Science.gov

Sample records for power control concept

  1. Phase control system concepts and simulations. [solar power satellite system

    NASA Technical Reports Server (NTRS)

    Lindsay, V. C.

    1980-01-01

    A phase control system concept for a solar power satellite is proposed which partitions the system into three major levels. The first level of phase control consists of a reference phase distribution system implemented in the form of phase distribution tree structure. The major purpose of the tree structure is to electronically compensate for the phase shift due to the transition path lengths from the center of the spacetenna to each phase control center located in each subarray. In the reference system, this is accomplished using the master slave returnable timing system technique. The second level of phase control consists of the beam steering and microwave power generating system which houses the power transponders. This transponder consists of a set of phase conjugation multipliers driven by the reference phase distribution system output and the output of a pilot spread spectrum receiver which accepts the received pilot via a diplexer connected to a separate receive horn or the subarray itself. The output of the phase conjugation circuits serve as inputs to the third level of the phase control system. The third level of phase control is associated with maintaining an equal and constant phase shift through the microwave power amplifier devices while minimizing the associated phase noise effects on the generated power beam. This is accomplished by providing a phase locked loop around each high power amplifier.

  2. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  3. Concept for a power system controller for large space electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.

    1981-01-01

    The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.

  4. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study.

    PubMed

    Winkler, Sandra L; Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre-post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. PMID:26943118

  5. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study

    PubMed Central

    Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre–post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. PMID:26943118

  6. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  7. Movable-molybdenum-reflector reactivity experiments for control studies of compact space power reactor concepts

    NASA Technical Reports Server (NTRS)

    Fox, T. A.

    1973-01-01

    An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.

  8. Current Concepts in Conception Control

    PubMed Central

    Ringrose, C. A. Douglas

    1963-01-01

    The progressive increase in world population has become a most urgent global problem in recent years. Man has, however, been interested in controlling his reproductivity at the family level for many centuries. Historical aspects of this saga are reviewed. The modern era of conception control was ushered in by Makepeace et al. in 1937 when ovulation inhibition by progesterone was demonstrated. Confirmation of this by Pincus and associates, and development of the potent oral progestational agents, the 19-norsteroids, have made efficient reliable contraception a reality. Experience with one of these agents (Ortho-Novum, 2 mg.) in 115 patients through 805 cycles is presented. Conception control was 100% effective at this dosage. Side effects were minimal. Only three of the women discontinued the tablets because of these effects. All but five in this group of 115 preferred the oral contraceptives to methods previously employed. PMID:13973987

  9. Concepts of static VAR system control for enhancing power transfer in long transmission lines

    SciTech Connect

    Padiyar, K.R. . Dept. of Electrical Communication Engineering); Varma, R.K. . Dept. of Electrical Engineering)

    1990-01-01

    This paper is conserved with the influence of different levels of complexity in modelling various constituent subsystems on the dynamic stability of power systems compensated by static var systems (SVS) operating on pure voltage control. The system components investigated include thyristor controlled reactor (TCR) transients, SVS delays, network transients, the synchronous generator and automatic voltage regulator (AVR). An overall model is proposed which adequately describes the system performance for small signal perturbations. The SVS performance is validated through detailed nonlinear simulation on a physical simulator. Static VAR systems are finding increased application in present day power systems due to their fast controllability for enhancement of dynamic and transient stability limits, control of dynamic overvoltages, damping of torsional oscillations, improvement in HVDC converter terminal performance, etc. In long transmission lines, a significant improvement in power transfer can be achieved by connecting an SVS at the midpoint, which is actuated by a control signal derived from local bus voltage.

  10. Space Solar Power Multi-body Dynamics and Controls, Concepts for the Integrated Symmetrical Concentrator Configuration

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; McDonald, Emmett J.

    2000-01-01

    Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.

  11. Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications

    SciTech Connect

    Galyean, W.J.

    1993-06-23

    This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

  12. Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications. Revision 1

    SciTech Connect

    Galyean, W.J.

    1993-06-23

    This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

  13. Hermes thermal control concept

    NASA Astrophysics Data System (ADS)

    Moscatelli, Antonio; Bottaccini, Massimiliano; Ferro, Claudio

    1991-12-01

    The Hermes Space Vehicle is made up of the reusable Hermes Spaceplane (HSP) itself and an expendable rear Hermes Resource Module (HRM). Both the HSP and HRM contain pressurized (habitable) compartments and unpressurized compartments. The complex configuration of the space vehicle and the mission profile require the adoption of a particularly flexible thermal control system which can satisfy the different requirements of the HSP and the HRM together with stringent safety and reliability requirements. All these aspects led to a thermal control design concept which uses active and passive means distributed through all compartments of the space vehicle. The ACTS (Active Thermal Control Section) is dedicated to the control of very high and concentrated thermal loads. It is based on a dual loop concept for heat collection (water and Freon R114 cooling loops), transportation and rejection through dedicated devicers. The PTCS (Passive Thermal Control Section) controls low heat fluxes spread on large surfaces. It relies on different concepts of insulation together with a system of temperature sensors and heaters, to control the thermal excursions of the space plane components and internal structural parts.

  14. Power Controller

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The power factor controller (PFC) senses shifts in the relationship between voltage and current, and matches them with a motor's need. This prevents waste as motors do not need a high voltage when they are not operating at full load conditions. PFC is manufactured by Nordic Controls Company, among others, and has proved extremely cost effective.

  15. Exotic power and propulsion concepts

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion.

  16. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  17. Power Controller

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The device called the Power Factor Controller (PFC) offers exceptional energy conservation potential by virtue of its ability to sense shifts in the relationship between voltage and current flow, and to match them with the motor's need. Originating from the solar heating/cooling program, the PFC senses a light load, it cuts the voltage level to the minimum needed which in turn reduces current flow and heat loss. Laboratory tests showed that the PFC could reduce power used by six to eight percent under normal motor loads, and as much as 65 percent when the motor was idling. Over 150 companies have been granted NASA licenses for commercial use of this technology. One system that utilizes this technology is the Vectrol Energy System, (VES) produced by Vectrol, Inc. a subsidiary of Westinghouse. The VES is being used at Woodward & Lothrop, on their escalators. Energy use is regulated according to how many people are on the escalator at any time. It is estimated that the energy savings are between 30 to 40 percent.

  18. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  19. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  20. Advanced sulfur control concepts

    SciTech Connect

    Harrison, D.P.; Lopez-Ortiz, A.; White, J.D.; Groves, F.R. Jr.

    1995-11-01

    The primary objective of this study is the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Three possible regeneration concepts were identified as a result of a literature search. The potential for elemental sulfur production from a number of candidate metal oxide sorbents using each regeneration concept was evaluated on the basis of a thermodynamic analysis. Two candidate sorbents, Fe{sub 2}O{sub 3} and CeO{sub 2} were chosen for experimental testing. The experimental test program using both electrobalance and fixed-bed reactor sis now getting underway. The objective is to determine reaction conditions--temperature, pressure, space velocity, and regeneration feed gas composition--which will maximize the yield of elemental sulfur in the regeneration product gas. Experimental results are to be used to define a conceptual desulfurization-regeneration process and to provide a preliminary economic evaluation.

  1. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  2. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  3. The Power of Concept Fields

    ERIC Educational Resources Information Center

    Stoyanova, Elena

    2008-01-01

    The ability to discover, explore, describe and mathematise relationships between different concepts is at the heart of scientific work of professional mathematicians and scientists. At school level, however, helping students to link, differentiate or investigate the nature of relationships between mathematics concepts remains in the shadow of…

  4. Unified Technical Concepts. Module 6: Power.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  5. Changing trends in conception control.

    PubMed

    El-tonsi, H; Gable, H; Arias, E; Behr, H Z

    1989-01-01

    Individual methods of conception control lend themselves to further description and detailed breakdown regarding their unique possibilities. Surgical contraception branches into tubal ligation and vasectomy. Tubal ligation methods involve a variety of means such as electro-coagulation, rings, or clips to terminate the oviducts. Vasectomy has various possibilities for its desired effects. Contraceptive barrier devices include such commonly known items as the cervical cap/diaphragm, and IUD. Consent from the user of these devices should be designed with the patient in mind, including detailed medical history and information regarding the possible hazards of the device itself. Various areas of conception control and population control have been explored and are continuing to be explored not only in the large hemispheres of the world, but in those smaller countries where population control has previously been ignored and has gotten out of control. PMID:12315699

  6. A power and load priority control concept as applied to a Brayton cycle turbo-electric generator.

    NASA Technical Reports Server (NTRS)

    Kelsey, E. L.; Young, R. N.

    1972-01-01

    This paper describes a system to regulate the speed and power output of a Brayton Cycle Power System under varying load. A typical user load profile is applied and a simple load priority and parasitic load is used for system regulation. Power storage is provided by batteries with charge and discharge converters to demonstrate support capability. The breadboard system is tested with the Brayton Cycle Demonstrator at the National Aeronautics and Space Administration, Manned Space Craft Center, Houston, Texas.

  7. Concept to convert electrical power

    NASA Technical Reports Server (NTRS)

    Ratti, N.

    1968-01-01

    Moving fluid conductor transforms electrical power from one voltage to another. The electrically conductive fluid acts as a coupling medium between or among multiple electromagnetic fields producing the conversion.

  8. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  9. Phase control system concepts and simulations

    SciTech Connect

    Lindsay, V.C.

    1980-07-01

    A phase control system concept for a solar power satellite is proposed which partitions the system into three major levels. The first level of phase control consists of a reference phase distribution system implemented in the form of phase distribution tree structure. The major purpose of the tree structure is to electronically compensate for the phase shift due to the transition path lengths from the center of the spacetenna to each phase control center located in each subarray. In the reference system, this is accomplished using the master slave returnable timing system technique. The second level of phase control consists of the beam steering and microwave power generating system which houses the power transponders. This transponder consists of a set of phase conjugation multipliers driven by the reference phase distribution system output and the output of a pilot spread spectrum receiver which accepts the received pilot via a diplexer connected to a separate receive horn or the subarray itself. The output of the phase conjugation circuits serve as inputs to the third level of the phase control system. The third level of phase control is associated with maintaining an equal and constant phase shift through the microwave power amplifier devices while minimizing the associated phase noise effects on the generated power beam. This is accomplished by providing a phase locked loop around each high power amplifier.

  10. Postmodern Education and the Concept of Power

    ERIC Educational Resources Information Center

    Romer, Thomas Aastrup

    2011-01-01

    This article presents a discussion of how postmodernist, poststructuralist and critical educational thinking relate to different theories of power. I argue that both Critical Theory and some poststructuralist ideas base themselves on a concept of power borrowed from a modernist tradition. I argue as well that we are better off combining a…

  11. Dual arm master controller concept

    SciTech Connect

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.

  12. PID Control Effectiveness for Surface Reactor Concepts

    SciTech Connect

    Dixon, David D.; Marsh, Christopher L.; Poston, David I.

    2007-01-30

    Control of space and surface fission reactors should be kept as simple as possible, because of the need for high reliability and the difficulty to diagnose and adapt to control system failures. Fortunately, compact, fast-spectrum, externally controlled reactors are very simple in operation. In fact, for some applications it may be possible to design low-power surface reactors without the need for any reactor control after startup; however, a simple proportional, integral, derivative (PID) controller can allow a higher performance concept and add more flexibility to system operation. This paper investigates the effectiveness of a PID control scheme for several anticipated transients that a surface reactor might experience. To perform these analyses, the surface reactor transient code FRINK was modified to simulate control drum movements based on bulk coolant temperature.

  13. Fission Surface Power System Initial Concept Definition

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  14. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  15. Modern control concepts in hydrology

    NASA Technical Reports Server (NTRS)

    Duong, N.; Johnson, G. R.; Winn, C. B.

    1974-01-01

    Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  16. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  17. The critical power concept. A review.

    PubMed

    Hill, D W

    1993-10-01

    The basis of the critical power concept is that there is a hyperbolic relationship between power output and the time that the power output can be sustained. The relationship can be described based on the results of a series of 3 to 7 or more timed all-out predicting trials. Theoretically, the power asymptote of the relationship, CP (critical power), can be sustained without fatigue; in fact, exhaustion occurs after about 30 to 60 minutes of exercise at CP. Nevertheless, CP is related to the fatigue threshold, the ventilatory and lactate thresholds, and maximum oxygen uptake (VO2max), and it provides a measure of aerobic fitness. The second parameter of the relationship, AWC (anaerobic work capacity), is related to work performed in a 30-second Wingate test, work in intermittent high-intensity exercise, and oxygen deficit, and it provides a measure of anaerobic capacity. The accuracy of the parameter estimates may be enhanced by careful selection of the power outputs for the predicting trials and by performing a greater number of trials. These parameters provide fitness measures which are mode-specific, combine energy production and mechanical efficiency in 1 variable, and do not require the use of expensive equipment or invasive procedures. However, the attractiveness of the critical power concept diminishes if too many predicting trials are required for generation of parameter estimates with a reasonable degree of accuracy. PMID:8248682

  18. Laser satellite power systems - Concepts and issues

    NASA Astrophysics Data System (ADS)

    Walbridge, E. W.

    A laser satellite power system (SPS) converts solar power captured by Earth-orbiting satellites into electrical power on the Earth's surface, the satellite-to-ground transmission of power being effected by a laser beam. The laser SPS is an alternative to the microwave SPS. Lasers and how they work are described, as are the types of lasers - electric discharge, direct and indirect solar pumped, free electron, and closed-cycle chemical - that are candidates for application in a laser SPS. The advantages of a laser SPS over the microwave alternative are pointed out. One such advantage is that, for the same power delivered to the utility busbar, land requirements for a laser system are much smaller (by a factor of 21) than those for a microwave system. The four laser SPS concepts that have been presented in the literature are described and commented on. Finally key issues for further laser SPS research are discussed.

  19. POWOW: A Modular, High Power Spacecraft Concept

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    2000-01-01

    A robust space infrastructure encompasses a broad range of mission needs along with an imperative to reduce costs of satellites meeting those needs. A critical commodity for science, commercial and civil satellites is power at an affordable cost. The POWOW (POwer WithOut Wires) spacecraft concept was created to provide, at one end of the scale, multi-megawatts of power yet also be composed of modules that can meet spacecraft needs in the kilowatt range. With support from the NASA-sponsored Space Solar Power Exploratory Research and Technology Program, the POWOW spacecraft concept was designed to meet Mars mission needs - while at the same time having elements applicable to a range of other missions. At Mars, the vehicle would reside in an aerosynchronous orbit and beam power to a variety of locations on the surface. It is the purpose of this paper to present the latest concept design results. The Space Power Institute along with four companies: Able Engineering, Inc., Entech, Inc., Primex Aerospace Co., and TECSTAR have produced a modular, power-rich electrically propelled spacecraft design that meets these requirements. In addition, it also meets a range of civil and commercial needs. The spacecraft design is based on multijunction Ill-V solar cells, the new Stretched Lens Aurora (SLA) module, a lightweight array design based on a multiplicity of 8 kW end-of-life subarrays and electric thrusters. The solar cells have excellent radiation resistance and efficiencies above 30%. The SLA has a concentration ratio up to 15x while maintaining an operating temperature of 80 C. The design of the 8 kW array building block will be presented and its applicability to commercial and government missions will be discussed. Electric propulsion options include Hall, MPD and ion thrusters of various power levels and trade studies have been conducted to define the most advantageous options. The present baseline spacecraft design providing 900 kW using technologies expected to be

  20. Power Factor Controller Study.

    SciTech Connect

    Knudson Engineers, Inc.

    1989-08-01

    The complete report is divided into three parts as follows: (1) This report combines a historical perspective with a current assessment of the use of power factor controllers for three-phase ac motor energy savings. The power factor controller (PFC) is a power electronics device that reduces voltage to a motor during periods of reduced motor torque requirements. (2) A power factor controller (PFC) is a power electronics device that reduces voltage to a motor during periods of reduced motor torque requirements. This report is the DEMONSTRATION phase of the PFC study. The phase report consists of three task reports -- Site Selection, Demonstration Preparation, and Demonstration. The reports explain how three sites were selected for demonstration, describe what was measured at each site and the method of measurement, and compare measured energy savings with calculated predictions of energy savings. The report concludes that PFCs can save energy on carefully selected motor applications. (3) The results of the demonstration task are described in this report. A power factor controller (PFC) is a power electronics device that reduces voltage to a motor during periods of reduced motor torque requirements. The demonstration phase of this study calculates projected energy savings with the use of a PFC and compares measured performance with the calculations. The effect of the PFC on motor power requirements, power factor and energy consumption shall be measured.

  1. MOSFET Power Controller

    NASA Technical Reports Server (NTRS)

    Mitchell, J.; Jones, K.

    1986-01-01

    High current and voltage controlled remotely. Remote Power Conroller includes two series-connected banks of parallel-connected MOSFET's to withstand high current and voltage. Voltage sharing between switch banks, low-impedance, gate-drive circuits used. Provided controlled range for turn on. Individually trimmable to insure simultaneous switching within few nanoseconds during both turn on and turn off. Control circuit for each switch bank and over-current trip circuit float independently and supplied power via transformer T1 from inverter. Control of floating stages by optocouplers.

  2. System Concepts for Affordable Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, David; Qualls, Louis

    2008-01-01

    This paper presents an overview of an affordable Fission Surface Power (FSP) system that could be used for NASA applications on the Moon and Mars. The proposed FSP system uses a low temperature, uranium dioxide-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The concept was determined by a 12 month NASA/DOE study that examined design options and development strategies based on affordability and risk. The system is considered a low development risk based on the use of terrestrial-derived reactor technology, high efficiency power conversion, and conventional materials. The low-risk approach was selected over other options that could offer higher performance and/or lower mass.

  3. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  4. Mars Surveyor '98 MVACS Robotic Arm Control System Design Concepts

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert G.

    1997-01-01

    This paper describes the control system design concepts for the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm which supports the scientific investigations to be conducted as part of the Mars Surveyor '98 Lander project. Novel solutions are presented to some of the unique problems encountered in this demanding space application with its tight constraints on mass, power, volume, and computing power.

  5. APS power supply controls

    SciTech Connect

    Saunders, C.W.; Despe, O.D.

    1994-03-31

    The purpose of this document is to provide comprehensive coverage of the APS power supply control design. This includes application software, embedded controller software, networks, and hardware. The basic components will be introduced first, followed by the requirements driving the overall design. Subsequent sections will address each component of the design one by one. Latter sections will address specific applications.

  6. Oilwell Power Controller (OPC)

    SciTech Connect

    Not Available

    1993-08-01

    The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participating in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.

  7. Power Factor Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.

  8. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  9. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  10. Concepts for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Thomas, Randy; Saus, Joseph

    2007-01-01

    Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.

  11. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  12. Satellite Power System (SPS) concept definition study (Exhibit D). Volume 2: Systems/subsystems analyses

    NASA Astrophysics Data System (ADS)

    Hanley, G. M.

    1981-03-01

    Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.

  13. Satellite Power System (SPS) concept definition study (Exhibit D). Volume 2: Systems/subsystems analyses

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.

  14. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  15. Stirling engine power control

    DOEpatents

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  16. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1974-01-01

    Solid state power controllers (SSPC's) are to be considered for use as replacements of electromechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 v(dc). They have the advantage over conventional relay/circuit breaker systems in that they can be located near the utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small gauge wire for control, computer interface, logic, electrical multiplexing, onboard testing, power management, and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability. Conventional systems require the heavy gage load wiring and the control wiring to be routed from the bus to the load to other remote relay contacts, switches, sensors, etc. and to the circuit breaker located in the flight engineer's compartment for purposes of manual reset.

  17. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Astrophysics Data System (ADS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-07-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  18. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  19. Life extending control: A concept paper

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  20. GGOT total pressure loss control concept evaluation

    NASA Astrophysics Data System (ADS)

    Blumenthal, R. F.

    1993-07-01

    Total pressure loss is one of the most important parameters in the design of a turbine. This parameter effects not only the turbine performance, but consequently the engine power balance and engine performance. Computational Fluid Dynamics (CFD) can be an effective tool in predicting turbine total pressure loss, and also for performing sensitivity studies to achieve an optimal design with respect to pressure loss. In the present study, the AEROVISC code was used to predict the total pressure loss in the Turbine Technology Team Gas Generator Oxidizer Turbine (GGOT). The objectives in this study are two-fold. It is first necessary to determine an optimal methodology in predicting total pressure loss. The type of grid, grid density and distribution are parameters which may affect the loss prediction. Also, the effect of using a standard K-epsilon turbulence model with wall functions versus a two-layer turbulence model needs to be investigated. The use of grid embedding to resolve areas with high flow gradients needs to be explored. The second objective of the study is to apply the optimal methodology toward evaluating different tip leakage control concepts.

  1. PowerPoint and Concept Maps: A Great Double Act

    ERIC Educational Resources Information Center

    Simon, Jon

    2015-01-01

    This article explores how concept maps can provide a useful addition to PowerPoint slides to convey interconnections of knowledge and help students see how knowledge is often non-linear. While most accounting educators are familiar with PowerPoint, they are likely to be less familiar with concept maps and this article shows how the tool can be…

  2. Alternative power generation concepts for space

    SciTech Connect

    Brandhorst, H.W. Jr.; Juhasz, A.J.; Jones, B.I.

    1994-09-01

    With the advent of the NASA Space Station, there has emerged a general realization that large quantities of power in space are necessary and, in fact, enabling. This realization has led to the examination of alternative options to the ubiquitous solar array/battery power system. Several factors led to the consideration of solar dynamic and nuclear power systems. These include better scaling to high power levels, higher efficiency conversion and storage subsystems, and lower system specific mass. The objective of this paper is to present the results of trade and optimization studies that high-light the potential of solar and nuclear dynamic systems relative to photovoltaic power systems.

  3. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Technical Reports Server (NTRS)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  4. Spectrum management considerations of adaptive power control in satellite networks

    NASA Technical Reports Server (NTRS)

    Sawitz, P.; Sullivan, T.

    1983-01-01

    Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.

  5. Critical areas: Satellite power systems concepts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Critical Areas are defined and discussed in the various areas pertinent to satellite power systems. The presentation is grouped into five areas (General, Space Systems, Solar Energy Conversion, Microwave Systems, and Environment/Ecology) with a sixth area (Power Relay) considered separately in an appendix. Areas for Future Consideration as critical areas are discussed in a second appendix.

  6. Extending the Power of the Concept Map

    ERIC Educational Resources Information Center

    Passmore, Graham J.

    2004-01-01

    This pilot study introduces a scale to assess structural knowledge in concept maps. The need to increase our understanding of structural knowledge through improved assessment is made evident in a review of research that indicates that its quality is related to problem-solving abilities. The new scale is derived from Biggs and Collis' (1982)…

  7. Contingency power concepts for helicopter turboshaft engine

    NASA Technical Reports Server (NTRS)

    Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.

    1984-01-01

    Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.

  8. Innovative Flow Control Concepts for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  9. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  10. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  11. Figure control concepts for segmented reflector telescopes

    NASA Technical Reports Server (NTRS)

    Boussalis, D.; Chu, C. C.; Ih, C.-H. C.; Wang, S. J.; Ryaciotaki-Boussalis, H. A.

    1989-01-01

    Control analysis activities related to the development of figure control technologies for large space telescopes with precision segmented actively controlled primary reflectors are reviewed. The Precision Segmented Reflector (PSR) configuration is described along with the development and use of the PSR models. Geometric and dynamic models, characterization of figure estimation errors and optimal sensor placement, and the development of quasi-static and dynamic control concepts are outlined. The structure of a quasi-static controller is presented, that utilizes edge sensor measurements to estimate displacement errors at the actuator level and generates figure correction commands. The second approach considers decentralization of the reflector system at the panel level, while the third considers decentralization at the actuator level.

  12. Telescience concept for habitat monitoring and control

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl; Johnson, Vicki; Mian, Arshad

    1988-01-01

    The operational environment for life sciences on the Space Station will incorporate telescience, a new set of operational modes for conducting science and operations remotely. This paper presents payload functional requirements for Space Station Life Sciences habitat monitoring and control and describes telescience concepts and technologies which meet these requirements. Special considerations for designing sensors and effectors to accommodate future evolutions in technology are discussed.

  13. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M.; Weng, C.K.; Lindsay, R.W.

    1992-06-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  14. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M. . Dept. of Nuclear Engineering); Weng, C.K. . Dept. of Mechanical Engineering); Lindsay, R.W. )

    1992-01-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  15. Using Scatterplots to Teach the Critical Power Concept

    ERIC Educational Resources Information Center

    Pettitt, Robert W.

    2012-01-01

    The critical power (CP) concept has received renewed attention and excitement in the academic community. The CP concept was originally conceived as a model derived from a series of exhaustive, constant-load, exercise bouts. All-out exercise testing has made quantification of the parameters for the two-component model easier to arrive at, which may…

  16. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  17. Theoretical Concept of Power vs. Oppression

    ERIC Educational Resources Information Center

    Hartlep, Nicholas D.

    2008-01-01

    This urban synthesis paper encompasses the works of Drs. Joel Handler, Yeheskel Hasenfeld, Ann Winfield, John Rury, and Jean Anyon. The main purpose of this paper is to synthesize arguments contained within their books relating to the theory of power vs. oppression as it plays out within our society. This synthesizing acknowledges and elucidates…

  18. The Significance of Conceptions of Political Power.

    ERIC Educational Resources Information Center

    Theman, Jan

    This paper discusses a study to determine how people view political power within the Swedish system. The objective was to investigate variations in the way people perceive a common social phenomenon. The sample was composed of 15 subjects chosen randomly from the adult population of Goteborg, Sweden. Subjects were interviewed regarding their…

  19. High-torque power wrench, a concept

    NASA Technical Reports Server (NTRS)

    Cox, E. F.

    1968-01-01

    High-torque power wrench is small enough to be handled by one or two men yet has sufficient torque to remove 1-1/2- to 4-inch nuts from high-pressure tanks and valves. The action can be made automatic by use of solenoid-operated valves and suitable switches.

  20. Concepts for central solar electric power generation

    NASA Technical Reports Server (NTRS)

    Kintigh, J. K.

    1974-01-01

    The investigation reported was conducted to select the best conceptual design of a power plant for the dynamic conversion of solar heat to electricity. Conversion of thermal energy to electricity was to be an accomplished with conventional turbomachinery. Questions of site selection are discussed along with solar energy collection systems, aspects of candidate system definition, and reference systems.

  1. RoMPS concept review automatic control of space robot, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  2. Supercritical Brayton Cycle Nuclear Power System Concepts

    SciTech Connect

    Wright, Steven A.

    2007-01-30

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  3. Supercritical Brayton Cycle Nuclear Power System Concepts

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  4. Alternative power generation concepts for space

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Juhasz, Albert J.; Jones, Barbara I.

    1986-01-01

    Trade and optimization studies that highlight the potential of solar and nuclear dynamic systems relative to photovoltaic power systems are summarized. The solar dynamic case is the LEO Stirling system, while the nuclear system is the SP-100 system goal. Nuclear systems have the potential for the lightest weight, least area, sunlight independent, radiation-durable system. Solar dynamic systems pose a stiff challenge to photovoltaic systems in the midaltitudes because of their insensitivity to the Van Allen radiation belts. While the initial operational capability space station power system is only slightly superior to the SOA PV system, with development focused on the key technologies, advanced solar dynamic systems are fully competitive in LEO midaltitudes with the advanced photovoltaic systems. Advances in energy storage systems (100 Whrs/kg required) are essential.

  5. Local position control: A new concept for control of manipulators

    NASA Technical Reports Server (NTRS)

    Kelly, Frederick A.

    1988-01-01

    Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.

  6. Minimal control power of the controlled teleportation

    NASA Astrophysics Data System (ADS)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Soojoon

    2016-03-01

    We generalize the control power of a perfect controlled teleportation of an entangled three-qubit pure state, suggested by Li and Ghose [Phys. Rev. A 90, 052305 (2014), 10.1103/PhysRevA.90.052305], to the control power of a general controlled teleportation of a multiqubit pure state. Thus, we define the minimal control power, and calculate the values of the minimal control power for a class of general three-qubit Greenberger-Horne-Zeilinger (GHZ) states and the three-qubit W class whose states have zero three-tangles. Moreover, we show that the standard three-qubit GHZ state and the standard three-qubit W state have the maximal values of the minimal control power for the two classes, respectively. This means that the minimal control power can be interpreted as not only an operational quantity of a three-qubit quantum communication but also a degree of three-qubit entanglement. In addition, we calculate the values of the minimal control power for general n -qubit GHZ states and the n -qubit W -type states.

  7. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  8. Study of novel concepts of power transmission gears

    NASA Technical Reports Server (NTRS)

    Rivin, Eugene I.

    1991-01-01

    Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.

  9. Toward "Constructing" the Concept of Statistical Power: An Optical Analogy.

    ERIC Educational Resources Information Center

    Rogers, Bruce G.

    This paper presents a visual analogy that may be used by instructors to teach the concept of statistical power in statistical courses. Statistical power is mathematically defined as the probability of rejecting a null hypothesis when that null is false, or, equivalently, the probability of detecting a relationship when it exists. The analogy…

  10. Kilovolt dc solid state remote power controller development

    NASA Technical Reports Server (NTRS)

    Mitchell, J. T.

    1982-01-01

    The experience gained in developing and applying solid state power controller (SSPC) technology at high voltage dc (HVDC) potentials and power levels of up to 25 kilowatts is summarized. The HVDC switching devices, power switching concepts, drive circuits, and very fast acting overcurrent protection circuits were analyzed. A 25A bipolar breadboard with Darlington connected switching transistor was built. Fault testing at 900 volts was included. A bipolar transistor packaged breadboard design was developed. Power MOSFET remote power controller (RPC) was designed.

  11. Accommodation of Nuclear Power and Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.; Bolch, Wesley e.; Thomas, J. Kelley

    1990-01-01

    The use of nuclear systems for propulsion and power are being examined as system options for implementing the lunar and Mars human exploration missions currently being studied by NASA. Systems might include nuclear electric propulsion (NEP) and nuclear thermal rocket (NTR) vehicles, operating reactors on coorbiting platforms, radioisotope thermoelectric generators, and others. The space station, as a transportation node, would have to store, assemble, launch and refurbish elements containing these systems. Care must be taken to safeguard humans from the radiation imposed by these systems, in addition to the naturally occuring background of the space environment. Key issues need to be identified early to enable their proper consideration in planning activities and the baseline space station design. A study was conducted over the past year with Texas A&M University to identify and explore key issues and quantify findings in a way useful to the Space Station Program.

  12. Satellite power systems (SPS) concept definition study. Volume 2, part 1: System engineering

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Top level trade studies are presented, including comparison of solid state and klystron concepts, higher concentration on the solar cells, composite and aluminum structure, and several variations to the reference concept. Detailed trade studies are presented in each of the subsystem areas (solar array, power distribution, structures, thermal control, attitude control and stationkeeping, microwave transmission, and ground receiving station). A description of the selected point design is also presented.

  13. Advanced-power-reactor design concepts and performance characteristics

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  14. Adaptive Power Control for Space Communications

    NASA Technical Reports Server (NTRS)

    Thompson, Willie L., II; Israel, David J.

    2008-01-01

    This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).

  15. Mars power system concept definition study. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  16. Lunar fission surface power system design and implementation concept

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    The request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  17. Lunar Fission Surface Power System Design and Implementation Concept

    SciTech Connect

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-20

    At the request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  18. Physicians' Professionally Responsible Power: A Core Concept of Clinical Ethics.

    PubMed

    McCullough, Laurence B

    2016-02-01

    The gathering of power unto themselves by physicians, a process supported by evidence-based practice, clinical guidelines, licensure, organizational culture, and other social factors, makes the ethics of power--the legitimation of physicians' power--a core concept of clinical ethics. In the absence of legitimation, the physician's power over patients becomes problematic, even predatory. As has occurred in previous issues of the Journal, the papers in the 2016 clinical ethics issue bear on the professionally responsible deployment of power by physicians. This introduction explores themes of physicians' power in papers from an international group of authors who address autonomy and trust, the virtues of perinatal hospice, conjoined twins in ethics and law, addiction and autonomy in clinical research on addicting substances, euthanasia of patients with dementia in Belgium, and a pragmatic approach to clinical futility. PMID:26671961

  19. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  20. Bidirectional power converter control electronics

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  1. Satellite Power Systems (SPS) Concept Definition Study. Volume 3: SPS Concept Evolution

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    A solar photovoltaic satellite based upon the utilization of a GaAlAs solar cell is defined. Topics covered include silicon-based photovoltaics, solar thermal power conversion, microwave energy transmission, power distribution, structures, attitude control and stationkeeping, thermal, and information management and control.

  2. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  3. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    NASA Technical Reports Server (NTRS)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  4. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2003-01-01

    A study was recently carried out by a team from JPL and the DOE to investigate the utility of a DOE-developed 3 kWe surface fission power system for Mars missions. The team was originally tasked to perform a study to evaluate the usefulness and feasibility of incorporation of such a power system into a landed mission. In the course of the study it became clear that the application of such a power system was enabling to a wide variety of potential missions. Of these, two missions were developed, one for a stationary lander and one for a reactor-powered rover. This paper discusses the design of the rover mission, which was developed around the concept of incorporating the fission power system directly into a large rover chassis to provide high power, long range traverse capability. The rover design is based on a minimum extrapolation of technology, and adapts existing concepts developed at JPL for the 2009 Mars Science Laboratory (MSL) rover, lander and EDL systems. The small size of the reactor allowed its incorporation directly into an existing large MSL rover chassis design, allowing direct use of MSL aeroshell and pallet lander elements, beefed up to support the significantly greater mass involved in the nuclear power system and its associated shielding. This paper describes the unique design challenges encountered in the development of this mission architecture and incorporation of the fission power system in the rover, and presents a detailed description of the final design of this innovative concept for providing long range, long duration mobility on Mars.

  5. Electron ripple injection concept for transport control

    SciTech Connect

    Choe, W.; Ono, M.; Hwang, Y.S.

    1992-01-01

    Recent experiments in many devices have provided firm evidence that the edge radial electric field profile differs between L- and H-modes, and that these fields can greatly modify transport in tokamak plasmas. A nonintrusive method for inducing radial electric field based on electron ripple injection is being developed by the CDX-U group. This technique utilizes a pair of special coils to create a local magnetic field ripple to trap the electrons at the edge of the plasma. The trapped electrons then drift into the plasma due to the [del]B drift. An ECH power is applied to accelerate electrons to sufficient perpendicular energy to penetrate into the plasma. Application of ECH power to the trapped electrons should provide the desired 20 A of electron current with electrons of a few keV of energy and v[perpendicular]/v[parallel] [much gt] 1. A controlled experiment to investigate the physics of ECH aided ripple injection has been designed on CDX-U. With the set of ripple coils designed for CDX-U, a ripple fraction of [delta] ([double bond] [del]B/B[sub av]) [approximately] 5% is attainable. At this ripple fraction, electrons are trapped if v[perpendicular]/v[parallel] [much gt] 1> (2[delta])[sup [minus][1/2

  6. SPARCLE: Electrostatic Dust Control Tool Proof of Concept

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.

    2010-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  7. Space Solar Power Concepts: Demonstrations to Pilot Plants

    NASA Technical Reports Server (NTRS)

    Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.

  8. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  9. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.; Petroff, I. K.

    1980-01-01

    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  10. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  11. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  12. Electron ripple injection concept for transport control

    SciTech Connect

    Choe, W.; Ono, M.; Hwang, Y.S.

    1992-10-01

    Recent experiments in many devices have provided firm evidence that the edge radial electric field profile differs between L- and H-modes, and that these fields can greatly modify transport in tokamak plasmas. A nonintrusive method for inducing radial electric field based on electron ripple injection is being developed by the CDX-U group. This technique utilizes a pair of special coils to create a local magnetic field ripple to trap the electrons at the edge of the plasma. The trapped electrons then drift into the plasma due to the {del}B drift. An ECH power is applied to accelerate electrons to sufficient perpendicular energy to penetrate into the plasma. Application of ECH power to the trapped electrons should provide the desired 20 A of electron current with electrons of a few keV of energy and v{perpendicular}/v{parallel} {much_gt} 1. A controlled experiment to investigate the physics of ECH aided ripple injection has been designed on CDX-U. With the set of ripple coils designed for CDX-U, a ripple fraction of {delta} ({double_bond} {del}B/B{sub av}) {approximately} 5% is attainable. At this ripple fraction, electrons are trapped if v{perpendicular}/v{parallel} {much_gt} 1> (2{delta}){sup {minus}{1/2}} {approx}3. A resonant cavity box was fabricated for efficient heating of the trapped electrons. It is also capable of measuring the effect of the field ripple in conjunction with trapped electrons. Some preliminary results are given.

  13. NSTX power supply real time controller

    SciTech Connect

    Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

    2000-01-06

    The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

  14. Resonant AC power system proof-of-concept test program

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.

    1986-01-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  15. Technical assessment of an aeroelectric solar power concept

    SciTech Connect

    James, E C; Zukoski, E; Wormeck, J

    1981-02-01

    The aeroelectric solar power concept has been evaluated. The evaluation is based on a one-dimensional flow analysis which invokes the conservation of mass, momentum and energy of the fluid mixture (air, water vapor and water droplets) flowing through the powerplant. A performance evaluation computer code is developed which can be used to assess the concept under diverse conditions and in preliminary design. For purposes of this evaluation, the geometry of the powerplant has been specified. Aerodynamic flow losses have been estimated using a compendium of pipe flow data for each component of the power plant. These losses are utilized in the flow analysis. Flow losses have been estimated to be approximately one-third of the stream's dynamic pressure (1/2 pu/sup 2/) in the tower's cylinder section. Geometric or configuration changes can be made to reduce aerodynamic loss.

  16. Magnetic Flux Compression Concept for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri

    2000-01-01

    The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel

  17. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-07-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  18. Satellite power system concept development and evaluation program system definition technical assessment report

    SciTech Connect

    Not Available

    1980-12-01

    The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW of electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  19. Heat Rejection Concepts for Lunar Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.

  20. Terminology and concepts of control and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

    1990-01-01

    Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

  1. A Power Conversion Concept for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission is currently under study by the Office of Space Science under the Project Prometheus Program. JIMO is examining the use of Nuclear Electric Propulsion (NEP) to carry scientific payloads to three Jovian moons. A potential power system concept includes dual 100 kWe Brayton converters, a deployable pumped loop heat rejection subsystem, and a 400 Vac Power Management and Distribution (PMAD) bus. Many trades were performed in aniving at this candidate power system concept. System-level studies examined design and off-design operating modes, determined startup requirements, evaluated subsystem redundancy options, and quantified the mass and radiator area of reactor power systems from 20 to 200 kWe. In the Brayton converter subsystem, studies were performed to investigate converter packaging options, and assess the induced torque effects on spacecraft dynamics due to rotating machinery. In the heat rejection subsystem, design trades were conducted on heat transport approaches, material and fluid options, and deployed radiator geometries. In the PMAD subsystem, the overall electrical architecture was defined and trade studies examined distribution approaches, voltage levels, and cabling options.

  2. A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.

  3. Power control for heat engines

    DOEpatents

    Dineen, John J.

    1984-01-01

    A power control arrangement for a Stirling engine includes a sleeve mounted in each cylinder for axial movement and a port in the sleeve leading to a dead space. The port is covered by the piston at a position that is determined by the piston position and the axial adjustment of the sleeve. The compression phase of the Stirling cycle for that piston begins when the port is covered, so the position of the sleeve is used to set the Stirling engine power level.

  4. Advanced Nuclear Power Concepts for Human Exploration Missions

    SciTech Connect

    Robert L. Cataldo; Lee S. Mason

    2000-06-04

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over {approx}2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters.

  5. A Robust Modular IGBT Power Supply for Innovative Confinement Concepts

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James

    2012-10-01

    Eagle Harbor Technologies (EHT) has developed an IGBT-based switching module for pulsed high power (> 10 MW) RF applications. These modules contain a control voltage supply (isolated to 30 kV) and fiber optically isolated drive circuitry, which allows for easy integration into a wide variety of power supply configurations. Each module is capable of switching 2.5 kA (pulsed) or at 1 kV or switching 100 kW (CW) up to megahertz frequencies with rise times of 40 ns. The modules are designed for precise switching control, which reduces jitter (< 5 ns) between modules, enabling robust series operation. EHT will present the final module design and performance results. In addition, data will be presented from two power supplies utilizing the EHT module: a 10 kV series stack that drives a resistive load at 500 A and a half bridge configuration that drives series resonant network with over 5 MW oscillating power.

  6. Solid state systems concepts. [solar power satellite transmission

    NASA Technical Reports Server (NTRS)

    Schroeder, I. K.

    1980-01-01

    Two prototype solid state phased array systems concepts for potential use in the Solar Power Satellite are described; the end-mounted and the sandwich systems. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. In the end-mounted system 36-watt amplifiers are mounted on the ground-plane, whereas in the sandwich the amplifiers are elevated to the dipoles, and their waste heat is dissipated by beryllium oxide discs. The feed lines are underneath the ground-plane, and a coaxial transmission line is carried all the way to the amplifier input. Also discussed is solid state amplifier development.

  7. High power free-electron laser concepts and problems

    SciTech Connect

    Goldstein, J.C.

    1995-03-01

    Free-electron lasers (FELs) have long been thought to offer the potential of high average power operation. That potential exists because of several unique properties of FELs, such as the removal of ``waste heat`` at the velocity of light, the ``laser medium`` (the electron beam) is impervious to damage by very high optical intensitites, and the technology of generating very high average power relativistic electron beams. In particular, if one can build a laser with a power extraction efficiency 11 which is driven by an electron beam of average Power P{sub EB}, one expects a laser output power of P{sub L} = {eta} P{sub EB}. One approach to FEL devices with large values of {eta} (in excess of 10 %) is to use a ``tapered`` (or nonuniform) wiggler. This approach was followed at several laboratories during the FEL development Program for the Strategic Defense Initiative (SDI) project. In this paper, we review some concepts and technical requirements for high-power tapered-wiggler FELs driven by radio-frequency linear accelerators (rf-linacs) which were developed during the SDI project. Contributions from three quite different technologies - rf-accelerators, optics, and magnets - are needed to construct and operate an FEL oscillator. The particular requirements on these technologies for a high-power FEL were far beyond the state of the art in those areas when the SDI project started, so significant advances had to be made before a working device could be constructed. Many of those requirements were not clearly understood when the project started, but were developed during the course of the experimental and theoretical research for the project. This information can be useful in planning future high-power FEL projects.

  8. Solar power satellite system definition study. Part 3: Preferred concept system definition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A concise but complete system description for the preferred concept of the Solar Power Satellite System is presented. Significant selection decisions included the following: (1) single crystal silicon solar cells; (2) glass encapsulated solar cell blankets; (3) concentration ratio 1; (4) graphite composite materials for primary structure; (5) electric propulsion for attitude control; (6) klystron RF amplifier tubes for the transmitter; (7) one kilometer diameter transmitter with a design trans mission link output power of 5,000 megawatts; (8) construction in low earth orbit with self-powered transfer of satellite modules to geosynchronous orbit; and (9) two-stage winged fully reusable rocket vehicle for transportation to low earth orbit.

  9. Heat Rejection Concepts for Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  10. A new concept of solar power satellite: Tethered-SPS

    NASA Astrophysics Data System (ADS)

    Sasaki, Susumu; Tanaka, Koji; Higuchi, Ken; Okuizumi, Nobukatsu; Kawasaki, Shigeo; Shinohara, Naoki; Senda, Kei; Ishimura, Kousei

    2007-02-01

    Tethered solar power satellite (Tethered-SPS) consisting of a large panel with a capability of power generation/transmission and a bus system which are connected by multi-wires is proposed as an innovative solar power satellite (SPS). The power generation/transmission panel is composed of a huge number of perfectly equivalent power modules. The electric power generated by the solar cells at the surface of each module is converted to the microwave power in the same module. Since the modules are controlled by the bus system using wireless LAN, no wired signal/power interfaces are required between the modules. The attitude in which the microwave transmission antenna is directed to the ground is maintained by the gravity gradient force. The tethered panel is composed of individual tethered subpanels which are loosely connected to each other. This configuration enables an evolutional construction in which the function of the SPS grows as the construction proceeds. A scale model of the tethered subpanel can be used for the first step demonstration experiment of the SPS in the near future.

  11. Active Power Control from Wind Power (Presentation)

    SciTech Connect

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  12. Comparative performance of solar thermal power generation concepts

    NASA Technical Reports Server (NTRS)

    Wen, L.; Wu, Y. C.

    1976-01-01

    A performance comparison is made between the central receiver system (power tower) and a distributed system using either dishes or troughs and lines to transport fluids to the power station. These systems were analyzed at a rated capacity of 30 MW of thermal energy delivered in the form of superheated steam at 538 C (1000 F) and 68 atm (1000 psia), using consistent weather data, collector surface waviness, pointing error, and electric conversion efficiency. The comparisons include technical considerations for component requirements, land utilization, and annual thermal energy collection rates. The relative merits of different representative systems are dependent upon the overall conversion as expressed in the form of performance factors in this paper. These factors are essentially indices of the relative performance effectiveness for different concepts based upon unit collector area. These performance factors enable further economic tradeoff studies of systems to be made by comparing them with projected production costs for these systems.

  13. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  14. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  15. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  16. Automated power management and control

    NASA Technical Reports Server (NTRS)

    Dolce, James L.

    1991-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. A joint effort between NASA's Office of Aeronautics and Exploration Technology and NASA's Office of Space Station Freedom, it strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. The initial station operation will use ground-based dispatches to perform the necessary command and control tasks. These tasks constitute planning and decision-making activities that strive to eliminate unplanned outages. We perceive an opportunity to help these dispatchers make fast and consistent on-line decisions by automating three key tasks: failure detection and diagnosis, resource scheduling, and security analysis. Expert systems will be used for the diagnostics and for the security analysis; conventional algorithms will be used for the resource scheduling.

  17. Satellite power system concept development and evaluation program. Volume 1: Technical assessment summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  18. Advanced control concepts. [for shuttle ascent vehicles

    NASA Technical Reports Server (NTRS)

    Sharp, J. B.; Coppey, J. M.

    1973-01-01

    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used.

  19. Approach path control for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Clymer, D. J.; Flora, C. C.

    1973-01-01

    A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included.

  20. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  1. Satellite power system: Concept development and evaluation program, reference system report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites.

  2. An Inertial-Fusion Z-Pinch Power Plant Concept

    SciTech Connect

    DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.

    2000-12-15

    With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30

  3. Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management.

    PubMed

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2015-01-01

    Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm²), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip. PMID:26610497

  4. Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management

    PubMed Central

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2015-01-01

    Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm2), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip. PMID:26610497

  5. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  6. Project Design Concept for Monitoring and Control System

    SciTech Connect

    MCGREW, D.L.

    2000-10-02

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations.

  7. Rate-Controlling Step: A Necessary or Useful Concept?

    ERIC Educational Resources Information Center

    Laidler, Keith J.

    1988-01-01

    Defines the rate-controlling step in contrast to the terms rate determining and rate limiting. Discusses the usefulness of this concept in describing kinetic isotope effects, consecutive reactions, chain reactions, and enzyme-catalyzed reactions. (CW)

  8. Temperature-controlled fluidic device A concept

    NASA Technical Reports Server (NTRS)

    Rehsteiner, F. H.

    1970-01-01

    Symmetrical fluidic device directly converts electrical signals to mechanical signals in the form of a fluid-flow parameter. This device eliminates or reduces effects of all undesirable parameters on the departure angle, leaving it a function of the controlled wall and jet temperatures.

  9. Control concept for maneuvering in hypersonic flight

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Lallman, Frederick J.

    1991-01-01

    This research investigates an approach to provide precise, coordinated maneuver control during excursions from a hypersonic cruise flight path while observing the necessary flight condition constraints. The approach achieves specified guidance commands by resolving altitude and cross-range errors into a load factor and bank angle command through a coordinate transformation which acts as an interface between outer loop guidance controls and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle-of-attack and dynamic pressure perturbations while prioritizing altitude regulation over crossrange. An unpiloted test simulation, in which the resolver was used to drive inner-loop flight controls, produced time histories of responses to guidance commands at Mach numbers of 6, 10, 15, and 20. It is shown that angle-of-attack and throttle perturbation constraints, combined with high-speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle. Turn rate, climb rate, and descent rate limits are expressed in terms of these constraints.

  10. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  11. Control Concepts in Educational Planning. Bulletin No. 5.

    ERIC Educational Resources Information Center

    Francis, N. D.

    The educational system is characterized by a vector matrix differential equation, and it is shown that the concepts of modern control theory such as observability, controllability, and optimal control can give deeper insight into the behavior of the educational system. The identification of the system dynamics and the definition of a realistic…

  12. Controller Regulates Auxiliary Source for Solar Power

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    Load driven by two motors continuously draws power from a varying source (solar cells) and steady auxiliary source (utility company). Power-factor controller apportions electrical load between two sources to maintain motor speed. This novel application of power-factor controller would regulate input of auxiliary energy to a solar-powered system in response to availability of Sunlight.

  13. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures.

  14. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures.

  15. Failure Detector for Power-Factor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    New protective circuits have been developed for power-factor ac motor controllers. Circuits prevent direct current and consequent motor heating that would normally result from failure of solid-state switch in controller. Single-phase power-factor controller with short detector compensates for short-circuit failure in either direction by applying full power to motor. Controller with open detector compensates for open-circuit failure in either direction by turning off power to motor.

  16. Three-Phase Power Factor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    Three-Phase Power-Factor Controller develops a control signal for each motor winding. As motor loading decreases, rms value of applied voltage is decreased by feedback-control circuit. Power consumption is therefore lower than in unregulated operation. Controller employs phase detector for each of three phases of delta-connected induction motor. Phase-difference sum is basis for control.

  17. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  18. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  19. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  20. A new controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  1. Grumman evaluates Space Station thermal control and power systems

    SciTech Connect

    Kandebo, S.W.

    1985-09-01

    Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.

  2. Deep impurity trapping concepts for power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1982-01-01

    High voltage semiconductor switches using deep impurity doped silicon now appear feasible for high voltage (1-100 kV), high power (10 Kw) switching and protection functions for future space power applications. Recent discoveries have demonstrated several practical ways of gating deep impurity doped silicon devices in planar configurations and of electrically controlling their characteristics, leading to a vast array of possible circuit applications. A new family of semiconductor switching devices and transducers are possible based on this technology. New deep impurity devices could be simpler than conventional p-n junction devices and yet use the same basic materials and processing techniques. In addition, multiple functions may be possible on a single device as well as increased ratings.

  3. Piloted simulation study of two tilt-wing control concepts

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.

    1994-01-01

    A two-phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot rating showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts and presents the results of both phases of the simulation study.

  4. A Control Systems Concept Inventory Test Design and Assessment

    ERIC Educational Resources Information Center

    Bristow, M.; Erkorkmaz, K.; Huissoon, J. P.; Jeon, Soo; Owen, W. S.; Waslander, S. L.; Stubley, G. D.

    2012-01-01

    Any meaningful initiative to improve the teaching and learning in introductory control systems courses needs a clear test of student conceptual understanding to determine the effectiveness of proposed methods and activities. The authors propose a control systems concept inventory. Development of the inventory was collaborative and iterative. The…

  5. United States Control Module Guidance, Navigation, and Control Subsystem Design Concept

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Bartlow, B. E.

    1997-01-01

    Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control Moment gyroscope (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module. This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baselined GN&C components.

  6. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  7. Piloted simulation study of two tilt-wing flap control concepts, phase 2

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.

    1994-01-01

    A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.

  8. An automatic generation control modification for present demands on interconnected power systems

    SciTech Connect

    Schulte, R.P.

    1996-08-01

    There are pressing problems with automatic generation control (AGC) brought about by the growth of and demands on interconnected power systems. This state of the power system challenges initiation of a modified control, one that is in keeping with long held AGC operations and employs the control capabilities now available. A modified control concept is given in this paper.

  9. Space Network Control Conference on Resource Allocation Concepts and Approaches

    NASA Technical Reports Server (NTRS)

    Moe, Karen L. (Editor)

    1991-01-01

    The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.

  10. Solid state remote power controllers for 120 Vdc power systems

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Baker, D. E.

    1976-01-01

    Solid state Remote Power Controllers (RPCs) developed for use in any dc power system with voltage up to 120 Vdc and distributed power up to 3.6 kW per bus are described. The RPCs were demonstrated to be reliable, 99 percent efficient, comparatively simple, and potentially low in cost. Advantages of the RPCs include: contactless switching; controlled rates of current rise and fall; current limiting; and fast, well-defined, repeatable response to overloads and faults.

  11. Pool power control in remelting systems

    SciTech Connect

    Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.

    2011-12-13

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  12. Controls concepts for next generation reuseable rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.; Musgrave, Jefferey L.; Ray, Asok

    1995-01-01

    Three primary issues will drive the design and control used in next generation reuseable rocket engines. In addition to steady-state and dynamic performance, the requirements for increased durability, reliability and operability (with faults) will dictate which new controls and design technologies and features will be brought to bear. An array of concepts which have been brought forward will be tested against the measures of cost and benefit as reflected in the above 'ilities'. This paper examines some of the new concepts and looks for metrics to judge their value.

  13. Digital controlling system to the set of high power LEDs

    NASA Astrophysics Data System (ADS)

    Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej

    2013-07-01

    In the paper is described the concept and architecture of the multi-channel control system for set of high-power LEDs. The broadband source of radiation for prototype illuminator is dedicated to the investigation of Low Level Laser Therapy procedures. The general scheme of the system, detailed schemes, control algorithm and its implementation description in FPGA structure is presented. The temperature conditions and the opportunity to work with a microcomputer are characterized.

  14. MODIS information, data and control system (MIDACS) operations concepts

    NASA Technical Reports Server (NTRS)

    Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.

    1988-01-01

    The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios.

  15. Coordinated power control of unified power flow controller and its application for enhancing dynamic power system performance

    NASA Astrophysics Data System (ADS)

    Fang, Wanliang

    This thesis focuses on reporting my research study on a problem area relating to use of Unified Power Flow Controller (UPFC) for coordinating load flow in power systems so as to enhance their static and dynamic performance by having more secure and economical operation and higher dynamic stability margin. UPFC is considered as one of the most promising devices for implementing the Flexible AC Transmission System (FACTS) concept. Although development of UPFC is still on an infant stage, probing into its impact on power system operation is actively pursued and significant effort has been devoted to put it forward as a practical FACTS device and as a challenging academic research object. In order to consider UPFC as a basic power system element, it has to be involved in associated load flow computation essentially for power system control analysis and operational planning. An up front problem for design engineers is therefore pointing to a need to modify existing load flow program so as to accommodate interactions of UPFCs. A lot of research output start coming out but their computational efficiency are not high enough. In this regard, I propose two methods to perform the UPFC embedded load flow calculation to cater for two different types of application. The first one caters for analyzing direct control of load flow on transmission lines with embedded UPFCs. In this type of problem, active and reactive power of the lines, as well as the magnitude of bus voltages are priori given. The load flow solution can then be obtained and enables the UPFC parameters to be determined with a significantly improved computational efficiency. The second one works in contrary to the first one by which parameters of UPFCs are given before hand and the load flow calculation is performed for conforming a feasible operation. It can be regarded as an indirect load flow control calculation which is useful in planning stage for incorporating UPFC into existing system and/or carrying out

  16. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  17. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  18. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  19. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  20. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  1. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  2. Power-Factor Controller With Regenerative Braking

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    Modified power-factor motor-control circuit operates motor as a phase-controlled generator when load attempts to turn at higher than synchronous speed. An induction motor is required to act at times as a brake. Circuit modification allows power-factor controller to save energy in motoring mode and convert automatically to an induction-generator controller in generating, or braking, mode.

  3. Power Electronics Thermal Control (Presentation)

    SciTech Connect

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  4. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report

    SciTech Connect

    Not Available

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  5. Two blowing concepts for roll and lateral control of aircraft

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Wood, N. J.; Lee, C. S.; Roberts, L.

    1986-01-01

    Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction.

  6. Commercialization of the power factor controller

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of the Motor Power Controller, also known as the Power Factor Controller, is to improve power factor and reduce power dissipation in induction motors operating below full load. These purposes were studied and tested in detail. The Motor Power Controller is capable of raising power factors from 0.2 to 0.8 and results in energy savings. It was found that many motors, in their present operating applications, are classified as unstable. The electronic nature of the controller vs. the electrical nature of the motor, compound this problem due to the differences in response time of the two devices. Many tests were successfully completed, the most indicating greater savings than anticipated. Also, there was an effect on efficiency which was not included in the calculations.

  7. Control and Power in Educational Computing.

    ERIC Educational Resources Information Center

    Kahn, Peter H., Jr.; Friedman, Batya

    Educational computing based on the primacy of human agency is explored, considering ways in which power can be apportioned and exercised in order to enhance educational computing. Ideas about power and control are situated epistemologically. A first consideration is educating for human control of computer technology. Research suggests that…

  8. Cybernetic principles in the systematic concept of hypothalamic feeding control.

    PubMed

    Fricke, Oliver; Lehmkuhl, Gerd; Pfaff, Donald W

    2006-02-01

    Research on biological mechanisms of eating behavior and related disorders, such as obesity and anorexia nervosa, has become a large field of research in the last 15 years. With the discovery of peptides related to hypothalamic control of food intake (e.g. leptin and ghrelin) the search for the biological 'master key' of feeding control was renewed. As a result, mid-20th century biological concepts based on systematic and cybernetic thoughts fell into oblivion. This review highlights discoveries of hypothalamic-controlled feeding and eating behavior with a cybernetic and systematic perspective. Interestingly, older ideas of hypothalamic function offer possibilities for the incorporation of new molecular discoveries into systematic concepts of feeding behavior. PMID:16452529

  9. Wind Power Plant SCADA and Controls

    SciTech Connect

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.; Janakiraman, R.; Kennedy, R.; Klein, S.; Smith, Travis M; Vargas, L.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  10. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  11. Using Simulation Speeds to Differentiate Controller Interface Concepts

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Pope, Alan

    2008-01-01

    This study investigated two concepts: (1) whether speeding a human-in-the-loop simulation (or the subject's "world") scales time stress in such a way as to cause primary task performance to reveal workload differences between experimental conditions and (2) whether using natural hand motions to control the attitude of an aircraft makes controlling the aircraft easier and more intuitive. This was accomplished by having pilots and non-pilots make altitude and heading changes using three different control inceptors at three simulation speeds. Results indicate that simulation speed does affect workload and controllability. The bank and pitch angle error was affected by simulation speed but not by a simulation speed by controller type interaction; this may have been due to the relatively easy flying task. Results also indicate that pilots could control the bank and pitch angle of an aircraft about equally as well with the glove as with the sidestick. Non-pilots approached the pilots ability to control the bank and pitch angle of an aircraft using the positional glove - where the hand angle is directly proportional to the commanded aircraft angle. Therefore, (1) changing the simulation speed lends itself to objectively indexing a subject s workload and may also aid in differentiating among interface concepts based upon performance if the task being studied is sufficiently challenging and (2) using natural body movements to mimic the movement of an airplane for attitude control is feasible.

  12. Feedback control of a cupola - concepts and experimental results

    SciTech Connect

    Moore, K.L.; Abdelrahman, M.A.; Larsen, E.; Clark, D.; King, P.

    1998-10-01

    In this paper we present some final results from a research project focused on introducing automatic control to the operation of cupola iron furnaces. The main aim of this research is to improve the operational efficiency and performance of the cupola furnace, an important foundry process used to melt iron. Previous papers have described the development of appropriate control system architectures for the cupola. These results are summarized. Then we describe the experimental results obtained with the U.S. Department of Energy Albany Research Center`s research cupola. First, experimental data is used to calibrate the model, which is taken as a first-order multivariable system with time delay. Then relative gain analysis is used to select loop pairings to be used in a multi-loop controller. The resulting controller pairs meltrate with blast volume, iron temperature with oxygen addition, and carbon composition with percent coke. Special (nonlinear) filters are used to compute meltrate from actual scale readings of the amount of iron produced and to smooth the temperature measurement. The temperature and meltrate loops use single-loop PI control. The composition loop uses a Smith predictor to discount the deadtime associated with mass transport through the furnace. Experimental results validate the conceptual controller design and provide proof-of-concept of the idea of controlling a foundry cupola. Future research directions are discussed, including the concept of an integrated, intelligent industrial process controller, or I{sup 3}PC.

  13. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-07-15

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt {sup 6}Li as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented.

  14. Apparatus for controlling steering power in power steering system

    SciTech Connect

    Hirakushi, S.; Matsubara, H.

    1988-10-04

    This patent describes an apparatus for controlling a steering power in a power steering system which is used in an automobile. The apparatus consists of: a main pump which supplies a first hydraulic coil to the power steering system to operate the same; an oil pressure reaction chamber for controlling the steering power; a subpump of a reduced size smaller than that of the main pump for supplying a second hydraulic oil to the oil pressure reaction chamber to operate the same; a first oil path interconnecting the subpump and oil pressure reaction chamber to each other for flowing the second hydraulic oil through the first oil path; an oil tank; a second oil path branched from the first oil path and connected to the oil tank; a first control valve means disposed in the second oil path for raising the hydraulic pressure of the oil pressure reaction chamber in response to an increase in the running speed of the automobile so as to control the oil pressure reaction chamber to increase the steering power; and a second control valve means connected in parallel relationship with the first control valve means for changing the steering power in response to the hydraulic pressure of the first hydraulic oil supplied from the main pump.

  15. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 7: System/subsystems requirements databook

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    This volume summarizes the basic requirements used as a guide to systems analysis, and is a basis for the selection of candidate Satellite Power Systems (SPS) point designs. Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point designs. Included is an updated version of earlier Rockwell concepts using klystrons as the specific microwave power amplification approach, as well as a more in-depth definition, analysis and preliminary point design on two concepts based on the use of advanced solid state technology to accomplish the task of high power amplification of the 2.45 GHz transmitted power beam to the Earth receiver. Finally, a preliminary definition of a concept using magnetrons as the microwave power amplifiers is presented.

  16. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  17. Concept of electric propulsion realization for high power space tug

    NASA Astrophysics Data System (ADS)

    Zakharenkov, L. E.; Semenkin, A. V.; Solodukhin, A. E.

    2016-07-01

    Popular at the beginning of the Space Age, ambitious projects aimed at Moon, Mars, and other space objects exploration, have returned with new technology and design level. High power space tug with electric propulsion system (EPS) is mainly considered as a transport vehicle for such missions. Modern high power space tugs projects as well as their spacecraft (SC) power and propulsion systems are reviewed in the paper. The main technologies and design solutions needed for high-power EPS realization are considered.

  18. Integrated Power/Attitude Control System (IPACS) technology experiment

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.

    1984-01-01

    An experiment is proposed that will perform the tasks associated with the control and energy storage/power generation functions attendant to space operations. It was shown in past studies that the integration of these functions into one system can result in significant weight, volume, and cost savings. The Integrated Power/Attitude Control System (IPACS) concept is discussed. During orbit day, power is derived from the solar cell arrays and, after appropriate conditioning, is used to operate the spacecraft subsystems, including the control system. In conventional approaches, a part of the collected solar energy is stored in a bank of batteries to permit operation of the vehicle's systems during orbit night. In the IPACS concept, the solar energy is stored in the spinning flywheels of the control system in the form of kinetic energy. During orbit night, the wheels are despun and, through the use of a wheel-shaft mounted generator, power is generated for the onboard subsystems. Operating these flywheels over a 50-percent speed variation permits the extraction of 75 percent of the stored energy while at the same time preserving 50 percent of the momentum capacity for control of the vehicle. Batteries can therefore be eliminated and significant weight and volume savings realized.

  19. Compressor Flow Control Concepts. 2; UEET Compressor Flow Control Modeling

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2001-01-01

    Several passive flow control devices have been modeled computationally in the Swift CFD code. The models were applied to the first stage rotor and stator of the baseline UEET compressor in an attempt to improve efficiency and/or stall margin. The devices included suction surface bleed, tip injection, self-aspirated rotors, area-ruled casing, and vortex generators. The models and computed results will be described in the presentation. None of the results have shown significant gains in efficiency; however, casing vortex generators have shown potential improvements in stall margin.

  20. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  1. The economic viability of pursuing a space power system concept

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1977-01-01

    The development of a space power system requires no fundamental technological breakthroughs. There are, however, uncertainties regarding the degree to which necessary developments can be achieved or exceeded. An analysis is conducted concerning the implementation of a 5000 MW space-based solar power system based on photovoltaic conversion of solar energy to electrical energy. The solar array is about 13 km long and 5 km wide. Placed in geosynchronous orbit, it provides power to the earth for 30 years. Attention is given to the economic feasibility of a space power system, a risk analysis for space power systems, and the use of the presented methodology for comparing alternative technology development programs.

  2. Flexible tab-assisted control concept (FlexTAC)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thang D.; Carpenter, Bernie F.; Hall, Jeffrey

    2001-06-01

    In late 1997 under ONR and DARPA funding members of the SAMPSON Marine Naval Team (Naval Surface Warfare Center, Lockeed Martin and General Dynamics Electric Boat) began investigating the benefits of the tab assisted control (TAC) concept for underwater control surfaces. Results of water tunnel tests conducted in 1998 indicated that the addition of a small trailing-edge tab, typically 10% of the mean chord of the entire control surface structure, vastly enhances the versatility of the control surface system. Depending on the orientation of the tab with respect to the primary control surface (flap) this tab may be used to significantly modify lift, reduce torque, and increase maneuvering capabilities. In 1999 a plan was established to actuate the tab with Shape Memory Alloy (SMA) actuators as a first step towards development of a continuously compliant or flexible control surface similar to that demonstrated in the DARPA Smart Vortex Leveraging Tab (SVLT) program. Testing of a SMA-actuated TAC device occurred late summer 2000. This paper presents a summary of these activities as well as current plant to test and evaluate the FlexTAC (Flexible Tab Assisted Control) concept, which replaces the tab with a continuously compliant trailing edge.

  3. A system concept for an advanced vehicle control system

    SciTech Connect

    Mackey, D.E.; Mackey, W.F. Jr.; Mackey, W.F.

    1996-12-01

    This paper explores a system concept for an Advanced Vehicle Control System (AVCS). The progression of highway design and construction has resulted from an evolution of technologies, inventions, organizational creations, and legislative acts supporting the development of a national interstate transportation system. Until now, highway design and construction has been the domain of civil engineers concerned with highway structures, materials loading, traffic patterns, and supporting facilities. However, the growing need for intelligent vehicle-highway systems (IVHS) requires that traditional civil engineering disciplines be integrated with computers, communications, and eventually fully automated vehicles. This paper`s thesis suggests that the complex highway transportation of the late 20th century and the 21st century can benefit from the collaboration of systems engineers and civil engineers. This paper identifies and prototypes an AVCS concept with roadside computers controlling the lateral and longitudinal movements of a vehicle.

  4. Further Characterization of an Active Clearance Control Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2007-01-01

    A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.

  5. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  6. Autonomous Control Capabilities for Space Reactor Power Systems

    SciTech Connect

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-04

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  7. Leading edge embedded fan airfoil concept -- A new powered high lift technology

    NASA Astrophysics Data System (ADS)

    Phan, Nhan Huu

    A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power

  8. Research into language concepts for the mission control center

    NASA Technical Reports Server (NTRS)

    Dellenback, Steven W.; Barton, Timothy J.; Ratner, Jeremiah M.

    1990-01-01

    A final report is given on research into language concepts for the Mission Control Center (MCC). The Specification Driven Language research is described. The state of the image processing field and how image processing techniques could be applied toward automating the generation of the language known as COmputation Development Environment (CODE or Comp Builder) are discussed. Also described is the development of a flight certified compiler for Comps.

  9. Control/structures interaction study of two 300 KW dual-keel space station concepts

    NASA Technical Reports Server (NTRS)

    Young, J. W.; Lallman, F. J.; Cooper, P. A.; Giesy, D. P.

    1986-01-01

    The results of an investigation of the influence of structural stiffness of the space station framework on the controllability of two 300 kw class, solar dynamic powered, dual-keel space station designs are presented. The two design concepts differed only in the truss bay dimensions of the structural framework of the stations. Two control studies were made: (1) A study of the interaction of the framework structural response with the reaction control system used for attitude control during an orbital reboost maneuver; and (2) A study of the stability of the space station attitude control system with sensors influenced by the elastic deformations of the station framework. Although both configurations had acceptable control characteristics, the configuration with the larger truss bay dimension and its increased structural stiffness had more attractive characteristics for pointing control of the solar dynamic system during reboost and for attitude control during normal in-orbit operations.

  10. New current control concept -- Minimum time current control in the three-phase PWM converter

    SciTech Connect

    Choi, J.W.; Sul, S.K.

    1997-01-01

    In this paper, a new current controller that guarantees the fastest transient response is proposed. The basic concept is to find the optimal control voltage for tracking the reference current with minimum time under the voltage limit constraint. Though this minimum time control concept is also applicable to all the machine drive systems, this paper focuses on the current regulation in the three-phase pulse width modulation (PWM) converter. In the simulation and experimental results, it is observed that the proposed controller has much less transient time than the conventional synchronous PI regulator and the performance of the dc link voltage control is also greatly improved with the proposed current controller.

  11. The 2kW Mini-BRU Electrical Controls Concept and Transient Performance

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2006-01-01

    The proposed Jupiter Icy Moon Orbiter, JIMO, mission selected a Brayton power conversion system as its electrical power generator. Although the JIMO mission power conversion system was expected to produce in the order of 100 kW, an available 2 kW Brayton system was used to develop control system strategies for the JIMO mission. This report describes the shunt loading voltage/speed regulation control concept developed for the 2 kW system, and the transient performance of controls. The 2 kW alternator is a permanent magnet alternator as proposed for the JIMO mission, and operates at a similar speed and internal impedance, allowing it to be used as an accurate model for performance of the larger system. The JIMO mission was cancelled in September 2005.

  12. A concept of the energy storable orbital power station (ESOPS)

    NASA Astrophysics Data System (ADS)

    Akiba, Ryojiro; Takano, Tadashi; Yokota, Hiroki

    To save foreseeable difficulties and risks associated with large scale development of the Space Power Station on GEO at a remote distance, the Energy Storable Orbital Power Station (ESOPS) placed in a near earth orbit is proposed. Most promising orbit for ESOPS is a fixed periapsis pseudo sun synchronous orbit. A thermodynamical power generation is preferable owing to its inherent insensitive nature against radiation suffered on the medium altitude orbit. Thermal energy storage using latent heat of fusion seems the best choice for this system. The power transmission from ESOPS to ground station presents most critical problems due to non-stationary characteristics.

  13. A Power Conversion Concept for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission under development by the Office of Space Science at NASA Headquarters. ITMO is examining the potential of Nuclear Electric Propulsion (NEP) technology to efficiently deliver scientific payloads to three Jovian moons: Callisto, Ganymede, and Europa. A critical element of the NEP vehicle is the reactor power system, consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD). The emphasis of this paper is on the non-nuclear elements of the reactor power system.

  14. Hydraulically powered dissimilar teleoperated system controller design

    SciTech Connect

    Jansen, J.F.; Kress, R.L.

    1996-04-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented.

  15. [Illness concepts of children. Validation of a modified locus of control test in illness and health].

    PubMed

    Schmidt, A; Altmann-Herz, U

    1992-12-01

    We investigated the health and illness concepts of 53 healthy children aged 8 to 14 years using a modified illness and health locus of control scale (KKG, Lohaus and Schmitt, 1989) with the scales internal, external-p (powerful others) and external-c (chance). A comparison of the results with those on self-esteem (FSK 4-6), anxiety (CMAS-R) and hopelessness (HSC) scales showed a decrease in externality, but not an increase in internality, with increasing age and a correlation between self-confidence and a more internal locus of control. The influence of children's health locus of control on treatment compliance is discussed. PMID:1288033

  16. Satellite Power Systems (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1978-01-01

    A coplanar satellite conceptual approach was defined. This effort included several trade studies related to satellite design and also construction approaches for this satellite. A transportation system, consistent with this concept, was also studied, including an electric orbit transfer vehicle and a parallel-burn heavy lift launch vehicle. Work on a solid state microwave concept continued and several alternative approaches were evaluated. Computer determination of an optimized transistor and circuit design was also continued. Experiment/verification planning resulted in the development of a total solar array and microwave technology development plan, as well as definition of near-term research to evaluate key technology issues.

  17. Gallium arsenide (GaAs) power conversion concept

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.

    1980-01-01

    A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.

  18. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  19. Capillary-Pumped Passive Reactor Concept for Space Nuclear Power

    SciTech Connect

    Dr. Thomas F. Lin; Dr. Thomas G. Hughes; Christopher G. Miller

    2008-05-30

    To develop the passively-cooled space reactor concept using the capillary-induced lithium flow, since molten lithium possesses a very favorable surface tension characteristic. In space where the gravitational field is minimal, the gravity-assisted natural convection cooling is not effective nor an option for reactor heat removal, the capillary induced cooling becomes an attractive means of providing reactor cooling.

  20. Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.

  1. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  2. Phase Detector for Power-Factor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1984-01-01

    Positive feedback assures reliable switching. Three Phase Power Factor Controller includes three phase detectors, each produces rectangular waves of duration approximately equal to lag time between line voltage and motor current.

  3. Control units for APS power supplies

    SciTech Connect

    Despe, O.D.; Saunders, C.; McGhee, D.G.

    1993-07-01

    The Advanced Photon Source (APS) accelerator facility is made up of five major subsystems in addition to the linac: the positron accumulator ring (PAR), low energy transport (LET), booster synchrotron (SYNCH), high energy transport (HET), the storage ring (SR). Each subsystem has multiple magnet power supply combinations, some requiring multiple of operation. These magnet and power supply combinations computer controlled and monitored. The power supply control unit (PSCU) is the first layer of hardware and software above the power supply itself and is described in this paper. The description includes the basic philosophy for each of operation and how it influences the topology and of implementing control. The design of the analog reference blocks (ARBs) influenced the design of other custom functions well as the feedback controls for vibration and other dynamic corrections. The command set supported by the PSCU is discussed.

  4. Where are the controls on the conservation power plant

    SciTech Connect

    Stokes, G.M.

    1988-07-06

    The concept of a conservation power plant is a powerful idea. This supply-side viewpoint of conservation has been tested in the Hood River Project and is a major element of the long-term strategy of some utilities, such as the City of Austin, which is planning to ''acquire'' a 553 MW conservation power plant over the next decade. The conservation power plant is, however, more than a convenient and compelling metaphor. This paper examines the problem of the control of the conservation power plant in real operation. It emphasizes three elements of control: the need for control, real-time and near-real-time measures of conservation power plant performance, and implementation strategies for controls. The approach to the problem is based on a hierarchial analysis of electrical distribution systems. This analysis identifies the key points within a utility distribution system at which information can be collected. The strategy emphasizes the use of a great deal of information normally available within a utility, such as billing data and substation monitoring, as well as the use of limited end-use data collection. Issues of conservation implementation strategies and long-term efficacy of conservation measures will be addressed. 9 refs., 2 figs.

  5. New detonation concepts for propulsion and power generation

    NASA Astrophysics Data System (ADS)

    Braun, Eric M.

    A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat specified by process path diagrams and a control volume analysis. A combined first and second law analysis aids in understanding performance trends for different initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an orifice connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed fluidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected

  6. Mars power system concept definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.

    1994-01-01

    This report documents the work performed by Rockwell International's Rocketdyne Division on NASA Contract No. NAS3-25808 (Task Order No. 16) entitled 'Mars Power System Definition Study'. This work was performed for NASA's Lewis Research Center (LeRC). The report is divided into two volumes as follows: Volume 1 - Study Results; and Volume 2 - Appendices. The results of the power system characterization studies, operations studies, and technology evaluations are summarized in Volume 1. The appendices include complete, standalone technology development plans for each candidate power system that was investigated.

  7. Using a Research Simulator for Validating Control Room Modernization Concepts

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  8. All Adjunct Galilean Satellite Orbiter Concept Using a Small Nuclear Power Source

    NASA Astrophysics Data System (ADS)

    Randolph, James E.; Abelson, Robert D.; Alkalai, Leon; Collins, David H.; Moore, William V.

    2005-02-01

    An adjunct spacecraft concept known as the Galilean Satellite Orbiter (GSO) could gather and return significant science data using a payload consisting of plasma science and other instruments in orbit around each of three Galilean satellites using many advanced technology elements. The key to the viability of this concept is the existence of a small Radioisotope Power System (RPS) (single GPHS) and a mother spacecraft that could deliver the GSO to its final orbit and act as a relay communications path back to the Earth. Thus, the GSO would be dependant at Jupiter on the proposed Jupiter Icy Moons Orbiter (JIMO) or similar spacecraft for orbit insertion, propulsion to its target, and communications while at its target. Because of this highly capable supporting vehicle, the energy requirements for daily operations of GSO could be easily met with a small RPS system, which is now being studied by NASA and DOE, joined with a secondary battery system. The science payload would consist of a plasma instrument set (magnetometer, plasma spectrometer, plasma wave detector, and high energy particle detector), a wide angle camera, and a Doppler extractor for gravity field measurements. A small RPS now under study that would have a cylindrical shape and reject its internal heat through an end of the cylinder could enable this concept. This topology lends itself to a unique configuration concept for the GSO spacecraft using a long cylinder as the heat rejection (radiator) system for the RPS. This long cylinder has another application - it creates a long thin configuration that would enable gravity gradient attitude control of the spacecraft. This architecture would place the instruments at one end of the spacecraft and the RPS at the other allowing the maximum separation between them. Another technology element used in this design would be the Low Cost Adjunct Microspacecraft (LCAM), originally intended as a free-flying Earth orbiting inspector spacecraft. The LCAM is configured

  9. Stirling converters for space dynamic power concepts with 2 to 130 W{sub e} output

    SciTech Connect

    Ross, B.A.

    1995-12-31

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance.

  10. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  11. Concepts for continuous quality monitoring and station remote control

    NASA Astrophysics Data System (ADS)

    Ettl, M.; Neidhardt, A.; Rottmann, H.; Mühlbauer, M.; Plötz, C.; Himwich, E.; Beaudoin, C.; Szomoru, A.

    2011-07-01

    In the newly funded "Novel EXploration Pushing Robuste-VLBI Services", - project (NEXPReS) the Technische Universitaet Muenchen realize concepts for continuous quality monitoring and station remote control in cooperation with the Max-Planck-Institute for Radioastronomy, Bonn. NEXPReS is a three-year project aimed at further developing e-VLBI services of the European VLBI Network (EVN), with the goal of incorporating e-VLBI into every astronomical observation conducted by the EVN. This project focus on developments of an operational e-control system with authentication and authorization. It includes an appropriate role management with different remote access states for future observation strategies. To allow a flexible control of different systems in parallel sophisticated graphical user interfaces are designed and realized. It requires also a session oriented data management. Because of the higher degree of automation additional system parameters and information is collected with a new system monitoring. The whole system for monitoring and control is fully compatible to the NASA field system as extension. The concept will be proofed with regular tests between Wettzell and Effelsberg.

  12. Application of break preclusion concept in German nuclear power plants

    SciTech Connect

    Roos, E.; Maier, V.; Nagel, G.

    1997-04-01

    The break preclusion concept is based on {open_quotes}KTA rules{close_quotes}, {open_quotes}RSK guidelines{close_quotes} and {open_quotes}Rahmenspeziflkation Basissicherheit{close_quotes}. These fundamental rules containing for example requirements on material, design, calculation, manufacturing and testing procedures are explained and the technical realisation is shown by means of examples. The proof of the quality of these piping systems can be executed by means of fracture mechanics calculations by showing that in every case the leakage monitoring system already detect cracks which are clearly smaller than the critical crack. Thus the leak before break behavior and the break preclusion concept is implicitly affirmed. In order to further diminish conservativities in the fracture mechanics procedures, specific research projects are executed which are explained in this contribution.

  13. Robust control technique for nuclear power plants

    SciTech Connect

    Murphy, G.V.; Bailey, J.M.

    1989-03-01

    This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.

  14. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  15. Flight evaluation of configuration management system concepts during transition to the landing approach for a powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1980-01-01

    Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.

  16. Power Control Unit of Irecin Nanosatellite

    NASA Astrophysics Data System (ADS)

    del Re, V.; Ferrrante, M.; Ortenzi, A.; Petrozzi, M.

    2004-08-01

    On board resources necessary to perform the mission tasks are very limited in nano-satellites. This paper proposes a real-time sub-system, which is able to manage Irecin Power Supply. Irecin power supply includes the solar panels, built with silicon solar cells, the batteries and the necessary electronic for Energy generation and distribution to its subsystems. The Power Control Unit (PCU), provided with electrical power by means of solar panels, optimises the batteries recharging using a Peek Power Tracking; generates and stabilizes the voltage of 5 V for all subsystems; checks subsystems power absorption notifying it to the main micro-processor board. The proposed subsystem controls whole satellite subsystems energy adsorption by monitoring battery recharge status and handling subsystems activation /deactivation. It allows isolating damaged subsystems which could put in short cut the nanosatellite power supply and, generally, it increases nanosatellite time-life. Moreover this configuration allows to let free the on board main microprocessor from the power control functions, increasing its communication capabilities with the others subsystems. IRECIN uses rechargeable lithium ion batteries, which ensure very high energy density reducing power system volume and weight. These batteries are characterised also by a wide temperature range, enabling a simpler thermal design and by a very low cost. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic boards are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group. The proposed sub-system is implemented on the Irecin, a modular nano-satellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Attitude is determined by three-axis magnetometer and the solar panels data. Control is provided by an active

  17. Satellite power system concept development and evaluation program. Volume 2: System definition

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  18. Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.

    1982-01-01

    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.

  19. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  20. Flow control concepts for thread-based microfluidic devices

    PubMed Central

    Ballerini, David R.; Li, Xu; Shen, Wei

    2011-01-01

    The emerging concept of thread-based microfluidics has shown great promise for application to inexpensive disease detection and environmental monitoring. To allow the creation of more sophisticated and functional thread-based sensor designs, the ability to better control and understand the flow of fluids in the devices is required. To meet this end, various mechanisms for controlling the flow of reagents and samples in thread-based microfluidic devices are investigated in this study. A study of fluid penetration in single threads and in twined threads provides greater practical understanding of fluid velocity and ultimate penetration for the design of devices. “Switches” which control when or where flow can occur, or allow the mixing of multiple fluids, have been successfully prototyped from multifilament threads, plastic films, and household adhesive. This advancement allows the fabrication of more functional sensory devices which can incorporate more complex detection chemistries, while maintaining low production cost and simplicity of construction. PMID:21483659

  1. Satellite mirror systems for providing terrestrial power - System concept

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of providing terrestrial power with a space system of minimum mass and complexity. The key impact that such a system, providing continuous and slightly concentrated insolation, makes on the economic viability of solar farming is demonstrated. New developments in solar sailing are incorporated to reduce mirror mass and transportation cost. The system is compatible with incremental implementation and continual expansion to produce the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation.

  2. Satellite Power System (SPS) concept development and evaluation program plan, July 1977 - August 1980

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An overview of the program to evaluate the solar satellite power system concept is presented. Environmental, health, and safety factors are examined along with economic, international, and institutional issues.

  3. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Haley, G. M.

    1979-01-01

    The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.

  4. Evaluation of cooling concepts for high power avionics applications

    NASA Astrophysics Data System (ADS)

    Flynn, E. M.

    1992-10-01

    Evaluations were made of emerging cooling technologies having potential to remove 100 W/sq cm steady state heat dissipation while holding chip junction temperature to 90 C. Several constraints were imposed on the cooler due to the intended application of cooling fighter aircraft electronics. Constraints included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. Evaluation factors included aircraft system impact, cooler development status, reliability and maintainability, safety, etc. This paper describes the cooling concepts and assessments made as to their relative performance in a fighter aircraft environment.

  5. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    ERIC Educational Resources Information Center

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  6. Power Load Margin Concept: Key Components of Adulthood.

    ERIC Educational Resources Information Center

    Weiman, Elaine R.

    In March 1959, Howard McClusky introduced his Power Load Margin (PLM) theory and proposed that it be used for studying the adult years and for developing and building realistic educational programs for adults. His formula, which states that the key components of adulthood are load (the demands made upon the individual by self and society) and…

  7. Organization of bulk power markets: A concept paper

    SciTech Connect

    Kahn, E.; Stoft, S.

    1995-12-01

    The electricity industry in the US today is at a crossroads. The restructuring debate going on in most regions has made it clear that the traditional model of vertically integrated firms serving defined franchise areas and regulated by state commissions may not be the pattern for the future. The demands of large customers seeking direct access to power markets, the entry of new participants, and proposed reforms of the regulatory process all signify a momentum for fundamental change in the organization of the industry. This paper addresses electricity restructuring from the perspective of bulk power markets. The authors focus attention on the organization of electricity trade and the various ways it has been and might be conducted. Their approach concentrates on conceptual models and empirical case studies, not on specific proposals made by particular utilities or commissions. They review literature in economics and power system engineering that is relevant to the major questions. The objective is to provide conceptual background to industry participants, e.g. utility staff, regulatory staff, new entrants, who are working on specific proposals. While they formulate many questions, they do not provide definitive answers on most issues. They attempt to put the industry restructuring dialogue in a neutral setting, translating the language of economists for engineers and vice versa. Towards this end they begin with a review of the basic economic institutions in the US bulk power markets and a summary of the engineering practices that dominate trade today.

  8. Maculate Conceptions: Power, Process, and Creativity in Participatory Research

    ERIC Educational Resources Information Center

    Lyon, Alexandra; Bell, Michael; Croll, Nora Swan; Jackson, Randall; Gratton, Claudio

    2010-01-01

    Justifiably concerned about power dynamics between researchers and participants in participatory research, much of the literature proposes guidelines for including participant voices at every step of the research process. We find these guidelines insufficient for dealing with constraints set up by the social organizational structures in which…

  9. Solar Power Satellite Concept Evaluation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was developed to determine the technical feasiblity of a satellite solar power station. The space construction, maintenance, and transport systems are discussed. Environmental factors, in addition to manufacturing, natural resources, and energy were considered. Cost estimates and alternative systems are outlined.

  10. Magnetic Amplifier for Power Flow Control

    SciTech Connect

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.