Science.gov

Sample records for powder metallurgy compacts

  1. Electrothermal Defect Detection in Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2006-03-01

    Faced with increasing market pressures, metal part manufacturers have turned to new processes and fabrication technologies. One of these processes is powder metallurgy (P/M), which is employed for low-cost, high-volume precision part manufacturing. Despite many advantages, the P/M process has created a number of challenges, including the need for high-speed quality assessment and control, ideally for each compact. Consequently, sophisticated quality assurance is needed to rapidly detect flaws early in the manufacturing cycle and at minimal cost. In this paper we will discuss our progress made in designing and refining an active infrared (IR) detection system for P/M compacts. After discussing the theoretical background in terms of underlying equations and boundary conditions, analytical and numerical solutions are presented that are capable of predicting temperature responses for various defect sizes and orientations of a dynamic IR testing system. Preliminary measurements with controlled and industrial samples have shown that this active IR methodology can successfully be employed to test both green-state and sintered P/M compacts. The developed system can overcome many limitations observed with a standard IR testing methodology such as emissivity, background calibration, and contact resistance.

  2. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-01

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  3. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    SciTech Connect

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-21

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  4. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  5. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  6. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  7. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  8. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  9. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  10. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  11. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  12. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  13. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  14. Densification of powder metallurgy billets by a roll consolidation technique

    NASA Technical Reports Server (NTRS)

    Sellman, W. H.; Weinberger, W. R.

    1973-01-01

    Container design is used to convert partially densified powder metallurgy compacts into fully densified slabs in one processing step. Technique improves product yield, lowers costs and yields great flexibility in process scale-up. Technique is applicable to all types of fabricable metallic materials that are produced from powder metallurgy process.

  15. Metallography of powder metallurgy materials

    SciTech Connect

    Lawley, Alan; Murphy, Thomas F

    2003-12-15

    The primary distinction between the microstructure of an ingot metallurgy/wrought material and one fabricated by the powder metallurgy route of pressing followed by sintering is the presence of porosity in the latter. In its various morphologies, porosity affects the mechanical, physical, chemical, electrical and thermal properties of the material. Thus, it is important to be able to characterize quantitatively the microstructure of powder metallurgy parts and components. Metallographic procedures necessary for the reliable characterization of microstructures in powder metallurgy materials are reviewed, with emphasis on the intrinsic challenges presented by the presence of porosity. To illustrate the utility of these techniques, five case studies are presented involving powder metallurgy materials. These case studies demonstrate problem solving via metallography in diverse situations: failure of a tungsten carbide-coated precipitation hardening stainless steel, failure of a steel pump gear, quantification of the degree of sinter (DOS), simulation of performance of a porous filter using automated image analysis, and analysis of failure in a sinter brazed part assembly.

  16. Electrostatic Detection of Density Variations in Green-State Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Leuenberger, Georg; Ludwig, Reinhold

    2003-03-01

    Producing P/M compacts is generally a low-cost, high-volume manufacturing effort with very special quality assurance requirements. When considering the three basic P/M steps of mixing, compacting, and sintering, it is the compaction process producing the green-state parts that offer the highest pay-off for quality control through nondestructive evaluation (NDE) techniques. A detection of compacting-related problems in the green-state samples permits early process intervention, and thus prevents the creation of potentially significant numbers of faulty parts. Work at WPI currently has concentrated on extending the previously developed method for crack detections to measure density variations within the parts. In this paper a physical model and a mathematical formulation are reported that are capable of relating green-state density to electric conductivity for various lubricant concentrations. Electrostatic measurements of cylindrical compacts have so far confirmed the theoretical model assumptions. Specifically, the green-state conductivity increases as the sample density increases up to approximately 6.9 - 7.0 g/ccm. Any further density increase results in a decrease in conductivity. Preliminary measurements with a range of cylindrical samples support the theoretical model.

  17. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  18. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-10-21

    A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. A major advance in powder metallurgy

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.

    1991-01-01

    Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.

  20. Powder metallurgy of vanadium and its alloys (review)

    SciTech Connect

    Radomysel'skii, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-10-01

    This article reviews the current powder metallurgy technology of vanadium and its alloys. Data are given on sintering, compacting, electrowinning and other current production techniques, as well as on the corrosion behavior and mechanical and physical properties of alloys produced by these different methods. The use of vanadium alloys as reactor and jet engine materials is also briefly discussed.

  1. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  2. Powder-Metallurgy Process And Product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G.

    1988-01-01

    Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.

  3. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  4. Powder metallurgy bearings for advanced rocket engines

    NASA Technical Reports Server (NTRS)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.

    1985-01-01

    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  5. Powder metallurgy technology of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.

    2008-05-01

    Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.

  6. Evaluation of powder metallurgy superalloy disk materials

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  7. Low-Cobalt Powder-Metallurgy Superalloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  8. An application of powder metallurgy to dentistry.

    PubMed

    Oda, Y; Ueno, S; Kudoh, Y

    1995-11-01

    Generally, the dental casting method is used to fabricate dental prostheses made with metal. The method of fabricating dental prostheses from sintered titanium alloy has certain advantages: the elimination of casting defects, a sintering temperature that is lower than the melting point, and a shorter processing time. By examining (1) the properties of green, sintered compacts of titanium powder, (2) the effects of adding aluminum powder on the properties of green, sintered compacts of Ti-Al compound, and (3) the effects of adding copper powder on the properties of green, sintered compacts of Ti-Al-Cu compound, the authors developed a sintered titanium alloy on a trial basis. Because the properties satisfied the requirements of dental restorations, a powder metallurgical method of making dental restorations from this sintered titanium alloy was devised. Applications of such sintered titanium alloys for the metal coping of metal-ceramic crowns and denture base plates were discussed. PMID:8689755

  9. Ti Multicomponent Alloy Bulks by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Dai, Hongchuan; Teng, Yuancheng; Li, Yuxiang

    2014-10-01

    In this study, CrCuFeMnMo0.5Ti multicomponent alloy bulks were prepared by powder metallurgy of mechanical alloying and sintering. A simple body-centered cubic (bcc) solid solution was prepared after 40 h ball milling of the raw CrCuFeMnMo0.5Ti metallic powder. Particles of the alloyed powder are in microsized structures, which are actually a soft agglomeration of lamellar grains with thicknesses less than 1 μm. Meanwhile, the lamellar granules are consisted of nanosized grains under rigid cold welding. The 80-h ball-milled powder was consolidated by cold pressing and subsequent sintering at 800°C. The observed main phase in the consolidated sample after milling for 80 h is still a bcc solid solution. The solidified sample of 80-h ball-milled powder exhibits a Vickers hardness of 468 HV, which is much higher than 171 HV of the counterpart prepared from the raw metallic powder.

  10. Advances in powder metallurgy - 1991. Vol. 5 - P/M materials; Proceedings of the Powder Metallurgy Conference and Exhibition, Chicago, IL, June 9-12, 1991

    SciTech Connect

    Pease, L.F. III; Sansoucy, R.J.

    1991-01-01

    The present volume powder metallurgy materials discusses the state of the PM industry, a metallurgical evaluation of new steel powders, design criteria for the manufacturing of low-alloy steel powders, and homogenization processing of a PM maraging steel. Attention is given to the corrosion resistance of full density sintered 316 SS, the performance characteristics of a new sinter-hardening low-alloy steel, wear performance of compositions made by low alloy iron/high alloy powder mixtures, and the strengthening of an AISI 1020 steel by aluminum-microalloying during liquid dynamic compaction. Topics addressed include the influence of alloying on the properties of water-atomized copper powders, fundamentals of high pressure gas atomization process control, advanced sensors and process control of gas atomization, and bimetallic tubulars via spray forming. Also discussed are factors affecting the delamination of PM molybdenum during stamping, applications of powder metallurgy molybdenum in the 1990s, and powder processing of high-temperature oxides.

  11. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.

    2001-01-01

    A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  12. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  13. Powder metallurgy process for manufacturing core projectile

    NASA Astrophysics Data System (ADS)

    Akbar, Taufik; Setyowati, Vuri Ayu; Widyastuti

    2013-09-01

    Bullets are part of the defense equipment which the development is very rapid. There are a variety of forms but the bullet Lead is a metal that has always been used for applications projectiles. Lead core constituent materials are combined with antimony. In this research will be conducted by making the material for the core projectile with Tin Lead. The addition of Tin will increase the stiffness of Lead which is soft in nature. The Lead Tin composition variation was given in 10% weight of Sn. The manufacturing process using powder metallurgy using temperature and holding time variations of sintering at 100, 150, and 200°C for 1,2, and 3 hours. XRD samples will be tested to determine the form and phase morphology was observed using SEM-EDX. These results revealed that Pb-10%wtSn Composite which is sintered in temperature 200°C for 3 hours has the greatest density, 10.695 g/cm3 as well as the smallest porosity, 2.2%. In agreement with theoretical analysis that increasing higher temperature and longer holding time give decrease in porosity level due to activation energy which further promotes grain growth. Moreover, there is no intermetallic phase formation as well as no oxide found on composites.

  14. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    SciTech Connect

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.; Parten, Randy J.

    2015-12-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  15. One step HIP canning of powder metallurgy composites

    NASA Technical Reports Server (NTRS)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  16. LACBED characterization of dislocations in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Rodriguez, P. P.; Ibarra, A.; San Jean, J.; Morniro, J. P.; No, M. L.

    2003-10-01

    Powder metallurgy Cu-AI-Ni shape memory alloys show excellent thermomechanical properties, being the fracture behavior close to the one observed in single crystals. However, the microstructural mechanisms responsible of such behavior are still under study. In this paper we present the characterization of the dislocations present in these alloys by Large Angle Convergent Beam Electron Diffraction (LACBED) in two different stages of the elaboration process: after HIP compaction and after hot rolling.

  17. Powder-metallurgy superalloy strengthened by a secondary gamma phase.

    NASA Technical Reports Server (NTRS)

    Kotval, P. S.

    1971-01-01

    Description of experiments in which prealloyed powders of superalloy compositions were consolidated by extrusion after the strengthening by precipitation of a body-centered tetragonal gamma secondary Ni3 Ta phase. Thin foil electron microscopy showed that the mechanical properties of the resultant powder-metallurgy product were correlated with its microstructure. The product exhibited high strength at 1200 F without loss of ductility, after thermomechanical treatment and aging.

  18. Near-Net Shape Powder Metallurgy Rhenium Thruster

    NASA Technical Reports Server (NTRS)

    Leonhardt, Todd; Hamister, Mark; Carlen, Jan C.; Biaglow, James; Reed, Brian

    2001-01-01

    This paper describes the development of a method to produce a near-net shape (NNS) powder metallurgy (PM) rhenium combustion chamber of the size 445 N (100 lbf) used in a high performance liquid apogee engine. These engines are used in low earth Orbit and geostationary orbit for satellite positioning systems. The developments in near-net shape powder metallurgy rhenium combustion chambers reported in this paper will reduce manufacturing cost of the rhenium chambers by 25 percent, and reduce the manufacturing time by 30 to 40 percent. The quantity of rhenium metal powder used to produce a rhenium chamber is reduced by approximately 70 percent and the subsequent reduction in machining schedule and costs is nearly 50 percent.

  19. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  20. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  1. Modulus Dependence on Large Scale Porosity of Powder Metallurgy Steel

    NASA Astrophysics Data System (ADS)

    Allison, P. G.; Horstemeyer, M. F.; Brown, H. R.

    2012-07-01

    This article compares the existing theoretical expressions for the porosity dependence on elastic constants to experimental data for a commercially available material, FC-0205 powder metallurgy (PM) steel. The modulus of compression, tension, effective torsion, and ultrasound-based data at varying porosity levels are plotted graphically against the theoretical expressions. An equation by McAdam ( J. Iron Steel Inst. Lond., 1950, 168, p 346) was able to most accurately predict the experimental data with the adjustment of only one material constant.

  2. Microstructure and Aging of Powder-Metallurgy Al Alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  3. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  4. Prediction of Elastic Behavior of Sintered Metal Powder from the Ultrasonic Velocities of Green Compacts

    NASA Astrophysics Data System (ADS)

    Phani, K. K.; Sanyal, Dipayan

    2008-04-01

    A novel procedure for the estimation of the elastic properties of the sintered and compacted metal powders from the ultrasonic velocities of the green compact alone has been proposed in this article. The methodology has been validated for sintered iron powder and copper powder compacts as well as for consolidated silver powder compacts of various processing histories, powder sizes, and pore morphology. The predicted elastic moduli, including the derived modulus (Poisson’s ratio), are found to be in reasonably good agreement with the measured data reported in the literature. The proposed method can be developed as a potent tool for the quantitative nondestructive evaluation (QNDE) of powder metallurgy products.

  5. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    PubMed

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties. PMID:11388037

  6. Powder metallurgy titanium 6A1-4V plate

    SciTech Connect

    Geisendorfer, R.F.

    1980-01-01

    A powder metallurgical approach has been combined with controlled mill processing to produce a highly uniform plate material suitable for structural applications. Prealloyed ELI Titanium 6A1-4V powder produced by the rotating electrode process was consolidated into billet by hot isostatic pressing. The resulting billet of uniform composition and random texture was then hot cross-rolled to 3 cm thick plate. Following rolling, the plate was given a beta annealing heat treatment to maximize damage tolerance. The plate was characterized with respect to metallurgical structure, composition, texture, and room temperature mechanical properties. The results of the study show that a powder metallurgy titanium mill product possessing uniform macro- and microstructure is technically feasible and exhibits tensile and fatigue properties equivalent to those of conventionally produced ingot-source wrought plate.

  7. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  8. Device for preparing combinatorial libraries in powder metallurgy.

    PubMed

    Yang, Shoufeng; Evans, Julian R G

    2004-01-01

    This paper describes a powder-metering, -mixing, and -dispensing mechanism that can be used as a method for producing large numbers of samples for metallurgical evaluation or electrical or mechanical testing from multicomponent metal and cermet powder systems. It is designed to make use of the same commercial powders that are used in powder metallurgy and, therefore, to produce samples that are faithful to the microstructure of finished products. The particle assemblies produced by the device could be consolidated by die pressing, isostatic pressing, laser sintering, or direct melting. The powder metering valve provides both on/off and flow rate control of dry powders in open capillaries using acoustic vibration. The valve is simple and involves no relative movement, avoiding seizure with fine powders. An orchestra of such valves can be arranged on a building platform to prepare multicomponent combinatorial libraries. As with many combinatorial devices, identification and evaluation of sources of mixing error as a function of sample size is mandatory. Such an analysis is presented. PMID:15244416

  9. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  10. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  11. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  12. Influence of Sintering under Nitrogen Atmosphere on Microstructures of Powder Metallurgy Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    García, C.; Martin, F.; Blanco, Y.; de Tiedra, M. P.; Aparicio, M. L.

    2009-02-01

    Duplex stainless steels (SS) obtained through powder metallurgy (PM) from austenitic AISI 316L and ferritic AISI 430L powders were mixed in different amounts to obtain a biphasic structure with an austenite/ferrite ratio of 50/50, 65/35, and 85/15. Prepared powders were compacted at 750 MPa and sintered in N2-H2 (95 pct-5 pct) at 1250 °C for 1 hour. Some samples sintered in vacuum were taken as references. Optical metallography, X-ray diffraction, and scanning electron microscopy/energy dispersive analysis of X-rays were used for microstructural characterization. Powder metallurgy base materials, AISI 430L and 316L, showed a single lamellar constituent after sintering in nitrogen. A mixed constituent was identified in PM duplex SS sintered in nitrogen and in vacuum. However, coarse and fine lamellar constituents were only present in PM duplex SS sintered in nitrogen. The effects of annealing solution heat treatment (1150 °C) on microstructures were evaluated. Homogeneous structures were obtained for the PM base materials, while for PM duplex SS, annealing dissolved lamellar constituents but mixed constituent were still present.

  13. Ceramic Inclusions in Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.

    2001-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially in turbine disk applications. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that are inherent to the powder atomization process. These inclusions can have a potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they typically do not reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where known populations of ceramic particles, whose composition and morphology are designed to mimic the "natural" inclusions, are added to the precursor powder. Surface-connected inclusions have been found to have a particularly large detrimental effect on fatigue life; therefore, the quantity of ceramic "seeds" added is calculated to ensure that a minimum number will intersect the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface area was needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macroscopic slices from extrusions

  14. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  15. Mesoscale simulations of powder compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin

    2009-06-01

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.

  16. N18, powder metallurgy superalloy for disks: Development and applications

    SciTech Connect

    Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y. . Materials and Processes Dept.)

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.

  17. Phase Stability of a Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, P.; Telesman, Jack; Gang, Anita

    2006-01-01

    Advanced powder metallurgy superalloy disks in aerospace turbine engines now entering service can be exposed to temperatures approaching 700 C, higher than those previously encountered. They also have higher levels of refractory elements, which can increase mechanical properties at these temperatures but can also encourage phase instabilities during service. Microstructural changes including precipitation of topological close pack phase precipitation and coarsening of existing gamma' precipitates can be slow at these temperatures, yet potentially significant for anticipated disk service times exceeding 1,000 h. The ability to quantify and predict such potential phase instabilities and degradation of capabilities is needed to insure structural integrity and air worthiness of propulsion systems over the full life cycle. A prototypical advanced disk superalloy was subjected to high temperature exposures, and then evaluated. Microstructural changes and corresponding changes in mechanical properties were quantified. The results will be compared to predictions of microstructure modeling software.

  18. N18, Powder metallurgy superalloy for disks: Development and applications

    NASA Astrophysics Data System (ADS)

    Guedou, J. Y.; Lautridou, J. C.; Honnorat, Y.

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appro-priate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 °C for long-term applications and approximately 750 °C for short-term use because of micro-structural instability. Further improvements in creep and crack propagation properties, without signifi-cant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astroloy and is therefore an excellent alloy for modern turbine disk ap-plications.

  19. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  20. Method for forming biaxially textured articles by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  1. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Gabbitas, Brian

    2015-10-01

    A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

  2. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.

    PubMed

    Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P

    2008-09-01

    One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications. PMID:18556060

  3. Thixoforming of Stellite Powder Compacts

    SciTech Connect

    Hogg, S. C.; Atkinson, H. V.; Kapranos, P.

    2007-04-07

    Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperature to be in the range 1340 deg. C-1350 deg. C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.

  4. Thixoforming of Stellite Powder Compacts

    NASA Astrophysics Data System (ADS)

    Hogg, S. C.; Atkinson, H. V.; Kapranos, P.

    2007-04-01

    Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperature to be in the range 1340°C-1350°C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.

  5. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on NASA 2B-11 alloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks, and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11.

  6. Mechanical cycling effects at Fe-Mn-Si-Cr-Ni SMAs obtained by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Comčneci, R. I.; Özkal, B.; Bujoreanu, L. G.

    Specimens from Fe-Mn-Si-Cr-Ni SMA, obtained by powder metallurgy and compacted through hot rolling, were subjected to tensile loading-unloading cycles. The pseudoelastic parameters were determined based on recorded stress-strain curves, and their variation tendency with increasing the number of mechanical cycles was discussed. The gauges of tensile specimens were cut after mechanical cycling and were subjected to structural and dilatometric analysis. The structure was analyzed by XRD and SEM, aiming to reveal mechanical cycling effects. The thermomechanical response on heating, of mechanically cycled specimens, was recorded by dilatometry and revealed a tendency to enhance thermal expansion as an effect of increasing the number of cycles. The microstructural changes, induced by mechanical cycling, consisted in the stress induced formation of α' martensite.

  7. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Cardenas, A.; Pineda, Y.; Sarmiento Santos, A.; Vera, E.

    2016-02-01

    Composite samples of 316 stainless steel and SiC were produced by powder metallurgy. Starting materials were mixed in different proportions and compacted to 700MPa. Sintering stage was performed by abnormal glow discharge plasma with direct current in an inert atmosphere of argon. The process was conducted at a temperature of 1200°C±5°C with a heating rate of 100°C/min. This work shows, the effectiveness of plasma sintering process to generate the first contacts between particles and to reduce vacancies. This fact is confirmed by comparing green and sintered density of the material. The results of porosity show a decrease after plasma sintering. Wear tests showed the wear mechanisms, noting that at higher SiC contents, the wear resistance decreases due to poor matrix-reinforcement interaction and by the porosity presence which causes matrix-reinforcement sliding.

  8. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  9. Iron's Role in Aluminum: A Powder Metallurgy and Sustainability Approach

    NASA Astrophysics Data System (ADS)

    Saller, Brandon Dale

    cryomilling. With respect to the powder, a differential scanning calorimetry and activation energy analysis elucidated the formation and phase transformation temperatures of the relevant intermetallic phases, and the microstructural factors that influenced them. With an understanding of the fundamental science behind the intermetallic formation in the Al-Fe system, the composition of helium atomized Al-2at.% Fe was chosen combined with high-pressure torsion processing to yield a bulk alloy that demonstrated an ultimate tensile strength of 488 MPa. This strength was achieved via a combination of two mechanisms: grain refinement (Hall-Petch) and dislocation-Al6Fe interactions (Orowan strengthening), with notable thermal stability present up until 450°C. Finally, the potential for Al-Fe as a sustainable alloy was studied and a link established between current environmental literature and metallurgy literature on the potential for incorporation of Fe into Al to create a structural alloy.

  10. Compaction and Sintering of Mo Powders

    SciTech Connect

    Nunn, Stephen D; Kiggans, Jim; Bryan, Chris

    2013-01-01

    To support the development of Mo-99 production by NorthStar Medical Technologies, LLC, Mo metal powders were evaluated for compaction and sintering characteristics as they relate to Mo-100 accelerator target disk fabrication. Powders having a natural isotope distribution and enriched Mo-100 powder were examined. Various powder characteristics are shown to have an effect on both the compaction and sintering behavior. Natural Mo powders could be cold pressed directly to >90% density. All of the powders, including the Mo-100 samples, could be sintered after cold pressing to >90% density. As an example, a compacted Mo-100 disk reached 89.7% density (9.52 g/cm3) after sintering at 1000 C for 1 hr. in flowing Ar/4%H2. Higher sintering temperatures were required for other powder samples. The relationships between processing conditions and the resulting densities of consolidated Mo disks will be presented.

  11. Investigation of the Environmental Durability of a Powder Metallurgy Material

    NASA Technical Reports Server (NTRS)

    Ward, LaNita D.

    2004-01-01

    PM304 is a NASA-developed composite powder metallurgy material that is being developed for high temperature applications such as bushings in high temperature industrial furnace conveyor systems. My goal this summer was to analyze and evaluate the effects that heat exposure had on the PM304 material at 500 C and 650 C. The material is composed of Ni-Cr, Ag, Cr2O3, and eutectic BaF2-CaF2. PM304 is designed to eliminate the need for oil based lubricants in high temperature applications, while reducing friction and wear. However, further investigation was needed to thoroughly examine the properties of PM304. The effects of heat exposure on PM304 bushings were investigated. This investigation was necessary due to the high temperatures that the material would be exposed to in a typical application. Each bushing was cut into eight sections. The specimens were heated to 500 C or 650 C for time intervals from 1 hr to 5,000 hrs. Control specimens were kept at room temperature. Weight and thickness measurements were taken before and after the bushing sections were exposed to heat. Then the heat treated specimens were mounted and polished side by side with the control specimens. This enabled optical examination of the material's microstructure using a metallograph. The specimens were also examined with a scanning electron microscope (SEM). The microstructures were compared to observe the effects of the heat exposure. Chemical analysis was done to investigate the interactions between Ni-Cr and BaF2-CaF2 and between Cr2O3 and BaF2-CaF2 at high temperature. To observe this, the two compounds that were being analyzed were mixed in a crucible in varied weight percentages and heated to 1100 C in a furnace for approximately two hours. Then the product was allowed to cool and was then analyzed by X-ray diffraction. Interpretation of the results is in progress.

  12. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  13. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to

  14. Method of making tungsten powder compacts

    SciTech Connect

    Peralta, R.E.

    1991-06-25

    This patent describes a process for forming a compact. It comprises essentially of pure tungsten metal powder by the steps of contacting a tungsten metal powder with and aqueous acid mixture at a sufficient concentration and for a sufficient period of time of etch the surface of the powder, the acid comprises a mixture of hydrofluoric acid and hydrochloric acid, and isostaticly pressuring the powder at an ambient temperature at a pressure of from about 18,000 to about 20,000 psi. for a sufficient period of time to form a compact.

  15. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment

  16. Interfacial reactions and wetting in Al-Mg sintered by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Faisal, Heny; Darminto, Triwikantoro, Zainuri, M.

    2016-04-01

    Was conducted to analyze the effect of temperature variation on the bonding interface sintered composite Al-Mg and analyze the effect of variations of the density and hardness sinter. Research carried out by the base material powders of Al, Mg powder and solvent n-butanol. The method used in this study is a powder metallurgy, with a composition of 60% volume fraction of Al - 40% Mg. Al-Mg mixing with n-butanol for 1 hour at 500 rpm. Then the emphasis (cold comression) with a size of 1.4 cm in diameter dies and height of 2.8 cm, is pressed with a force of 20 MPa and held for 15 minutes. After the sample into pellets, then sintered at various temperatures 300 °C, 350 °C, 400 °C and 450 °C. Characterization is done by using the testing green density, sintered density, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), vickers microhardness, and press test. XRD data analysis done by using X'Pert High Score Plus (HSP) to determine whether there is a new phase is formed. Test results show that the sintered density increasing sintering temperature, the resulting density is also increasing (shrinkage). However, at a temperature of 450 °C decreased (swelling). With the increased sinter density, interfacial bonding getting Kuta and more compact so that its hardness is also increased. From the test results of SEM / EDX, there Mg into Al in the border area. At temperatures of 300 °C, 350 °C, 400 °C, the phase formed is Al, Mg and MgO. While phase is formed at a temperature of 450 °C is aluminum magnesium (Al3Mg2), Aluminum Magnesium Zinc (AlMg2Zn).

  17. Dynamic compaction of tungsten carbide powder.

    SciTech Connect

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  18. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    NASA Technical Reports Server (NTRS)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  19. Powder metallurgy approaches to high temperature components for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1974-01-01

    Research is reported for the tensile strength, ductility, and heat performance characterisitics of powder metallurgy (p/m) superalloys. Oxide dispersion strengthened alloys were also evaluated for their strength during thermal processing. The mechanical attributes evident in both p/m supperalloys and dispersion strengthened alloys are discussed in terms of research into their possible combination.

  20. Spray forming and mechanical properties of a new type powder metallurgy superalloy

    NASA Astrophysics Data System (ADS)

    Jia, Chong-Lin; Ge, Chang-Chun; Xia, Min; Gu, Tian-Fu

    2015-11-01

    The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufacturing has been fabricated using spray forming technology. The metallurgical quality of the deposited billet was analyzed in terms of density, texture, and grain size. Comparative research was done on the microstructure and mechanical properties between the flat disk preform prepared with hot isostatic pressing (HIP) and the same alloy forgings prepared with HIP followed by isothermal forging (IF). The results show that the density of the spray-formed and nitrogen-atomized deposit billet is above 99% of the theoretical density, indicating a compact structure. The grains are uniform and fine. The billet has weak texture with a random distribution in the spray deposition direction and perpendicular to the direction of deposition. A part of atomizing nitrogen exists in the preform in the form of carbonitride. Nitrogen-induced microporosity causes the density reduction of the preform. Compared with the process of HIP+IF, the superalloy FGH4095M after HIP has better mechanical properties at both room temperature and high temperature. The sizes of the γ‧ phase are finer in microstructure of the preform after HIP in comparison with the forgings after HIP+IF. This work shows that SF+HIP is a viable processing route for FGH4095M as a turbine-disk material. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  1. Biaxially textured articles formed by power metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The results of the Materials for Advanced Turbine Engines (MATE) program initiated by NASA are presented. Mechanical properties comparisons are made for superalloy parts produced by as-HIP powder consolidation and by forging of HIP consolidated billets. The effect of various defects on the mechanical properties of powder parts are shown.

  3. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.

    PubMed

    Zheng, Y F; Gu, X N; Xi, Y L; Chai, D L

    2010-05-01

    Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge the addition of Ca content without the formation of Mg(2)Ca. The microstructures, mechanical properties and cytotoxicities of Mg/Ca composite samples were investigated. The corrosion of Mg/Ca composites in Dulbecco's modified Eagle's medium (DMEM) for various immersion intervals was studied by electrochemical impedance spectroscopy measurements and environmental scanning electron microscope, with the concentrations of released Mg and Ca ions in DMEM for various immersion time intervals being measured. It was shown that the main constitutional phases were Mg and Ca, which were uniformly distributed in the Mg matrix. The ultimate tensile strength (UTS) and elongation of experimental composites decreased with increasing Ca content, and the UTS of Mg/1Ca composite was comparable with that of as-extruded Mg-1Ca alloy. The corrosion potential increased with increasing Ca content, whereas the current density and the impedance decreased. It was found that the protective surface film formed quickly at the initial immersion stage. With increasing immersion time, the surface film became compact, and the corrosion rate of Mg/Ca composites slowed down. The surface film consisted mainly of CaCO(3), MgCO(3)x3H(2)O, HA and Mg(OH)(2) after 72 h immersion in DMEM. Mg/1Ca and Mg/5Ca composite extracts had no significant toxicity (p>0.05) to L-929 cells, whereas Mg/10Ca composite extract induced approximately 40% reduced cell viability. PMID:19815098

  4. Investigation of machinability of iron based metal matrix composite (MMC) powder metallurgy parts

    NASA Astrophysics Data System (ADS)

    Szalay, Tibor; Czampa, Miklós; Markos, Sándor; Farkas, Balázs

    2012-09-01

    One of the advantages of powder metallurgy technology is that we may produce the final geometry of the required part saving considerable time and cost. However there are several applications that require parts need additional machining for example when the product contains threads, cross bore or slots. In these cases cutting of the hard and porous material may causes difficulties in manufacturing. The aim of the introduced research is the experimental investigation of the machinability of the iron based MMC powder metallurgy parts, determining the favourable composition of the powder and advantageous process parameters regarding the properties of the machinability. The research try to answer to the challenge of the poorly defined expression: machinability, and after defining the features and methods of the evaluation we develop advises for the proper technology parameters.

  5. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    PubMed

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. PMID:25792409

  6. Method for agglomerating powdered coal by compaction

    SciTech Connect

    Byrne, L.D.; Byrne, B.J.

    1987-07-21

    A method is described for preparing a powdered carboniferous composition and forming this composition into solid product shapes suitable for handling, transporting and burning, comprising the steps of: (a) mixing (1) powdered carboniferous material with (2) an amount of surfactant effective for wetting the powdered carboniferous material with water but for which no appreciable binding occurs between the surfactant and carboniferous material upon compaction and (3) an amount of water effective to bring the moisture content of the resultant mixture within the range of about 32 to 35% by weight; (b) working the mixture to obtain a homogeneous composition comprising a uniform dispersion of the water, surfactant, and powdered carboniferous material; and (c) compacting the resultant homogeneous composition into the desired solid product shape by extruding the homogeneous composition through a ring pelletizing extruder.

  7. High field performance of superconducting magnets using powder metallurgy processed Cu-Nb-Sn and Nb-Al

    SciTech Connect

    Zaleski, A.J.; Foner, S.

    1984-06-01

    Small superconducting magnets were fabricated with powder metallurgy processed Nb-Al wire and with powder metallurgy processed multistrand Cu-Nb--Sn wire with 19 tin cores. Tests in a background field of up to 15 T showed that short sample characteristics were achieved for three coils. Upper limits of resistivity were established for both powder metallurgy processed wires. The reacted wires in the magnets gave upper limits of resistivity at 10 T of less than 1.4 x 10/sup -14/ ..cap omega.. cm for the Nb/sub 3/Sn wire, and less than 9 x 10/sup -13/ ..cap omega.. cm for the Nb-Al wire.

  8. Porous mandrels provide uniform deformation in hydrostatic powder metallurgy

    NASA Technical Reports Server (NTRS)

    Gripshover, P. J.; Hanes, H. D.

    1967-01-01

    Porous copper mandrels prevent uneven deformation of beryllium machining blanks. The beryllium powder is arranged around these mandrels and hot isostatically pressed to form the blanks. The mandrels are then removed by leaching.

  9. A Nonvolume Preserving Plasticity Theory with Applications to Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    A plasticity theory has been developed to predict the mechanical response of powder metals during hot isostatic pressing. The theory parameters were obtained through an experimental program consisting of hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. A nonlinear finite element code was modified to include the theory and the results of themodified code compared favorably to the results from a verification experiment.

  10. Making Self-Lubricating Parts By Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1990-01-01

    Compositions and parameters of powder-metallurgical fabrication processes determined for new class of low-friction, low-wear, self-lubricating materials. Used in oxidizing or reducing atmospheres in bearings and seals, at temperatures from below 25 degrees C to as high as 900 degrees C. Thick parts made with minimal waste.

  11. Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.

    PubMed

    Sha, Junwei; Gao, Caitian; Lee, Seoung-Ki; Li, Yilun; Zhao, Naiqin; Tour, James M

    2016-01-26

    A simple and scalable method which combines traditional powder metallurgy and chemical vapor deposition is developed for the synthesis of mesoporous free-standing 3D graphene foams. The powder metallurgy templates for 3D graphene foams (PMT-GFs) consist of particle-like carbon shells which are connected by multilayered graphene that shows high specific surface area (1080 m(2) g(-1)), good crystallization, good electrical conductivity (13.8 S cm(-1)), and a mechanically robust structure. The PMT-GFs did not break under direct flushing with DI water, and they were able to recover after being compressed. These properties indicate promising applications of PMT-GFs for fields requiring 3D carbon frameworks such as in energy-based electrodes and mechanical dampening. PMID:26678869

  12. Hydrogen halide cleaning of powder metallurgy nickel-20 chromium-3 thoria.

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    The Cr2O3 content of powder metallurgy nickel-20 chromium-3 thoria was reduced with atmospheres consisting of hydrogen plus hydrogen chloride (HCl) or hydrogen bromide (HBr). The nonthoria oxygen content or 'oxygen excess' was reduced from an initial amount of greater than 50,000 ppm to less than 100 ppm. Low temperatures were effective, but lowest oxygen levels were achieved with the highest cleaning temperature of 1200 C.

  13. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  14. Relationship between fractional porosity and tensile strength for high-porosity sintered ferrous powder compacts

    SciTech Connect

    Baron, R.P.; Wawner, F.E.; Wert, J.A.

    1998-07-03

    The current study examines the mechanical properties of pressed and sintered ferrous powder metallurgy compacts with low relative densities, between 0.6 and 0.8. Three different powder particle compositions were investigated: eutectoid steel, stainless steel, and stainless tool steel compacts. To obtain information concerning the tensile properties of these low-density compacts, simple tensile tests were performed. In addition, Vickers microhardness tests were performed on metallographic sections of the tensile bars. The results from these tests are used to compare the measured relative strength values with estimates generated by previously published models. Also, the fracture surfaces of selected compacts were examined in the scanning electron microscope to obtain information concerning the fracture process.

  15. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  16. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  17. Advances in powder metallurgy - 1991. Vol. 6 - Aerospace, refractory and advanced materials; Proceedings of the Powder Metallurgy Conference and Exhibition, Chicago, IL, June 9-12, 1991

    SciTech Connect

    Pease, L.F. III; Sansoucy, R.J.

    1991-01-01

    Various papers on aerospace, refractory, and advanced materials are presented. Individual topics addressed include: nonequilibrium processing of powder alloys for aerospace applications, chemical conditioning of rapidly solidified aluminum alloy particulate, fabrication of rapidly solidified high temperature aluminum alloys, fatigue and fracture of an advanced PM-aluminum alloy, thermal and mechanical properties of extruded 7075-Al P/M alloys, reactive sintering and reactive hot isostatic pressing of iron aluminides, P/M processing and applications of Fe3Al-based intermetallics, properties of plasma atomized NiAl powders, processing of continuous fiber reinforced NiAl matrix composite. Also discussed are: powder forging process on an alumimum alloy, P/M magnesium particle composites, P/M short-fiber-reinforced magnesium, mechanical properties of a TiAl6V4 alloy processed by powder metallurgy, porous core/Be Ti-6-4 development for aerospace structures, consolidation and plasticity of Bi-Sr-Ca-Cu-O superconductors, development of a new W-Ni-Mn heavy alloy.

  18. Powder metallurgy processing of high strength turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  19. Processing condition for the development of cube texture in Ni and Ni alloy tapes fabricated by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Ji, Bong Ki; Lee, Dong-Wook; Kim, Min-Woo; Jun, Byung-Hyuk; Park, Pyeong Yeal; Jung, Kyu-Dong; Kim, Chan-Joong

    2004-10-01

    Bi-axially textured Ni, Ni-W (1, 3 and 5 at.%) and Ni-Cu alloy tapes for YBCO coated conductors were fabricated by powder metallurgy process including powder compaction, cold isostatic pressing, cold rolling and recrystallization heat treatment. The rod-like Ni and Ni alloy compacts were sintered at 1100 °C for 6 h in 96% Ar-4% H 2 atmosphere. The sintered Ni and Ni-W rods were successfully cold-rolled into thin tapes of 80-100 μm thickness with 5% reduction at each path, but the Ni-Cu alloy rods with Cu content less than 20 at.% were made into tapes. The Ni and Ni alloy tapes were heat-treated at 800-1200 °C for the development of cube texture. The good (2 0 0) texture was obtained for both Ni and Ni-W alloy tapes, while it was obtained only for the Ni-Cu tapes with low Cu contents. The W and Cu addition to Ni improved the mechanical properties by solid solution hardening. Critical current density ( Jc) of YBCO film deposited on the CeO 2/YSZ/CeO 2(CYC)/Ni template was 0.25 MA/cm 2 at 77 K and self-field.

  20. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  1. Powder and compaction characteristics of pregelatinized starches.

    PubMed

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders. PMID:22822539

  2. Fabrication and characterization of americium, neptunium and curium bearing MOX fuels obtained by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Lebreton, Florent; Prieur, Damien; Jankowiak, Aurélien; Tribet, Magaly; Leorier, Caroline; Delahaye, Thibaud; Donnet, Louis; Dehaudt, Philippe

    2012-01-01

    MOX fuel pellets containing up to 1.4 wt% of Minor Actinides (MA), i.e. Am, Np and Cm, were fabricated to demonstrate the technical feasibility of powder metallurgy process involving, pelletizing and sintering in controlled atmosphere. The compounds were then characterized using XRD, SEM and EDX/EPMA. Dense pellets were obtained which closed porosity mean size is equal to 7 μm. The results indicate the formation of (U, Pu)O 2 solid solution. However, microstructure contains some isolated UO 2 grains. The distribution of Am and Cm appears to be homogeneous whereas Np was found to be clustered at some locations.

  3. Dose and Dose Risk Caused by Natural Phenomena - Proposed Powder Metallurgy Core Manufacturing Facility

    SciTech Connect

    Holmes, W.G.

    2001-08-16

    The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.

  4. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  5. Porosity effect on the electrical conductivity of sintered powder compacts

    NASA Astrophysics Data System (ADS)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.

    2008-08-01

    A new equation for calculating the electrical conductivity of sintered powder compacts is proposed. In this equation, the effective resistivity of porous compacts is a function of the fully dense material conductivity, the porosity of the compact and the tap porosity of the starting powder. The new equation is applicable to powder sintered compacts from zero porosity to tap porosity. A connection between this equation and the percolation conduction theory is stated. The proposed equation has been experimentally validated with sintered compacts of six different metallic powders. Results confirm very good agreement with theoretical predictions.

  6. Electrochemical study of Aluminum-Fly Ash composites obtained by powder metallurgy

    SciTech Connect

    Marin, E.; Lekka, M.; Andreatta, F.; Fedrizzi, L.; Itskos, G.; Koukouzas, N.

    2012-07-15

    In this paper, two different ASTM C 618 Class C fly ashes (FA) were used for the production of aluminum metal matrix composites (MMCs) using powder metallurgy (PM) technology. Calcareous FAs were sampled from the electrostatic precipitators of two different lignite-fired power stations: from Megalopolis, Southern Greece (MFA) and from Kardia, Northen Greece (KFA), under maximum electricity load. FAs were milled in order to reduce the mean particle diameter and Aluminum-FA composites containing 10% and 20% of FA were then prepared and compacted. The green products were sintered for 2 h at 600 Degree-Sign C. Sintered Al-FA MMCs showed increased hardness and wear resistance suggesting their possible use in industrial applications for example in covers, casings, brake rotors or engine blocks. As most possible industrial applications of MMCs not only require wear resistance, but also corrosion resistance in different mild aggressive medias, this paper aims to study the electrochemical behavior of FA MMCs in order to evaluate their corrosion resistance. The morphology and chemical composition of the phases in the Aluminum-FA composite samples were investigated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Moreover, topographic and Volta potential maps were acquired by Scanning Kelvin Probe Force Microscopy (SKP-FM). Volta potential maps provide information about the electrochemical behavior of the different phases in absence of electrolyte. The electrochemical behavior was investigated by Open Circuit Potential measurements and potentiodynamic polarization, while the corrosion mechanisms were studied by SEM observations after different times of immersion in a mild corrosive medium. In all cases it could be stated that the addition of the FA particles into the Al matrix might cause an increase of the hardness and mechanical properties of the pure aluminum but deteriorates the corrosion resistance. The degradation phenomena

  7. The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Trinh Pham, Van; Thang Bui, Hung; Tran, Bao Trung; Nguyen, Van Tu; Quang Le, Dinh; Tinh Than, Xuan; Chuc Nguyen, Van; Phuong Doan, Dinh; Phan, Ngoc Minh

    2011-03-01

    Metal matrix nanocomposites have become popular in industrial applications. Carbon nanotubes (CNTs), since theirs appearance, with their unique properties such as exceptionally small diameters and high Young's modulus, tensile strength and high chemical stability, are considered to be an attractive reinforcement material for lightweight and high-strength metallic matrix composites. The powder metallurgy method allows nanocomposite materials, notably metal–ceramic composites, to be produced by sintering a mixture of powders. In this study, we have utilized the powder metallurgy method to fabricate a Cu/CNT nanocomposite. Sintering is the important process in this method; it is the process whereby powder compacts are heated so that adjacent particles fuse together. The aim of this paper is to investigate the effect of sintering temperature on the mechanical properties of the Cu/CNT nanocomposite. The sintering temperature was in the range of 850–950 °C for 2 h. A correlation between the microstructure and mechanical properties, including the microstructure, density, hardness and compressive strength, is established. In this process, the density, and the physical and mechanical properties of the nanocomposites, can be changed, depending on the rate of sintering as well as the sintering temperature.

  8. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.; Dreshfield, R. L.

    1980-01-01

    Hot isostatically pressed powder metallurgy Astroloy was obtained which contained 1.4 percent fine porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep fatigue, tension, and stress-rupture and the results compared with previous data on sound Astroloy. The pores averaged about 2 micrometers diameter and 20 micrometers spacing. They did influence fatigue crack initiation and produced a more intergranular mode of propagation. However, fatigue life was not drastically reduced. A large 25 micrometers pore in one specimen resulting from a hollow particle did not reduce life by 60 percent. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was little changed reflecting the small reduction in sigma sub u/E for the porous material.

  9. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  10. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Franciska P., L.; Erryani, Aprilia; Amal, M. Ikhlasul; Sitorus, Lyandra S.; Kartika, Ika

    2016-04-01

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  11. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    PubMed

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. PMID:25175241

  12. Comparison of the creep properties of cast and powder metallurgy-extruded binary NiAl

    SciTech Connect

    Raj, S.V.; Garg, A.; Bieler, T.R.

    1997-12-31

    The current emphasis in developing NiAl-based alloys for use in gas-turbine aircraft engines requires a fundamental understanding of the creep mechanisms dominant in these materials. Here, a comparison of published creep data on binary NiAl showed that there is a discrepancy in the reported magnitudes of the stress exponents, n, which usually vary between about 4.5 and 6.5. In general, a close examination of the data suggested that n {approx} 4.5 for cast materials and 6.5 for powder-metallurgy extruded NiAl. Constant load compression creep tests were conducted on a cast and extruded binary NiAl between 800 and 1,200 K over a wide range of initial applied stresses varying between 4.0 and 200 MPa. The microstructures were characterized by transmission electron microscopy. The observed variations in the creep behavior of the extruded cast and powder-metallurgy NiAl appeared to be due to a grain size effect. Despite similarities in the values of n, no significant substructure was observed in most of the grains in the cast and extruded specimens at 1,100 and 1,200 K in contrast to the PM-extruded alloy, which revealed a wide range of substructural features in the power-law creep region. However, extensive subgrain formation and dislocations were widely observed at lower temperatures and higher stresses in the cast and extruded material.

  13. Development of an extra-high strength powder metallurgy nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Kent, W. B.

    1977-01-01

    A program was conducted to optimize the composition of NASA IIb-11, an alloy originally developed as a wrought material, for thermal stability and to determine the feasibility for producing the alloy using powder metallurgy techniques. Seven compositions were melted and atomized, hot isostatically pressed, cross rolled to disks and heat treated. Tensile and stress rupture properties from room temperature to 870 C (1600 F) were determined in addition to thermal stability characteristics. Processing variables included hot isostatic pressing parameters and handling, cross rolling procedures and heat treatment cycles. NASA IIb-11E displayed the best combination of overall properties for service as a 760 C (1400 F) disk material. Its composition is 0.06 C, 8.5 Cr, 9.0 Co, 2.0 Mo, 7.1 W, 6.6 Ta, 4.5 Al, 0.75 Ti, 0.5 V, 0.7 Hf, 0.01 B, 0.05 Zr and balance Ni. While the alloy exhibits the highest 760 C (1400 F) rupture strength reported for any powder metallurgy disk alloy to date, additional studies to further evaluate the effects of heat treatment may be required. The alloy is not susceptible to topologically close-packed phase formation during thermal exposure at 870 C (1600 F) for 1,500 hours, but its mechanical property levels are lowered due to grain boundary carbide formation.

  14. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    NASA Astrophysics Data System (ADS)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  15. The combination of precipitation and dispersion hardening in powder metallurgy produced Cu-Ti-Si alloy

    SciTech Connect

    Bozic, D.; Dimcic, O.; Dimcic, B. Cvijovic, I.; Rajkovic, V.

    2008-08-15

    Microstructure and microhardness properties of precipitation hardened Cu-Ti and precipitation/dispersion hardened Cu-Ti-Si alloys have been analyzed. Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} (wt.%) atomized powders were characterized before and after consolidation by HIP (Hot Isostatic Pressing). Rapidly solidified powders and HIP-ed compacts were subsequently subjected to thermal treatment in hydrogen at temperatures between 300 and 600 deg. C. Compared to Cu-Ti powder particles and compacts, obtained by the same procedure, the strengthening effect in Cu-1.2Ti-3TiSi{sub 2} powder particles and compacts was much greater. The binary and ternary powders both reveal properties superior to those of Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} compacts. Microhardness analysis as a function of the aging temperature of Cu-1.2Ti-3TiSi{sub 2} alloy shows an interaction between precipitation and dispersion hardening which offers possibilities for an application at elevated temperatures.

  16. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  17. Study of Metallic Carbide (MC) in a Ni-Co-Cr-Based Powder Metallurgy Superalloy

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Bin; Liu, Guo-Quan; Hu, Ben-Fu; Hu, Peng-Hui; Zhang, Yi-Wen

    2014-01-01

    The evolution of carbides in a Ni-Cr-Co-based powder metallurgy (PM) superalloy in the as-atomized, as-atomized + annealed, hot isostatic pressed (HIPed) and HIPed + annealed conditions were systematically analyzed to understand the formation of blocky metallic carbide (MC) along the previous particle boundary (PPB). The results show that the carbides both on the powder surfaces and in the bulk of the powder particles are mainly fan-shaped MC whose decomposition temperatures are in the range of 1473 K to 1493 K (1200 °C to 1220 °C). PPB carbides in the HIPed alloy are mainly block-shaped MC, and the fan-shaped MC densely distributed in the area that have not been consumed by the recrystallized grains. The formation mechanism of PPB carbides can be described as follows: When the powders are HIPed at 1453 K (1180 °C), the fan-shaped carbides are decomposed at the migrating boundaries of recrystallized grains, and the preferential precipitation of block-shaped MC at PPB is promoted by the carbide-forming elements released by the fan-shaped carbides. When the HIPed alloy is annealed at 1453 K (1180 °C), the area fraction of PPB carbides increases with an increase in annealing time but that of the fan-shaped carbides exhibits opposite behavior. This proves the above formation mechanism of PPB carbides.

  18. Development of Cu-E-Glass Fiber Composites by Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Bhuyan, Pallabi; Singh, Harspreet; Kumar, Lailesh; Sharma, Nidhi; Panda, Deepankar; Verma, Deepanshu; NasmulAlam, Syed

    2016-02-01

    Cu-E glass fiber composites were developed with different vol. % of E-glass fiber (10, 20, 30 and 40 vol. %) by powder metallurgy route. Both as-received Cu and nanostructured Cu developed by milling as-received Cu powder for 20 h were used to develop various Cu-E-glass fiber composites. The effect of using as-received Cu powder and nanostructured Cu powder on the properties of the various Cu-E-glass fiber composites was analysed. The samples were sintered at 900oC for 1 h in inert atmosphere. The results show good bonding between the matrix and the reinforcement and there is homogeneous distribution of the reinforcement in the matrix.. The hardness of the Cu-E-glass fiber composites was found to increase from 0.8GPa to 2.7GPa with increase in vol. % of the glass fiber in case of unmilled and from 1.2GPa to 2.9GPa for the milled Cu-E-glass fiber composites. The as-milled Cu-E- glass fiber composites shows better densification and sinterability compared to the unmilled CuE-glass fiber composites

  19. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  20. Corrosion Resistance of Powder Metallurgy Processed TiC/316L Composites with Mo Additions

    NASA Astrophysics Data System (ADS)

    Lin, Shaojiang; Xiong, Weihao

    2015-06-01

    To find out the effects of Mo addition on corrosion resistance of TiC/316L stainless steel composites, TiC/316L composites with addition of different contents of Mo were prepared by powder metallurgy. The corrosion resistance of these composites was evaluated by the immersion tests and polarization curves experiments. Results indicated that Mo addition decreased the corrosion rates of TiC/316L composites in H2SO4 solution in the case of Mo content below 2% whereas it displayed an opposite effect when Mo content was above that value. It was found that with an increase in the Mo content, the pitting corrosion resistance increased monotonically for TiC/316L composites in NaCl solution.

  1. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  2. Abnormal magnetic behaviour of powder metallurgy austenitic stainless steels sintered in nitrogen

    NASA Astrophysics Data System (ADS)

    García, C.; Martin, F.; Blanco, Y.

    2009-10-01

    The magnetic response of AISI 304L and AISI 316L obtained through powder metallurgy and sintered in nitrogen were studied. AISI 304L sintered in nitrogen showed a ferromagnetic behaviour in as-sintered state while AISI 316L was paramagnetic. After solution annealing both were paramagnetic. Magnetic behaviour was analysed by using a vibrating sample magnetometer, a magnetic ferritscope and magnetic etching. A microstructural characterization was performed by means of optical metallography, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDS). Some samples when needed were submitted to aged heat treatments at 675 and 875 °C for 90 min, 4, 6, 8 or 48 h. The main microstructural feature found was the presence of a lamellar constituent formed by nitride precipitates and an interlamellar matrix of austenite and/or ferrite. The abnormal magnetic response was explained based on this.

  3. Microstructure and mechanical properties of P/M (powder metallurgy) Fe sub 3 Al alloys

    SciTech Connect

    Knibloe, J.R.; Wright, R.N. ); Sikka, V.K. )

    1990-01-01

    Alloys based on Fe{sub 3}Al have an equilibrium DO{sub 3} structure at low temperatures and transform to a B2 structure above about 550{degree}C. The influence of different rates of quenching from the B2 region to room temperature on the microstructure and mechanical properties of powder metallurgy (P/M) alloys with two different Cr contents has been examined. By optimizing the processing to maximize the amount of B2 order, room temperature ductility approaching 20% has been achieved although the fracture mode is primarily brittle cleavage. The refined microstructure resulting from P/M processing contributes to enhanced yield strength compared to ingot processed materials with similar ductility. Increasing the Cr content from 2 to 5% has little effect on mechanical properties. 8 refs., 12 figs., 2 tabs.

  4. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  5. Numerical simulation of the shock compaction of copper powder

    SciTech Connect

    Benson, D.J. ); Nellis, W.J. )

    1994-07-10

    The shock compaction of an aggregate of randomly distributed copper particles with a nonuniform size distribution is simulated using an Eulerian hydrocode. A shock Hugoniot for a copper powder is calculated from a series of shock compaction simulations and compared to experimental results. The powder particles are modeled as rods in two dimensions. The particle size distribution is generated from a representative powder size distribution via a simple Monte-Carlo method and is initially numerically packed to a dense powder compact using the pseudo-gravity method. [copyright] 1994 American Institute of Physics

  6. Effect of porosity on the thermal conductivity of copper processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Vincent, C.; Silvain, J. F.; Heintz, J. M.; Chandra, N.

    2012-03-01

    Powder metallurgy is a preferred method of processing copper-carbon composites due to the non-wetting nature of these materials. Porosities are inherently introduced in these material systems, and adversely affect the thermal conductivity of the composite material, among other factors including interfaces and reinforcement distribution. In this work, we focus on the matrix material of pure copper and systematically analyzed the effect of volume fraction of porosities on the thermal conductivity. Spherical and dendritic copper powder materials were processed and it was found that the surface chemistry and morphology of particles affected the thermal conductivity apart from the porosity values. In order to study the effect of porosities alone, dentritic powder was used in the study. The thermal conductivity vs. porosity behavior showed three distinct domains. In all the domains the thermal conductivity decreases as volume fraction of porosities increases; however, in domain II, the decrease was much steeper than the other two. We are able to explain the variation based on the presence of interconnected and open pores in domain III to closed pores in domain I, and the transition occurring in domain II. None of the existing models capture the overall behavior. However, if we specifically account for the variation of number of grain boundaries with sintering, then the modified EMT model can match the experimental data.

  7. Compactible powders of omega-3 and β-cyclodextrin.

    PubMed

    Vestland, Tina Lien; Jacobsen, Øyvind; Sande, Sverre Arne; Myrset, Astrid Hilde; Klaveness, Jo

    2015-10-15

    Omega-3 fatty acids are used in both nutraceuticals and pharmaceuticals in the form of triglycerides and ethyl esters. Administration forms available for omega-3 include bulk oil, soft gel capsules, emulsions and some powder compositions. Cyclodextrins are substances well known for their ability to encapsulate lipophilic molecules. In the present work, powders loaded with omega-3 oil, ranging from 10 to 40% (w/w), have been prepared by vacuum drying, freeze drying or spray granulation of aqueous mixtures of omega-3 oil and β-cyclodextrin. The powders were found to be partially crystalline by powder X-ray diffraction and to contain crystalline phases not present in pure β-cyclodextrin, indicating true complexation. The compactibility of the powders has been explored, revealing that a dry and compactible powder can be prepared from various omega-3 oils and β-cyclodextrin. Spray granulation was found to be the superior drying method for the preparation of compactible powders. PMID:25952853

  8. Development of cube textured Ni 5at.%W alloy substrates for YBCO coated conductor application using a powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Kim, S.-S.; Tak, J.-S.; Bae, S.-Y.; Chung, J.-K.; Ahn, I.-S.; Kim, C.-J.; Kim, K.-W.; Cho, K.-K.

    2007-10-01

    In this paper, Ni-5at.%W alloy substrate for YBCO coated conductor was fabricated by a dry powder metallurgy process including powder compaction, cold isostatic pressing (CIP), cold rolling and annealing for recrystallization. Ni and W powders were ball-milled at this process for various times of 10, 30, 50 and 100 h in argon atmosphere. The rod-like Ni-W alloy compacts were sintered at 1150 °C for 1 h in 96%Ar-4%H2 atmosphere. The sintered rods were cold rolling into thin tape of 70-90 μm thickness with 5% reduction at each path. The Ni-W alloy tapes were annealed at 800-1200 °C in an atmosphere of 96%Ar-4%H2 mixing gas for the development of cube texture. The tape with the best properties of low surface roughness, small grain size and strong cube texture was obtained at the condition annealed at 1200 °C using ball-milled powder for 30 min. The W addition to Ni improved the mechanical properties by solid solution hardening and inhibited grain growth for annealing heat treatment. The tapes were characterized by X-ray pole-figure, optical microscopy (OM), scanning electron microscopy (SEM) and scanning probe microscopy (SPM).

  9. Stress-strain behavior and shape memory effect in powder metallurgy TiNi alloys

    SciTech Connect

    Kato, H.; Koyari, T.; Miura, S. . Dept. of Engineering Science); Tokizane, M. . Dept. of Mechanical Engineering)

    1994-04-01

    The shape memory properties of the TiNi alloy produced by a powder metallurgical method have been evaluated from tensile stress-strain curves. The contamination of the powders during atomization can be suppressed by applying the Plasma Rotating Electrode Process (P-REP), so that the compact made by Hot Isostatic Pressing (HIP) is expected to exhibit the shape memory effect identical to the typical alloy grown from melt. The fracture behavior of the P/M alloy is also studied, and the improvement of fracture strength of the P/M alloy is attempted.

  10. Understanding the strength of hot-pressed nanostructured powder compacts

    SciTech Connect

    Rawers, J.C.; Harlow, D.G.

    1999-02-01

    Attrition-milled nanostructured powders were hot pressed, and macroscopic properties of density, hardness, grain size, and strength were measured. No correlation was found between processing conditions (temperature and time) used in this study and compact properties, nor was a correlation found between the tensile (or failure) stress and density, hardness, or grain size. Variations of compact properties of unmilled powder were similar to that of milled powders. Tensile data were not well fitted to a Gaussian distribution but were well fitted to a two-parameter Weibull distribution. Thus, although the milled powder compacts had an average tensile strength greater than the unmilled powder compacts, all sample compositions fit a distribution with zero as a possible minimal stress level. Weibull analysis suggests that the tensile and compression strength is controlled by the presence of fine cracks, which may limit future engineering applications. Efforts to eliminate these cracks during hot pressing were unsuccessful.

  11. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE PAGESBeta

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinationsmore » that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  12. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    NASA Astrophysics Data System (ADS)

    Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.

    2015-11-01

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ± 0.06 g/cm3. Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  13. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    SciTech Connect

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  14. Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

    DOEpatents

    Jablonski, Paul D.; Larbalestier, David C.

    1993-01-01

    Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.

  15. Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2016-03-01

    Ultra-high strength and ductile powder metallurgy (PM) binary Ti-20at.%Ta alloy has been fabricated via sintering from elemental Ti and Ta powders and subsequent hot swaging and annealing. The microstructural evolution and mechanical properties in each stage were evaluated. Results show that inhomogeneous microstructures with Ti-rich and Ta-rich areas formed in the as-sintered Ti-Ta alloys due to limited diffusion of Ta. In addition, Kirkendall porosity was observed as a result of the insufficient diffusion of Ta. Annealing at 1000°C for up to 24 h failed to eliminate the pores. Hot swaging eliminated the residual sintering porosity and created a lamellar microstructure, consisting of aligned Ta-enriched and Ti-enriched phases. The hot-swaged and annealed PM Ti-20Ta alloy achieved an ultimate tensile strength of 1600 MPa and tensile elongation of more than 25%, due to its unique lamellar microstructure including the high toughness of Ta-enriched phases, the formation of α phase in the β matrix and the refined lamellae.

  16. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  17. Thermal Conductivity of Powder Aggregates and Porous Compacts

    NASA Astrophysics Data System (ADS)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Muñoz, S.

    2012-12-01

    A new equation for calculating the thermal conductivity of metal powder aggregates and sintered metal powder compacts is proposed. In this equation, the effective conductivity of the powder system is a function of the conductivity of the fully dense material, the porosity of the system, and the tap porosity of the starting powder. The new equation is applicable to powder systems, from the tap porosity to zero porosity, as well as to consolidated powders. The proposed equation has been experimentally validated by fitting to data from other authors. The results confirm a good agreement with theoretical predictions.

  18. Applied mechanics modeling of granulated ceramic powder compaction

    SciTech Connect

    Mahoney, F.M.; Readey, M.J.

    1995-08-01

    In ceramic manufacturing processes such as dry-pressing, correlations between applied compacting pressure and resultant powder compact density are essential for defining reliable process conditions for ceramic components. Pressure-density diagrams have been developed as a tool for both process control and for understanding the compaction behavior of different powders. These types of diagrams, however, pertain only to the averag@ properties of a powder compact and do not address a significant issue in powder compaction processes: the formation of density gradients within the compact. Continuum-based mechanics models of varying complexity have addressed the influence of frictional forces acting at the powder-die wall interface which dissipate the applied pressure throughout the compact. Resulting pressure distribution models are then typically coupled with empirical functions relating pressure and density to obtain a green density distribution in the compact. All of these models predict similar trends; however, none predict the distribution with sufficient accuracy to be considered as a design tool for industrial applications.

  19. Powder compaction in systems of bimodal distribution

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  20. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  1. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  2. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    SciTech Connect

    Vlach, M.; Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S.; Gemma, R.; Ocenasek, V.; Malek, J.; Tanprayoon, D.; Neubert, V.

    2013-12-15

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle

  3. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  4. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Astrophysics Data System (ADS)

    Harf, Fredric H.

    1985-06-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of γ' particles in a γ matrix. The higher cobalt-content alloys contained larger amounts of the finest γ' particles, and had the lowest γ-γ' lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650°C, the rupture lives at 650 and 760°C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the γ' particle size distribution and the γ-γ' mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  5. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  6. Development and Processing of Novel Aluminum Powder Metallurgy Materials for Heat Sink Applications

    NASA Astrophysics Data System (ADS)

    Smith, L. J. B.; Corbin, S. F.; Hexemer, R. L.; Donaldson, I. W.; Bishop, Donald Paul

    2014-02-01

    The objective of this research was to design aluminum powder metallurgy (PM) alloys and processing strategies that yielded sintered products with thermal properties that rivaled those of the cast and wrought aluminum alloys traditionally employed in heat sink manufacturing. Research has emphasized PM alloys within the Al-Mg-Sn system. In one sub-theme of research, the general processing response of each PM alloy was investigated through a combination of sintering trials, sintered density measurements, and microstructural assessments. In the second, the thermal properties of sintered products were studied in detail. Thermal conductivity was first determined using a calculated approach through discrete measurements of specific heat capacity, thermal diffusivity, and density and subsequently verified using a transient plane source technique on larger specimens. Experimental PM alloys achieved >99 pct theoretical density and exhibited thermal conductivity that ranged from 179 to 225 W/m K. Thermal performance was largely dominated by the amount of magnesium present within the aluminum grains and, in turn, bulk alloy chemistry. Data confirmed that the novel PM alloys were highly competitive with even the most advanced heat sink materials such as wrought 6063 and 6061.

  7. A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Shu, Guo-Jiun; Chang, Shih-Ying; Lin, Bing-Hao

    2014-08-01

    The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

  8. Copper-Carbon and Aluminum-Carbon Composites Fabricated by Powder Metallurgy Processes

    NASA Astrophysics Data System (ADS)

    Silvain, Jean-François; Veillère, Amélie; Lu, Yongfeng

    2014-07-01

    The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal- expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers and diamond-reinforced copper and aluminum matrix composites among them are considered very promising as a next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon fibers and copper/diamond and aluminum/carbon fibers composite films by powder metallurgy and hot pressing. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermomechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between metal and carbon, enhancing all the desired thermal properties while minimizing the deleterious effect.

  9. Analysis of Load Transfer Mechanism in Cu Reinforced with Carbon Nanotubes Fabricated by Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Akbarpour, Mohammad Reza

    2016-05-01

    In this research, ductile and high-strength Cu-carbon nanotube (Cu-CNT) composites with different volume fractions of CNTs were fabricated using powder metallurgy route including mechanical milling and hot pressing and microstructure and tensile properties of the resulting materials were studied. Microstructural characterization through scanning electron microscope and quantifying the CNT agglomeration revealed that uniform dispersion of CNTs in Cu matrix decreases with increasing CNT volume fraction. In case of the higher volume fraction of CNTs (i.e., 8 vol.%), ~ 40% of CNTs were observed as agglomerates in the microstructure. Compared to unreinforced Cu, the yield and ultimate tensile strengths increased considerably (about 33% and 12%, respectively) with incorporation of CNTs up to 4 vol.%, but remained constant afterward. Meanwhile, the elongation decreased from 15.6% for Cu to 6.9% for Cu with 8 vol.% CNT. The relationship between the change in yield strength of the composite and the microstructure was investigated using analytical models. The results showed good consistency between calculated and measured data when the negative effect of CNT agglomerates in the models were taken into account.

  10. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  11. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  12. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  13. Tribological properties of PM212 - A high temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1990-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  14. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    SciTech Connect

    Godec, Matjaz; Batic, Barbara Setina; Mandrino, Djordje; Nagode, Ales; Leskovsek, Vojteh; Skapin, Sreco D.; Jenko, Monika

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbides were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.

  15. Tribological properties of PM212: A high-temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1989-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  16. Analysis of Load Transfer Mechanism in Cu Reinforced with Carbon Nanotubes Fabricated by Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Akbarpour, Mohammad Reza

    2016-04-01

    Abstract: In this research, ductile and high-strength Cu-carbon nanotube (Cu-CNT) composites with different volume fractions of CNTs were fabricated using powder metallurgy route including mechanical milling and hot pressing and microstructure and tensile properties of the resulting materials were studied. Microstructural characterization through scanning electron microscope and quantifying the CNT agglomeration revealed that uniform dispersion of CNTs in Cu matrix decreases with increasing CNT volume fraction. In case of the higher volume fraction of CNTs (i.e., 8 vol.%), ~ 40% of CNTs were observed as agglomerates in the microstructure. Compared to unreinforced Cu, the yield and ultimate tensile strengths increased considerably (about 33% and 12%, respectively) with incorporation of CNTs up to 4 vol.%, but remained constant afterward. Meanwhile, the elongation decreased from 15.6% for Cu to 6.9% for Cu with 8 vol.% CNT. The relationship between the change in yield strength of the composite and the microstructure was investigated using analytical models. The results showed good consistency between calculated and measured data when the negative effect of CNT agglomerates in the models were taken into account.

  17. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  18. Discrete element analysis of powder processing: Fill and compaction

    NASA Astrophysics Data System (ADS)

    Kong, Consuelo Margarita

    The production of various ceramic components is often achieved by processing powder into the desired shape and dimensions. The process includes filling a die with powder, which then is compacted. Even today, most parameters are adjusted by trial-and-error. The quality of the product is associated with its density homogeneity. This is a function of powder properties, die geometry, filling method and compacting cycle. The goal of the present work is to understand the parameters that affect dimension and quality of the compacted part. A discrete element model is proved suitable to simulate the powders' behavior during fill and compaction. This model suggests that application of accepted radius ratio rules for die filling have an effect opposite to that intended, because fines catalyze bridge formation instead of filling voids. Our results provide strong support that compaction is clearly localized before and during the I-II transition prior to propagating in a wave-like fashion throughout the rest of the compact. The changes in local density associated to the Stage I-II transition on the compaction curves signifies a change in the direction of the transmitted pressure through the uppermost layer, from dispersed to joined. Cyclic compaction allows for the periodic release of stress that homogenizes the granular matter immediately in front of the wave, producing a locally uniform propagation of pressure during succeeding cycles. The model is proven a valuable tool in predicting improvements in die design.

  19. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    SciTech Connect

    Aghion, E. Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  20. Simulation of Crack Propagation in Metal Powder Compaction

    NASA Astrophysics Data System (ADS)

    Tahir, S. M.; Ariffin, A. K.

    2006-08-01

    This paper presents the fracture criterion of metal powder compact and simulation of the crack initiation and propagation during cold compaction process. Based on the fracture criterion of rock in compression, a displacement-based finite element model has been developed to analyze fracture initiation and crack growth in iron powder compact. Estimation of fracture toughness variation with relative density is established in order to provide the fracture parameter as compaction proceeds. A finite element model with adaptive remeshing technique is used to accommodate changes in geometry during the compaction and fracture process. Friction between crack faces is modelled using the six-node isoparametric interface elements. The shear stress and relative density distributions of the iron compact with predicted crack growth are presented, where the effects of different loading conditions are presented for comparison purposes.

  1. Shock compaction of magnet powder using underwater shock wave

    SciTech Connect

    Kubota, Shiro; Fujita, Masahiro; Itoh, Shigeru

    1996-12-31

    In order to get a high plug density (over 90%), the authors tried a direct consolidation of the magnet powder using the converging underwater shock wave created by the underwater explosion of explosives. The processes of the consolidation of the magnet powder were investigated by numerical calculation. They obtained the parameters of the EOS (Petrie-Page model) for Magnet powder using quasi-static loading experiments. Moreover, the characteristics of the shock compaction assembly were also verified.

  2. PREPARATION OF METAL POWDER COMPACTS PRIOR TO PRESSING

    DOEpatents

    Mansfield, H.

    1958-08-26

    A method of fabricating uranium by a powder metallurgical technique is described. It consists in introducing powdered uranium hydride into a receptacle shaped to coincide with the coatour of the die cavity and heating the hydride so that it decomposes to uranium metal. The metal particles cohere in the shapw of the receptacle and thereafter the prefurmed metal powder is pressed and sintered to obtain a dense compact.

  3. Quasi-static compaction studies of a porous pyrotechnic powder

    NASA Astrophysics Data System (ADS)

    Atwood, A. I.; Curran, P. O.; Price, C. F.; Wiknich, J.

    1996-05-01

    The compaction and relaxation properties of a live and an inert pyrotechnic powder simulant mixture have been evaluated under quasi-static loading conditions. The pyrotechnic powder consisted of a mixture of potassium perchlorate, magnesium-aluminum alloy, and inert binder. Potassium chloride replaced the potassium perchlorate in the inert mixture. Porous beds of powder were compacted using a double acting piston arrangement, operating at a constant loading rate of 0.11 in/min. Applied and transmitted forces were measured using either 7,500 or 20,000 lbf capacity strain gage load cells. The intragranular stress as a function of percent TMD was determined from the compaction data. The experimental intragranular stress data were further analyzed using a modified Carroll-Holt model to describe the compaction process and to allow extrapolation to a density range not achievable by experiment. The porous bed of pyrotechnic powder was much more rigid than homogeneous crystalline powders such as ammonium perchlorate (AP). Microscopic examination of the compacted material showed only light damage to the crystalline particles with little fracture. Bed relaxation resulted in a 2.8 to 4.5 percent change in bed height after compaction. These data demonstrate the presence of elastic deformation properties in a porous bed of non-viscoelastic material.

  4. Distribution of Inclusion-Initiated Fatigue Cracking in Powder Metallurgy Udimet 720 Characterized

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kantzos, Pete T.; Barrie, Robert; Telesman, Jack; Ghosn, Louis J.; Gabb, Timothy P.

    2004-01-01

    In the absence of extrinsic surface damage, the fatigue life of metals is often dictated by the distribution of intrinsic defects. In powder metallurgy (PM) alloys, relatively large defects occur rarely enough that a typical characterization with a limited number of small volume fatigue test specimens will not adequately sample inclusion-initiated damage. Counterintuitively, inclusion-initiated failure has a greater impact on the distribution in PM alloy fatigue lives because they tend to have fewer defects than their cast and wrought counterparts. Although the relative paucity of defects in PM alloys leads to higher mean fatigue lives, the distribution in observed lives tends to be broader. In order to study this important failure initiation mechanism without expending an inordinate number of specimens, a study was undertaken at the NASA Glenn Research Center where known populations of artificial inclusions (seeds) were introduced to production powder. Fatigue specimens were machined from forgings produced from the seeded powder. Considerable effort has been expended in characterizing the crack growth rate from inclusion-initiated cracks in seeded PM alloys. A rotating and translating positioning system, with associated software, was devised to map the surface inclusions in low-cycle fatigue (LCF) test bars and to monitor the crack growth from these inclusions. The preceding graph illustrates the measured extension in fatigue cracks from inclusions on a seeded LCF test bar subjected to cyclic loading at a strain range of 0.8 percent and a strain ratio (max/min) of zero. Notice that the observed inclusions fall into three categories: some do not propagate at all (arrest), some propagate with a decreasing crack growth rate, and a few propagate at increasing rates that can be modeled by fracture mechanics. The following graph shows the measured inclusion-initiated crack growth rates from 10 interrupted LCF tests plotted against stress intensities calculated for semi

  5. Effects of Powder Size and Initial Arrangement on Cold Compaction

    NASA Astrophysics Data System (ADS)

    Tanwongwan, Wiwat; Manonukul, Anchalee; Carmai, Julaluk

    In the past, the most common assumption in every explicit modelling of individual powders for compaction is that powders have only one single size which are arranged uniformly. However, all powders used in practice have a distribution of particle size and random initial arrangement. In this work, a systematic theoretical study of the effects of initial powder arrangement and distribution of size has been investigated using numerical analysis tool. Various types of elements have been considered first. Considering the accuracy and the effort required, the two-dimensional plane strain element has been employed for the rest of the investigation. The initial arrangement of powder and the distribution of powder size were considered separately. The results show that the initial arrangement has significant influence on the macroscopic behaviour while the powder size has little influence. Both factors have noticeable influence on the microscopic behaviour.

  6. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroyuki Y.

    2008-02-01

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  7. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  8. Controlled powder morphology experiments in megabar 304 stainless steel compaction

    SciTech Connect

    Staudhammer, K.P.; Johnson, K.A.

    1985-01-01

    Experiments with controlled morphology including shape, size, and size distribution were made on 304L stainless steel powders. These experiments involved not only the powder variables but pressure variables of 0.08 to 1.0 Mbar. Also included are measured container strain on the material ranging from 1.5% to 26%. Using a new strain controllable design it was possible to seperate and control, independently, strain and pressure. Results indicate that powder morphology, size distribution, packing density are among the pertinent parameters in predicting compaction of these powders.

  9. Novelties in physics of explosive welding and powder compaction

    NASA Astrophysics Data System (ADS)

    Plaksin, I.; Campos, J.; Ribeiro, J.; Mendes, R.; Direito, J.; Braga, D.; Pruemmer, R.

    2003-09-01

    Widely known technologies of explosive (X) welding and explosive (X) powder compaction are based on applications of porous composite solid or liquid explosives. Recent results on dynamics of X-welding and X-powder compaction are presented and discussed in this paper in the conceptual context of an orderly oscillating detonation wave (DW), a synergetic phenomenon observed in detonation of all classes of composite energetic materials, that was discovered in LEDAP in last eight years. Regular instabilities that are induced by oscillating DW, are transmitted through the interface of the impacted materials, causing the local instability and fluctuations in both processes, formation of the interfacial waves (X-welding mechanism) and in an initial phase of powder compaction. Application of high resolution optical probes (spatial resolution 250 μm, temporal resolution 1 ns, 96 independent channels) allowed the simultaneous registration of the oscillating DW in the X-charge and transmission of oscillations, through the flyer plate, up to the welding zone. Similar measurements have been made in experiments with X-compaction of tungsten powder providing the continuos registration of shock wave velocity inside the compacted powder, its geometrical shape, their instabilities and irregularities.

  10. Roller compaction: Effect of relative humidity of lactose powder.

    PubMed

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  11. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  12. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  13. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  14. Effects of Initial Powder Compact Thickness, Lubrication, and Particle Morphology on the Cold Compaction Behavior of Ti Powder

    NASA Astrophysics Data System (ADS)

    Lou, Jia; Gabbitas, Brian; Zhang, Deliang; Yang, Fei

    2015-08-01

    This work investigates the compaction behavior of hydride-dehydride CP-Ti powder from green density/compaction pressure curves. These were obtained through a modification of selected processing conditions, such as variation in compact thickness, the use of internal lubrication, and additions of plasma rotating electrode process powder. A modified Cooper-Eaton equation, which treats the compaction process to be a combination of particle rearrangement (PR) and plastic deformation (PD) mechanisms, was used to simulate the curves. A comparison with aluminum and iron compaction is also carried out in this study. The research indicated that the cold compaction of titanium powder can be separated into two stages: a PR stage (stage I), which occurs at a compacting pressure in the range of 0 to 200 MPa, followed by a further PR stage initiated by PD, when the compaction pressure is in the range of 200 to 1000 MPa. The existence of stage II is due to the low plastic deformability of titanium and low density achieved at the end of stage I.

  15. Dynamic Compaction Modeling of Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John P.; Schwalbe, Larry; Cogar, John; Chapman, D. J.; Tsembelis, K.; Ward, Aaron; Lloyd, Andrew

    2006-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized a linear Us-Up Hugoniot. The compaction events were modeled with CTH, a 3D Eulerian hydrocode developed at Sandia National Laboratory. Simulated pressures at two test locations are presented and compared with measurements.

  16. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-04-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  17. Dynamic compaction of a monosized spherical tungsten powder

    SciTech Connect

    Gourdin, W.H.; Weinland, S.L.

    1985-06-28

    We present a limited number of measurements of the Hugoniot of a 45 to 74-..mu..m spherical tungsten powder in the stress range 0 to 7 GPa. From these data we infer that compaction to the solid density occurs at about 4 GPa. Examination of recovered specimens shows that interparticle bonding does not occur at stresses as high as 6.2 GPa. This is consistent with calculations based on the energy flux at powder particle surfaces during compaction, which suggest that interparticle melting will not occur at stresses less than about 9.0 GPa.

  18. Elasticity, fracture and yielding of cold compacted metal powders

    NASA Astrophysics Data System (ADS)

    Martin, C. L.

    2004-08-01

    The behaviour of powder compacts is modelled by explicitly introducing the possibility of plastic loading, elastic unloading and decohesion at contacts. The study is limited to cold compaction and to perfectly plastic materials for which the analysis of Mesarovic and Johnson (J. Mech. Phys. 48 (2000) 2009) is used. We model the compact behaviour both with an analytical approach based upon a mean field assumption and with the discrete element method (DEM) that allows force equilibrium to be treated in a realistic manner. Using these two approaches, we are able to predict the effective elastic properties of a powder compact at the onset of unloading. The knowledge of the conditions that lead to decohesion at the contact scale is used to model the fracture of the powder compact (green strength). It is shown that, in first approximation, green strength is inversely proportional to the size of the powder particles. The two methods are used to generate failure and yield surfaces for axisymmetric conditions. Both isostatic and close die conditions are studied.

  19. Compaction dynamics of a magnetized powder.

    PubMed

    Lumay, G; Dorbolo, S; Vandewalle, N

    2009-10-01

    We have investigated experimentally the influence of a magnetic interaction between the grains on the compaction dynamics of a granular pile submitted to a series of taps. The granular material used to perform this study is a mixture of metallic and glass grains. The packing is immersed in homogeneous external magnetic field. The magnetic field induces an interaction between the metallic grains that constitutes the tunable cohesion. The compaction characteristic time and the asymptotic packing fraction have been measured as a function of the Bond number which is the ratio between the cohesive magnetic force and the grain weight. These measurements have been performed for different fractions of metallic beads in the pile. When the pile is only made of metallic grains, the characteristic compaction time increases as the square root of the Bond number. While the asymptotic packing fraction decreases as the inverse of the Bond number. For mixtures, when the fraction of magnetized grains in the pile is increased, the characteristic time increases while the asymptotic packing fraction decreases. A simple mesoscopic model based on the formation of granular chains along the magnetic field direction is proposed to explain the observed macroscopic properties of the packings. PMID:19905303

  20. Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy

    NASA Technical Reports Server (NTRS)

    Walder, A.; Hivert, A.

    1982-01-01

    Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems.

  1. Study of Underwater Shock Compaction Device for Compaction of Titanium Diboride Powder

    NASA Astrophysics Data System (ADS)

    Kennedy, G. B.; Kim, Y. K.; Hokamoto, K.; Itoh, S.

    2007-06-01

    Shock compaction for powders has been used to study bulk consolidation of powder materials. Shock compaction has the advantage of processing at low temperatures and short duration to limit effects of high temperatures for long times, such as increased grain size and high energy cost. Many methods of shock loading of powders have been employed: direct contact with explosive, explosively driven flyer plates, and flyer plates launched with light gas or propellant gun. Another method, using explosives to create a shockwave in water that is in contact with a powder container, has been used extensively at Kumamoto University. This work presents a study of the development of the underwater shockwave device and investigates the water container geometry for control of parameters for shockwave peak pressure, duration, and distribution through the powder compaction process. Results of simulations for optimization of shock compaction properties are presented along with measurements from input and propagated manganin gauge pressure measurements obtained from underwater shock compaction of titanium diboride. The hardness measurements throughout the bulk of the shock compacted titanium diboride are discussed.

  2. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders.

    PubMed

    Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin

    2016-03-01

    Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. PMID:26706551

  3. Preparation of Cu and Fly Ash Composite by Powder Metallurgy Technique

    SciTech Connect

    Chew, P. Y.; Lim, P. S.; Ng, M. C.; Zahi, S.; You, A. H.

    2011-03-30

    Cu and Fly Ash (FA) mixtures with different weight percentages were prepared. Pellets of the mixture powder were produced with the dimension of 17.7 mm in diameter and 10-15 mm in height. These different composites were compacted at a constant pressure of 280 MPa. One of the selected weight percentages was then compacted to form into pellet and sintered at different temperatures which were at 900, 950 and 1000 deg. C respectively for 2 hours. Density of green pellet was measured before sintered in furnace. After sintering, all the pellets with different temperatures were re-weighed and sintered density were calculated. The densification of the green and sintered pellets was required to be measured as one of the parameter in selection of the best material properties. Porosity of the pellet shall not be ignored in order to analyze the close-packed particles stacking in the pellet. SEM micrograph had been captured to observe the presence of pores and agglomeration of particles in the sample produced.

  4. A Compaction Model for Highly Porous Silica Powder.

    NASA Astrophysics Data System (ADS)

    Church, P. D.; Tsembelis, K.

    2005-07-01

    This paper describes research to develop an equation of state to describe the behaviour of a highly porous silica powder. It shows that whilst molecular modelling techniques can be readily applied to develop a description of a compact material the description of the compaction process is more problematic. An empirical model, based upon the Lennard-Jones potential, has been shown to be capable of describing the compaction process observed in simple experiments. This development and application of the model in the Eulerian hydrocode GRIM to reproduce experimental plate impact data over a wide range of impact velocities is described and the results compared with experimental data.

  5. Phase Transformation Behavior of Porous TiNi Alloys Produced by Powder Metallurgy Using Magnesium as a Space Holder

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Tarik; Bor, Elif Tarhan; Bor, Şakir

    2011-09-01

    Porous TiNi alloys with porosities in the range of 51 to 73 pct were prepared successfully applying a new powder metallurgy fabrication route in which magnesium was used as a space holder, resulting in either single austenite phase or a mixture of austenite and martensite phases dictated by the composition of the starting powders, but entirely free from secondary brittle intermetallics, oxides, nitrides, and carbonitrides. Since transformation temperatures are very sensitive to composition, deformation, and oxidation, for the first time, transformation temperatures of porous TiNi alloys were investigated using chemically homogeneous specimens in as-sintered and aged conditions eliminating secondary phase, contamination, and deformation effects. It was found that the porosity content of the foams has no influence on the phase transformation temperatures both in as-sintered and aged conditions, while deformation, oxidation, and aging treatment are severely influential.

  6. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    NASA Astrophysics Data System (ADS)

    Tolev, J.; Mandelis, A.

    2010-03-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (~5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  7. Compact, Non-Pneumatic Rock-Powder Samplers

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Chang, Zensheu; Jones, Christopher; Aldrich, Jack

    2008-01-01

    Tool bits that automatically collect powdered rock, permafrost, or other hard material generated in repeated hammering action have been invented. The present invention pertains to the special case in which it is desired to collect samples in powder form for analysis by x-ray diffraction and possibly other techniques. The present invention eliminates the need for both the mechanical collection equipment and the crushing chamber and the pneumatic collection equipment of prior approaches, so that it becomes possible to make the overall sample-acquisition apparatus more compact.

  8. Initial Assessment of the Effects of Nonmetallic Inclusions on Fatigue Life of Powder-Metallurgy-Processed Udimet(TM) 720

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Kantzos, P. T.; Bonacuse, P. J.; Barrie, R. L.

    2002-01-01

    The fatigue lives of modern powder metallurgy (PM) disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary due to the different steps of materials/component processing and machining. One of these variables, the presence of nonmetallic inclusions, has been shown to significantly degrade low-cycle fatigue (LCF) life. Nonmetallic inclusions are inherent defects in powder alloys that are a by-product of powder-processing techniques. Contamination of the powder can occur in the melt, during powder atomization, or during any of the various handling processes through consolidation. In modern nickel disk powder processing facilities, the levels of inclusion contamination have been reduced to less than 1 part per million by weight. Despite the efforts of manufacturers to ensure the cleanliness of their powder production processes, the presence of inclusions remains a source of great concern for the designer. the objective of this study was to investigate the effects on fatigue life of these inclusions. Since natural inclusions occur so infrequently, elevated levels of inclusions were carefully introduced in a nickel-based disk superalloy, Udimet 720 (registered trademark of Special Metals Corporation), produced using PM processing. Multiple strain-controlled fatigue tests were then performed on this material at 650 C. Analyses were performed to compare the LCF lives and failure initiation sites as functions of inclusion content and fatigue conditions. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface. The inclusions could reduce fatigue life by up to 100 times. These effects were found to be dependent on strain range and strain ratio. Tests at lower strain ranges and higher strain ratios produced larger effects of inclusions on life.

  9. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    PubMed Central

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-01-01

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240–260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180–210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time. PMID:26837848

  10. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    NASA Astrophysics Data System (ADS)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-02-01

    Stereocomplexation between enantiomeric poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time.

  11. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency.

    PubMed

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-01-01

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time. PMID:26837848

  12. Vibratory compaction tests on graphite powders for neutron shielding

    SciTech Connect

    Morgan, W.C.

    1982-05-01

    Mistures of three size ranges of graphite powders have been vibratory packed to densities as high as 1.40 gm/cm/sup 3/, which is 87.5 percent of the design density for the graphte segment of the FMIT test cell shield. Ultrasonic resonance vibration of the particles was determined to be an impractical method for achieving the required density. Possible options for fabricating the shield are: (1) revert to solid graphite, rather than vibratory packed powder, or (2) develop the mechanical vibratory compaction method, which would require (a) designing for the higher heat-load attendant with the reduced graphite density, or (b) increasing the thickness of the graphite segment by 15 percent or (c) seeking a new source of graphite powder with higher particle density.

  13. Effects of powder characteristics on impact initiated combustion in aluminum powder compacts

    NASA Astrophysics Data System (ADS)

    Breidenich, Jennifer; Thadhani, Naresh

    2015-06-01

    The processes leading to the initiation of impact induced combustion in aluminum powder compacts under uniaxial stress loading are investigated as a function of different powder characteristics. The mechanistic processes leading to reaction initiation in the Al samples are investigated via high speed and IR imaging of light associated with the reaction. Compacts composed of larger size particles of aluminum (approximately 70(μm) are shown to be more sensitive to impact initiated combustion than those composed of smaller particle sizes. Mechanical pre-activation by high energy ball milling (HEBM) of the Al powders shows increased reactivity. Images captured during compaction and deformation, revealing light emission, are correlated with CTH simulations indicating areas of localized strain and heating during deformation of the particles. These observations are used to explain the impact-initiated combustion sensitivity of Al powders as a function of powder characteristics and to understand the processes leading to reaction initiation. This work is supported by DTRA Project No. HDTRA-1-12-1-0052.

  14. Shape memory characteristics of powder metallurgy processed Ti50Ni50 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-wook; Jeon, Kyung-su

    Ti50Ni50 shape memory alloy powders were prepared by inert gas atomization and the powders were consolidated by spark plasma sintering (SPS) to fabricated dense bulk samples. Martensitic transformation temperatures and microstructures of the asatomized powders and the consolidated disks were investigated. DSC and XRD analysis showed that the B2-B19' martensitic transformation occurred in the powders and the disks. The martensitic transformation start temperature (Ms) of the powders was 22.9∘ C. However, the Ms of the SPS disk was 65.9∘ C. It is considered that this increase in transformation temperature is ascribed to the microstructural change during SPS processing.

  15. Using Microwave-Assisted Powder Metallurgy Route and Nano-size Reinforcements to Develop High-Strength Solder Composites

    NASA Astrophysics Data System (ADS)

    Nai, S. M. L.; Kuma, J. V. M.; Alam, M. E.; Zhong, X. L.; Babaghorbani, P.; Gupta, M.

    2010-04-01

    In the present study, Sn-0.7Cu and Sn-3.5Ag lead-free solders used in the electronics packaging industry were reinforced with different volume percentages of nano-size alumina and tin oxide particulates, respectively, to synthesize two new sets of nanocomposites. These composites were developed using microwave-assisted powder metallurgy route followed by extrusion. The effects of addition of particulates on the physical, microstructural, and mechanical properties of the nanocomposites were investigated. Mechanical properties (microhardness, 0.2% YS, and UTS) for both composite systems increase with the presence of particulates. The best tensile strength was realized for composite solders reinforced with 1.5 vol.% alumina and 0.7 vol.% tin oxide particulates, which far exceeds the strength of eutectic Sn-Pb solder. The morphology of pores was observed to be one of the most dominating factors affecting the strength of materials.

  16. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  17. The wear properties of in-situ 7075 Al-Ti composites produced by powder metallurgy route

    NASA Astrophysics Data System (ADS)

    Ay, H.; Özyurek, D.; Yıldırım, M.; Bostan, B.

    2016-04-01

    In this study, the wear properties of in-situ 7075 Al-Ti composites produced by powder metallurgy route were investigated. Different amount of Ti (2, 4, 6 %) added to gas atomized 7075 Al alloy powders and they were mixed in turbula with 47rpm for 45 minutes. Then the mixed powders were pre-shaped by press under 600 MPa pressure. The samples were cooled in the furnace after sintered at 580 °C for 4 hours in the atmosphere controlled furnace. Standard metallographic process such as grinding, polishing and etching were applied to sintered samples. The hardness values were measured. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) examines were carried out. The wear tests were performed in a pin-on disc type wear apparatus with 1 ms-1 sliding speed at six different sliding distance (500-3000 m) under 30 N loads. As a result of studies, hardness values were increased with increasing Ti content, in addition the weight losses were decreased with increasing Ti amount.

  18. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 250 citations and includes a subject term index and title list.)

  19. Effects of MgO Nano Particles on Microstructural and Mechanical Properties of Aluminum Matrix Composite prepared via Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Baghchesara, Mohammad Amin; Abdizadeh, Hossein; Baharvandi, Hamid Reza

    The objective of the present investigation was to evaluate the microstructural and mechanical properties of Al/nano MgO composite prepared via powder metallurgy method. Pure atomized aluminum powder with an average particle size of 1μm and MgO particulate with an average particle size between 60 to 80 nm were used. Composites containing 1.5, 2.5 and 5 percent of volume fraction of MgO were prepared by powder metallurgy method. The specimens were pressed by Cold Isostatic Press machine (CIP), subsequently were sintered at 575, 600 and 625°C. After sintering and preparing the samples, mechanical properties were measured. The results of microstructure, compression and hardness tests indicated that addition of MgO particulates to aluminum matrix composites improves the mechanical properties.

  20. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  1. Sintering stress and microstructure in ceramic powder compacts

    SciTech Connect

    Chu, May-Ying California Univ., Berkeley, CA . Dept. of Materials Science and Mineral Engineering)

    1990-08-01

    The behavior of the sintering stress and microstructure during sintering is studied under various thermal and physical conditions. Specifically, the study includes sintering under isothermal or constant heating rate conditions; and altering the starting compact structure by pre-coarsening to increase the particle size, or by compaction to increase the starting density. Loading dilatometry is used to measure the ratio of the densification strain rate to the creep strain rate and the continuous shrinkage history of the systems. The data show that the ratio of the densification to the creep strain rate is remarkably constant within a wide temperature range for densification, from the earliest stages of densification to at least the onset of the final stage. As a consequence, the sintering stress, which is proportional to the strain rate ratio, is nearly independent of sintered density or of temperature. Analysis leads to a simple method for determining the simultaneous densification strain rate over the creep strain rate ratio. A rigorous densification strain rate equation is derived for a model system. The constant sintering stress allows progress on formulating a sintering equation to predict the densification behavior of powder compacts. Analysis of dilatometry data from compacts sintered at various heating rates, and of numerical computations, indicate the need to include separate coarsening processes with different activation energies. The same model is used to describe the differences in pore spacing evolution between pre-coarsened and as-received systems.

  2. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  3. In situ microtomography investigation of metal powder compacts during sintering

    NASA Astrophysics Data System (ADS)

    Lame, Olivier; Bellet, Daniel; Di Michiel, Marco; Bouvard, Didier

    2003-01-01

    The mechanisms involved in shape changes arising during sintering of complex materials like iron-based systems are still poorly understood. New information can be obtained by use of advanced techniques such as microtomography. In this study, the microstructural evolution of a Distaloy AE powder compact and of loose copper powder is investigated during a thermal cycle at the European Synchrotron in Grenoble (France). Both materials are sintered in a furnace set in front of a high-energy X-ray source in 30-45 keV range. At various steps of sintering, hundreds of radiographs are taken with different orientations of the specimen. From these images the 3D microstructure is reconstructed. This non-destructive method provides the 3D microstructural evolution of the material during sintering. Local and statistical information can be obtained and will be used in the future for modelling the sintering process. Special attention is given to the anisotropy induced by prior compaction and to its evolution through sintering.

  4. Mechanical Properties of Mg2Si/Mg Composites via Powder Metallurgy Process

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroshi; Kondoh, Katsuyoshi; Yuasa, Eiji; Aizawa, Tatsuhiko

    The mechanical properties of the Mg2Si/Mg composites solid-state synthesized from the mixed Mg-Si powders have been investigated. The macro-hardness (HRE) and the tensile strength of the composites increase with increasing the Si content and decreasing the Si size. The particle size of the synthesized Mg2Si depends on the initial Si size; the mechanical properties of the Mg2Si/Mg composite are remarkably improved by using fine Si particles or by decreasing the grain size of Mg matrix grains when the powder mixture was prepared via bulk mechanical alloying process.

  5. Fabrication of multi-walled carbon nanotubes-aluminum matrix composite by powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Bunakov, N. A.; Kozlov, D. V.; Golovanov, V. N.; Klimov, E. S.; Grebchuk, E. E.; Efimov, M. S.; Kostishko, B. B.

    We report on fabrication of an aluminum matrix composite containing multi-walled carbon nanotubes (MWCNTs) produced by MOCVD method and functionalized via acid treatment by a H2SO4/HNO3 mixture. Specimens were prepared by spark plasma sintering (SPS) of the aluminum powder with different amounts of functionalized MWCNTs (FMWCNTs) in the range of 0.1-1 wt.%. We studied the effect of FMWCNTs amount on microstructure and mechanical properties of composites. It is shown that functionalization allows homogeneous dispersing of the MWCNTs in Al powder. The maximal increase in micro-hardness and tensile strength is registered at 0.1 wt.%.

  6. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  7. Development of superalloys by powder metallurgy for use at 1000 - 1400 F

    NASA Technical Reports Server (NTRS)

    Calhoun, C. D.

    1971-01-01

    Consolidated powders of four nickel-base superalloys were studied for potential application as compressor and turbine discs in jet engines. All of the alloys were based on the Rene' 95 chemistry. Three of these had variations in carbon and A12O3 contents, and the fourth alloy was chemically modified to a higher volume fraction. The A12O3 was added by preoxidation of the powders prior to extrusion. Various levels of four experimental factors (1) alloy composition, (2) grain size, (3) thermomechanical processing, and (4) room temperature deformation plus final age were evaluated by tensile and stress rupture testing at 1200 F. Various levels of the four factors were assumed in order to construct the statistically-designed experiment, but the actual levels investigated were established in preliminary studies that preceded the statistical process development study.

  8. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  9. Modeling the Constitutive Relationship of Powder Metallurgy Ti-47Al-2Nb-2Cr Alloy During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hu, Lianxi; Ren, Junshuai

    2015-03-01

    In the present work, the isothermal compression tests of PM alloy Ti-47Al-2Nb-2Cr were carried out in the temperature range of 950-1200 °C. A Gleeble 1500D thermosimulation machine was used, and samples were tested at strain rates ranging from 10-3 to 10-1 s-1. Based on the obtained flow stress curves, the hot deformation behavior was presented. The constitutive relationship of powder metallurgy (PM) Ti-47Al-2Nb-2Cr alloy was developed using an Arrhenius-type constitutive model that involves strain compensation in addition to an artificial neural network model. The accuracy and reliability of the developed models were quantified in terms of statistical parameters such as correlation coefficient and absolute value of relative error. It was found that deformation temperature and strain rate have obvious effects on the flow characteristics, and the flow stress increases with the increasing strain rate and the decreasing temperature. Moreover, the proposed models possess excellent prediction capability of flow stresses for the present alloy during hot deformation. Compared with the traditional Arrhenius-type model, the backpropagation neural network model is more accurate when presenting the isothermal compressing deformation behavior at elevated temperatures for PM Ti-47Al-2Nb-2Cr alloy.

  10. An Investigation of High-Temperature Precipitation in Powder-Metallurgy, Gamma/Gamma-Prime Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Kim, S.-L.; Zhang, F.; Tiley, J. S.

    2015-04-01

    The high-temperature-precipitation behavior of a typical powder-metallurgy, gamma-gamma-prime, nickel-base superalloy (LSHR) was determined and used to develop and validate a quantitative fast-acting model. To this end, a series of experiments comprising supersolvus solution treatment followed by continuous cooling at rates typical of those experienced during the manufacture of full-scale components was conducted for LSHR. The nucleation and growth of secondary-gamma-prime precipitates were deduced via metallography on samples water quenched at various temperatures during the cooling cycle. Further insight on nucleation and the extent of retained supersaturation during cooling was obtained from in situ synchrotron (X-ray diffraction) experiments involving cooling of LSHR samples at identical rates with or without a hold time at an intermediate temperature. The observations were interpreted using a fast-acting (spreadsheet) model which incorporated the important aspects of classical, homogeneous-nucleation theory and growth by bulk diffusion. In this regard, particular attention was paid to the determination of model input parameters such as the composition, free energy of formation, and surface energy of precipitates, and an effective diffusivity; the values so determined contrasted with those from existing thermodynamic and diffusion databases. It was demonstrated that fast-acting-model calculations based on a nickel-chromium pseudo-binary system gave good agreement with measurements of the evolution of precipitate volume fraction, number density, and size during continuous cooling.

  11. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    SciTech Connect

    Tammy J. Harrell; Troy D. Topping; Haiming Wen; Tao Hu; JULIE M. SCHOENUNG; ENRIQUE J. LAVERNIA

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  12. Tungsten and tungsten-alloy powder metallurgy. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the processing and fabrication of tungsten, tungsten alloys, and tungsten composites. Compacting, pressing, sintering, extruding, and rolling are among the methods described. Infiltration of porous tungsten shapes is included, as well as mechanical properties, thermal properties, and microstructure of end products. Applications include rocket nozzles, nuclear reactor materials, and porous ionizers. (Contains a minimum of 116 citations and includes a subject term index and title list.)

  13. Technological Aspects of High Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Turichin, G. A.; Klimova, O. G.; Zemlyakov, E. V.; Babkin, K. D.; Kolodyazhnyy, D. Yu.; Shamray, F. A.; Travyanov, A. Ya.; Petrovskiy, P. V.

    The article deals with physical peculiarities and technology of high speed processes of direct laser deposition. On the base of theoretic research and computer modeling the powder transfer has been optimized, increasing process stability and productivity. Principles of nozzles design also have been developed in accordance with technological needs. An influence of process mode on product properties and material structure was defined for heat resisted Ni-based superalloys. Developed technology provided the mechanic properties of products on the level of rolled material and allows avoid heat treatment and HIP in production process. Possible ways for increasing process performance and economic efficiency also have been discussed.

  14. A compact high-resolution X-ray powder diffractometer.

    PubMed

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu Kα1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of <0.05° in high-resolution mode by increasing the detector radius to 240 mm. The resolution of the diffractometer is shown to be governed by a complex mixture of angular divergence, sample size, diffraction effects and the dimensions of the detector pixels. The data can be collected instantaneously, which combined with trivial sample preparation and no sample alignment, makes it a suitable method for very rapid phase identification. As the detector is moved further from the sample, the angular step from the pixel dimension is reduced and the resolution improves significantly for very detailed studies, including structure determination and analysis of the microstructure. The advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments. PMID:24282331

  15. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  16. Investigation of Die Stress Profiles during Powder Compaction using Instrumented Die

    SciTech Connect

    Hong, Sung-tae; Hovanski, Yuri; Lavender, Curt A.; Weil, K. Scott

    2008-06-01

    The radial stress profile in a cylindrical die during compaction of titanium (Ti) powder was investigated by experiments. The concept of an instrumented die was extended to design an enhanced instrumented die. Custom-made strain gage pins were used to measure the radial stress during powder compaction. The test fixture was designed to simulate double-action pressing. The measured die stress profile for Ti powder was compared with that for a commercially available iron (Fe) powder. The stress history shows that an appreciable residual stress remains in the die in the radial direction after the axial compaction stress is removed from the powder. Furthermore, the radial stress profile in the die, while under maximum axial compaction stress, is more uniform across the height of the Fe compact than that of the Ti compact. In addition, the residual stress profile in the die in the radial direction reduces symmetrically in both directions beyond the height of the compact for both powders. Finally, the Ti powder shows a significantly higher frictional coefficient at the maximum axial compaction stress, and consequently a higher maximum axial ejection stress than the Fe powder.

  17. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.

    PubMed

    Cunningham, J C; Sinka, I C; Zavaliangos, A

    2004-08-01

    In this first of two articles on the modeling of tablet compaction, the experimental inputs related to the constitutive model of the powder and the powder/tooling friction are determined. The continuum-based analysis of tableting makes use of an elasto-plastic model, which incorporates the elements of yield, plastic flow potential, and hardening, to describe the mechanical behavior of microcrystalline cellulose over the range of densities experienced during tableting. Specifically, a modified Drucker-Prager/cap plasticity model, which includes material parameters such as cohesion, internal friction, and hydrostatic yield pressure that evolve with the internal state variable relative density, was applied. Linear elasticity is assumed with the elastic parameters, Young's modulus, and Poisson's ratio dependent on the relative density. The calibration techniques were developed based on a series of simple mechanical tests including diametrical compression, simple compression, and die compaction using an instrumented die. The friction behavior is measured using an instrumented die and the experimental data are analyzed using the method of differential slices. The constitutive model and frictional properties are essential experimental inputs to the finite element-based model described in the companion article. PMID:15236452

  18. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    PubMed

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. PMID:18076095

  19. The properties of aluminum alloys containing nickel, produced using powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Jamaludin Shamsul, B.; Ahmad, Khairel R.; Hussein, Wan M. H.

    2015-05-01

    In this paper, the effects of nickel on the microstructure and mechanical properties of experimental an Al-Zn-Mg-Cu PM alloys under the impacts of the retrogression and re-aging treatment was investigated. Green compacts pressed at 370 MPa were then sintered at temperature 650°C in argon atmosphere for two hours. The sintered samples subjected to the homogenizing condition at 470°C for 1.5 hours then aging at 120°C for 24 hours and retrogressed at 180°C for 30 minutes, and then re-aged at 120°C for 24 hours. Characterization's results indicate that the microstructures of an Al-Zn-Mg-Cu-Ni PM alloys presented an intermetallics compound in the aluminum's matrix, identified as the AlNi and Al3Ni2 phases besides the MgZn and Mg2Zn11 phases which produced of the precipitation hardening during heat treatment. These compounds with precipitates provided strengthening of dispersion that led to improved Vickers's hardness and dinsifications properties of the alloys.

  20. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  1. Characterization of Plastic Flow Pertinent to the Evolution of Bulk Residual Stress in Powder-Metallurgy, Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.

    2015-09-01

    The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.

  2. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a

  3. Thermally stimulated current spectra of binder resin powders for copiers: Correction for thermal shrinkage of the sample powder compactions

    NASA Astrophysics Data System (ADS)

    Ikezakt, K.; Murata, Y.

    2008-12-01

    Thermally stimulated current (TSC) spectra observed under open- circuit condition for styrene- acrylic binder resin powder compactions for toners are corrected for their thermal shrinkage during TSC observation. For this binder resin, extrinsic current from motion of powder compactions with charges due to their thermal shrinkage was found to be much more effective than the sensitivity coefficient of a TSC measuring apparatus used. Particle size dependence of charge retention power of the resin powders was also examined by using this correction method and found that it decreased with decreasing their particle size.

  4. Thermodynamic analysis of compact formation; compaction, unloading, and ejection. I. Design and development of a compaction calorimeter and mechanical and thermal energy determinations of powder compaction.

    PubMed

    DeCrosta, M T; Schwartz, J B; Wigent, R J; Marshall, K

    2000-03-30

    The aim of this investigation was to determine and evaluate the thermodynamic properties, i.e. heat, work, and internal energy change, of the compaction process by developing a 'Compaction Calorimeter'. Compaction of common excipients and acetaminophen was performed by a double-ended, constant-strain tableting waveform utilizing an instrumented 'Compaction Simulator.' A constant-strain waveform provides a specific quantity of applied compaction work. A calorimeter, built around the dies, used a metal oxide thermistor to measure the temperature of the system. A resolution of 0.0001 degrees C with a sampling time of 5 s was used to monitor the temperature. An aluminum die within a plastic insulating die, in conjunction with fiberglass punches, comprised the calorimeter. Mechanical (work) and thermal (heat) calibrations of the elastic punch deformation were performed. An energy correction method was outlined to account for system heat effects and mechanical work of the punches. Compaction simulator transducers measured upper and lower punch forces and displacements. Measurements of the effective heat capacity of the samples were performed utilizing an electrical resistance heater. Specific heat capacities of the samples were determined by differential scanning calorimetry. The calibration techniques were utilized to determine heat, work, and the change in internal energies of powder compaction. Future publications will address the thermodynamic evaluation of the tablet sub-processes of unloading and ejection. PMID:10722955

  5. The effect of space holder content and decomposition methods in fabrication of aluminum foams by powder metallurgy method using carbamide space holder

    NASA Astrophysics Data System (ADS)

    Amirah, A. H.; Nurulakmal, M. S.; Anasyida, A. S.

    2016-07-01

    The effect of space holder amount and decomposition methods on the morphology, density and porosity and compressive properties of aluminum foams were investigated. Aluminum foam was fabricated by powder metallurgy method using spherical carbamide as space holder using three different decomposition method of carbamide includes; dissolution process, normal sintering process and two step sintering process. Aluminum foam with 60 wt.% carbamide has the lowest density and exhibited the highest porosity for all the decomposition. The results indicated that Al foams produced by dissolution method have the highest compressive properties with acceptable density and porosity value.

  6. Characterization by X-ray tomography of granulated alumina powder during in situ die compaction

    SciTech Connect

    Cottrino, Sandrine; Jorand, Yves Maire, Eric; Adrien, Jérôme

    2013-07-15

    Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We have demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.

  7. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  8. Towards an improved understanding of strength and anisotropy of cold compacted powder

    NASA Astrophysics Data System (ADS)

    Wang, Wenhai

    The strength of powder compacts after cold compaction is known to be anisotropic, which comes from the directionality of microstructure resulting from initial particle morphology and/or from particle deformation during compaction. Current work focuses on multi-scale numerical analysis of powder compaction with emphasis on the role of interparticle cohesion on post-compaction mechanical properties. At macroscopic level, we applied phenomenological model to describe the mechanical behavior of powder, in which the material is considered to be continuum medium. A user subroutine (VUMAT) was successfully developed for ABAQUS/Explicit analysis, in which one of the popular phenomenological models for powder compaction---Drucker Prager/Cap model---is implemented. By studying of pharmaceutical powder die compaction and subsequent diametrical compression test via finite element analysis, the capabilities and limitations of current constitutive models are evaluated on predicting such as density, stress and tool force evolution, as well as the strength and fracture tendency. Our results illustrate that current model has good predictive capability of powder densification (e.g. density evolution) but can not predict post-compaction strength well. The following studies focus on evaluating the physics and mechanics occurring at particle level. The compaction of granular media was explored by using MPFEM approach. In the new model, individual particles discretized with a finite element mesh allow for a full description of contact mechanics and local and global particle kinematics. The introduction of a layer of degrading material on the surface of each particle provides the means of introducing variable cohesion and its effect on the final strength of compacts. The simulations show that the unloading creates tensile stresses at the root of the contact necks, which may cause partial or full separation of contact interface when the cohesion developed during loading is not strong

  9. Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Adli, Nisrin; Razak, Nurul Razliana Abdul; Saud, Norainiza

    2016-07-01

    Due to the toxicity of lead (Pb), the exploration of another possibility for lead-free solder is necessary. Nowadays, SnCu alloys are being established as one of the lead-free solder alternatives. In this study, Sn-0.7Cu lead-free solder with an addition of 1wt% and 5wt% Al were investigated by using powder metallurgy method. The effect of Al addition on the wettability and intermetallic compound thickness (IMC) of Sn-0.7Cu-Al lead-free solder were appraised. Results showed that Al having a high potential to enhance Sn-0.7Cu lead-free solder due to its good wetting and reduction of IMC thickness. The contact angle and IMC of the Sn-0.7Cu-Al lead-free solder were decreased by 14.32% and 40% as the Al content increased from 1 wt% to 5 wt%.

  10. Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual-Phase, Precipitation-Hardened, Powder Metallurgy Stainless Steels

    NASA Astrophysics Data System (ADS)

    Stewart, J. L.; Williams, J. J.; Chawla, N.

    2012-01-01

    The effects of thermal aging on the microstructure and mechanical behavior of dual-phase, precipitation-hardened, powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels, and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 811 K (538 °C) in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite nanohardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties.

  11. Finite element model of iron powder compaction at above room temperature

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Ariffin, A. K.

    2015-05-01

    This paper presents the finite element modelling of iron powder compaction process at above ambient temperature. The deformation behaviour of powder mass at elevated temperature was assumed to be rate independent thermo-elastoplastic material where the material constitutive laws were derived based on a continuum mechanics approach by considering a large displacement based finite element formulation. The temperature dependent material parameters were established through experimentation. Two constitutive relations namely Mohr-Coulomb and Elliptical Cap yield models were used to represent the deformation behaviour of the powder mass during the compaction process. These yield models were tested, however an Elliptical Cap model was shown to be the most appropriate to represent the compaction process. The staggered-incremental-iterative solution strategy was established to solve the non-linearity in the systems of equations. Some numerical simulation results were validated through experimentation, where a good agreement was observed.

  12. Numerical modeling of dynamic powder compaction using the Kawakita equation of state

    NASA Astrophysics Data System (ADS)

    Mann, A. P.; Pullin, D. I.; Macrossan, M. N.; Page, N. W.

    1991-09-01

    Dynamic powder compaction is analyzed using the assumption that the powder behaves, while it is being compacted, like a hydrodynamic fluid in which deviatoric stress and heat conduction effects can be ignored throughout the process. This enables techniques of computational fluid dynamics such the equilibrium flux method to be used as a modeling tool. The equation of state of the powder under compression is assumed to be a modified version of the Kawakita loading curve. Computer simulations using this model are performed for conditions matching as closely as possible with those from experiments by Page and Killen [Powder Metall. 30, 233 (1987)]. The numerical and experimental results are compared and a surprising degree of qualitative agreement is observed.

  13. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  14. Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoshihito; Kato, Hidemi; Inoue, Akihisa; Masumoto, Tsuyoshi

    1995-10-01

    We report the production of full strength compacts of metallic glass by warm extrusion of powders at the supercooled liquid state just above the glass transition temperature. The alloy used was Zr65Al10Ni10Cu15 (at. %) which has the lowest viscosity among Zr-based metallic glasses with large supercooled liquid region. The tensile strength and Young's modulus of the glassy powder compacts were 1520 MPa and 80 GPa, respectively, which are similar to that obtained in the as-cast bulk alloy and melt-spun ribbon. This opens up possibilities of producing high strength amorphous alloys with complex shapes.

  15. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    SciTech Connect

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-05-10

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10{sup {minus}3}). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10{sup {minus}2}, however, their densities are usually great than 5 x 10{sup 3} kg m{sup {minus}3}, or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process.

  16. Experiments and modelling of dynamic powder compaction in the scope of deflagration to detonation transition studies

    NASA Astrophysics Data System (ADS)

    Bodard, Sebastien; Lapebie, Emmanuel; Saurel, Richard; Daniel, Eric; Tosello, Robert; Lafontaine, Eric

    2015-06-01

    Understanding DDT in granular media is of prime interest for ammunition safety. However, the mechanisms involved are multiphasic, granular and multi-scale. To progress in DDT understanding it is thus necessary to focus on some mechanisms. As compaction plays a prominent role in DDT it is important to accurately model this phenomenon. In this communication, dynamic compaction of inert powder is studied to focus on the mechanical effects taking place in early stages of DDT. Both experimental and modelling aspects are considered. A novel experimental setup is designed to generate a dynamic 1D compaction. It consists in a container filled with powder and closed by a piston. A projectile launched with a gas gun impacts the piston rod to compress the powder. High-speed cameras with grain-scale resolution record the test. The velocity field is determined with image correlation. A multiphase compaction model (Saurel et al., 2010) has been implemented. Granular effects are taken into account with a granular equation of state, determined by quasi-static compaction. With additional features such as wall friction, good agreement between experiments and computations is found. The experimental apparatus is then used to study reactive powders. This work is supported by DGA.

  17. Dynamic Compaction Modeling Comparison for Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John; Schwalbe, Larry; Chapman, D. J.; Lloyd, Andrew; Ward, Aaron

    2005-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized porous material models, P-lambda and P-alpha, in conjunction with a linear Us-up Hugoniot. Two hydrocodes were used to simulate the compaction event: CTH and KO. CTH is a three-dimensional Eulerian hydrocode developed at Sandia National Laboratory and KO is a one-dimensional Lagrangian hydrocode developed at Lawrence Livermore National Laboratory. A comparison of the advantages and disadvantages, along with a discussion of the salient features, of the two models are presented.

  18. Packing fraction and compaction dynamics of magnetic powders

    NASA Astrophysics Data System (ADS)

    Lumay, G.; Vandewalle, N.

    2009-06-01

    We have investigated experimentally the influence of magnetic interactions between the grains (i) on the packing fraction and (ii) on the compaction dynamics of a granular pile. The granular material used to perform these studies is made of ferromagnetic grains submitted to an external magnetic field B⃗. The evolution of the packing fraction as a function of the Bond number Bo witch is the ratio between the cohesive force Fc and the grain weight mg has been measured. Moreover, we present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing ηRLP≃0.56 to the upper limit of random close packing ηRCP≃0.64. This broad range of packing fraction values are obtained under normal gravity in air, by using a magnetic cohesion between the grains during the initialization of the pile. Concerning the compaction dynamics, the influence of the magnetic interaction on the compaction characteristic time τ has been measured.

  19. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    SciTech Connect

    Jonsen, P.; Haeggblad, H.-A.

    2007-05-17

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments.

  20. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    NASA Astrophysics Data System (ADS)

    Jonsén, P.; Häggblad, H.-A.˚.

    2007-05-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments.

  1. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 250 citations and includes a subject term index and title list.)

  2. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 250 citations and includes a subject term index and title list.)

  3. Investigation of compaction and sintering behavior of SiC powder after ultra-fine treatment.

    PubMed

    Guo, Xing-Zhong; Yang, Hui

    2004-08-01

    Silicon carbide ceramics were prepared with SiC powder treated by the fluidized bed opposed jet mill as raw materials, and the effects of the ultra-fine treatment mechanism on the compaction and sintering behavior of SiC ceramics were investigated. The results showed that the compacts had higher density and microstructure homogeneity when the sintering temperature of the compact was decreased; and that the surface microstructure, densification and mechanical properties of the sintered body could be ameliorated obviously. PMID:15236481

  4. Investigation of Conventional- and Induction-Sintered Iron and Iron-Based Powder Metal Compacts

    NASA Astrophysics Data System (ADS)

    Çavdar, Uğur; Atik, Enver

    2014-06-01

    Induction sintering was developed as an alternative method to conventional sintering to sinter iron-based powder metal (PM) compacts. Several compositions of compact such as pure iron, 3 wt.% copper mixed iron, or 3 wt.% bronze mixed iron were sintered by using induction sintering machines with 12 kW power and 30 kHz frequency. The mechanical properties, microstructural properties, densities, and microhardness values were investigated for both processes. Iron-based PM compacts sintered at 1120°C by induction in 8.33 min (500 s) were found to be similar to those sintered conventionally in 30 min. The results were compared with the experimental studies.

  5. Continuum-based FEM modeling of ceramic powder compaction using a cap-plasticity constitutive model

    SciTech Connect

    ARGUELLO JR.,JOSE G.; FOSSUM,ARLO F.; ZEUCH,DAVID H.; EWSUK,KEVIN G.

    2000-01-25

    Common ceramic component manufacturing typically involves the processing of the raw materials in powder form. Granulated powder is formed into a green body of the desired size and shape by consolidation, often by simply pressing nominally dry powder. Ceramic powders are commonly pressed in steel dies or rubber bags with the aim of producing a near-net-shape green body for subsequent sintering. Density gradients in these compacts, introduced during the pressing operation, are often severe enough to cause distortions in the shape of the part during sintering due to nonuniform shrinkage. In such cases, green machining or diamond grinding operations may be needed to obtain the desired final shape and size part. In severe cases, nonuniform shrinkage may even cause fracture in the parts during sintering. Likewise, density gradients can result in green bodies that break during ejection from the die or that are too fragile to be handled during subsequent processing. Empirical relationships currently exist to describe powder compaction but provide little understanding of how to control die design or compaction parameters to minimize density gradients thereby forcing the designer to use expensive and time consuming trial and error procedures. For this reason, interest has grown in developing computational tools to address this problem (Aydin et al., 1996 and Coube, 1998). The goal of the present work was to develop a general continuum-based finite element model for ceramic powder compaction that can be used to aid and guide the design and pressing of ceramic powders. Such a model can be used to improve both part and die/bag pressing design, resulting in more efficient and cost effective ways to make better parts.

  6. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  7. Physical properties of a nickel-base alloy prepared by isostatic pressing and sintering of the powdered metal.

    PubMed

    Fuys, R A; Craig, R G; Asger, K

    1976-04-01

    The physical and mechanical properties of samples of a nickel-base alloy fabricated by powder metallurgy were determined. The particle sizes of the powders used to make the samples varied from -80/ +200 mesh to -325 mesh. The compaction pressure varied from 138 to 414 MN/m2 and the sintering temperature varied from 1150 to 1250 degrees C. The shrinkage during processing, the porosity, tensile strength, yield strength, elongation, and elastic modulus were used to characterize the samples. The strength of the samples generally increased with decreasing particle size of the powder and increasing compaction pressure and sintering temperatures. The porosity and strength, therefore, could be varied over a wide range by controlling the various parameters. The properties of the samples prepared by powder metallurgy were compared with those of the cast alloy and compact bone. Conditions can be selected that will yield equivalent or better properties by powder metallurgy than by casting. PMID:1066448

  8. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. PMID:27040264

  9. Liquid precursor infiltration processing of powder compacts. 2: Fracture toughness and strength

    SciTech Connect

    Tu, W.C.; Lange, F.F.

    1995-12-01

    Si{sub 3}N{sub 4} powder compacts were infiltrated with liquid precursors which produce either Zr(Y)O{sub 2} (3 mol% Y{sub 2}O{sub 3}) solid solution or amorphous Si{sub 3}N{sub 4} after pyrolysis at relative low temperatures and without shrinkage. Results show that cracks which occur within a thin, surface layer of the precursor during pyrolysis can extend into the powder compact. As suggested by theory, this cracking phenomenon could be avoided either by making the powder compact stronger before infiltration or by removing the thin precursor layer before pyrolysis. The mechanical properties of these materials were studied as a function of residual porosity. It was observed that crack extension occurred within the second phase produced by infiltration and pyrolysis. The second phase appeared to govern the critical stress intensity factor (K{sub c}) of the material. K{sub c} was found to be a linear function of the change in residual, relative porosity divided by the initial, relative porosity in the powder compact. Reasonable flexural strengths ({approx} 300 MPa) could be achieved despite considerable residual porosity.

  10. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Cmpendex*plus database). Published Search

    SciTech Connect

    1997-03-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1998-03-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Compaction of Ceramic Microspheres, Spherical Molybdenum Powder and Other Materials to 3 GPa

    SciTech Connect

    Carlson, S R; Bonner, B P; Ryerson, F J; Hart, M M

    2006-01-27

    Pressure-volume relationships were measured at room temperature for eight granular materials and one specimen of epoxy foam. The granular materials included hollow ceramic microspheres, spherical molybdenum powder, Ottawa sand, aluminum, copper, titanium and silicon carbide powders and glassy carbon spheres. Measurements were made to 0.9 GPa in a liquid medium press for all of the granular materials and to 3 GPa in a solid medium press for the ceramic microspheres and molybdenum powder. A single specimen of epoxy foam was compressed to 30 MPa in the liquid medium press. Bulk moduli were calculated as a function of pressure for the ceramic microspheres, the molybdenum powder and three other granular materials. The energy expended in compacting the granular materials was determined by numerically integrating pressure-volume curves. More energy was expended per unit volume in compacting the molybdenum powder to 1 GPa than for the other materials, but compaction of the ceramic microspheres required more energy per gram due to their very low initial density. The merge pressure, the pressure at which all porosity is removed, was estimated for each material by plotting porosity against pressure on a semi-log plot. The pressure-volume curves were then extrapolated to the predicted merge pressures and numerically integrated to estimate the energy required to reach full density for each material. The results suggest that the glassy carbon spheres and the ceramic microspheres would require more energy than the other materials to attain full density.

  14. Decoupling of paramagnetic and ferrimagnetic AMS development during the experimental chemical compaction of illite shale powder

    NASA Astrophysics Data System (ADS)

    Bruijn, Rolf H. C.; Almqvist, Bjarne S. G.; Hirt, Ann M.; Benson, Philip M.

    2013-03-01

    Inclination shallowing of detrital remanent magnetization in sedimentary strata has solely been constrained for the mechanical processes associated with mud deposition and shallow compaction of clay-rich sediment, even though a significant part of mud diagenesis involves chemical compaction. Here we report, for the first time, on the laboratory simulation of magnetic assemblage development in a chemically compacting illite shale powder of natural origin. The experimental procedure comprised three compaction stages that, when combined, simulate the diagenesis and low-grade metamorphism of illite mud. First, the full extent of load-sensitive mechanical compaction is simulated by room temperature dry axial compression. Subsequently, temperature controlled chemical compaction is initiated by exposing the sample in two stages to amphibolite or granulite facies conditions (temperature is 490 to 750°C and confining pressure is 170 or 300 MPa) both in the absence (confining pressure only) and presence of a deformation stress field (axial compression or confined torsion). Thermodynamic equilibrium in the last two compaction stages was not reached, but illite and mica dehydroxylation initiated, thus providing a wet environment. Magnetic properties were characterized by magnetic susceptibility and its anisotropy (AMS) in both high- and low-applied field. Acquisition of isothermal remanent magnetization (IRM), stepwise three-component thermal de-magnetization of IRM and first-order reversal curves were used to characterize the remanence-bearing minerals. During the chemical compaction experiments ferrimagnetic iron-sulphides formed after reduction of magnetite and detrital pyrite in a low sulphur fugacity environment. The degree of low-field AMS is unaffected by porosity reduction from 15 to ˜1 per cent, regardless of operating conditions and compaction history. High-field paramagnetic AMS increases with compaction for all employed stress regimes and conditions, and is

  15. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%. PMID:25942923

  16. Compressibility of binary powder formulations: investigation and evaluation with compaction equations.

    PubMed

    Gentis, Nicolaos D; Betz, Gabriele

    2012-02-01

    The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. PMID:22081488

  17. Liquid precursor infiltration processing of powder compacts. 1: Kinetic studies and microstructure development

    SciTech Connect

    Tu, W.C.; Lange, F.F.

    1995-12-01

    The kinetics of infiltrating a solution precursor into Si{sub 3}N{sub 4} powder compacts were studied using either water or an aqueous solution of Zr-nitrate and Y-nitrate that formed a crystalline Zr(Y)O{sub 2} (3 mol% Y{sub 2}O{sub 3}) solid solution during pyrolysis. When the powder compact contained air, the infiltration involved two steps: (1) relatively rapid intrusion of liquid via flow due to capillary pressure and (2) diffusion of entrapped gas to the surface as its pressure became equal to the capillary pressure. The kinetics of both processes are described with different parabolic rate laws--Darcy`s law and Fick`s law, respectively. When the intruded precursor is converted to an inorganic during heat treatment, the void space is partially filled with pyrolyzed precursor without shrinkage of the Si{sub 3}N{sub 4} powder. The movement of precursor molecules was prevented by gelling prior to drying, viz., by soaking the infiltrated bodies in an aqueous NH{sub 4}OH solution. Microstructures developed during cyclic precursor infiltration and pyrolysis were characterized to show that cracklike voids are produced within the pyrolyzed precursor due to its large volume change during pyrolysis and densification; the size distribution of the cracklike voids is proportional to the size distribution of the voids within the initial powder compact.

  18. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  19. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.

    PubMed

    Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu

    2012-05-30

    Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders. PMID:22402475

  20. A comparison of different powder compaction processes adopted for synthesis of lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, M. L. V.; Bhanu Prasad, V. V.; James, A. R.

    2016-04-01

    Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain ( S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.

  1. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  2. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    NASA Astrophysics Data System (ADS)

    Šturm, Roman; Štefanikova, Maria; Steiner Petrovič, Darja

    2015-01-01

    In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  3. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Qu, Xuan-hui; He, Xin-bo; Zhang, Lin

    2012-07-01

    The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.

  4. Effect of Ca content percentage and sintering temperature on corrosion rate in Mg-Ca composite fabricated using powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Syaza Nabilla, M. S.; Zuraidawani, C. D.; Nazree, D. M.

    2016-07-01

    Magnesium (Mg) is a good element with high potential to be used in various field of work. It has the benefit of lightweight and low density its application is limited for Mg is relatively low in term of strength. Hence, calcium (Ca) is chosen to be mixed with Mg as additional element for it is lightweight and non-toxic. In this research, Mg is prepared with different weight percentage (0, 0.5, 1, 1.5 and 2 wt. %) of Cavia powder metallurgy (PM) method. The samples were sintered at 500 and 550°Cin argon atmosphere and electrochemically using SBF solution as the electrolyte medium. The effect of Ca content on corrosion rateis investigated by focusing on the microstructure and properties of sintered sample. Increase of Ca content causes reduction in grain structure due to increase Mg2Ca phase at grain boundaries. Subsequently, reduce corrosion resistance. Hence, the amount of Ca content and sintering temperature of Mg-Ca composite is controlled to acquire optimum corrosion rate.

  5. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    PubMed

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-01

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications. PMID:26836444

  6. Systematic Study of Microwave Absorption, Heating, and Microstructure Evolution of Porous Copper Powder Metal Compacts

    NASA Astrophysics Data System (ADS)

    Zimmerman, Darin; Diehl, John; Johnson, Earnie; Martin, Kelly; Miskovsky, Nicholas; Smith, Charles; Weisel, Gary; Weiss, Brock; Ma, Junkun

    2008-03-01

    We present a systematic study of the absorption, heating behavior, and microstructure evolution of porous copper powder metal powder compacts subjected to 2.45 GHz microwave radiation and explain our observations using known physical mechanisms. Using a single mode microwave system, we place the compacts in pure electric (E) or magnetic (H) fields and compare the heating trends. The observed trends in the E- and H-field heating reflect the dramatic changes in the conductivity, permittivity, and permeability of the samples caused by the microstructure evolution during heating in the two types of fields. The observed dependence of the initial microwave heating of the samples suggests that the microwave absorption in the sample is dominated by the properties of the individual metal particles composing the sample.

  7. Micro-scale simulation of dynamic compaction of oxide and metal powder mixture

    NASA Astrophysics Data System (ADS)

    Kamegai, M.; Walton, Otis R.; Taylor, A. G.

    1989-10-01

    Many features of the dynamic compaction of powders are potentially favorable for use in processing high T(sub c) oxide superconductors. Conventional sintering methods tend to produce unwanted impurities, voids, and oxygen-deficient grain boundaries and have, thus, failed to form bulk oxide superconductors with high critical current. One proposed approach for a dynamic process is to compress a mixture of high purity single crystallite particles and fine silver particles. Computer modeling of dynamic compaction has thus far been limited to bulk simulation of the process by continuum mechanics codes. Results of compaction experiments are not reliably predicted with such techniques because the micro-scale dynamics of powder compaction are only modeled by phenomenological approximation. A micro-scale simulation technique was developed and applied to computer models similar to those of molecular dynamics, which were originally designed to simulate the flow behavior of inelastic, frictional particles. In this method, the oxide grain is represented by a nearly elastic sphere while an individual silver grain is modeled by an aggregate of effective inelastic-frictional particles bound by a prescribed interparticle force. The first 2-D simulation results for a simple configuration (a single aggregate silver grain crushed between two nearly elastic ceramic spheres) are compared with the continuum calculations for the same configuration. This micro-scale simulation technique can be extended to study an assembly of dissimilar grains in 3-D space.

  8. Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Mouawad, B.; Boulnat, X.; Fabrègue, D.; Perez, M.; de Carlan, Y.

    2015-10-01

    Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y2O3) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050°C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.

  9. Effects of C and Hf concentration on phase relations and microstructure of a wrought powder-metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1977-01-01

    NASA IIB-11, a candidate alloy for advanced temperature turbine engine disks, and four modifications with varying C and Hf concentrations were produced from prealloyed powders. Several notable effects of C and Hf concentration in the alloys were observed. Both the amount of the gamma-prime phase and its solvus temperature increased with decreasing C, but only the gamma-prime solvus was affected by Hf, increasing with increasing Hf. Hf also promoted a cellular gamma-prime precipitation. Hf was, however, about equally distributed between gamma-prime and gamma. Hf and C both affected the carbides formed. Increasing both promoted formation of an MC relative to that of an M6C.

  10. Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron

    NASA Astrophysics Data System (ADS)

    Yen, Fu-Cheng; Hwang, Kuen-Shyang

    2012-02-01

    Ti51Ni49 compacts consolidated with persistent liquid-phase sintering usually contain Ti2Ni networks at the grain boundaries, which cause adverse effects on mechanical properties. With 0.5 and 1.0 at pct B additions, fine TiB forms during heating and sintering and acts as a nucleation site for Ti2Ni to precipitate within the grain during cooling. The resultant uniform distribution of TiB and Ti2Ni impedes grain growth and prevents the formation of continuous Ti2Ni precipitates at grain boundaries. As a result, a significant increase in tensile elongation, and not a decrease, as in most as-cast titanium alloys, is obtained because of these changes. The tensile strength also increases, without deterioration of the shape memory characteristics. The tensile strength and elongation are close to those of wrought TiNi alloys.

  11. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains a minimum of 115 citations and includes a subject term index and title list.)

  12. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains a minimum of 97 citations and includes a subject term index and title list.)

  15. Rapid-solidification processing and powder metallurgy of al alloys. Final technical report, 15 April 1982-15 April 1985

    SciTech Connect

    Fraser, H.L.

    1986-10-29

    Regarding work on the development of microstructure during rapid solidification, three areas were addressed. The first of these involved a determination of the mechanism of formation of the so-called zones A and B in hypereutectic Al-transition metal alloys. The second area of work involving the development of microstructure concerns submerged phase transformations. In a study of Al-Be hypereutectic alloys, it was determined that solidification proceeded by a set of phase transformations that may be described by a monotectic reaction. The third area of study concerning microstructural development involves quasi-crystalline Al alloys. In fact, work done in this program has concentrated on the potentially beneficial aspects of quasi-crystalline phases in the microstructure of Al alloys. Work on the consolidation of particulate was concentrated on the use of conventional techniques (.e. extrusion) and novel processes (i.e. dynamic compaction). An estimate of the mechanical properties of rapidly solidified Al alloys was obtained. As explained above, the effect of extrusion is to cause decomposition of the rapidly solidified microstructure. A comparison was made, using the alloy Al-8Fe-2Mo, between the tensile properties of the decomposed microstructure (.e. extruded) and subscale test specimens produced by laser surface melting, consisting entirely of zone A.

  16. The Influence of Sc and Zr Additions on the Microstructure and Mechanical Behavior of Ultrafine Grained Al-Mg Alloys Processed by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Harrell, Tammy Jeanne

    Additions of Sc and Zr to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc and Zr significantly increase the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultra-fine-grained (UFG) microstructure (e.g., 100's nm). Accordingly, we investigate the microstructural evolution and mechanical behavior of four powder metallurgy UFG Al-Mg-Sc-(Zr) compositions and compared the results to those of equivalent fine-grained (FG) compositions - Al-5Mg-0.1Sc, Al-3Mg-0.5Sc, Al-5Mg-0.4Sc and Al-5Mg-0.2Sc-0.2Zr (wt.%). Experimental materials were consolidated by hot isostatic pressing (HIP'ing) followed by extrusion or dual mode dynamic (DMD) forging. Under identical processing conditions, UFG ternary Al-5Mg-0.4Sc materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 - 3 μm apart, while precipitates in the FG materials have an average diameter of 24 nm and are spaced 50 - 200 nm apart. The strengthening mechanisms are quantitatively evaluated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are dispersion strengthening due to the presence of Mg-rich oxides/nitrides and precipitate strengthening, respectively. Preliminary results suggest that replacing 0.2 wt% Sc with Zr results in higher strength, lower ductility and a change in precipitate distribution.

  17. Effect of a supersolvus heat treatment on the microstructure and mechanical properties of a powder metallurgy processed nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Stolz, Darryl Slade

    Powder Metallurgy (P/M) processed nickel-base superalloys are used as turbine disk materials in jet engines. The P/M processing results in a homogenous microstructure. Large amounts of strengthening elements can be incorporated into the chemistry of these P/M alloys. In addition, the ability to produce near net-shaped parts with powder consolidation may offer the potential for large cost savings. However, the fatigue properties of P/M superalloys in the as-consolidated form have suffered because of the defect sensitivity of the as-consolidated microstructure. Expensive, thermomechanical steps are necessary to break down defects, so that the P/M parts can be considered defect-tolerant. As a result, the true potential cost savings for using P/M superalloys in turbines have never been realized. This program was undertaken to examine the potential for utilizing an alternate heat treatment with P/M Alloy 720LI to generate a potentially defect-tolerant microstructure. This heat treatment had a soak above the gamma' solvus temperature followed by a controlled cool through the solvus. This produced gamma grains with a regular array of large dendritic-shaped secondary gamma' within the grains. Mechanical testing was carried out to fully evaluate the effect of this alternate heat treatment on the mechanical properties of Alloy 720LI. The standard heat treatment had longer lifetimes at the lower stress range conditions during high cycle fatigue; however, the alternate heat treatment was superior at the highest stress range. Fracture analysis suggests that this is due to the grain size difference. During tensile testing, the standard heat treatment had higher yield and ultimate strengths but lower ductility than the alternate heat treatment. This is thought to be due to the larger amounts of tertiary gamma ' present in the microstructure produced by the standard heat treatment. Finally, the standard heat treatment had longer creep lifetimes at the lowest test temperature. The

  18. Characterization techniques to validate models of density variations in pressed powder compacts

    SciTech Connect

    Garino, T.; Mahoney, M.; Readey, M.; Ewsuk, K.; Gieske, J.; Stoker, G.; Min, S.

    1995-07-01

    Techniques for characterizing density gradients generated during typical powder compaction processes are reviewed and several are evaluated. The techniques reviewed are ultrasonic velocity measurements, laser ultrasonic velocity measurements, x-ray radiography, autoradiography, computer tomography (CT), magnetic resonance imaging (MRI), and simple image analysis of polished cross-sections. Experimental results are reported for all of these techniques except autoradiography, CT and MRI. The test specimens examined were right circular cylinders of a high length/diameter ratio (to ensure significant density variation) pressed from commercial spray-dried alumina powders. Although the density gradients could be detected with all four techniques, ultrasonic velocity measurements gave the best contour map of gradients and is therefore most suitable for model validation. On the other hand, it was concluded that x-ray radiography is preferable in situations where cost and/or number of samples are more important that high resolution.

  19. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.

    PubMed

    Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2015-12-30

    The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. PMID:26117279

  20. Pseudo-viscosity analysis of dynamic compactions of multilayer copper powder medium by punch impact

    SciTech Connect

    Tokushima, Koji; Sano, Yukio

    1995-08-01

    In this paper, the compaction of a multilayer copper powder medium by punch impact is analyzed by a pseudo-viscosity method: equal thickness layers of lower (L) and higher (H) initial densities are arranged alternately. In the early stage of compaction, reflection and transmission of induced shock and elastic waves occur at the interfaces in the medium. As a result, the L layers are selectively compressed at first until the density distribution in the medium is uniform. Compaction then continues by the shock waves propagating through the medium. The final mean is influenced greatly by die wall friction. The influence is less in the L-H type arrangement where an L layer is in direct contact with the punch than in the H-L type arrangement for a given number of layers, because energy loss due to wall friction is smaller in the former. Separation of the punch from the medium and subsequent reimpingement was found to occur in some of the H-L type compactions.

  1. Exploration for shallow, compaction-induced gas accumulations, Fort Union Formation, Powder River Basin, Wyoming

    SciTech Connect

    Oldham, D.W.

    1996-06-01

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Fort Union Formation (Paleocene) in the Powder River Basin of Wyoming. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Gas is believed to have accumulated in localized structural highs early in the burial history of lenticular sands. Structural relief is due to the compaction contrast between sand and stratigraphically-equivalent fine-grained sediments. A shallow Fort Union gas play was based on reports of shallow gas shows, the occurrence of thick coals which could have served as sources for bacterial gas, and the presence of lenticular sandstones which may have promoted the development of compaction structures early in the burial process, to which bacterial gas migrated. Five geologic elements related to compactional trap development were used to rank prospects. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery of the Oedekoven Fort Union gas pool at a depth of 340 ft (104 m). The uncemented, very fine grained, well-sorted {open_quotes}Canyon sand{close_quotes} pay has extremely high intergranular porosity. Low drilling and completion costs associated with shallow, high-permeability reservoirs, an abundance of subsurface control with which to delineate prospects, and existing gas-gathering systems make Fort Union sandstones attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.

  2. Effect of Particle Size on Microstructure and Cold Compaction of Gas-Atomized Hypereutectic Al-Si Alloy Powder

    NASA Astrophysics Data System (ADS)

    Cai, Zhiyong; Wang, Richu; Peng, Chaoqun; Zhang, Chun

    2015-04-01

    The effect of particle size on the cold compaction behavior of rapidly solidified hypereutectic Al-27 wt pct Si alloy powder was studied by double action axial pressing at room temperature. The geometrical characteristics (morphology, size, shape, and distribution of Si reinforcing phase) and hardness of the powder as a function of the particle size were investigated. The result shows that finer powder particle size showed smaller primary Si particles and achieved a lower density at a given pressure. Whereas, the microhardness of Al matrix increases while the particle size decreases, which indicates that the supersaturation due to the high solidification rate increases the deformation resistance of the alloy powder. Furthermore, the geometrical characteristics of Si phases strongly depend on the particle size due to the suppressed growth of Si phases during atomization. This microstructural characteristic evidently affects the powder compactibility at high applied pressures.

  3. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  4. A Numerical Study of Material Parameter Sensitivity in the Production of Hard Metal Components Using Powder Compaction

    NASA Astrophysics Data System (ADS)

    Andersson, Daniel C.; Lindskog, Per; Staf, Hjalmar; Larsson, Per-Lennart

    2014-06-01

    Modeling of hard metal powder inserts is analyzed based on a continuum mechanics approach. In particular, one commonly used cutting insert geometry is studied. For a given advanced constitutive description of the powder material, the material parameter space required to accurately model the mechanical behavior is determined. These findings are then compared with the corresponding parameter space that can possibly be determined from a combined numerical/experimental analysis of uniaxial die powder compaction utilizing inverse modeling. The analysis is pertinent to a particular WC/Co powder and the finite element method is used in the numerical investigations of the mechanical behavior of the cutting insert.

  5. Simulation of polymer removal from a powder injection molding compact by thermal debinding

    NASA Astrophysics Data System (ADS)

    Lam, Y. C.; Yu, S. C. M.; Tam, K. C.; Shengjie, Ying

    2000-10-01

    Powder injection molding (PIM) is an important net-shape manufacturing process. Thermal debinding is a common methodology for the final removal of residual polymer from a PIM compact prior to sintering. This process is an intricate combination of evaporation, liquid and gas migration, pyrolysis of polymer, and heat transfer in porous media. A better understanding of thermal debinding could lead to optimization of the process to prevent the formation of defects. Simulation of the process based on an integrated mathematical model for mass and heat transfer in porous media is proposed. The mechanisms of mass transport, i.e., liquid flow, gas flow, vapor diffusion, and convection, as well as the phase transitions of polymer, and their interactions, are included in the model. The macroscopic partial differential equations are formulated by volume averaging of the microscopic conservation laws. The basic equations consist of mass conservation and energy conservation and are solved numerically. Polymer residue, pressure, and temperature distributions are predicted. The importance of the various mass transfer mechanisms is evaluated. The effects of key mass transfer parameters on thermal debinding are discussed. It is revealed from the results that the assumed binder front, which is supposed to recede into the powder compact as removal progresses, does not exist. The mass flux of polymer liquid is of the same order of the mass flux of polymer vapor in the gas phase, and the polymer vapor diffusion in the liquid phase is negligible.

  6. Microstructures and Tensile Mechanical Properties of Titanium Rods Made by Powder Compact Extrusion of a Titanium Hydride Powder

    NASA Astrophysics Data System (ADS)

    Zheng, Yifeng; Yao, Xun; Liang, Jiamiao; Zhang, Deliang

    2016-04-01

    Nearly fully dense titanium with good mechanical properties was fabricated rapidly by induction heating, holding, and hot extrusion of the TiH2 powder compacts. The dehydrogenation and consolidation processes took less than 15 minutes in total. The microstructures, contents of interstitial elements (H, O), tensile mechanical properties, and fracture behaviors of titanium samples made with different holding and extrusion temperatures [1273 K, 1373 K, and 1473 K (1000 °C, 1100 °C, and 1200 °C)] were investigated. The results showed that the hydrogen content in the extruded rods was around 0.09 wt pct when the holding and extrusion temperature was 1373 K or 1473 K (1100 °C or 1200 °C), with almost all of the TiH2 phase being transformed into Ti phase during the heating, holding, and extrusion process steps. The extruded Ti samples had a lamellar structure consisting of fine α lamellae with random orientations in different lamellar colonies and the relative density of all the extruded samples exceeded 99.5 pct. The residual TiH2 phase can reduce the ductility of extruded rods. The sample extruded at 1373 K (1100 °C) has the best elongation to fracture of 21.0 pct, and its average yield strength and ultimate tensile strength reached 536.8 and 691.8 MPa, respectively.

  7. Continuum-Based FEM Modeling of Ceramic Powder Compaction Using a Cap-Plasticity Constitutive Model

    SciTech Connect

    ARGUELLO JR.,JOSE G.; FOSSUM,ARLO F.; ZEUCH,DAVID H.; EWSUK,KEVIN G.

    2000-05-01

    Software has been developed and extended to allow finite element (FE) modeling of ceramic powder compaction using a cap-plasticity constitutive model. The underlying, general-purpose FE software can be used to model even the most complex three-dimensional (3D) geometries envisioned. Additionally, specialized software has been developed within this framework to address a general subclass of axisymmetric compacts that are common in industry. The expertise required to build the input deck, run the FE code, and post-process the results for this subclass of compacts is embedded within the specialized software. The user simply responds to a series of prompts, evaluates the quality of the FE mesh that is generated, and analyzes the graphical results that are produced. The specialized software allows users with little or no FE expertise to benefit from the tremendous power and insight that FE analysis can bring to the design cycle. The more general underlying software provides complete flexibility to model more complicated geometries and processes of interest to ceramic component manufacturers but requires significantly more user interaction and expertise.

  8. Plutonium Metallurgy

    SciTech Connect

    Freibert, Franz J.

    2012-08-09

    Due to its nuclear properties, Pu will remain a material of global interest well into the future. Processing, Structure, Properties and Performance remains a good framework for discussion of Pu materials science Self-irradiation and aging effects continue to be central in discussions of Pu metallurgy Pu in its elemental form is extremely unstable, but alloying helps to stabilize Pu; but, questions remain as to how and why this stabilization occurs. Which is true Pu-Ga binary phase diagram: US or Russian? Metallurgical issues such as solute coring, phase instability, crystallographic texture, etc. result in challenges to casting, processing, and properties modeling and experiments. For Ga alloyed FCC stabilized Pu, temperature and pressure remain as variables impacting phase stability.

  9. A material-sparing method for simultaneous determination of true density and powder compaction properties--aspartame as an example.

    PubMed

    Sun, Changquan Calvin

    2006-12-01

    True density results for a batch of commercial aspartame are highly variable when helium pycnometry is used. Alternatively, the true density of the problematic aspartame lot was obtained by fitting tablet density versus pressure data. The fitted true density was in excellent agreement with that predicted from single crystal structure. Tablet porosity was calculated from the true density and tablet apparent density. After making the necessary measurements for calculating tablet apparent density, the breaking force of each intact tablet was measured and tensile strength was calculated. With the knowledge of compaction pressure, tablet porosity and tensile strength, powder compaction properties were characterized using tabletability (tensile strength versus pressure), compactibility (tensile strength versus porosity), compressibility (porosity versus pressure) and Heckel analysis. Thus, a wealth of additional information on the compaction properties of the powder was obtained through little added work. A total of approximately 4 g of powder was used in this study. Depending on the size of tablet tooling, tablet thickness and true density, 2-10 g of powder would be sufficient for characterizing most pharmaceutical powders. PMID:16926076

  10. The influence of morphology on the low- and high-strain-rate compaction response of CeO2 powders

    NASA Astrophysics Data System (ADS)

    Fredenburg, D. A.; Koller, D. D.; Coe, Joshua D.; Kiyanda, C. B.

    2014-03-01

    The low- and high-strain-rate compaction response of three distinct morphology CeO2 powders was measured experimentally. At low-strain-rates, the compression path was found to vary with initial particle morphology as a result of differences in initial packing structure and particle rearrangement at low stresses. However, similar compression responses were observed at higher stresses under low-strain-rate loading. Dynamic experiments were performed at impact velocities between 0.15 and 0.78 km/s, and resulted in compaction stresses of 0.51-4.59 GPa in the powders. In contrast to the behavior observed at low stresses and low-strain-rates, dynamic loading resulted in a similar compaction response for all morphology powders. The dynamic results were treated with a Hayes equation of state augmented with a P-α compaction model, and good agreement between experimental and theoretical results was achieved. From the observed similarities in compressibility for the three morphology powders at elevated stresses at both low- and high-strain-rates, a relationship is proposed linking the measured strength properties at low-strain-rates to those controlling the compaction response under dynamic loading.

  11. Effect of initial microstructure on the compactability of rapidly solidified Ti-rich TiAl powder

    SciTech Connect

    Nishida, M.; Chiba, A.; Morizono, Y.; Kai, T.; Sugimoto, J.

    1997-12-31

    Initial microstructure dependence of compactability at elevated temperature in rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process (PREP) has been investigated. There were two kinds of powders with respect to the microstructure. The first one had a surface relief of a martensitic phase, which was referred as M powder. The second one had a dendritic structure, which was referred as D powder. {alpha}{sub 2}+{gamma} microduplex and {alpha}{sub 2}/{gamma} lamellar structures were formed in M and D powders of the Ti-40 at%Al alloy by heat treatment at 1,273 K, respectively. The microduplex structure consisted of {gamma} precipitate in the twin related {alpha}{sub 2} matrix with the usual orientation relationship. It was difficult to compact the D powder by hot pressing at 1,273 K under 50 MPa for 14.4 ks. On the other hand, the M powder was compacted easily by hot pressing with the same condition. The twin related {alpha}{sub 2} and {alpha}{sub 2} boundary changed to random ones and the {alpha}{sub 2} and {gamma} phases lost the usual orientation relationship in the duplex structure during the hot pressing. In other words, the low energy boundaries were changed to the high energy ones suitable for grain boundary sliding. Dislocations were scarcely observed inside of both the {alpha}{sub 2} and {gamma} crystal grains. It was concluded that the grain boundary sliding was a predominant deformation mode in the M powder during the hot pressing. D and M powders in Ti-45 and 47 at%Al alloys showed the same tendency as those in Ti-40 at%Al alloy during hot pressing.

  12. EXPLOSIVE COMPACTION OF CLAD GRAPHITE POWDERS AND OBTAINING OF COATINGS ON THEIR BASE

    SciTech Connect

    A. B. PEIKRISHIVILI; ET AL

    2000-11-01

    In order to consolidate graphite based powders and in order to obtain coatings with density values near to the theoretical ones clad graphite powders of the C{sub graphite} - Ni (C{sub g} - Ni) compositions were explosively compacted under different loading conditions. Theoretical calculations revealed that for assessing the stress-deformed state of C{sub g} - Ni compositions and computing the normal and tangent stress components (when V{sub D} < C{sub longitudinal} and V{sub D} < C{sub transversal}) it is recommended to apply the dynamic problem's solution model while the pressure impulse P = f(x) is being uniformly spread with constant rate along the boundary of a semi-infinite elastic body. The results of our experiments showed that it is possible to obtain high dense coatings from C{sub g}-Ni compositions bonded by an intermediate layer to the substrate material. The structure and properties of the coatings depends on the intensity of the shock loading and temperature. The effect of the shock loading conditions (temperature, loading intensity) on the structure, properties and structure/properties relationships for the C{sub g} - Ni coatings are discussed.

  13. Numerical simulation of solid-state sintering of metal powder compact dominated by grain boundary diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    The research effort is oriented towards the modeling of metal powder sintering to accurately predict the densification and distortion of a sintered part, which is mainly due to the differential shrinkage of a green compact. This research focuses on the study of the simulation of the sintering process that is dominated by grain boundary diffusion, which is recognized as one of the dominating sintering mechanisms. Specifically, a viscoelasticity model that accounts for the microstructural grain growth has been developed to simulate the thermal induced creep deformation in sintering. Sintering stress is treated as an equivalent hydrostatic pressure that links the microscale evolution to the macroscale deformation. To support that linkage, a grain boundary counting procedure has been modified to quantify the grain size distribution. The material resistance of viscous flow is included in the model as a thermally activated process using an Arrhenius-type temperature relation to represent the apparent viscosity. The finite element method is used to implement the simulation. Results of the compaction simulation such as shape change, residual stress and density distribution data are transferred into the sintering simulation as initial conditions. Since no extra heat source is generated during sintering, the thermal analysis is independent of the creep analysis so that an uncoupled heat transfer analysis yields time-dependent temperature fields that are used to drive the sintering simulation. The simulation is performed in ABAQUS, and an in-house FEM code (SinSolver) is used as a supporting tool and verification. Stainless steel 316L is chosen in this research due to its wide range of industrial applications and representative sintering mechanisms. Comparison and analysis on the simulation versus the dilatometry experiments of shrinkage are consistently close and improve the understanding of when and how the sintering mechanisms act in a sintering cycle.

  14. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  15. High-performance Ni3Al synthesized from composite powders

    NASA Astrophysics Data System (ADS)

    Chiou, Wen-Chih; Hu, Chen-Ti

    1994-05-01

    Specimens of Ni3Al + B of high density (>99.3 Pct RD) and relatively large dimension have been synthesized from composite powders through processes of replacing plating and electroless Ni-B plating on Al powder, sintering, and thermal-mechanical treatment. The uniformly coated Ni layer over fine Al or Ni core particles constituting these coating/core composite powders has advantages such as better resistance to oxidation relative to pure Al powder, a greater green density as a compacted powder than prealloyed powder, the possibility of atomically added B to the material by careful choice of a suitable plating solution, and avoidance of the expensive powder metallurgy (PM) equipment such as a hot isostatic press (HIP), hot press (HP), etc. The final Ni3Al + B product is made from Ni-B-Al and Ni-B-Ni mixed composite powders by means of traditional PM processes such as compacting, sintering, rolling, and annealing, and therefore, the dimensions of the product are not constrained by the capacity of an HIP or HP. The properties of Ni3Al composite powder metallurgy (CPM) specimens tested at room temperature have been obtained, and comparison with previous reports is conducted. A tensile elongation of about 16 Pct at room temperature was attained.

  16. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.

    PubMed

    Qu, Li; Zhou, Qi Tony; Gengenbach, Thomas; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Gamlen, Michael; Morton, David A V

    2015-05-01

    Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate. PMID:24738790

  17. Effect of isothermal forging on microstructure and fatigue behavior of blended elemental Ti-6Al-4V powder compacts

    NASA Astrophysics Data System (ADS)

    Weiss, I.; Eylon, D.; Toaz, M. W.; Froes, F. H.

    1986-03-01

    The effect of isothermal hot forging (IHF) on microstructure, pore closure, and tensile and fatigue properties of Ti-6A1-4V blended elemental cold pressed and sintered powder compacts was investigated. Two types of sponge fines were used: (a) high chloride produced by the Hunter sodium reduction process (HP) and (b) low chloride produced by the electrolytic process (EP). The as-sintered HP compacts were 99 pct dense while the EP compacts were only 92 pct dense. All sintered preforms were isothermally hot forged below the beta transus temperature and reached almost full density. The microstructure of the HP forged compacts consisted of fine equiaxed alpha, while the EP forged compacts exhibited a coarse lenticular alpha structure after 30 pct reduction and a partially recrystallized structure after 68 pct reduction. It was found that EP compacts forged to a 30 pct reduction exhibited a low fatigue limit of 172 MPa (25 ksi), since the lenticular alpha morphology and the residual porosity resulted in premature fatigue crack initiation. On the other hand, a higher fatigue strength of 485 MPa (70 ksi) was obtained for EP compacts forged to a 78 pct reduction due to the mixed equiaxed/lenticular alpha morphology as well as removal of stress concentration features such as interparticle pore interfaces.

  18. Coprocessing of powdered cellulose and magnesium carbonate: direct tableting versus tableting after roll compaction/dry granulation.

    PubMed

    Freitag, Franziska; Runge, Jürgen; Kleinebudde, Peter

    2005-01-01

    Mixtures of magnesium carbonate (MC) with three types of powdered cellulose (M80, P290, A300) were tableted directly or after roll compaction/dry granulation. The fraction of powdered cellulose in the mixture was varied from 0% to 25% (w/w). The properties of the granules, blends, and their corresponding tablets were analyzed. Granules with a low amount of A300 showed the best flow properties, whereas the fibrous shape of the binding agents M80 and P290 impaired the free flow. Heckel plots showed clearly the different behavior of powdered cellulose in blends and granules during the tableting process. The Heckel-Plots for pure MC powder and granulated MC (MCgr) were similar. Increasing the fraction of powdered cellulose resulted in a fan-shaped set of curves, which is a reflection of an increased densification. Physical mixtures of all three powdered celluloses and granulated mixtures of M80 resulted in a higher densification compared with pure MC. In contrast, the granulated mixtures of P290 and A300 resulted in a diminished densification during tableting, which means that the coprocessed mixtures behaved differently during tableting compared with the physical mixtures. The curves were lower than those of pure MC and MCgr most pronounced at a fraction of 5% powdered cellulose. The tablet pore structure was evaluated by mercury porosimetry. The addition of P290 and A300 to the dry granules resulted in tablets with a higher fraction of smaller pores. Comparably high values for tablet tensile strength and low friability resulted from this special tablet structure. Roll compacted/dry granulated MC, coprocessed with 5% of P290 or A300, seems to be a promising excipient for direct compression. This coprocessed product combines good flow and tablet properties, and is superior to pure MC or a physical mixture of MC and PC. PMID:16176015

  19. Tungsten and tungsten alloy powder metallurgy. March 1986-May 1990 (A Bibliography from the COMPENDEX data base). Report for March 1986-May 1990

    SciTech Connect

    Not Available

    1990-06-01

    This bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (This updated bibliography contains 349 citations, 194 of which are new entries to the previous edition.)

  20. Compaction of TiH sub 1. 65 /KClO sub 4 pyrotechnic powder during confined burn

    SciTech Connect

    Hingorani-Norenberg, S.L. ); Razani, A.; Shahinpoor, M. . Dept. of Mechanical Engineering)

    1990-01-01

    The burning behavior of titanium subhydride potassium perchlorate (TiH{sub 1.65}/KClO{sub 4}) is currently under investigation. The research is presently aimed at studying the dynamic compaction of the material as a confined cylindrical charge of the pyrotechnic burns. Flash radiography equipment, optical fibers, and piezoelectric pressure transducers are used to study this phenomenon. The length to diameter ratio of the test charge is thirty and it is pressed in increments, which have a length to diameter ratio of one, into a cylindrical fixture consisting of an epoxy liner in a stainless steel housing. The housing has a series of radial holes to allow optical monitoring, through the transparent liner, of the ignition-front. Lead disks, placed between increments of powder, serve as x-ray tracers. Three 300 kilovolt x-ray heads are pulsed during each experiment, providing information regarding the state of compaction of the powder at three different times during the burn. Fiber optics are used to monitor the location of the ignition front. Pressure transducers monitor the pressure history inside the closed bomb. Tests have been performed with the powder at different initial densities and the data indicate that a significant amount of compaction occurs as the charge burns. 7 refs., 6 figs.

  1. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering

    NASA Astrophysics Data System (ADS)

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  2. Tungsten and tungsten alloy powder metallurgy. 1970-march, 1981 (citations from the Engineering Index data base). Report for 1970-March 1981

    SciTech Connect

    Not Available

    1981-04-01

    Worldwide journal articles are cited on tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (This updated bibliography contains 302 citations, 54 of which are new entries to the previous edition.)

  3. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.

    PubMed

    Shi, Limin; Feng, Yushi; Sun, Changquan Calvin

    2011-05-18

    The influence of massing during high shear wet granulation (HSWG) process on granule properties and performance was investigated using microcrystalline cellulose (MCC). Massing time varied from 0 to 40 min while other factors were fixed. Granule physical properties, including morphology, size, porosity, and specific surface area (SSA), were characterized. Changes in powder properties were profound in the first 10 min of massing but negligible beyond 10 min. With 10 min of massing, granule tabletability decreased by 75% while flowability increased by 75%. The significantly deteriorated tabletability and improved flowability resulted from dramatic changes in granule morphology, porosity, and SSA. The results confirm that massing time is a key process parameter in HSWG, and it must be carefully evaluated and controlled during process development, scale up, and manufacturing. PMID:21443948

  4. Dynamic compaction of high-temperature superconducting YBa2Cu3O(x) powders by laser-driven shocks

    NASA Astrophysics Data System (ADS)

    Darquey, P.; Kieffer, J. C.; Gauthier, J.; Pepin, H.; Chaker, M.; Champagne, B.; Villeneuve, D.; Baldis, H.

    1991-10-01

    Laser-driven shocks are successfully used to density high-temperature superconducting YBa2Cu3O7 ceramic powders. Pressures of 10 GPa on a nanosecond time scale were generated by producing a confined plasma with a high-intensity laser pulse. Significant consolidation is generated up to 300 microns below the irradiated surface. Magnetic susceptibility measurements indicate that the pinning of the intergranular vortices is strongly affected by the shock propagation. Recovery of superconductivity in compacted material is obtained with a postshock oxygen annealing.

  5. Exploration for shallow compaction-induced gas accumulations in sandstones of the Fort Union Formation, Powder River Basin, Wyoming

    SciTech Connect

    Oldham, D.W.

    1997-01-01

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Tongue River Member of the Fort Union Formation (Paleocene) in the Wyoming portion of the Powder River Basin. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Coal-sourced bacterial gas may have accumulated in localized structural highs early in the burial history of lenticular sand bodies and associated sediments. Structural relief is due to the compaction contrast between sand and stratigraphically equivalent fine-grained sediments. A shallow gas play targeting sandstones as potential reservoirs was initiated in the Recluse area in response as sources for bacterial gas, and the presence of lenticular sandstones that may have promoted the development of compaction structures early in the burial process, to which early-formed bacterial gas migrated. Prospects were ranked based on a number of geologic elements related to compaction-induced trap development. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery and development of the Oedekoven Fort Union gas pool, which has produced nearly 2 BCF of gas from a depth of 340 ft. Production figures from the Oedekoven and Chan pools demonstrate the commercial gas potential of Fort Union sandstone reservoirs in the Powder River Basin. The shallow depths of the reservoirs, coupled with low drilling and completion costs, an abundance of subsurface control with which to delineate prospects, and an existing network of gas-gathering systems, make them attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.

  6. Tungsten and tungsten alloy powder metallurgy. January 1970-February 1990 ( A Bibliography from the NTIS data base). Report for January 1970-February 1990

    SciTech Connect

    Not Available

    1990-02-01

    This bibliography contains citations concerning the processing and fabrication of tungsten, tungsten alloys, and tungsten composites. Compacting, pressing, sintering, extruding, and rolling are among the methods described. Infiltration of porous tungsten shapes is included, as well as mechanical properties, thermal properties, and microstructure of these products. Applications include rocket nozzles, nuclear reactor materials, and porous ionizers. (This updated bibliography contains 287 citations, 53 of which are new entries to the previous edition.)

  7. A homogenization approach to the yield strength of spherical powder compacts

    SciTech Connect

    Benabbes, A.; Siad, L.; Liu, W. K.

    2010-06-15

    Optimal external estimates of the macroscopic strength criteria of a hexagonal array of identical spherical grains, under isostatic and closed die compaction, have been obtained through the use of the kinematic approach of the yield design homogenization method. Two appropriate unit cells, one for each stage compaction (I and II), and eight relevant failure mechanisms are considered. For comparison purposes, numerical simulations based on FEA similar to those of Ogbana and Fleck [1] have also been carried out. The shapes and sizes of the macroscopic yield surfaces are determined at various stages of compaction and it has been found in particular that they depend upon the loading history as well as the relative density of the compact.

  8. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  9. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  10. Fabrication of fully dense nanostructured MnBi magnet by hot compaction of cryo-milled powders

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George; Neelam, Venkata; Gabay, Alex; Li, Wang

    2013-03-01

    Recently, rare-earth-free permanent magnets (REFPMs) have attracted much attention globally owing to rare-earth metal crisis and high cost. Among the REFPMs, MnBi is a potential candidate due to its unusual large magnetocrystalline anisotropy (K ~ 107 erg/cc) and positive temperature of coefficient of coercivity. In this work, we report for the first time a novel processing method that combines the cryo-milling with hot compaction to produce fully dense bulk nanostructured MnBi magnet. The effect of cryo-milling on particle size, phase formation, and magnetic properties of MnBi has been studied in detail. Also, the microstructural and magnetic properties of bulk nanostructured MnBi magnet were investigated. Adoption of cryo-milling results in nanocrystalline powders with particle size of 400-500 nm. Large coercivity (Hc) values of 18.5 kOe, and 12.9 kOe were obtained in cryo-milled powders and hot compacted magnet respectively. The MnBi magnet shows a large positive temperature coefficient of Hc and the Hc reaches a value of more than 30 kOe above 450 K. The work was supported by Siemens.

  11. Microwave Heating and Pre-sintering of Copper Powder Metal Compacts in Separated Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Martin, Kelly; Johnson, Earnie; Ma, Junkun; Miskovsky, Nicholas; Weisel, Gary; Weiss, Brock; Zimmerman, Darin

    2006-03-01

    We present results of microwave heating and pre-sintering of pure copper metal powder compacts. Using a 2.45GHz, WR284 microwave system operating in TE102 single mode resonance, we have systematically studied the microwave heating and pre-sintering behavior of various copper powder metal compacts as a function of particle size and green density. Cylindrical samples (0.25in by 0.25in) were positioned in either the magnetic-- or electric--field antinode, allowing the study of the separate effects of the two fields. The results show significant differences in heating rates and sample microstructure (SEM) even when average sample temperatures are below half the melting point of bulk copper. Numerical simulations of the absorption and heating have been developed to check the consistency of the experimental results. We acknowledge the additional work of undergraduate students John Diehl, John Rea, Charles Smith, and Devin Spratt, who assisted in the setup of experimental apparatus, sample preparation, and data acquisition.

  12. Piezochromic Phenomena of Nanometer Voids Formed by Mono-Dispersed Nanometer Powders Compacting Process

    PubMed Central

    Su, Lihong; Wan, Caixia; Zhou, Jianren; Wang, Yiguang; Wang, Liang; Ai, Yanling; Zhao, Xu

    2013-01-01

    Piezochromism describes a tendency of certain materials changing colors when they are subjected to various pressure levels. It occurs particularly in some polymers or inorganic materials, such as in palladium complexes. However, piezochromism is generally believed to work at high pressure range of 0.1–10 GPa. This research work focused on unique piezochromism responses of the nanometer voids formed by the 5–20 nm inorganic ISOH nanometer powders. It was discovered that microstructures of the nanometer voids could change color at very low pressures of only 0.002–0.01 GPa; its sensitivity to pressure was increased by tens of times. It is believed that the uniform microstructures of nanometer powders contributed to the material's high sensitivity of piezochromic phenomena. One factor which quantum optical change caused by nanometer voids affected the quantum confinement effect; another is surface Plasmon Resonance of great difference dielectric property between conductive ITO powder and insulation hydroxide. PMID:24115999

  13. Piezochromic phenomena of nanometer voids formed by mono-dispersed nanometer powders compacting process.

    PubMed

    Su, Lihong; Wan, Caixia; Zhou, Jianren; Wang, Yiguang; Wang, Liang; Ai, Yanling; Zhao, Xu

    2013-01-01

    Piezochromism describes a tendency of certain materials changing colors when they are subjected to various pressure levels. It occurs particularly in some polymers or inorganic materials, such as in palladium complexes. However, piezochromism is generally believed to work at high pressure range of 0.1-10 GPa. This research work focused on unique piezochromism responses of the nanometer voids formed by the 5-20 nm inorganic ISOH nanometer powders. It was discovered that microstructures of the nanometer voids could change color at very low pressures of only 0.002-0.01 GPa; its sensitivity to pressure was increased by tens of times. It is believed that the uniform microstructures of nanometer powders contributed to the material's high sensitivity of piezochromic phenomena. One factor which quantum optical change caused by nanometer voids affected the quantum confinement effect; another is surface Plasmon Resonance of great difference dielectric property between conductive ITO powder and insulation hydroxide. PMID:24115999

  14. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.

    PubMed

    Sua-iam, Gritsada; Makul, Natt

    2013-10-15

    For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. PMID:23892134

  15. Yield function for metal powder compaction based on micromechanics of particle deformation

    SciTech Connect

    PavanaChand, C.; KrishnaKumar, R.

    1996-09-15

    A new method based on the micromechanics of powder particle deformation for evaluating the yield function parameters is attempted. 2D particles in close packed arrangements with two different starting relative densities are considered. These unit cells are studied under plane strain conditions for basic densification response using Large Strain elasto-plastic Finite Element Analysis. Macroscopic values of stresses and the relative densities are recorded for different loading paths. Within the basic form of Shima`s yield function these material parameters are computed. The yield function parameters thus computed are found to be in good agreement with the experimental results reported on copper powder.

  16. The Nature of Tensile Ductility as Controlled by Extreme-Sized Pores in Powder Metallurgy Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Ravi Chandran, K. S.; Cao, F.; Koopman, M.; Fang, Z. Zak

    2016-05-01

    Tensile properties of Ti-6Al-4V titanium alloy, sintered by a new process (sintering, phase transformation, and dehydrogenation of titanium hydride compacts, termed HSPT process), were investigated to determine how the sintering pores influence the tensile strength and ductility. It was found that the ductility in the sintered alloy is severely affected by the size of the largest pore, referred here as extreme-sized pore, even when the average volume fraction of porosity is nearly constant between a large number of samples. It is shown that the rapid decrease in ductility, with an increase in the extreme pore size, is caused by strain localization around the extreme-sized pore and early crack initiation. This crack initiation leads to fracture of the plane containing the pore thereby limiting the extent of uniform plastic strain that can be attained before fracture. Interestingly, the strength properties are, however, found to be independent of the size of the extreme-sized pore. The results are explained on the basis of stress concentration and strain localization around the extreme-sized pores. The work also reveals that if the extreme-sized pores are eliminated, PM Ti-6Al-4V alloy with high strength (~1100 MPa) and good ductility (~12 pct), which is easily comparable to a wrought Ti-6Al-4V alloy, can be achieved even at oxygen levels up to 0.4 wt pct.

  17. Surface-plasmon-like modes of graphite powder compact in microwave heating

    NASA Astrophysics Data System (ADS)

    Kashimura, K.; Suzuki, S.; Hayashi, M.; Mitani, T.; Shinohara, N.; Nagata, K.

    2012-08-01

    We determine the mechanism of rapid and selective heating of nonmagnetic conductive particles by the electric and magnetic fields of microwaves. We investigated the dependencies of the heating behaviors of carbon powders on the radius and electrical conductivity for various relative densities. In these experiments, strong microwave absorption was observed in magnetic field at certain radii and ratios of the crystallite size to the radius. Mie theory for a single particle could account for the high heating rates generated by the microwave magnetic field in sintering experiments. In the dependence of the heating behavior on the relative density, that H field exhibited the maximum absorption at certain relative densities of the graphite powders. These surface plasmon-like modes were observed in graphite, but were not observed when an E field was applied. Multiparticle systems such as graphite powder were found to have significantly different heating behaviors from a single particle. Microwave heating of metal particles is expected to be affected by the structure and shape of the particles.

  18. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  19. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  20. Tungsten and tungsten-alloy powder metallurgy: Powder production and applications-excluding lamps. November 1971-July 1989 (Citations from the US Patent data base). Report for November 1971-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys including various applications of these materials. The hydrogen reduction of tungsten compounds together with alloying-element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of various cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains 60 citations fully indexed and including a title list.)

  1. Compactibility and sintering behavior of nanocrystalline (Th 1-xCe x)O 2 powders synthesized by co-precipitation process

    NASA Astrophysics Data System (ADS)

    Yildiz, Ö.; Modolo, G.; Telle, R.

    2008-07-01

    Thoria (ThO2) based ceramic material is a versatile and very important matrix for immobilization of plutonium and other tetravalent actinides either as a burning or a deposition material for final disposal. The aim of this study was to investigate the influence of the actinide concentration (simulated with cerium), the fabrication conditions and the properties of the produced powders on the compactibility and sinterability of the final products. The (Th1-xCex)O2 powders with ceria concentration varying from 5 to 50 mol% were synthesized by co-precipitation method. The pellets were then compacted from calcined and ground powders at pressures varying from 250 to 750 MPa. The produced pellets had a homogenous grain size and sintered densities of 0.88% to 0.95% TD, respectively.

  2. NON-MELT PROCESSING OF "LOW-COST", ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS

    SciTech Connect

    Peter, William H; Blue, Craig A; Clive, Scorey; Ernst, Bill; McKernan, John; Kiggans, Jim; Rivard, John D; Yu, Dr. Charlie

    2007-01-01

    In the last decade, a considerable effort has been made to develop new methods for producing low cost titanium and titanium powders. The Armstrong process is a new method of producing titanium powder via reducing TiCl4 vapor in molten sodium. The process is scalable, and can be used to produce pre-alloyed powders. Non-melt processing and powder metallurgy approaches are economically viable with the commercially pure powders. In this investigation, several non-melt processing technologies, including vacuum hot pressing, extrusion, roll compaction, and forging techniques, will be evaluated using the Armstrong titanium powders. The metallurgical, chemical, and mechanical properties of the processed titanium samples will be discussed.

  3. Developments in Die Pressing Strategies for Low-Cost Titanium Powders

    SciTech Connect

    Hovanski, Yuri; Weil, K. Scott; Lavender, Curt A.

    2009-05-01

    Recent developments in the production of low-cost titanium powders have rejuvenated interest in manufacturing titanium powder metallurgy components by direct press and sinter techniques. However excessive friction typically observed during titanium powder pressing operations leads to numerous problems ranging from non-homogeneous green densities of the compacted powder to excessive part ejection forces and reduced die life due to wear and galling. An instrumented double-acting die press was developed to both investigate the mechanics of titanium powder pressing (particularly for the new low-cost powder morphologies) and to screen potential lubricants that could reduce frictional effects. As will be discussed, the instrument was used to determine friction coefficients and to evaluate a number of candidate lubricants. These results were then used to optimize the lubricant system to reduce die-wall stresses and improve part density uniformity.

  4. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    PubMed Central

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  5. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.

    PubMed

    Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R

    2005-10-01

    Effect of variation in the ambient moisture levels on the compaction behavior of a 10% acetaminophen (APAP) powder blend in microcrystalline cellulose (MCC) powder was studied by comparing the physical and mechanical properties of ribbons prepared by roller compaction with those of simulated ribbons, i.e., tablets prepared under uni-axial compression. Relative density, moisture content, tensile strength, and Young's modulus were used as key compact properties for comparison. Moisture was found to facilitate the particle rearrangement of both, the APAP and the MCC particles, as well as the deformation of the MCC particles. The tensile strength of the simulated ribbons also showed an increase with increasing moisture content. An interesting observation was that the tensile strength of the roller compacted samples first increased and then decreased with increasing moisture content. Variation in the ambient moisture during roller compaction was also found to influence the characteristics of tablets produced from the granules obtained post-milling the ribbons. A method to study this influence is also reported. PMID:16136545

  6. The Role of Oxygen Transfer in Sintering of Low Alloy Steel Powder Compacts: A Review of the "Internal Getter" Effect

    NASA Astrophysics Data System (ADS)

    Gierl-Mayer, Christian; de Oro Calderon, Raquel; Danninger, Herbert

    2016-03-01

    The chemical aspects of sintering have to be considered, in particular the role of oxygen. For sintered alloy steels used for highly stressed components, traditional alloy elements have been Cu, Ni and Mo, which in their oxygen affinity are very similar to the base constituent iron. Advanced alloying systems however contain Cr, Mn and/or Si. In the present study it is shown that one of the principal aspects of sintering to be considered is oxygen transfer from the base iron oxides to the alloy elements, which then form oxides that are more difficult to reduce. This process, defined as "internal gettering", occurs both in mixed powder compacts and in prealloyed materials, although through different mechanisms. The effect can at least be alleviated by presintering in H2 in the 400°C range, part of the oxygen being removed as H2O before internal gettering becomes kinetically effective. However, in industrial practice, this collides with delubricaton. Furthermore for both alloy variants high temperature sintering is advantageous because it enhances reduction of the more stable oxides, thus eliminating the effects of internal gettering.

  7. Improvement of the Dimensional Stability of Powder Injection Molded Compacts by Adding Swelling Inhibitor into the Debinding Solvent

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Liang; Hwang, Kuen-Shyang; Su, Shao-Chin

    2008-02-01

    Defects are frequently found in powder injection molded (PIM) compacts during solvent debinding due to the swelling of the binders. This problem can be alleviated by adjusting the composition of the debinding solvent. In this study, 10 vol pct swelling inhibitors were added into heptane, and the in-situ amounts of swelling and sagging of the specimen in the solvent were recorded using a noncontacting laser dilatometer. The results show that the addition of ethanol, 2-propanol, 1-butanol, and 1-pentanol reduced the amounts of swelling by 31, 21, 17, and 11 pct, respectively. This was because the small molecule alcohols, which do not dissolve paraffin wax (PW) or stearic acid (SA) in the binder system, could diffuse easily into the specimen and increased the portion of the swelling inhibitor inside. The amount of the extracted PW and SA also decreased, but only by 8.3, 6.1, 4.3, and 2.4 pct, respectively. The solubility parameters of 1-bromopropane (n-PB) and ethyl acetate (EA) are between those of heptane and alcohols, and they also yielded a slight reduction in the amounts of swelling by 6 and 11 pct, respectively. These results suggest that to reduce defects caused by binder swelling during solvent debinding, alcohols with high solubility parameters can be added into heptane without sacrificing significantly on the debinding rate.

  8. Effect of heat treatment on microstructures and mechanical properties of a Ti-6Al-4V alloy rod prepared by powder compact extrusion

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Gabbitas, Brian

    2015-03-01

    In this paper, Ti-6Al-4V alloy rods were manufactured by the powder compact extrusion of a powder mixture of hydride-dehydride (HDH) titanium powder, elemental aluminum powder and master alloy powder. Extrusions were carried out at 1300°C and with a holding time of 5 min in an argon atmosphere. The effects of different heat treatments (HT1: 960°C/1 h, water quenching, HT2: 960°C/1 h, water quenching + 500°C/6 h, air cooling, HT3: 850°C/2 h, furnace cooling to 540°C, then air cooling) on the microstructure and mechanical properties of as-extruded Ti-6Al-4V alloy rods were investigated. The results showed that a homogeneous microstructure, composed of a lamellar structure with a grain size range of 40-60 μm, was produced by powder compact extrusion of a powder mixture. The mechanical properties achieved were an ultimate tensile strength (UTS) of 1254 MPa, a yield strength (YS) of 1216 MPa and 8% ductility. After quenching at 960°C and with a holding time of 1 h, the UTS and YS of the heat treated Ti-6Al-4V alloy rod were increased to 1324 MPa and 1290 MPa, and the ductility was increased to 12%. After HT2, the UTS and YS of the heat treated Ti-6Al-4V alloy rod were significantly increased to 1436 MPa and 1400 MPa, but the ductility decreased to 4%. After HT3, the mechanical properties of the heat treated Ti-6Al-4V alloy rod were slightly decreased to give a UTS of 1213 MPa and a YS of 1180 MPa, with an increase in ductility to 11%. The microstructural changes of as-extruded Ti-6Al-4V alloy rods were also investigated for the different heat treatments.

  9. Special Features of the Mechanical Characteristics of Al-Al2O3 Composites Produced By Explosive Compaction of Powders Under Shock-Wave Deformation

    NASA Astrophysics Data System (ADS)

    Zhukov, I. A.; Garkushin, G. V.; Vorozhtsov, S. A.; Khrustalyov, A. P.; Razorenov, S. V.; Kvetinskaya, A. V.; Promakhov, V. V.; Zhukov, A. S.

    2016-01-01

    The results obtained from investigations into the special features inherent in the mechanical characteristics (Hugoniot elastic limit and spall strength) observed under shock-wave loading of Al-Al2O3 composite samples produced by an explosive powder compaction technique are presented. Embedding 10 wt.% of aluminum oxide in the aluminum matrix has been found to increase the Hugoniot elastic limit as opposed to the commercialgrade AD1(Al 1013) aluminum alloy.

  10. A novel microwave sensor for real-time online monitoring of roll compacts of pharmaceutical powders online--a comparative case study with NIR.

    PubMed

    Gupta, Anshu; Austin, John; Davis, Sierra; Harris, Michael; Reklaitis, Gintaras

    2015-05-01

    Control of particulate processes is hard to achieve because of the ease with which powders tend to segregate. Thus, proper sensing methods must be employed to ensure content uniformity during operation. The role of sensing schemes becomes even more critical while operating the process continuously as measurements are essential for implementation of feedback control (Austin et al. 2013. J Pharm Sci 102(6):1895-1904; Austin et al. 2014. Anal Chim Acta 819:82-93). A microwave sensor was developed and shown to be effective in online measurement of active pharmaceutical ingredient (API) concentration in a powder blend. During powder transport and hopper storage before processing, powder blends may segregate and cause quality deviations in the subsequent tableting operation. Therefore, it is critical to know the API concentration in the ribbons as the content uniformity is fixed once the ribbon is processed. In this study, a novel microwave sensor was developed that could provide measurement of a roller compacted ribbon's API concentration online, along with its density and moisture content. The results indicate that this microwave sensor is capable of increased accuracy compared with a commercially available near-IR probe for the determination of content uniformity and density in roller compacted ribbons online. PMID:25754185

  11. Synthesis and characterization of the NiFe2O4/Ni3Fe nanocomposite powder and compacts obtained by mechanical milling and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Marinca, T. F.; Neamţu, B. V.; Popa, F.; Tarţa, V. F.; Pascuta, P.; Takacs, A. F.; Chicinaş, I.

    2013-11-01

    Nanocomposite powder and compacts of NiFe2O4/Ni3Fe type were synthesized using mechanical milling and spark plasma sintering (SPS) techniques. The samples have been investigated by X-ray diffraction (XRD), laser particles size analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The nanocomposite powder was obtained by mechanical milling in a high planetary ball mill of nanocrystalline NiFe2O4 and nanocrystalline Ni3Fe powders. The nanocomposite powder consists from Ni3Fe particles covered at the surface with a layer of NiFe2O4 fine particles and NiFe2O4 particles. The nanocomposite particles have the median diameter d50 of 1.6 μm. The sintering in 400-600 °C temperature range preserve the nanocomposite phases but lead to a high porosity. The nanocomposite compacts consist in Ni3Fe clusters surrounded by NiFe2O4. A sintering temperature of 800 °C leads to a good density for the nanocomposite compacts and to the new phase formation. The new phase is a wustite type (Fe1-xNixO) and is formed at the metal/ceramic interface. A change in the Ni/Fe ratio, in the spinel structure, was evidenced during sintering. Sintering at a temperature of 800 °C, leads to the formation of a mixed iron-nickel ferrite with a very small amount of nickel, Ni1-xFexFe2O4.

  12. Real-time near-infrared monitoring of content uniformity, moisture content, compact density, tensile strength, and Young's modulus of roller compacted powder blends.

    PubMed

    Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R

    2005-07-01

    A method for real-time in-line near-infrared (NIR) monitoring of roller compaction is reported. Multivariate analysis using partial least square projections to latent structures (PLS) was used to relate the spectral data with key compact attributes: content uniformity, moisture content, relative density, tensile strength, and Young's modulus. NIR calibration curves were generated using the spectral data collected on simulated ribbons, that is, tablets prepared under uni-axial compression, and tested on the data collected on another set of simulated ribbons and by monitoring the ribbons as they exited the roller compactor. For all compact attributes, the NIR predicted values agreed well with the values measured using a reference method. PMID:15924348

  13. Power metallurgy approaches to high temperature components for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1974-01-01

    Work conducted by NASA and NASA contractors on prealloyed superalloy powders and materials strengthened by oxide dispersion is reviewed. Fabrication, tensile strength, superplasticity, grain growth control, stress rupture life, and grain-size and dispersion-level effects are covered. Distinct strength advantages of powder metallurgy superalloys over conventional wrought alloys are noted.

  14. Metallurgy Beyond Iron

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella; Busch, Ralf

    2009-08-01

    Metallurgy is one of the oldest sciences. Its history can be traced back to 6000 BCE with the discovery of Gold, and each new discovery - Copper, Silver, Lead, Tin, Iron and Mercury - marked the beginning of a new era of civilization. Currently there are 86 known metals, but until the end of the 17th century, only 12 of these were known. Steel (Fe-C alloy) was discovered in the 11th century BCE; however, it took until 1709 CE before we mastered the smelting of pig-iron by using coke instead of charcoal and started the industrial revolution. The metallurgy of nowadays is mainly about discovering better materials with superior properties to fulfil the increasing demand of the global market. Promising are the Glassy Metals or Bulk Metallic Glasses (BMGs) - discovered at first in the late 50s at the California Institute of Technology - which are several times stronger than the best industrial steels and 10-times springier. The unusual structure that lacks crystalline grains makes BMGs so promising. They have a liquid-like structure that means they melt at lower temperatures, can be moulded nearly as easily as plastics, and can be shaped into features just 10 nm across. The best BMG formers are based on Zr, Pd, Pt, Ca, Au and, recently discovered, also Fe. They have typically three to five components with large atomic size mismatch and a composition close to a deep eutectic. Packing in such liquids is very dense, with a low content of free volume, resulting in viscosities that are several orders of magnitude higher than in pure metal melts.

  15. Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Decker, S.; Martin, S.; Krüger, L.

    2016-01-01

    In this study, varying powder particle size fractions (<25, 25 to 45, 45 to 63 µm) of a TRIP steel powder were compacted by spark plasma sintering (SPS). Densification initiated at a slightly lower temperature with decreasing particle size due to increasing green density. With decreasing powder particle size fraction, the as-sintered materials exhibited smaller grain sizes. Compression tests revealed a slight decrease of the compressive yield strength with increasing particle size and, accordingly, larger grain size. A few large deformation bands formed in bigger grains, while many thin deformation bands were formed in smaller grains. α'-Martensite nuclei formed successively inside the deformation bands, reducing the mean free path of (partial) dislocation slip. Due to the size of the deformation bands, α'-martensite formation started at lower strains with increasing particle size. When α'-martensite formation was initiated, work hardening was influenced more by α'-martensite formation than by the grain size of the steel matrix. Hence, work hardening increased with increasing particle size.

  16. Infiltration kinetics of aluminum in silicon carbide compacts. Annual report

    SciTech Connect

    Edwards, G.R.; Olson, D.L.

    1987-07-01

    Although metal-matrix composites have been fabricated by various techniques, the most successful are solid state processes such as powder metallurgy and diffusion bonding. Liquid-metal processes such as compucasting, pultrusion, and infiltration, while less successful, are potentially more economical. The advantages of producing silicon carbide-aluminum matrix composites by liquid-metal infiltration techniques can not be fully realized without an improved understanding of the infiltration behavior and the fiber/matrix bonding mechanisms. This paper reports on infiltration models which consider the physical properties of the liquid and preform (either porous compact or capillary/tube bundle). These properties include viscosity, density, surface tension, and wettability (pore shape and size in the case of the porous compact). The models have been assessed in terms of their ability to predict infiltration behavior from known physical properties of the materials.

  17. Steric stabilization of nonaqueous silicon slips. I - Control of particle agglomeration and packing. II - Pressure casting of powder compacts

    NASA Technical Reports Server (NTRS)

    Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.

    1990-01-01

    The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.

  18. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  19. Resistive and magnetoresistive properties of compacted CrO2 powders with different types of intergranular dielectric layers

    NASA Astrophysics Data System (ADS)

    Dalakova, N. V.; Belevtsev, B. I.; Beliayev, E. Yu.; Bludov, A. N.; Pashchenko, V. N.; Osmolovsky, M. G.; Osmolovskaya, O. M.

    2012-12-01

    Resistive, magnetoresistive and magnetic properties of four types of pressed CrO2 powders synthesized from chromic anhydride by the hydrothermal method were investigated. The new synthesis method allowed controlling the thickness of dielectric shells. The powders consisted of rounded particles (≈120 nm in dia.) or acicular crystals (≈22.9 nm in dia. and 302 nm in length). The particles were covered with a surface dielectric shell of different thickness and type (e.g. β-CrOOH oxyhydroxide or chromium oxide Cr2O3). The influence of the properties and the thickness of intergranular dielectric layers as well as the shape of CrO2 particles on the tunneling resistance and magnetoresistance (MR) of the pressed powders was studied. It was found that at low temperatures all the investigated samples displayed a nonmetallic temperature dependence of resistance and a giant negative MR. The maximal values of MR at T ≈ 5 K were found to be approx. 37% in relatively low magnetic fields (0.5 T). The MR decreased rapidly with increasing temperature (down to approx. 1% in 1 T at T ≈ 200 K). At low temperatures the powders with acicular particles exhibited a new type of MR hysteresis and nonmonotonous dependence of MR with increasing magnetic field. A nonmonotonous temperature dependence Hp(T), where Hp is the field in which the resistance is maximal, mismatch between the values of Hp and coercive force Hc, and the anisotropy of MR as a function of mutual orientation of transport current and magnetic field were observed.

  20. The extractive metallurgy of gold

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  1. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    SciTech Connect

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  2. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a

  3. Recent trends in extractive metallurgy

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Metallurgists and solution geochemists are joining forces to develop processes for extraction of metals from low-grade ores. The processes, which come under the name hydrometallurgy, include several new applications of solvent extraction techniques. Aqueous solutions are employed, leaching metals from ores, mine waste dumps, and even from deposits still in the ground. It was notable, for example, that Chemical and Engineering News (Feb. 8, 1982) recently featured the subject of hydrometallurgy in a special report. They noted that ‘recovering metals by use of aqueous solutions at relatively low temperatures increasingly is competing with dry, high-temperature pyrometallurgical methods.’ The relatively new techniques have caused a revolution, of sorts, in engineering programs of university metallurgy departments. The challenge of developing selective metal dissolution processes is drawing upon the best national talent in the fields of solution geochemistry and metallurgy.

  4. The use of net analyte signal orthogonalization in the separation of multi-component diffraction patterns obtained from X-ray powder diffraction of intact compacts.

    PubMed

    Moore, Michael D; Cogdill, Robert P; Short, Steven M; Hair, Colleen R; Wildfong, Peter L D

    2008-06-01

    X-ray powder diffraction (XRPD) analysis of intact multi-component consolidated mixtures has significant potential owing to the ability to non-destructively quantify and discriminate between solid phases in composite bodies with minimal sample preparation. There are, however, limitations to the quantitative power using traditional univariate methods on diffraction data containing features from all components in the system. The ability to separate multi-component diffraction data into patterns representing single constituents allows both composition as well as physical phenomena associated with the individual components of complex systems to be probed. Intact, four-component compacts, consisting of two crystalline and two amorphous constituents were analyzed using XRPD configured in both traditional Bragg-Brentano reflectance geometry and parallel-beam transmission geometry. Two empirical, model-based methods consisting of a multiple step net analyte signal (NAS) orthogonalization are presented as ways to separate multi-component XRPD patterns into single constituent patterns. Multivariate figures of merit (FOM) were calculated for each of the isolated constituents to compare method-specific parameters such as sensitivity, selectivity, and signal-to-noise, enabling quantitative comparisons between the two modes of XRPD analysis. PMID:18294800

  5. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  6. Silicon solar cells: Physical metallurgy principles

    NASA Astrophysics Data System (ADS)

    Mauk, Michael G.

    2003-05-01

    This article reviews the physical metallurgy aspects of silicon solar cells. The production of silicon solar cells relies on principles of thermochemical extractive metallurgy, phase equilibria, solidification, and kinetics. The issues related to these processes and their impact on solar cell performance and cost are discussed.

  7. The Rules of Ferrous Metallurgy

    PubMed Central

    2010-01-01

    The ways in which the sciences have been delineated and categorized throughout history provide insights into the formation, stabilization, and establishment of scientific systems of knowledge. The Dresdener school’s approach for explaining and categorizing the genesis of the engineering disciplines is still valid, but needs to be complemented by further-reaching methodological and theoretical reflections. Pierre Bourdieu’s theory of social practice is applied to the question of how individual agents succeed in influencing decisively a discipline’s changing object orientation, institutionalisation and self-reproduction. Through the accumulation of social, cultural and economic capital, they succeed in realising their own organisational ideas and scientific programs. Key concepts for the analysis include the struggle for power and resources, monopolies of interpretation, and the degree of autonomy. A case study from the Aachener Technische Hochschule shows that the consolidation of ferrous metallurgy can be conceived as a symbolical struggle between Fritz Wüst, professor for ferrous metallurgy, and the German Iron and Steel Institute, leading to a construction of a system of differences in which scientists accepted being scientists rather than entrepreneurs, and entrepreneurs accepted becoming entrepreneurs and renounced science.

  8. The imaging performance of compact Lu{sub 2}O{sub 3}:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography

    SciTech Connect

    Liaparinos, P. F.; Kandarakis, I. S.

    2009-06-15

    In medical mammographic imaging systems, one type of detector configuration, often referred to as indirect detectors, is based on a scintillator layer (phosphor screen) that converts the x-ray radiation into optical signal. The indirect detector performance may be optimized either by improving the structural parameters of the screen or by employing new phosphor materials with improved physical characteristics (e.g., x-ray absorption efficiency, intrinsic conversion efficiency, emitted light spectrum). Lu{sub 2}O{sub 3}:Eu is a relatively new phosphor material that exhibits improved scintillating properties indicating a promising material for mammographic applications. In this article, a custom validated Monte Carlo program was used in order to examine the performance of compact Lu{sub 2}O{sub 3}:Eu powdered phosphor screens under diagnostic mammography conditions (x-ray spectra: 28 kV Mo, 0.030 mm Mo and 32 kV W, 0.050 mm Rh). Lu{sub 2}O{sub 3}:Eu screens of coating weight in the range between 20 and 40 mg/cm{sup 2} were examined. The Monte Carlo code was based on a model using Mie-scattering theory for the description of light propagation within the phosphor. The overall performance of Lu{sub 2}O{sub 3}:Eu powdered phosphor screens was investigated in terms of the (i) quantum detection efficiency, (ii) luminescence efficiency, (iii) compatibility with optical sensors, (iv) modulation transfer function, (v) the Swank factor, and (vi) zero-frequency detective quantum efficiency. Results were compared to the traditional rare-earth Gd{sub 2}O{sub 2}S:Tb phosphor material. The increased packing density and therefore the light extinction properties of Lu{sub 2}O{sub 3}:Eu phosphor were found to improve the x-ray absorption (approximately up to 21% and 16% at 40 mg/cm{sup 2} for Mo and W x-ray spectra, respectively), the spatial resolution (approximately 2.6 and 2.4 cycles/mm at 40 mg/cm{sup 2} for Mo and W x-ray spectra, respectively), as well as the zero

  9. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  10. Dual-Alloy Disks are Formed by Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  11. Aluminum base alloy powder metallurgy process and product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  12. Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    NASA Technical Reports Server (NTRS)

    Wilbers, L. G.; Redden, T. K.

    1981-01-01

    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily.

  13. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    NASA Astrophysics Data System (ADS)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  14. The metallurgy and processing science of metal additive manufacturing

    SciTech Connect

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-01-01

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developed for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.

  15. The metallurgy and processing science of metal additive manufacturing

    DOE PAGESBeta

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  16. Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique.

    PubMed

    Favretto-Cristini, Nathalie; Hégron, Lise; Sornay, Philippe

    2016-04-01

    Some nuclear fuels are currently manufactured by a powder metallurgy process that consists of three main steps, namely preparation of the powders, powder compaction, and sintering of the compact. An optimum between size, shape and cohesion of the particles of the nuclear fuels must be sought in order to obtain a compact with a sufficient mechanical strength, and to facilitate the release of helium and fission gases during irradiation through pores connected to the outside of the pellet after sintering. Being simple to adapt to nuclear-oriented purposes, the Acoustic Emission (AE) technique is used to control the microstructure of the compact by monitoring the compaction of brittle Uranium Dioxide (UO2) particles of a few hundred micrometers. The objective is to identify in situ the mechanisms that occur during the UO2 compaction, and more specifically the particle fragmentation that is linked to the open porosity of the nuclear matter. Three zones of acoustic activity, strongly related to the applied stress, can be clearly defined from analysis of the continuous signals recorded during the compaction process. They correspond to particle rearrangement and/or fragmentation. The end of the noteworthy fragmentation process is clearly defined as the end of the significant process that increases the compactness of the material. Despite the fact that the wave propagation strongly evolves during the compaction process, the acoustic signature of the fragmentation of a single UO2 particle and a bed of UO2 particles under compaction is well identified. The waveform, with a short rise time and an exponential-like decay of the signal envelope, is the most reliable descriptor. The impact of the particle size and cohesion on the AE activity, and then on the fragmentation domain, is analyzed through the discrete AE signals. The maximum amplitude of the burst signals, as well as the mean stress corresponding to the end of the recorded AE, increase with increasing mean diameter of

  17. Materials for Advanced Turbine Engines. Volume 1; Power Metallurgy Rene 95 Rotating Turbine Engine Parts

    NASA Technical Reports Server (NTRS)

    Pfouts, W. R.; Shamblen, C. E.; Mosier, J. S.; Peebles, R. E.; Gorsler, R. W.

    1979-01-01

    An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included.

  18. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  19. PROCESS OF FORMING POWDERED MATERIAL

    DOEpatents

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  20. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  1. Sintering of sponge and hydride-dehydride titanium powders

    SciTech Connect

    Alman, David E.; Gerdemann, Stephen J.

    2004-04-01

    The sintering behavior of compacts produced from sponge and hydride-dehydride (HDH) Ti powders was examined. Compacts were vacuum sintered at 1200 or 1300 deg C for 30, 60, 120, 240, 480 or 960 minutes. The porosity decreased with sintering time and/or temperature in compacts produced from the HDH powders. Compacts produced from these powders could be sintered to essentially full density. However, the sintering condition did not influence the amount of porosity present in compacts produced from the sponge powders. These samples could only be sintered to a density of 97% theoretical. The sintering behavior was attributed to the chemical impurities in the powders.

  2. X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders.

    PubMed

    Burke, Paul J; Bayindir, Zeynel; Kipouros, Georges J

    2012-05-01

    Magnesium (Mg) and its alloys are attractive for use in automotive and aerospace applications because of their low density and good mechanical properties. However, difficulty in forming magnesium and the limited number of available commercial alloys limit their use. Powder metallurgy may be a suitable solution for forming near-net-shape parts. However, sintering pure magnesium presents difficulties due to surface film that forms on the magnesium powder particles. The present work investigates the composition of the surface film that forms on the surface of pure magnesium powders exposed to atmospheric conditions and on pure magnesium powders after compaction under uniaxial pressing at a pressure of 500 MPa and sintering under argon at 600 °C for 40 minutes. Initially, focused ion beam microscopy was utilized to determine the thickness of the surface layer of the magnesium powder and found it to be ~10 nm. The X-ray photoelectron analysis of the green magnesium sample prior to sintering confirmed the presence of MgO, MgCO(3)·3H(2)O, and Mg(OH)(2) in the surface layer of the powder with a core of pure magnesium. The outer portion of the surface layer was found to contain MgCO(3)·3H(2)O and Mg(OH)(2), while the inner portion of the layer is primarily MgO. After sintering, the MgCO(3)·3H(2)O was found to be almost completely absent, and the amount of Mg(OH)(2) was also decreased significantly. This is postulated to occur by decomposition of the compounds to MgO and gases during the high temperature of sintering. An increase in the MgO content after sintering supports this theory. PMID:22524956

  3. Fabrication of metal matrix composite by semi-solid powder processing

    SciTech Connect

    Wu, Yufeng

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  4. Thermal analysis and evolution of shape loss phenomena during polymer burnout in powder metal processing

    NASA Astrophysics Data System (ADS)

    Enneti, Ravi Kumar

    2005-07-01

    Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate

  5. The EDM surface: Topography, chemistry, and metallurgy

    SciTech Connect

    Fuller, J.E.

    1991-01-01

    The surface created by the electric discharge machining (EDM) process is of special interest because it has been shown to have a negative effect on the fatigue properties of many alloys. An understanding of the surface metallurgy and chemistry is important in predicting those alloys which are most susceptible to failure. Remedial actions, including thickness minimization, alteration, or removal of the surface layer are addressed.

  6. Physical Metallurgy of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Yeh, Jien-Wei

    2015-08-01

    Two definitions of high-entropy alloys (HEAs), based on composition and entropy, are reviewed. Four core effects, i.e., high entropy, sluggish diffusion, severe lattice distortion, and cocktail effects, are mentioned to show the uniqueness of HEAs. The current state of physical metallurgy is discussed. As the compositions of HEAs are entirely different from that of conventional alloys, physical metallurgy principles might need to be modified for HEAs. The thermodynamics, kinetics, structure, and properties of HEAs are briefly discussed relating with the four core effects of HEAs. Among these, a severe lattice distortion effect is particularly emphasized because it exerts direct and indirect influences on many aspects of microstructure and properties. Because a constituent phase in HEAs can be regarded as a whole-solute matrix, every lattice site in the matrix has atomic-scale lattice distortion. In such a distorted lattice, point defects, line defects, and planar defects are different from those in conventional matrices in terms of atomic configuration, defect energy, and dynamic behavior. As a result, mechanical and physical properties are significantly influenced by such a distortion. Suitable mechanisms and theories correlating composition, microstructure, and properties for HEAs are required to be built in the future. Only these understandings make it possible to complete the physical metallurgy of the alloy world.

  7. Powder-Metallurgical Bearings For Turbopumps

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Humphries, T. S.; Thom, R. L.; Moxson, V.; Friedman, G. I.; Dolan, F. J.; Shipley, R. J.

    1993-01-01

    Bearings fabricated by powder metallurgy developed for use in machines subjected to extremes of temperature, rolling-contact cyclic stresses, and oxidizing or otherwise corrosive fluids. Bearings also extend operating lives of other machines in which bearings required to resist extreme thermal, mechanical, and chemical stresses. One alloy exhibiting outstanding properties was MRC-2001. Resistance to fatigue, stress corrosion cracking, and wear found superior to that of 440C stainless steel.

  8. PREPARATION OF COMPACTS MADE FROM URANIUM AND BERYLLIUM BY SINTERING

    DOEpatents

    Angier, R.P.

    1961-04-11

    A powder metallurgical method for making high-density compacts of uranium and beryllium is reported. Powdered UBe/sub 9/ and powdered Be are blended, compacted, and then sintered by rapidly heating to a temperature of approximately 1220 to 1280 deg C in an inert atmosphere.

  9. Characterization and Control of Powder Properties for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Strondl, A.; Lyckfeldt, O.; Brodin, H.; Ackelid, U.

    2015-03-01

    Powder characterization and handling in powder metallurgy are important issues and the required powder properties will vary between different component manufacturing processes. By understanding and controlling these, the final material properties for different applications can be improved and become more reliable. In this study, the metal powders used in additive manufacturing (AM) in terms of electron beam melting and selective laser melting have been investigated regarding particle size and shape using dynamic image analysis. In parallel, powder flow characteristics have been evaluated with a powder rheometer. Correlations within the results have been found between particle shape and powder flow characteristics that could explain certain effects of the powder processing in the AM processes. The impact, however, in the processing performance as well as in ultimate material properties was found to be limited.

  10. The effect of high density electric pulses on sintered aluminum 201AB silicon carbide MMC PM compacts during plastic deformation

    NASA Astrophysics Data System (ADS)

    Dariavach, Nader Guseinovich

    The effect of high-density electrical pulses on mechanical and structural properties of sintered aluminum SiC metal-matrix composites, fabricated by standard powder-metallurgy compaction and sintering, was investigated. Three types of phenomena where investigated during transverse rupture testing of the samples: a consolidation effect (increasing of the transverse rupture strength (TRS)), an electroplastic effect (decreasing of the flow stresses), and an increasing of the stress intensity factor by electric pulse application. It was observed, that an increase in the TRS strength of sintered powder metallurgy (PM) aluminum and aluminum metal matrix composite (MMC) compacts is a result of the electric pulse consolidation effect due to non-uniform temperature distribution around the grain boundaries. Three analytical models of the thermal effect of electric pulses on aluminum samples where considered: total temperature change of the sample due to a one electric pulse, one-dimensional steady state model and transient 2D thermal analysis of the temperature distribution around the grain boundary. The 2D transient analysis shows that the temperature rise in the grain boundary of a sintered PM aluminum sample due to an electric pulse can exceed the melting point. At the same time the temperature of the bulk material has an insignificant (<28°C) change. It was found that the electroplastic effect, due to electric pulse application, can account for up to a 40% load drop in aluminum MMC PM compacts. Reduction of flow stresses during plastic deformation could reduce the risk of structural damage, micro-cracks, SiC particle fracture and delamination of the aluminum MMC. These results may find practical application for manufacturing processes such as forging, extrusion, rolling, which involve plastic deformation. It was experimentally proven that a non-uniform temperature distribution around the crack could re-melt the crack tip and increase the strength of the damaged material

  11. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  12. Metallurgy and Heat Treating. Welding Module 7. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in metallurgy and heat treating. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles of metallurgy and heat treatment and techniques for…

  13. Properties of alloy steel powders produced by the method of diffusion impregnation (review)

    SciTech Connect

    Napara-Volgina, S.G.

    1985-06-01

    In their review of research on the properties of alloy steel powders produced by the method of diffusion impregnation, the authors systematize their data into three charts, one on the characteristics of charges and the recommended areas of use of powders, one on the chemical and particle size compositions and technological properties of the powders, and one on the fine crystalline structure of alloy powders of different compositions. The authors recommend the use of such powders, especially powder metallurgy constructional steels, produced by hot stamping and other methods providing high density.

  14. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  15. Ancient metallurgy and nuclear waste containment

    SciTech Connect

    Goodway, M.

    1993-12-31

    Archaeological artifacts of glass, ceramic, and metal provide examples of long term durability and as such have been surveyed by the nuclear agencies of several countries as a possible guide to choices of materials for the containment of nuclear waste. In the case of metals evaluation is difficult because of the loss of many artifacts to recycling and corrosion processes, as well as by uncertainty as to the environmental history under which the remainder survived. More recently the study of ancient metallurgy has expanded to included other materials associated with metals processing. It is suggested that an impermeable ceramic composite used in ancient metals processing installations should be reproduced and tested for its resistance to radiation damage. This material was synthesized more than two millennia ago and has a proven record of durability. These installations have had no maintenance but are intact, some still holding water.

  16. Electrodeposition in extractive metallurgy: An emerging technology?

    NASA Astrophysics Data System (ADS)

    O'Keefe, Thomas J.

    1992-04-01

    The electrowinning and electrorefining of metals from aqueous solutions continues to be one of the essential unit processes employed in nonferrous extractive metallurgy. Current processes effectively address both ohmic and mass transport of the primary metal ion in their design. Some deficiencies exist, however, in the basic understanding of the other two critical elements essential in cathodic deposition: activation kinetics and electrocrystallization. The understanding of the latter two must be elevated to the level of understanding of ohmic and mass transport if truly new and innovative advances are to occur. Because of the increasingly demanding standards for electrometallurgy processes and products, technical progress must be made if a competitive edge is to be maintained in the future.

  17. Adult Compacts.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…

  18. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.

    PubMed

    Hadžović, Ervina; Betz, Gabriele; Hadžidedić, Seherzada; El-Arini, Silvia Kocova; Leuenberger, Hans

    2011-09-15

    Roller compaction is a dry granulation method which results in tablets with inferior tensile strength comparing to direct compaction. The effect of roller compaction on compressibility and compactibility of tablets prepared from Theophylline anhydrate powder, Theophylline anhydrate fine powder and Theophylline monohydrate was investigated by measuring tensile strength of tablets as well as calculating compressibility and compactibility parameters by Leuenberger equation. The tablets under the same conditions were prepared by direct compaction and roller compaction. The binary mixtures of Theophylline anhydrate powder, Theophylline anhydrate fine powder, Theophylline monohydrate and microcrystalline cellulose were prepared in order to determine the optimal ratio of active material and excipients which delivers a sufficient mechanical strength of tablets. Tensile strength of MCC tablets and compactibility parameters calculated by Leuenberger equation after roller compaction was significantly decreased, while THAP, THAFP and THMO tablets showed only a minor reduction in compactibility and compressibility. Adding MCC to a mixture with Theophylline showed that the right choice and ratio of excipients can enable a sufficient mechanical strength of the tablets after roller compaction. PMID:21704142

  19. Looking North into Lab Metallurgy Testing Area and Enrichment Motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North into Lab Metallurgy Testing Area and Enrichment Motor within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  20. 1. Photocopy from J. L. Bray, The Principles of Metallurgy, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy from J. L. Bray, The Principles of Metallurgy, Ginn & Company, New York, 1929 - International Smelting & Refining Company, Tooele Smelter, Sinter Plant, State Route 178, Tooele, Tooele County, UT

  1. Discrete element modeling of powder consolidation and the formation of titanium-matrix composites from powder-fiber monotapes

    NASA Astrophysics Data System (ADS)

    Newell, Kenneth James

    A three year research effort is completed with the development of the Discrete Element Consolidation Analyzer (DECA) for process modeling the formation of titanium composites from powder-fiber monotapes. The primary goal of the DECA process model is to provide a statistically realistic analysis of the various physical processes necessary to achieve higher quality composites from the powder-fiber technique. Over the course of this effort, research and code development was conducted in three distinct stages. The first stage focused on the simulation of initial geometry of the powder and fibers as well as the evolution of tape configuration during the pre-consolidation processing steps. The second stage developed the mechanics of the discrete element powder consolidation and the material characterization methods necessary to model the viscoplastic response of the powder to transient thermal and mechanical boundary conditions. The final stage incorporated the presence of fibers to evaluate the interaction mechanics and possible fibers damage resulting from discrete powder-fiber contacts. As a conclusion to the research, DECA model predictions of density versus time for various consolidation profiles are directly compared to actual consolidation test results and a DECA prescribed process profile is used to fabricate a 6sp{''} × 6sp{''} composite panel of Ti-6242/SCS-6. In completing this research, the discrete element modeling technique has proven to be a powerful tool for the analysis and simulation of metal powder consolidation as well as the consolidation of metal matrix composites. The DECA code orchestrates the use of particle kinetics, some simple aspects of gas dynamics, elasticity, plasticity, creep and various innovative material characterization methods to produce a seamless analysis for powder metallurgy processing of composites. Through the application of the DECA capability, many aspects of the processing stages have been elucidated for further

  2. Development of a Power Metallurgy Superalloy for Use at 1800-2000 F (980-1090 C)

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1973-01-01

    A program was conducted to develop a powder metallurgy nickel-base superalloy for 1800-2000 F (980-1090 C) temperature applications. The feasibility of a unique concept for alloying carbon into a superalloy powder matrix and achieving both grain growth and a discrete particle grain boundary carbide precipitation was demonstrated. The process consisted of blending metastable carbides with a carbon free base alloy and consolidating this blend by hot extrusion. This was followed by heat treatment to grow a desired ASTM No. 2-3 grain size and to solution the metastable carbides to allow precipitation of discrete particle grain boundary carbides during subsequent aging heat treatments. The best alloy developed during this program was hydrogen-atomized, thermal-mechanically processed, modified MAR-M246 base alloy plus VC (0.28 w/o C). Although below those for cast MAR-M246, the mechanical properties exhibited by this alloy represent the best combination offered by conventional powder metallurgy processing to date.

  3. Fatigue-crack propagation in aluminum-lithium alloys processed by power and ingot metallurgy

    SciTech Connect

    Venkateswara Rao, K.T.; Ritchie, R.O. ); Kim, N.J. ); Pizzo, P.P. )

    1990-04-01

    Fatigue-crack propagation behavior in powder-metallurgy (P/M) aluminum-lithium alloys, namely, mechanically-alloyed (MA) Al-4.0Mg-1.5Li-1.1C-0.80{sub 2} (Inco 905-XL) and rapid-solidification-processed (RSP) Al-2.6Li-1.0Cu-0.5Mg-0.5Zr (Allied 644-B) extrusions, has been studied, and results compared with data on an equivalent ingot-metallurgy (I/M) Al-Li alloy, 2090-T81 plate. Fatigue-crack growth resistance of the RSP Al-Li alloy is found to be comparable to the I/M Al-Li alloy; in contrast, crack velocities in MA 905-XL extrusions are nearly three orders of magnitude faster. Growth-rate response in both P/M Al-Li alloys, however, is high anisotropic. Results are interpreted in terms of the microstructural influence of strengthening mechanism, slip mode, grain morphology and texture on the development of crack-tip shielding from crack-path deflection and crack closure. 14 refs., 7 figs., 2 tabs.

  4. Strength enhancement of prealloyed powder superalloys

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J.

    1979-01-01

    Strengthening and forming process for prealloyed powder superalloys greatly increases material strength in the 900-1,200F temperature range. Process which involves superplastically-deforming compacted powders at controlled rates and temperature is most effective on nickel-base alloys.

  5. Explosive compaction of WC+Co mixture by axisymmetric scheme

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2015-11-01

    This paper is devoted to the problem of development and optimization of schemes for explosive compaction of mixtures of solid powder materials with metal bond. For this purpose, experiments were conducted on explosive compaction of mixtures of tungsten carbide (WC) and cobalt (Co) using a simple cylindrical compaction system. In addition, a numerical simulation of shock waves propagation in two-phase porous medium WC+Co was carried out. Based on experimental and numerical studies of shock wave propagation, the optimal modes of explosive compaction of two-phase powder media, representing mixtures of solid powder materials with metal bond, were found. It is shown that the most preferable compaction mode for obtaining a uniform durable compact of a mixture of powders WC+Co with ratio 9:1 by volume in axially symmetric scheme with central mandrel corresponds to the detonation velocity of 4.6 km/s followed by sintering.

  6. Ceramic compaction models: Useful design tools or simple trend indicators?

    SciTech Connect

    Mahoney, F.M.; Readey, M.J.

    1995-08-01

    It is well-known that dry pressing of ceramic powders leads to density gradients in a ceramic compact resulting in non-uniform shrinkage during densification. This necessitates diamond grinding to final dimensions which, in addition to being an extra processing step, greatly increases the manufacturing cost of ceramic components. To develop methods to control and thus mitigate density variations in compacted powders, it has been an objective of researchers to better understand the mechanics of the compaction process and the underlying material and tooling effects on the formation of density gradients. This paper presents a review of models existing in the literature related to the compaction behavior of ceramic powders. In particular, this paper focuses on several well-known compaction models that predict pressure and density variations in powder compacts.

  7. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  8. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  9. METHOD OF PRODUCING SHAPED BODIES FROM POWDERED METALS

    DOEpatents

    Blainey, A.

    1960-05-31

    A method is given for enclosing a body of uranium in a sheath of compacted beryllium or zirconium powder and comprises enveloping the body with uncompacted powder and pressing at a temperature above the beta - gamma transition point of uranium, thereby causing the uranium to flow and isotropically compress the powder.

  10. Influence of consolidation method on structure/properties of rapidly solidified Type 304 SS powders

    SciTech Connect

    Flinn, J.E.; Korth, G.E.; Wright, R.N.

    1988-01-01

    The structure/properties of consolidated, centrifugally atomized (CA) Type 304 SS powders containing approx.8 appM helium entrapped during powder processing were evaluated. Three powder consolidation methods were used in the study: hot extrusion, hot isostatic pressing (HIPping), and dynamic (using explosives). In addition, cold-rolled 50% HIPped material was included in the evaluation. The four forms of consolidated powders were fully dense and possessed good bond strengths. The bond strength of the HIPped powders was the lowest. The consolidated materials were subjected to 1 h heat treatments and their grain growth, tensile, and creep behaviors were compared with those of wrought ingot metallurgy Type 304 SS materials. Grain growth of the CA Type 304 SS consolidated powders was substantially lower than for the wrought material. Similarly, significant strengthening was observed for the powder materials. The apparent microstructure stability and strengthening observed for the consolidated powder materials is attributed to the entrapped helium. 5 figs., 4 tabs.

  11. Why materials science and engineering is good for metallurgy

    NASA Astrophysics Data System (ADS)

    Flemings, Merton C.

    2001-04-01

    Metallurgy/materials education will continue to evolve to encompass, in an intellectually unified way, the full range of structural and functional materials. Computation, information, and other advanced sciences and technologies will assume increasing roles in materials education, as will distance and continuing education. The advantages of the changes will be many … to the graduates, to emerging industries, and to the traditional metallurgical industries seeking productive, creative young engineers as employees. The need for continuing change in our metallurgy/materials departments is now no less if we are to attract the best young people into our field in the numbers needed and to best serve the needs of industry.

  12. Why materials science and engineering is good for metallurgy

    NASA Astrophysics Data System (ADS)

    Flemings, Merton C.

    2001-04-01

    Metallurgy/materials education will continue to evolve to encompass, in an intellectually unified way, the full range of structural and functional materials. Computation, information, and other advanced sciences and technologies will assume increasing roles in materials education, as will distance and continuing education. The advantages of the changes will be many ... to the graduates, to emerging industries, and to the traditional metallurgical industries seeking productive, creative young engineers as employees. The need for continuing change in our metallurgy/materials departments is now no less if we are to attract the best young people into our field in the numbers and to best serve the needs of industry.

  13. Density variations and anomalies in palladium compacts

    SciTech Connect

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  14. Density variations and anomalies in palladium compacts

    SciTech Connect

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  15. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    SciTech Connect

    Bargelski, C. J.; Berrett, D. E.

    1998-09-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables.

  16. 39. GENERAL VIEW LOOKING NORTH, SHOWING BUILDING NO. 318, METALLURGY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. GENERAL VIEW LOOKING NORTH, SHOWING BUILDING NO. 318, METALLURGY LAB, ON RIGHT, BUILDING NO. 319, GENERAL PURPOSE ADMINISTRATION BUILDING, ON LEFT AND BUILDING NO. 355, ADMINISTRATION BUILDING, RESEARCH & DEVELOPMENT, IN BACKGROUND LEFT. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  17. Iron Metallurgy: Technical Terminology Bulletin. Terminotech, Vol. 2, No. 7.

    ERIC Educational Resources Information Center

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to iron metallurgy. Various aspects of iron production are described in both French and English. An English-French dictionary of terms comprises the bulk of the document. Explanatory illustrations are appended. (JB)

  18. NSF: A "Populist" Pattern in Metallurgy, Materials Research?

    ERIC Educational Resources Information Center

    Shapley, Deborah

    1975-01-01

    Describes the testimony of a University of Virginia professor of applied science, who charged that the National Science Foundation grants disproportionately small funds to the best university departments in the field of metallurgy and materials, while preferentially funding middle-ranked departments. (MLH)

  19. Effect of production conditions on the corrosion resistance of lanthanum hexaboride powders and parts made from them

    SciTech Connect

    Paderno, Y.B.; Dudnik, E.M.; Masyuk, T.V.; Tkasch, A.V.; Zaitseva, A.Z.

    1985-10-01

    The authors studied the effect of chemical and thermal treatments of an industrial LaB6 powder on the corrosion resistance of the powder itself and parts pressed hot from it. To start, two batches of an industrial lanthanum hexaboride powder were used; and any boron oxide present removed by washing the powders with warm distilled water. To free the powders of lanthanum borates and lanthanum oxide, the powders were treated with a hydrochloric acid solution. The authors determine that this hydrochloric acid cleaning method is an effective means of ridding an industrial lanthanum hexaboride powder of impurities. It is also shown that acid treatment of industrial LaB6 powders substantially improves the corrosion resistance of parts made from them by powder metallurgy techniques. Also, a mechanism of rupture of hotpressed and sintered lanthanum hexaboride parts is proposed.

  20. Study of Underwater Shock Compaction Device for Compaction of Titanium Diboride

    NASA Astrophysics Data System (ADS)

    Kennedy, G. B.; Kim, Y. K.; Hokamoto, K.; Itoh, S.

    2007-12-01

    Shock compaction for powders has been used to study bulk consolidation of powder materials. Shock compaction has the advantage of processing at low temperatures and short duration to limit effects of high temperatures for long times, such as increased grain size and high energy cost. Many methods of shock loading of powders have been employed: direct contact with explosive, explosively driven flyer plates, and flyer plates launched with light gas or propellant gun. Another method, using explosives to create a shockwave in water that is then contact with a powder container, has been used extensively at Kumamoto University. This work presents a study of the development of the underwater shockwave device and investigates the water container geometry for control of parameters for shockwave peak pressure, duration, and distribution through the powder compaction process. Results of simulations for optimization of shock compaction properties are presented along with measurements from manganin gauge pressure measurements obtained from underwater shock compaction of titanium diboride. The goal of this work is to develop a better understanding of the entire compaction process to utilize the in-situ data to modify numerical simulations to predict performance.

  1. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  2. Novel hollow powder porous structures

    SciTech Connect

    Sypeck, D.J.; Parrish, P.A.; Wadley, H.N.G.

    1998-12-31

    Recent finite element calculations indicate that structures constructed from partially compacted hollow spheres exhibit a greater stiffness and strength than many other cellular structures at comparable density. It has been observed that gas atomization of metallic powders often leads to entrapment of the flow field gas. The resulting hollow powders are an unwanted by-product in the sense that they lead to porosity and future sites of defect in solid parts. Here a method is developed to separate the hollow powders according to their size, shape and density. They are then consolidated to a porous structure. Examples of this are given for both a titanium alloy and a nickel-base superalloy. The compressive mechanical properties are measured and compared to those of other porous structures.

  3. Powder metal technologies and applications

    SciTech Connect

    Eisen, W.B.; Ferguson, B.L.; German, R.M.; Iacocca, R.; Lee, P.W.; Madan, D.; Moyer, K.; Sanderow, H.; Trudel, Y.

    1998-12-31

    This volume is: (1) a completely updated and expanded edition in all areas of powder production, sampling, characterization, shaping, consolidation, sintering, quality control, machining, heat treating, and P/M applications; (2) single source for practical engineering information on sintering practices, tool design, P/M metallography, dimensional control, part design, powders, binders, lubricants, and the processing, properties, and performance of P/M materials in different production technologies and applications; (3) comprehensive coverage of P/M technologies and applications including warm compaction, injection molding, rapid prototyping, thermal spray forming, reactive sintering, and P/M gears, bearings, high-performance parts, composites, machine parts, electric contacts, magnetic materials, metallic foams, hardfacing powders, automotive parts, and more.

  4. Synthesis and processing of monosized oxide powders

    DOEpatents

    Barringer, E.A.; Fegley, M.B. Jr.; Bowen, H.K.

    1985-09-24

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 microns can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed. 6 figs.

  5. Synthesis and processing of monosized oxide powders

    DOEpatents

    Barringer, Eric A.; Fegley, Jr., M. Bruce; Bowen, H. Kent

    1985-01-01

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

  6. Mesoscale Simulations of Power Compaction

    SciTech Connect

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  7. Compaction Behavior of Granular Materials

    NASA Astrophysics Data System (ADS)

    Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.

    1996-03-01

    We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.

  8. A laboratory means to produce tough aluminum sheet from powder

    NASA Technical Reports Server (NTRS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    1990-01-01

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  9. Face powder poisoning

    MedlinePlus

    Face powder poisoning occurs when someone swallows or breathes in this substance. This article is for information ... The ingredients in face powder that can be harmful are: Baking soda Talcum powder Many other types of powder

  10. Tantalum powder consolidation, modeling and properties

    SciTech Connect

    Bingert, S.R.; Vargas, V.D.; Sheinberg, H.C.

    1996-10-01

    A systematic approach was taken to investigate the consolidation of tantalum powders. The effects of sinter time, temperature and ramp rate; hot isostatic pressing (HIP) temperature and time; and powder oxygen content on consolidation density, kinetics, microstructure, crystallographic texture, and mechanical properties have been evaluated. In general, higher temperatures and longer hold times resulted in higher density compacts with larger grain sizes for both sintering and HIP`ing. HIP`ed compacts were consistently higher in density than sintered products. The higher oxygen content powders resulted in finer grained, higher density HIP`ed products than the low oxygen powders. Texture analysis showed that the isostatically processed powder products demonstrated a near random texture. This resulted in isotropic properties in the final product. Mechanical testing results showed that the HIP`ed powder products had consistently higher flow stresses than conventionally produced plates, and the sintered compacts were comparable to the plate material. A micromechanics model (Ashby HIP model) has been employed to predict the mechanisms active in the consolidation processes of cold isostatic pressing (CIP), HIP and sintering. This model also predicts the density of the end product and whether grain growth should be expected under the applied processing conditions.

  11. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  12. Fragmentation and constitutive response of tailored mesostructured aluminum compacts

    NASA Astrophysics Data System (ADS)

    Marquez, Andrew M.; Braithwaite, Christopher H.; Weihs, Timothy P.; Krywopusk, Nicholas M.; Gibbins, David J.; Vecchio, Kenneth S.; Meyers, Marc A.

    2016-04-01

    The fragmentation and constitutive response of aluminum-based compacts were examined under dynamic conditions using mesostructured powder compacts in which the interfaces between the powders (sizes of 40, 100, and 400 μm) were tailored during the swaging fabrication process. Fragmentation was induced in ring samples of this material through explosive loading and was examined through high speed photography, laser interferometry, and soft capture of fragments. Fragment velocities of around 100 m/s were recorded. The fragment mass distributions obtained correlated in general with the interfacial strength of the compacts as well as with the powder size. Experimental results are compared with fragmentation theories to characterize the behavior of reactive powders based on the material's mesostructure by introducing the fracture toughness of the compacts. The mean fragment size is calculated using a modified form of Mott's theory and successfully compared with experimental results.

  13. Application of powder metallurgy techniques for the development of non-toxic ammunition. Final CRADA report

    SciTech Connect

    Lowden, R.; Kelly, R.

    1997-05-30

    The purpose of the Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems, Inc., and Delta Frangible Ammunition (DFA), was to identify and evaluate composite materials for the development of small arms ammunition. Currently available small arms ammunition utilizes lead as the major component of the projectile. The introduction of lead into the environment by these projectiles when they are expended is a rapidly increasing environmental problem. At certain levels, lead is a toxic metal to the environment and a continual health and safety concern for firearm users as well as those who must conduct lead recovery operations from the environment. DFA is a leading supplier of high-density mixtures, which will be used to replace lead-based ammunition in specific applications. Current non-lead ammunition has several limitations that prevent it from replacing lead-based ammunition in many applications (such as applications that require ballistics, weapon recoil, and weapon function identical to that of lead-based ammunition). The purpose of the CRADA was to perform the research and development to identify cost-effective materials to be used in small arms ammunition that eventually will be used in commercially viable, environmentally conscious, non-lead, frangible and/or non-frangible, ammunition.

  14. Utilization of space shuttle external tank materials by melting and powder metallurgy

    NASA Astrophysics Data System (ADS)

    Chern, Terry S.

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  15. Producing Fe-W-Co-Cr-C Alloy Cutting Tool Material Through Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Datta Banik, Bibhas; Dutta, Debasish; Ray, Siddhartha

    2016-06-01

    High speed steel tools can withstand high impact forces as they are tough in nature. But they cannot retain their hardness at elevated temperature i.e. their hot hardness is low. Therefore permissible cutting speed is low and tools wear out easily. Use of lubricants is essential for HSS cutting tools. On the other hand cemented carbide tools can withstand greater compressive force, but due to lower toughness the tool can break easily. Moreover the cost of the tool is comparatively high. To achieve a better machining economy, Fe-W-Co-Cr-C alloys are being used nowadays. Their toughness is as good as HSS tools and hardness is very near to carbide tools. Even, at moderate cutting speeds they can be safely used in old machines having vibration. Moreover it is much cheaper than carbide tools. This paper highlights the Manufacturing Technology of the alloy and studies the comparative tribological properties of the alloy and tungsten mono carbide.

  16. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  17. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  18. Evaluation of powder metallurgy plates made by Sylvania Electric Products, Inc.

    SciTech Connect

    Not Available

    1994-09-01

    These plates, numbered 13129, 13130, 13133, 13137, and 13146 were fabricated by Sylvania Electric Products, Inc., and were received at the Savannah plant in February, 1956. All of the plates were of the wide, ribless design. A summary of the data obtained by Sylvania on these and on {open_quotes}companion{close_quotes} plates is given in Table I, and a summary of the data obtained upon examining the plates at the Savannah River Laboratory is contained in Table II.

  19. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    PubMed

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. PMID:24956564

  20. Effect of thermally induced porosity on an as-HIP powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1979-01-01

    The impact of thermally induced porosity on the mechanical properties of an as-hot-isostatically-pressed and heat treated pressing made from low carbon Astroloy was determined. Porosity in the disk-shape pressing studied ranged from 2.6 percent at the bore to 1.4 percent at the rim. Tensile, yield strength, ductility, and rupture life of the rim of the porous pressing was only slightly inferior to the rim of sound pressings. The strength, ductility, and rupture life of the bore of the porous pressing was severely degraded compared to sound pressings. At strain ranges typical of commercial jet engine designs, the rim of the porous pressing had slightly inferior fatigue life to sound pressings.

  1. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  2. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    NASA Technical Reports Server (NTRS)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  3. Effects of thermally induced porosity on an as-HIP powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The effect of thermally induced porosity on the mechanical properties of an as-hot-isostatically pressed and heat-treated pressing made from low carbon Astroloy is examined. Tensile, stress-rupture, creep, and low cycle fatigue tests were performed and the results were compared with industrial acceptance criteria. It is shown that the porous pressing has a porosity gradient from the rim to the bore with the bore having 1-1/2% greater porosity. Mechanical properties of the test ring below acceptance level are tensile reduction in area at room temperature and 538 C and time for 0.1% creep at 704 C. It is also found that the strength, ductility, and rupture life of the rim are slightly inferior to those of the rim of the sound pressings, while those of the bore are generally below the acceptable level. At strain ranges typical of commercial aircraft engines, the low cycle fatigue life of the rim of the porous pressings is slightly lower than that of the sound pressings.

  4. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  5. Aging of powder metallurgy N14K7M5T2 maraging steel

    SciTech Connect

    Antsiferov, V.N.; Grevnov, L.M.; Maslenikov, N.N.

    1985-04-01

    The authors study the aging process of sintered N14K7M5T2 marging steel at temperatures of 460-590 C with an isothermal hold of 40 min to 10 h. Electron microscopy was used. The purpose of the investigations was establishment of the type of precipitated phases and their size, form, and kinetics of growth in relation to the aging cycles. An analysis of the electrondiffraction patterns of specimens aged under different conditions made it possible to identify Ni/sub 3/ Ti as the hardening phase.

  6. Production of refractory compound Materials for electronic engineering Applications by the powder metallurgy Method

    SciTech Connect

    Kosolapova, T.Y.; Dvorina, L.A.; Sasov, A.M.

    1986-02-01

    This paper presents the most important properties of bulk specimens of refractory metal disilicides having both high and low values of resistivity. The electrical properties and electrotransport data for Period IV metal silicides exhibit transitions from metallic (TiSi/sub 2/) to semiconductor (CrSi/sub 2/, MnSi /SUB 2-n/ , and FeSi/sub 2/) and once again to metallic (CoSi/sub 2/ and NiSi/sub 2/) conductivity. Chromium, manganese, and iron silicides have very good resistance to oxidation in air up to comparatively high temperatures, and in this series CrSi/sub 2/--one of the most air-oxidation resistant disilicide-is discussed at length in this paper.

  7. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering

  8. Ceramic Powders

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In developing its product line of specialty ceramic powders and related products for government and industrial customers, including companies in the oil, automotive, electronics and nuclear industries, Advanced Refractory Technologies sought technical assistance from NERAC, Inc. in specific areas of ceramic materials and silicon technology, and for assistance in identifying possible applications of these materials in government programs and in the automotive and electronics industry. NERAC conducted a computerized search of several data bases and provided extensive information in the subject areas requested. NERAC's assistance resulted in transfer of technologies that helped ART staff develop a unique method for manufacture of ceramic materials to precise customer specifications.

  9. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  10. Wet powder seal for gas containment

    DOEpatents

    Stang, L.G.

    1979-08-29

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  11. Wet powder seal for gas containment

    DOEpatents

    Stang, Louis G.

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  12. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  13. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  14. A comparison of the sintering of various titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-02-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press- and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics; with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  15. T Strip Properties Fabricated by Powder Rolling Method

    NASA Astrophysics Data System (ADS)

    Hong, Jae-Keun; Lee, Chae-Hun; Kim, Jeoung-Han; Yeom, Jong-Taek; Park, Nho-Kwang

    In the present study, the characteristics of the Ti powders fabricated by Hydride-Dehydride (HDH) were analyzed in terms of particle shape, size and size distribution. Ti powders were subjected to roll compaction and their microstructure and green densities were evaluated in terms of particle size, powder morphology, roll gap and rolling speed. Effects of blending elements having different powder sizes on densification properties were analyzed. The strip thickness was proportional to the roll gap up to 0.9 mm and the density of titanium strip was decreased with the increase in roll gap. As the roll speed increased, the strip density and thickness were decreased by using -200 mesh Ti powder. However, the effect of rolling speed for -400 mesh Ti powder was not greater than that of -200 mesh powder. The highest density by 93% was achieved by using -400 mesh Ti powder at 0.1 mm roll gap, however edge cracks and alligator cracks were occurred.

  16. Electrochemical cell with powdered electrically insulative material as a separator

    DOEpatents

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  17. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  18. Canning Of Powdered Metal For Hot Isostatic Pressing

    NASA Technical Reports Server (NTRS)

    Juhas, John J.

    1989-01-01

    Quality of specimen enhanced by improved canning process. Method developed for canning specimens for hot isostatic pressing. Specimen placed inside refractory-metal ring, then sandwiched between two refractory-metal face sheets. Assembly placed inside die, then positioned in vacuum hot press. Heated to set temperature at prescribed vacuum to burn off all of binder in specimen. Advantages: powder-metallurgy composite totally purged of binder sealed in can in single operation, maintains size, shape, and uniformity of specimen. Weld region does not recrystallize, and little possibility of cracking.

  19. Chloride metallurgy: PGM recovery and titanium dioxide production

    NASA Astrophysics Data System (ADS)

    Puvvada, G. V. K.; Sridhar, R.; Lakshmanan, V. I.

    2003-08-01

    This paper examines in detail the thermodynamics and application of chloride metallurgy for the extraction of precious metals, such as gold and silver, and platinum-group metals. The advantages with regard to the solubilities of metal ion species and their reduction potentials in chloride media are discussed with examples. The use of chloride media for the extraction of platinum-group metals from spent autocatalysts and for the production of high-purity pigment-grade TiO2 and titanium metal from ilmenite feed stocks is discussed in the case studies provided.

  20. Welding Metallurgy and Processing Issues for Joining of Power Sources

    SciTech Connect

    Lienert, Thomas J.; Reardon, Patrick T.

    2012-08-14

    Weldability issues with the pertinent alloys have been reviewed and preliminary results of our work on Haynes 25 have been presented. Further results on the mechanical properties and metallography on the EB welds are imminent. Hot-ductility experiments will commence within a few weeks. Aging studies on the effects of heat treatment using the Gleeble are also planned. MST-6 has extensive background in the welding metallurgy of the pertinent alloys. We also have considerable experience with the various welding processes to be used.

  1. Processing of silicon nitride and alumina nanosize powders

    SciTech Connect

    Gonzalez, E.J.; Piermarini, G.; Hockey, B.; Malghan, S.G.

    1995-08-01

    The effects of pressure on the compaction and subsequent processing of nanosize {gamma} alumina powders were studied. A 3 mm diameter piston/cylinder die was used to compact the nanosize powders to pressures of 1 and 2.5 GPa. The green bodies were sintered at temperatures up to 1600{degrees}C. Results show that green body density can be increased by higher compaction pressures. It appears that as a result of the {gamma}-to-{alpha} transformation in alumina, higher green density does not necessarily produce a higher density sintered alumina body. The microstructures of the sintered bodies are described in terms of porosity and phase content.

  2. 78 FR 8202 - Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels will hold a meeting...

  3. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  4. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  5. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    NASA Astrophysics Data System (ADS)

    Wang, Jian-jun; Hao, Jun-jie; Guo, Zhi-meng; Wang, Song

    2015-12-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced using a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense structure, and the fine sub-micron TiC particles were homogeneously distributed in the α-Fe matrix. A TiC-Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature; the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  6. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  7. Ultrasonic sensing of powder densification

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1992-01-01

    An independent scattering theory has been applied to the interpretation of ultrasonic velocity measurements made on porous metal samples produced either by a cold or a high-temperature compaction process. The results suggest that the pores in both processes are not spherical, an aspect ration of 1:3 fitting best with the data for low (less than 4 percent) pore volume fractions. For the hot compacted powders, the pores are smooth due to active diffusional processes during processing. For these types of voids, the results can be extended to a pore fraction of 10 percent, at which point voids form an interconnected network that violates the model assumptions. The cold pressed samples are not as well predicted by the theory because of poor particle bonding.

  8. Investigation of a novel passivation technique for gas atomized magnesium powders

    NASA Astrophysics Data System (ADS)

    Steinmetz, Andrew Douglas

    Gas atomized magnesium powders are critical for the production of a wide variety of flares, tracer projectiles, and other munitions for the United States military, along with a growing number of applications in both alloying and powder metallurgy. Gas atomization of magnesium is performed by numerous companies worldwide, but represents a single point failure within the United States as there is only one domestic producer. These powders are pyrophoric and must be handled carefully and kept dry at all times. Recent studies have explored the ability of certain fluorine containing cover gases to protect molten magnesium in casting operations from excessive vaporization and burning by modifying the native oxide (MgO) through interaction with these gas atmospheres. The present study sought to adapt this melt protection strategy for use as an in-situ passivation technique that could be employed to form a protective reaction film during gas atomization of magnesium powders. This fluorinated oxide shell was intended to provide superior coverage and adherence to the underlying metal, which may improve the ability of powders to resist ignition at elevated temperatures and during powder handling. Two candidate gases were tested in this research, SF6 and NF3, and reaction films of both were produced on miniature melt samples in a controlled environment and characterized using auger electron spectroscopy and x-ray photoelectron spectroscopy. Ultimately, SF6 was chosen to conduct a small scale magnesium atomization experiment for verification of the fluorination reaction and to experimentally test the ignition temperature of these coated particles compared to other magnesium powders available today. This novel passivation technique was found to be far superior to magnesium's native oxide at resisting ignition and, thus, to reduce the hazard associated with handling and transport of magnesium powders for defense applications. If fully commercialized, this passivation method also

  9. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior. PMID:18280716

  10. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.

    PubMed

    Wu, Sy-Juen; Sun, Changquan 'Calvin'

    2007-05-01

    Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. PMID:17455348

  11. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  12. Production of ultra clean gas-atomized powder by the plasma heated tundish technique

    SciTech Connect

    Tingskog, T.A.; Andersson, V.

    1996-12-31

    The paper describes the improvements in cleanliness for different types of gas atomized powders produced by holding the melt in a Plasma Heated Tundish (PHT) before atomization. The cleanliness is measured on Hot Isostatically Pressed (HIP) or extruded samples. Significant improvements in slag levels and material properties have been achieved. On extruded powder metallurgy stainless steel and nickel alloy tubes, the rejection rate in ultra-sonic testing was reduced drastically. Tool steels and high speed steels have greatly improved ductility and bend strength.

  13. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  14. Polymer quenched prealloyed metal powder

    DOEpatents

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  15. Preparation of metal diboride powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  16. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  17. Oxidized Metal Powders for Mechanical Shock and Crush Safety Enhancers

    SciTech Connect

    GARINO, TERRY J.

    2002-01-01

    The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented.

  18. A study of the coefficients in yield functions modeling metal powder deformation

    SciTech Connect

    Tszeng, T.C.; Wu, W.T.

    1996-09-01

    In the past, several phenomenological constitutive models have been proposed for modeling the compaction processes of sintered metal powders on the basis of continuum mechanics. Compared with the sintered metal powders, the loose metal powders behave very differently in many aspects and therefore need a different constitutive model. In this paper, the authors study such a constitutive model and the approach to determine the needed coefficients for describing the behavior of metal powder systems during a general compaction process. The model has been applied to a proportional triaxial compaction as well as the standard triaxial compaction of two metal powders which possess vastly different particle morphology. The characteristics and limitation of the model have been studied by detailed examination of the calculated results. The authors further propose a new constitutive model which uses a state variable to account for the combined influence of particle morphology and stress state on the deformation characteristics.

  19. Physical and mechanical metallurgy of high purity Nb accelerator cavities.

    SciTech Connect

    Wright, N. T.; Bieler, T. R.; Pourgoghart , F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G. E.; Liu, W.; Michigan State Univ.; Texas A & M Univ.; ORNL

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  20. SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.

    PubMed

    Chen, Qun; Li, Yuzhi

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830

  1. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    PubMed Central

    Chen, Qun

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830

  2. Fabrication of Tricalcium Phosphate Compacts by Underwater-Shock Consolidation

    NASA Astrophysics Data System (ADS)

    Chiba, Akira; Morizono, Yasuhiro

    The present study is to fabricate dense tricalcium phosphate (TCP) compacts by our newly developed underwater-shock consolidation technique and to investigate the characteristics of the compacts. By adding Al2O3 powder to β-TCP powder, the biocomposites were fabricated to improve the fracture toughness. Sound compacts of α- and β-TCP powders and β-TCP/Al2O3 biocomposite powder were fabricated without any cracks and tears. The relative densities of α- and β-TCP compacts were about 85% in as-compacted state and more 94% after annealing at 1373K for 7.2ks. Compressive strengths of α- and β-TCP compacts are 160 and 140MPa after annealing at 1373K for 7.2ks, respectively. Compressive strength and fracture toughness of β-TCP/Al2O3 biocomposites after annealed at 1373K for 7.2ks were 188MPa and 2.54MPa·m1/2, which are comparable to values of human bone, respectively.

  3. Microstructural Development in Al-Si Powder During Rapid Solidification

    SciTech Connect

    Amber Lynn Genau

    2004-12-19

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  4. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  5. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.

    PubMed

    Mosig, Johanna; Kleinebudde, Peter

    2015-03-01

    The influence of lubrication and particle size on the reduced compactability after dry granulation was investigated. Powder cellulose, lactose, magnesium carbonate, and two types of microcrystalline cellulose were roll compacted, granulated, and sieved into particle fractions. Particle fractions were compressed into tablets using internal and external lubrication. Internal lubrication resulted in an overlubrication of the granule material compared with the powder material. This resulted in extraordinary high reduction of compactability after dry granulation for lubricant-sensitive materials. The granule size can cause differences in strength, whereby the degree of this effect was material dependent. The loss in strength with increasing compaction force was comparable for different particles sizes of one material, suggesting a change in material properties independently of the size. Granule hardening could be one reason as for higher compaction forces the integrity of the granule structure survived the compression step. The results demonstrated that granule lubrication mainly influence the degree of the reduced compactability after dry granulation and must be considered for the evaluation of mechanism for this phenomenon. Hardening of the material as well as size enlargement will cause the loss in strength after recompression, but the influence of both depends strongly on the material. PMID:25558976

  6. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  7. Hydroxyapatite ceramics from hydrothermally prepared powders

    SciTech Connect

    Lin, C.H.; Huang, C.W.; Chang, S.C.

    1994-12-31

    Hydroxyapatite (Ca{sub 5}(PO{sub 4}){sub 3}(OH)) is an effective material for artificial human bone production. Hydroxyapatite powders were hydrothermally produced in this work by reacting Ca(OH){sub 2} with Na{sub 3}PO{sub 4}{center_dot}12H{sub 2}O in an autoclave at various temperature and for various times. The particle size of hydroxyapatite was observed to be very fine, uniform, around 50 nm, as well as independent of reaction time. The hydroxyapatite powders were compacted and sintered at various temperatures for 2 hrs. The density, grain size, and hardness of the hydroxyapatite ceramics were measured and compared with those of the hydroxyapatite ceramics produced by the powders from the commercial source. The hydroxyapatite ceramics from the hydrothermal powders were found to have a higher density, smaller grain size, and higher hardness. After the hydroxyapatite ceramics were dipped in a simulated biological body liquid for 10 days, the density and hardness of the hydroxyapatite ceramics from the hydrothermal powders were less deteriorated than those of the hydroxyapatite ceramics from the commercial powder.

  8. Face powder poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002700.htm Face powder poisoning To use the sharing features on this page, please enable JavaScript. Face powder poisoning occurs when someone swallows or breathes ...

  9. Composite powder particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald S. (Inventor); MacDowell, Louis G. (Inventor)

    2009-01-01

    A liquid coating composition including a coating vehicle and composite powder particles disposed within the coating vehicle. Each composite powder particle may include a magnesium component, a zinc component, and an indium component.

  10. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  11. Usage Of Polyacetal Powders As Laser Ablation Propulsion Propellants

    SciTech Connect

    Sasoh, Akihiro; Ogita, Naoya; Sinko, John E.

    2010-05-06

    We examined impulse characteristics of polyoxymeythylene (POM) powders under irradiation by a TEA (Transversely-Excited at Atmospheric pressure)CO{sub 2} laser pulse. The impulse performance exhibited large scatter due to splashing particles. When the powder was hydraulically compacted to form a disk, the momentum coupling coefficient became comparable with that for bulk material, but the mass consumption was increased by several times.

  12. Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression

    SciTech Connect

    ZEUCH,DAVID H.; GRAZIER,J. MARK; ARGUELLO JR.,JOSE G.; EWSUK,KEVIN G.

    2000-04-24

    In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite element framework to realistically simulate powder compaction, the authors have undertaken a project to directly measure as many of the requisite powder properties for modeling as possible. A soil mechanics approach has been refined and used to measure the pressure dependent properties of ceramic powders up to 68.9 MPa (10,000 psi). Due to the large strains associated with compacting low bulk density ceramic powders, a two-stage process was developed to accurately determine the pressure-density relationship of a ceramic powder in hydrostatic compression, and the properties of that same powder compact under deviatoric loading at the same specific pressures. Using this approach, the seven parameters that are required for application of a modified Drucker-Prager cap plasticity model were determined directly. The details of the experimental techniques used to obtain the modeling parameters and the results for two different granulated alumina powders are presented.

  13. Low temperature fabrication from nano-size ceramic powders

    SciTech Connect

    Gonzalez, E.J.; Piermarini, G.J.; Hockey, B.

    1995-06-01

    The objective of the compaction process is to produce a dense green-state compact from a nanosize powder that subsequently can be sintered at high temperatures to form a dense ceramic piece. High density in the green-state after pressing is of primary importance for achieving high densities after sintering. Investigation of the compaction behavior of ceramic powders, therefore, is an important part of characterization of raw ceramic powders and evaluation of their compaction behavior, analysis of interaction between particles, and the study of microstructure of green body (unsintered) during pressure-forming processes. The compaction of nanosize ceramic particles into high density green bodies is very difficult. For the nanosize materials used in this study (amorphous Si{sub 3}N{sub 4} and {gamma} Al{sub 2}O{sub 3}), there is no evidence by TEM of partial sintering after synthesis. Nevertheless, strong aggregation forces, such as the van der Waals surface forces of attraction, exist and result in moderate precursor particle agglomeration. More importantly, these attractive surface forces, which increase in magnitude with decreasing particle size, inhibit interparticle sliding necessary for particle rearrangement to denser bodies during subsequent compaction. Attempts to produce high density green body compacts of nanosize particles, therefore, generally have been focused on overcoming these surface forces of attraction by using either dispersive fluids or high pressures with or without lubricating liquids. In the present work, the use of high pressure has been employed as a means of compacting nanosize powders to relatively high green densities.

  14. Fe-based nanocrystalline powder cores with ultra-low core loss

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyue; Lu, Zhichao; Lu, Caowei; Li, Deren

    2013-12-01

    Melt-spun amorphous Fe73.5Cu1Nb3Si15.5B7 alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  15. [Possible health effects associated with Pre-Columbian metallurgy].

    PubMed

    Idrovo, Alvaro Javier

    2005-09-01

    In the Old World, several researchers have indicated that adverse health effects were associated with exposure to arsenic, and that this influenced a change in the use of copper-arsenic alloys to others less toxic. This hypothesis was evaluated for three Pre-Columbian metallurgy traditions: Central Andes, Intermediate Area, and West Mexico. The metal artifacts from the Central Andes showed arsenic concentrations similar to those in the Old World (0.5%-1.0%). In the Intermediate Area the values were smallest; however, in West Mexico the arsenic content was very high (7%-25%). In Central Andes arsenical bronze was used initially, but copper-tin alloys when introduced were preferred and distributed throughout the Inca Empire. Osteological and artistic evidences of foot amputations among Moche individuals from Central Andes support the presence of "black foot disease" (a condition associated with arsenic poisoning) among Pre-Columbian populations. In conclusion, the adverse effects of arsenic have been observed in the New World, and that these effects promoted a change toward the use of less toxic alloys. PMID:16276677

  16. TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

    SciTech Connect

    Louthan, M

    2007-07-17

    Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.

  17. Welding metallurgy of nickel alloys in gas turbine components

    SciTech Connect

    Lingenfelter, A. C., LLNL

    1997-05-21

    Materials for gas turbine engines are required to meet a wide range of temperature and stress application requirements. These alloys exhibit a combination of creep resistance, creep rupture strength, yield and tensile strength over a wide temperature range, resistance to environmental attack (including oxidation, nitridation, sulphidation and carburization), fatigue and thermal fatigue resistance, metallurgical stability and useful thermal expansion characteristics. These properties are exhibited by a series of solid-solution-strengthened and precipitation-hardened nickel, iron and cobalt alloys. The properties needed to meet the turbine engine requirements have been achieved by specific alloy additions, by heat treatment and by thermal mechanical processing. A thorough understanding of the metallurgy and metallurgical processing of these materials is imperative in order to successfully fusion weld them. This same basic understanding is required for repair of a component with the added dimension of the potential effects of thermal cycling and environmental exposure the component will have endured in service. This article will explore the potential problems in joining and repair welding these materials.

  18. Powder processing and properties of zircon-reinforced Al-13.5Si-2.5Mg alloy composites

    SciTech Connect

    Ejiofor, J.U.; Reddy, R.G.; Okorie, B.A.

    1997-06-01

    Zircon, ZrSiO{sub 4}, is a thermally stable mineral requiring expensive and energy-intensive process to reduce. Owing to its abundance, high hardness, excellent abrasion/wear resistance, and low coefficient of thermal expansion, a low-cost alternative use of the mineral for medium-strength tribology was investigated. The present study has developed a conventional low-cost, double-compaction powder metallurgy route in the synthesis of Al-13.5Si-2.5Mg alloy reinforced with zircon. The mechanical and physical properties were determined following the development of optimum conditions of cold pressing and reaction sintering. Reinforcing the hypereutectic Al-Si alloy with 15 vol% zircon particles (size <200 {micro}m) and cold pressing at 350 MPa to near-net shape, followed by liquid-phase reaction sintering at 615 C in vacuum for 20 min, improved the ultimate tensile strength, 0.2% yield strength, and hardness of the alloy by 4, 12.8, and 88%, respectively. At values of more than 9 vol% zircon, percent elongation and the dimensional changes of the sintered composites remained virtually unchanged. At a critical volume fraction of zircon, between 0.03 and 0.05, a sharp rise in hardness was observed. Microstructural and mechanical property analysis showed that the improvement in the mechanical properties is attributable largely to the load-bearing ability and intrinsic hardness of zircon, rather than to particulate dispersion effects. A good distribution of the dispersed zircon particulates in the matrix alloy was achieved.

  19. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  20. Indexation Rules for Metallurgy in PASCAL. Original Title: Regles d'Indexation de la Metallurgie'--Technical Note Issued by Informascience--January 1980. Translated by Marie Wallin.

    ERIC Educational Resources Information Center

    Royal Inst. of Tech., Stockholm (Sweden). Library.

    The indexing rules presented are designed for use with a new French-German database on metallurgy being developed under an agreement by CNRS (Centre National de la Recherche Scientifique, Paris) and BAM (Bundesanstalt fur Materialprufung, Berlin). The new database, which will feature multilingual titles and index terms (French-German-English-) and…

  1. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  2. Implications of elastic wave velocities for Apollo 17 rock powders

    NASA Technical Reports Server (NTRS)

    Talwani, P.; Nur, A.; Kovach, R. L.

    1974-01-01

    Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.

  3. Iron-carbon compacts and process for making them

    DOEpatents

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  4. [Atmospheric emission of PCDD/Fs from secondary aluminum metallurgy industry in the southwest area, China].

    PubMed

    Lu, Yi; Zhang, Xiao-Ling; Guo, Zhi-Shun; Jian, Chuan; Zhu, Ming-Ji; Deng, Li; Sun, Jing; Zhang, Qin

    2014-01-01

    Five secondary aluminum metallurgy enterprises in the southwest area of China were measured for emissions of PCDD/Fs. The results indicated that the emission levels of PCDD/Fs (as TEQ) were 0.015-0.16 ng x m(-3), and the average was 0.093 ng x m(-3) from secondary aluminum metallurgy enterprises. Emission factors of PCDD/Fs (as TEQ) from the five secondary aluminum metallurgy enterprises varied between 0.041 and 4.68 microg x t(-1) aluminum, and the average was 2.01 microg x t(-1) aluminum; among them, PCDD/Fs emission factors from the crucible smelting furnace was the highest. Congener distribution of PCDD/F in stack gas from the five secondary aluminum metallurgies was very different from each other. Moreover, the R(PCDF/PCDD) was the lowest in the enterprise which was installed only with bag filters; the R(PCDF/PCDD) were 3.8-12.6 (the average, 7.7) in the others which were installed with water scrubbers. The results above indicated that the mechanism of PCDD/Fs formation was related to the types of exhaust gas treatment device. The results of this study can provide technical support for the formulation of PCDD/Fs emission standards and the best available techniques in the secondary aluminum metallurgy industry. PMID:24720181

  5. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  6. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  7. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  8. Dynamic magnetic compaction of porous materials

    SciTech Connect

    1998-10-29

    IAP Research began development of the Dynamic Magnetic Compaction (DMC) process three years before the CRADA was established. IAP Research had experimentally demonstrated the feasibility of the process, and conducted a basic market survey. IAP identified and opened discussions with industrial partners and established the basic commercial cost structure. The purpose of this CRADA project was to predict and verify optimum pressure vs. time history for the compaction of porous copper and tungsten. LLNL modeled the rapid compaction of powdered material from an initial density of about 30% theoretical maximum to more than 90% theoretical maximum. The compaction simulations were benchmarked against existing data and new data was acquired by IAP Research. The modeling was used to perform parameter studies on the pressure loading time history, initial porosity and temperature. LLNL ran simulations using codes CALE or NITO and compared the simulations with published compaction data and equation of state (EOS) data. This project did not involve the development or modification of software code. CALE and NITO were existing software programs at LLNL. No modification of these programs occurred within the scope of the CRADA effort.

  9. Counterintuitive compaction behavior of clopidogrel bisulfate polymorphs.

    PubMed

    Khomane, Kailas S; More, Parth K; Bansal, Arvind K

    2012-07-01

    Being a density violator, clopidogrel bisulfate (CLP) polymorphic system (forms I and II) allows us to study individually the impact of molecular packing (true density) and thermodynamic properties such as heat of fusion on the compaction behavior. These two polymorphs of CLP were investigated for in-die and out-of-die compaction behavior using CTC profile, Heckel, and Walker equations. Compaction studies were performed on a fully instrumented rotary tabletting machine. Detailed examinations of the molecular packing of each form revealed that arrangement of the sulfate anion differs significantly in both crystal forms, thus conferring different compaction behavior to two forms. Close cluster packing of molecules in form I offers a rigid structure, which has poor compressibility and hence resists deformation under compaction pressure. This results into lower densification, higher yield strength, and mean yield pressure, as compared with form II at a given pressure. However, by virtue of higher bonding strength, form I showed superior tabletability, despite its poor compressibility and deformation behavior. Form I, having higher true density and lower heat of fusion showed higher bonding strength. Hence, true density and not heat of fusion can be considered predictor of bonding strength of the pharmaceutical powders. PMID:22488254

  10. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    SciTech Connect

    Fell, H.A.

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  11. Cow dung powder poisoning.

    PubMed

    Sherfudeen, Khaja Mohideen; Kaliannan, Senthil Kumar; Dammalapati, Pavan Kumar

    2015-11-01

    Cow dung, which has germicidal property, was used in ancient days to clean living premises in South India. Nowadays, people are using commercially available synthetic cow dung powder. It is locally known as "saani powder" in Tamil Nadu. It is freely available in homes and is sometimes accidentally consumed by children. It is available in two colors - yellow and green. Cow dung powder poisoning is common in districts of Tamil Nadu such as Coimbatore, Tirupur, and Erode. We report two cases of yellow cow dung powder poisoning from our hospital. PMID:26730123

  12. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening. PMID:24971694

  13. Near Net Shape Manufacturing of New Titanium Powders for Industry

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop a manufacturing technology to process new titanium powders into fully consolidated near net shape components for industrial applications. This will be achieved using various technologies, including press and sinter, pneumatic isostatic forging (PIF), hot isostatic pressing (HIP), and adiabatic compaction.

  14. Compaction behavior of isomalt after roll compaction.

    PubMed

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  15. Compaction Behavior of Isomalt after Roll Compaction

    PubMed Central

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  16. Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell

    DOEpatents

    Cooper, Tom O.; Miller, William E.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  17. Phase transformations in shock compacted magnetic materials

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher

    Shock compaction experiments were performed on soft magnetic phases Fe 4N and Fe16N2, and hard magnetic phases Nd 2Fe14B and Sm2Fe17N3 in order to determine their thermo-mechanical stability during shock loading and explore the possibility of fabricating a textured nanocomposite magnet. Gas gun experiments performed on powders pressed in a three capsule fixture showed phase transformations occurring in Fe4N, Fe16N 2, and Nd2Fe14B, while Sm2Fe17 N3 was observed to be relatively stable. Shock compaction of FCC Fe4N resulted in a partial transformation to HCP Fe3N, consistent with previous reports of the transition occurring at a static pressure of ~3 GPa. Shock compaction of Fe16N 2 produced decomposition products α-Fe, Fe4N, and FeN due to a combination of thermal effects associated with dynamic void collapse and plastic deformation. Decomposition of Nd-Fe-B, producing α-Fe and amorphous Nd-Fe-B, was observed in several shock consolidated samples and is attributed to deformation associated with shock compaction, similar to decomposition reported in ball milled Nd-Fe-B. No decomposition was observed in shock compacted samples of Sm-Fe-N, which is consistent with literature reports showing decomposition occurring only in samples compacted at a pressure above ~15 GPa. Nd-Fe-B and Sm-Fe-N were shown to accommodate deformation primarily by grain size reduction, especially in large grained materials. Hard/Soft composite magnetic materials were formed by mixing single crystal particles of Nd-Fe-B with iron nanoparticles, and the alignment-by-magnetic-field technique was able to introduce significant texture into green compacts of this mixture. While problems with decomposition of the Nd2Fe14B phase prevented fabricating bulk magnets from the aligned green compacts, retention of the nanoscale morphology of the α-Fe particles and the high alignment of the green compacts shows promise for future development of textured nanocomposite magnets through shock compaction.

  18. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  19. ACOUSTIC COMPACTION LAYER DETECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...

  20. Dynamical compactness and sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua

    2016-05-01

    To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.