-SE is insensitive to the presence of Na(+), Mg(2+), K(+), Ca(2+), NO(3)(-), PO(4)(2-) and SO(4)(2-) ions in the solution in the concentration range of 10(-7)-10(-1) mol/l. PMID:20602927

  1. A new class of organocatalysts: sulfenate anions.

    PubMed

    Zhang, Mengnan; Jia, Tiezheng; Yin, Haolin; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2014-09-26

    Sulfenate anions are known to act as highly reactive species in the organic arena. Now they premiere as organocatalysts. Proof of concept is offered by the sulfoxide/sulfenate-catalyzed (1-10 mol%) coupling of benzyl halides in the presence of base to generate trans-stilbenes in good to excellent yields (up to 99%). Mechanistic studies support the intermediacy of sulfenate anions, and the deprotonated sulfoxide was determined to be the resting state of the catalyst. PMID:25111259

  2. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review.

    PubMed

    Zatirakha, A V; Smolenkov, A D; Shpigun, O A

    2016-01-21

    In the last decade the developments in the field of ion chromatography (IC) were aimed at increasing the efficiency, sensitivity and rapidity of analysis, as well as on improving separation selectivity. Since selectivity and efficiency to the large extent depend on the surface chemistry of the stationary phase, the development of novel anion exchangers remains one of the priority tasks in modern IC. The exact chemistry of commercially available resins is not known and not many literature data devoted to the procedures of preparing anion exchangers for IC have become available in the last 10-15 years. However, the knowledge about the surface chemistry of anion exchangers can provide understanding of the trends in selectivity and efficiency changes, as well as help with the choice of the stationary phase type suitable for solving a particular analytical task. The current review is devoted to the methods of preparing anion exchangers based on polystyrene-divinylbenzene (PS-DVB) and ethylvinylbenzene-divinylbenzene (EVB-DVB) for IC of inorganic and small organic anions and is aimed at demonstrating the improvement of their performance over the years, which was brought by the development of the new types of stationary phase architecture. PMID:26724761

  3. Solvation Effects on Structure and Charge Distribution in Anionic Clusters

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias

    2015-03-01

    The interaction of ions with solvent molecules modifies the properties of both solvent and solute. Solvation generally stabilizes compact charge distributions compared to more diffuse ones. In the most extreme cases, solvation will alter the very composition of the ion itself. We use infrared photodissociation spectroscopy of mass-selected ions to probe how solvation affects the structures and charge distributions of metal-CO2 cluster anions. We gratefully acknowledge the National Science Foundation for funding through Grant CHE-0845618 (for graduate student support) and for instrumentation funding through Grant PHY-1125844.

  4. A fluorescent coumarin-thiophene hybrid as a ratiometric chemosensor for anions: Synthesis, photophysics, anion sensing and orbital interactions

    NASA Astrophysics Data System (ADS)

    Yanar, Ufuk; Babür, Banu; Pekyılmaz, Damla; Yahaya, Issah; Aydıner, Burcu; Dede, Yavuz; Seferoğlu, Zeynel

    2016-03-01

    A colorimetric and fluorimetric fluorescent chemosensor (CT-2), having a coumarin ring as a signaling unit and an acetamido thiophene ring as an H-donor receptor, has been synthesized from amino derivative (CT-1) of CT-2 for the purpose of recognition of anions in DMSO. The absorption and emission maxima were both determined for the fluorescent dye in different solvents. Both hypsochromic shift at the absorption maximum, and quenching of fluorescence after interactions between the anions and the receptoric part, were observed. This phenomenon was explained using orbital interactions based on quantum chemical calculations. The selectivity and sensitivity of CT-2 for F-, Cl-, Br-, I-, AcO-, CN-, H2PO4-, HSO4- and ClO4- anions were determined with spectrophotometric, fluorimetric and 1H NMR titration techniques and it was found that CT-2 be utilized for the detection of CN-, F- and AcO- in the presence of other ions as competitors. Color and fluorescence changes visible to the naked eye and under UV (365 nm) were observed upon addition of CN-, F- and AcO- to the solution of chemosensor (CT-2) in DMSO. The sensor showed no colorimetric and fluorimetric response for the anions such as Cl-, Br-, I-, H2PO4-, HSO4-, and ClO4-. However, 1H NMR titration shows that the chemosensor was more sensitive to CN-, than F- and AcO- at the stochiometric ratio of 1:2.5 respectively. Additionally, the compounds CT-1 and CT-2 showed good thermal stability for practical applications.

  5. Electroactive Materials for Anion Separation -- Technetium from Nitrate

    SciTech Connect

    Hubler, Timothy L.

    2003-06-23

    The aim of the proposed research is to use electroactive ion exchange materials to remove anionic contaminants from HLW wastes and process streams. An ion exchange process using electroactive materials sorbs contaminants selectively and then expels (elutes) them electrochemically by changing the charge balance through redox reactions in the sorbent as opposed to requiring the addition of a chemical eluant. Such processes can theoretically remove anions (e.g., pertechnetate, chromate, and perchorate) and concentrate them in a separate product stream while adding no process chemicals. A practical implementation in HLW process facilities would be a breakthrough in the ability of DOE to economically minimize waste and prevent pollution throughout the complex. To enable this, our work focuses on manipulating specific properties of redox polymers to control the hydrophobicity and ion-pair properties pertinent to the reversibility, selectivity, stability, intercalation/de-intercalation rates, and capacity of the polymers. Of primary focus in the immediate future is to prepare materials with greater pH stability and selectivity as our previous studies with polyvinylferrocene (PVF) polymers don't meet the material requirements for the intended application.

  6. Novel pseudo-delocalized anions for lithium battery electrolytes.

    PubMed

    Jónsson, Erlendur; Armand, Michel; Johansson, Patrik

    2012-05-01

    A novel anion concept of pseudo-delocalized anions, anions with distinct positive and negative charge regions, has been studied by a computer aided synthesis using DFT calculations. With the aim to find safer and better performing lithium salts for lithium battery electrolytes two factors have been evaluated: the cation-anion interaction strength via the dissociation reaction LiAn ⇌ Li(+) + An(-) and the anion oxidative stability via a vertical ionisation from anion to radical. Based on our computational results some of these anions have shown promise to perform well as lithium salts for modern lithium batteries and should be interesting synthetic targets for future research. PMID:22441354

  7. The difference between the potentiometric surfaces of the Upper Patapsco aquifer in southern Maryland, September 1990 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland between September 1990 and September 2009. The map, based on water level differences obtained from 33 wells, shows that during the 19-year period, the change in the potentiometric surface ranged from zero at the edge of the outcrop area in northern Anne Arundel County to a decline of 20 feet at Broad Creek, 16 feet near Arnold, 32 feet at Waldorf, 37 feet at the Chalk Point power plant, and 43 feet at Lexington Park. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  8. Difference between the potentiometric surfaces of the Lower Patapsco aquifer in southern Maryland, September 1990 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland between September 1990 and September 2009. The map, based on water level differences obtained from 45 wells, shows that the change of the potentiometric surface during the 19-year period ranged from increases of 25 feet at Indian Head and 4 feet near the outcrop area in Glen Burnie, to declines of 35 feet at Arnold, 56 feet at Severndale, 28 feet at Crofton Meadows, 73 feet at Waldorf, 79 feet near La Plata, 35 feet at the Morgantown power plant, and 32 feet at Swan Point. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  9. The Difference Between the Potentiometric Surfaces of the Lower Patapsco Aquifer in Southern Maryland, September 1990 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland for September 1990 and September 2007. The map, based on water-level measurements in 45 wells, shows that the change of the potentiometric surface during the 17-year period ranged from increases of 19 feet at Indian Head and 6 feet near the outcrop area in Glen Burnie, to declines of 41 feet at Arnold, 45 feet at Severndale, 68 feet at Crofton Meadows, 77 feet at Waldorf, 76 feet at La Plata, 28 feet at the Morgantown power plant, and 35 feet at the Swan Point subdivision south of Morgantown.

  10. Potentiometric surface of the upper Floridan aquifer in Florida and in parts of Georgia, South Carolina, and Alabama, May 1985

    USGS Publications Warehouse

    Bush, Peter W.; Barr, G. Lynn; Clarke, John S.; Johnston, Richard H.

    1987-01-01

    A map, constructed as a part of the Floridan Regional Aquifer-System Analysis (RASA), shows the potentiometric surface of the Upper Floridan aquifer for May 1985. It is based on measurements of water level or artesian pressure made in about 2 ,500 wells during the period May 13 to 24, 1985. Only measurements from tightly cased wells open exclusively to the Upper Floridan aquifer were used to make the map. These included 1,425 wells in Florida, 924 in Georgia, 133 in South Carolina, and 21 in Alabama. The potentiometric surface of the Upper Floridan aquifer changed little between 1980 and 1985. Significant water level declines were observed only in southwest Georgia and west-central Florida. Low rainfall during early 1985 and associated pumping for irrigation caused the declines in both areas. (Lantz-PTT)

  11. Potentiometric surfaces of the Arnold Engineering Development Complex Area, Arnold Air Force Base, Tennessee, May and September 2011

    USGS Publications Warehouse

    Haugh, Connor J.; Robinson, John A.

    2016-01-01

    During May 2011, when water levels were near seasonal highs, water-level data were collected from 374 monitoring wells; and during September 2011, when water levels were near seasonal lows, water-level data were collected from 376 monitoring wells. Potentiometric surfaces were mapped by contouring altitudes of water levels measured in wells completed in the shallow aquifer, the upper and lower parts of the Manchester aquifer, and the Fort Payne aquifer. Water levels are generally 2 to 14 feet lower in September compared to May. The potentiometric-surface maps for all aquifers indicate a groundwater depression at the J4 test cell. Similar groundwater depressions in the shallow and upper parts of the Manchester aquifer are within the main testing area at the Arnold Engineering Development Complex at dewatering facilities.

  12. Improvement of the chromatographic separation performance of an imidazolium ionic liquid functionalized silica column by in situ anion-exchange with dodecyl sulfonate and dodecylbenzene sulfonate anions.

    PubMed

    Sun, Min; Feng, Juanjuan; Chen, Wenjie; Li, Leilei; Duan, Huimin; Luo, Chuannan

    2014-06-01

    The anionic part of ionic liquids can provide additional interactions during chromatographic separations. In this work, the chromatographic separation performance of a silica column functionalized with 1-propyl-3-methylimidazolium chloride ionic liquid was improved by in situ anion-exchange from chloride anions to dodecyl sulfonate anions and dodecylbenzene sulfonate anions. The separation performances of these ionic liquid functionalized phases were investigated and compared with each other using polycyclic aromatic hydrocarbons, phthalates, parabens, and phenols as model compounds. Results indicated that the new columns presented a better chromatographic separation than the original one. This was ascribed retention mechanism from organic anions. The introduction of dodecyl sulfonate anions increased the hydrophobicity of stationary phase. Furthermore, the phenyl groups of dodecylbenzene sulfonate anions could provide an enhanced selectivity to aromatic compounds such as polycyclic aromatic hydrocarbons by π-π interactions. Analysis repeatability of the new columns was satisfactory (RSD of retention time, 0.10-0.40%; RSD of peak area, 0.66-0.84%). PMID:24616155

  13. Molecular pharmacology of renal organic anion transporters.

    PubMed

    Van Aubel, R A; Masereeuw, R; Russel, F G

    2000-08-01

    Renal organic anion transport systems play an important role in the elimination of drugs, toxic compounds, and their metabolites, many of which are potentially harmful to the body. The renal proximal tubule is the primary site of carrier-mediated transport from blood to urine of a wide variety of anionic substrates. Recent studies have shown that organic anion secretion in renal proximal tubule is mediated by distinct sodium-dependent and sodium-independent transport systems. Knowledge of the molecular identity of these transporters and their substrate specificity has increased considerably in the past few years by cloning of various carrier proteins. However, a number of fundamental questions still have to be answered to elucidate the participation of the cloned transporters in the overall tubular secretion of anionic xenobiotics. This review summarizes the latest knowledge on molecular and pharmacological properties of renal organic anion transporters and homologs, with special reference to their nephron and plasma membrane localization, transport characteristics, and substrate and inhibitor specificity. A number of the recently cloned transporters, such as the p-aminohippurate/dicarboxylate exchanger OAT1, the anion/sulfate exchanger SAT1, the peptide transporters PEPT1 and PEPT2, and the nucleoside transporters CNT1 and CNT2, are key proteins in organic anion handling that possess the same characteristics as has been predicted from previous physiological studies. The role of other cloned transporters, such as MRP1, MRP2, OATP1, OAT-K1, and OAT-K2, is still poorly characterized, whereas the only information that is available on the homologs OAT2, OAT3, OATP3, and MRP3-6 is that they are expressed in the kidney, but their localization, not to mention their function, remains to be elucidated. PMID:10919840

  14. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  15. Spectrophotometric study and potentiometric titration between sulfite and nitrite ions using acetaldehyde complex of nitroprusside as a carrier

    SciTech Connect

    Ahmed, Y.Z.; Abd-Elmottalb, M.

    1985-11-01

    A complex between sodium nitroprusside (NP) and acetaldehyde of 1:1 in aqueous solution of pH 10 has been prepared and used as an analytical reagent for the spectrophotometric determination of sulfite and nitrite ions. Nitrite ion can be titrated against sulfite ion and vise versa in equivalent amounts with high accuracy in the presence of the acetaldehyde complex of nitroprusside as a carrier using a potentiometric titration technique. 9 references, 3 figures, 2 tables.

  16. Potentiometric sensors enabling fast screening of the benign prostatic hyperplasia drug alfuzosin in pharmaceuticals, urine and serum.

    PubMed

    Gupta, Vinod K; Singh, Ashok K; Gupta, Barkha

    2007-08-01

    The construction and characterization of potentiometric membrane electrodes are described for the quantification of alfuzosin, a drug used in a mono- and combined therapy of benign prostatic hyperplasia (BPH). The membranes of these electrodes consist of alfuzosin hydrochloride-tetraphenyl borate, (Az-TPB), chlorophenyl borate (Az-ClPB), and phosphotungstate (Az(3)-PT) ion associations as molecular recognition reagent dispersed in PVC matrix with dioctylpthalate as plasticizer. The performance characteristics of these electrodes, which were evaluated according to IUPAC recommendations, revealed a fast, stable and liner response for alfuzosin over the concentration ranges of 8.3 x 10(-6) to 1.0 x 10(-2) M, 3.8 x 10(-6) to 1.0 x 10(-2) M, 7.5 x 10(-7) to 1.0 x 10(-2) M AzCl with cationic slopes of 57.0, 56.0 and 58.5 mV/decade, respectively. The solubility product of the ion-pair and the formation constant of the precipitation reaction leading to the ion-pair formation were determined conductometrically. The electrodes, fully characterized in terms of composition, life span and usable pH range, were applied to the potentiometric determination of alfuzosin hydrochloride ion in different pharmaceutical preparations and biological fluids without any interference from excipients or diluents commonly used in drug formulations. The potentiometric method was also used in the determination of alfuzosin hydrochloride in pharmaceutical preparations in four batches with different expiration dates. Validation of the method showed suitability of the proposed electrodes for use in the quality control assessment of alfuzosin hydrochloride. This potentiometric method offers the advantages of high-throughput determination, simplicity, accuracy, automation feasibility, and applicability to turbid and colored sample solutions. PMID:17979639

  17. Capsaicinoids regulate airway anion transporters through Rho kinase- and cyclic AMP-dependent mechanisms.

    PubMed

    Hibino, Yoshitaka; Morise, Masahiro; Ito, Yasushi; Mizutani, Takefumi; Matsuno, Tadakatsu; Ito, Satoru; Hashimoto, Naozumi; Sato, Mitsuo; Kondo, Masashi; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2011-10-01

    To investigate the effects of capsaicinoids on airway anion transporters, we recorded and analyzed transepithelial currents in human airway epithelial Calu-3 cells. Application of capsaicin (100 μM) attenuated vectorial anion transport, estimated as short-circuit currents (I(SC)), before and after stimulation by forskolin (10 μM) with concomitant reduction of cytosolic cyclic AMP (cAMP) levels. The capsaicin-induced inhibition of I(SC) was also observed in the response to 8-bromo-cAMP (1 mM, a cell-permeable cAMP analog) and 3-isobutyl-1-methylxanthine (1 mM, an inhibitor of phosphodiesterases). The capsaicin-induced inhibition of I(SC) was attributed to suppression of bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1)- and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters)-sensitive components, which reflect anion uptake via basolateral cAMP-dependent anion transporters. In contrast, capsaicin potentiated apical Cl(-) conductance, which reflects conductivity through the cystic fibrosis transmembrane conductance regulator, a cAMP-regulated Cl(-) channel. All these paradoxical effects of capsaicin were mimicked by capsazepine. Forskolin application also increased phosphorylated myosin phosphatase target subunit 1, and the phosphorylation was prevented by capsaicin and capsazepine, suggesting that these capsaicinoids assume aspects of Rho kinase inhibitors. We also found that the increments in apical Cl(-) conductance were caused by conventional Rho kinase inhibitors, Y-27632 (20 μM) and HA-1077 (20 μM), with selective inhibition of basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1. Collectively, capsaicinoids inhibit cAMP-mediated anion transport through down-regulation of basolateral anion uptake, paradoxically accompanied by up-regulation of apical cystic fibrosis transmembrane conductance regulator-mediated anion conductance. The latter is mediated by inhibition of Rho

  18. Metalloporphyrin chloride ionophores: induction of increased anion permeability in lung epithelial cells.

    PubMed

    El-Etri, M; Cuppoletti, J

    1996-03-01

    5,10,15,20-Tetraphenyl-21H,23H-porphine manganese (III) chloride [TPPMn(III)] is a positively charged lipophilic anion carrier that is widely used as a Cl- sensor. TPPMn(III) increased anion permeability of cultured mouse lung epithelial (MLE) cells as measured by short-circuit current (ISC) to a level similar to that induced by forskolin analogues. Anion permeability was also studied in cultured human lung epithelial (A549) cells by measurement of the rates of change of fluorescence of the anion sensitive fluorescent dye, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). In these studies, cells were incubated with SPQ in SO2-4- medium, washed free of extracellular SPQ, and then perfused with medium containing anions that are known to quench SPQ fluorescence. The effect of TPPMn(III) on anion transport was then determined either microscopically in single cell studies or using cell monolayers mounted in a front face fluorimeter. TPPMn(III) in the range from 1 to 100 micrograms/ml induced a dose-dependent increase in Br- transport. The half-maximal quenching effect was estimated to be approximate 5 micrograms/ml. TPPMn(III) increased the rates of fluorescence quench of anions by up to fourfold. TPPMn(III) was without effect on -Ca2+-i level in A549 cells as measured with fura 2-AM. This indicates that TPPMn(III) effects were not mediated through effects on Ca+2 -activated Cl- channels, or by compromise of energy metabolism or membrane integrity of the cells. This study suggests that TPPMn(III) and, by extension, other lipophilic Mn(III) or Co(III) derivatives wherein the selectivity of lipophilicity is altered, could increase the anion permeability of biological membranes, and suggests a new approach for treatment of diseases such as cystic fibrosis, where transport of Cl- is defective. PMID:8638731

  19. Anion Binding in Self-Assembled Monolayers in Mesoporous Supports (SAMMS)

    SciTech Connect

    Mattigod, Shas V.; Fryxell, Glen E.; Parker, Kent E.

    2007-02-19

    The binding of various anions to cationic transition metal complexes lining the pores of mesoporous silica is characterized and correlated to anion basicity. By lining the pore surfaces of mesoporous silica with self-assembled monolayer of organosilanes terminated with chemically selective ligands, a powerful new class of heavy metal sorbents has been realized, called self-assembled monolayers on mesoporous supports (SAMMS) [1-18]. When this interfacial functionality is composed of cationic transition metal complexes, a valuable new class of anion exchange material came into being [19]. Yoshitake and co-workers, have extended this concept to include other transition metal cations in similar cationic complexes inside mesoporous silica [20-23]. Other amine-based ligands (including polymer-based systems) were also explored, and the highest binding capacity was found with the diethylenetriamine ligand [20]. This synthetic strategy allows the chemist to easily modify both the metal center and ligand field, thereby tailoring chemical selectivity at multiple levels.

  20. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September 1984

    USGS Publications Warehouse

    Schiner, George R.; Hayes, Eugene C.

    1984-01-01

    This map shows the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 1984. The Upper Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 1,000 wells and on several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area of Nassau County a 40-foot interval is used to show a deep cone of depression. The potentiometric surface ranged from 130 feet above sea level in Polk County to 83 feet below sea level in Nassau County. Water levels in key wells ranged from slightly above average to several feet below average for September in response to diverse area rainfall patterns. Most levels in the district were about the same as the levels of September 1983. However, in Nassau County levels were generally below those of September 1983, and levels in Volusia County were mostly higher than September 1983 levels. (USGS)