Science.gov

Sample records for powder hydration time

  1. Glass powder blended cement hydration modelling

    NASA Astrophysics Data System (ADS)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  2. Inelastic X-ray scattering studies of the short-time collective vibrational motions in hydrated lysozyme powders and their possible relation to enzymatic function.

    PubMed

    Wang, Zhe; Bertrand, Christopher E; Chiang, Wei-Shan; Fratini, Emiliano; Baglioni, Piero; Alatas, Ahmet; Alp, E Ercan; Chen, Sow-Hsin

    2013-01-31

    High-resolution inelastic X-ray scattering was used to investigate the collective vibrational excitations in hydrated lysozyme powders as a function of hydration level and temperature. It is found that the samples with strong enzymatic function are "soft", in the sense that they exhibit low frequency and large amplitude intraprotein collective vibrational motions on certain length scales. This is not the case for samples with weak or no enzymatic activity. Thus, we identify a possible correlation between the short-time intraprotein collective vibrational motions and the establishment of enzymatic function in hydrated lysozyme powders, and bring new insight to notions of protein "conformational flexibility" and "softness" in terms of these motions. PMID:23301848

  3. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    NASA Astrophysics Data System (ADS)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  4. Time-dependent water dynamics in hydrated uranyl fluoride

    DOE PAGESBeta

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less

  5. Time-dependent water dynamics in hydrated uranyl fluoride

    SciTech Connect

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translational diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.

  6. In situ neutron powder diffraction investigation of the hydration of tricalcium aluminate in the presence of gypsum

    SciTech Connect

    Hartman, M.R. . E-mail: michael.hartman@nist.gov; Berliner, R.

    2005-11-15

    The hydration of a 1:3 molar ratio of tricalcium aluminate, Ca{sub 3}Al{sub 2}O{sub 6}, to gypsum, CaSO{sub 4}.2D{sub 2}O, was investigated at temperatures of 25, 50, and 80 deg. C using time-of-flight powder neutron diffraction combined with multiphase Rietveld structural refinement. It was shown that ettringite, Ca{sub 6}[Al(OD){sub 6}]{sub 2}(SO{sub 4}){sub 3}.{approx}26D{sub 2}O, was the first and only hydration product of the system, in contrast to a prior investigation which suggested the occurrence of a precursor phase prior to the formation of ettringite. Kinetics data showed that the hydration reaction is very sensitive to temperature: hydration at 25 deg. C was characterized by a single kinetic regime while hydration at higher temperatures consisted of two distinct kinetic regimes. The presence of two kinetic regimes was attributed to a change in either the dimensionality of the growth process or a change in the rate controlling mechanism in the hydration reaction.

  7. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  8. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  9. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    SciTech Connect

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R.; Fauth, F.; Aranda, M.A.G.; De la Torre, A.G.

    2014-02-15

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (α ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

  10. Quil A-lipid powder formulations releasing ISCOMs and related colloidal structures upon hydration.

    PubMed

    Demana, Patrick H; Davies, Nigel M; Hook, Sarah; Rades, Thomas

    2005-03-01

    The aim of the present study was to prepare solid Quil A-cholesterol-phospholipid formulations (as powder mixtures or compressed to pellets) by physical mixing or by freeze-drying of aqueous dispersions of these components in ratios that allow spontaneous formation of ISCOMs and other colloidal structures upon hydration. The effect of addition of excess cholesterol to the lipid mixtures on the release of a model antigen (PE-FITC-OVA) from the pellets was also investigated. Physical properties were evaluated by X-ray powder diffractometry (XPRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and polarized light microscopy (PLM). Characterization of aqueous colloidal dispersions was performed by negative staining transmission electron microscopy (TEM). Physically mixed powders (with or without PE-FITC-OVA) and pellets prepared from the same powders did not spontaneously form ISCOM matrices and related colloidal structures such as worm-like micelles, ring-like micelles, lipidic/layered structures and lamellae (hexagonal array of ring-like micelles) upon hydration as expected from the pseudo-ternary diagram for aqueous mixtures of Quil A, cholesterol and phospholipid. In contrast, spontaneous formation of the expected colloids was demonstrated for the freeze-dried lipid mixtures. Pellets prepared by compression of freeze-dried powders released PE-FITC-OVA slower than those prepared from physically mixed powders. TEM investigations revealed that the antigen was released in the form of colloidal particles (ISCOMs) from pellets prepared by compression of freeze-dried powders. The addition of excess cholesterol slowed down the release of antigen. The findings obtained in this study are important for the formulation of solid Quil A-containing lipid articles as controlled particulate adjuvant containing antigen delivery systems. PMID:15710499

  11. Kinetics of methane hydrate decomposition studied via in situ low temperature X-ray powder diffraction.

    PubMed

    Everett, S Michelle; Rawn, Claudia J; Keffer, David J; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy J

    2013-05-01

    Gas hydrate is known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Based on results from the decomposition of three nominally similar methane hydrate samples, the kinetics of two regions, 180-200 and 230-260 K, within the overall decomposition range 140-260 K, were studied by in situ low temperature X-ray powder diffraction. The kinetic rate constants, k(a), and the reaction mechanisms, n, for ice formation from methane hydrate were determined by the Avrami model within each region, and activation energies, E(a), were determined by the Arrhenius plot. E(a) determined from the data for 180-200 K was 42 kJ/mol and for 230-260 K was 22 kJ/mol. The higher E(a) in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions. PMID:23557375

  12. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash

    SciTech Connect

    De Weerdt, K.; Haha, M. Ben; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B.

    2011-03-15

    The effect of minor additions of limestone powder on the properties of fly ash blended cements was investigated in this study using isothermal calorimetry, thermogravimetry (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, and pore solution analysis. The presence of limestone powder led to the formation of hemi- and monocarbonate and to a stabilisation of ettringite compared to the limestone-free cements, where a part of the ettringite converted to monosulphate. Thus, the presence of 5% of limestone led to an increase of the volume of the hydrates, as visible in the increase in chemical shrinkage, and an increase in compressive strength. This effect was amplified for the fly ash/limestone blended cements due to the additional alumina provided by the fly ash reaction.

  13. Precondition of time required for the generation of methane hydrate

    NASA Astrophysics Data System (ADS)

    Rezničák, Štefan; Malcho, Milan; Siažik, Ján

    2016-06-01

    The paper deals with methane hydrates generated from natural gas. Methane hydrates in nature. Thermobaric conditions necessary for their generation from the natural gas, composition of december 2015 from the company SPP - distribúcia, a.s. It deals with the estimated time of their formation, at a constant pressures of 5, 10 and 15 MPa and at different subcooling temperature. Determination the temperature required for the generation of methane hydrates at these pressures and temperature range based on the equation from research by Kim et. al..

  14. A Circuit Model of Real Time Human Body Hydration.

    PubMed

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration. PMID:26485354

  15. Dynamics and structure of hydration water on rutile and cassiterite nano-powders studied by quasielastic neutron scattering and molecular dynamics simulations

    SciTech Connect

    Mamontov, Eugene

    2007-01-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nano-powder rutile (TiO2) and cassiterite (SnO2) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nano-powders had similar levels of hydration: about 3.5 (OH/H2O) molecules per Ti2O4 surface structural unit of TiO2 and about 4.0 (OH/H2O) molecules per Sn2O4 surface unit of SnO2. Ab initio-optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally-distinct sorbed water layers L1, L2, and L3, where the L1 species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L2 water molecules are hydrogen bonded to L1 and structural oxygen atoms at the surface, and L3 water molecules are more weakly bound. At the hydration levels studied, L3 is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L1 "L3 species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO2 compared to TiO2. In TiO2 hydration water, the more strongly bound L2 water molecules exhibited slow (on the time scale of a nanosecond) dynamics characterized by super

  16. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction

    SciTech Connect

    Snellings, R.; Mertens, G.; Cizer, O.; Elsen, J.

    2010-12-15

    The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

  17. Pre-exercise glycerol hydration improves cycling endurance time

    NASA Technical Reports Server (NTRS)

    Montner, P.; Stark, D. M.; Riedesel, M. L.; Murata, G.; Robergs, R.; Timms, M.; Chick, T. W.

    1996-01-01

    The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.

  18. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: As Affected by Hydration in Powders.

    PubMed

    Yucel, Umut; Peterson, Devin G

    2015-09-01

    There is a broad need to reformulate lower sodium food products without affecting their original taste. The present study focuses on characterizing the role of protein-salt interactions on the salt release in low-moisture systems and saltiness perception during hydration. Sodium release from freeze-dried protein powders and emulsion powders formulated at different protein/lipid ratios (5:0 to 1:4) were characterized using a chromatography column modified with a porcine tongue. Emulsion systems with protein structured at the interface were found to have faster initial sodium release rates and faster hydration and were perceived to have a higher initial salt intensity with a lower salty aftertaste. In summary, exposure of the hydrophilic segments of the interface-structured proteins in emulsions was suggested to facilitate hydration and release of sodium during dissolution of low-moisture powder samples. PMID:26255668

  19. Terahertz time-lapse imaging of hydration in physiological tissues

    NASA Astrophysics Data System (ADS)

    Bennett, David B.; Taylor, Zachary D.; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Sung, Shijun; Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Brown, Elliott R.

    2011-02-01

    This study describes terahertz (THz) imaging of hydration changes in physiological tissues with high water concentration sensitivity. A fast-scanning, pulsed THz imaging system (centered at 525 GHz; 125 GHz bandwidth) was utilized to acquire a 35 mm x 35 mm field-of-view with 0.5 mm x 0.5 mm pixels in less than two minutes. THz time-lapsed images were taken on three sample systems: (1) a simple binary system of water evaporating from a polypropylene towel, (2) the accumulation of fluid at the site of a sulfuric acid burn on ex vivo porcine skin, and (3) the evaporative dehydration of an ex vivo porcine cornea. The diffusion-regulating behavior of corneal tissue is elucidated, and the correlation of THz reflectivity with tissue hydration is measured using THz spectroscopy on four ex vivo corneas. We conclude that THz imaging can discern small differences in the distribution of water in physiological tissues and is a good candidate for burn and corneal imaging.

  20. [Comparative examination of preparation time in docetaxel hydrate formulation].

    PubMed

    Arii, Daisuke; Ikeno, Yohei; Narita, Kumi; Murooka, Kunihiko; Nojima, Michio; Kidokoro, Akio

    2012-12-01

    Docetaxel hydrate(DTX), a taxane anticancer drug, is known to be effective against a wide range of cancers, including breast cancer and non-small cell lung cancer. The DTX preparation Taxotere(2-vial DTX)has conventionally required dissolution in the attached solvent, while Onetaxotere(1-vial DTX), a newer product, is provided as a solution. This allows reduction of preparation time, so that improvement in operational efficiency can be expected. In this study, we measured the actual preparation time for 2-vial DTX and 1-vial DTX to compare their usefulness. The median preparation time for 2-vial DTX(n=84)and 1-vial DTX(n=84)was significantly different, with the respective values being 6. 52 minutes and 2. 67 minutes(p<0. 01). By switching to 1-vial DTXfrom 2-vial DTX, which requires preparation of a premix solution with the attached solvent, the preparation procedure in daily practice becomes more convenient. This is because of a shorter preparation time as well as a lower risk of contamination, suggesting the usefulness of 1-vial DTX. PMID:23235174

  1. Clathrate hydrates for ozone preservation.

    PubMed

    Muromachi, Sanehiro; Ohmura, Ryo; Takeya, Satoshi; Mori, Yasuhiko H

    2010-09-01

    We report the experimental evidence for the preservation of ozone (O(3)) encaged in a clathrate hydrate. Although ozone is an unstable substance and is apt to decay to oxygen (O(2)), it may be preserved for a prolonged time if it is encaged in hydrate cavities in the form of isolated molecules. This possibility was assessed using a hydrate formed from an ozone + oxygen gas mixture coexisting with carbon tetrachloride or xenon. Each hydrate sample was stored in an air-filled container at atmospheric pressure and a constant temperature in the range between -20 and 2 degrees C and was continually subjected to iodometric measurements of its fractional ozone content. Such chronological measurements and structure analysis using powder X-ray diffraction have revealed that ozone can be preserved in a hydrate-lattice structure for more than 20 days at a concentration on the order of 0.1% (hydrate-mass basis). PMID:20707330

  2. Relative Timing of Phyllosilicate and Hydrated Sulfate Deposition in Eastern Sinus Meridiani

    NASA Astrophysics Data System (ADS)

    Wiseman, S. M.; Beyer, R. A.

    2014-07-01

    Both Fe/Mg phyllosilicates and hydrated sulfates are associated with extensive indurated, layered deposits. We determine the relative timing of alteration. Phyllosilicates appear to be contained within a laterally continuous stratigraphic horizon.

  3. A combined solid-state NMR and synchrotron x-ray diffraction powder study on the structure of the antioxidant(+)-catechin 4.5 hydrate.

    SciTech Connect

    Harper, J. K.; Doebbler, J. A.; Jaccques, E.; Grant, D. M.; Von Dreele, R. B.; Univ. of Utah

    2010-03-10

    Analyses combining X-ray powder diffraction (XRD) and solid-state NMR (SSNMR) data can now provide crystal structures in challenging powders that are inaccessible by traditional methods. The flavonoid catechin is an ideal candidate for these methods, as it has eluded crystallographic characterization despite extensive study. Catechin was first described nearly two centuries ago, and its powders exhibit numerous levels of hydration. Here, synchrotron XRD data provide all heavy-atom positions in (+)-catechin 4.5-hydrate and establish the space group as C2. SSNMR data ({sup 13}C tensor and {sup 1}H/{sup 13}C correlation) complete the conformation by providing catechin's five OH hydrogen orientations. Since 1903, this phase has been erroneously identified as a 4.0 hydrate, but XRD and density data establish that this discrepancy is due to the facile loss of the water molecule located at a Wyckoff special position in the unit cell. A final improvement to heavy-atom positions is provided by a geometry optimization of bond lengths and valence angles with XRD torsion angles held constant. The structural enhancement in this final structure is confirmed by the significantly improved fit of computed {sup 13}C tensors to experimental data.

  4. Dissociation of Natural and Artificial Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Misyura, S. Y.

    2016-02-01

    Present work deals with natural and artificial methane hydrate dissociation. The heating of the powder produced due to the temperature difference between the external air and the powder. The dissociation rate was determined by gravimetric method. The range of the partial self-preservation for the natural hydrate is significantly longer than for the artificial one and moved to higher temperatures. The destruction of the natural sample is slower than the artificial one. The time-averaged dissociation rate for the artificial sample is equal to 1,25 %/s and for the natural hydrate corresponds to 0,59 %/s.

  5. Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Lee, W.

    2008-12-01

    A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.

  6. Diffusion Processes in Water on Oxide Surfaces: Quasielastic Neutron Scattering Study of Hydration Water in Rutile Nano-Powder

    SciTech Connect

    Chu, Xiang-Qiang; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey A; Wang, Wei; Wesolowski, David J

    2011-01-01

    Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO{sub 2}) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components. All of the probed components were present in the studied temperature range of 230-320 K, providing, at a first sight, no evidence of discontinuity in the hydration water dynamics. However, a qualitative change in the elastic scattering between 240 and 250 K suggested a surface freezing-melting transition, when the motions that were localized at lower temperatures became delocalized at higher temperatures. On the basis of our previous molecular dynamics simulations of this system, we argue that interpretation of QENS data from such a complex interfacial system requires at least qualitative input from simulations, particularly when comparing results from spectrometers with very different energy resolutions and dynamic ranges.

  7. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  8. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-01

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed. PMID:24856723

  9. Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass-->liquid transition and crystallization behavior on reheating.

    PubMed Central

    Sartor, G; Hallbrucker, A; Mayer, E

    1995-01-01

    For hydrated metmyoglobin, methemoglobin, and lysozyme powders, the freezable water fraction of between approximately 0.3-0.4 g water/g protein up to approximately 0.7-0.8 g water/g protein has been fully vitrified by cooling at rates up to approximately 1500 K min-1 and the influence of cooling rate characterized by x-ray diffractograms. This vitreous but freezable water fraction started to crystallize at approximately 210 K to cubic ice and at approximately 240 K to hexagonal ice. Measurements by differential scanning calorimetry have shown that this vitreous but freezable water fraction undergoes, on reheating at a rate of 30 K min-1, a glass-->liquid transition with an onset temperature of between approximately 164 and approximately 174 K, with a width of between approximately 9 and approximately 16 degrees and an increase in heat capacity of between approximately 20 and approximately 40 J K-1 (mol of freezable water)-1 but that the glass transition disappears upon crystallization of the freezable water. These calorimetric features are similar to those of water imbibed in the pores of a synthetic hydrogel but very different from those of glassy bulk water. The difference to glassy bulk water's properties is attributed to hydrophilic interaction and H-bonding of the macromolecules' segments with the freezable water fraction, which thereby becomes dynamically modified. Abrupt increase in minimal or critical cooling rate necessary for complete vitrification is observed at approximately 0.7-0.8 g water/g protein, which is attributed to an abrupt increase of water's mobility, and it is remarkably close to the threshold value of water's mobility on a hydrated protein reported by Kimmich et al. (1990, Biophys. J. 58:1183). The hydration level of approximately 0.7-0.8 g water/g protein is approximately that necessary for completing the secondary hydration shell. PMID:8599674

  10. Feasibility of monitoring gas hydrate production with time-lapse VSP

    SciTech Connect

    Kowalsky, M.B.; Nakagawa, S.; Moridis, G.J.

    2009-11-01

    In this work we begin to examine the feasibility of using time-lapse seismic methods-specifically the vertical seismic profiling (VSP) method-for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas.

  11. Terahertz time domain spectroscopy (THz-TDS) of hydrated biomolecular polymers and monomers

    NASA Astrophysics Data System (ADS)

    Glancy, Paul Michael

    Terahertz Time Domain Spectroscopy (THz-TDS) was utilized to obtain the complex dielectric spectra of hydrated biomolecules, betwixt the frequency range of 50 GHz to 2 THz. Two biological systems are observed; nucleic acid and carbohydrates. Monomers and polymers will be of interest for both. Utilizing both the Debye relaxation model and the suspension model, we observed both the mobility of biomolecules in solution as well as the influence they have on their surrounding water. Nucleotides and glucose (monomers) were found to have a small part in the overall dynamics of the polymers. Hydrated nucleotides were shown to form transition materials. The pyrimidine nucleotides act much like an ion where they break up the original structure of water and set up a less complicated structure (smaller main relaxation times than water) than water. Purine nucleotides act more like a hydrogen bond building material they set up a more complex hydrogen bond network (larger main relaxation times than water) than water. These nucleotides were shown to have an influence in water out to four water layers. The concentration studies that were preformed on native DNA, shows that concentration in the hydrated state is an important factor in the dielectric response. In addition, it was found that impurities in our samples did not play an important role in the dielectric response of our DNA solutions. Native DNA was shown to have a reach of six hydration layers. The influence temperature has on DNA solutions was observed, temperature has a large influence on hydrated DNA. It was found that hydrated DNA is more susceptible to change in temperature then that of bulk water. The main relaxation time increases at a much larger proportion to that of water. Using two synthetic DNA molecules with the same structure but different compositions and two carbohydrates with different structures but the same composition we found that the structure of a biopolymer is the most domination factor, rather than

  12. X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well

    SciTech Connect

    Kneafsey, T.J.; Rees, E.V.L.

    2010-03-01

    When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

  13. Dynamics of protein hydration water

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Emmert, S.; Gulich, R.; Lunkenheimer, P.; Loidl, A.

    2015-09-01

    We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water.

  14. Dynamics of protein hydration water.

    PubMed

    Wolf, M; Emmert, S; Gulich, R; Lunkenheimer, P; Loidl, A

    2015-09-01

    We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water. PMID:26465518

  15. An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route

    SciTech Connect

    Aminzare, M.; Amoozegar, Z.; Sadrnezhaad, S.K.

    2012-11-15

    Highlights: ► Synthesis of nanosized CeO{sub 2} was carried out using mechanochemical reactions plus sequential calcinations procedure. ► The effect of milling time and calcinations procedure on crystallite size and surface area of the as-synthesized powders was investigated. ► The extended milling times were exposed to result in the smaller crystallite size, and hence higher surface area for the as-synthesized powder. ► Higher calcinations temperatures, on the other hand, led to the as-synthesized powder with a larger crystallite size and therefore, lower surface area. ► Activation energy for nanocrystallite growth was calculated during the calcinations procedure and the aforementioned crystallite growth was found to be conducted in the light of interfacial reactions. -- Abstract: The synthesis of nano-sized CeO{sub 2} powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, Brunner–Emmett–Teller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 °C. According to the results, milling time and calcination temperatures induce paramountal effects on crystallite size and surface area of as-synthesized powders. In addition, the average activation energy for the growth of nanocrystals during calcination was determined to be about 12.53 kJ/mol, suggesting the influence of interfacial reactions on the crystallite growth during the calcination procedure.

  16. Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Qian, M.; Liu, N.; Zhang, X. Z.; Yang, G. Y.; Wang, J.

    2015-03-01

    An advantage of the powder-bed-based metal additive manufacturing (AM) processes is that the powder can be reused. The powder reuse or recycling times directly affect the affordability of the additively manufactured parts, especially for the AM of titanium parts. This study examines the influence of powder reuse times on the characteristics of Ti-6Al-4V powder, including powder composition, particle size distribution (PSD), apparent density, tap density, flowability, and particle morphology. In addition, tensile samples were manufactured and evaluated with respect to powder reuse times and sample locations in the powder bed. The following findings were made from reusing the same batch of powder 21 times for AM by selective electron beam melting: (i) the oxygen (O) content increased progressively with increasing reuse times but both the Al content and the V content remained generally stable (a small decrease only); (ii) the powder became less spherical with increasing reuse times and some particles showed noticeable distortion and rough surfaces after being reused 16 times; (iii) the PSD became narrower and few satellite particles were observed after 11 times of reuse; (iv) reused powder showed improved flowability; and (v) reused powder showed no measurable undesired influence on the AM process and the samples exhibited highly consistent tensile properties, irrespective of their locations in the powder bed. The implications of these findings were discussed.

  17. Multi-rate time stepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Gupta, Shubhangi; Wohlmuth, Barbara; Helmig, Rainer

    2016-05-01

    We present an extrapolation-based semi-implicit multi-rate time stepping (MRT) scheme and a compound-fast MRT scheme for a naturally partitioned, multi-time-scale hydro-geomechanical hydrate reservoir model. We evaluate the performance of the two MRT methods compared to an iteratively coupled solution scheme and discuss their advantages and disadvantages. The performance of the two MRT methods is evaluated in terms of speed-up and accuracy by comparison to an iteratively coupled solution scheme. We observe that the extrapolation-based semi-implicit method gives a higher speed-up but is strongly dependent on the relative time scales of the latent (slow) and active (fast) components. On the other hand, the compound-fast method is more robust and less sensitive to the relative time scales, but gives lower speed up as compared to the semi-implicit method, especially when the relative time scales of the active and latent components are comparable.

  18. Incident spectrum determination for time-of-flight neutron powder diffraction data analysis.

    SciTech Connect

    Hodges, J. P.

    1998-08-27

    Accurate characterization of the incident neutron spectrum is an important requirement for precise Rietveld analysis of time-of-flight powder neutron diffraction data. Without an accurate incident spectrum the calculated model for the measured relative intensities of individual Bragg reflections will possess systematic errors. We describe a method for obtaining an accurate numerical incident spectrum using data from a transmitted beam monitor.

  19. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    SciTech Connect

    Lawson, A.C.; Smith, K.

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs.

  20. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-01-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  1. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-06-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  2. A Study of Concrete Hydration and Dielectric Relaxation Mechanism Using Ground Penetrating Radar and Short-Time Fourier Transform

    NASA Astrophysics Data System (ADS)

    Lai, W. L.; Kind, T.; Wiggenhauser, H.

    2010-12-01

    Ground penetrating radar (GPR) was used to characterize the frequency-dependent dielectric relaxation phenomena in ordinary Portland cement (OPC) hydration in concrete changing from fresh to hardened state. The study was experimented by measuring the changes of GPR A-scan waveforms over a period of 90 days, and processed the waveforms with short-time Fourier transform (STFT) in joint time-frequency analysis (JTFA) domain rather than a conventional time or frequency domain alone. The signals of the direct wave traveled at the concrete surface and the reflected wave from an embedded steel bar were transformed with STFT, in which the changes of peak frequency over ages were tracked. The peak frequencies were found to increase with ages and the patterns were found to match closely with primarily the well-known OPC hydration process and secondarily, the evaporation effect. The close match is contributed to the simultaneous effects converting free to bound water over time, on both conventional OPC hydration and dielectric relaxation mechanisms.

  3. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  4. Effect of time and temperature on the hydration process of barley grains

    NASA Astrophysics Data System (ADS)

    Montanuci, Flávia Daiana; Jorge, Luiz Mario Matos; Jorge, Regina Maria Matos

    2015-03-01

    The barley behavior during hydration regarding to water absorption, density, volume variation, and solids loss is identified, as well as employ mathematical models such as diffusional, Peleg, Weibull distribution function and first order kinetics, in order to verify the effect of temperature on the process. Hydration was carried out over 32 h at six different temperatures: 35, 30, 25, 20, 15 and 10 °C. The hydration isotherms were divided into two phases, the first one comprising the first 8 h, with a high hydration rate, and the second one in which the moisture content increases slowly until it reaches the equilibrium moisture content. During the first hour of process, the solids loss at 35 °C was 3.95 % higher than at 10 °C. The effective diffusion coefficients ranged from 5.14 to 10.8 × 10-12 m2/s. The model of Peleg and the first order kinetics model best described the water absorption characteristics at the temperatures investigated.

  5. Understanding gas hydrate dissolution

    NASA Astrophysics Data System (ADS)

    Lapham, Laura; Chanton, Jeffrey; MacDonald, Ian; Martens, Christopher

    2010-05-01

    In order to understand the role gas hydrates play in climate change or their potential as an energy source, we must first understand their basic behaviors. One such behavior not well understood is their dissolution and the factors that control it. Theoretically, hydrates are stable in areas of high pressure, low temperature, moderate salt concentrations, and saturated methane. Yet in nature, we observe hydrate to outcrop seafloor sediments into overlying water that is under-saturated with respect to methane. How do these hydrates not dissolve away? To address this question, we combine both field and laboratory experiments. In the field, we have collected pore-waters directly surrounding gas hydrate outcrops and measured for in situ methane concentrations. This gives us an understanding of the concentration gradients, and thus methane flux, directly from the hydrate to the surrounding environment. From these samples, we found that methane concentrations decreased further from hydrate yet are always under-saturated with respect to methane hydrate. The resulting low methane gradients were then used to calculate low dissolution rates. This result suggests that hydrates are meta-stable in the environment. What controls their apparent meta-stability? We hypothesize that surrounding oils or microbial slimes help protect the hydrate and slow down their dissolution. To test this hypothesis, we conducted a series of laboratory experiments where hydrate was formed at in situ pressure and temperature and the source gas removed; first with no oils, then with oils. Dissolved methane concentrations were then measured in surrounding fluids over time and dissolution rates calculated. To date, both methane and mixed gas hydrate (methane, ethane, and propane) have similar dissolution rates of 0.12 mM/hr. Future experiments will add oils to determine how different hydrate dissolves with such contaminants. This study will further our understanding of factors that control hydrate

  6. Time-Dependent Properties of Multimodal Polyoxymethylene Based Binder for Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Gonzalez-Gutierrez, Joamin; Stringari, Gustavo Beulke; Zupancic, Barbara; Kubyshkina, Galina; Bernstorff, Bernd Von; Emri, Igor

    Powder injection molding (PIM) is one of the most versatile methods for the manufacturing of small complex shaped components from metal, ceramic or cemented carbide powders for the use in many applications. PIM consists of mixing the powder and a polymeric binder, injecting this mixture in a mold, debinding and then sintering. Catalytic debinding of polyoxymethylene (POM) is attractive since it shows high debinding rates and low risk of cracking. This work examines the possibility of using POM with bimodal molecular mass distribution as the main component of the binding agent by studying its time-dependent properties and comparing them to monomodal POM. Furthermore, possible optimization of the binder formulation was investigated by the addition of shorter polymeric chains (wax) to bimodal POM, as to create a multimodal material. It was observed that the magnitude of the complex viscosity for the commercial bimodal material was more than 2 times lower than for the chemically identical monomodal POM within the investigated frequency range and temperature. Viscosity values were observed to drop as the content of wax was increased, without compromising the binders mechanical properties in solid state. A new formulation of bimodal POM plus 8 wt.% of added wax provided the most appropriate results from investigated combinations. This work has shown how the addition of short polymeric chains in POM influences its time-dependent properties in solid and molten state, which can be an important tool for the optimization of binders designed to be used in PIM technology.

  7. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    SciTech Connect

    Lutken, Carol; Macelloni, Leonardo; D'Emidio, Marco; Dunbar, John; Higley, Paul

    2015-01-31

    detect short-term changes within the hydrates system, identify relationships/impacts of local oceanographic parameters on the hydrates system, and improve our understanding of how seafloor instability is affected by hydrates-driven changes. A 2009 DCR survey of MC118 demonstrated that we could image resistivity anomalies to a depth of 75m below the seafloor in water depths of 1km. We reconfigured this system to operate autonomously on the seafloor in a pre-programmed mode, for periods of months. We designed and built a novel seafloor lander and deployment capability that would allow us to investigate the seafloor at potential deployment sites and deploy instruments only when conditions met our criteria. This lander held the DCR system, controlling computers, and battery power supply, as well as instruments to record oceanographic parameters. During the first of two cruises to the study site, we conducted resistivity surveying, selected a monitoring site, and deployed the instrumented lander and DCR, centered on what appeared to be the most active locations within the site, programmed to collect a DCR profile, weekly. After a 4.5-month residence on the seafloor, the team recovered all equipment. Unfortunately, several equipment failures occurred prior to recovery of the instrument packages. Prior to the failures, however, two resistivity profiles were collected together with oceanographic data. Results show, unequivocally, that significant changes can occur in both hydrate volume and distribution during time periods as brief as one week. Occurrences appear to be controlled by both deep and near-surface structure. Results have been integrated with seismic data from the area and show correspondence in space of hydrate and structures, including faults and gas chimneys.

  8. Time-Dependent Electrical Properties of Human Nail Upon Hydration In Vivo

    PubMed Central

    HAO, JINSONG; SMITH, KELLY A.; LI, S. KEVIN

    2009-01-01

    The objectives of this study were to investigate the effects of hydration and solution ion concentration on the electrical properties of human nail in vivo and compare these in vivo results with those in vitro. In vivo electrical resistance measurements on the nail were conducted with a three-electrode system in phosphate buffered saline of 0.01–0.6 M. The effect of electric current on nail resistance and possible adverse effects were studied under 1.5- and 9-V iontophoresis in vivo. The electrical resistance of the nail plate was measured in vitro in side-by-side diffusion cells under the same conditions and compared with those in vivo. The in vivo electrical resistance decreased significantly upon 2-h nail hydration and then slowly decreased to a constant value, showing the same pattern as that in vitro. No significant effect of the applied voltage upon the nail electrical resistance was observed. Higher current densities caused moderate sensation and slight changes in nail appearance after iontophoresis. The observed decrease in nail resistance demonstrates the significance of nail hydration in transungual iontophoresis. The in vitro and in vivo correlation suggests that the in vitro nail plate can be a model in the research and development of transungual iontophoretic delivery. PMID:19462425

  9. Hydration of anhydrite of gypsum (CaSO{sub 4}.II) in a ball mill

    SciTech Connect

    Sievert, T.; Wolter, A.; Singh, N.B

    2005-04-01

    The hydration of an anhydrite of gypsum (CaSO{sub 4}.II) in a ball mill was studied as a function of time and temperature. The amount of gypsum formed at different intervals of time was determined by weight loss method and powder X-ray diffraction technique. Specific surface area at different time intervals was determined by LASER granulometric method. The results showed that the maximum rate of formation of gypsum was at a longer time than the time for the development of maximum specific surface area. In the presence of activators, the time for maximum rate of gypsum formation and maximum specific surface area shifted towards lower hydration time. Morphological changes during the course of hydration have been studied by the scanning electron microscopic (SEM) technique. A mechanism of hydration has been proposed.

  10. Chloral Hydrate

    MedlinePlus

    Chloral hydrate, a sedative, is used in the short-term treatment of insomnia (to help you fall asleep and ... Chloral hydrate comes as a capsule and liquid to take by mouth and as a suppository to insert rectally. ...

  11. Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods.

    PubMed

    D'Andrea, Cosimo; Obraztsova, Ekaterina A; Farina, Andrea; Taroni, Paola; Lanzani, Guglielmo; Pifferi, Antonio

    2012-11-10

    In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Inkparticles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed. PMID:23142900

  12. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-08-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 μg kg(-1) was obtained for DCD with a linear working range from 100 to 10000 μg kg(-1) and a satisfactory correlation coefficient (R(2)) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD = 3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control. PMID:25930094

  13. Determination of Dicyandiamide in Powdered Milk Using Direct Analysis in Real Time Quadrupole Time-of-Flight Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Liya; Yong, Wei; Liu, Jiahui; Wang, Sai; Chen, Qilong; Guo, Tianyang; Zhang, Jichuan; Tan, Tianwei; Su, Haijia; Dong, Yiyang

    2015-08-01

    The direct analysis in real time (DART) ionization source coupled with quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) system has the capability to desorb analytes directly from samples without sample cleanup or chromatographic separation. In this work, a method based on DART/Q-TOF MS/MS has been developed for rapid identification of dicyandiamide (DCD) present in powdered milk. Simple sample extraction procedure employing acetonitrile-water (80:20, v/v) mixture was followed by direct, high-throughput determination of sample extracts spread on a steel mesh of the transmission module by mass spectrometry under ambient conditions. The method has been evaluated for both qualitative and quantitative analysis of DCD in powdered milk. Variables including experimental apparatus, DART gas heater temperature, sample presentation speed, and vacuum pressure were investigated. The quantitative method was validated with respect to linearity, sensitivity, repeatability, precision, and accuracy by using external standards. After optimization of these parameters, a limit of detection (LOD) of 100 μg kg-1 was obtained for DCD with a linear working range from 100 to 10000 μg kg-1 and a satisfactory correlation coefficient (R2) of 0.9997. Good recovery (80.08%-106.47%) and repeatability (RSD = 3.0%-5.4%) were achieved for DCD. The DART/Q-TOF MS/MS-based method provides a rapid, efficient, and powerful scheme to analyze DCD in powdered milk with limited sample preparation, thus reducing time and complexity of quality control.

  14. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    SciTech Connect

    Bortolotti, Villiam; Fantazzini, Paola; Sauro, Salvatore; Zanna, Silvano

    2012-03-15

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of {sup 1}H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The 'Solid-liquid' separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C-S-H gel. {sup 1}H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C-S-H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  15. Spectral and Hydration Dependence of Protein Dynamical Transition

    NASA Astrophysics Data System (ADS)

    Lipps, Ferdinand; Knab, J. R.; Chen, Jing Yin; He, Yunfen; Markelz, A. G.

    2008-03-01

    The protein dynamical transition, a rapid increase in flexibility at ˜ 200K, is hydration dependent suggesting that the transition may in fact be due to a transition in the surrounding water. Previously we have shown that the terahertz dielectric response is sensitive to the dynamical transition using terahertz time domain spectroscopy [1]. The broadband technique allows the determination of what motions are affected by the transition, that is whether long time scale motions such as side chain rotations, or faster vibrational motions. Here we examine both the frequency and hydration dependence of the protein dynamical transition for hydrated myoglobin powder for the 0.2 -- 2.0 THz and 80-295 K ranges. The transition is observed in both the real and imaginary parts of the dielectric response. Our earlier measurements of solutions did not show a transition in the real part of the permittivity, likely due to bulk solvent dominating the index. There is a strong frequency dependence with hydration. While a slight transition is observed at frequencies higher than 1 THz which is nearly hydration independent, for frequencies below 1 THz the strength of the transition rapidly increases with hydration. [1] A. G. Markelz, J. R. Knab, Jing Yin Chen, Yunfen He, Chem. Phys. Lett. 442, 413 (2007).

  16. Rietveld refinement with time-of-flight powder diffraction data from pulsed neutron sources

    SciTech Connect

    David, W.I.F. ); Jorgensen, J.D. )

    1990-10-01

    The recent development of accelerator-based pulsed neutron sources has led to the widespread use of the time-of-flight technique for neutron powder diffraction. The properties of the pulsed source make possible unusually high resolution over a wide range of d spacings, high count rates, and the ability to collect complete data at fixed scattering angles. The peak shape and other instrument characteristics can be accurately modelled, which make Rietveld refinement possible for complex structures. In this paper we briefly review the development of the Rietveld method for time-of-flight diffraction data from pulsed neutron sources and discuss the latest developments in high resolution instrumentation and advanced Rietveld analysis methods. 50 refs., 12 figs., 14 tabs.

  17. Neutron powder diffraction study of the layer organic-inorganic hybrid iron(II) methylphosphonate-hydrate, Fe[(CD 3PO 3)(D 2O)

    NASA Astrophysics Data System (ADS)

    Léone, Philippe; Bellitto, Carlo; Bauer, Elvira M.; Righini, Guido; André, Gilles; Bourée, Françoise

    2008-11-01

    The crystal and magnetic structures of the hybrid organic-inorganic layer compound Fe[(CD 3PO 3)(D 2O)] have been studied by neutron powder diffraction as a function of temperature down to 1.5 K. The neutron diffraction pattern recorded at 200 K shows that the fully deuterated compound crystallizes in one of the two known forms of the undeuterated Fe[(CH 3PO 3)(H 2O)]. The crystal structure is orthorhombic, space group Pmn2 1, with the following unit-cell parameters: a=5.7095(1) Å, b=8.8053(3) Å and c=4.7987(1) Å; Z=2. The crystal structure remains unchanged on cooling from 200 to 1.5 K. Moreover, at low temperature, Fe[(CD 3PO 3)(D 2O)] shows a commensurate magnetic structure ( k=(0,0,0)). As revealed by bulk susceptibility measurements on Fe[(CH 3PO 3)(H 2O)], the magnetic structure corresponds to a canted antiferromagnet with a critical temperature TN=25 K. Neutron powder diffraction reveals that below TN=23.5 K the iron magnetic moments in Fe[(CD 3PO 3)(D 2O)] are antiferromagnetically coupled and oriented along the b-axis, perpendicular to the inorganic layers. No ferromagnetic component is observable in the neutron powder diffraction experiment, due to its too small value (<0.1 μB).

  18. Time-resolved quasielastic neutron scattering study of the hydration of tricalcium silicate: Effects of CaCl 2 and sucrose

    NASA Astrophysics Data System (ADS)

    Peterson, Vanessa K.; Garci Juenger, Maria C.

    2006-11-01

    Time-resolved quasielastic neutron scattering coupled with hydration modeling enabled the interpretation of the hydration processes in a triclinic form of tricalcium silicate when calcium chloride and sucrose were added. Calcium chloride increases the rate of product formation and causes a less dense product to form. Sucrose was investigated at two concentrations. With increasing amount of sucrose, the retardation time and the length of the nucleation and growth period increase, and the product density decreases. The rate of nucleation and growth of products is not linearly dependent on the amount of sucrose added, a result attributed to complexation with Ca 2+ at higher concentrations.

  19. In-situ time resolved synchrotron powder diffraction studies of synthesis and chemical reactions

    SciTech Connect

    Norby, P.

    1995-09-01

    Equipment for time and temperature dependent powder diffraction has been developed, especially in order to be able to study hydrothermal syntheses of zeolites. The system is very versatile and has so far been used to study e.g. hydrothermal syntheses of zeolites and aluminophosphates, syntheses of layered phosphates, formation of Sorel cements, dehydration and phase transformations of zeolites, solid state synthesis of lanthanum manganites, ion exchange of zeolites using molten salt, and oxidation/reduction of lanthanum manganites at high temperatures. The sample is contained in quartz capillaries and is heated using a stream of hot air. External pressure can be applied allowing hydrothermal syntheses at temperatures up to 200 C to be performed. Controlled atmosphere is obtained by flowing gas or a mixture of gases through the capillary.

  20. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales

    NASA Astrophysics Data System (ADS)

    Ferré, BéNéDicte; Mienert, Jürgen; Feseker, Tomas

    2012-10-01

    The potential impact of future climate change on methane release from oceanic gas hydrates is the subject of much debate. We analyzed World Ocean Database quality controlled data on the Norwegian-Svalbard continental margin from the past 60 years to evaluate the potential effect of ocean temperature variations on continental margin gas hydrate reservoirs. Bottom water temperatures in the Norwegian-Svalbard margin were subject to significant cooling until 1980 (by ˜2°C offshore NW-Svalbard and in the Barents Sea) followed by a general bottom water temperature increase until 2010 (˜0.3°C in deep-water areas offshore NW-Svalbard and mid-Norwegian margin and ˜2°C in the shallow areas of the Barents Sea and Prins Karls Forland). Bottom water warming in the shallow outer shelf areas triggered the Gas Hydrate Stability Zone (GHSZ) retreat toward upper continental slope areas, potentially increasing methane release due to gas hydrate dissociation. GHSZ responses to temperature changes on human time scales occur exclusively in shallow water and only if near-surface gas hydrates exist. The responses are associated with a short time lag of less than 1 year. Temperatures in the bottom water column seem to be partly regulated by the North Atlantic Oscillation (NAO), with positive NAO associated with warm phases. However, cooling events in the surface water offshore NW-Svalbard might be associated with El Niño events of 1976-1977, 1986-1987 and 1997-1998 in the Pacific. Such ocean cooling, if long enough, may delay ocean temperature driven gas hydrate dissociation and potential releases of methane to the ocean.

  1. The relationship between drug concentration, mixing time, blending order and ternary dry powder inhalation performance.

    PubMed

    Jones, Matthew D; Santo, João G F; Yakub, Bilal; Dennison, Mansa; Master, Husein; Buckton, Graham

    2010-05-31

    Some studies have shown that the mixing order of drug, fines and coarse carrier in a ternary dry powder inhaler (DPI) formulation affects fine particle delivery; others have seen no difference. This was investigated by examining the influence of salbutamol sulphate concentration (0.5-4.5%(w)/(w)), mixing time and blending order (drug and lactose carrier first, then lactose fines; versus fines and carrier first, then drug) on formulation in vitro fine particle delivery. With 15 min of mixing, there was no effect of drug concentration or blending order on fine particle fraction (FPF). With 30 min of mixing, lower drug concentrations produced larger FPFs with the fines and carrier first blending order. Higher drug concentrations resulted in equal performance between the blending orders. With 60 min of mixing, the drug and carrier first blending order resulted in larger a FPF at 0.5%(w)/(w) salbutamol sulphate. The previous conflicting studies used a mixing time of 30 min; these results suggest that their conflicting results may have been due to the use of different drug concentrations. The complexity in the whole dataset suggests that blending order studies are of limited use for the investigation of the mechanism behind the effects of fines. PMID:20211715

  2. Nanosecond Relaxation Dynamics of Hydrated Proteins: Water versus protein contributions

    SciTech Connect

    Khodadadi, S; Curtis, J. E.; Sokolov, Alexei P

    2011-01-01

    We have studied picosecond to nanosecond dynamics of hydrated protein powders using dielectric spectroscopy and molecular dynamics (MD) simulations. Our analysis of hydrogen-atom single particle dynamics from MD simulations focused on main ( main tens of picoseconds) and slow ( slow nanosecond) relaxation processes that were observed in dielectric spectra of similar hydrated protein samples. Traditionally, the interpretation of these processes observed in dielectric spectra has been ascribed to the relaxation behavior of hydration water tightly bounded to a protein and not to protein atoms. Detailed analysis of the MD simulations and comparison to dielectric data indicate that the observed relaxation process in the nanosecond time range of hydrated protein spectra is mainly due to protein atoms. The relaxation processes involve the entire structure of protein including atoms in the protein backbone, side chains, and turns. Both surface and buried protein atoms contribute to the slow processes; however, surface atoms demonstrate slightly faster relaxation dynamics. Analysis of the water molecule residence and dipolar relaxation correlation behavior indicates that the hydration water relaxes at much shorter time scales.

  3. Methane Hydrates: Chapter 8

    USGS Publications Warehouse

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

  4. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding

  5. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Matsuzaki, Korenobu; Kusaka, Ryoji; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Nagata, Takashi; Tahara, Tahei

    2016-06-22

    Hydrated electrons are the most fundamental anion species, consisting only of electrons and surrounding water molecules. Although hydrated electrons have been extensively studied in the bulk aqueous solutions, even their existence is still controversial at the water surface. Here, we report the observation and characterization of hydrated electrons at the air/water interface using new time-resolved interface-selective nonlinear vibrational spectroscopy. With the generation of electrons at the air/water interface by ultraviolet photoirradiation, we observed the appearance of a strong transient band in the OH stretch region by heterodyne-detected vibrational sum-frequency generation. Through the comparison with the time-resolved spectra at the air/indole solution interface, the transient band was assigned to the vibration of water molecules that solvate electrons at the interface. The analysis of the frequency and decay of the observed transient band indicated that the electrons are only partially hydrated at the water surface, and that they escape into the bulk within 100 ps. PMID:27281547

  6. Time-resolved x-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate

    SciTech Connect

    Hirai, Hisako Kadobayashi, Hirokazu; Hirao, Naohisa; Ohishi, Yasuo; Ohtake, Michika; Yamamoto, Yoshitaka; Nakano, Satoshi

    2015-01-14

    The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI–sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With the sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.

  7. Hydration-dependent dynamic crossover phenomenon in protein hydration water

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Fratini, Emiliano; Li, Mingda; Le, Peisi; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

    2014-10-01

    The characteristic relaxation time τ of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, τ only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is insensitive to h, indicating a local-like motion. Moreover, the h dependence of the crossover temperature shows that the protein dynamic transition is not directly or solely induced by the dynamic crossover in the hydration water.

  8. Hydration kinetics and physical properties of split chickpea as affected by soaking temperature and time.

    PubMed

    Johnny, Saeed; Razavi, Seyed M A; Khodaei, Diako

    2015-12-01

    In this study, some physical properties (principal dimensions, mean diameters, sphericity, area, density and electrical conductivity) of split chickpea were measured as function of soaking time (up to 360 min) and temperature (25-65 °C). Initially, the water absorption rate was high and then it showed a progressive decrease at all temperatures, whereas solid loss exhibited a power function of temperature (P < 0.05). The Peleg model was predicted well the kinetic of split chickpea soaking. No significant difference (P < 0.05) was observed in Peleg rate constant (K1) and Peleg capacity constant (K2) at all temperatures except for K1 at 25 °C. The discrepancy for K1 was in relation to permeability characteristics of split chickpea at temperature of 25 °C. As temperature increased from 25 to 65 °C, the K1 value decreased from 0.04620 to 0.00945 g h(-1), whereas the K2 value increased from 0.08597 to 0.11320 g(-1). Plot for K1 exhibited a slope changes around 45 °C corresponding to gelatinization temperature of split chickpeas. The effect of temperature and time on physical properties of split chickpea during soaking was monitored by regression equations. It was concluded that physical properties of split chickpea affected by its water absorption especially at higher temperatures. PMID:26604418

  9. Powder diffraction from a continuous microjet of submicrometer protein crystals.

    PubMed

    Shapiro, D A; Chapman, H N; Deponte, D; Doak, R B; Fromme, P; Hembree, G; Hunter, M; Marchesini, S; Schmidt, K; Spence, J; Starodub, D; Weierstall, U

    2008-11-01

    Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules. PMID:18955765

  10. Rapid gas hydrate formation process

    SciTech Connect

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  11. LOW TEMPERATURE X-RAY DIFFRACTION STUDIES OF NATURAL GAS HYDRATE SAMPLES FROM THE GULF OF MEXICO

    SciTech Connect

    Rawn, Claudia J; Sassen, Roger; Ulrich, Shannon M; Phelps, Tommy Joe; Chakoumakos, Bryan C; Payzant, E Andrew

    2008-01-01

    Clathrate hydrates of methane and other small alkanes occur widespread terrestrially in marine sediments of the continental margins and in permafrost sediments of the arctic. Quantitative study of natural clathrate hydrates is hampered by the difficulty in obtaining pristine samples, particularly from submarine environments. Bringing samples of clathrate hydrate from the seafloor at depths without compromising their integrity is not trivial. Most physical property measurements are based on studies of laboratory-synthesized samples. Here we report X-ray powder diffraction measurements of a natural gas hydrate sample from the Green Canyon, Gulf of Mexico. The first data were collected in 2002 and revealed ice and structure II gas hydrate. In the subsequent time the sample has been stored in liquid nitrogen. More recent X-ray powder diffraction data have been collected as functions of temperature and time. This new data indicates that the larger sample is heterogeneous in ice content and shows that the amount of sII hydrate decreases with increasing temperature and time as expected. However, the dissociation rate is higher at lower temperatures and earlier in the experiment.

  12. Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hester, K. C.; Dunk, R. M.; White, S. N.; Brewer, P. G.; Peltzer, E. T.; Sloan, E. D.

    2007-06-01

    Oceanic gas hydrates have been measured near the seafloor for the first time using a seagoing Raman spectrometer at Hydrate Ridge, Oregon, where extensive layers of hydrates have been found to occur near the seafloor. All of the hydrates analyzed were liberated from the upper meter of the sediment column near active gas venting sites in water depths of 770-780 m. Hydrate properties, such as structure and composition, were measured with significantly less disturbance to the sample than would be realized with core recovery. The natural hydrates measured were sI, with methane as the predominant guest component, and minor/trace amounts of hydrogen sulfide present in three of the twelve samples measured. Methane large-to-small cage occupancy ratios of the hydrates varied from 1.01 to 1.30, in good agreement with measurements of laboratory synthesized and recovered natural hydrates. Although the samples visually appeared to be solid, varying quantities of free methane gas were detected, indicating the possible presence of occluded gas in a hydrate bubble fabric.

  13. Estimation of Time-Temperature-Transformation Diagrams of Mold Powder Slags from Thermo-analysis of Non-isothermal Crystallization

    NASA Astrophysics Data System (ADS)

    Maldonado, Yadira G.; Barraza de la P., Claudia; Rodríguez A., Sergio; Castillejos E., A. Humberto; Thomas, Brian G.

    2014-09-01

    The temperature range across the mold powder slag in the interfacial gap between the continuous casting mold and strand leads through different transformation behavior into crystalline phases. The transformation rates play a key role in determining the proportion of glassy and crystalline phases present, and thus greatly influence mold heat transfer and lubrication. Although thermal analysis has held great promise to quantify the crystallization of mold slags, so far the information it has provided is scarce. This work shows how differential scanning calorimetry, DSC, data allow evaluation of Time-Temperature-Transformation, TTT, diagrams of mold powder slags, when analyzed with the induction period and the Kissinger methods. The data required for estimating this important tool for the analysis and design of mold powders are onset temperature, T i, peak maximum temperature, T m, shape index, S, and conversion at peak maximum, x m, of the crystallization peaks appearing on thermograms obtained at various heating and cooling rates, ϕ or -ϕ, respectively. Industrial mold powders for casting low- and medium-carbon steels were analyzed to obtain TTT diagrams which correctly portray their different crystallization behavior. The diagrams reveal the start and end curves of the crystalline phases forming at each DSC crystallization peak. The estimated TTT curves present a correct picture of the degree of transformation observed in glass disks (~3 mm thick) treated isothermally for specified time intervals, quenched and examined with a scanning electron microscope. Additionally, the procedure developed for DSC-based TTT diagram calculation is supported by the good agreement between expected transformations and qualitative or quantitative X-ray diffraction results obtained from mold glass-powdered samples treated isothermally in a muffle furnace.

  14. Estimation of Time-Temperature-Transformation Diagrams of Mold Powder Slags from Thermo-analysis of Non-isothermal Crystallization

    NASA Astrophysics Data System (ADS)

    Maldonado, Yadira G.; Barraza de la P., Claudia; Rodríguez A., Sergio; Castillejos E., A. Humberto; Thomas, Brian G.

    2015-02-01

    The temperature range across the mold powder slag in the interfacial gap between the continuous casting mold and strand leads through different transformation behavior into crystalline phases. The transformation rates play a key role in determining the proportion of glassy and crystalline phases present, and thus greatly influence mold heat transfer and lubrication. Although thermal analysis has held great promise to quantify the crystallization of mold slags, so far the information it has provided is scarce. This work shows how differential scanning calorimetry, DSC, data allow evaluation of Time-Temperature-Transformation, TTT, diagrams of mold powder slags, when analyzed with the induction period and the Kissinger methods. The data required for estimating this important tool for the analysis and design of mold powders are onset temperature, T i, peak maximum temperature, T m, shape index, S, and conversion at peak maximum, x m, of the crystallization peaks appearing on thermograms obtained at various heating and cooling rates, ϕ or - ϕ, respectively. Industrial mold powders for casting low- and medium-carbon steels were analyzed to obtain TTT diagrams which correctly portray their different crystallization behavior. The diagrams reveal the start and end curves of the crystalline phases forming at each DSC crystallization peak. The estimated TTT curves present a correct picture of the degree of transformation observed in glass disks (~3 mm thick) treated isothermally for specified time intervals, quenched and examined with a scanning electron microscope. Additionally, the procedure developed for DSC-based TTT diagram calculation is supported by the good agreement between expected transformations and qualitative or quantitative X-ray diffraction results obtained from mold glass-powdered samples treated isothermally in a muffle furnace.

  15. The search for negative amplitude components in quasi-continuous distributions of relaxation times: the example of 1H magnetization exchange in articular cartilage and hydrated collagen

    NASA Astrophysics Data System (ADS)

    Fantazzini, Paola; Galassi, Francesca; Bortolotti, Villiam; Brown, Robert J. S.; Vittur, Franco

    2011-06-01

    When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with αLt1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal

  16. Molecular-dynamics modelling and neutron diffraction study of the site disorder in air clathrate hydrates

    SciTech Connect

    Chazallon, Bertrand; Klapproth, Alice; Kuhs, Werner F.

    1999-06-15

    We present the results of MD-simulation runs with subsequent quenches for clathrate hydrates using SPC water in order to model properly the crystallographic site disorder of the guest molecules in the water cages. A procedure is described to transform the results of the quench (symmetry P1) into the proper space-time averaged space group (Fd3-bar m) of the clathrate hydrate. The resulting disorder models are compared with the outcome of crystallographic structure refinements (R-factors, Fourier maps) from our neutron powder diffraction data. A correct description of the disorder is important for a reliable determination of the pressure-dependent cage filling.

  17. Chloral hydrate

    Integrated Risk Information System (IRIS)

    Chloral hydrate ; CASRN 302 - 17 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  18. Hydration water dynamics and instigation of protein structuralrelaxation

    SciTech Connect

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation have contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7

  19. Formation of porous gas hydrates: Diffraction experiments and multi-stage model

    NASA Astrophysics Data System (ADS)

    Staykova, D. K.; Genov, G.; Goreshnik, E.; Salamatin, A. N.; Kuhs, W. F.

    2003-04-01

    Laboratory-grown gas hydrates were examined by cryo scanning electron microscopy and found to have a sub-micron porous structure. This microstructure is undistinguishable from the one observed in natural gas hydrates suggesting similar formation processes. In-situ observations of the formation of synthetic porous methane and carbon dioxide hydrates starting from ice Ih powders with known surfaces areas were made using time-resolved neutron diffraction on the high-flux diffractometer D20 (ILL, Grenoble) at different pressures and temperatures. Some runs were also made going through the ice melting point into liquid water. At similar reduced fugacities, the reaction of carbon dioxide was distinctly faster than that of methane. The transient formation of carbon dioxide hydrate crystal structure II was observed in coexistence with the usual type-I hydrate reaching a maximum of 5% after 5 h of the reaction at 272 K. At lower temperatures a temporary inhibition of formation was observed in the case of carbon dioxide. The rate of methane hydrate growth showed little pressure sensitivity in our experiments at low temperatures ~230 K in contrast to the situation at higher temperatures. A phenomenological model for the kinetics of the gas hydrate formation from ice powders is developed with special account of sample consolidation effects. It describes the initial stage (I) of hydrate film spreading over the ice surface and the two subsequent stages which are limited (II) by the clathration reaction at the ice-hydrate interface and (III) by the gas and water transport (diffusion) through the hydrate shells surrounding the shrinking ice cores. Comparable activation energies of the CH4-hydrate formation are found in deuterated and hydrogenated systems for the reaction-limited process (stage II) to be 8.1 and 9.5 kcal/mol, respectively. In the case of a diffusion-limited clathration (stage III) the activation energy can be estimated as 14.3 kcal/mol. The relevance of our

  20. Effect of Time and storage temperature on anthocyanin decay and antioxidant activity in wild blueberry ( Vaccinium angustifolium ) powder.

    PubMed

    Fracassetti, Daniela; Del Bo', Cristian; Simonetti, Paolo; Gardana, Claudio; Klimis-Zacas, Dorothy; Ciappellano, Salvatore

    2013-03-27

    This study evaluated the effects of storage on total and single anthocyanin (ACN) content, and total antioxidant activity (TAA) of freeze-dried wild blueberry (WB) powder maintained at 25, 42, 60, and 80 °C for 49 days. Storage reduced single and total ACN content at all of the temperatures; it was slower at 25 °C (-3% after 2 weeks), whereas it was faster at 60 °C (-60%) and at 80 °C (-85%) after 3 days. The values of half-life time (t1/2) were found to be 139, 39, and 12 days at 25, 42, and 60 °C, respectively, utilizing the Arrhenius equation. No significant effects were detected on TAA by temperature increase. In conclusion, this study provides important information on the stability of WB powder at 25 °C; this is interesting scientific research for the food industry. PMID:23489164

  1. Time- and Space-Resolved SAXS Experiments Inform on Phase Transition Kinetics in Hydrated, Liquid-Crystalline Films of Polyion-Surfactant Ion "Complex Salts".

    PubMed

    Li, Joaquim; Gustavsson, Charlotte; Piculell, Lennart

    2016-05-24

    Detailed time- and space-resolved SAXS experiments show the variation with hydration of liquid crystalline structures in ethanol-cast 5-80 μm thick films of polyion-surfactant ion "complex salts" (CS). The CS were dodecyl- (C12) or hexadecyl- (C16) trimethylammonium surfactants with polyacrylate (DP 25 or 6000) counter-polyions. The experiments were carried out on vertical films in humid air above a movable water bath, so that gradients of hydration were generated, which could rapidly be altered. Scans over different positions along a film, kept fixed relative to the bath, showed that the surfactant aggregates of the various liquid-crystalline CS structures grow in cross-sectional area with decreasing hydration. This behavior is attributed to the low water content. Studies of films undergoing rapid dehydration, made possible by the original experimental setup, gave strong evidence that some of the investigated systems remain kinetically trapped for minutes in a nonequilibrium Pm3n micellar cubic phase before switching to the equilibrium P6mm 2D hexagonal phase. Both the length of the polyion and the length of the surfactant hydrocarbon "tail" affect the kinetics of the phase transition. The slowness of the cubic-to-hexagonal structural transition is attributed to the fact that it requires major rearrangements of the polyions and surfactant ions relative to each other. By contrast, other structure changes, such as between the hexagonal and rectangular phases, were observed to occur much more rapidly. PMID:27153140

  2. Thermal decomposition of HfCl{sub 4} as a function of its hydration state

    SciTech Connect

    Barraud, E.; Begin-Colin, S. . E-mail: begin@ipcms.u-strasbg.fr; Le Caer, G.; Villieras, F.; Barres, O.

    2006-06-15

    The thermogravimetric behavior of HfCl{sub 4} powders with different hydration states has been compared. Strongly hydrated powders consist of HfOCl{sub 2}.nH{sub 2}O with n>4. Partially hydrated powders consist of particles with a HfCl{sub 4} core and a hydrated outerlayer of HfOCl{sub 2}.nH{sub 2}O with n in the range of 0-8. Hydrated powders decomposed at temperature lower than 200 deg. C whereas the decomposition of partially hydrated powders was completed at a temperature of around 450 deg. C. The observed differences in decomposition temperature is related to the structure of HfOCl{sub 2}.nH{sub 2}O, which is different if n is higher or smaller than 4 and leads to intermediate compounds, which decompose at different temperatures.

  3. Effects of Preculturing Conditions on Lag Time and Specific Growth Rate of Enterobacter sakazakii in Reconstituted Powdered Infant Formula

    PubMed Central

    Kandhai, M. C.; Reij, M. W.; Grognou, C.; van Schothorst, M.; Gorris, L. G. M.; Zwietering, M. H.

    2006-01-01

    Enterobacter sakazakii can be present, although in low levels, in dry powdered infant formulae, and it has been linked to cases of meningitis in neonates, especially those born prematurely. In order to prevent illness, product contamination at manufacture and during preparation, as well as growth after reconstitution, must be minimized by appropriate control measures. In this publication, several determinants of the growth of E. sakazakii in reconstituted infant formula are reported. The following key growth parameters were determined: lag time, specific growth rate, and maximum population density. Cells were harvested at different phases of growth and spiked into powdered infant formula. After reconstitution in sterile water, E. sakazakii was able to grow at temperatures between 8 and 47°C. The estimated optimal growth temperature was 39.4°C, whereas the optimal specific growth rate was 2.31 h−1. The effect of temperature on the specific growth rate was described with two secondary growth models. The resulting minimum and maximum temperatures estimated with the secondary Rosso equation were 3.6°C and 47.6°C, respectively. The estimated lag time varied from 83.3 ± 18.7 h at 10°C to 1.73 ± 0.43 h at 37°C and could be described with the hyperbolic model and reciprocal square root relation. Cells harvested at different phases of growth did not exhibit significant differences in either specific growth rate or lag time. Strains did not have different lag times, and lag times were short given that the cells had spent several (3 to 10) days in dry powdered infant formula. The growth rates and lag times at various temperatures obtained in this study may help in calculations of the period for which reconstituted infant formula can be stored at a specific temperature without detrimental impact on health. PMID:16597976

  4. Ductile flow of methane hydrate

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  5. Bubble migration during hydrate formation

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Chiglintseva, A. S.; Rusinov, A. A.

    2015-03-01

    A model of the process of migration of methane bubbles in water under thermobaric conditions of hydrate formation is proposed. The peculiarities of the temperature field evolution, migration rate, and changes in the radius and volume fraction of gas hydrate bubbles are studied. It is shown that, with a constant mass flow of gas from the reservoir bottom, for all parameters of the surfacing gas hydrate disperse system, there is a quasistationary pattern in the form of a "step"-like wave. Depending on the relationship of the initial gas bubble density with the average gas density in the hydrate composition determined by the depth from which bubbles rise to the surface, the final radius of hydrate particles may be larger or smaller than the initial gas bubble radii. It is established that the speed at which gas hydrate inclusions rise to the surface decreases by several times due to an increase in their weight during hydrate formation. The influence of the depth of the water reservoir whose bottom is a gas flow source on the dynamics of hydrate formation is studied.

  6. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula.

    PubMed

    Barron, Juncal Caubilla; Forsythe, Stephen J

    2007-09-01

    Powdered infant formula is not a sterile product, and opportunistic pathogens could multiply in the reconstituted product, resulting in neonatal infections. In this study, the generation of sublethally injured Enterobacteriaceae during desiccation and their persistence in dehydrated powdered infant formula was assessed during a 2.5-year period. The study included 27 strains of Enterobacter sakazakii, Enterobacter cloacae, Salmonella Enteritidis, Citrobacter koseri, Citrobacter freundii, Escherichia coli, Escherichia vulneris, Pantoea spp., Klebsiella oxytoca, and Klebsiella pneumoniae. The number of sublethally injured cells generated during desiccation was lower for K. oxytoca, Pantoea spp., Salmonella Enteritidis, and capsulated strains of E. sakazakii than for the other Enterobacteriaceae. The Enterobacteriaceae could be divided into three groups with respect to their long-term survival in the desiccated state. C. freundii, C. koseri, and E. cloacae were no longer recoverable after 6 months, and Salmonella Enteritidis, K. pneumoniae, and E. coli could not be recovered after 15 months. Pantoea spp., K. oxytoca, and E. vulneris persisted over 2 years, and some capsulated strains of E. sakazakii were still recoverable after 2.5 years. PMID:17900090

  7. Evidence that the crystalline cores of uplifts adjacent to the Powder River Basin were breached during Paleocene time

    SciTech Connect

    Merin, I.S.; Lindholm, R.C.

    1986-10-01

    Sandstones in the upper part of the Paleocene Tongue River Member of the Fort Union Formation in the Powder River basin are dominantly sublitharenite. These rocks contain abundant rock fragments of non-ferroan calcite, dolomite, chert, and foliated fine-grained metamorphic rock (phyllite). The carbonate and chert rock fragments were probably eroded from paleozoic carbonate sequences flanking the Bighorn Mountains or the Black Hills. The phyllitic rock fragments indicate that the crystalline cores of these uplifts were exposed during Paleocene time, which is earlier during the Laramide Orogeny than has been previously demonstrated.

  8. Antiatherosclerotic and Cardioprotective Effects of Time-Released Garlic Powder Pills.

    PubMed

    Karagodin, Vasily P; Sobenin, Igor A; Orekhov, Alexander N

    2016-01-01

    Garlic is believed to produce beneficial changes in different cardiovascular risk factors, thus possessing antiatherosclerotic properties. The hypotensive and cholesterol-lowering effects were investigated in two studies in men with mild arterial hypertension and in men with mild hypercholesterolemia. Eight-week treatment resulted in the reduction of both systolic and diastolic blood pressure by 5.2% (P=0.008) and 4.0% (P=0.014), respectively. In hypolipidemic study, the 12-week treatment resulted in a decrease in LDL cholesterol by 11.8% (P=0.002), while HDL cholesterol increased by 11.5% (P=0.013). In men with cerebral atherosclerosis it has been demonstrated that 14-days treatment inhibited ADP-induced platelet aggregation by 25.4% (P<0.05) and increased plasma fibrinolytic activity by 22.4% (P<0.05). One more study was performed in high-risk patients to evaluate the changes of prognostic cardiovascular risk that was calculated using algorithms derived from Framingham and Muenster Studies. Twelve-months treatment lowered 10-years prognostic risk of CHD by 13.2% in men (P=0.005), and by 7.1% in women (P=0.040). Ten-year prognostic risk of acute myocardial infarction and sudden coronary death was lowered by 26.1% in men (P=0.025). The Atherosclerosis Monitoring and Atherogenicity Reduction Study (AMAR) was designed to estimate the effect of two-year treatment with garlic powder pills on the progression of carotid atherosclerosis in asymptomatic men. A significant correlation has been revealed between the changes in blood serum atherogenicity and the changes in carotid intima-media thickness (r=0.144, P=0.045). Evidence obtained from these studies as well as series of double-blinded placebo-controlled clinical trials indicates that garlic powder pills are effective for prevention of cardiovascular disorders. PMID:26561055

  9. Hydrate habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Whoever said there is nothing new under the sun did not delve deeply enough to the bottom of the ocean. There in the Gulf of Mexico, about 150 miles south of New Orleans, scientists have just discovered what could be a new species of centipede—like worms living on or within gas hydrates— mounds of methane ice— rising from the ocean floor.Scientists have previously recognized an association between some bacteria and these hydrates. However, this is the first discovery of a higher life form there.

  10. Diffusion of CO2 During Hydrate Formation and Dissolution

    SciTech Connect

    Franklin M. Orr, Jr.

    2002-08-20

    Experiments were performed to measure the rate of diffusion of CO2 through hydrate films. Hydrate films were created in a capillary tube, and the growth of the hydrate film was measured. Difficulties were encountered in creating hydrate repeatedly, and some non-uniform growth of the films was observed. Sufficient observations were obtained to demonstrate that hydrate growth occurs preferentially on the hydrate/water side of the interface, rather than at the hydrate/CO2 interface. Diffusion coefficients were estimated from observations of the rate of growth of the hydrate film along with estimates of the solubility of CO2 in water and of the concentration gradient across the hydrate layer. The experimental observations indicate that hydrate formation occurs much more rapidly at the hydrate water interface than at the hydrate/CO2 interface. Any growth of hydrate at the CO2/hydrate interface was too slow to be observed at the time scale of the experiments. That observation is consistent with the idea that CO2 can move more easily through the hydrate, presumably by hopping between hydrate cages, than water can move through the hydrate, presumably by lattice hopping. Estimated diffusion coefficients were in the range 1-3E-06 cm2/sec. Those values are about an order of magnitude lower than the diffusion coefficient for CO2 in liquid water, but four orders of magnitude larger than the value for diffusion of CO2 in a solid. The rate of diffusion through the hydrate controls both the creation of new hydrate at the hydrate/water interface and the rate at which CO2 dissolves in the liquid water and diffuses away from the hydrate layer. Formation of a hydrate layer reduces the rate at which CO2 dissolves in liquid water.

  11. Method for classifying ceramic powder

    NASA Technical Reports Server (NTRS)

    Takabe, K.

    1983-01-01

    Under the invented method, powder A of particles of less than 10 microns, and carrier powder B, whose average particle diameter is more than five times that of powder A, are premixed so that the powder is less than 40 wt.% of the total mixture, before classifying.

  12. Obsidian Hydration: A New Paleothermometer

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Riciputi, Lee R; Cole, David R; Fayek, Mostafa; Elam, J. Michael

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  13. A robotic DNA purification protocol and real-time PCR for the detection of Enterobacter sakazakii in powdered infant formulae

    PubMed Central

    Derzelle, Sylviane; Dilasser, Françoise

    2006-01-01

    Background Enterobacter sakazakii is the causative agent of rare but severe food-borne infections associated with meningitis, necrotizing enterocolitis and sepsis in infants. Rehydrated powdered infant formulae have been implicated as the source of infection in several outbreaks and sporadic cases. In this work, a real time fluorescence resonance energy transfer PCR assay incorporating an internal amplification control (IAC) was developed for the specific detection of E. sakazakii in foods. Performance of the assay, coupled to an automated DNA extraction system and the E. sakazakii ISO-IDF (TS 22964/RM 210) enrichment procedure, was evaluated on infant formulae and samples from production environment. Results The real-time PCR assay had 100% specificity as assessed using 35 E. sakazakii and 184 non-E. sakazakii strains. According to the E. sakazakii strains tested, the detection limits ranged from 5 to 25 genomic copies. Assays on pure cultures (including real-time PCR and DNA extraction) gave a sensitivity of about 102 to 103 CFU/ml. Out of 41 naturally contaminated infant formulae and environmental samples analysed for the presence of E. sakazakii, 23 were positive by real-time PCR and 22 by the conventional culture method, giving 97.5% concordance with the ISO-IDF reference method. Conclusion This method, combining specific real-time PCR, automated DNA extraction and ISO-IDF standard enrichments, provides a useful tool for rapid screening of E. sakazakii in food and environmental matrices. PMID:17166252

  14. Direct correlation of structure changes and thermal events in hydrated lipid established by simultaneous calorimetry and time-resolved x-ray diffraction.

    PubMed Central

    Chung, H; Caffrey, M

    1992-01-01

    In many lipid systems, polymorphic and mesomorphic behavior depends on sample thermal history. To establish unequivocally the structural origin of endothermic and exothermic events in such systems, we have performed simultaneous calorimetry and time-resolved x-ray diffraction (SCALTRD). To this end, aluminum calorimetry crucibles were used to contain the hydrated lipid sample, and the calorimeter was mounted with the base of the crucible oriented perpendicular to a synchrotron-derived focused monochromatic x-ray beam for SCALTRD data collection. Measurements were made with hydrated monoelaidin and 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) contained in hermetically sealed crucibles. Time-resolved x-ray diffraction (TRXRD) data were collected using an x-ray image intensifier/video system and a streak camera containing an x-ray sensitive image plate and/or film. SCALTRD analysis of the lamellar gel to lamellar liquid crystalline phase transition in hydrated monoelaidin gives identical progress curves by calorimetry and TRXRD at a scan rate of 1 degree C/min. At faster rates, calorimetry shows a broader phase transition that starts at a lower and ends at a higher temperature than is observed by TRXRD. The disparity arises in part because the x-ray beam used in TRXRD interrogates only a small portion of the sample, whereas the calorimeter responds to the entire sample volume. Because data collection times are relatively long, radiation damage is an important potential problem for SCALTRD measurements. Such an effect was observed with DEPE/water in that TRXRD shows the lamellar gel to lamellar liquid crystalline phase transition occurring at a lower temperature than observed by calorimetry. We speculate that the sample accumulates impurities locally as a result of radiation damage that has the effect of lowering the phase transition temperature at the site of interrogation by the x-ray beam. This "methods-in-combination" SCALTRD approach facilitates the

  15. Hydrate control in deepwater drilling

    SciTech Connect

    1997-09-01

    Gas-hydrate formation during deepwater offshore drilling and production is a well-recognized operational hazard. In water depths greater than 1,000 ft, seabed conditions of pressure and temperature become conducive to gas-hydrate formation. In a well-control situation, although the kick fluid leaves the formation at a high temperature, it can cool to seabed temperature with an extended shut-in period. With high enough hydrostatic pressure at the mudline, hydrates could form in the blowout-preventer (BOP) stack and choke and kill lines, as has been observed in field operations. The current practice in deepwater drilling is to suppress the hydrate-formation temperature by use of highly saline drilling fluids formulated from NaCl or other salts. This solution is applicable for the Gulf of Mexico but insufficient for the conditions encountered in Norwegian deep waters. At extreme water depths or extremely low mudline temperatures, this thermodynamic inhibition alone may not be sufficient to prevent hydrate formation. Instead, the use of kinetic inhibitors or crystal modifiers, in conjunction with thermodynamic inhibitors, may allow successful operations in such an environment. The definition of kinetic inhibitors (to distinguish them from the classic thermodynamic inhibitors, such as polar compounds and electrolytes) comes from the effect of the chemicals on the nucleation and growth of natural gas hydrates, both of which are time-dependent, stochastic processes. The paper describes deepwater drilling fluids, polar and surface-active additives, kinetic inhibition and crystal modifiers, laboratory measurements, and test results.

  16. Fundamentals and applications of gas hydrates.

    PubMed

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties. PMID:22432618

  17. Hydration characteristics of alpha-tricalcium phosphates: Comparison of preparation routes.

    PubMed

    Camire', C L; Jegou Saint-Jean, S; Hansen, S; McCarthy, I; Lidgren, L

    2005-01-01

    Alpha tricalcium phosphate ( á -TCP) cement powders were obtained by solid state reaction and milling (M1) and by precipitation from aqueous solution followed by heating (M2). The materials were hydrated to form calcium-deficient hydroxyapatite (CDHA) with a 2.5 wt% solution of Na2 HPO4 (liquid to powder ratio = 0.34 ml/g, temperature = 37.5 degrees C) and subjected to isothermal calorimetry, mechanical compression tests, X-ray powder diffraction, at various times during hydration, as well as scanning electron microscopy (SEM), laser diffraction and gas adsorption. The particle characteristics of the two powders were similar, but M2 exhibited two reaction events in the thermal power curve, while M1 showed a single event. Both reaction events were attributed to á -TCP dissolution and CDHA recipitation. The minimum in the reaction rate response of M2 was probably due to the formation of a passivating product layer. No such layer was formed on the milled M1 due to its rougher surfaces. Both preparations reached a compressive strength of 30-40 MPa after 24 hr. PMID:20799230

  18. A Rietveld refinement method for angular- and wavelength-dispersive neutron time-of-flight powder diffraction data

    PubMed Central

    Jacobs, Philipp; Houben, Andreas; Schweika, Werner; Tchougréeff, Andrei L.; Dronskowski, Richard

    2015-01-01

    This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages. PMID:26664340

  19. The effects of time-released garlic powder tablets on multifunctional cardiovascular risk in patients with coronary artery disease

    PubMed Central

    2010-01-01

    The double-blinded placebo-controlled randomized study has been performed in 51 coronary heart disease (CHD) patients to estimate the effects of time-released garlic powder tablets Allicor on the values of 10-year prognostic risk of acute myocardial infarction (fatal and non-fatal) and sudden death, with the respect of secondary CHD prevention. It has been demonstrated that 12-month treatment with Allicor results in the significant decrease of cardiovascular risk by 1.5-fold in men (p < 0.05), and by 1.3-fold in women. The above results were equitable also in terms of relative risks. The main effect that played a role in cardiovascular risk reduction was the decrease in LDL cholesterol by 32.9 mg/dl in men (p < 0.05), and by 27.3 mg/dl in women. Thus, the most significant effects were observed in men, while in women the decrease of cardiovascular risk appeared as a trend that might be due presumably to the insufficient sample size. Since Allicor is the remedy of natural origin, it is safe with the respect to adverse effects and allows even perpetual administration that may be crucial for the secondary prevention of atherosclerotic diseases in CHD patients. PMID:20958974

  20. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  1. Fast Water Diffusion and Long-Term Polymer Reorganization during Nafion Membrane Hydration Evidenced by Time-Resolved Small-Angle Neutron Scattering.

    PubMed

    Fumagalli, M; Lyonnard, S; Prajapati, G; Berrod, Q; Porcar, L; Guillermo, A; Gebel, G

    2015-06-11

    We report a small-angle neutron scattering study of liquid water sorption in Nafion membranes. The swelling of hydrophilic domains was measured on the nanoscale by combining in situ time-resolved and long-term static experiments, yielding kinetic curves recorded over an unprecedented time scale, from hundreds of milliseconds to several years. At low water content, typically below 5 water molecules per ionic group, a limited subdiffusive regime was observed and ascribed to nanoconfinement and local interactions between charged species and water molecules. Further ultrafast and thermally activated swelling due to massive liquid water sorption was observed and analyzed by using Fick's equation. The extracted mutual water diffusion coefficients are in good agreement with pulsed field gradient NMR self-diffusion coefficient values, evidencing a water diffusion-driven process due to concentration gradients within the Nafion membrane. Finally, after completion of the ultrafast regime, the kinetic swelling curves exhibit a remarkable long-term behavior scaling as the logarithm of time, showing that the polymer membrane can continuously accommodate additional water molecules upon hydration stress. The present nanoscale kinetics results provide insights into the vapor-versus-liquid sorption mechanisms, the nanostructure of Nafion, and the role of polymer reorganization modes, highlighting that the membrane can never reach a steady state. PMID:25971732

  2. Development of hydrate risk quantification in oil and gas production

    NASA Astrophysics Data System (ADS)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  3. An X-ray diffraction analysis of crystallised whey and whey-permeate powders.

    PubMed

    Nijdam, Justin; Ibach, Alexander; Eichhorn, Klaus; Kind, Matthias

    2007-11-26

    Amorphous whey, whey-permeate and lactose powders have been crystallised at various air temperatures and humidities, and these crystallised powders have been examined using X-ray diffraction. The most stable lactose crystal under normal storage conditions, alpha-lactose monohydrate, forms preferentially in whey and whey-permeate powders at 50 degrees C, provided sufficient moisture is available, whereas anhydrous beta-lactose and mixed anhydrous lactose crystals, which are unstable under normal storage conditions, form preferentially at 90 degrees C. Thus, faster crystallisation at higher temperatures is offset by the formation of lactose-crystal forms that are less stable under normal storage conditions. Very little alpha-lactose monohydrate crystallised in the pure lactose powders over the range of temperatures and humidities tested, because the crystallisation of alpha- and beta-lactose is considerably more rapid than the mutarotation of beta- to alpha-lactose in the amorphous phase and the hydration of alpha-lactose during crystallisation. Protein and salts hinder the crystallisation process, which provides more time for mutarotation and crystal hydration in the whey and whey-permeate powders. PMID:17719020

  4. Hydrothermal Transformation of the Calcium Aluminum Oxide Hydrates CaAl2O4 . 10H2O and Ca2Al2O. 8H2O to Ca3Al2(OH)12 Investigated by In Situ Synchrotron X-ray Powder Diffraction

    SciTech Connect

    Jensen,T.; Christensen, A.; Hanson, J.

    2005-01-01

    The hydrothermal transformation of calcium aluminate hydrates were investigated by in situ synchrotron X-ray powder diffraction in the temperature range 25 to 170 C. This technique allowed the study of the detailed reaction mechanism and identification of intermediate phases. The material CaAl{sub 2}O{sub 4}{center_dot}10H{sub 2}O converted to Ca{sub 3}Al{sub 2}(OH){sub 12} and amorphous aluminum hydroxide. Ca{sub 2}Al{sub 2}O{sub 5}{center_dot}8H{sub 2}O transformed via the intermediate phase Ca{sub 4}Al{sub 2}O{sub 7}{center_dot}13H{sub 2}O to Ca{sub 3}Al{sub 2}(OH){sub 12} and gibbsite, Al(OH){sub 3}. The phase Ca{sub 4}Al{sub 2}O{sub 7}{center_dot}19H{sub 2}O reacted via the same intermediate phase to Ca{sub 3}Al{sub 2}(OH){sub 12} and mainly amorphous aluminum hydroxide. The powder pattern of the intermediate phase is reported.

  5. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  6. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    SciTech Connect

    Fujiwara, Satoru; Plazanet, Marie; Oda, Toshiro

    2013-02-15

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D{sub 2}O and H{sub 2}O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D{sub 2}O or H{sub 2}O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D{sub T}) of the hydration water in the first layer were found to be 1.2 × 10{sup −5} cm{sup 2}/s and 1.7 × 10{sup −5} cm{sup 2}/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10{sup −5} cm{sup 2}/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D{sub T} values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the

  7. Gas hydrate and humans

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2000-01-01

    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  8. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  9. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction.

    PubMed

    Fortes, A Dominic

    2015-07-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å(-1). The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter-atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter-leaved with planes of XO4 (X = Mo, W) tetra-hedra that are linked by chains of water mol-ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856-2860] but shows that the purported three-centred inter-action involving one of the water mol-ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred 'linear' hydrogen bond. PMID:26279871

  10. Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction

    PubMed Central

    Fortes, A. Dominic

    2015-01-01

    Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å−1. The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter­atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter­leaved with planes of XO4 (X = Mo, W) tetra­hedra that are linked by chains of water mol­ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856–2860] but shows that the purported three-centred inter­action involving one of the water mol­ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred ‘linear’ hydrogen bond. PMID:26279871

  11. Methane hydrate formation in confined nanospace can surpass nature.

    PubMed

    Casco, Mirian E; Silvestre-Albero, Joaquín; Ramírez-Cuesta, Anibal J; Rey, Fernando; Jordá, Jose L; Bansode, Atul; Urakawa, Atsushi; Peral, Inma; Martínez-Escandell, Manuel; Kaneko, Katsumi; Rodríguez-Reinoso, Francisco

    2015-01-01

    Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.5 MPa and 2 °C), with faster kinetics (within minutes) than nature, fully reversibly and with a nominal stoichiometry that mimics nature. The formation of the hydrate structures in nanospace and their similarity to natural hydrates is confirmed using inelastic neutron scattering experiments and synchrotron X-ray powder diffraction. These findings may be a step towards the application of a smart synthesis of methane hydrates in energy-demanding applications (for example, transportation). PMID:25728378

  12. In vivo measurement of tissue oxygenation by time-resolved luminescence spectroscopy: advantageous properties of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate

    NASA Astrophysics Data System (ADS)

    Huntosova, Veronika; Gay, Sandrine; Nowak-Sliwinska, Patrycja; Rajendran, Senthil Kumar; Zellweger, Matthieu; van den Bergh, Hubert; Wagnières, Georges

    2014-07-01

    Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO dependence at a low drug dose (1 mg/kg) and low fluence (120 mJ/cm2 at 470 nm). The phototoxic threshold was found to be at 10 J/cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO measurement. Finally, an illustrative application of this pO measurement approach in a hypoxic tumor environment is presented.

  13. Methane hydrates in nature - Current knowledge and challenges

    USGS Publications Warehouse

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  14. Hydration-dependent dynamics of human telomeric oligonucleotides in the picosecond timescale: A neutron scattering study

    SciTech Connect

    Sebastiani, F.; Comez, L.; Sacchetti, F.; Orecchini, A.; Petrillo, C.; Paciaroni, A.; De Francesco, A.; Teixeira, S. C. M.

    2015-07-07

    The dynamics of the human oligonucleotide AG{sub 3}(T{sub 2}AG{sub 3}){sub 3} has been investigated by incoherent neutron scattering in the sub-nanosecond timescale. A hydration-dependent dynamical activation of thermal fluctuations in weakly hydrated samples was found, similar to that of protein powders. The amplitudes of such thermal fluctuations were evaluated in two different exchanged wave-vector ranges, so as to single out the different contributions from intra- and inter-nucleotide dynamics. The activation energy was calculated from the temperature-dependent characteristic times of the corresponding dynamical processes. The trends of both amplitudes and activation energies support a picture where oligonucleotides possess a larger conformational flexibility than long DNA sequences. This additional flexibility, which likely results from a significant relative chain-end contribution to the average chain dynamics, could be related to the strong structural polymorphism of the investigated oligonucleotides.

  15. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    PubMed

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy

  16. Neutron powder diffraction study of the layer organic-inorganic hybrid iron(II) methylphosphonate-hydrate, Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)

    SciTech Connect

    Leone, Philippe Bellitto, Carlo; Bauer, Elvira M.; Righini, Guido; Andre, Gilles; Bouree, Francoise

    2008-11-15

    The crystal and magnetic structures of the hybrid organic-inorganic layer compound Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] have been studied by neutron powder diffraction as a function of temperature down to 1.5 K. The neutron diffraction pattern recorded at 200 K shows that the fully deuterated compound crystallizes in one of the two known forms of the undeuterated Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)]. The crystal structure is orthorhombic, space group Pmn2{sub 1}, with the following unit-cell parameters: a=5.7095(1) A, b=8.8053(3) A and c=4.7987(1) A; Z=2. The crystal structure remains unchanged on cooling from 200 to 1.5 K. Moreover, at low temperature, Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] shows a commensurate magnetic structure (k=(0,0,0)). As revealed by bulk susceptibility measurements on Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)], the magnetic structure corresponds to a canted antiferromagnet with a critical temperature T{sub N}=25 K. Neutron powder diffraction reveals that below T{sub N}=23.5 K the iron magnetic moments in Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] are antiferromagnetically coupled and oriented along the b-axis, perpendicular to the inorganic layers. No ferromagnetic component is observable in the neutron powder diffraction experiment, due to its too small value (<0.1{mu}{sub B}). - Graphical abstract: Crystal structure and magnetic structure of Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)].

  17. Origins of hydration lubrication

    NASA Astrophysics Data System (ADS)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-01

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  18. Methane Hydrate Field Program

    SciTech Connect

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  19. Origins of hydration lubrication.

    PubMed

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-01

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication. PMID:25585501

  20. Natural Gas Hydrates: Occurrence, Distribution, and Detection

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Dillon, William P.

    We publish this volume at a time when there is a growing interest in gas hydrates and major expansion in international research efforts. The first recognition of natural gas hydrate on land in Arctic conditions was in the mid-1960s (by I. Makogon) and in the seabed environment only in the early 1970s, after natural seafloor gas hydrate was drilled on the Blake Ridge during Deep Sea Drilling Project Leg 11. Initial scientific investigations were slow to develop because the study of natural gas hydrates is unusually challenging. Gas hydrate exists in nature in conditions of temperature and pressure where human beings cannot survive, and if gas hydrate is transported from its region of stability to normal Earth-surface conditions, it dissociates. Thus, in contrast to most minerals, we cannot depend on drilled samples to provide accurate estimates of the amount of gas hydrate present. Even the heat and changes in chemistry (methane saturation, salinity, etc.) introduced by the drilling process affect the gas hydrate, independent of the changes brought about by moving a sample to the surface. Gas hydrate has been identified in nature generally by inference from indirect evidence in drilling data or by using remotely sensed indications, mostly from seismic data. Obviously, the established techniques ofgeologic analysis, which require direct observation and sampling, do not apply to gas hydrate studies, and controversy has surrounded many interpretations. Pressure/temperature conditions appropriate for the existence of gas hydrate occur over the greater part of the shallow subsurface of the Earth beneath the ocean at water depths exceeding about 500 m (shallower beneath colder Arctic seas) and on land beneath high-latitude permafrost. Gas hydrate actually will be present in such conditions, however, only where methane is present at high concentrations. In the Arctic, these methane concentrations are often associated with petroleum deposits, whereas at continental margins

  1. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  2. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  3. Devitrification of Mechanically Alloyed Zr-Ti-Nb-Cu-Ni-Al Glassy Powders Studied by Time-Resolved X-ray Diffraction

    SciTech Connect

    Scudino, S.; Sordelet, D.J.; Eckert, J.

    2009-04-13

    The crystallization of mechanically alloyed Zr{sub 67}Ti{sub 6.14}Nb{sub 1.92}Cu{sub 10.67}Ni{sub 8.52}Al{sub 5.75} glassy powder is investigated by time-resolved X-ray diffraction. The powder displays a multi-step crystallization behavior characterized by the formation of a metastable nanoscale quasicrystalline phase during the first stage of the crystallization process. At higher temperatures, coinciding with the second crystallization event, the amorphous-to-quasicrystalline transformation is followed by the precipitation of the tetragonal Zr{sub 2}Cu phase (space group I4/mmm) and the tetragonal Zr{sub 2}Ni phase (space group I4/mcm). The transformations are gradual and the quasicrystals and the subsequent phases coexist over a temperature interval of about 25K.

  4. Physicochemical and structural studies of clathrate hydrates of tetrabutylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Komarov, Vladislav Yu; Villevald, Galina V; Burdin, Alexander A; Karpova, Tamara D; Aladko, Eugeny Ya

    2013-03-01

    In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method. PMID:23383955

  5. TOUGH-Fx/Hydrate

    Energy Science and Technology Software Center (ESTSC)

    2005-02-01

    TOUGH-Fx/HYORATL can model the non-isothermal gas release. phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural gas hydrate deposits in the subsurtace (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. T006H-Fx/HYDRATE vi .0 includes both an equilibrium and a kinetic model of hydrate Ibmiation and dissociation. The model accounts for heat and upmore » to four mass components-- i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dIssociation or formation, phase changes, and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects, and inhibItor-Induced effects.« less

  6. Rapid gas hydrate formation processes: Will they work?

    DOE PAGESBeta

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  7. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  8. Effects of drying methods on the physicochemical and compressional characteristics of Okra powder and the release properties of its metronidazole tablet formulation.

    PubMed

    Bakre, L G; Jaiyeoba, K T

    2009-02-01

    A study has been made of the effects of sun and oven drying methods on the physicochemical characteristics and compressibility of Okra powder and the release properties of its metronidazole tablet formulation. Corn starch was used as the reference standard. The mechanical properties of the tablets were evaluated using crushing strength and friability, while the release properties were determined using the disintegration times and dissolution rates. The results obtained showed that sun-dried Okra powder had smaller particle size, exhibited good flow and possessed higher hydration and swelling capacities compared to the oven dried samples. The compressibility of Okra powders assessed by the indices of plasticity from Heckel (Py) and Kawakita plots (Pk) showed that sun dried Okra powders had higher Py but lower Pk values than the oven-dried Okra powder. Metronidazole tablets formulated with oven dried Okra powder formed stronger tablets than tablets containing sun dried Okra powder. Generally, tablets containing sun dried Okra powders had faster disintegration and dissolution than tablets formulated with oven-dried powder. The results suggest that the choice of drying method during the processing of pharmaceutical raw materials is critical to its physicochemical properties and the release properties of its tablet formulations. PMID:19280157

  9. Hydration rate of obsidian.

    PubMed

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years. PMID:17782901

  10. Characteristics of hydrate-bound gases from the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Kida, M.; Jin, Y.; Watanabe, M.; Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Nakatsuka, Y.; Suzuki, K.; Nagao, J.

    2013-12-01

    Natural gas hydrates are crystalline clathrate compounds that encage a large amount of natural gas, are stable under high pressure and low temperature conditions such as deep marine environments. Hydrate-bound natural gas compositions are related to a thermodynamically stable condition, crystallographic structure, or origin of natural gas hydrates, which are important to characterize natural gas hydrate reservoirs. The hydrate-bearing sediments were recovered from the eastern Nankai Trough area during the 2012 JOGMEC/JAPEX Pressure coring operation, aboard the RV CHIKYU. In this study, the molecular and isotopic compositions of the gases released from the hydrate-bearing sediments were characterized. In addition, the powder X-ray diffraction (PXRD) profiles of the hydrate-bearing sediments were obtained using a cryo-system to characterize the crystallographic structure of gas hydrate. The gases released from the hydrate-bearing sediments contained methane as a main hydrocarbon component. The carbon isotope ratios (δ13C) of methane were approximately -65‰ (vs. VPDB). The molecular and isotopic compositions suggest a microbial origin for the hydrate-bound gas. The hydrate-bound gas contained small amounts of ethane and heavier hydrocarbons (less than 400 ppm). The concentrations of the minor hydrocarbon components tended to decrease at upper levels of the sediment core recovered, implying a compositional fractionation of natural gas during the migration of fluid from deeper level. The PXRD profiles of the hydrate-bearing sediments showed that the natural gas hydrates in the sediments is of structure I. The crystallographic character of the natural gas hydrates is supported by the fact that pure methane forms a structure I hydrate. This work was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by METI.

  11. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    SciTech Connect

    Kirchheim,, A. P.; Dal Molin, D.C.; Emwas, Abdul-Hamid; Provis, J.L.; Fischer, P.; Monteiro, P.J.M.

    2010-12-01

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping.

  12. Multipoint near-infrared spectrometry for real-time monitoring of protein conformational stability in powdered infant formula.

    PubMed

    Pabari, Ritesh M; Togashi, Denisio; Cama-Moncunill, Raquel; El Arnaout, Toufic; Rifai, Hicham; Cruise, Paul; Cullen, Patrick J; Sullivan, Carl

    2015-01-01

    Powdered infant formula (PIF) can be the sole source of nutrition for babies and infants. Monitoring conformational changes in protein during manufacture of PIF is critical in order to maintain its nutritional value. This study presents the development of a calibration model for monitoring conformational changes in PIF protein by applying a novel multipoint near-infrared (NIR) spectrometry. NIR spectra were collected for PIF and PIF proteins, casein and whey protein isolate, before and after heat treatment. Results show that principal component analysis showed discrimination between native protein at room temperature and protein conformational changes caused at elevated temperature. Partial least squares regression analysis showed good calibration models with correlation coefficients ranging between 87% and 99% for the prediction of protein quality. This novel multipoint NIR spectrometry could serve as a simple in-line tool to rapidly monitor protein quality during processing stages, contributing to product nutritional value. PMID:26176650

  13. Withdrawing Nutrition, Hydration

    Cancer.gov

    Module eleven of the EPEC-O Self-Study Original Version discusses the general aspects of withholding or withdrawing of life-sustaining therapies, and presents a specific application to artificial nutrition and hydration.

  14. Transformations in methane hydrates

    PubMed Central

    Chou, I-Ming; Sharma, Anurag; Burruss, Robert C.; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Goncharov, Alexander F.; Stern, Laura A.; Kirby, Stephen H.

    2000-01-01

    Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) Å and volume V = 5051.3(13) Å3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) Å, c = 9.992(3) Å, and V = 1241.9(5) Å3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins. PMID:11087836

  15. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples. PMID:24054645

  16. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  17. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    NASA Astrophysics Data System (ADS)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  18. If not water then what? - The possible role of CO2 hydrates in terraforming processes on Mars

    NASA Astrophysics Data System (ADS)

    Falenty, A.; Kuhs, W. F.

    The presence of water on Mars is a subject of a hot debate for over hundred years since the discovery famous channels by Giovanni Schiaparelli. With advance in technology more and more observational facts for the existence of liquids on Mars, at least in the past, have been found. It is accepted that in the distant past water played an active role in shaping Martian landscape. The problems arise for the recent past. In this period Mars is no longer wet but cold and dry. In spite of this fact, fresh, few million years old, features like gullies, chaotic terrains or pancake domes have been observed. Their origin was ascribed to water, brines, liquid CO2 or CO2 hydrates [1]. Presently liquid water is not stable at the surface and close to it. Even under high salinity it is not able to stand the harsh Martian climate for a long time. Clathrates do not have this disadvantage and can stay in meta-stable form for geologically long periods ("anomalous or self-preservation"). This makes hydrates an excellent reservoir of water ice and gases like CO2 or CH4 . The meta-stable state may be easily destroyed by e.g. climate changes, meteorite impacts or earthquakes. In this way clathrates could replenish periodically or gradually the atmosphere in trapped gases. To provide a better basis for these ideas a number of experiments for CO2 hydrate formation and decomposition were performed in our laboratory mimicking Martian surface and sub-surface conditions [2], [3], [4]. Up to now self-preservation of gas hydrates was known to exist only above 240K, which limited the applicability of this phenomenon to Martian issues. Recent investigation on anomalous preservation reviled another previously unknown aspect. In a certain pressure range outside the stability field and below 240K, hydrates unexpectedly enter the self-preservation state. Although, the mechanism, which controls this phenomenon, seems to be different from the one already reported by Kuhs et al [5], the effect is quite

  19. Exploitation of subsea gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  20. Terahertz spectroscopy of concrete for evaluating the critical hydration level

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Nallappan, Kathirvel; Sasmal, Saptarshi; Pesala, Bala

    2014-03-01

    Concrete, a mixture of cement, coarse aggregate, sand and filler material (if any), is widely used in the construction industry. Cement, mainly composed of Tricalcium Silicate (C3S) and Dicalcium Silicate (C2S) reacts readily with water, a process known as hydration. The hydration process forms a solid material known as hardened cement paste which is mainly composed of Calcium Silicate Hydrate (C-S-H), Calcium Hydroxide and Calcium Carbonate. To quantify the critical hydration level, an accurate and fast technique is highly desired. However, in conventional XRD technique, the peaks of the constituents of anhydrated and hydrated cement cannot be resolved properly, where as Mid-infrared (MIR) spectroscopy has low penetration depth and hence cannot be used to determine the hydration level of thicker concrete samples easily. Further, MIR spectroscopy cannot be used to effectively track the formation of Calcium Hydroxide, a key by-product during the hydration process. This paper describes a promising approach to quantify the hydration dynamics of cement using Terahertz (THz) spectroscopy. This technique has been employed to track the time dependent reaction mechanism of the key constituents of cement that react with water and form the products in the hydrated cement, viz., C-S-H, Calcium Hydroxide and Calcium Carbonate. This study helps in providing an improved understanding on the hydration kinetics of cement and also to optimise the physio-mechanical characteristics of concrete.

  1. Time for the 70°C water precautionary option in the home dilution of powdered infant formula.

    PubMed

    Silano, Marco; Paganin, Paola; Davanzo, Riccardo

    2016-01-01

    Powdered infant formulas (PIF) are usually not sterile and may frequently be contaminated by several bacteria strains. Among them, Cronobacter species, previously known as Enterobacter sakazakii, is one of the most harmful, since it might be the causative agent of sepsis and meningitis in newborns and preterm infants during the first weeks of life. The mortality rate of these infections is up to 80 %. Therefore, some precautions are required in the home handling and dilution of PIF. Whereas there is wide consensus about the need that a PIF should be used immediately after being diluted or, if not, stored at < "5 °C", still recently the optimal temperature of the water used to dilute PIF is controversial among scientific societies and health agencies. The current knowledge is reviewed in this paper and provides sufficient evidence to cautiously advise the use of hot water at a temperature of "70 °C" in the dilution of PIF in order to prevent the Cronobacter sp. contamination and growth. PMID:26895705

  2. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations

    DOE PAGESBeta

    Chen, Sow-Hsin; Lagi, Marco; Chu, Xiang-qiang; Zhang, Yang; Kim, Chansoo; Faraone, Antonio; Fratini, Emiliano; Baglioni, Piero

    2010-01-01

    This review article describes our neutron scattering experiments made in the past four years for the understanding of the single-particle (hydrogen atom) dynamics of a protein and its hydration water and the strong coupling between them. We found that the key to this strong coupling is the existence of a fragile-to-strong dynamic crossover (FSC) phenomenon occurring at around T L = 225±5 K in the hydration water. On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the high density form (HDL), a more fluid state, to predominantly the low density formmore » (LDL), a less fluid state, derived from the existence of a liquid–liquid critical point at an elevated pressure. We show experimentally that this sudden switch in the mobility of hydration water on Lysozyme, B-DNA and RNA triggers the dynamic transition, at a temperature T D = 220 K, for these biopolymers. In the glassy state, below T D , the biopolymers lose their vital conformational flexibility resulting in a substantial diminishing of their biological functions. We also performed molecular dynamics (MD) simulations on a realistic model of hydrated lysozyme powder, which confirms the existence of the FSC and the hydration level dependence of the FSC temperature. Furthermore, we show a striking feature in the short time relaxation ( β -relaxation) of protein dynamics, which is the logarithmic decay spanning 3 decades (from ps to ns). The long time α -relaxation shows instead a diffusive behavior, which supports the liquid-like motions of protein constituents. We then discuss our recent high-resolution X-ray inelastic scattering studies of globular proteins, Lysozyme and Bovine Serum Albumin. We were able to measure the dispersion relations of collective, intra-protein phonon-like excitations in these proteins for the first time. We found that the phonon energies show a marked softening and at the same time their population increases

  3. Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form.

    PubMed

    Takeya, Satoshi; Fujihisa, Hiroshi; Yamawaki, Hiroshi; Gotoh, Yoshito; Ohmura, Ryo; Alavi, Saman; Ripmeester, John A

    2016-08-01

    The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4 ) and propanol are reported from powder X-ray diffraction measurements. The deformation of host water cages at the cubic-tetragonal phase transition of 2-propanol+CH4 hydrate, but not 1-propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2-propanol+CH4 hydrate can be explained by the restriction of the motion of 2-propanol within the 5(12) 6(4) host water cages. This result provides a low-temperature structure due to a temperature-induced symmetry-lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition. PMID:27346760

  4. Face powder poisoning

    MedlinePlus

    Face powder poisoning occurs when someone swallows or breathes in this substance. This article is for information ... The ingredients in face powder that can be harmful are: Baking soda Talcum powder Many other types of powder

  5. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  6. Microscopic Origin of Strain Hardening in Methane Hydrate.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  7. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  8. Pore scale distribution of gas hydrates in sediments by micro X-ray Computed Tomography (X-CT)

    NASA Astrophysics Data System (ADS)

    Hu, G.; Li, C.; Ye, Y.; Liu, C.; Best, A. I.

    2013-12-01

    A dedicated apparatus was developed to observe in-situ pore scale distribution of gas hydrate directly during hydrate formation in artificial cores. The high-resolution X-ray Computed Tomography (type: GE Sensing & Inspection Technologies GmbH Phoenix x-ray V/tomex/s) was used and the effective resolution for observing gas hydrate bearing sediments can up to about 18μm. Methane gas hydrate was formed in 0.425-0.85mm sands under a pressure of 6MPa and a temperature of 3°C. During the process, CT scanning was conducted if there's a pressure drop (the scanning time is 66 minutes each time), so that the hydrate morphology could be detected. As a result, five scanning CT images of the same section during gas hydrate formation (i.e. hydrate saturation at 3.9%, 24.6%, 35.0%, 51.4% and 97.0%) were obtained. The result shows that at each hydrate saturation level, hydrate morphology models are complicated. The occurrence of 'floating model' (i.e. hydrate floats in pore fluid), 'contact model' (i.e. hydrate contact with the sediment particle), and the 'cementing model' (i.e. hydrates cement the sediment particles) can be found at the same time (Fig. 1). However, it shows that at different hydrate formation stages, the dominant hydrate morphology are not the same. For instance, at the first stage of hydrate formation, although there are some hydrates floating in the pore fluid, most hydrates connect the sediment particles. Consequently, the hydrate morphology at this moment can be described as a cementing model. With this method, it can be obtained that at the higher level of saturation (e.g., hydrate saturation at 24.6% and 35.0%), hydrates are mainly grow as a floating model. As hydrate saturation is much higher (e.g. after hydrate saturation is more than 51.4%), however, the floating hydrates coalesce with each other and the hydrates cement the sediment particle again. The direct observed hydrate morphology presented here may have significant impact on investigating

  9. A rapid method for chemical fingerprint analysis of Pan Panax notoginseng powders by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Liu, Peng; Yu, He-Shuil; Zhang, Li-Juan; Song, Xin-Bo; Kang, Li-Ping; Liu, Jing-Yuan; Zhang, Jie; Cao, Man; Yu, Kate; Kang, Ting-Guo; Ma, Bai-Ping

    2015-06-01

    A method coupling ultra-performance liquid chromatography (UPLC) with quadrupole time-of-flight mass spectrometer (Qtof MS) using the electrospray ionization (ESI) source was developed for the identification of the major saponins from Panax notoginseng powder (PNP). Ten different PNP samples were analyzed and evaluated for their quality by similarity evaluation and principle component analysis (PCA). Based on the accurate mass, summarized characteristic fragmentation behaviors, retention times of different types of saponins, related botanical biogenesis, and reported chromatographic behavior of saponins, fifty-one common peaks were effectively separated and identified, including 28 protopanaxadiol saponins and 18 protopanaxatriol saponins. Simultaneously, 15 significant discrepancy compounds were identified from the disqualified PNP samples. The established UPLC/Qtof MS fingerprint method was successfully applied for profiling and identifying the major saponins of PNP, providing a fast quality evaluation tool for distinguishing the authentic PNP and the adulterated products. PMID:26073345

  10. Hydrate pingoes at Nyegga: some characteristic features

    NASA Astrophysics Data System (ADS)

    Hovland, M.

    2009-04-01

    Hydrate pingoes were observed on the seafloor during two different remotely operated vehicle (ROV)-dives, conducted by Statoil at complex-pockmark G11, at Nyegga, off Mid-Norway. Confirmation that these structures actually represent hydrate ice-cored sediment mounds (pingoes), was done by other investigators (Ivanov et al., 2006). Because it is expected that hydrate pingoes represent relatively dynamic seafloor topographic structures and that their shape and size most probably will change over relatively short time, it is important to know how to recognise them visually. Hovland and Svensen (2006) highlighted five different characteristic aspects that define hydrate pingoes on the sea floor: 1) They are dome- or disc-shaped features, which may attain any size from ~0.5 m in height and upwards. Inside pockmark G11, they were up to 1 m high. 2) They are circular or oval in plan view and may attain lateral sizes on the seafloor ranging upwards from ~0.5 m. Inside G11 they had lengths of several metres and widths of up to 4 m. 3) They have dense communities of organisms growing on their surfaces. At G11, they were overgrown with small pogonophoran tube-worms. 4) They have patches of white or grey bacterial mats growing on their surface, indicating advection (seepage) of reduced pore-waters. 5) They have small pits and patches of fluidized sediments on their surface, indicating pit corrosion of the sub-surface gas hydrate. Because gas hydrates often form in high-porosity, near-surface sediments, where water is readily available, it is thought that they will build up at locations where gases are actively migrating upwards from depth. However, gas hydrates are not stable in the presence of ambient seawater, as seawater is deficient in guest molecule gases (normally methane). Therefore, they tend to build up below surface above conduits for gas flow from depth. But, the near-surface hydrate ice-lenses will continually be corroded by seawater circulating into the sediments

  11. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    PubMed

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. PMID:22484169

  12. Phase field modeling of CH4 hydrate conversion into CO2 hydrate in the presence of liquid CO2.

    PubMed

    Tegze, G; Gránásy, L; Kvamme, B

    2007-06-28

    We present phase field simulations to estimate the conversion rate of CH(4) hydrate to CO(2) hydrate in the presence of liquid CO(2) under conditions typical for underwater gas hydrate reservoirs. In the computations, all model parameters are evaluated from physical properties taken from experiment or molecular dynamics simulations. It has been found that hydrate conversion is a diffusion controlled process, as after a short transient, the displacement of the conversion front scales with t(1/2). Assuming a diffusion coefficient of D(s) = 1.1 x 10(-11) m(2) s(-1) in the hydrate phase, the predicted time dependent conversion rate is in reasonable agreement with results from magnetic resonance imaging experiments. This value of the diffusion coefficient is higher than expected for the bulk hydrate phase, probably due to liquid inclusions remaining in the porous sample used in the experiment. PMID:17612734

  13. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  14. Ceramic Powders

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In developing its product line of specialty ceramic powders and related products for government and industrial customers, including companies in the oil, automotive, electronics and nuclear industries, Advanced Refractory Technologies sought technical assistance from NERAC, Inc. in specific areas of ceramic materials and silicon technology, and for assistance in identifying possible applications of these materials in government programs and in the automotive and electronics industry. NERAC conducted a computerized search of several data bases and provided extensive information in the subject areas requested. NERAC's assistance resulted in transfer of technologies that helped ART staff develop a unique method for manufacture of ceramic materials to precise customer specifications.

  15. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  16. New Methods for Gas Hydrate Energy and Climate Studies

    NASA Astrophysics Data System (ADS)

    Ruppel, C. D.; Pohlman, J.; Waite, W. F.; Hunt, A. G.; Stern, L. A.; Casso, M.

    2015-12-01

    Over the past few years, the USGS Gas Hydrates Project has focused on advancements designed to enhance both energy resource and climate-hydrate interaction studies. On the energy side, the USGS now manages the Pressure Core Characterization Tools (PCCTs), which includes the Instrumented Pressure Testing Chamber (IPTC) that we have long maintained. These tools, originally built at Georgia Tech, are being used to analyze hydrate-bearing sediments recovered in pressure cores during gas hydrate drilling programs (e.g., Nankai 2012; India 2015). The USGS is now modifying the PCCTs for use on high-hydrate-saturation and sand-rich sediments and hopes to catalyze third-party tool development (e.g., visualization). The IPTC is also being used for experiments on sediments hosting synthetic methane hydrate, and our scanning electron microscope has recently been enhanced with a new cryo-stage for imaging hydrates. To support climate-hydrate interaction studies, the USGS has been re-assessing the amount of methane hydrate in permafrost-associated settings at high northern latitudes and examined the links between methane carbon emissions and gas hydrate dissociation. One approach relies on the noble gas signature of methane emissions. Hydrate dissociation uniquely releases noble gases partitioned by molecular weight, providing a potential fingerprint for hydrate-sourced methane emissions. In addition, we have linked a DOC analyzer with an IRMS at Woods Hole Oceanographic Institution, allowing rapid and precise measurement of DOC and DIC concentrations and carbon isotopic signatures. The USGS has also refined methods to measure real-time sea-air flux of methane and CO2 using cavity ring-down spectroscopy measurements coupled with other data. Acquiring ~8000 km of data on the Western Arctic, US Atlantic, and Svalbard margins, we have tested the Arctic methane catastrophe hypothesis and the link between seafloor methane emissions and sea-air methane flux.

  17. How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.

    2015-12-01

    The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times

  18. Controls on Gas Hydrate Formation and Dissociation

    SciTech Connect

    Miriam Kastner; Ian MacDonald

    2006-03-03

    up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

  19. Pulsed neutron powder diffraction at high pressure by a capacity-increased sapphire anvil cell

    NASA Astrophysics Data System (ADS)

    Okuchi, Takuo; Yoshida, Masashi; Ohno, Yoshiki; Tomioka, Naotaka; Purevjav, Narangoo; Osakabe, Toyotaka; Harjo, Stefanus; Abe, Jun; Aizawa, Kazuya; Sasaki, Shigeo

    2013-12-01

    A new design of opposed anvil cell for time-of-flight neutron powder diffraction was prepared for use at advanced pulsed sources. A couple of single-crystal sapphire sphere anvils and a gasket of fully hardened Ti-Zr null alloy were combined to compress 35 mm3 of sample volume to 1 GPa and 11 mm3 to 2 GPa of pressures, respectively. A very high-quality powder diffraction pattern was obtained at Japan Proton Accelerator Research Complex for a controversial high pressure phase of methane hydrate. The counting statistics, resolution, absolute accuracy and d-value range of the pattern were all improved to be best suitable for precise structure refinement. The sample is optically accessible to be measured by Raman and fluorescence spectroscopy during and after compression. The current cell will be an alternative choice to study hydrogenous materials of complex structures that are stable at the described pressure regime.

  20. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  1. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

    PubMed Central

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-01-01

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055

  2. Dynamical Disorder in the DNA Hydration Shell.

    PubMed

    Duboué-Dijon, Elise; Fogarty, Aoife C; Hynes, James T; Laage, Damien

    2016-06-22

    The reorientation and hydrogen-bond dynamics of water molecules within the hydration shell of a B-DNA dodecamer, which are of interest for many of its biochemical functions, are investigated via molecular dynamics simulations and an analytic jump model, which provide valuable new molecular level insights into these dynamics. Different sources of heterogeneity in the hydration shell dynamics are determined. First, a pronounced spatial heterogeneity is found at the DNA interface and explained via the jump model by the diversity in local DNA interfacial topographies and DNA-water H-bond interactions. While most of the hydration shell is moderately retarded with respect to the bulk, some water molecules confined in the narrow minor groove exhibit very slow dynamics. An additional source of heterogeneity is found to be caused by the DNA conformational fluctuations, which modulate the water dynamics. The groove widening aids the approach of, and the jump to, a new water H-bond partner. This temporal heterogeneity is especially strong in the minor groove, where groove width fluctuations occur on the same time scale as the water H-bond rearrangements, leading to a strong dynamical disorder. The usual simplifying assumption that hydration shell dynamics is much faster than DNA dynamics is thus not valid; our results show that biomolecular conformational fluctuations are essential to facilitate the water motions and accelerate the hydration dynamics in confined groove sites. PMID:27240107

  3. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  4. Relaxation mechanism of the hydrated electron.

    PubMed

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model. PMID:24357314

  5. Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin, and myoglobin.

    PubMed Central

    Sartor, G; Mayer, E; Johari, G P

    1994-01-01

    Differential scanning calorimetric (DSC) studies of the glassy states of as-received and hydrated lysozyme, hemoglobin, and myoglobin powders, with water contents of < or = 0.25, < or = 0.30, and < or = 0.29 g/g of protein, show that their heat capacity slowly increases with increasing temperature, without showing an abrupt increase characteristic of glass-->liquid transition. Annealing (also referred to as physical aging) of the hydrated proteins causes their DSC scans to show an endothermic region, similar to an overshoot, immediately above the annealing temperature. This annealing effect appears at all temperatures between approximately 150 and 300 K. The area under these peaks increases with increasing annealing time at a fixed temperature. The effects are attributed to the presence of a large number of local structures in which macromolecular segments diffuse at different time scales over a broad range. The lowest time scale corresponds to the > N-H and -O-H group motions which become kinetically unfrozen at approximately 150-170 K on heating at a rate of 30 K min-1 and which have a relaxation time of 5-10 s in this temperature range. The annealing effects confirm that the individual glass transition of the relaxing local regions is spread over a temperature range up to the denaturation temperature region of the proteins. The interpretation is supported by simulation of DSC scans in which the distribution of relaxation times is assumed to be exceptionally broad and in which annealing done at several temperatures over a wide range produces endothermic effects (or regions of DSC scans) qualitatively similar to those observed for the hydrated proteins. PMID:8130342

  6. Mapping the hydration dynamics of ubiquitin.

    PubMed

    Nucci, Nathaniel V; Pometun, Maxim S; Wand, A Joshua

    2011-08-17

    The nature of water's interaction with biomolecules such as proteins has been difficult to examine in detail at atomic resolution. Solution NMR spectroscopy is potentially a powerful method for characterizing both the structural and temporal aspects of protein hydration but has been plagued by artifacts. Encapsulation of the protein of interest within the aqueous core of a reverse micelle particle results in a general slowing of water dynamics, significant reduction in hydrogen exchange chemistry and elimination of contributions from bulk water thereby enabling the use of nuclear Overhauser effects to quantify interactions between the protein surface and hydration water. Here we extend this approach to allow use of dipolar interactions between hydration water and hydrogens bonded to protein carbon atoms. By manipulating the molecular reorientation time of the reverse micelle particle through use of low viscosity liquid propane, the T(1ρ) relaxation time constants of (1)H bonded to (13)C were sufficiently lengthened to allow high quality rotating frame nuclear Overhauser effects to be obtained. These data supplement previous results obtained from dipolar interactions between the protein and hydrogens bonded to nitrogen and in aggregate cover the majority of the molecular surface of the protein. A wide range of hydration dynamics is observed. Clustering of hydration dynamics on the molecular surface is also seen. Regions of long-lived hydration water correspond with regions of the protein that participate in molecular recognition of binding partners suggesting that the contribution of the solvent entropy to the entropy of binding has been maximized through evolution. PMID:21761828

  7. Time-resolved X-ray powder diffraction on a three-way catalyst at the GILDA beamline.

    PubMed

    Martorana, A; Deganello, G; Longo, A; Deganello, F; Liotta, L; Macaluso, A; Pantaleo, G; Balerna, A; Meneghini, C; Mobilio, S

    2003-03-01

    Time-resolved X-ray diffraction experiments carried out at the beamline BM08-GILDA of ESRF allowed a study of the structural modifications taking place in a Pt/ceria-zirconia catalyst while the CO oxidation reaction was in progress. The capillary tube in which the sample is stored acts effectively as a chemical microreactor that ensures homogeneity of the sample treatments and minimization of diffusion effects. During the flowing of the reactant CO/He mixture, the investigated catalyst undergoes a fast Ce(IV)-Ce(III) partial reduction that involves the release of one O atom for every two reduced Ce cations. Because Ce(III) has a larger ionic radius than Ce(IV), the structural modification produces an increase of the lattice constant of the ceria-zirconia mixed oxide, and this increase is monitored by the translating imaging-plate device implemented at GILDA. The CO(2) resulting from the oxidation of the fluxed CO is monitored by a quadrupole mass spectrometer during the recording of the time-resolved X-ray diffraction pattern. The chemical and structural information was combined to show that the CO(2) yield is nearly constant until the catalytic system can provide oxygen for the reaction, while the structural rearrangement of the catalyst is delayed with respect to the switching on of the CO/He flux. After this induction time, during which CO(2) is produced with no structural modification of the catalyst, a fast increase of the lattice constant takes place. PMID:12606797

  8. Detailed analysis of methane hydrate concentrated zone of lobe type

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Saeki, T.; Inamori, T.; Fujii, T.; Shimoda, N.

    2007-12-01

    Japan Oil, Gas and Metals National Corporation (hereinafter called JOGMEC), as a member of MH21 Research Consortium, takes charge of a study of the Research for Resources Assessment, and is pursuing a possibility that methane hydrate, which is presumed to be distributed around ocean area of Japan, will be energy resources. JOGMEC is currently conducting analysis of seismic data which was acquired by 3D seismic survey conducted from Tokai-Oki to Kumano-nada in the eastern Nankai Trough by METI (Ministry of Economy, Trade and Industry) in 2002 under the national program of assessment for methane hydrates as energy resources. It was understood that methane hydrate was correlated to high resistivity and high velocity based on the results of drilling surveys and velocity analysis, and that methane hydrate concentrated zones can be roughly classified into the channels and lobes in seismic geomorphology because they were characterized with reserves consisting turbidite sand bodies. In this study, the detailed analysis of the inner structure of the methane hydrate concentrated zone of lobe type was conducted to understand the occurrence configurations of methane hydrates. The reflected waves that construct the methane hydrate concentrated zones in the seismic data were extracted and those reflected waves were classified into some groups every one reflector. As the result, some reflectors that construct the methane hydrate concentrated zones were revealed. Those reflectors show the layers including methane hydrates, and the detailed distribution of the methane hydrates in those layers was revealed by the intensity distribution of the amplitude. This time, we introduce the example of the detailed analysis of the methane hydrate concentrated zone in the lobe of submarine fan.

  9. The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property.

    PubMed

    Wu, Shuai; Huang, Zhuoyao; Yue, Jianhui; Liu, Di; Wang, Ting; Ezanno, Pierre; Ruan, Changshun; Zhao, Xiaoli; Lu, William W; Pan, Haobo

    2015-11-01

    Antarctic krill chitosan (A-Chitosan) was first evaluated in its hemostatic effect in this study. The prepared A-Chitosan powder showed low level of crystallinity and significantly high water binding capacity as 1293% (w/w). By mice tail amputation model and blood coagulation timing experiment, it is showed that this chitosan accelerated the tail hemostasis by 55% and shortened the blood clotting time by 38%. This efficacy was better than two other commercial chitosans investigated and was corresponding to their water binding capacities. Through examining the effect of chitosan on blood components, it could be found that platelets adhesion was mainly affected by the water binding capacity, and red blood cells aggregation was dependent on their deacetylation degree. The physicochemical properties resulted in better hydration property of chitosan would improve its hemostatic effect. These results suggested that Antarctic krill chitosan is a good candidate for hemostatic application. PMID:26256352

  10. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.

  11. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.

  12. Instant conversion of air to a clathrate hydrate: CO(2) hydrates directly from moist air and moist CO(2)(g).

    PubMed

    Devlin, J Paul; Monreal, I Abrrey

    2010-12-23

    The rapid conversion of vapor mixtures containing the gases CO(2), H(2)S, and HCN to clathrate hydrates was reported recently. The novel method is based on the pulsing of warm vapor mixtures, including a carrier gas, into a cold condensation chamber. With cooling, the vapors, which also include ∼1% water and either tetrahydrofuran or trimethylene oxide as a catalyst, nucleate aqueous solution nanodroplets that, on a millisecond time scale, crystallize as hydrate nanoparticles that consume 100% of the water. Humid air approximates the content of mixtures used successfully in the vapor-to-hydrate conversions. FTIR spectra are examined for gas hydrates formed directly from air and air enriched with CO(2), as well as hydrate particles for which CO(2)(g) serves as both guest and aerosol medium. In each instance all of the water in the condensed phase converts to a clathrate hydrate. The subsecond ether-catalyzed formation of the hydrates near 230 K requires only a few percent of the CO(2) pressure used in conventional processes that yield fractional amounts of gas hydrates on an hour time scale in the same temperature range. PMID:21105676

  13. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  14. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  15. Nondestructive evaluation of crystallized-particle size in lactose-powder by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Satoshi; Hatakeyama, Sakura; Imai, Yoh; Tonouchi, Masayoshi

    2014-03-01

    Transmission-type terahertz time-domain spectroscopy is applied to evaluate crystallized lactose particle of size below 30 μm, which is far too small compared to the wavelength of incident terahertz (THz)-wave. The THz-absorption spectrum of lactose is successfully deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz) derived from α-lactose monohydrate, and a spectrum at 39.7 cm-1 (1.19 THz) from anhydrous β-lactose after removal of the broad-band spectrum by polynomial cubic function. Lactose is mainly crystallized into α-lactose monohydrate from the supersaturated solution at room temperature with a small amount of anhydrous β-lactose below 4%. The absorption feature is dependent on the crystallized particle size and the integrated intensity ratio of the two absorptions due to α-lactose monohydrate is correlated in linear for the size.

  16. Experimental Study of Gas Hydrate Dynamics

    NASA Astrophysics Data System (ADS)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  17. Arctic Gas hydrate, Environment and Climate

    NASA Astrophysics Data System (ADS)

    Mienert, Jurgen; Andreassen, Karin; Bünz, Stefan; Carroll, JoLynn; Ferre, Benedicte; Knies, Jochen; Panieri, Giuliana; Rasmussen, Tine; Myhre, Cathrine Lund

    2015-04-01

    Arctic methane hydrate exists on land beneath permafrost regions and offshore in shelf and continental margins sediments. Methane or gas hydrate, an ice-like substrate, consists mainly of light hydrocarbons (mostly methane from biogenic sources but also ethane and propane from thermogenic sources) entrapped by a rigid cage of water molecules. The pressure created by the overlying water and sediments offshore stabilizes the CH4 in continental margins at a temperature range well above freezing point; consequently CH4 exists as methane ice beneath the seabed. Though the accurate volume of Arctic methane hydrate and thus the methane stored in hydrates throughout the Quaternary is still unknown it must be enormous if one considers the vast regions of Arctic continental shelves and margins as well as permafrost areas offshore and on land. Today's subseabed methane hydrate reservoirs are the remnants from the last ice age and remain elusive targets for both unconventional energy and as a natural methane emitter influencing ocean environments and ecosystems. It is still contentious at what rate Arctic warming may govern hydrate melting, and whether the methane ascending from the ocean floor through the hydrosphere reaches the atmosphere. As indicated by Greenland ice core records, the atmospheric methane concentration rose rapidly from ca. 500 ppb to ca. 750 ppb over a short time period of just 150 years at the termination of the younger Dryas period ca. 11600 years ago, but the dissociation of large quantities of methane hydrates on the ocean floor have not been documented yet (Brook et al., 2014 and references within). But with the major projected warming and sea ice melting trend (Knies et al., 2014) one may ask, for how long will CH4 stay trapped in methane hydrates if surface and deep-ocean water masses will warm and permafrost continuous to melt (Portnov et al. 2014). How much of the Arctic methane will be consumed by the micro- and macrofauna, how much will

  18. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. PMID:26963606

  19. Hydration dynamics near a model protein surface

    SciTech Connect

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  20. Submarine gas hydrate estimation: Theoretical and empirical approaches

    SciTech Connect

    Ginsburg, G.D.; Soloviev, V.A.

    1995-12-01

    The published submarine gas hydrate resource estimates are based on the concepts of their continuous extent over large areas and depth intervals and/or the regionally high hydrate concentrations in sediments. The observational data are in conflict with these concepts. At present such estimates cannot be made to an accuracy better than an order of magnitude. The amount of methane in shallow subbottom (seepage associated) gas-hydrate accumulations is estimated at 10{sup 14} m{sup 3} STP, and in deep-seated hydrates at 10{sup 15} m{sup 3} according to observational data. From the genetic standpoint for the time being gas hydrate potential could be only assessed as far less than 10{sup 17} m{sup 3} because rates of related hydrogeological and geochemical processes have not been adequately studied.

  1. Hydration of Portland cement with additions of calcium sulfoaluminates

    SciTech Connect

    Le Saout, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  2. Oxidation and hydration of U3O8 materials following controlled exposure to temperature and humidity.

    PubMed

    Tamasi, Alison L; Boland, Kevin S; Czerwinski, Kenneth; Ellis, Jason K; Kozimor, Stosh A; Martin, Richard L; Pugmire, Alison L; Reilly, Dallas; Scott, Brian L; Sutton, Andrew D; Wagner, Gregory L; Walensky, Justin R; Wilkerson, Marianne P

    2015-04-21

    Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In this study, a high-purity α-U3O8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2-3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. Signatures measured from the α-U3O8 sample indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. The absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495. PMID:25786096

  3. Dynamics of the gas hydrate system off Svalbard

    NASA Astrophysics Data System (ADS)

    Berndt, Christian; Feseker, Tomas; Treude, Tina; Krastel, Sebastian; Liebetrau, Volker; Niemann, Helge; Bertics, Victoria; Dumke, Ines; Dünnbier, Karolin; Ferre, Benedicte; Graves, Carolyn; Gross, Felix; Hissmann, Karen; Hühnerbach, Veit; Krause, Stefan; Lieser, Kathrin; Schauer, Jürgen; Steinle, Lea

    2013-04-01

    Marine methane hydrate is an ice-like substance stable at high-pressure and low temperature found frequently in continental margins. Since discovery of a large number of gas flares between 380 and 400 m water depth at the landward termination of the gas hydrate stability zone off Svalbard, there is concern that warming bottom waters have already started to melt large amounts of marine gas hydrate and may possibly accelerate global warming. The location of gas flares observed in PARASOUND data, geochemical anomalies in sediment cores, and anomalies in heat flow profiles suggest that hydrates play a role in the observed seepage of gas. However, the observation of thick carbonate crusts during manned submersible dives and their subsequent dating suggest that seepage off Svalbard has been ongoing for at least several hundred years and that decadal scale warming of the West Svalbard Current is at most of minor importance for the bulk of the observed seepage. Thus, the seeps off Svalbard do not necessarily represent the beginning of large-scale hydrate dissociation in the Arctic. Instead, it is likely that seasonal bottom water temperature fluctuations of 1-2°C cause periodic gas hydrate formation and dissociation, which focuses seepage at the observed gas flare depth. The results show that hydrate is highly sensitive to bottom water temperature changes and that bottom water warming will affect the stability of any large hydrate accumulations at the seabed on a short time scale.

  4. Methane Clathrate Hydrate Prospecting

    NASA Technical Reports Server (NTRS)

    Duxbury, N.; Romanovsky, V.

    2003-01-01

    A method of prospecting for methane has been devised. The impetus for this method lies in the abundance of CH4 and the growing shortages of other fuels. The method is intended especially to enable identification of subpermafrost locations where significant amounts of methane are trapped in the form of methane gas hydrate (CH4(raised dot)6H2O). It has been estimated by the U.S. Geological Survey that the total CH4 resource in CH4(raised dot) 6H2O exceeds the energy content of all other fossil fuels (oil, coal, and natural gas from non-hydrate sources). Also, CH4(raised dot)6H2O is among the cleanest-burning fuels, and CH4 is the most efficient fuel because the carbon in CH4 is in its most reduced state. The method involves looking for a proxy for methane gas hydrate, by means of the combination of a thermal-analysis submethod and a field submethod that does not involve drilling. The absence of drilling makes this method easier and less expensive, in comparison with prior methods of prospecting for oil and natural gas. The proposed method would include thermoprospecting in combination with one more of the other non-drilling measurement techniques, which could include magneto-telluric sounding and/or a subsurface-electrical-resistivity technique. The method would exploit the fact that the electrical conductivity in the underlying thawed region is greater than that in the overlying permafrost.

  5. Structural stability of methane hydrate at high pressures

    USGS Publications Warehouse

    Shu, J.; Chen, X.; Chou, I.-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang

    2011-01-01

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure. ?? 2011, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. All rights reserved.

  6. New Simulator for Non-Equilibrium Modeling of Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Qorbani Nashaqi, K.; Jemai, K.; Vafaei, M.

    2014-12-01

    Due to Gibbs phase rule and combination of first and second law of thermodynamics, hydrate in nature cannot be in equilibrium since they come from different parent phases. In this system hydrate formation and dissociation is affected by local variables such as pressure, temperature and composition with mass and energy transport restrictions. Available simulators have attempted to model hydrate phase transition as an equilibrium reaction. Although those which treated the processes of formation and dissociation as kinetics used model of Kim and Bishnoi based on laboratory PVT experiment, and consequently hard to accept up scaling to real reservoirs condition. Additionally, they merely check equilibrium in terms of pressure and temperature projections and disregard thermodynamic requirements for equilibrium especially along axes of concentrations in phases. Non-equilibrium analysis of hydrate involves putting aside all the phase transitions which are not possible and use kinetic evaluation to measure phase transitions progress in each grid block for each time step. This procedure is Similar to geochemical reservoir simulators logic. As a result RetrasoCodeBright has been chosen as hydrate reservoir simulator and our work involves extension of this code. RetrasoCodeBright (RCB) is able to handle competing processes of formation and dissociation of hydrates as pseudo reactions at each node and each time step according to the temperature, pressure and concentration. Hydrates can therefore be implemented into the structure as pseudo minerals, with appropriate kinetic models. In order to implement competing nature of phase transition kinetics of hydrate formation, we use classical nucleation theory based on Kvamme et al. as a simplified model inside RCB and use advanced theories to fit parameters for the model (PFT). Hydrate formation and dissociation can directly be observed through porosity changes in the specific areas of the porous media. In this work which is in

  7. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio

    2016-04-01

    We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.

  8. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering.

    PubMed

    Yoshida, Koji; Baron, Alfred Q R; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio

    2016-04-01

    We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure. PMID:27059578

  9. Kinetics of the barotropic ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated dimyristoylphosphatidylcholine (DMPC) monitored by time-resolved x-ray diffraction.

    PubMed Central

    Caffrey, M; Hogan, J; Mencke, A

    1991-01-01

    We present here the first study of the use of a pressure-jump to induce the ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The transition was monitored by using time-resolved x-ray diffraction (TRXRD). Applying a pressure-jump from atmospheric to 11.3 MPa (1640 psig, 111.6 atm) in 2.5 s induces the L alpha to P beta' phase transition which takes place in two stages. The lamellar repeat spacing initially increases from a value of 66.0 +/- 0.1 A (n = 4) to a maximum value of 70.3 +/- 0.8 A (n = 4) after 10 s and after a further 100-150 s decreases slightly to 68.5 +/- 0.3 A (n = 4). The reverse transition takes place following a pressure jump in 5.5 s from 11.3 MPa to atmospheric pressure. Again, the transition occurs in two stages with the repeat spacing steadily decreasing from an initial value of 68.5 +/- 0.3 A (n = 3) to a minimum value of 66.6 +/- 0.3 A (n = 3) after 50 s and then increasing by approximately 0.5 A over a period of 100 s. The transition temperature increases linearly with pressure up to 14.1 MPa in accordance with the Clapeyron relation, giving a dT/dP value of 0.285 degrees C/MPa (28.5 degrees C/kbar) and an associated volume change of 40 microliters/g. A dynamic compressibility of 0.13 +/- 0.01 A/MPa has been determined for the L alpha phase. This value is compared with the equilibrium compressibilities of bilayer and nonbilayer phases reported in the literature. The results suggest testable mechanisms for the pressure-induced transition involving changes in periodicity, phase hydration, chain order, and orientation. A more complete understanding of the transition mechanism will require improvement in detector spatial resolution and sensitivity, and data on the pressure sensitivity of phase hydration. PMID:1912281

  10. Simulation of subsea gas hydrate exploitation

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  11. Effects of sludge retention times on reactivity of effluent dissolved organic matter for trihalomethane formation in hybrid powdered activated carbon membrane bioreactors.

    PubMed

    Ma, Defang; Gao, Baoyu; Xia, Chufan; Wang, Yan; Yue, Qinyan; Li, Qian

    2014-08-01

    In this study, real municipal wastewater intended for reuse was treated by two identical hybrid PAC/MBRs (membrane bioreactors with powdered activated carbon addition), which were operated at sludge retention times (SRTs) of 30 and 180 days, respectively. In order to investigate the effects of SRT on trihalomethane (THM) formation in chlorinated PAC/MBR effluents, characteristics and THM formation reactivity of effluent dissolved organic matter (EfOM) at different SRTs were examined. PAC/MBR-180 had higher level of EfOM, which contained less simple aromatic proteins and exhibited lower specific UV absorbance. EfOM with molecular weight <5 kDa from PAC/MBR-30 (23%) was lower than PAC/MBR-180 (26%). About 50% of EfOM from PAC/MBR-30 was hydrophobic acids, which was higher than that from PAC/MBR-180 (about 36%). EfOM at SRT 180 days exhibited higher hydrophilicity. Prolonging SRT greatly reduced THM formation reactivity of EfOM, but increased the formation of bromine-containing species during chlorination of PAC/MBR effluents. PMID:24929809

  12. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  13. Kinetics Characteristics of Nitrogen Hydrates Respond to Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Liu, C.; Ye, Y.; Gong, J.

    2012-12-01

    a function of time can be obtained by integrating the exothermic peaks. As a series of experiments were carried out using the same bulk phase, these curves represented a semi-quantitative result of hydrate crystal growth speed (see Figure 1). The slope of the energy curve reflected the growth speed at a certain time. The steeper the curve became, the faster the hydrates growth was. As could be expected, hydrate growth speed is extremely dependent of the sub-cooling.; Figure 1. Energy released of hydrates growth as a function of time

  14. High-pressure dynamics of hydrated protein in bioprotective trehalose environment

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.; Zhang, Q.; O'Neill, H.; Mamontov, E.

    2014-10-01

    We present a pressure-dependence study of the dynamics of lysozyme protein powder immersed in deuterated α ,α -trehalose environment via quasielastic neutron scattering (QENS). The goal is to assess the baroprotective benefits of trehalose on biomolecules by comparing the findings with those of a trehalose-free reference study. While the mean-square displacement of the trehalose-free protein (hydrated to dD2O≃ 40 w%) as a whole, is reduced by increasing pressure, the actual observable relaxation dynamics in the picoseconds to nanoseconds time range remains largely unaffected by pressure—up to the maximum investigated pressure of 2.78(2) Kbar. Our observation is independent of whether or not the protein is mixed with the deuterated sugar. This suggests that the hydrated protein's conformational states at atmospheric pressure remain unaltered by hydrostatic pressures, below 2.78 Kbar. We also found the QENS response to be totally recoverable after ambient pressure conditions are restored. Small-angle neutron diffraction measurements confirm that the protein-protein correlation remains undisturbed. We observe, however, a clear narrowing of the QENS response as the temperature is decreased from 290 to 230 K in both cases, which we parametrize using the Kohlrausch-Williams-Watts stretched exponential model. Only the fraction of protons that are immobile on the accessible time window of the instrument, referred to as the elastic incoherent structure factor, is observably sensitive to pressure, increasing only marginally but systematically with increasing pressure.

  15. High-pressure dynamics of hydrated protein in bioprotective trehalose environment

    SciTech Connect

    Diallo, S. O.; Zhang, Q.; O'Neill, H.; Mamontov, E.

    2014-10-30

    Here we present a pressure-dependence study of the dynamics of lysozyme protein powder immersed in deuterated , α-trehalose environment via quasielastic neutron scattering (QENS). The goal is to assess the baroprotective benefits of trehalose on biomolecules by comparing the findings with those of a trehalose-free reference study. While the mean-square displacement of the trehalose-free protein (hydrated to dD₂O ≃40 w%) as a whole, is reduced by increasing pressure, the actual observable relaxation dynamics in the picoseconds to nanoseconds time range remains largely unaffected by pressure up to the maximum investigated pressure of 2.78(2) Kbar. Our observation is independent of whether or not the protein is mixed with the deuterated sugar. This suggests that the hydrated protein s conformational states at atmospheric pressure remain unaltered by hydrostatic pressures, below 2.78 Kbar. We also found the QENS response to be totally recoverable after ambient pressure conditions are restored. Small-angle neutron diffraction measurements confirm that the protein-protein correlation remains undisturbed.We observe, however, a clear narrowing of the QENS response as the temperature is decreased from 290 to 230 K in both cases, which we parametrize using the Kohlrausch-Williams-Watts stretched exponential model. Finally, only the fraction of protons that are immobile on the accessible time window of the instrument, referred to as the elastic incoherent structure factor, is observably sensitive to pressure, increasing only marginally but systematically with increasing pressure.

  16. High pressure dynamics of hydrated protein in bio-protective trehalose environment

    DOE PAGESBeta

    Omar Diallo, Souleymane; Zhang, Qiu; O'Neill, Hugh Michael; Mamontov, Eugene

    2014-01-01

    We present a pressure-dependence study of the dynamics of lysozyme protein powder immersed in deuterated , -trehalose environment via quasielastic neutron scattering (QENS). The goal is to assess the baroprotective benefits of trehalose on biomolecules by comparing the findings with those of a trehalose-free reference study. While the mean-square displacement of the trehalose-free protein (hydrated to dD2O 40 w%) as a whole, is reduced by increasing pressure, the actual observable relaxation dynamics in the picoseconds to nanoseconds time range remains largely unaffected by pressure up to the maximum investigated pressure of 2.78(2) Kbar. Our observation is independent of whether ormore » not the protein is mixed with the deuterated sugar. This suggests that the hydrated protein s conformational states at atmospheric pressure remain unaltered by hydrostatic pressures, below 2.78 Kbar. We also found the QENS response to be totally recoverable after ambient pressure conditions are restored. Small-angle neutron diffraction measurements confirm that the protein-protein correlation remains undisturbed.We observe, however, a clear narrowing of the QENS response as the temperature is decreased from 290 to 230 K in both cases, which we parametrize using the Kohlrausch-Williams-Watts stretched exponential model. Only the fraction of protons that are immobile on the accessible time window of the instrument, referred to as the elastic incoherent structure factor, is observably sensitive to pressure, increasing only marginally but systematically with increasing pressure.« less

  17. Geochemistry of a naturally occurring massive marine gas hydrate

    USGS Publications Warehouse

    Kvenvolden, K.A.; Claypool, G.E.; Threlkeld, C.N.; Dendy, Sloan E.

    1984-01-01

    During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4??C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ???0.2% ethane, and ???0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 permil(( 0 00), relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift. ?? 1984.

  18. Depressurization-induced gas production from Class 1 and Class 2hydrate deposits

    SciTech Connect

    Moridis, George J.; Kowalsky, Michael

    2006-05-12

    Class 1 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) underlain by a two-phase zone involving mobile gas. Such deposits are further divided to Class 1W (involving water and hydrate in the HBL) and Class 1G (involving gas and hydrate in the HBL). In Class 2 deposits, a mobile water zone underlies the hydrate zone. Methane is the main hydrate-forming gas in natural accumulations. Using TOUGH-FX/HYDRATE to study the depressurization-induced gas production from such deposits, we determine that large volumes of gas could be readily produced at high rates for long times using conventional technology. Dissociation in Class 1W deposits proceeds in distinct stages, but is continuous in Class 1G deposits. Hydrates are shown to contribute significantly to the production rate (up to 65 percent and 75 percent in Class 1W and 1G, respectively) and to the cumulative volume of produced gas (up to 45 percent and 54 percent in Class 1W and 1G, respectively). Large volumes of hydrate-originating CH4 could be produced from Class 2 hydrates, but a relatively long lead time would be needed before gas production (which continuously increases over time) attains a substantial level. The permeability of the confining boundaries plays a significant role in gas production from Class 2 deposits. In general, long-term production is needed to realize the full potential of the very promising Class 1 and Class 2 hydrate deposits.

  19. Heat transfer and multiphase flow with hydrate formation in subsea pipelines

    NASA Astrophysics Data System (ADS)

    Odukoya, A.; Naterer, G. F.

    2015-07-01

    A new predictive model is developed to analyze hydrate formation with coupled heat and mass transfer in a pipe. The model tracks the particle velocity at each time step, while estimating the growth of the hydrate using the change in Biot number and dimensionless time. The numerical results are validated experimental results for R134a hydrates. The effects of change in heat transfer ratio, phase change number, superheating, and pipe diameter on hydrate formation are reported in this paper. The results indicate that higher heat transfer ratio between the internal and external fluids reduces the possibility of hydrates creating a blockage in the pipeline. The pipes with smaller diameters are also found to reduce the possibility of hydrate formation at a constant pipeline pressure. The results show that at temperatures below -10 °C, changing thermophysical properties have limited impact on the rate of hydrate formation in the pipe.

  20. Direct Observations of Three Dimensional Growth of Hydrates Hosted in Porous Media

    SciTech Connect

    Kerkar, P.; Jones, K; Kleinberg, R; Lindquist, W; Tomov, S; Feng, H; Mahajan, D

    2009-01-01

    The visualization of time-resolved three-dimensional growth of tetrahydrofuran hydrates with glass spheres of uniform size as porous media using synchrotron x-ray computed microtomography is presented. The images of hydrate patches, formed from excess tetrahydrofuran in aqueous solution, show random nucleation and growth concomitant with grain movement but independent of container-wall effect. Away from grain surfaces, hydrate surface curvature was convex showing that liquid, not hydrate, was the wetting phase, similar to ice growth in porous media. The extension of the observed behavior to methane hydrates could have implications in understanding their role in seafloor stability and climate change.

  1. Early hydration and setting of oil well cement

    SciTech Connect

    Zhang Jie; Weissinger, Emily A.; Peethamparan, Sulapha; Scherer, George W.

    2010-07-15

    A broad experimental study has been performed to characterize the early hydration and setting of cement pastes prepared with Class H oil well cement at water-to-cement ratios (w/c) from 0.25 to 0.40, cured at temperatures from 10 to 60 {sup o}C, and mixed with chemical additives. Chemical shrinkage during hydration was measured by a newly developed system, degree of hydration was determined by thermogravimetric analysis, and setting time was tested by Vicat and ultrasonic velocity measurements. A Boundary Nucleation and Growth model provides a good fit to the chemical shrinkage data. Temperature increase and accelerator additions expedite the rate of cement hydration by causing more rapid nucleation of hydration products, leading to earlier setting; conversely, retarder and viscosity modifying agents delay cement nucleation, causing later setting times. Lower w/c paste needs less hydration product to form a percolating solid network (i.e., to reach the initial setting point). However, for the systems evaluated, at a given w/c, the degree of hydration at setting is a constant, regardless of the effects of ambient temperature or the presence of additives.

  2. Preparation of metal diboride powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  3. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  4. Hydrated Minerals on Asteroids: The Astronomical Record

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Howell, E. S.; Vilas, F.; Lebofsky, L. A.

    2002-01-01

    Knowledge of the hydrated mineral inventory on the asteroids is important for deducing the origin of Earth's water, interpreting the meteorite record, and unraveling the processes occurring during the earliest times in solar system history. Reflectance spectroscopy shows absorption features in both the 0.6-0.8 and 2.5-3.5 micrometers regions, which are diagnostic of or associated with hydrated minerals. Observations in those regions show that hydrated minerals are common in the mid-asteroid belt, and can be found in unexpected spectral groupings, as well. Asteroid groups formerly associated with mineralogies assumed to have high temperature formation, such as M- and E-class asteroids, have been observed to have hydration features in their reflectance spectra. Some asteroids have apparently been heated to several hundred degrees Celsius, enough to destroy some fraction of their phyllosilicates. Others have rotational variation suggesting that heating was uneven. We summarize this work, and present the astronomical evidence for water- and hydroxyl-bearing minerals on asteroids.

  5. Hydrated Minerals on Asteroids: The Astronomical Record

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Howell, E. S.; Vilas, F.; Lebofsky, L. A.

    2003-01-01

    Knowledge of the hydrated mineral inventory on the asteroids is important for deducing the origin of Earth's water, interpreting the meteorite record, and unraveling the processes occurring during the earliest times in solar system history. Reflectance spectroscopy shows absorption features in both the 0.6-0.8 and 2.5-3.5-micron regions, which are diagnostic of or associated with hydrated minerals. Observations in those regions show that hydrated minerals are common in the mid-asteroid belt, and can be found in unexpected spectral groupings as well. Asteroid groups formerly associated with mineralogies assumed to have high-temperature formation, such as M- and E-class steroids, have been observed to have hydration features in their reflectance spectra. Some asteroids have apparently been heated to several hundred degrees Celsius, enough to destroy some fraction of their phyllosilicates. Others have rotational variation suggesting that heating was uneven. We summarize this work, and present the astronomical evidence for water- and Hydroxl-bearing minerals on asteroids.

  6. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    USGS Publications Warehouse

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  7. Electronucleation for Rapid and Controlled Formation of Hydrates.

    PubMed

    Carpenter, Katherine; Bahadur, Vaibhav

    2016-07-01

    Nucleation of hydrates involves very long induction times (hours to days), which is a challenge for applications requiring rapid hydrate formation. This study introduces and analyzes the use of electric fields to accelerate and control hydrate nucleation. Experiments with tetrahydrofuran (THF) hydrates reveal that the induction time can be reduced by 100×, by applying an electrical potential across the precursor solution. The induction time rapidly decreases with increasing voltages and is on the order of a few minutes at 100 V. It is seen that voltage-induced current flow in the solution is responsible for electronucleation. Very low currents (microamperes) are sufficient for electronucleation. Nucleation promotion can be attributed to phenomena associated with bubble formation due to chemical reactions at the electrodes. Overall, this study lays the foundation for the control and promotion of nucleation by electric fields, and enables possibilities for instantaneous nucleation. PMID:27299519

  8. Computational investigation of dynamical transitions in Trp-cage miniprotein powders

    NASA Astrophysics Data System (ADS)

    Kim, Sang Beom; Gupta, Devansh R.; Debenedetti, Pablo G.

    2016-05-01

    We investigate computationally the dynamical transitions in Trp-cage miniprotein powders, at three levels of hydration: 0.04, 0.26 and 0.4 g water/g protein. We identify two distinct temperatures where transitions in protein dynamics occur. Thermal motions are harmonic and independent of hydration level below Tlow ≈ 160 K, above which all powders exhibit harmonic behavior but with a different and enhanced temperature dependence. The second onset, which is often referred to as the protein dynamical transition, occurs at a higher temperature TD that decreases as the hydration level increases, and at the lowest hydration level investigated here (0.04 g/g) is absent in the temperature range we studied in this work (T ≤ 300 K). Protein motions become anharmonic at TD, and their amplitude increases with hydration level. Upon heating above TD, hydrophilic residues experience a pronounced enhancement in the amplitude of their characteristic motions in hydrated powders, whereas it is the hydrophobic residues that experience the more pronounced enhancement in the least hydrated system. The dynamical transition in Trp-cage is a collective phenomenon, with every residue experiencing a transition to anharmonic behavior at the same temperature.

  9. Computational investigation of dynamical transitions in Trp-cage miniprotein powders.

    PubMed

    Kim, Sang Beom; Gupta, Devansh R; Debenedetti, Pablo G

    2016-01-01

    We investigate computationally the dynamical transitions in Trp-cage miniprotein powders, at three levels of hydration: 0.04, 0.26 and 0.4 g water/g protein. We identify two distinct temperatures where transitions in protein dynamics occur. Thermal motions are harmonic and independent of hydration level below Tlow ≈ 160 K, above which all powders exhibit harmonic behavior but with a different and enhanced temperature dependence. The second onset, which is often referred to as the protein dynamical transition, occurs at a higher temperature TD that decreases as the hydration level increases, and at the lowest hydration level investigated here (0.04 g/g) is absent in the temperature range we studied in this work (T ≤ 300 K). Protein motions become anharmonic at TD, and their amplitude increases with hydration level. Upon heating above TD, hydrophilic residues experience a pronounced enhancement in the amplitude of their characteristic motions in hydrated powders, whereas it is the hydrophobic residues that experience the more pronounced enhancement in the least hydrated system. The dynamical transition in Trp-cage is a collective phenomenon, with every residue experiencing a transition to anharmonic behavior at the same temperature. PMID:27151767

  10. Computational investigation of dynamical transitions in Trp-cage miniprotein powders

    PubMed Central

    Kim, Sang Beom; Gupta, Devansh R.; Debenedetti, Pablo G.

    2016-01-01

    We investigate computationally the dynamical transitions in Trp-cage miniprotein powders, at three levels of hydration: 0.04, 0.26 and 0.4 g water/g protein. We identify two distinct temperatures where transitions in protein dynamics occur. Thermal motions are harmonic and independent of hydration level below Tlow ≈ 160 K, above which all powders exhibit harmonic behavior but with a different and enhanced temperature dependence. The second onset, which is often referred to as the protein dynamical transition, occurs at a higher temperature TD that decreases as the hydration level increases, and at the lowest hydration level investigated here (0.04 g/g) is absent in the temperature range we studied in this work (T ≤ 300 K). Protein motions become anharmonic at TD, and their amplitude increases with hydration level. Upon heating above TD, hydrophilic residues experience a pronounced enhancement in the amplitude of their characteristic motions in hydrated powders, whereas it is the hydrophobic residues that experience the more pronounced enhancement in the least hydrated system. The dynamical transition in Trp-cage is a collective phenomenon, with every residue experiencing a transition to anharmonic behavior at the same temperature. PMID:27151767

  11. Handling, transport and dispersion of sorbent powder for in-furnace injection. Third year final report

    SciTech Connect

    Fan, Liang-Shih; Bavarian, F.; Lee, R.J.; Hsia, Chung-wei; Abou-Zeida, E.; Jiang, Peijun; Dastidar, A.G.; Mahuli, S.

    1993-09-01

    The purpose of this study is to explain, using fundamental theories of interparticle forces, the difference in transport and dispersion between various sorbents. This project is closely tied with 1.1 through the focus of maximum utilization of sorbent materials used in the LIMB process. Interparticle forces lead to agglomeration or removal to transport tube walls of the sorbent fine particles, reducing sulfur removal capabilities. In the first and second years, the pneumatic transport of sorbent powders was investigated for four typical sorbent materials, calcium carbonate, dolomite, dolomitic hydrate and hydrated lime. Results indicate that hydrated lime has the best dispersion and flowability. Studies in the third year involved investigating improving the performance of hydrated lime with additives. The addition of calcium liposulfonate to the water of hydration appears to improve both the dispersibility and reactivity of the resulting product hydrate. Increased reactivity is closely tied to available surface area for reaction, as expected. However, in applications where powder flowability becomes important, such as in the use of hydrate in flue-gas desulfurization, a balance between the flowability and surface area must be considered. If the powder has poor flowability, the added surface area may not be utilized. Powder dispersion and the high-temperature are used to determine the dispersibility of the modified and unmodified sorbents at room temperature and at typical furnace temperatures. Results verify that an increase in dispersibility is realized with the liposulfonate-modified hydrate. Phase 1 results show this increased dispersibility to be due to electrostatic repulsion between liposulfonate molecules on the surface of the dry powder.

  12. A Study on the Chemical Compositions of the Yinqiaosan (Lonicerae and Forsythiae Powder) at Different Time of Later-decoction by Gas Chromatography Mass Spectrometry

    PubMed Central

    Shu, Yachun; Chen, Yajun; Qin, Kunming; Liu, Xiao; Cai, Baochang

    2016-01-01

    Background: Yinqiaosan (Lonicerae and Forsythiae Powder), as a famous prescription of Dr. Wu Jutong in Qing dynasty of China, has the effects of diaphoresis cooling, fire-purging, and detoxicaton. It is mainly used in the treatment of influenza, hand-foot-mouth disease, esophagitis, pneumonia, acute tonsillitis, mumps, and other viral infections. It is one of the widely used traditional Chinese medicine prescriptions with proven curative effects in clinical use. Objective: To research the material basis of Yinqiaosan decoction when decocting mint, herba schizonepetae in different length of later-decoction time, to find the influence on volatile components of Yinqiaosan decoction decocted later in different length of time, to lay the foundation to further clarify the after-decoction mechanism of Yinqiaosan, and the specification of Yinqiaosan decoction process. Materials and Methods: Gas chromatography mass spectrometry method is used to analyze the volatile components of Yinqiaosan decoction samples decocted for 0, 3, 5, 8, and 10 min. Results: Later-decocting mint and herba schizonepetae at different time when decocting Yinqiaosan had a significant influence on the volatile components of the solution. 54 different chemical components were identified: 25 were identified when later-decocting the sample for 3 min; 13 were identified when later-decocting the sample for 5 min; 11 were identified when later-decocting the sample for 8 min; 7 were identified when later-decocting the sample for 10 min; and 26 were identified when later-decocting the sample for 0 min. There were more volatile components in the sample after-decocted for 3 min. A total of 54 different chemical components were identified in different later-decocting solution samples. These components form the basis of the Yinqiaosan drug effect. Conclusions: The length of later-decoction time of mint and herba schizonepetae was confirmed to be 3 min when decocting Yinqiaosan. SUMMARY Later-decocting mint and

  13. Calorimetric and X-ray studies of clathrate hydrates of tetraisoamylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Soldatov, Dmitriy V; Suwinska, Kinga; Skiba, Sergey S; Stenin, Yuri G; Villevald, Galina V; Karpova, Tamara D; Yunoshev, Alexander S

    2009-04-30

    The structure of clathrate hydrates with tetraisoamylammonium polyacrylate salt incorporated as guest has been studied in this work. Also, quantitative studies on the stability changes of the clathrate hydrates with different degrees of cross-linking of the guest polymer (varied from 0 to 3%) have been conducted. A single crystal X-ray diffraction study of a crystal of the hydrate with linear (uncross-linked) tetraisoamylammonium polyacrylate as guest reveals a hexagonal structure (space group P6m2, a = 12.15 A, c =12.58 A at 100 K) with 39 host framework water molecules per one guest monomeric unit. Powder X-ray diffraction analyses confirm the identity of the above crystal structure of the hydrate with linear guest polymer and the crystal structure of the hydrates with cross-linked guest (hexagonal, a = 12.25 A, c =12.72 A at 276 K). In order to quantitatively determine the stability differences of the hydrates with the included guests having various degrees of cross-linking of the anionic chain, a series of differential scanning calorimetry measurements of the fusion enthalpy of the hydrate samples has been carried out. On the basis of the results obtained, a structural model describing the decrease in the stability of the clathrate hydrates with tetraisoamylammonium polyacrylate guest as a function of the degree of cross-linking of the guest polymer has been suggested. PMID:19344169

  14. Structural transformation and tuning behavior induced by the propylamine concentration in hydrogen clathrate hydrates.

    PubMed

    Park, Seongmin; Kang, Hyery; Shin, Kyuchul; Seo, Yutaek; Lee, Huen

    2015-01-21

    The structures and the guest-host distributions of iso-propylamine (i-PA) and n-propylamine (n-PA) hydrates with hydrogen as a secondary guest were identified by powder X-ray diffraction and Raman spectroscopic analysis. The structure of 11.1 mol% i-PA + H2 hydrate was identified to be hexagonal (space group P63/mmc) with a few unindexed diffraction peaks, while 5.6 mol% i-PA + H2 hydrate had a cubic structure (space group Fd3¯m). Similarly, the structure of 13.3 mol% n-PA + H2 hydrate was found to be monoclinic (space group P2(1)/n), while 5.6 mol% n-PA + H2 hydrate had a cubic structure (space group Fd3¯m). The 'tuning' phenomenon, multiple occupancy of hydrogen in the large cage at the pressure and temperature regions outside of pure hydrogen hydrate stability, was observed in the i-PA + H2 hydrate only when the amine concentration was lower than the stoichiometric value of structure II hydrate. The three-phase (H-L(w)-V) equilibria for alkylamine + H2 + water mixtures were also measured to investigate their thermodynamic stability. PMID:25475482

  15. The growth rate of gas hydrate from refrigerant R12

    SciTech Connect

    Kendoush, Abdullah Abbas; Jassim, Najim Abid; Joudi, Khalid A.

    2006-07-15

    Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

  16. Quantifying Hydrate Formation in Gas-rich Environments Using the Method of Characteristics

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.; DiCarlo, D. A.

    2015-12-01

    Methane hydrates hold a vast amount of methane globally, and have huge energy potential. Methane hydrates in gas-rich environments are the most promising production targets. We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation in such environments (Figure 1). Our solution shows that hydrate saturation is constant with time and space in a homogeneous system. Hydrate saturation is controlled by the initial thermodynamic condition of the system, and changed by the gas fractional flow. Hydrate saturation increases with the initial distance from the hydrate phase boundary. Different gas fractional flows behind the hydrate solidification front lead to different gas saturations at the hydrate solidification front. The higher the gas saturation at the front, the less the volume available to be filled by hydrate, and hence the lower the hydrate saturation. The gas fractional flow depends on the relative permeability curves, and the forces that drive the flow. Viscous forces (the drive for flow induced from liquid pressure gradient) dominate the flow, and hydrate saturation is independent on the gas supply rates and the flow directions at high gas supply rates. Hydrate saturation can be estimated as one minus the ratio of the initial to equilibrium salinity. Gravity forces (the drive for flow induced from the gravity) dominate the flow, and hydrate saturation depends on the flow rates and the flow directions at low gas supply rates. Hydrate saturation is highest for upward flow, and lowest for downward flow. Hydrate saturation decreases with the flow rate for upward flow, and increases with the flow rate for downward flow. This analytical solution illuminates how hydrate is formed by gas (methane, CO2, ethane, propane) flowing into brine-saturated sediments at both the laboratory and geological scales (Figure 1). It provides an approach to generalize the understanding of hydrate solidification in gas

  17. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory

    SciTech Connect

    Rutkowski, Philip X; Michelini, Maria C.; Bray, Travis H.; Russo, Nino; Marcalo, Joaquim; Gibson, John K.

    2011-02-11

    Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX{sub 2}{sup +} and YbX(OH){sup +} (X = OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations - kinetics and extent of hydration - are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.

  18. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  19. Some thermodynamical aspects of protein hydration water

    SciTech Connect

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene; Chen, Sow-Hsin

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  20. Dynamics of Hydration Water in Sugars and Peptides Solutions

    SciTech Connect

    Perticaroli, Stefania; Nakanishi, Masahiro; Pashkovski, Eugene; Sokolov, Alexei P

    2013-01-01

    We analyzed solute and solvent dynamics of sugars and peptides aqueous solutions using extended epolarized light scattering (EDLS) and broadband dielectric spectroscopies (BDS). Spectra measured with both techniques reveal the same mechanism of rotational diffusion of peptides molecules. In the case of sugars, this solute reorientational relaxation can be isolated by EDLS measurements, whereas its ontribution to the dielectric spectra is almost negligible. In the presented analysis, we characterize the hydration water in terms of hydration number and retardation ratio between relaxation times of hydration and bulk water. Both techniques provide similar estimates of . The retardation imposed on the hydration water by sugars is 3.3 1.3 and involves only water molecules hydrogen-bonded (HB) to solutes ( 3 water molecules per sugar OH-group). In contrast, polar peptides cause longer range erturbations beyond the first hydration shell, and between 2.8 and 8, increasing with the number of chemical groups engaged in HB formation. We demonstrate that chemical heterogeneity and specific HB interactions play a crucial role in hydration dynamics around polar solutes. The obtained results help to disentangle the role of excluded volume and enthalpic contributions in dynamics of hydration water at the interface with biological molecules.

  1. Growth Kinetics and Mechanics of Hydrate Films by Interfacial Rheology.

    PubMed

    Leopércio, Bruna C; de Souza Mendes, Paulo R; Fuller, Gerald G

    2016-05-01

    A new approach to study and understand the kinetics and mechanical properties of hydrates by interfacial rheology is presented. This is made possible using a "double wall ring" interfacial rheology cell that has been designed to provide the necessary temperature control. Cyclopentane and water are used to form hydrates, and this model system forms these structures at ambient pressures. Different temperature and water/hydrocarbon contact protocols are explored. Of particular interest is the importance of first contacting the hydrocarbon against ice crystals in order to initiate hydrate formation. Indeed, this is found to be the case, even though the hydrates may be created at temperatures above the melting point of ice. Once hydrates completely populate the hydrocarbon/water interface, strain sweeps of the interfacial elastic and viscous moduli are conducted to interrogate the mechanical response and fragility of the hydrate films. The dependence on temperature, Tf, by the kinetics of formation and the mechanical properties is reported, and the cyclopentane hydrate dissociation temperature was found to be between 6 and 7 °C. The formation time (measured from the moment when cyclopentane first contacts ice crystals) as well as the elastic modulus and the yield strain increase as Tf increases. PMID:27076092

  2. Effects of ensembles on methane hydrate nucleation kinetics.

    PubMed

    Zhang, Zhengcai; Liu, Chan-Juan; Walsh, Matthew R; Guo, Guang-Jun

    2016-06-21

    By performing molecular dynamics simulations to form a hydrate with a methane nano-bubble in liquid water at 250 K and 50 MPa, we report how different ensembles, such as the NPT, NVT, and NVE ensembles, affect the nucleation kinetics of the methane hydrate. The nucleation trajectories are monitored using the face-saturated incomplete cage analysis (FSICA) and the mutually coordinated guest (MCG) order parameter (OP). The nucleation rate and the critical nucleus are obtained using the mean first-passage time (MFPT) method based on the FS cages and the MCG-1 OPs, respectively. The fitting results of MFPT show that hydrate nucleation and growth are coupled together, consistent with the cage adsorption hypothesis which emphasizes that the cage adsorption of methane is a mechanism for both hydrate nucleation and growth. For the three different ensembles, the hydrate nucleation rate is quantitatively ordered as follows: NPT > NVT > NVE, while the sequence of hydrate crystallinity is exactly reversed. However, the largest size of the critical nucleus appears in the NVT ensemble, rather than in the NVE ensemble. These results are helpful for choosing a suitable ensemble when to study hydrate formation via computer simulations, and emphasize the importance of the order degree of the critical nucleus. PMID:27222203

  3. Physical modeling of the formation of clathrate hydrates of methane

    NASA Astrophysics Data System (ADS)

    Drobyshev, A.; Aldiyarov, A.; Kurnosov, V.; Katpaeva, K.; Korshikov, E.; Sokolov, D.; Shinbayeva, A.; Timchenko, A.

    2015-06-01

    Nowadays natural gas hydrates attract special attention as a possible source of fossil fuel. According to various estimates, the reserves of hydrocarbons in hydrates exceed considerably explored reserves of natural gas. Due to the clathrate structure the unit volume of the gas hydrate can contain up to 160-180 volumes of pure gas. In recent years interest to a problem of gas hydrates has considerably increased. Such changes are connected with the progress in searches of the alternative sources of hydrocarbonic raw materials in countries that do not possess the resources of energy carriers. Thus gas hydrates are nonconventional sources of the hydrocarbonic raw materials which can be developed in the near future. At the same time, mechanisms of methane clathrate hydrates formations have not reached an advanced level, their thermophysical and mechanical properties have not been investigated profoundly. Thereby our experimental modeling of the processes of formation of methane clathrate hydrates in water cryomatrix prepared by co-condensation from the gas phase onto a cooled substrate was carried out over the range of condensation temperatures 12-60 K and pressures 10-4-10-6 Torr. In our experiments the concentration of methane in water varied in the range of 5%-90%. The thickness deposited films was 30-60 μm. The vibrational spectra of two-component thin films of CH4 + H2O condensates were measured and analyzed.

  4. The connection between natural gas hydrate and bottom-simulating reflectors

    NASA Astrophysics Data System (ADS)

    Majumdar, Urmi; Cook, Ann E.; Shedd, William; Frye, Matthew

    2016-07-01

    Bottom-simulating reflectors (BSRs) on marine seismic data are commonly used to identify the presence of natural gas hydrate in marine sediments, although the exact relationship between gas hydrate and BSRs is undefined. To clarify this relationship we compile a data set of probable gas hydrate occurrence as appraised from well logs of 788 industry wells in the northern Gulf of Mexico. We combine the well log data set with a data set of BSR distribution in the same area identified from 3-D seismic data. We find that a BSR increases the chances of finding gas hydrate by 2.6 times as opposed to drilling outside a BSR and that the wells within a BSR also contain thicker and higher resistivity hydrate accumulations. Even so, over half of the wells drilled through BSRs have no detectable gas hydrate accumulations and gas hydrate occurrences and BSRs do not coincide in most cases.

  5. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is

  6. Promotion of Methane Hydrate Dissociation by Underwater Ultrasonic Wave

    NASA Astrophysics Data System (ADS)

    Miura, Hikaru; Takata, Makoto; Tajima, Daisuke; Tsuyuki, Kenichirou

    2006-05-01

    The methane hydrate that exists in the abyssal floor is receiving attention as a nonconventional type of natural gas resource. An efficient dissociation technology is necessary and indispensable to achieve a steady supply of methane from methane hydrate because it does not easily dissociate in a stable environment of high pressure and low temperature. We consider that underwater ultrasonic wave irradiation may be a method of promoting the dissociation of methane hydrate on the basis of the facilitator effect. We carried out a preliminary examination using dry ice at various pressures, water temperatures, and input electric power. Methane hydrate was similarly examined. As a result, it was clarified that the dissociation time was shorted by the ultrasonic wave, and the wave was effective when the water temperature was low at the time of dissociation.

  7. Method of making tungsten powder compacts

    SciTech Connect

    Peralta, R.E.

    1991-06-25

    This patent describes a process for forming a compact. It comprises essentially of pure tungsten metal powder by the steps of contacting a tungsten metal powder with and aqueous acid mixture at a sufficient concentration and for a sufficient period of time of etch the surface of the powder, the acid comprises a mixture of hydrofluoric acid and hydrochloric acid, and isostaticly pressuring the powder at an ambient temperature at a pressure of from about 18,000 to about 20,000 psi. for a sufficient period of time to form a compact.

  8. Detection and Appraisal of Gas Hydrates: Indian Scenario

    NASA Astrophysics Data System (ADS)

    Sain, K.

    2009-04-01

    Gas hydrates, found in shallow sediments of permafrost and outer continental margins, are crystalline form of methane and water. The carbon within global gas hydrates is estimated two times the carbon contained in world-wide fossil fuels. It is also predicted that 15% recovery of gas hydrates can meet the global energy requirement for the next 200 years. Several parameters like bathymetry, seafloor temperature, sediment thickness, rate of sedimentation and total organic carbon content indicate very good prospect of gas hydrates in the vast offshore regions of India. Methane stored in the form of gas hydrates within the Indian exclusive economic zone is estimated to be few hundred times the country's conventional gas reserve. India produces less than one-third of her oil requirement and gas hydrates provide great hopes as a viable source of energy in the 21st century. Thus identification and quantitative assessment of gas hydrates are very important. By scrutiny and reanalysis of available surface seismic data, signatures of gas hydrates have been found out in the Kerala-Konkan and Saurashtra basins in the western margin, and Krishna-Godavari, Mahanadi and Andaman regions in the eastern margin of India by mapping the bottom simulating reflector or BSR based on its characteristic features. In fact, the coring and drilling in 2006 by the Indian National Gas Hydrate Program have established the ground truth in the eastern margin. It has become all the more important now to identify further prospective regions with or without BSR; demarcate the lateral/areal extent of gas hydrate-bearing sediments and evaluate their resource potential in both margins of India. We have developed various approaches based on seismic traveltime tomography; waveform inversion; amplitude versus offset (AVO) modeling; AVO attributes; seismic attributes and rock physics modeling for the detection, delineation and quantification of gas-hydrates. The blanking, reflection strength, instantaneous

  9. Pectin as an Extraordinary Natural Kinetic Hydrate Inhibitor

    NASA Astrophysics Data System (ADS)

    Xu, Shurui; Fan, Shuanshi; Fang, Songtian; Lang, Xuemei; Wang, Yanhong; Chen, Jun

    2016-03-01

    Pectin as a novel natural kinetic hydrate inhibitor, expected to be eco-friendly and sufficiently biodegradable, was studied in this paper. The novel crystal growth inhibition (CGI) and standard induction time methods were used to evaluate its effect as hydrate inhibitor. It could successfully inhibit methane hydrate formation at subcooling temperature up to 12.5 °C and dramatically slowed the hydrate crystal growth. The dosage of pectin decreased by 66% and effective time extended 10 times than typical kinetic inhibitor. Besides, its maximum growth rate was no more than 2.0%/h, which was far less than 5.5%/h of growth rate for PVCap at the same dosage. The most prominent feature was that it totally inhibited methane hydrate crystal rapid growth when hydrate crystalline occurred. Moreover, in terms of typical natural inhibitors, the inhibition activity of pectin increased 10.0-fold in induction time and 2.5-fold in subcooling temperature. The extraordinary inhibition activity is closely related to its hydrogen bonding interaction with water molecules and the hydrophilic structure. Finally, the biodegradability and economical efficiency of pectin were also taken into consideration. The results showed the biodegradability improved 75.0% and the cost reduced by more than 73.3% compared to typical commercial kinetic inhibitors.

  10. Pectin as an Extraordinary Natural Kinetic Hydrate Inhibitor.

    PubMed

    Xu, Shurui; Fan, Shuanshi; Fang, Songtian; Lang, Xuemei; Wang, Yanhong; Chen, Jun

    2016-01-01

    Pectin as a novel natural kinetic hydrate inhibitor, expected to be eco-friendly and sufficiently biodegradable, was studied in this paper. The novel crystal growth inhibition (CGI) and standard induction time methods were used to evaluate its effect as hydrate inhibitor. It could successfully inhibit methane hydrate formation at subcooling temperature up to 12.5 °C and dramatically slowed the hydrate crystal growth. The dosage of pectin decreased by 66% and effective time extended 10 times than typical kinetic inhibitor. Besides, its maximum growth rate was no more than 2.0%/h, which was far less than 5.5%/h of growth rate for PVCap at the same dosage. The most prominent feature was that it totally inhibited methane hydrate crystal rapid growth when hydrate crystalline occurred. Moreover, in terms of typical natural inhibitors, the inhibition activity of pectin increased 10.0-fold in induction time and 2.5-fold in subcooling temperature. The extraordinary inhibition activity is closely related to its hydrogen bonding interaction with water molecules and the hydrophilic structure. Finally, the biodegradability and economical efficiency of pectin were also taken into consideration. The results showed the biodegradability improved 75.0% and the cost reduced by more than 73.3% compared to typical commercial kinetic inhibitors. PMID:26996773

  11. Pectin as an Extraordinary Natural Kinetic Hydrate Inhibitor

    PubMed Central

    Xu, Shurui; Fan, Shuanshi; Fang, Songtian; Lang, Xuemei; Wang, Yanhong; Chen, Jun

    2016-01-01

    Pectin as a novel natural kinetic hydrate inhibitor, expected to be eco-friendly and sufficiently biodegradable, was studied in this paper. The novel crystal growth inhibition (CGI) and standard induction time methods were used to evaluate its effect as hydrate inhibitor. It could successfully inhibit methane hydrate formation at subcooling temperature up to 12.5 °C and dramatically slowed the hydrate crystal growth. The dosage of pectin decreased by 66% and effective time extended 10 times than typical kinetic inhibitor. Besides, its maximum growth rate was no more than 2.0%/h, which was far less than 5.5%/h of growth rate for PVCap at the same dosage. The most prominent feature was that it totally inhibited methane hydrate crystal rapid growth when hydrate crystalline occurred. Moreover, in terms of typical natural inhibitors, the inhibition activity of pectin increased 10.0-fold in induction time and 2.5-fold in subcooling temperature. The extraordinary inhibition activity is closely related to its hydrogen bonding interaction with water molecules and the hydrophilic structure. Finally, the biodegradability and economical efficiency of pectin were also taken into consideration. The results showed the biodegradability improved 75.0% and the cost reduced by more than 73.3% compared to typical commercial kinetic inhibitors. PMID:26996773

  12. LARC powder prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.

  13. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  14. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  15. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  16. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    USGS Publications Warehouse

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  17. Dynamics and hydration explain failed functional transformation in dehalogenase design.

    PubMed

    Sykora, Jan; Brezovsky, Jan; Koudelakova, Tana; Lahoda, Maryna; Fortova, Andrea; Chernovets, Tatsiana; Chaloupkova, Radka; Stepankova, Veronika; Prokop, Zbynek; Smatanova, Ivana Kuta; Hof, Martin; Damborsky, Jiri

    2014-06-01

    We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its enantioselectivity remains low. Time-dependent fluorescence shifts and computer simulations revealed that dynamics and hydration at the tunnel mouth differ substantially between the redesigned and target dehalogenase. PMID:24727901

  18. The nurse's role in patient nutrition and hydration.

    PubMed

    Evans, Liz; Best, Carolyn

    Abstract Evans L, Best C (2015) Meeting patients' nutrition and hydration needs. The Nursing and Midwifery Council's new code was introduced in March 2015. For the first time, nutrition and hydration are mentioned specifically within the code. This article explores why this has become necessary and how nursing responsibility for the nutritional care of the patient has changed over the past 150 years. It also looks in more depth at how the nutritional care can meet the standards of the code. PMID:26477230

  19. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties.

    PubMed

    Brown, Erika P; Koh, Carolyn A

    2016-01-01

    Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion. PMID:26618773

  20. Kinetics of bread crumb hydration as related to porous microstructure.

    PubMed

    Mathieu, Vincent; Monnet, Anne-Flore; Jourdren, Solenne; Panouillé, Maud; Chappard, Christine; Souchon, Isabelle

    2016-08-10

    During oral processing and throughout the digestion process, hydration mechanisms have a key influence on the functional properties of food. This is the case with bread, for which hydration may affect the kinetics of starch hydrolysis as well as taste, aroma and texture perceptions. In this context, the aim of the present study is to understand how crumb porous micro-architecture impacts hydration kinetics. Four types of French baguettes were considered, varying in structure and/or compositions. An experimental set-up was developed for the real-time measurement of water uptake in crumb samples. Mathematical models were then fitted to extract quantitative parameters of use for the description and the understanding of experimental observations. Finally, bread crumb samples were analyzed before and after hydration through X-ray micro-computed tomography for the assessment of crumb micro-architectural properties. Distinct hydration behaviors were observed for the four types of bread. Higher hydration rates and capacities were reported for industrial baguettes (highest porosity) compared to denser semi-industrial, whole wheat and traditional baguettes. However, crumb porosity alone is not sufficient to predict hydration behavior. This study made it possible to point out the importance of capillary action in crumb hydration mechanisms, with a strong role of cells with diameters of 2 mm and below. The high density of these small cells generates high interconnection probabilities that may have an impact both on crumb hydration duration and capacity. As a consequence, accounting for microstructural features resulting from bread formulation may provide useful leverages for the control of functional properties. PMID:27466974

  1. Development of Multiplex Real-time PCR with Internal Amplification Control for Simultaneous Detection of Salmonella and Cronobacter sakazakii in Powdered Infant Formula.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of powdered infant formula (PIF) by the bacteria Cronobacter sakazakii and Salmonella enterica was deemed a matter of great concern by the World Health Organization and the Food and Agriculture Organization of the United Nations in 2004. Therefore, we developed a rapid and sensitive m...

  2. A novel microwave sensor for real-time online monitoring of roll compacts of pharmaceutical powders online--a comparative case study with NIR.

    PubMed

    Gupta, Anshu; Austin, John; Davis, Sierra; Harris, Michael; Reklaitis, Gintaras

    2015-05-01

    Control of particulate processes is hard to achieve because of the ease with which powders tend to segregate. Thus, proper sensing methods must be employed to ensure content uniformity during operation. The role of sensing schemes becomes even more critical while operating the process continuously as measurements are essential for implementation of feedback control (Austin et al. 2013. J Pharm Sci 102(6):1895-1904; Austin et al. 2014. Anal Chim Acta 819:82-93). A microwave sensor was developed and shown to be effective in online measurement of active pharmaceutical ingredient (API) concentration in a powder blend. During powder transport and hopper storage before processing, powder blends may segregate and cause quality deviations in the subsequent tableting operation. Therefore, it is critical to know the API concentration in the ribbons as the content uniformity is fixed once the ribbon is processed. In this study, a novel microwave sensor was developed that could provide measurement of a roller compacted ribbon's API concentration online, along with its density and moisture content. The results indicate that this microwave sensor is capable of increased accuracy compared with a commercially available near-IR probe for the determination of content uniformity and density in roller compacted ribbons online. PMID:25754185

  3. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  4. Hydration mechanisms of two polymorphs of synthetic ye'elimite

    SciTech Connect

    Cuesta, A.; Álvarez-Pinazo, G.; Peral, I.; Aranda, M.A.G.; De la Torre, A.G.

    2014-09-15

    Ye'elimite is the main phase in calcium sulfoaluminate cements and also a key phase in sulfobelite cements. However, its hydration mechanism is not well understood. Here we reported new data on the hydration behavior of ye'elimite using synchrotron and laboratory powder diffraction coupled to the Rietveld methodology. Both internal and external standard methodologies have been used to determine the overall amorphous contents. We have addressed the standard variables: water-to-ye'elimite ratio and additional sulfate sources of different solubilities. Moreover, we report a deep study of the role of the polymorphism of pure ye'elimites. The hydration behavior of orthorhombic stoichiometric and pseudo-cubic solid-solution ye'elimites is discussed. In the absence of additional sulfate sources, stoichiometric-ye'elimite reacts slower than solid-solution-ye'elimite, and AFm-type phases are the main hydrated crystalline phases, as expected. Moreover, solid-solution-ye'elimite produces higher amounts of ettringite than stoichiometric-ye'elimite. However, in the presence of additional sulfates, stoichiometric-ye'elimite reacts faster than solid-solution-ye'elimite.

  5. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  6. Water, Hydration and Health

    PubMed Central

    Popkin, Barry M.; D’Anci, Kristen E.; Rosenberg, Irwin H.

    2010-01-01

    This review attempts to provide some sense of our current knowledge of water including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, the effects of variation in water intake on health and energy intake, weight, and human performance and functioning. Water represents a critical nutrient whose absence will be lethal within days. Water’s importance for prevention of nutrition-related noncommunicable diseases has emerged more recently because of the shift toward large proportions of fluids coming from caloric beverages. Nevertheless, there are major gaps in knowledge related to measurement of total fluid intake, hydration status at the population level, and few longer-term systematic interventions and no published random-controlled longer-term trials. We suggest some ways to examine water requirements as a means to encouraging more dialogue on this important topic. PMID:20646222

  7. Face powder poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002700.htm Face powder poisoning To use the sharing features on this page, please enable JavaScript. Face powder poisoning occurs when someone swallows or breathes ...

  8. Composite powder particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald S. (Inventor); MacDowell, Louis G. (Inventor)

    2009-01-01

    A liquid coating composition including a coating vehicle and composite powder particles disposed within the coating vehicle. Each composite powder particle may include a magnesium component, a zinc component, and an indium component.

  9. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  10. A new hydrate form of diflunisal precipitated from a microemulsion system.

    PubMed

    Sung, Hsuan-Lei; Fan, Yueh-Lin; Yeh, Kimberly; Chen, Yen-Fu; Chen, Li-Jen

    2013-09-01

    Three microemulsion systems were applied as solvents for polymorph screening of seven active pharmaceutical ingredients (APIs): carbamazepine, piroxicam, sulfaguanidine, nitrofurantoin, theophylline, quercetin, and diflunisal. All the recrystallized compounds were examined by using powder X-ray diffractometry, differential scanning calorimetry, elemental analysis, Karl Fischer titration and dissolution rate. A new crystal form of diflunisal hydrate was discovered by the cooling method of recrystallization in a water-in-oil microemulsion system, composed of water, alkane and dioctyl sodium sulfosuccinate. The new hydrate form of diflunisal was characterized and confirmed to be a stoichiometry of diflunisal:water of 1:1. The other two microemulsion systems were able to convert the anhydrous diflunisal Form I to Form III. The dissolution rate of diflunisal hydrate is unexpectedly much higher than that of anhydrous ones (Forms I and III). All the other six APIs (carbamazepine, piroxicam, sulfaguanidine, nitrofurantoin, theophylline and quercetin) recrystallized from the microemulsion systems were all converted into hydrate form. PMID:23624616