Science.gov

Sample records for poverkhnosti metallov modifitsirovannykh

  1. Core Formation in the Earth: Constraints from Ni and Co

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Draper, D. S.; Agee, C. B.

    2004-01-01

    Due to their metal-loving nature, Ni and Co were strongly partitioned into the metallic core and were left depleted in the silicate mantle during core formation in the Earth. Based on experimental liquid metal- liquid silicate partition coefficients (D), studies have suggested that core formation in an early magma Ocean can explain the observed mantle depletions of Ni and Co [l-51. However, the conditions proposed by the magma ocean models have ranged from pressures of 24 to 59 GPa and temperatures of 2200 to < 4000 K. Furthermore, the proposed magma Ocean oxygen fugacities have differed by nearly two orders of magnitude.Chabot and Agee noted that the different models predicted contradictory behaviors for D(Ni) and D(Co) as a function of temperature. With the hope of resolving the discrepancies between the magma ocean models, we conducted a systematic experimental study to constrain the effects of temperature on D(Ni) and D(Co).

  2. Broad bounds on Earth's accretion and core formation constrained by geochemical models

    NASA Astrophysics Data System (ADS)

    Rudge, John F.; Kleine, Thorsten; Bourdon, Bernard

    2010-06-01

    The Earth formed through the accretion of numerous planetary embryos that were already differentiated into a metallic core and silicate mantle. Prevailing models of Earth's formation, constrained by the observed abundances of metal-loving siderophile elements in Earth's mantle, assume full metal-silicate equilibrium, whereby all memory of the planetary embryos' earlier differentiation is lost. Using the hafnium-tungsten (Hf-W) and uranium-lead (U-Pb) isotopic dating systems, these models suggest rapid accretion of Earth's main mass within about 10 million years (Myr) of the formation of the Solar System. Accretion terminated about 30 or 100 Myr after formation of the Solar System, owing to a giant impact that formed the Moon. Here we present geochemical models of Earth's accretion that preserve some memory of the embryos' original differentiation. These disequilibrium models allow some fraction of the embryos' metallic cores to directly enter the Earth's core, without equilibrating with Earth's mantle. We show that disequilibrium models are as compatible with the geochemical observations as equilibrium models, yet still provide bounds on Earth's accretion and core formation. We find that the Hf-W data mainly constrain the degree of equilibration rather than the timing, whereas the U-Pb data confirm that the end of accretion is consistent with recent estimates of the age of the Moon. Our results indicate that only 36% of the Earth's core must have formed in equilibrium with Earth's mantle. This low degree of equilibration is consistent with the siderophile element abundances in Earth's mantle.

  3. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    NASA Technical Reports Server (NTRS)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  4. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: Implications for the origin and distribution of terrestrial carbon

    NASA Astrophysics Data System (ADS)

    Dasgupta, Rajdeep; Chi, Han; Shimizu, Nobumichi; Buono, Antonio S.; Walker, David

    2013-02-01

    The origin of bulk silicate Earth carbon inventory is unknown and the fate of carbon during the early Earth differentiation and core formation is a missing link in the evolution of the terrestrial carbon cycle. Here we present high pressure (P)-temperature (T) experiments that offer new constraints upon the partitioning of carbon between metallic and silicate melt in a shallow magma ocean. Experiments were performed at 1-5 GPa, 1600-2100 °C on mixtures of synthetic or natural silicates (tholeiitic basalt/alkali basalt/komatiite/fertile peridotite) and Fe-Ni-C ± Co ± S contained in graphite or MgO capsules. All the experiments produced immiscible Fe-rich metallic and silicate melts at oxygen fugacity (fO2) between ˜IW-1.5 and IW-1.9. Carbon and hydrogen concentrations of basaltic glasses and non-glassy quenched silicate melts were determined using secondary ionization mass spectrometry (SIMS) and speciation of dissolved C-O-H volatiles in silicate glasses was studied using Raman spectroscopy. Carbon contents of metallic melts were determined using both electron microprobe and SIMS. Our experiments indicate that at core-forming, reduced conditions, carbon in deep mafic-ultramafic magmas may dissolve primarily as various hydrogenated species but the total carbon storage capacity, although is significantly higher than solubility of CO2 under similar conditions, remains low (<500 ppm). The total carbon content in our reduced melts at graphite saturation increases with increasing melt depolymerization (NBO/T), consistent with recent spectroscopic studies, and modestly with increasing hydration. Carbon behaves as a metal-loving element during core-mantle separation and our experimental DCmetal/silicate varies between ˜4750 and ⩾150 and increases with increasing pressure and decreases with increasing temperature and melt NBO/T. Our data suggest that if only a trace amount of carbon (˜730 ppm C) was available during early Earth differentiation, most of it was

  5. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    NASA Astrophysics Data System (ADS)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white