Science.gov

Sample records for power density distribution

  1. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect

    Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  2. Measurement of power density distribution and beam waist simulation for electron beam

    NASA Astrophysics Data System (ADS)

    Shen, Chunlong; Peng, Yong; Wang, Kehong; Zhou, Qi

    2013-02-01

    The study aims to measure the power density distribution of the electron beam (EB) for further estimating its characteristics. A compact device combining deflection signal controller and current signal acquisition circuit of the EB was built. A software modelling framework was developed to investigate structural parameters of the electron beam. With an iterative algorithm, the functional relationship between the electron beam power and its power density was solved and the corresponding contour map of power density distribution was plotted through isoline tracking approach. The power density distribution of various layers of cross-section beam was reconstructed for beam volume by direct volume rendering technique. The further simulation of beam waist with all-known marching cubes algorithm reveals the evolution of spatial appearance and geometry measurement principle was explained in detail. The study provides an evaluation of promising to replace the traditional idea of EB spatial characteristics.

  3. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-06-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ωr of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ωr of the outer resonant coil changes from the non-resonant condition (where ωr is not the driving angular frequency ωrf) to the resonant condition (where ωr = ωrf), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer.

  4. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    SciTech Connect

    Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A.; Barbot, L.; Domergue, C.; Destouches, C.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  5. User's Guide: An Enhanced Modified Faraday Cup for the Profiling of the Power Density Distribution in Electron Beams

    SciTech Connect

    Elmer, J W; Teruya, A T; Palmer, T A

    2002-06-01

    This handbook describes the assembly and operation of an enhanced Modified Faraday Cup (MFC) diagnostic device for measuring the power density distribution of high power electron beams used for welding. The most recent version of this diagnostic device, [1] Version 2.0, contains modifications to the hardware components of previous MFC designs.[2] These modifications allow for more complete capture of the electrons and better electrical grounding, thus improving the quality of the acquired data and enabling a more accurate computed tomographic (CT) reconstruction [3,4] of the power density distribution of the electron beam to be performed. [ 5-9

  6. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  7. Experimental Approbation of Selective Laser Melting of Powders by the Use of Non-Gaussian Power Density Distributions

    NASA Astrophysics Data System (ADS)

    Okunkova, Anna; Volosova, Marina; Peretyagin, Pavel; Vladimirov, Yuri; Zhirnov, Ivan; Gusarov, A. V.

    Experimental results on laser beam modulation at selective laser melting (SLM) are presented. The modulation is a possible way to improve the efficiency of the SLM process. The optical diagnostics shows the energy loss up to 30%. This could be a consequence of high thermal gradients in the melt pool resulted by the Gaussian power density distribution. The Gaussian distribution can be changed to the flat-top one or to the inverse-Gaussian (donut) one. An experimental stand with a 200W laser source was developed. Twenty single tracks for each of the three modes were obtained for a Co-Cr alloy. The samples were studied by scanning electronic microscopy (SEM) on irregularity. Optical diagnostics by high velocity camera (HVC) shows that the use of the non-Gaussian laser beam distributions can significantly reduce the width of the free-of-powder consolidation zone, which is considered as the main reason for irregularity of single tracks. A better metallurgical bonding of the single tracks with the substrate was obtained by the use of the flat-top laser beam. Both of these facts show a significant influence of the laser beam energy distribution on the energy loss at SLM, especially for high power laser sources. The observed escape of granules shows a possible influence of the dynamic factor. The use of the non-Gaussian distributions can enhance 3D parts, for example, improve the geometrical tolerance and decrease the residual porosity.

  8. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    PubMed Central

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10−22 atm. PMID:26725369

  9. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  10. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte.

    PubMed

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson's model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm(2) at 700 (o)C with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10(-22) atm. PMID:26725369

  11. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  12. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  13. Density distribution in Earth.

    PubMed

    Press, F

    1968-06-14

    Earth models selected by a Monte Carlo procedure were tested against geophysical data; 5 million models were examined and six have passed all tests. Common features of successful models are an increased core radius and a chemically inhomogeneous core consistent with Fe-Ni alloy (20 to 50 percent Fe) for the solid portion and Fe-Si alloy (15 to 25 percent Fe) for the fluid core. The inhomogeneous mantle is consistent with an increase in the FeO:FeO + MgO ratio by a factor of 2 in the deep mantle. The transition zone is a region of not only phase change but also composition change; this condition would inhibit mantlewide convection. The upper-mantle solutions show large fluctuations in density; this state implies insufficient constraint on solutions for this region, or lateral variations in mantle composition ranging from pyrolite to eclogite. PMID:17818740

  14. The use of segmented cathodes to determine the spoke current density distribution in high power impulse magnetron sputtering plasmas

    SciTech Connect

    Poolcharuansin, Phitsanu; Estrin, Francis Lockwood; Bradley, James W.

    2015-04-28

    The localized target current density associated with quasi-periodic ionization zones (spokes) has been measured in a high power impulse magnetron sputtering (HiPIMS) discharge using an array of azimuthally separated and electrical isolated probes incorporated into a circular aluminum target. For a particular range of operating conditions (pulse energies up to 2.2 J and argon pressures from 0.2 to 1.9 Pa), strong oscillations in the probe current density are seen with amplitudes up to 52% above a base value. These perturbations, identified as spokes, travel around the discharge above the target in the E×B direction. Using phase information from the angularly separated probes, the spoke drift speeds, angular frequencies, and mode number have been determined. Generally, at low HiPIMS pulse energies E{sub p} < 0.8 J, spokes appear to be chaotic in nature (with random arrival times), however as E{sub p} increases, coherent spokes are observed with velocities between 6.5 and 10 km s{sup −1} and mode numbers m = 3 or above. At E{sub p} > 1.8 J, the plasma becomes spoke-free. The boundaries between chaotic, coherent, and no-spoke regions are weakly dependent on pressure. During each HiPIMS pulse, the spoke velocities increase by about 50%. Such an observation is explained by considering spoke velocities to be determined by the critical ionization velocity, which changes as the plasma composition changes during the pulse. From the shape of individual current density oscillations, it appears that the leading edge of the spoke is associated with a slow increase in local current density to the target and the rear with a more rapid decrease. The measurements show that the discharge current density associated with individual spokes is broadly spread over a wide region of the target.

  15. EARLY AFTERGLOWS OF GAMMA-RAY BURSTS IN A STRATIFIED MEDIUM WITH A POWER-LAW DENSITY DISTRIBUTION

    SciTech Connect

    Yi, Shuang-Xi; Dai, Zi-Gao; Wu, Xue-Feng

    2013-10-20

    A long-duration gamma-ray burst (GRB) has been widely thought to arise from the collapse of a massive star, and it has been suggested that its ambient medium is a homogenous interstellar medium (ISM) or a stellar wind. There are two shocks when an ultra-relativistic fireball that has been ejected during the prompt gamma-ray emission phase sweeps up the circumburst medium: a reverse shock that propagates into the fireball, and a forward shock that propagates into the ambient medium. In this paper, we investigate the temporal evolution of the dynamics and emission of these two shocks in an environment with a general density distribution of n∝R {sup –k} (where R is the radius) by considering thick-shell and thin-shell cases. A GRB afterglow with one smooth onset peak at early times is understood to result from such external shocks. Thus, we can determine the medium density distribution by fitting the onset peak appearing in the light curve of an early optical afterglow. We apply our model to 19 GRBs and find that their k values are in the range of 0.4-1.4, with a typical value of k ∼ 1, implying that this environment is neither a homogenous ISM with k = 0 nor a typical stellar wind with k = 2. This shows that the progenitors of these GRBs might have undergone a new mass-loss evolution.

  16. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    SciTech Connect

    Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

    2000-08-21

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities.

  17. Density Distributions of Cyclotrimethylenetrinitramines (RDX)

    SciTech Connect

    Hoffman, D M

    2002-03-19

    As part of the US Army Foreign Comparative Testing (FCT) program the density distributions of six samples of class 1 RDX were measured using the density gradient technique. This technique was used in an attempt to distinguish between RDX crystallized by a French manufacturer (designated insensitive or IRDX) from RDX manufactured at Holston Army Ammunition Plant (HAAP), the current source of RDX for Department of Defense (DoD). Two samples from different lots of French IRDX had an average density of 1.7958 {+-} 0.0008 g/cc. The theoretical density of a perfect RDX crystal is 1.806 g/cc. This yields 99.43% of the theoretical maximum density (TMD). For two HAAP RDX lots the average density was 1.786 {+-} 0.002 g/cc, only 98.89% TMD. Several other techniques were used for preliminary characterization of one lot of French IRDX and two lot of HAAP RDX. Light scattering, SEM and polarized optical microscopy (POM) showed that SNPE and Holston RDX had the appropriate particle size distribution for Class 1 RDX. High performance liquid chromatography showed quantities of HMX in HAAP RDX. French IRDX also showed a 1.1 C higher melting point compared to HAAP RDX in the differential scanning calorimetry (DSC) consistent with no melting point depression due to the HMX contaminant. A second part of the program involved characterization of Holston RDX recrystallized using the French process. After reprocessing the average density of the Holston RDX was increased to 1.7907 g/cc. Apparently HMX in RDX can act as a nucleating agent in the French RDX recrystallization process. The French IRDX contained no HMX, which is assumed to account for its higher density and narrower density distribution. Reprocessing of RDX from Holston improved the average density compared to the original Holston RDX, but the resulting HIRDX was not as dense as the original French IRDX. Recrystallized Holston IRDX crystals were much larger (3-500 {micro}m or more) then either the original class 1 HAAP RDX or

  18. Exponentiated power Lindley distribution.

    PubMed

    Ashour, Samir K; Eltehiwy, Mahmoud A

    2015-11-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  19. Exponentiated power Lindley distribution

    PubMed Central

    Ashour, Samir K.; Eltehiwy, Mahmoud A.

    2014-01-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  20. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    SciTech Connect

    Gazol, Adriana; Kim, Jongsoo E-mail: jskim@kasi.re.kr

    2013-03-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  1. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  2. Industrial power distribution

    SciTech Connect

    Sorrells, M.A.

    1990-01-01

    This paper is a broad overview of industrial power distribution. Primary focus will be on selection of the various low voltage components to achieve the end product. Emphasis will be on the use of national standards to ensure a safe and well designed installation.

  3. Azimuthal Current Density Distribution Resulting from a Power Feed Vacuum Gap in Metallic Liner Experiments at 1 MA

    NASA Astrophysics Data System (ADS)

    Bott-Suzuki, Simon; Cordaro, S. W.; Caballero Bendixsen, L. S.; Atoyan, L.; Byvank, T.; Potter, W.; Kusse, B. R.; Greenly, J. B.; Hammer, D. A.; Chittenden, J. P.; Jennings, C. A.

    2015-11-01

    We present a study investigating the initiation of plasma in solid, metallic liners where the liner thickness is large compared to the collisionless skin depth. A vacuum gap is introduced in the power feed and we investigate the effect of this on the azimuthal initiation of plasma in the liner. We present optical emission data from aluminum liners on the 1 MA, 100ns COBRA generator. We use radial and axial gated imaging and streak photography, which show a dependence of onset of emission with the size of a small power-feed vacuum gap. The evolution of ``hot-spots'' generated from breakdown vacuum gap evolves relatively slowly and azimuthal uniformity is not observed on the experimental time-scale. We also show measurements of the B-field both outside and inside the liner, using miniature Bdot probes, which show a dependence on the liner diameter and thickness, and a correlation to the details of the breakdown. These data will be compared to magneto-hydrodynamic simulations to infer how such non-uniformities may affect full liner implosion experiments.

  4. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  5. High power density spray cooling

    NASA Astrophysics Data System (ADS)

    Tilton, Donald E.; Pais, Martin R.; Chow, Louis C.

    1989-07-01

    The research reported describes experimental and theoretical investigations of high power density evaporative spray cooling. Preliminary experiments demonstrating heat fluxes greater than 1,000 W/sq cm were conducted. Extensive laser phase Doppler measurements of spray characteristics were also taken. These measurements provided valuable insight into the heat transfer process. An in-depth analysis was conducted to determine the mechanisms responsible for critical heat flux. Theoretical modeling was also conducted to determine the most desirable heat transfer conditions. After analysis of these results, an improved experimental apparatus was designed and fabricated. The new apparatus provided greater experimental control and improve accuracy. New tests were conducted in which the critical heat flux was increased, and the heat transfer efficiency was greatly improved. These results are compared to those of previous researchers, and indicated substantial improvement.

  6. High Density Power Converters for Photovoltaic Power Management

    NASA Astrophysics Data System (ADS)

    Sangwan, Rahul

    In typical photovoltaic systems, PV cells are connected in series to achieve high output voltages, which decreases conduction losses and helps the downstream power electronics operate at higher efficiencies. A series connection means that the current through the string is limited by the worst case cell, substring, or module, which can result in suboptimal operation of the rest of the string. Given how even small shading can have a large effect on performance, there has been growing interest in the use of distributed power management architectures to mitigate losses from variation in PV systems. In particular, partial power processing converters have gained traction as a means to improve the performance of PV arrays with small, distributed converters that configure in parallel with PV cells. These converters can use low voltage components, only process a fraction of the total power allowing them to achieve higher efficiencies and power density and also have higher reliability. This work details the design and operation of a partial power processing converter implemented as a Resonant Switched Capacitor (ReSC) converter. An integrated circuit (IC) is designed in 0.18 mum CMOS process. Operation at high frequencies (20-50 MHz) allows high levels of integration with air core inductors directly attached to the die through a gold bump, solder reflow process. Test results for the IC are presented with power density and efficiency metrics. The IC is then used as a partial power processing converter to implement equalization with a specially constructed PV panel. The converter is shown to mitigate power loss due to mismatch.

  7. Information Theory and the Earth's Density Distribution

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.

  8. Power spectral density function and spatial autocorrelation of the ambient vibration full-wavefield generated by a distribution of spatially correlated surface sources

    NASA Astrophysics Data System (ADS)

    Lunedei, Enrico; Albarello, Dario

    2016-03-01

    Synthetic dispersion curves are here computed in the frame of an ambient-vibration full-wavefield model, which relies on the description of both ambient-vibration ground displacement and its sources as stochastic fields defined on the Earth's surface, stationary in time and homogeneous in space. In this model, previously developed for computing synthetic Horizontal-to-Vertical Spectral Ratio curves, the power spectral density function and the spatial autocorrelation of the displacement are naturally described as functions of the power spectral density function of the generating forces and of the subsoil properties (via the relevant Green's function), by also accounting for spatial correlation of these forces. Dispersion curves are computed from the displacement power spectral density function and from the spatial autocorrelation according with the well-known f-k and SPAC techniques, respectively. Two examples illustrate the way this new ambient-vibration model works, showing its possible use in better understanding the role of the surface waves in forming the dispersion curves, as well as its capability to capture some remarkable experimental findings.

  9. Information theory and the earth's density distribution

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1978-01-01

    The present paper argues for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia leads to a density distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.

  10. Optical power distribution system

    SciTech Connect

    Lalmond, R.G.

    1987-09-08

    This patent describes an apparatus for supplying electrical power to electrical components mounted on a circuit board. It consists of: a printed circuit board; electrical components mounted on the printed circuit board; electrically powered sources of optical energy; photovoltaic cell arrays; each photovoltaic cell array being mounted on a corresponding one of the electrical components to provide electrical power to the electrical component on which it is mounted; and means for coupling the optical energy from the electrically powered sources of optical energy to the photovoltaic cell arrays.

  11. Distributed Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.

  12. Power management and distribution technology

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis

    1993-01-01

    Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.

  13. Power Law Distribution in Education

    NASA Astrophysics Data System (ADS)

    Gupta, Hari M.; Campanha, José R.; Chavarette, Fábio R.

    We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study-day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects are due to the nature of the subjects themselves. Further and better study, teaching and economical conditions are more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.

  14. Kappa distribution and Probability Density Functions in Solar Wind

    NASA Astrophysics Data System (ADS)

    Jurac, S.

    2004-12-01

    A signature of a statistical intermittency is the presence of large deviations from the average value: this increased probability of finding extreme deviations is characterized by Probability Density Functions (PDFs) which exhibit non Gaussian power-law tails. Such power-law distributions were observed over decades in biology, chemistry, finance and other fields. Known examples include heartbeat histograms, price distribution, turbulent fluid flow and many other non-equilibrium systems. It is shown that the Kappa distribution represents a good description of PDFs observed in Solar wind. The asymmetric fluctuations in variance over time observed in solar wind PDFs are Gamma distributed. It is shown that, by assuming such a distribution of variance, the Kappa distribution can be analitically derived.

  15. High power density molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Johnson, S.A.; Geyer, H.K.; Roche, M.F.; Krumpelt, M.; Myles, K.M.

    1995-07-01

    Our results to date indicate that the specific power of the MCFC can be increased from 1200 W/m{sup 2} to above 2000W/m{sup 2} through the use of advanced components such as the double doped LiFeO{sub 2} cathode and pressurized operation. Its volumetric power density can also be increased by an additional 60% by multiple manifolding. Therefore, MCFCs with two to three times the power density of the current generation of MCFCs are possible.

  16. Computerised method for recording platelet density distribution.

    PubMed

    Järemo, P

    1995-05-01

    In the present study a computerized apparatus was employed for scanning light transmission variations along test tubes containing density-separated platelets. The device consists of a stepping motor, a stationary halogen lamp and a photopotentiometer connected to a personal computer. Anticoagulated whole blood was layered on a performed continuous Percoll gradient having a density span from 1090 kg/l (bottom) to 1040 kg/l (top). After centrifugation at 3400g for 1.5 hours, high-density cells (i.e. erythrocytes) pass through to the bottom of the test tube and the lighter platelets remain in the gradient. The test tube is moved by the computer between the halogen lamp and the photopotentiometer. Transmission variations along the gradient were recorded and registered in the computer. Density markers beads were used as an internal standard and platelet peak density was determined. After perforating the test tube the gradient was divided into 45 aliquots. In all fractions determination of platelet counts and mean platelet volume was carried out. In addition, in the aliquots having a platelet count > 20 x 10(12)/l the ratio beta-thromboglobulin per platelet was also determined. The platelet distribution in the gradient was illustrated graphically. A good agreement was found when comparing platelet distributions in the gradients and light transmission variations along the test tubes. PMID:7781754

  17. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  18. Central depression of nuclear charge density distribution

    SciTech Connect

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-08-15

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Ar and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  19. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    SciTech Connect

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-12-10

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N{sub H{sub I}} Almost-Equal-To 10{sup 21} cm{sup -2}, which is present at both z = 0 and z Almost-Equal-To 3, and a lack of systems above N{sub H{sub I}} Almost-Equal-To 10{sup 22} cm{sup -2} at z = 0. Using observations of the column density distribution, we argue that the H I-H{sub 2} transition does not cause the turnover at N{sub H{sub I}} Almost-Equal-To 10{sup 21} cm{sup -2} but can plausibly explain the turnover at N{sub H{sub I}} {approx}> 10{sup 22} cm{sup -2}. We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Ly{alpha} column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over {approx} kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  20. Relationship between input power and power density of SMA spring

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Ham, Sang Yong; Son, Young Su

    2016-04-01

    The important required characteristics of an artificial muscle for a human arm-like manipulator are high strain and high power density. From this viewpoint, an SMA (shape memory alloy) spring is a good candidate for the actuator of a robotic manipulator that utilizes an artificial muscle. In this study, the maximum power density of an SMA spring was evaluated with respect to the input power. The spring samples were fabricated from SMA wires of different diameters ranging between 0.1 and 0.3 mm. For each diameter, two types of wires with different transition temperatures were used. The relationship between the transition temperature and maximum power density was also evaluated. Each SMA spring was stretched downward by an attached weight and the temperature was increased through the application of an electric current. The displacement, velocity, and temperature of the SMA spring were measured by laser displacement sensors and a thermocouple. Based on the experimental data, it was determined that the maximum power densities of the different SMA springs ranged between 1,300 and 5,500 W/kg. This confirmed the applicability of an SMA spring to human arm-like robotic manipulators. The results of this study can be used as reference for design.

  1. Properties of the cosmological density distribution function

    NASA Astrophysics Data System (ADS)

    Bernardeau, Francis; Kofman, Lev

    1995-04-01

    The properties of the probability distribution function (PDF) of the cosmological continuous density field are studied. We focus our analysis on the quasi-linear regime where various calculations, based on dynamically motivated methods, have been presented: either by using the Zel'dovich approximation (ZA) or by using the perturbation theory to evaluate the behavior of the moments of the distribution function. We show how these two approaches are related to each other and that they can be used in a complementary way. For that respect, the one-dimensional dynamics, where the ZA is exact solution, has first been used as a testing ground. In particular, we show that, when the density PDF obtained with the ZA is regularized, its various moments exhibit the behavior expected by the perturbation theory applied to the ZA. We show that ZA approach can be used for arbitrary initial conditions (not only Gaussian) and that the nonlinear evolution of the moments can be obtained. The perturbation theory can be used for the exact dynamics. We take into account the final filtering of the density field both for ZA and perturbation theory. Applying these techniques, we got the generating function of the moments for the one-dimensional dynamics, the three-dimensional ZA, with and without smoothing effects. We also suggest methods to build PDFs. One is based on the Laplace inverse transform of the moment generating function. The other, the Edgeworth expansion, is obtained when the previous generating function is truncated at a given order and allows evaluation of the PDF out of limited number of moments. It provides insight on the relationship between the moments and the shape of the density PDF. In particular, it provides an alternative method to evaluate the skewness and kurtosis by measuring the PDF around its maximum. Eventually, results obtained from a numerical simulation with cold dark matter initial conditions have been used to validate the accuracy of the considered

  2. Fabrication Flaw Density and Distribution in Piping Weldments

    SciTech Connect

    Doctor, Steven R.

    2009-09-01

    The U.S. Nuclear Regulatory Commission supported the Pacific Northwest National Laboratory (PNNL) to develop empirical data on the density and distribution of fabrication flaws in nuclear reactor components. These data are needed to support probabilistic fracture mechanics calculations and studies on component structural integrity. PNNL performed nondestructive examination inspections and destructive testing on archived piping welds to determine the fabrication flaw size and distribution characteristics of the flaws in nuclear power plant piping weldments. Eight different processes and product forms in piping weldments were studied including wrought stainless steel and dissimilar metal weldments. Parametric analysis using an exponential fit was performed on the data. Results were created as a function of the through-wall size of the fabrication flaws as well as the length distribution. The results are compared and contrasted with those developed for reactor pressure vessel processes and product forms. The most significant findings were that the density of fabrication flaws versus through-wall size was higher in piping weldments than that for the reactor pressure vessel weldments, and the density of fabrication flaws versus through-wall size in both reactor pressure vessel weld repairs and piping weldments were greater than the density in the original weldments. Curves showing these distributions are presented.

  3. Pinning Loss Power Density in Superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Teruo

    2015-03-01

    The pinning loss power density is theoretically derived based on the resistive energy dissipation when the flux lines are driven by the Lorentz force in a superconductor. The obtained loss power density does not depend on the viscosity or flow resistivity, but is proportional to the pinning force density only, and it possesses the nature of hysteresis loss, as commonly measured in experiments. These features are predicted by the critical state model, which was recently proved theoretically. The obtained pinning force density is consistent with the prediction of the coherent potential approximation theory, a kind of statistical summation theory, for flux pinning. Thus, the irreversible properties associated with the flux pinning can be comprehensively described by these flux pinning theories. The irreversible flux pinning in the superconductor is compared with similar irreversible phenomena such as the motion of magnetic domain walls in ferromagnetic materials and the friction in mechanical systems. The possibility is also discussed for a general theoretical description of these irreversible phenomena in which the hysteresis loss occurs.

  4. Measurement Of Spectral Power Distribution

    NASA Astrophysics Data System (ADS)

    Moore, J. R.

    1980-11-01

    The majority of spectroradiometers make measurements at a number of discrete wavelength settings spaced evenly across the spectrum. Many modern light sources such as fluorescent or metal halide lamps have complex line spectra which may not be properly evaluated by this method. An automated spectroradiometer system involving a non-stop spectral scan with continuous integration of the output signal from the detector is described. The method is designed to make accurate measurements of all types of spectral power distribution whether made up of lines or continuum or any mixture of the two.

  5. Space station power management and distribution

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1985-01-01

    The power system architecture is presented by a series of schematics which illustrate the power management and distribution (PMAD) system at the component level, including converters, controllers, switchgear, rotary power transfer devices, power and data cables, remote power controllers, and load converters. Power distribution options, reference power management, and control strategy are also outlined. A summary of advanced development status and plans and an overview of system test plans are presented.

  6. REJUVENATING POWER SPECTRA. II. THE GAUSSIANIZED GALAXY DENSITY FIELD

    SciTech Connect

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2011-04-20

    We find that, even in the presence of discreteness noise, a Gaussianizing transform (producing a more Gaussian one-point distribution) reduces nonlinearities in the power spectra of cosmological matter and galaxy density fields, in many cases drastically. Although Gaussianization does increase the effective shot noise, it also increases the power spectrum's fidelity to the linear power spectrum on scales where the shot noise is negligible. Gaussianizing also increases the Fisher information in the power spectrum in all cases and resolutions, although the gains are smaller in redshift space than in real space. We also find that the gain in cumulative Fisher information from Gaussianizing peaks at a particular grid resolution depends on the sampling level.

  7. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the power flux density at the Earth's surface produced by emissions from a space station for all conditions...

  8. Power spectral density of subsonic jet noise

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Yu, J. C.

    1985-01-01

    The power-spectrum density (PSD) of the far-field noise of a subsonic unheated axisymmetric jet is investigated by analysis of about 80 sets of published noise spectra and of spectra obtained using 12.7 and 25.4-mm-diameter compressed-air jets at exit velocities 66 and 104 m/s and 67 and 91 m/s, respectively, in the NASA Langley anechoic flow facility. The results are presented in tables and graphs and characterized in detail. Findings reported include Strouhal-number scaling of the PSD at theta = 30 deg or more, scaling with the product of the Helmholtz number and the Doppler factor at theta less than 30 deg, best collapse at source convection Mach number 0.5, variation of PSD amplitude as U to the 6.5th at theta = 90 deg, and no sharp PSD-amplitude variation at any critical Reynolds number.

  9. Evolution of column density distributions within Orion A⋆

    NASA Astrophysics Data System (ADS)

    Stutz, A. M.; Kainulainen, J.

    2015-05-01

    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in

  10. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  11. Breast density characterization using texton distributions.

    PubMed

    Petroudi, Styliani; Brady, Michael

    2011-01-01

    Breast density has been shown to be one of the most significant risks for developing breast cancer, with women with dense breasts at four to six times higher risk. The Breast Imaging Reporting and Data System (BI-RADS) has a four class classification scheme that describes the different breast densities. However, there is great inter and intra observer variability among clinicians in reporting a mammogram's density class. This work presents a novel texture classification method and its application for the development of a completely automated breast density classification system. The new method represents the mammogram using textons, which can be thought of as the building blocks of texture under the operational definition of Leung and Malik as clustered filter responses. The new proposed method characterizes the mammographic appearance of the different density patterns by evaluating the texton spatial dependence matrix (TDSM) in the breast region's corresponding texton map. The TSDM is a texture model that captures both statistical and structural texture characteristics. The normalized TSDM matrices are evaluated for mammograms from the different density classes and corresponding texture models are established. Classification is achieved using a chi-square distance measure. The fully automated TSDM breast density classification method is quantitatively evaluated on mammograms from all density classes from the Oxford Mammogram Database. The incorporation of texton spatial dependencies allows for classification accuracy reaching over 82%. The breast density classification accuracy is better using texton TSDM compared to simple texton histograms. PMID:22255462

  12. Nearly degenerate electron distributions and superluminal radiation densities

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2010-02-01

    Polylogarithmic fugacity expansions of the partition function, the caloric and thermal equations of state, and the specific heat of fermionic power-law distributions are derived in the nearly degenerate low-temperature/high-density quantum regime. The spectral functions of an ultra-relativistic electron plasma are obtained by averaging the tachyonic radiation densities of inertial electrons with Fermi power-laws, whose entropy is shown to be extensive and stable. The averaged radiation densities are put to test by performing tachyonic cascade fits to the γ-ray spectrum of the TeV blazar Markarian 421 in a low and high emission state. Estimates of the thermal electron plasma in this active galactic nucleus are extracted from the spectral fits, such as temperature, number count, and internal energy. The tachyonic cascades reproduce the quiescent as well as a burst spectrum of the blazar obtained with imaging atmospheric Cherenkov detectors. Double-logarithmic plots of the differential tachyon flux exhibit intrinsic spectral curvature, caused by the Boltzmann factor of the electron gas.

  13. Noise distribution and denoising of current density images

    PubMed Central

    Beheshti, Mohammadali; Foomany, Farbod H.; Magtibay, Karl; Jaffray, David A.; Krishnan, Sridhar; Nanthakumar, Kumaraswamy; Umapathy, Karthikeyan

    2015-01-01

    Abstract. Current density imaging (CDI) is a magnetic resonance (MR) imaging technique that could be used to study current pathways inside the tissue. The current distribution is measured indirectly as phase changes. The inherent noise in the MR imaging technique degrades the accuracy of phase measurements leading to imprecise current variations. The outcome can be affected significantly, especially at a low signal-to-noise ratio (SNR). We have shown the residual noise distribution of the phase to be Gaussian-like and the noise in CDI images approximated as a Gaussian. This finding matches experimental results. We further investigated this finding by performing comparative analysis with denoising techniques, using two CDI datasets with two different currents (20 and 45 mA). We found that the block-matching and three-dimensional (BM3D) technique outperforms other techniques when applied on current density (J). The minimum gain in noise power by BM3D applied to J compared with the next best technique in the analysis was found to be around 2 dB per pixel. We characterize the noise profile in CDI images and provide insights on the performance of different denoising techniques when applied at two different stages of current density reconstruction. PMID:26158100

  14. Unstable density distribution associated with equatorial plasma bubble

    NASA Astrophysics Data System (ADS)

    Kherani, E. A.; Bharuthram, R.; Singh, S.; Lakhina, G. S.; de Meneses, F. Carlos

    2016-04-01

    In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion grows to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.

  15. High Power Density Blanket Design Study for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Zhu, Y. K.; Deng, P. Zh.

    2003-06-01

    A conceptual design study of a high power density blanket has been carried out. The Fusion Experimental Breeder, FEB, is adopted as the reference reactor. The neutron wall loading is 0.5 MW/m2. The blanket is cooled by 10 MPa helium in tube. The concept of LiPb eutectic/transuranium oxide suspension is adopted. The neutronics design is performed to provide the design basis, and it gives an energy multiplication of 37 and a flattened power density distribution with a peak value of 70 W/m3. Multiple cooling panels are introduced to reduce the peak temperature of the blanket. In spite of up to 15 cooling panels, the blanket module is calculated using the ANSYS code and analytically as well. The results are consistent with each other and can meet the thermal criteria. However, structural calculation results from ANSYS did not satisfy the criterion: The blanket structure design is then improved by using curved cooling panels to model the structure in detail. Temperature distribution is obtained using the Pro/Mechanica code. Detailed structural analyses are also done by this code. Some satisfactory results are obtained.

  16. Anode current density distribution in a cusped field thruster

    SciTech Connect

    Wu, Huan Liu, Hui Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  17. Anode current density distribution in a cusped field thruster

    NASA Astrophysics Data System (ADS)

    Wu, Huan; Liu, Hui; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-01

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  18. Electron density distributions in the high-latitude magnetosphere

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1988-01-01

    Electron density profiles were constructed to study the plasma density depletions in the nightside auroral zone and the density variations with increasing altitude in the polar cap, using electric field spectrum measurements from the plasma wave instrument on DE-1. Sharply defined regions of depleted plasma densities were commonly observed on nightside auroral field lines, in which electron densities were strongly depleted in relation to the adjacent plasmaspheric and polar densities, forming a low-density cavity at about 70 deg invariant latitude. A correlation was found between low auroral plasma densities, upflowing ion distributions, and an energetic precipitating electron population, indicating that electron density depletions in the nightside auroral zone are directly associated with auroral acceleration processes.

  19. Density and stress distribution in the moon.

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, J.

    1973-01-01

    A model is presented for the lateral variations of density within the moon. The model gives rise to a gravitational potential which is equal to the observed potential at the lunar surface; moreover, it minimizes the total shear-strain energy of the moon. The model exhibits lateral variations of about plus or minus 0.25 g/cc within 50 km depth. The variations, however, reduce to plus or minus 0.06 and plus or minus 0.008 g/cc within layers at 50 to 135 and 135 to 235 km respectively, and they become negligible below this region. The associated stress differences are found to be about 50 bar within 600 km depth, having their maximum values of about 90 bars at a depth of about 250 km. On the basis of these stress differences a strength of about 100 bar is concluded for the upper 400 km of the lunar interior for the last 3.3 b.y.

  20. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... citations affecting § 25.208, see the List of CFR Sections Affected, which appears in the Finding Aids... 47 Telecommunication 2 2013-10-01 2013-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  1. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... propagation conditions. Editorial Note: For Federal Register citations affecting § 25.208, see the List of CFR... 47 Telecommunication 2 2014-10-01 2014-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  2. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... dBW/m2/MHz. Editorial Note: For Federal Register citations affecting § 25.208, see the List of CFR... 47 Telecommunication 2 2012-10-01 2012-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  3. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... dBW/m2/MHz. Editorial Note: For Federal Register citations affecting § 25.208, see the List of CFR... 47 Telecommunication 2 2011-10-01 2011-10-01 false Power flux density limits. 25.208 Section 25... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the...

  4. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1989-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  5. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  6. Power dependence of electron density at various pressures in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Dong-Hwan; Kim, Ju Ho; Jeon, Sang-Bum; Cho, Sung-Won; Chung, Chin-Wook

    2014-11-15

    Experimental observation of the electron density variation in inductively coupled plasmas with the electron energy probability function (EEPFs) was performed at various gas pressures at two RF powers (25 W and 200 W). The measured EEPFs at high power discharges (200 W) showed a Maxwellian distribution, while evolution of the EEPFs from a bi-Maxwellian distribution to a Druyvesteyn-like distribution was observed at low RF powers (25 W) with increasing pressure. A discrepancy of the electron density variation between the two RF powers was observed. This difference is explained by the modified collisional loss and the Bohm velocity from the EEPF of the bi-Maxwellian distribution and the Druyvesteyn–like distribution.

  7. The nomogram of density distribution of lunar craters.

    NASA Astrophysics Data System (ADS)

    Pugacheva, S. G.; Bolkhovitinov, I. S.

    1994-12-01

    Least-square fits to the density of the distribution of lunar craters described by the approximating function are found for craters larger then 10 km in diamater. The nomogram of parameters of the approximating function is given for the estimate of density of primary, secondary and tertiary craters over an area of 104km2.

  8. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  9. Frontogenesis driven by horizontally quadratic distributions of density

    NASA Technical Reports Server (NTRS)

    Jacqmin, David

    1991-01-01

    Attention is given to the quadratic density distribution in a channel, which has been established by Simpson and Linden to be the simplest case of the horizontally nonlinear distribution of fluid density required for the production of frontogenesis. The porous-media and Boussinesq flow models are examined, and their evolution equations are reduced to one-dimensional systems. While both the porous-media and the inviscid/nondiffusive Boussinesq systems exhibit classic frontogenesis behavior, the viscous Boussinesq system exhibits a more complex behavior: boundary-layer effects force frontogenesis away from the lower boundary, and at late times the steepest density gradients are close to mid-channel.

  10. Computer Power: Part 1: Distribution of Power (and Communications).

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1988-01-01

    Discussion of the distribution of power to personal computers and computer terminals addresses options such as extension cords, perimeter raceways, and interior raceways. Sidebars explain: (1) the National Electrical Code; (2) volts, amps, and watts; (3) transformers, circuit breakers, and circuits; and (4) power vs. data wiring. (MES)

  11. Statistical Models of Power-law Distributions in Homogeneous Plasmas

    SciTech Connect

    Roth, Ilan

    2011-01-04

    A variety of in-situ measurements in space plasmas point out to an intermittent formation of distribution functions with elongated tails and power-law at high energies. Power-laws form ubiquitous signature of many complex systems, plasma being a good example of a non-Boltzmann behavior for distribution functions of energetic particles. Particles, which either undergo mutual collisions or are scattered in phase space by electromagnetic fluctuations, exhibit statistical properties, which are determined by the transition probability density function of a single interaction, while their non-asymptotic evolution may determine the observed high-energy populations. It is shown that relaxation of the Brownian motion assumptions leads to non-analytical characteristic functions and to generalization of the Fokker-Planck equation with fractional derivatives that result in power law solutions parameterized by the probability density function.

  12. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  13. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  14. Space Solar Power Management and Distribution (PMAD)

    NASA Technical Reports Server (NTRS)

    Lynch, Thomas H.

    2000-01-01

    This paper presents, in viewgraph form, SSP PMAD (Space Solar Power Management and Distribution). The topics include: 1) Architecture; 2) Backside Thermal View; 3) Solar Array Interface; 4) Transformer design and risks; 5) Twelve phase rectifier; 6) Antenna (80V) Converters; 7) Distribution Cables; 8) Weight Analysis; and 9) PMAD Summary.

  15. Sigmoidal particle density distribution in a subplinian scoria fall deposit

    NASA Astrophysics Data System (ADS)

    Eychenne, Julia; Le Pennec, Jean-Luc

    2012-12-01

    A general expression to describe particle density distribution in tephra fall deposits is essential to improve fallout tephra mass determination and numerical modelling of tephra dispersion. To obtain particle density distributions in tephra fall deposits, we performed high-resolution componentry and particle density analyses on samples from the 2006 subplinian eruption of Tungurahua volcano in Ecuador. Six componentry classes, including pumice and scoria, have been identified in our sample collection. We determined the class of 300 clasts in each 0.5ϕ fractions from -4.5ϕ to 3.5ϕ and carried out water pycnometry density measurements on selected size fractions. Results indicate that the mean particle density increases with ϕ up to a plateau of 2.6 g/cm3 for clasts finer than 1.5ϕ. The density of scoria and pumice increases between -3 and 1ϕ, while dense particle density is sub-constant with grainsize. We show that the mean particle density μ of the vesicular fractions is a function of grainsize i (ϕ scale) given by a sigmoidal law: μ (i)={{{K+β }} / {{( {1+α {e^{-ri }}} )}} .} , where K, β, α and r are constants. These sigmoidal distributions can be used to determine accurately the load of each componentry class and should be applicable to many tephra deposits and for modelling purposes.

  16. Cathode power distribution system and method of using the same for power distribution

    DOEpatents

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  17. A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, A.; Stone, R.; Travis, J.; Kercheval, B.; Alkire, G.; Ter-Minassian, V.

    2009-01-01

    A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS).

  18. Intelligent Systems for Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2002-01-01

    The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.

  19. The luminosity distribution and total space density of pulsars

    NASA Technical Reports Server (NTRS)

    Roberts, D. H.

    1976-01-01

    The detailed distribution of dispersion measures and spectral fluxes for a sample of 50 pulsars in part of the galactic plane near longitude 50 deg is analyzed, and the intrinsic luminosity distribution of the pulsars is obtained along with some constraints on their spatial distribution. Expressions for the observed distributions of spectral fluxes, distances, and directions are given in terms of the spatial and luminosity distributions of the sources as well as the sensitivity of the detector. A previous analysis of the same sample is reviewed, and the intrinsic luminosity distribution is determined from the distribution of observed distances as well as from the observed distribution of spectral fluxes. The results indicate that the scale height of pulsars cannot be significantly less than 400 pc, the total space density of active pulsars is about 30 per cu kpc, and the birthrate required to maintain this population is about one in the Galaxy every 980 (450-2600) years.

  20. Grid-connected distributed solar power systems

    NASA Astrophysics Data System (ADS)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  1. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    NASA Technical Reports Server (NTRS)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  2. Electronic properties of solids excited with intermediate laser power densities

    NASA Astrophysics Data System (ADS)

    Sirotti, Fausto; Tempo Beamline Team

    Intermediate laser power density up to about 100 GW/cm2 is below the surface damage threshold is currently used to induce modification in the physical properties on short time scales. The absorption of a short laser pulse induces non-equilibrium electronic distributions followed by lattice-mediated equilibrium taking place only in the picosecond range. The role of the hot electrons is particularly important in several domains as for example fast magnetization and demagnetization processes, laser induced phase transitions, charge density waves. Angular resolved photoelectron spectroscopy measuring directly energy and momentum of electrons is the most adapted tool to study the electronic excitations at short time scales during and after fast laser excitations. The main technical problem is the space charge created by the pumping laser pulse. I will present angular resolved multiphoton photoemission results obtained with 800 nm laser pulses showing how space charge electrons emitted during fast demagnetization processes can be measured. Unable enter Affiliation: CNRS-SOLEIL Synchrotron L'Orme des Merisiers , Saint Aubin 91192 Gif sur Yvette France.

  3. Density Distributions in TATB Prepared by Various Methods

    SciTech Connect

    Hoffman, D M; Fontes, A T

    2008-05-13

    The density distribution of two legacy types of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) particles were compared with TATB synthesized by new routes and recrystallized in several different solvents using a density gradient technique. Legacy wet (WA) and dry aminated (DA) TATB crystalline aggregates gave average densities of 1.9157 and 1.9163 g/cc, respectively. Since the theoretical maximum density (TMD) for a perfect crystal is 1.937 g/cc, legacy TATB crystals averaged 99% of TMD or about 1% voids. TATB synthesized from phloroglucinol (P) had comparable particle size to legacy TATBs, but significantly lower density, 1.8340 g/cc. TATB synthesized from 3,5 dibromoanisole (BA) was very difficult to measure because it contained extremely fine particles, but had an average density of 1.8043 g/cc over a very broad range. Density distributions of TATB recrystallized from dimethylsulfoxide (DMSO), sulfolane, and an 80/20 mixture of DMSO with the ionic liquid 1-ethyl-3-methyl- imidazolium acetate (EMImOAc), with some exceptions, gave average densities comparable or better than the legacy TATBs.

  4. Vibration Monitoring of Power Distribution Poles

    SciTech Connect

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterization of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.

  5. Effect of power density on shrinkage of dental resin materials.

    PubMed

    Oberholzer, Theunis G; Pameijer, Cornelis H; Grobler, Sias R; Rossouw, Roelof J

    2003-01-01

    This study compares volumetric changes and rates of shrinkage during different stages of polymerization of dental resin composites and compomers exposed to the same total energy by using two different combinations of power density and exposure duration. A hybrid composite and its equivalent flowable and a compomer and its equivalent flowable were exposed using a halogen curing unit set at 400 mW/cm2 for 40 seconds and 800 mW/cm2 for 20 seconds: delivering 16 J/cm2 in both cases. Volumetric changes were recorded every 0.5 seconds using a mercury dilatometer. Ten replications per test condition were performed and the data were subjected to ANOVA. Statistically significant differences in shrinkage values and rates among different power densities were determined by means of paired t-tests at a 95% confidence level. Significantly more shrinkage (p<0.05) was found for the higher filled materials, Z250 and Dyract AP, when higher power density was used. However, no significant differences were found between their flowable counterparts when exposed to various power densities. Of the four materials, only Dyract AP exhibited no significant difference in shrinkage rate when various power densities were used. All the other materials exhibited significantly higher rates (p<0.05) at the higher power density. PMID:14531610

  6. Specification of optical components using the power spectral density function

    SciTech Connect

    Lawson, J.K.; Wolfe, C.R.; Manes, K.R.; Trenholme, J.B.; Aikens, D.M.; English, R.E. Jr.

    1995-06-20

    This paper describes the use of Fourier techniques to characterize the wavefront of optical components, specifically, the use of the power spectral density, (PSD), function. The PSDs of several precision optical components will be shown. Many of the optical components of interest to us have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. The wavefronts of components with non-circular apertures cannot be analyzed with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. Furthermore, Zernicke analysis is limited to treating low frequency wavefront aberrations; mid-spatial scale and high frequency error are expressed only as ``residuals.`` A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The PSD corresponds to the scattered intensity as a function of scattering angle in the wavefront and can be used to describe the intensity distribution at focus. The shape of a resultant wavefront or the focal spot of a complex multi-component laser system can be calculated and optimized using the PSDs of individual optical components which comprise it.

  7. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  8. Study of nuclear matter density distributions using hadronic probes

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2011-05-06

    We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.

  9. Power distribution studies for CMS forward tracker

    SciTech Connect

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R&D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  10. Density distributions for trapped one-dimensional spinor gases

    NASA Astrophysics Data System (ADS)

    Hao, Yajiang; Zhang, Yunbo; Liang, J. Q.; Chen, Shu

    2006-05-01

    We numerically evaluate the density distribution of a spin-1 bosonic condensate in its ground state within a modified Gross-Pitaevskii theory, which is obtained by the combination of the exact solution of the corresponding integrable model with the local-density approximation. Our study reveals that atoms in the mF=0 state are almost completely suppressed for the antiferromagnetic interactions in both weakly and strongly interacting regimes, whereas all three components remain nonvanishing for ferromagnetic interactions. In particular, when the system is in the Tonks-Girardeau regime, obvious Fermi-like distribution emerges for each component. We also discuss the possible deviation of the spatial distribution from the Fermi-like distribution when the spin-spin interaction is strong enough.

  11. Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valladares, C. E.; Pfaff, R. F.

    2012-07-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian ˜37°E and 290°E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation, such as

  12. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics

    NASA Technical Reports Server (NTRS)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.

    2012-01-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation

  13. PIII Plasma Density Enhancement by a New DC Power Source

    SciTech Connect

    Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Munoz-Castro, A. E.; Valencia A, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.

    2006-12-04

    In practical terms, those plasmas produced by a DC voltage power supply do not attain densities above the 108 to 109 cm-3 band. Here we present a power supply, controlled in current and voltage, which has been successfully designed and constructed delivering plasma densities in the orders of 109 - 1010 cm-3. Its experimental performance test was conducted within one toroidal and one cylindrical chambers capable of 29 and 35 litres, respectively, using nitrogen gas. The DC plasma was characterized by a double electric probe. Several physical phenomena present in the PIII process have been keenly investigated including plasma sheath dynamics, interaction of plasma and surface, etc. In this paper we analyze the effect of the implantation voltage, plasma density and pulse time in the PIII average heating power and fluence density.

  14. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  15. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  16. Power quality monitoring of a distribution system

    SciTech Connect

    Barker, P.P.; Burke, J.T.; Mancao, R.T.; Short, T.A.; Warren, C.A. ); Burns, C.W.; Siewierski, J.J. )

    1994-04-01

    The Niagara Mohawk Power Corporation (NMPC) Research and Development Department sponsored a major power quality study of two distribution feeders in the Buffalo, New York region. All levels of these systems, from the substation bus to the customer service entrance, were instrumented with monitoring equipment. A variety of measurements, encompassing both transient and steady state system behavior, were performed. The use of multiple monitoring locations allowed NMPC to assess the origins and scope of various disturbances. The study generated a database which can serve as a guide for assessing relative power quality on the NMPC system. The study also formulated suggestions on areas which the industry (both the power industry and consumer products industry) might address in the future on the effect of standard utility operation towards consumer appliances.

  17. Molten carbonate fuel cell with high power density

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.; Geyer, H.; Johnson, S.

    1994-08-01

    The objective of this research is a doubling of the current density of the molten carbonate fuel cell (MCFC) from the present value of 1600A/m{sup 2} to 3200 A/m{sup 2} and a similar increase in the volumetric power density. This project is linked to other projects concerning MCFCs (one on the multiply manifolded MCFCs, the other on lithium ferrate and lithium cobaltate cathodes for MCFCs).

  18. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  19. Uncertainty evaluation in BEACON power distribution monitoring

    SciTech Connect

    Morita, T.; Goldstein, N.P. )

    1989-11-01

    BEACON is an advanced operational core support package that has a three-dimensional nodal code as its cornerstone. The three-dimensional calculation includes all necessary pressurized water reactor feedback effects. The generation of the measured power distribution from the core instrumentation is one of the primary functions of the core-monitoring software. The purpose of this paper is to discuss evaluation of the uncertainty in the measured assembly power from the BEACON system. The study covers not only the normal operating conditions, but off-normal situations to demonstrate BEACON's applicability for that condition.

  20. Improved efficiency and power density for thermoacoustic coolers

    NASA Astrophysics Data System (ADS)

    Hofler, Thomas J.

    1994-06-01

    Research on improving the efficiency, cooling power, and cooling power density of thermoacoustic refrigerators is described. A heuristic analysis of short thermoacoustic heat exchangers in a high amplitude sound field is given. A heat exchanger experiment, utilizing a very high amplitude thermoacoustic prime-mover, shows some agreement with the heuristic analysis. This indicates that acoustic losses in the heat exchanger can be drastically reduced in high amplitude engines, while maintaining good thermal effectiveness. Other related, but more applied, research is briefly discussed. This includes the design and construction of a compact, portable, air-cooled, thermoacoustic refrigerator for the purpose of producing frost at a lecture demonstration. This design has roughly the same temperature span (40 deg C) as required by shipboard applications. Also, two new electrodynamic acoustic drivers have been designed and one design has been constructed. These designs offer high efficiency, good power density, and low cost and are probably scalable up to significantly higher acoustic power levels.

  1. Control of plasma density profile via wireless power transfer in an inductively coupled discharge

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jin; Bang, Jin-Young; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2012-10-01

    Wireless power transfer via a strongly coupled magnetic resonance was applied to the field of plasma. Two antennas (an inner antenna coil was connected to the RF power and an outer antenna was a resonant antenna with a variable capacitor) were placed on the top of a chamber. The resonant antenna is electrically separated from the inner antenna coil. As the self-resonance frequency of the resonant antenna was adjusted, the power transfer ratio of the inner antenna to the outer antenna was changed and a dramatic evolution of the plasma density profile was measured. The density profiles were changed from a concave shape to a convex shape by varying the self-resonance frequency of the outer antenna. This result shows that the plasma density spatial distribution can be successfully controlled via wireless power transfer.

  2. Relativity, nonextensivity, and extended power law distributions.

    PubMed

    Silva, R; Lima, J A S

    2005-11-01

    A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory. PMID:16383791

  3. The influence of density distribution on the stability of beams

    SciTech Connect

    Guy, F.W.; Lapostolle, P.M.; Wangler, T.P.

    1987-01-01

    We examine the effect of various density distributions in four-dimensional phase space and their projections in real and velocity space on the stability of continuous beams in alternating-gradient transport lines using particle-following computer simulations. We discuss the susceptibility of three different distributions (Kapchinskii-Vladimirskii, bicylinder, and thermal) to third- and higher-order mode instabilities. These distributions are all uniform in real space, but their velocity distributions are different; they also react differently to structure resonances. Velocity distributions of high-current beams tend to evolve to a peaked Gaussian-like form. Is there a specific velocity distribution that is stable and, therefore, the preferred injection distribution for minimizing emittance growth. Forced smoothness or uniformity in real space is necessary for setting up particle simulations of high-current beams so that spurious charge-redistribution emittance growth can be avoided. Is forced smoothness also desirable in four dimensions for continuous beams and possibly in six dimensions for bunched beams. We consider these and related questions.

  4. Fabrication Flaw Density and Distribution in Weld Repairs

    SciTech Connect

    Doctor, Steven R.

    2009-09-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.

  5. Testing pulse density distribution for terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Abukhaled, Marwan; Allen, Edward; Guessoum, Nidhal

    2014-07-01

    Maximum likelihood fits for the time profiles of 51 terrestrial gamma ray flashes (from Compton Gamma Ray Observatory/Burst and Transient Source Experiment and Fermi Gamma-Ray Space Telescope/Gamma-Ray Burst Monitor) were calculated for five proposed probability densities. A lognormal distribution, which had been used by other researchers, was compared with piecewise Gaussian, piecewise exponential, inverse Gaussian, and Ornstein-Uhlenbeck probability density functions. The piecewise Gaussian and piecewise exponential distributions are justified physically through assuming exponential growth and decay of the electron avalanches which result in the gamma ray bursts and are therefore highly relevant in this context. However, identifying the electron avalanche phenomenon as a form of stochastic exit time process, the inverse Gaussian and Ornstein-Uhlenbeck are reasonable alternatives. Results of the maximum likelihood calculations indicate that the five probability densities fit the gamma ray pulse data equally well. By this comparison, our aim is to indicate to terrestrial gamma ray flash researchers these other at least equally valid distribution functions, which may give insights into the physical processes that the electrons (and the positrons) undergo in the gamma ray flashes.

  6. Longitudinal asymmetry of craters' density distributions on the icy satellites

    NASA Astrophysics Data System (ADS)

    Leliwa-Kopystynski, Jacek; Banaszek, Marcin; Wlodarczyk, Ireneusz

    2012-01-01

    Crater's density distribution versus satellitographical longitude was searched for seven icy satellites: two of Jupiter (Ganymede and Callisto) and five of Saturn (Mimas, Tethys, Dione, Rhea and Iapetus). Craters were classified according to their size. Four bins of the craters' diameter were used. Density distributions were found in the longitudinal sectors of the near-equatorial stripes that circumscribe the satellites. The size distributions (R-plots) were done independently for each of the eight longitudinal sectors of the satellites. Searching for the leading/trailing (apex/antapex) and the near-side/far-side asymmetry was done. It was found that the crater density is longitudinally asymmetric for all seven satellites being studied. However, the apex-antapex asymmetry is much less pronounced than predicted by theory of Zahnle et al. (2003), for impacts on the satellites by ecliptic comets. We conclude that the impact craters observed on the considered satellites are mostly originated from planetocentric swarm of debris. In that case longitudinal asymmetry is not expected, as stated by Horedt and Neukum (1984a, b). However, cratering longitudinal asymmetry that we observe for Mimas perfectly agrees with calculations of Alvarellos et al. (2005). It is very likely that important part of craters on Mimas were formed due to impacts of ejecta originated from crater Herschel.

  7. Calculation of nanodrop profile from fluid density distribution.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2016-05-01

    Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is

  8. A safe, high-power-density lithium battery

    NASA Astrophysics Data System (ADS)

    Walsh, F.

    1985-03-01

    The Li/SOCl2 battery has received attention because of its high theoretical energy/power density. However, practical Li/SOCl2 cells have not provided the desired power density and have suffered from concerns with cell safety on discharge. In previous work, ECO has shown that the use of a TAA-type catalyst significantly improves the safety of the Li/S0Cl2 cell at high rate. The objective of this Phase 1 program was to determine whether a stacked disk electrode configuration with TAA-catalyzed cathodes would meet a high power-density design goal. Under the program, the effects of cathode thickness, preparation pressure, electrolyte gap and solute concentration on stacked-electrode cell performance and capacity were measured. The results of the Phase 1 program included the demonstration of stacked-electrode cell performance and capacity at levels suitable to meet a design goal of 400 W/kg with high energy density. Further work in a Phase 2 program will be required to demonstrate in laser-sealed fully-packaged cells that the results of Phase 1 can be practically applied to provide a safe high-rate, energy-dense power source for military applications.

  9. MULTIPLE POWER DENSITY WINDOWS AND THEIR POSSIBLE ORIGIN

    EPA Science Inventory

    We have previously reported that in vitro exposure of chick forebrain tissue to 50-Mz radiofrequency (RF) radiation, amplitude modulated (AM) at 16 Hz, would enhance the efflux of calcium ions only within two power density ranges: one spanning from 1.44 to 1.67 mW/cm2, and the ot...

  10. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  11. Individual power density spectra of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-05-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  12. Individual power density spectra of Swift gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-04-01

    Context. Timing analysis can be a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. Aims: We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. Methods: We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study the individual PDS of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Results: Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ~1%. Thus, we found no compelling evidence for periodic signal in GRBs. Conclusions: The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects

  13. Power distribution for an Am/Cm bushing melter

    SciTech Connect

    Gong, C.; Hardy, B.J.

    1996-12-31

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am{sup 243} and Cm{sup 244}. Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to ORNL for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. Vitrification will be effected by depositing a liquid feed stream containing the isotopes in solution, together with a stream of glass frit, onto the top of a molten glass pool in a melter. The glass is non-conducting and the melter is a Platinum/Rhodium alloy vessel which is heated by passing an electric current through it. Because most of the power is required to evaporate the liquid feed at the top of the glass pool, power demands differ for the upper and lower parts of the melter. In addition, the melter is batch fed so that the local power requirements vary with time. In order to design a unique split power supply, which ensures adequate local power delivery, an analysis of the melter power distribution was performed with the ABAQUS finite element code. ABAQUS was used to calculate the electric potential and current density distributions in the melter for a variety of current and potential boundary conditions. The results of the calculation were compared with test data and will be used to compute power densities for input to a computational fluid dynamics model for the melter.

  14. Doubled power density from salinity gradients at reduced intermembrane distance.

    PubMed

    Vermaas, David A; Saakes, Michel; Nijmeijer, Kitty

    2011-08-15

    The mixing of sea and river water can be used as a renewable energy source. The Gibbs free energy that is released when salt and fresh water mix can be captured in a process called reverse electrodialysis (RED). This research investigates the effect of the intermembrane distance and the feedwater flow rate in RED as a route to double the power density output. Intermembrane distances of 60, 100, 200, and 485 μm were experimentally investigated, using spacers to impose the intermembrane distance. The generated (gross) power densities (i.e., generated power per membrane area) are larger for smaller intermembrane distances. A maximum value of 2.2 W/m(2) is achieved, which is almost double the maximum power density reported in previous work. In addition, the energy efficiency is significantly higher for smaller intermembrane distances. New improvements need to focus on reducing the pressure drop required to pump the feedwater through the RED-device using a spacerless design. In that case power outputs of more than 4 W per m(2) of membrane area at small intermembrane distances are envisaged. PMID:21736348

  15. Three-dimensional density distributions in the Asian lithosphere

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Li, C.; Wang, X.; Wang, Z.; Fang, J.; Sino-probe-cugb

    2011-12-01

    We have inversed the residual Bouguer gravity anomalies to study the three-dimensional density distributions of the Asian lithosphere (60°~150°E and 15°~60°N). Firstly, we have collected the free-air gravity anomalies (30'×30') and topography data of GTOP030 with 5'×5' grid spacing, and then calculated the Bougouer gravity anomalies by terrain correction and Bougouer correction. We have also collected the depth data of the Moho discontinuity (30'×30') and the discontinuity of sedimentary layer. By using the Oldenburg-Parker formula (Parker, 1972) and the forward modeling method, we calculated the theoretical gravity anomalies which mainly are caused by the Moho discontinuity and the sedimentary layer discontinuity. In our study, the average depths of Moho discontinuity and sedimentary layer discontinuity are 33 km and 4 km, and the density differences are 0.42 g/cm3 and 0.2 g/cm3, respectively. In addition, we have simulated the gravity anomalies of the spherical harmonics with the 2-6 order for the lower mantle by using the formula of Bowin (1983) which represented the relation between the depth of field source and the order of the geopotential spherical harmonics. Using all data mentioned above, we have calculated the residual Bougouer gravity anomalies, which may be caused by anomalous density bodies in the lithosphere. Secondly, we used the calculated residual Bougouer gravity anomalies to inverse the three-dimensional density differences in the Asian lithosphere by using the Algebra Reconstruction Techniques (ART). During the inversion, the densities converted from the P-wave velocity data (with grid spacing of 2°×2°) according to the Birch Law are considered as the initial density model. The grid spacing is set as 2°×2° in the horizontal direction, and it is 25 km, 55 km and 100 km in the vertical direction, respectively. Comparing the density anomalies at the three depths, we can conclude that (1) the density in the lithosphere beneath Asian

  16. On the probability distribution function of the mass surface density of molecular clouds. II.

    NASA Astrophysics Data System (ADS)

    Fischera, Jörg

    2014-11-01

    The probability distribution function (PDF) of the mass surface density of molecular clouds provides essential information about the structure of molecular cloud gas and condensed structures out of which stars may form. In general, the PDF shows two basic components: a broad distribution around the maximum with resemblance to a log-normal function, and a tail at high mass surface densities attributed to turbulence and self-gravity. In a previous paper, the PDF of condensed structures has been analyzed and an analytical formula presented based on a truncated radial density profile, ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 with central density ρc and inner radius r0, widely used in astrophysics as a generalization of physical density profiles. In this paper, the results are applied to analyze the PDF of self-gravitating, isothermal, pressurized, spherical (Bonnor-Ebert spheres) and cylindrical condensed structures with emphasis on the dependence of the PDF on the external pressure pext and on the overpressure q-1 = pc/pext, where pc is the central pressure. Apart from individual clouds, we also consider ensembles of spheres or cylinders, where effects caused by a variation of pressure ratio, a distribution of condensed cores within a turbulent gas, and (in case of cylinders) a distribution of inclination angles on the mean PDF are analyzed. The probability distribution of pressure ratios q-1 is assumed to be given by P(q-1) ∝ q-k1/ (1 + (q0/q)γ)(k1 + k2) /γ, where k1, γ, k2, and q0 are fixed parameters. The PDF of individual spheres with overpressures below ~100 is well represented by the PDF of a sphere with an analytical density profile with n = 3. At higher pressure ratios, the PDF at mass surface densities Σ ≪ Σ(0), where Σ(0) is the central mass surface density, asymptotically approaches the PDF of a sphere with n = 2. Consequently, the power-law asymptote at mass surface densities above the peak steepens from Psph(Σ) ∝ Σ-2 to Psph(Σ) ∝ Σ-3. The

  17. Vertical Distribution of Temperature and Density in a Planetary Ring

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Spahn, F.; Petzschmann, O.; Salo, Heikki

    1998-09-01

    We model temperature and density profiles for a dilute planetary ring, based on the hydrodynamic balance equations for momentum and energy of granular flows. Within our approximation the ring consists of inelastic smooth spheres of unique size and mass, while the fluxes of mass, momentum and energy are linear functions of the gradients of density, velocity and temperature. The phase space distribution function is an isotropic Gaussian with additive corrections that are first order in these gradients (Jenkins and Richman, Arch. Ration. Mech. Anal., 87 (1985)). The resulting system of coupled differential equations leads to temperature and density profiles, which depend on the coefficient of restitution, a measure for the inelasticity of the particle collisions, the optical depth and the shear rate. We compare the results to those of the kinetic approach to ring dynamics (Simon and Jenkins, Icarus, 110 (1994)) , where the non-isotropic nature of the ring system is taken into account by use of a triaxial Gaussian velocity distribution. Furthermore we present event driven N-particle simulations that confirm the numerical results.

  18. Microwave Driven Actuators Power Allocation and Distribution

    NASA Technical Reports Server (NTRS)

    Forbes, Timothy; Song, Kyo D.

    2000-01-01

    Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

  19. Carbon density and distribution of six Chinese temperate forests.

    PubMed

    Zhang, QuanZhi; Wang, ChuanKuan

    2010-07-01

    Quantifying forest carbon (C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling. Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age (42-59 years old) and growing under the same climate in northeastern China. The forests were an aspen-birch forest, a hardwood forest, a Korean pine plantation, a Dahurian larch plantation, a mixed deciduous forest, and a Mongolian oak forest. There were no significant differences in the C densities of ecosystem components (except for detritus) although the six forests had varying vegetation compositions and site conditions. However, the differences were significant when the C pools were normalized against stand basal area. The total ecosystem C density varied from 186.9 tC hm(-2) to 349.2 tC hm(-2) across the forests. The C densities of vegetation, detritus, and soil ranged from 86.3-122.7 tC hm(-2), 6.5-10.5 tC hm(-2), and 93.7-220.1 tC hm(-2), respectively, which accounted for 39.7% +/- 7.1% (mean +/- SD), 3.3% +/- 1.1%, and 57.0% +/- 7.9% of the total C densities, respectively. The overstory C pool accounted for > 99% of the total vegetation C pool. The foliage biomass, small root (diameter < 5mm) biomass, root-shoot ratio, and small root to foliage biomass ratio varied from 2.08-4.72 tC hm(-2), 0.95-3.24 tC hm(-2), 22.0%-28.3%, and 34.5%-122.2%, respectively. The Korean pine plantation had the lowest foliage production efficiency (total biomass/foliage biomass: 22.6 g g(-1)) among the six forests, while the Dahurian larch plantation had the highest small root production efficiency (total biomass/small root biomass: 124.7 g g(-1)). The small root C density decreased with soil depth for all forests except for the Mongolian oak forest, in which the small roots tended to be vertically distributed downwards. The C density of coarse woody debris was significantly less in the two

  20. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  1. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  2. Longitudinal statistics and distribution of the He+ density depletions (bubbles)

    NASA Astrophysics Data System (ADS)

    Sidorova, Larissa

    Plasma bubbles (PB), seen as He+ density depletions in the topside ionosphere, were under consideration. Their occurrence probability with respect to longitude is considered for the post-sunset hours under winter, summer and equinoctial conditions within of ±35° invariant latitudes. Study based on the ISS-b satellite observations, obtained during a high solar activity period 1978-79 (F10.7 200) at the topside ionosphere altitudes (1000-1200 km). The map of the He+ density depletion (PB) distribution as function of latitude-longitude for the post-sunset hours was also derived. The statistics and the map were compared with the ESF occurrence probability and PB distribution, obtained by Maruyama and Matuura (RRL, 27, 1980; JGR, 89(A12), 1984) on data from the ISS-b. Moreover the seasonal/longitudinal (s/l) variations of range spread F probability, obtained by McClure and colleagues (JGR, 103(A12), 1998) from the AE-E spacecraft data for the same period (1978-80), were also taken for comparison. It was revealed that there is a good conformity in occurrence probability and spatial distributions of these phenomena. The obtained results, indicated the strong s/l dependence, are discussed.

  3. A Low Power Density Rectenna for SPS Application

    NASA Astrophysics Data System (ADS)

    Fujino, Yoshiyuki

    2002-01-01

    present launch technology. Due to the satellites low power and small antenna, the power flux density reaching the earth's surface is only 1 W/m2. This is probably insufficient for practical applications, so we investigated the minimum density required for a rectenna to operate. because the input power of the rectifying circuits is lower. We thus developed a rectenna with a larger aperture area that can operate satisfactorily when the power flux density is low because the input power to the rectifying circuits is not reduced. antenna array. Although constructing an antenna array is relatively easy, the substrate material is costly. We thus took the second approach--using a rectenna with a parabolic antenna. power transmission frequency was 5.8 GHz. We designed a center-feed parabolic antenna with a 60-cm diameter using a circular patch antenna as the primary feed. The gain and aperture efficiency were 29 dBi and 62 %, respectively. The 3-dB beam width was 7 degrees. Rectifying circuits were constructed on the reverse side of the patch antenna, and its efficiency was about 75 % at an input power of 300 mW and a load resistance of 300 ohms. Microwave power transmission experiments in an anechoic chamber showed that the efficiency of a rectenna with a parabolic reflector was 50 %. increase the amount of time to receive data from the satellite. Therefore, we changed the length of the two orthogonal directions of the reflector.We propose rectangular reflector rectenna that can arrange without clearance on the whole ground rectenna site. We calculated the directivity of this antenna by using the physical optics method. The major and minor axis length of antenna was 85 x 43 cm, and its 3-dB beam width was 4 and 8 degrees, respectively, and the gain was 30 dBi.The degradation in the aperture efficiency compared to the circular parabolic antenna was about 12 %. power region of its normal site in the SPS. The transmission using microwave power was successful even in a region

  4. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  5. Interaction of lightning with power distribution lines

    NASA Astrophysics Data System (ADS)

    Mata, Carlos Tomas

    Triggered-lightning experiments were conducted in 1996, 1999, and 2000 to study the responses of overhead power distribution lines to lightning at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida. The lightning was artificially initiated (triggered) from natural thunderclouds using the rocket-and-wire technique, and its current was directed to a phase conductor at midspan or at a pole near the center of the line. Experimental results and associated EMTP modeling are presented in this dissertation for the following line configurations: (1)a two-conductor, 740-m overhead distribution line with 2 arrester stations in 1996; (2)a four- conductor, 245-m overhead distribution line with 2 arrester stations in 1999; and (3)a four-conductor, 829-m overhead distribution line with 6 arrester stations in 2000. The three-phase lines tested in 1999 and 2000 were standard designs of a major Florida power company. Lightning peak currents injected into the lines ranged from 7 to 57 kA. Voltages and currents were measured at various locations along the line. Video and photographic cameras were used to image lightning channels and detect line flashovers. The significant results of the research are (1)flashovers between conductors were observed, both accompanied and not accompanied by arrester failures, (2)an arrester failed on seven of eight direct lightning strikes to the line in 2000, (3)arcing between conductors may prevent failures of arresters connected to the struck phase, (4)the bulk of the lightning current flows from the struck phase to neutral through the arresters closest to the strike point, (5)the withstand energy of the arresters can be exceeded due to the contribution from multiple strokes and/or relatively low-level, long-lasting current components, (6)the distribution of charge transferred to ground among multiple neutral grounds, which is determined by low-frequency, low-current grounding resistances is different from the

  6. High power density reactors based on direct cooled particle beds

    SciTech Connect

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs.

  7. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in

  8. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  9. High power distributed x-ray source

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Neculaes, Bogdan; Inzinna, Lou; Caiafa, Antonio; Reynolds, Joe; Zou, Yun; Zhang, Xi; Gunturi, Satish; Cao, Yang; Waters, Bill; Wagner, Dave; De Man, Bruno; McDevitt, Dan; Roffers, Rick; Lounsberry, Brian; Pelc, Norbert J.

    2010-04-01

    This paper summarizes the development of a distributed x-ray source with up to 60kW demonstrated instantaneous power. Component integration and test results are shown for the dispenser cathode electron gun, fast switching controls, high voltage stand-off insulator, brazed anode, and vacuum system. The current multisource prototype has been operated for over 100 hours without failure, and additional testing is needed to discover the limiting component. Example focal spot measurements and x-ray radiographs are included. Lastly, future development opportunities are highlighted.

  10. Momentum distribution function of the electron gas at metallic densities

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Yasuhara, H.

    1991-10-01

    The momentum distribution function n(k) of the electron gas is calculated in the effective-potential-expansion method at metallic densities. The recently established self-consistency relation between n(k) and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)] is employed to check the accuracy of our results. This check shows that the effective-potential-expansion method provides probably the exact and at least more accurate results of n(k) than all the other methods that have given n(k) thus far.

  11. Power Law Distributions in Two Community Currencies

    NASA Astrophysics Data System (ADS)

    Kichiji, N.; Nishibe, M.

    2007-07-01

    The purpose of this paper is to highlight certain newly discovered social phenomena that accord with Zipf's law, in addition to the famous natural and social phenomena including word frequencies, earthquake magnitude, city size, income1 etc. that are already known to follow it. These phenomena have recently been discovered within the transaction amount (payments or receipts) distributions within two different Community Currencies (CC) that had been initiated as social experiments. One is a local CC circulating in a specific geographical area, such as a town. The other is a virtual CC used among members who belong to a certain community of interest (COI) on the Internet. We conducted two empirical studies to estimate the economic vitalization effects they had on their respective local economies. The results we found were that the amount of transactions (payments and receipts) of the two CCs was distributed according to a power-law distribution with a unity rank exponent. In addition, we found differences between the two CCs with regard to the shapes of their distribution over a low-transaction range. The result may originate from the difference in methods of issuing CCs or in the magnitudes of the minimum-value unit; however, this result calls for further investigation.

  12. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  13. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  14. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1985-01-01

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  15. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  16. Differential distribution of Shank and GKAP at the postsynaptic density.

    PubMed

    Tao-Cheng, Jung-Hwa; Yang, Yijung; Reese, Thomas S; Dosemeci, Ayse

    2015-01-01

    Shank and GKAP are scaffold proteins and binding partners at the postsynaptic density (PSD). The distribution and dynamics of Shank and GKAP were studied in dissociated hippocampal cultures by pre-embedding immunogold electron microscopy. Antibodies against epitopes containing their respective mutual binding sites were used to verify the expected juxtapositioning of Shank and GKAP. If all Shank and GKAP molecules at the PSD were bound to each other, the distribution of label for the two proteins should coincide. However, labels for the mutual binding sites showed significant differences in distribution, with a narrow distribution for GKAP located close to the postsynaptic membrane, and a wider distribution for Shank extending deeper into the cytoplasm. Upon depolarization with high K+, neither the intensity nor distribution of label for GKAP changed, but labeling intensity for Shank at the PSD increased to ~150% of controls while the median distance of label from postsynaptic membrane increased by 7.5 nm. These results indicate a preferential recruitment of Shank to more distal parts of the PSD complex. Conversely, upon incubation in Ca2+-free medium containing EGTA, the labeling intensity of Shank at the PSD decreased to ~70% of controls and the median distance of label from postsynaptic membrane decreased by 9 nm, indicating a preferential loss of Shank molecules in more distal parts of the PSD complex. These observations identify two pools of Shank at the PSD complex, one relatively stable pool, closer to the postsynaptic membrane that can bind to GKAP, and another more dynamic pool at a location too far away to bind to GKAP. PMID:25775468

  17. Differential Distribution of Shank and GKAP at the Postsynaptic Density

    PubMed Central

    Tao-Cheng, Jung-Hwa; Yang, Yijung; Reese, Thomas S.; Dosemeci, Ayse

    2015-01-01

    Shank and GKAP are scaffold proteins and binding partners at the postsynaptic density (PSD). The distribution and dynamics of Shank and GKAP were studied in dissociated hippocampal cultures by pre-embedding immunogold electron microscopy. Antibodies against epitopes containing their respective mutual binding sites were used to verify the expected juxtapositioning of Shank and GKAP. If all Shank and GKAP molecules at the PSD were bound to each other, the distribution of label for the two proteins should coincide. However, labels for the mutual binding sites showed significant differences in distribution, with a narrow distribution for GKAP located close to the postsynaptic membrane, and a wider distribution for Shank extending deeper into the cytoplasm. Upon depolarization with high K+, neither the intensity nor distribution of label for GKAP changed, but labeling intensity for Shank at the PSD increased to ~150% of controls while the median distance of label from postsynaptic membrane increased by 7.5 nm. These results indicate a preferential recruitment of Shank to more distal parts of the PSD complex. Conversely, upon incubation in Ca2+-free medium containing EGTA, the labeling intensity of Shank at the PSD decreased to ~70% of controls and the median distance of label from postsynaptic membrane decreased by 9 nm, indicating a preferential loss of Shank molecules in more distal parts of the PSD complex. These observations identify two pools of Shank at the PSD complex, one relatively stable pool, closer to the postsynaptic membrane that can bind to GKAP, and another more dynamic pool at a location too far away to bind to GKAP. PMID:25775468

  18. Magnetocaloric Materials and the Optimization of Cooling Power Density

    NASA Technical Reports Server (NTRS)

    Wikus, Patrick; Canavan, Edgar; Heine, Sarah Trowbridge; Matsumoto, Koichi; Numazawa, Takenori

    2014-01-01

    The magnetocaloric effect is the thermal response of a material to an external magnetic field. This manuscript focuses on the physics and the properties of materials which are commonly used for magnetic refrigeration at cryogenic temperatures. After a brief overview of the magnetocaloric effect and associated thermodynamics, typical requirements on refrigerants are discussed from a standpoint of cooling power density optimization. Finally, a compilation of the most important properties of several common magnetocaloric materials is presented.

  19. Probability density function modeling for sub-powered interconnects

    NASA Astrophysics Data System (ADS)

    Pater, Flavius; Amaricǎi, Alexandru

    2016-06-01

    This paper proposes three mathematical models for reliability probability density function modeling the interconnect supplied at sub-threshold voltages: spline curve approximations, Gaussian models,and sine interpolation. The proposed analysis aims at determining the most appropriate fitting for the switching delay - probability of correct switching for sub-powered interconnects. We compare the three mathematical models with the Monte-Carlo simulations of interconnects for 45 nm CMOS technology supplied at 0.25V.

  20. High-density power management architecture for portable applications

    NASA Astrophysics Data System (ADS)

    Ahsanuzzaman, S. M.

    This thesis introduces a power management architecture (PMA) and its on-chip implementation, designed for battery-powered portable applications. Compared to conventional two-stage PMA architectures, consisting of a front-end inductive converter followed by a set of point-of-load (PoL) buck converters, the presented PMA has improved power density. The new architecture, named MSC-DB, is based on a hybrid converter topology that combines a fixed ratio multi-output switched capacitor converter (MSC) and a set of differential-input buck (DB) converters, to achieve low volume and high power processing efficiency. The front-end switched capacitor stage has a higher power density than the conventionally used inductive converters. The downstream differential-input buck converters enable tight output voltage regulation, and allow for a drastic reduction of output filter inductors without the need for increasing switching frequency, hence limiting switching losses and improving the efficiency of the system. Furthermore, the new PMA provides battery cells balancing feature, not existing in conventional systems. The PMA architecture is implemented both as a discrete prototype and as an application-specific integrated circuit (IC) module. The on-chip implemented architecture is fabricated in a standard 0.13microm CMOS process and operates at 9.3 MHz switching frequency. Experimental comparisons with a conventional two-cell battery input architecture, providing 15 W of total power in three different voltage outputs, demonstrate up to a 50% reduction in the inductances of the downstream converter stages and up to a 53% reduction in losses, equivalent to the improvement of the power processing efficiency of a 12%. Moreover, the fabricated IC module is co-packaged with low-profile thin-film inductors, to demonstrate the effectiveness of the introduced architecture in reducing the volume of PMAs for portable applications and possibly providing complete on-chip implementation of PMAs

  1. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  2. Universal fractional noncubic power law for density of metallic glasses.

    PubMed

    Zeng, Qiaoshi; Kono, Yoshio; Lin, Yu; Zeng, Zhidan; Wang, Junyue; Sinogeikin, Stanislav V; Park, Changyong; Meng, Yue; Yang, Wenge; Mao, Ho-Kwang; Mao, Wendy L

    2014-05-01

    As a fundamental property of a material, density is controlled by the interatomic distances and the packing of microscopic constituents. The most prominent atomistic feature in a metallic glass (MG) that can be measured is its principal diffraction peak position (q1) observable by x-ray, electron, or neutron diffraction, which is closely associated with the average interatomic distance in the first shell. Density (and volume) would naturally be expected to vary under compression in proportion to the cube of the one-dimensional interatomic distance. However, by using high pressure as a clean tuning parameter and high-resolution in situ techniques developed specifically for probing the density of amorphous materials, we surprisingly found that the density of a MG varies with the 5/2 power of q1, instead of the expected cubic relationship. Further studies of MGs of different compositions repeatedly produced the same fractional power law of 5/2 in all three MGs we investigated, suggesting a universal feature in MG. PMID:24856706

  3. Global Distribution and Density of Constructed Impervious Surfaces

    PubMed Central

    Elvidge, Christopher D.; Tuttle, Benjamin T.; Sutton, Paul S.; Baugh, Kimberly E.; Howard, Ara T.; Milesi, Cristina; Bhaduri, Budhendra L.; Nemani, Ramakrishna

    2007-01-01

    We present the first global inventory of the spatial distribution and density of constructed impervious surface area (ISA). Examples of ISA include roads, parking lots, buildings, driveways, sidewalks and other manmade surfaces. While high spatial resolution is required to observe these features, the new product reports the estimated density of ISA on a one-km2 grid based on two coarse resolution indicators of ISA – the brightness of satellite observed nighttime lights and population count. The model was calibrated using 30-meter resolution ISA of the USA from the U.S. Geological Survey. Nominally the product is for the years 2000-01 since both the nighttime lights and reference data are from those two years. We found that 1.05% of the United States land area is impervious surface (83,337 km2) and 0.43 % of the world's land surface (579,703 km2) is constructed impervious surface. China has more ISA than any other country (87,182 km2), but has only 67 m2 of ISA per person, compared to 297 m2 per person in the USA. The distribution of ISA in the world's primary drainage basins indicates that watersheds damaged by ISA are primarily concentrated in the USA, Europe, Japan, China and India. The authors believe the next step for improving the product is to include reference ISA data from many more areas around the world.

  4. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  5. Observed Variations of O5+ Velocity Distributions with Electron Density

    NASA Astrophysics Data System (ADS)

    Kohl, J. L.; Cranmer, S. R.; Frazin, R. A.; Miralles, M.; Strachan, L.

    2001-05-01

    The Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO satellite has been used to measure the line profiles of O~VI 103.2 and 103.7 nm versus heliographic height in a variety of coronal holes and streamers during the period from 1996 to 2001. Those observations have been used to derive velocity distributions in the line-of-sight direction, which is typically perpendicular to the apparent magnetic field direction. In the case of polar coronal holes at solar minimum, the electron density is the smallest observed and the most-probable speed is the largest observed reaching values as high as 500 km/s at the largest heights. The O5+ most-probable speed is much larger than the hydrogen speed in those structures. The ratio of O5+ to hydrogen most-probable speeds increases with height. In contrast, the O5+ values are much smaller than those of hydrogen at the base of high-latitude streamers and never reach the hydrogen values at any observed height. The electron density in those structures is much greater than in the solar minimum coronal holes. Other structures have intermediate values of the electron density and O5+ most-probable speeds. In general, the O5+ most-probable speed and its ratio to the hydrogen value seem to decrease with increasing density. This apparent observational correlation may be related to thermalization from higher collision rates or it might be related to the physical process that causes the extreme O5+ perpendicular heating. This work is supported by NASA under Grant NAG5-10093 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency, and by PRODEX (Swiss Contribution).

  6. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    SciTech Connect

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil; Abhyankar, S.; Ghosh, Donetta L.; Smith, Barry; Huang, Zhenyu; Tartakovsky, Alexandre M.

    2015-09-22

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  7. Development of An On-Line, Core Power Distribution Monitoring System

    SciTech Connect

    Tunc ALdemir; Don Miller; Peng Wang

    2007-10-02

    The objective of the proposed work was to develop a software package that can construct in three-dimensional core power distributions using the signals from constant temperature power sensors distributed in the reactor core. The software developed uses a mode-based state/parameter estmation technique that is particularly attractive when there are model uncertainties and/or large signal noise. The software yields the expected value of local power at the detector locations and points in between, as well as the probability distribution of the local power density

  8. Dymalloy: A composite substrate for high power density electronic components

    SciTech Connect

    Kerns, J.A.; Colella, N.J.; Makowiecki, D.; Davidson, H.L.

    1995-06-29

    High power density electronic components such as fast microprocessors and power semiconductors must operate below the maximum rated device junction temperature to ensure reliability. function temperatures are determined by the amount of heat generated and the thermal resistance from junction to the ambient thermal environment. Two of the Largest contributions to this thermal resistance are the die attach interface and the package base. A decrease in these resistances can allow increased component packing density in MCMs, reduction of heat sink volume in tightly packed systems, enable the use of higher performance circuit components, and improve reliability. The substrate for high power density devices is the primary thermal link between the junctions and the heat sink. Present high power multichip modules and single chip packages use substrate materials such as silicon nitride or copper tungsten that have thermal conductivity in the range of 200 W/mK. We have developed Dymalloy, a copper-diamond composite, that has a thermal conductivity of 420 W/mK and an adjustable coefficient of thermal expansion, nominally 5.5 ppm/C at 25 C, compatible with silicon and gallium arsenide. Because of the matched coefficient of thermal expansion it is possible to use low thermal resistance hard die attach methods. Dymalloy is a composite material made using micron size Type I diamond powder that has a published thermal conductivity of 600 to 1000 W/mK in a metal matrix that has a thermal conductivity of 350 W/mK. The region of chemical bonding between the matrix material and diamond is limited to approximately 1000 A to maintain a high effective thermal conductivity for the composite. The material may be fabricated in near net shapes. Besides having exceptional thermal properties, the mechanical properties of this material also make it an attractive candidate as an electronic component substrate material.

  9. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGESBeta

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; Martin-Martinez, Sergio; Zhang, Jie; Hodge, Bri -Mathias; Molina-Garcia, Angel

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  10. Satellite control of electric power distribution

    NASA Technical Reports Server (NTRS)

    Bergen, L.

    1981-01-01

    An L-band frequencies satellite link providing the medium for direct control of electrical loads at individual customer sites from remote central locations is described. All loads supplied under interruptible-service contracts are likely condidates for such control, and they can be cycled or switched off to reduce system loads. For every kW of load eliminated or deferred to off-peak hours, the power company reduces its need for additional generating capacity. In addition, the satellite could switch meter registers so that their readings automatically reflected the time of consumption. The system would perform load-shedding operations during emergencies, disconnecting large blocks of load according to predetermined priorities. Among the distribution operations conducted by the satellite in real time would be: load reconfiguration, voltage regulation, fault isolation, and capacitor and feeder load control.

  11. Evidence for structure in the H I column density distribution of QSO absorbers

    NASA Technical Reports Server (NTRS)

    Petitjean, P.; Webb, J. K.; Rauch, M.; Carswell, R. F.; Lanzetta, K.

    1993-01-01

    The H I column density distribution function of QSO absorption line systems is investigated using recent data with high spectral resolution, and extensive surveys of the Lyman limit systems and damped Ly-alpha systems. The hypothesis that the differential distribution function is fitted by a single power law is rejected at the 99 percent confidence level. A double power law, with a break at N(H I) = 10 exp 16/sq cm, also provides a poor fit over the range in which the sample is complete. While there are no discontinuities in the observed distribution, there is a clear flattening at N(H I) of about 10 exp 16/sq cm, compared to lower column densities. These observed features can be understood using models of photoionized clouds which are confined by an external pressure with density profiles governed by gravity. In particular, the flattening at N(H I) of about 10 exp 16/sq cm can be explained in terms of a transition between metal-poor and metal-rich systems.

  12. Increased power density from a spiral wound microbial fuel cell.

    PubMed

    Jia, Boyang; Hu, Dawei; Xie, Beizhen; Dong, Kun; Liu, Hong

    2013-03-15

    Using Microbial fuel cell (MFC) to convert organic and inorganic matter into electricity is of great interest for powering portable devices, which is now still limited by the output of MFC. In this study, a spiral wound MFC (SWMFC) with relatively large volume normalized surface area of separator (4.2 cm(2)/ml) was fabricated to enhance power generation. Compared with double-membrane MFC (DMMFC) and conventional double chamber MFC (DCMFC), the power density of SWMFC increased by 42% and 99% resulted from its lower internal resistance. Besides larger separator area, the better performance of SWMFC benefited from its structure sandwiching the cathodes between two separators. This point was proved again by a comparison of another DCMFC and a triple chamber MFC (TCMFC) as well as a simulation using finite element method. Moreover, the feature of SWMFC was more convenient and compact to scale up. Therefore, SWMFC provides a promising configuration for high power output as a portable power source. PMID:23116542

  13. Global Distribution of Density Irregularities in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Kil, Hyosub; Heelis, R. A.

    1998-01-01

    We analyzed measurements of ion number density made by the retarding potential analyzer aboard the Atmosphere Explorer-E (AE-E) satellite, which was in an approximately circular orbit at an altitude near 300 km in 1977 and later at an altitude near 400 km. Large-scale (greater than 60 km) density measurements in the high-altitude regions show large depletions of bubble-like structures which are confined to narrow local time longitude, and magnetic latitude ranges, while those in the low-altitude regions show relatively small depletions which are broadly distributed,in space. For this reason we considered the altitude regions below 300 km and above 350 km and investigated the global distribution of irregularities using the rms deviation delta N/N over a path length of 18 km as an indicator of overall irregularity intensity. Seasonal variations of irregularity occurrence probability are significant in the Pacific regions, while the occurrence probability is always high in die Atlantic-African regions and is always low in die Indian regions. We find that the high occurrence probability in the Pacific regions is associated with isolated bubble structures, while that near 0 deg longitude is produced by large depictions with bubble structures which are superimposed on a large-scale wave-like background. Considerations of longitude variations due to seeding mechanisms and due to F region winds and drifts are necessary to adequately explain the observations at low and high altitudes. Seeding effects are most obvious near 0 deg longitude, while the most easily observed effect of the F region is the suppression of irregularity growth by interhemispheric neutral winds.

  14. Distribution of High-Density Lipoprotein Subfractions and Hypertensive Status

    PubMed Central

    Zhang, Yan; Li, Sha; Xu, Rui-Xia; Guo, Yuan-Lin; Wu, Na-Qiong; Zhu, Cheng-Gang; Gao, Ying; Dong, Qian; Liu, Geng; Sun, Jing; Li, Jian-Jun

    2015-01-01

    Abstract The exact mechanisms of hypertension contributing to atherosclerosis have not been fully elucidated. Although multiple studies have clarified the association with low-density lipoprotein (LDL) subfractions, uncertainty remains about its relationship with high-density lipoprotein (HDL) subfractions. Therefore, we aimed to comprehensively determine the relationship between distribution of HDL subfractions and hypertensive status. A total of 953 consecutive subjects without previous lipid-lowering drug treatment were enrolled and were categorized based on hypertension history (with hypertension [n = 550] or without hypertension [n = 403]). Baseline clinical and laboratory data were collected. HDL separation was performed using the Lipoprint System. Plasma large HDL-cholesterol (HDL-C) and large HDL percentage were dramatically lower whereas the small HDL-C and small HDL percentage were higher in patients with hypertension (all P < 0.05). The antihypertensive drug therapy was not associated with large or small HDL subfractions (on treatment vs not on treatment, P > 0.05; combination vs single drug therapy, P > 0.05). However, the blood pressure well-controlled patients have significantly lower small HDL subfraction (P < 0.05). Moreover, large HDL-C and percentage were inversely whereas small HDL percentage was positively associated with incident hypertension after adjusting potential confounders (all P < 0.05). In the multivariate model conducted in patients with and without hypertension separately, the cardio-protective value of large HDL-C was disappeared in patients with hypertension (OR 95%CI: 1.011 [0.974–1.049]). The distribution of HDL subfractions is closely associated with hypertensive status and hypertension may potentially impact the cardio-protective value of large HDL subfraction. PMID:26512616

  15. Hydroxyl functionalized thermosensitive microgels with quadratic crosslinking density distribution.

    PubMed

    Elmas, Begum; Tuncel, Murvet; Senel, Serap; Patir, S; Tuncel, Ali

    2007-09-01

    N-isopropylacrylamide (NIPA) based uniform thermosensitive microgels were synthesized by dispersion polymerization by using relatively hydrophilic crosslinking agents with hydroxyl functionality. Glycerol dimethacrylate (GDMA), pentaerythritol triacrylate (PETA) and pentaerythritol propoxylate triacrylate (PEPTA) were used as crosslinking agents with different hydrophilicities. A protocol was first proposed to determine the crosslinking density distribution in the thermosensitive microgel particles by confocal laser scanning microscopy (CLSM). The microgels were fluorescently labeled by using hydroxyl group of the crosslinking agent. The CLSM observations performed with the microgels synthesized by three different crosslinking agents showed that the crosslinking density exhibited a quadratic decrease with the increasing radial distance in the spherical microgel particles. This structure led to the formation of more loose gel structure on the particle surface with respect to the center. Then the use of hydrophilic crosslinking agents in the dispersion polymerization of NIPA made possible the synthesis of thermosensitive microgels carrying long, flexible and chemically derivatizable (i.e., hydroxyl functionalized) fringes on the surface by a single-stage dispersion polymerization. The microgels with all crosslinking agents exhibited volume phase transition with the increasing temperature. The microgel obtained by the most hydrophilic crosslinking agent, GDMA exhibited higher hydrodynamic diameters in the fully swollen form at low temperatures than those obtained by PETA and PEPTA. Higher hydrodynamic size decrease from fully swollen form to the fully shrunken form was also observed with the same microgel. PMID:17532327

  16. Pulsed power drivers for ICF and high energy density physics

    SciTech Connect

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-12-31

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

  17. An automated system for studying the power distribution of electron beams

    SciTech Connect

    Filarowski, C.A.

    1994-12-01

    Precise welds with an electron beam welder are difficult to reproduce because the factors effecting the electron beam current density distribution are not easily controlled. One method for measuring the power density distribution in EB welds uses computer tomography to reconstruct an image of the current density distribution. This technique uses many separate pieces of hardware and software packages to obtain the data and then reconstruct it consequently, transferring this technology between different machines and operators is difficult. Consolidating all of the hardware and software into one machine to execute the same tasks will allow for real-time measurement of the EB power density distribution and will provide a facilitated means for transferring various welding procedure between different machines and operators, thereby enhancing reproducibility of electron beam welds.

  18. Pauling bond strength, bond length and electron density distribution

    SciTech Connect

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(<ρ(rc)>/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, <ρ(rc)>, between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M

  19. A novel direct ethanol fuel cell with high power density

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.; Chen, R.; Wu, Q. X.

    2011-08-01

    A new type of direct ethanol fuel cell (DEFC) that is composed of an alkaline anode and an acid cathode separated with a charger conducting membrane is developed. Theoretically it is shown that the voltage of this novel fuel cell is 2.52 V, while, experimentally it has been demonstrated that this fuel cell can yield an open-circuit voltage (OCV) of 1.60 V and a peak power density of 240 mW cm-2 at 60 °C, which represent the highest performance of DEFCs that has so far been reported in the open literature.

  20. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    NASA Astrophysics Data System (ADS)

    Long, G. B.; Ou, J. W.; Zheng, Y. G.

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  1. Patch Network for Power Allocation and Distribution in Smart Materials

    NASA Technical Reports Server (NTRS)

    Golembiewski, Walter T.

    2000-01-01

    The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.

  2. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    PubMed

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low

  3. Density matrix embedding in an antisymmetrized geminal power bath

    SciTech Connect

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy

    2015-07-14

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.

  4. High power density proton exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.

    1993-01-01

    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  5. Global Distribution and Density of Constructed Impervious Surfaces

    SciTech Connect

    Elvidge, Christopher D.; Tuttle, Benjamin T.; Sutton, Paul S.; Baugh, Kimberly E.; Howard, Ara T.; Milesi, Christina; Bhaduri, Budhendra L; Nemani, Ramakrishna R

    2007-01-01

    We present the first global inventory of the spatial distribution and density of constructed impervious surface area (ISA). Examples of ISA include roads, parking lots, buildings, driveways, sidewalks and other manmade surfaces. While high spatial resolution is required to observe these features, the product we made is at one km2 resolution and is based on two coarse resolution indicators of ISA. Inputs into the product include the brightness of satellite observed nighttime lights and population count. The reference data used in the calibration were derived from 30 meter resolution ISA estimates of the USA from the U.S. Geological Survey. Nominally the product is for the years 2000-01 since both the nighttime lights and reference data are from those two years. We found that 1.05% of the United States land area is impervious surface (83,337 km2) and 0.43 % of the world's land surface (579,703 km2) is constructed impervious surface. China has more ISA than any other country (87,182 km2), but has only 67 m2 of ISA per person, compared to 297 m2 per person in the USA. Hyrdologic and environmental impacts of ISA begin to be exhibited when the density of ISA reaches 10% of the land surface. An examination of the areas with 10% or more ISA in watersheds finds that with the exception of Europe, the majority of watershed areas have less than 0.4% of their area at or above the 10% ISA threshold. The authors believe the next step for improving the product is to include reference ISA data from many more areas around the world.

  6. Power-Law Distributions Based on Exponential Distributions: Latent Scaling, Spurious Zipf's Law, and Fractal Rabbits

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang

    2015-03-01

    The difference between the inverse power function and the negative exponential function is significant. The former suggests a complex distribution, while the latter indicates a simple distribution. However, the association of the power-law distribution with the exponential distribution has been seldom researched. This paper is devoted to exploring the relationships between exponential laws and power laws from the angle of view of urban geography. Using mathematical derivation and numerical experiments, I reveal that a power-law distribution can be created through a semi-moving average process of an exponential distribution. For the distributions defined in a one-dimension space (e.g. Zipf's law), the power exponent is 1; while for those defined in a two-dimension space (e.g. Clark's law), the power exponent is 2. The findings of this study are as follows. First, the exponential distributions suggest a hidden scaling, but the scaling exponents suggest a Euclidean dimension. Second, special power-law distributions can be derived from exponential distributions, but they differ from the typical power-law distributions. Third, it is the real power-law distributions that can be related with fractal dimension. This study discloses an inherent link between simplicity and complexity. In practice, maybe the result presented in this paper can be employed to distinguish the real power laws from spurious power laws (e.g. the fake Zipf distribution).

  7. Design note about a 75 KVA quiet power distribution system

    SciTech Connect

    Visser, A.T.

    1984-04-05

    This note describes a 75KVA quiet power distribution system for X 653 in neutrino Lab D. It is fed from the regular AC distribution which exists in the building and it has no standby power. Its purpose is to remove electrical disturbances which are present on the regular AC distribution.

  8. Submicron gate InP power MISFET's with improved output power density at 18 and 20 GHz

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, Vik J.; Shalkhauser, K. A.; Messick, L. J.; Nguyen, R.; Schmitz, D.; Juergensen, H.

    1991-01-01

    The microwave characteristics are presented at 18 and 20 GHz of submicron gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFET's) for high output power density applications. InP power MISFET's were fabricated and the output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacing of 3 microns. The output power density is 2.7 times greater than was previously measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency also increased.

  9. Submicron gate InP power MISFET's with improved output power density at 18 and 20 GHz

    NASA Technical Reports Server (NTRS)

    Biedenbender, Michael D.; Kapoor, Vik J.; Shalkhauser, Kurt A.; Messick, Louis J.; Nguyen, Richard; Schmitz, Dietmar; Jurgensen, Holger

    1991-01-01

    The microwave characteristics are presented at 18 and 20 GHz of submicron gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFETs) for high output power density applications. InP power MISFET's were fabricated and the output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacing of 3 micron. The output power density is 2.7 times greater than was previously measured for InP MISFET's at 18 and 20 GHz, and the power-added efficiency also increased.

  10. Distributed density estimation in sensor networks based on variational approximations

    NASA Astrophysics Data System (ADS)

    Safarinejadian, Behrooz; Menhaj, Mohammad B.

    2011-09-01

    This article presents a peer-to-peer (P2P) distributed variational Bayesian (P2PDVB) algorithm for density estimation and clustering in sensor networks. It is assumed that measurements of the nodes can be statistically modelled by a common Gaussian mixture model. The variational approach allows the simultaneous estimate of the component parameters and the model complexity. In this algorithm, each node independently calculates local sufficient statistics first by using local observations. A P2P averaging approach is then used to diffuse local sufficient statistics to neighbours and estimate global sufficient statistics in each node. Finally, each sensor node uses the estimated global sufficient statistics to estimate the model order as well as the parameters of this model. Because the P2P averaging approach only requires that each node communicate with its neighbours, the P2PDVB algorithm is scalable and robust. Diffusion speed and convergence of the proposed algorithm are also studied. Finally, simulated and real data sets are used to verify the remarkable performance of proposed algorithm.

  11. Probability density distribution of velocity differences at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Praskovsky, Alexander A.

    1993-01-01

    Recent understanding of fine-scale turbulence structure in high Reynolds number flows is mostly based on Kolmogorov's original and revised models. The main finding of these models is that intrinsic characteristics of fine-scale fluctuations are universal ones at high Reynolds numbers, i.e., the functional behavior of any small-scale parameter is the same in all flows if the Reynolds number is high enough. The only large-scale quantity that directly affects small-scale fluctuations is the energy flux through a cascade. In dynamical equilibrium between large- and small-scale motions, this flux is equal to the mean rate of energy dissipation epsilon. The pdd of velocity difference is a very important characteristic for both the basic understanding of fully developed turbulence and engineering problems. Hence, it is important to test the findings: (1) the functional behavior of the tails of the probability density distribution (pdd) represented by P(delta(u)) is proportional to exp(-b(r) absolute value of delta(u)/sigma(sub delta(u))) and (2) the logarithmic decrement b(r) scales as b(r) is proportional to r(sup 0.15) when separation r lies in the inertial subrange in high Reynolds number laboratory shear flows.

  12. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  13. Excitation density distribution in electron-beam-pumped ZnSe semiconductor lasers

    SciTech Connect

    Donskoi, E N; Zalyalov, A N; Petrushin, O N; Savel'ev, Yu A; Tarasov, M D; Shigaev, Yu S; Zhdanova, E V; Zverev, M M; Peregudov, D V; Ivanov, S V; Sedova, I V; Sorokin, S V

    2008-12-31

    The spatial density distribution of the absorbed energy in ZnSe semiconductor lasers excited by electrons with energies from 2 keV to 1 MeV is calculated by the Monte-Carlo method. Approximate analytic expressions determining the absorbed energy of electrons in ZnSe are presented. The pump power threshold in a semiconductor quantum-well ZnSe structure is experimentally determined. The lasing threshold in such structures is estimated as a function of the electron energy. (active media)

  14. Differential Density Statistics of the Galaxy Distribution and the Luminosity Function

    NASA Astrophysics Data System (ADS)

    Albani, V. V. L.; Iribarrem, A. S.; Ribeiro, M. B.; Stoeger, W. R.

    2007-03-01

    This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number density statistics of the galaxy distribution as discussed in Ribeiro, namely, the differential density γ and the integral differential density γ*. By applying the theory advanced by Ribeiro & Stoeger, which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts dN/dz are extracted from the LF and used to calculate both γ and γ* with various cosmological distance definitions, namely, area distance, luminosity distance, galaxy area distance, and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey, and γ and γ* are calculated for two cosmological models: Einstein-de Sitter and an Ωm0=0.3, ΩΛ0=0.7 standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in Ribeiro, as well as showing that plots of γ and γ* against the luminosity and redshift distances indicate that the CNOC2 galaxy distribution follows a power-law pattern for redshifts higher than 0.1. These findings support Ribeiro's theoretical proposition that using different cosmological distance measures in statistical analyses of galaxy surveys can lead to significant ambiguity in drawing conclusions about the behavior of the observed large-scale distribution of galaxies.

  15. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  16. Developments in space power components for power management and distribution

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Advanced power electronic components development for space applications is discussed. The components described include transformers, inductors, semiconductor devices such as transistors and diodes, remote power controllers, and transmission lines.

  17. 14 CFR 25.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... functioning normally. (2) Essential loads, after failure of any one prime mover, power converter, or energy... source of power is required, after any failure or malfunction in any one power supply system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power source capacity and distribution....

  18. CS multitransitional study of density distribution in star-forming regions. 2: The S140 region

    NASA Technical Reports Server (NTRS)

    Zhou, Shudong; Butner, Harold M.; Evans, Neal J., II; Guesten, Rolf; Kutner, Marc L.; Mundy, Lee G.

    1994-01-01

    The S140 molecular cloud was observed in five transitions of CS with resolutions of 11 to 45 arcsec. The data were analyzed with both the LVG and microturbulent models of radiative transfer to derive the density structure. It was found that the CS emission comes from three components of gas: a spherical component centered on the infrared cluster, an arc component along the ionization front between the S140 H II region and the dense molecular cloud core, and a high-velocity component from the dense part of a molecular outflow. The spherical component contributes most to the CS emission and was analyzed in more detail than the other components. Using a temperature distribution derived from an analysis of the dust emission from S140, we fit a power-law density distribution of n(r) = n(sub i)(r/r(sub i))(exp -alpha) to the spherical component. The best fit was for n(sub i) = 1.4 x 10(exp 6) (density at r(sub i) = 0.026 pc) and alpha = 0.8. The density (n(sub i)) was found to be greater than or equal to the density required to account for the dust emission, depending on the dust opacity laws adopted. The presence of optical emission (Dinerstein, Lester, & Rank 1979) suggests a clumpy structure for the dense gas. Considerations of the virial mass and the lowest amount of column density required to produce dust emission put the volume filling factor (f(sub nu)) of the dense gas at approximately 0.14-0.5. We compared S140 with other regions of star formation where the density structure has been derived from excitation analysis. Source-source variations in density gradients and clumpiness clearly exist, ranging from alpha = 2 and f(sub nu) approximately 1 in B335 to alpha approximately 0, f(sub nu) approximately 0.1 in M17. There is a tendency for more massive star-forming regions to have a flatter density distribution, a more clumpy structure, and a large number of young stars. The implications of this tendency are discussed.

  19. The mapping of electronic energy distributions using experimental electron density.

    PubMed

    Tsirelson, Vladimir G

    2002-08-01

    It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals. PMID:12149553

  20. Power Spectrum Density of Long-Term MAXI Data

    NASA Astrophysics Data System (ADS)

    Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro

    Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.

  1. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  2. PSD computations using Welch's method. [Power Spectral Density (PSD)

    SciTech Connect

    Solomon, Jr, O M

    1991-12-01

    This report describes Welch's method for computing Power Spectral Densities (PSDs). We first describe the bandpass filter method which uses filtering, squaring, and averaging operations to estimate a PSD. Second, we delineate the relationship of Welch's method to the bandpass filter method. Third, the frequency domain signal-to-noise ratio for a sine wave in white noise is derived. This derivation includes the computation of the noise floor due to quantization noise. The signal-to-noise ratio and noise flood depend on the FFT length and window. Fourth, the variance the Welch's PSD is discussed via chi-square random variables and degrees of freedom. This report contains many examples, figures and tables to illustrate the concepts. 26 refs.

  3. Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping

    SciTech Connect

    Britun, Nikolay Palmucci, Maria; Konstantinidis, Stephanos; Snyders, Rony

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to their spatial density distributions, are discussed.

  4. Geometry-independent Determination of Radial Density Distributions in Molecular Cloud Cores and Other Astronomical Objects

    NASA Astrophysics Data System (ADS)

    Krčo, Marko; Goldsmith, Paul F.

    2016-05-01

    We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objects and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.

  5. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  6. Planckian Power Spectral Densities from Human Calves during Posture Maintenance and Controlled Isometric Contractions

    PubMed Central

    Lugo, J. E.

    2015-01-01

    Background The relationship between muscle anatomy and physiology and its corresponding electromyography activity (EMGA) is complex and not well understood. EMGA models may be broadly divided in stochastic and motor-unit-based models. For example, these models have successfully described many muscle physiological variables such as the value of the muscle fiber velocity and the linear relationship between median frequency and muscle fiber velocity. However they cannot explain the behavior of many of these variables with changes in intramuscular temperature, or muscle PH acidity, for instance. Here, we propose that the motor unit action potential can be treated as an electromagnetic resonant mode confined at thermal equilibrium inside the muscle. The motor units comprising the muscle form a system of standing waves or modes, where the energy of each mode is proportional to its frequency. Therefore, the power spectral density of the EMGA is well described and fit by Planck’s law and from its distribution we developed theoretical relationships that explain the behavior of known physiological variables with changes in intramuscular temperature or muscle PH acidity, for instance. Methods EMGA of the calf muscle was recorded during posture maintenance in seven participants and during controlled isometric contractions in two participants. The power spectral density of the EMGA was then fit with the Planckian distribution. Then, we inferred nine theoretical relationships from the distribution and compared the theoretically derived values with experimentally obtained values. Results The power spectral density of EMGA was fit by Planckian distributions and all the theoretical relationships were validated by experimental results. Conclusions Only by considering the motor unit action potentials as electromagnetic resonant modes confined at thermal equilibrium inside the muscle suffices to predict known or new theoretical relationships for muscle physiological variables that

  7. A unified optical damage criterion based on the probability density distribution of detector signals

    NASA Astrophysics Data System (ADS)

    Somoskoi, T.; Vass, Cs.; Mero, M.; Mingesz, R.; Bozoki, Z.; Osvay, K.

    2013-11-01

    Various methods and procedures have been developed so far to test laser induced optical damage. The question naturally arises, that what are the respective sensitivities of these diverse methods. To make a suitable comparison, both the processing of the measured primary signal has to be at least similar to the various methods, and one needs to establish a proper damage criterion, which has to be universally applicable for every method. We defined damage criteria based on the probability density distribution of the obtained detector signals. This was determined by the kernel density estimation procedure. We have tested the entire evaluation procedure in four well-known detection techniques: direct observation of the sample by optical microscopy; monitoring of the change in the light scattering power of the target surface and the detection of the generated photoacoustic waves both in the bulk of the sample and in the surrounding air.

  8. Space Power Management and Distribution Status and Trends

    NASA Technical Reports Server (NTRS)

    Reppucci, G. M.; Biess, J. J.; Inouye, L.

    1984-01-01

    An overview of space power management and distribution (PMAD) is provided which encompasses historical and current technology trends. The PMAD components discussed include power source control, energy storage control, and load power processing electronic equipment. The status of distribution equipment comprised of rotary joints and power switchgear is evaluated based on power level trends in the public, military, and commercial sectors. Component level technology thrusts, as driven by perceived system level trends, are compared to technology status of piece-parts such as power semiconductors, capacitors, and magnetics to determine critical barriers.

  9. Validating MCNP for LEU Fuel Design via Power Distribution Comparisons

    SciTech Connect

    Primm, Trent; Maldonado, G Ivan; Chandler, David

    2008-11-01

    The mission of the Reduced Enrichment for Research and Test Reactors (RERTR) Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low enriched uranium (LEU) fuel and targets. Oak Ridge National Lab (ORNL) is reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction of flux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. A current 3-D Monte Carlo N-Particle (MCNP) model was modified to replicate the HFIR Critical Experiment 3 (HFIRCE-3) core of 1965. In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. Foils (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil s activity to the activity of a normalizing foil. The current work consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the normalizing foil. Power distributions were obtained for the clean core (no poison in moderator and symmetrical rod position at 17.5 inches) and fully poisoned-moderator (1.35 g B/liter in moderator and rods fully withdrawn) conditions. The observed deviations between the

  10. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  11. Student Difficulties in Learning Density: A Distributed Cognition Perspective

    ERIC Educational Resources Information Center

    Xu, Lihua; Clarke, David

    2012-01-01

    Density has been reported as one of the most difficult concepts for secondary school students (e.g. Smith et al. 1997). Discussion about the difficulties of learning this concept has been largely focused on the complexity of the concept itself or student misconceptions. Few, if any, have investigated how the concept of density was constituted in…

  12. Two-dimensional-spatial distribution measurement of electron temperature and plasma density in low temperature plasmas

    SciTech Connect

    Kim, Young-Cheol; Jang, Sung-Ho; Oh, Se-Jin; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-05-15

    A real-time measurement method for two-dimensional (2D) spatial distribution of the electron temperature and plasma density was developed. The method is based on the floating harmonic method and the real time measurement is achieved with little plasma perturbation. 2D arrays of the sensors on a 300 mm diameter wafer-shaped printed circuit board with a high speed multiplexer circuit were used. Experiments were performed in an inductive discharge under various external conditions, such as powers, gas pressures, and different gas mixing ratios. The results are consistent with theoretical prediction. Our method can measure the 2D spatial distribution of plasma parameters on a wafer-level in real-time. This method can be applied to plasma diagnostics to improve the plasma uniformity of plasma reactors for plasma processing.

  13. A Testbed for Deploying Distributed State Estimation in Power Grid

    SciTech Connect

    Jin, Shuangshuang; Chen, Yousu; Rice, Mark J.; Liu, Yan; Gorton, Ian

    2012-07-22

    Abstract—With the increasing demand, scale and data information of power systems, fast distributed applications are becoming more important in power system operation and control. This paper proposes a testbed for evaluating power system distributed applications, considering data exchange among distributed areas. A high-performance computing (HPC) version of distributed state estimation is implemented and used as a distributed application example. The IEEE 118-bus system is used to deploy the parallel distributed state estimation, and the MeDICi middleware is used for data communication. The performance of the testbed demonstrates its capability to evaluate parallel distributed state estimation by leveraging the HPC paradigm. This testbed can also be applied to evaluate other distributed applications.

  14. Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory

    NASA Astrophysics Data System (ADS)

    Putaja, A.; Eich, F. G.; Baldsiefen, T.; Räsänen, E.

    2016-03-01

    Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f (n ,n') =(nn')α for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n (k )<1 for all wave vectors k . The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α ≳0.6 and at rs≳10 for the density parameter, corresponding to relatively low densities.

  15. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose...

  16. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1310 Power source capacity and distribution. (a) Each installation whose...

  17. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    NASA Astrophysics Data System (ADS)

    Warren, Daniel R.; Partridge, Mike; Hill, Mark A.; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  <1% when using the MA function. The impact of these range errors on clinical dose distributions is demonstrated using treatment plans for a non-small cell lung cancer patient. The change in stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  18. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold; Korich, Mark D.; Ward, Terence G.; Mann, Brooks S.

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  19. Surface Area, Volume, Mass, and Density Distributions for Sized Biomass Particles

    SciTech Connect

    Ramanathan Sampath

    2007-06-30

    This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to June 30, 2007 which covers the entire performance period of the project. 25 individual biomass particles (hardwood sawdust AI14546 in the size range of 100-200 microns) were levitated in an electrodynamic balance (EDB) and their external surface area, volume, and drag coefficient/mass (C{sub d}/m) ratios were characterized applying highly specialized video based and high-speed diode array imaging systems. Analysis methods were employed using shape and drag information to calculate mass and density distributions for these particles. Results of these measurements and analyses were validated by independent mass measurements using a particle weighing and counting technique. Similar information for 28 PSOC 1451D bituminous coal particles was retrieved from a previously published work. Using these two information, density correlations for coal/biomass blends were developed. These correlations can be used to estimate the density of the blend knowing either the volume fraction or the mass fraction of coal in the blend. The density correlations presented here will be useful in predicting the burning rate of coal/biomass blends in cofiring combustors. Finally, a discussion on technological impacts and economic projections of burning biomass with coal in US power plants is presented.

  20. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  1. Automation of Space Station module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Bechtel, Robert; Weeks, Dave; Walls, Bryan

    1990-01-01

    Viewgraphs on automation of space station module (SSM) power management and distribution (PMAD) system are presented. Topics covered include: reasons for power system automation; SSM/PMAD approach to automation; SSM/PMAD test bed; SSM/PMAD topology; functional partitioning; SSM/PMAD control; rack level autonomy; FRAMES AI system; and future technology needs for power system automation.

  2. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  3. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  4. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  5. Noise power spectral density of the Sundstrand QA-2000 accelerometer

    NASA Technical Reports Server (NTRS)

    Peters, Rex; Grindeland, David; Baugher, Charles R. (Editor)

    1990-01-01

    There are no good data on low frequency (less than 0.1 Hz) power spectral density (PSD) for the Q-Flex accelerometer. However, some preliminary stability measurements were made over periods of 12 to 24 hours and demonstrated stability less than 0.5 micro-g over greater than 12 hours. The test data appear to contain significant contributions from temperature variations at that level, so the true sensor contribution may be less than that. If what was seen could be construed as a true random process, it would correspond to about 0.1 micro-g rms over a bandwidth from 10(exp -5) Hz to about 1 Hz. Other studies of low frequency PSD in flexure accelerometers have indicated that material aging effects tend to approximate a first order Markhov process. If we combine such a model with the spectrum obtained at higher frequencies, it suggests the spectrum shown here as a conservative estimate of Q-Flex noise performance.

  6. High power densities from high-temperature material interactions

    SciTech Connect

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  7. 1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.

    2002-01-01

    Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.

  8. Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling's rules revisited

    SciTech Connect

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2014-05-20

    Pauling's first two rules are examined in terms of the accumulation of the electron density between bonded pairs of atoms for a relatively large number of oxide and silicate crystals and siloxane molecules. The distribution of the electron density shows that the radius of the oxygen atom is not fixed, but that it actually decreases systematically from ~1.40 Å to ~ 0.65 Å as the polarizing power and the electronegativity of the bonded metal atoms increase and the distribution of the O atom is progressively polarized and contracted along the bond vectors by the impact of the bonded interactions. The contractions result in an aspherical oxygen atom that displays as many different bonded “radii” as it has bonded interactions. The bonded radii for the metal atoms match the Shannon and Prewitt ionic radii for the more electropositive atoms like potassium and sodium, but they are systematically larger for the more electronegative atoms like aluminum, silicon and phosphorous. Pauling's first rule is based on the assumption that the radius of the oxide anion is fixed and that the radii of the cations are such that radius sum of the spherical oxide anion and a cation necessarily equals the separation between the cation-anion bonded pair with the coordination number of the cation being determined by the ratio of the radii of the cation and anion. In the case of the bonded radii, the sum of the bonded radii for the metal atoms and the oxide anion necessarily equals the bond lengths by virtue of the way that the bonded radii were determined in the partitioning of the electron density along the bond path into metal and O atom parts. But, the radius ratio for the O and M atoms is an unsatisfactory rule for determining the coordination number of the metal atom inasmuch as a bonded O atom is not, in general, spherical, and its size varies substantially along its bonded directions. But by counting the number of bond paths that radiate from a bonded atom, the coordination

  9. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect

    Delgado-Aparicio, L; Bell, R E; Faust, I; Tritz, K; Diallo, A; Gerhardt, S P; Kozub, T A; LeBlanc, B P; Stratton, B C

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  10. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  11. Detection of two power-law tails in the probability distribution functions of massive GMCs

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Bontemps, S.; Girichidis, P.; Rayner, T.; Motte, F.; André, Ph.; Russeil, D.; Abergel, A.; Anderson, L.; Arzoumanian, D.; Benedettini, M.; Csengeri, T.; Didelon, P.; Di Francesco, J.; Griffin, M.; Hill, T.; Klessen, R. S.; Ossenkopf, V.; Pezzuto, S.; Rivera-Ingraham, A.; Spinoglio, L.; Tremblin, P.; Zavagno, A.

    2015-11-01

    We report the novel detection of complex high column density tails in the probability distribution functions (PDFs) for three high-mass star-forming regions (CepOB3, MonR2, NGC 6334), obtained from dust emission observed with Herschel. The low column density range can be fitted with a lognormal distribution. A first power-law tail starts above an extinction (AV) of ∼6-14. It has a slope of α 1.3-2 for the &ρ ≈ r-α profile for an equivalent density distribution (spherical or cylindrical geometry), and is thus consistent with free-fall gravitational collapse. Above AV ∼40, 60, and 140, we detect an excess that can be fitted by a flatter power-law tail with α > 2. It correlates with the central regions of the cloud (ridges/hubs) of size ∼;1 pc and densities above 104 cm-3. This excess may be caused by physical processes that slow down collapse and reduce the flow of mass towards higher densities. Possible are: (1) rotation, which introduces an angular momentum barrier, (2) increasing optical depth and weaker cooling, (3) magnetic fields, (4) geometrical effects, and (5) protostellar feedback. The excess/second power-law tail is closely linked to high-mass star-formation though it does not imply a universal column density threshold for the formation of (high-mass) stars.

  12. Thresholded Power law Size Distributions of Instabilities in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2015-11-01

    Power-law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold x0; (3) contamination by an event-unrelated background xb; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in the simplest terms with a “thresholded power law” distribution function (also called generalized Pareto [type II] or Lomax distribution), N(x){dx}\\propto {(x+{x}0)}-a{dx}, where x0 > 0 is positive for a threshold effect, while x0 < 0 is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold x0. We apply the thresholded power law distribution function to terrestrial, solar (HXRBS, BATSE, RHESSI), and stellar flare (Kepler) data sets. We find that the thresholded power law model provides an adequate fit to most of the observed data. Major advantages of this model are the automated choice of the power law fitting range, diagnostics of background contamination, physical instability thresholds, instrumental detection thresholds, and finite system size limits. When testing self-organized criticality models that predict ideal power laws, we suggest including these natural truncation effects.

  13. Hydroacoustic Estimates of Fish Density Distributions in Cougar Reservoir, 2011

    SciTech Connect

    Ploskey, Gene R.; Zimmerman, Shon A.; Hennen, Matthew J.; Batten, George W.; Mitchell, T. D.

    2012-09-01

    Day and night mobile hydroacoustic surveys were conducted once each month from April through December 2011 to quantify the horizontal and vertical distributions of fish throughout Cougar Reservoir, Lane County, Oregon.

  14. Distributed Power Sources for Mars Colonization

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Shaban, Yasser

    2003-01-01

    One of the fundamental needs for Mars colonization is an abundant source of energy. The total energy system will probably use a mixture of sources based on solar energy, fuel cells, and nuclear energy. Here we concentrate on the possibility of developing a distributed system employing several unique new types of nuclear energy sources, specifically small fusion devices using inertial electrostatic confinement and portable ``battery type'' proton reaction cells.

  15. Electricity distribution network power quality regulation

    NASA Astrophysics Data System (ADS)

    Lopez Sanchez, Jose Maria

    The regulation of the electricity distribution utilities has evolved to a scenario based on competition and cost-effectiveness. This cost reduction may affect the quality performance. A quality regulatory proposal based on yardstick competition is presented in this Ph.D. thesis. The proposal focuses on the continuity of supply in the electricity distribution networks. The competition is against objective values of the selected zonal quality indices that are computed using a probabilistic model that takes into account the historical behavior of the distribution network and considers the quality indices as random variables. A monitoring scheme has been developed to obtain the basic reliability indices from the rough data. A methodology to segment the supplied area is proposed. The implementation plan of the regulatory proposal and the incentive/penalty scheme to encourage utilities to improve their quality indices, are also presented. An implementation study case of the scheme is shown. The conceptual framework of this proposal and the different regulations of the continuity of supply of several countries are also reviewed in detail.

  16. Description of a 20 kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  17. Description of a 20 Kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  18. Quantitative grain density autoradiography and the intraspecific distribution of primary productivity in phytoplankton

    SciTech Connect

    Davenport, J.B.; Maguire, B. Jr.

    1984-03-01

    Analysis of a method of grain density autoradiography demonstrates that reliable measurements of the primary productivity of individual phytoplankton species can be obtained with this technique. Grain density autoradiography is particularly useful for providing an estimate of the intraspecific distribution of primary productivity. As an example, the productivity distribution of the marine diatom Chaetoceros curvisetus became positively skewed during a period of population decline.

  19. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., when issued by the NRC, in 10 CFR part 60, subpart I, “Emergency Planning Criteria.” ... 10 Energy 4 2013-01-01 2013-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that,...

  20. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., when issued by the NRC, in 10 CFR part 60, subpart I, “Emergency Planning Criteria.” ... 10 Energy 4 2014-01-01 2014-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that,...

  1. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., when issued by the NRC, in 10 CFR part 60, subpart I, “Emergency Planning Criteria.” ... 10 Energy 4 2011-01-01 2011-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that,...

  2. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., when issued by the NRC, in 10 CFR part 60, subpart I, “Emergency Planning Criteria.” ... 10 Energy 4 2012-01-01 2012-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that,...

  3. 10 CFR 960.5-2-1 - Population density and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., when issued by the NRC, in 10 CFR part 60, subpart I, “Emergency Planning Criteria.” ... 10 Energy 4 2010-01-01 2010-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that,...

  4. Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson

    2015-09-01

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.

  5. New Data on the Topside Electron Density Distribution

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.

    2001-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  6. Distribution and density of bird species hazardous to aircraft

    USGS Publications Warehouse

    Robbins, C.S.

    1975-01-01

    Only in the past 5 years has it become feasible to map the relative abundance of North American birds. Two programs presently under way and a third that is in the experimental phase are making possible the up-to-date mapping of abundance as well as distribution. A fourth program that has been used successfully in Europe and on a small scale in parts of North America yields detailed information on breeding distribution. The Breeding Bird Survey, sponsored by the U.S. Bureau of Sport Fisheries and Wildlife and the Canadian Wildlife Service, involves 2,000 randomly distributed roadside counts that are conducted during the height of the breeding season in all U.S. States and Canadian Provinces. Observations of approximately 1.4 million birds per year are entered on magnetic tape and subsequently used both for statistical analysis of population trends and for computer mapping of distribution and abundance. The National Audubon Society's Christmas Bird Count is conducted in about 1,000 circles, each 15 miles (24 km) in diameter, in the latter half of December. Raw data for past years have been published in voluminous reports, but not in a form for ready analysis. Under a contract between the U.S. Air Force and the U. S. Bureau of Sport Fisheries and Wildlife (in cooperation with the National Audubon Society), preliminary maps showing distribution and abundance of selected species that are potential hazards to aircraft are presently being mapped and prepared for publication. The Winter Bird Survey, which is in its fifth season of experimental study in a limited area in Central Maryland, may ultimately replace the Christmas Bird Count source. This Survey consists of a standardized 8-kilometer (5-mile) route covered uniformly once a year during midwinter. Bird Atlas programs, which map distribution but not abundance, are well established in Europe and are gaining interest in America

  7. Thirty-Third Annual Power Distribution Conference

    SciTech Connect

    Oerting, J.A. Jr.

    1980-01-01

    A description is given of how the Gulf Power Company which serves 10 westernmost counties of Florida deals with hurricanes. Gulf's hurricane procedures currently contain 661 pages of detailed information for each area of responsibility, including the general concept for restoration of damage, as well as details describing how this will be accomplished. Included are area storm center locations, personnel assignments, material allocations, vehicle assignments, radio frequencies, news media contacts, special priorities for restoration of service, details of logistics associated with lodging and feeding, telephone center operation to take incoming calls from customers and all of the other functions.

  8. Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling

    2014-09-01

    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48Ca . By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48Ca are obtained. The yields of fragments in the 80 A MeV 40, 48Ca + 12C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.

  9. A study of power conditioning and power distribution and components

    NASA Technical Reports Server (NTRS)

    Horton, H. M.; Honnell, M. A.

    1973-01-01

    A comprehensive simulation and analysis performed on the operation of the regulator part of the Charger/Battery/Regulator Module (CBRM) are detailed. The CBRM is utilized as an integral component of the Skylab/Apollo Telescope Mount (ATM) electrical power system and contains a switching mode electronic regulator. Implementing circuit analysis techniques, pertinent voltages and currents are calculated; these, in turn, are incorporated into the regulator system study. Investigation of the turn-on and turn-off times associated with the switching circuitry is performed and an examination is made on these calculations. A simulation model computer program is utilized to generate graphs that relate various CBRM parameters to one another.

  10. Marginal Power Loss Extraction Method for Future High Output Power Density Converter

    NASA Astrophysics Data System (ADS)

    Takao, Kazuto; Adachi, Kazuhiro; Hayashi, Yusuke; Ohashi, Hiromichi

    Novel exact MOSFET switching loss analysis and formulation methods have been proposed for designing high output power density converters. To analyze influences of circuit stray parameters on MOSFET switching loss with experiments, a parameter adjustable circuit board has been fabricated. The circuit board has a function to vary circuit stray inductance and capacitance values like a circuit simulator. Correlations between MOSFET switching loss energies and circuit stray parameters are successfully analyzed with the circuit board. Based on the analysis results, switching loss energies are formulated with empirical equations to establish a exact power loss calculation tool for the converter design. Switching loss energies caused by semiconductor device parameters are modeled by a capacitance charge/discharge model. The procedure to formulate the switching loss energies with empirical equations is presented. Switching loss energies calculated with empirical equations are verified with measurements, and high accuracy of more than 95% has been achieved.

  11. Power distribution in two-dimensional optical network channels

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue; Karim, Mohammad A.

    1996-04-01

    The power distribution in two-dimensional optical network channels is analyzed. The maximum number of allowable channels as determined by the characteristics of optical detector is identified, in particular, for neural-network and wavelet-transform applications.

  12. 99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  14. Fabrication Flaw Density and Distribution in the Repairs of Reactor Pressure Vessels

    SciTech Connect

    Schuster, George J.; Doctor, Steven R.; Simonen, Fredric A.

    2006-02-15

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw size and density distribution for the population of U.S. reactor pressure vessels (RPVs). The purpose of the generalized flaw distribution is to predict vessel specific flaw rates for use in probabilistic fracture mechanics calculations that estimate vessel failure probability. Considerable progress has been made on the construction of an engineering data base of fabrication flaws in U.S. nuclear RPVs. The fabrication processes and product forms used to construct U.S. RPVs are represented in the data base. A validation methodology has been developed for characterizing the flaws for size, shape, orientation, and composition. The relevance of construction records has been established for describing fabrication processes and product forms. The fabrication flaws were detected in material removed from cancelled nuclear power plants using high sensitivity nondestructive ultrasonic testing, and validated by other nondestructive evaluation (NDE) techniques, and complemented by destructive testing. This paper describes research that has generated data on welding flaws, which indicated that the largest flaws occur in weld repairs. Recent research results confirm that repair flaws are complex in composition and may include cracks on the repair ends. Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code for nuclear power plant components requires radiographic examinations (RT) of welds and requires repairs for RT indications that exceed code acceptable sizes. PNNL has previously obtained the complete construction records for two RPVs. Analysis of these records show a significant change in repair frequency.

  15. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    SciTech Connect

    Kato, S.; Seya, A.; Asano, A.

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  16. A comparative study of electric power distribution systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1990-01-01

    The electric power distribution systems for spacecraft are compared concentrating on two interrelated issues: the choice between dc and high frequency ac, and the converter/inverter topology to be used at the power source. The relative merits of dc and ac distribution are discussed. Specific converter and inverter topologies are identified and analyzed in detail for the purpose of detailed comparison. Finally, specific topologies are recommended for use in dc and ac systems.

  17. High-power CSI-fed induction motor drive with optimal power distribution based control

    NASA Astrophysics Data System (ADS)

    Kwak, S.-S.

    2011-11-01

    In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM-VSI) and capacitors. Due to the PWM-VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM-VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM-VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.

  18. Using ultrasound tomography to identify the distributions of density throughout the breast

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark E.; Gierach, Gretchen L.

    2016-04-01

    Women with high breast density are at increased risk of developing breast cancer. Breast density has usually been defined using mammography as the ratio of fibroglandular tissue to total breast area. Ultrasound tomography (UST) is an emerging modality that can also be used to measure breast density. UST creates tomographic sound speed images of the patient's breast which is useful as sound speed is directly proportional to tissue density. Furthermore, the volumetric and quantitative information contained in the sound speed images can be used to describe the distribution of breast density. The work presented here measures the UST sound speed density distributions of 165 women with negative screening mammography. Frequency distributions of the sound speed voxel information were examined for each patient. In a preliminary analysis, the UST sound speed distributions were averaged across patients and grouped by various patient and density-related factors (e.g., age, body mass index, menopausal status, average mammographic breast density). It was found that differences in the distribution of density could be easily visualized for different patient groupings. Furthermore, findings suggest that the shape of the distributions may be used to identify participants with varying amounts of dense and non-dense tissue.

  19. Numerical analysis of atomic density distribution in arc driven negative ion sources

    SciTech Connect

    Yamamoto, T. Shibata, T.; Hatayama, A.; Kashiwagi, M.; Hanada, M.; Sawada, K.

    2014-02-15

    The purpose of this study is to calculate atomic (H{sup 0}) density distribution in JAEA 10 ampere negative ion source. A collisional radiative model is developed for the calculation of the H{sup 0} density distribution. The non-equilibrium feature of the electron energy distribution function (EEDF), which mainly determines the H{sup 0} production rate, is included by substituting the EEDF calculated from 3D electron transport analysis. In this paper, the H{sup 0} production rate, the ionization rate, and the density distribution in the source chamber are calculated. In the region where high energy electrons exist, the H{sup 0} production and the ionization are enhanced. The calculated H{sup 0} density distribution without the effect of the H{sup 0} transport is relatively small in the upper region. In the next step, the effect should be taken into account to obtain more realistic H{sup 0} distribution.

  20. Effect of power density and pulse repetition on laser shock peening of Ti-6Al-4V

    SciTech Connect

    Smith, P.R.; Shepard, M.J.; Prevey, P.S. III; Clauer, A.H.

    2000-02-01

    Laser shock peening (LSP) was applied to Ti-6Al-4V (wt.%) simulated airfoil specimens using a Nd:Glass laser. Laser shock peening processing parameters examined in the present study included power density (5.5, 7, and 9 GW/cm{sup 2}) and number of laser pulses per spot (one and three pulses/spot). The LSP's Ti-6Al-4V samples were examined using x-ray diffraction techniques to determine the residual stress distribution and percent cold work as a function of depth. It was found that the residual stress state and percent of cold work were relatively independent of LSP power density. However, the number of laser pulses per spot had a significant effect on both residual stress and percent of cold work for a given power density level. In addition, there was a strong correlation between the magnitude of residual compressive stresses generated and the percent cold work measured.

  1. OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES

    SciTech Connect

    K.Krist; O. Spaldon-Stewart; R. Remick

    2004-03-01

    performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

  2. 62. View of amplifiermodulator control system with power distribution panel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. View of amplifier-modulator control system with power distribution panel on left, control power supply in middle, and amplifier modulator on right, second floor in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. 14 CFR 23.1310 - Power source capacity and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power source capacity and distribution. 23.1310 Section 23.1310 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General § 23.1310 Power source...

  4. Study of the height and density distributions of the 2-D granular system under vertical vibration

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Kim, Kipom; Jun, Yonggun

    1998-03-01

    Melecular dynamic simulations and experiments are used to investigate the pattern formation of the granular materials in a vertically vibrated rigid container. The height and density distributions of the peak of the patterns in two dimensional system are measured using the simulation. The height distribution agrees with the experimental observation. At the peak of height of the pattern the density is observed minimum. From the information of the vertical velocities of the particles, the momentum flux distributions are studied also.

  5. Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

    2005-07-12

    The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

  6. Analytical Limit Distributions from Random Power-Law Interactions

    NASA Astrophysics Data System (ADS)

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-01

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated.

  7. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  8. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  9. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    SciTech Connect

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude ({sigma}{sub l}(less-or-similar sign)1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which are physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S{sub 3}, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated. (c) 2000 The American Astronomical Society.

  10. Density probability distribution functions of diffuse gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Fletcher, A.

    2008-10-01

    In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of at high |b| is twice as wide as that at low |b|. The width of the PDF of the DIG is about 30 per cent smaller than that of the warm HI at the same latitudes. The results reported here provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.

  11. GIS for mapping waterfowl density and distribution from aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Stehn, R.A.; Balogh, G.R.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  12. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  13. Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution

    SciTech Connect

    Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

    2010-04-30

    Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

  14. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  15. Statistical analysis of power-size-redshift distributions of extragalactic jets

    NASA Technical Reports Server (NTRS)

    Rosen, Alexander; Wiita, Paul J.

    1991-01-01

    This paper investigates whether a hot, sparse, yet cosmologically significant intergalactic medium is consistent with data collected from extragalactic radio sources. This is done by use of Monte Carlo simulations which employ previously run pseudohydrodynamical simulations to cover an observational parameter space. These observational parameters include the scale height, central density, and temperature of a (isothermal) galactic halo, and the power of the central engine which drives the jet. The Monte Carlo simulations generate distribution of sizes in bins of (received) power and redshift, which have been compared with observational data using Kolmogorov-Smirnov tests. Results of this analysis are consistent with the existence of an IGM with temperature and density mentioned above. In addition, this analysis suggests that the active lifetime of powerful extragalactic radio sources decreases with increasing power.

  16. Two dimensional power spectral density measurements of X-rayoptics with the Micromap interferometric microscope

    SciTech Connect

    Yashchuk, Valeriy V.; Franck, Andrew D.; Irick Steve C.; Howells,Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.

    2005-05-12

    A procedure and software have been developed to transform the area distribution of the residual surface heights available from the measurement with the Micromap interferometric microscope into a two-dimensional (2D) power spectral density (PSD) distribution of the surface height. The procedure incorporates correction of one of the spectral distortions of the PSD measurement. The distortion appears as a shape difference between the tangential and sagittal PSD spectra deduced from the 2D PSD distribution for an isotropic surface. A detailed investigation of the origin of the anisotropy was performed, and a mathematical model was developed and used to correct the distortion. The correction employs a modulation transfer function (MTF) of the detector deduced analytically based on an experimentally confirmed assumption about the origin of the anisotropy due to the asymmetry of the read-out process of the instrument's CCD camera. The correction function has only one free parameter, the effective width of the gate-shaped apparatus function which is the same for both directions. The value of the parameter, equal to 1.35 pixels, was found while measuring the 2D PSD distribution of the instrument self-noise, independent of spatial frequency. The effectiveness of the developed procedure is demonstrated with a number of PSD measurements with different X-ray optics including mirrors and a grating.

  17. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  18. Distributed photovoltaic generation in residential distribution systems: Impacts on power quality and anti-islanding

    NASA Astrophysics Data System (ADS)

    Mitra, Parag

    The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.

  19. Automation of the Athens (Tennessee) electric power distribution system

    SciTech Connect

    Rizy, D.T.; Stovall, J.P.; Usry, G.H.

    1988-01-01

    A large scale distribution automation research and development project has been conducted at the Athens Utilities Board (AUB) in Athens, Tennessee. The project goal was to experiment with the integrated monitoring and control of an entire distribution system from a central distribution control center. The project was sponsored by the U.S. Department of Energy, Office of Energy Storage and Distribution, Electric Energy Systems Program and managed by the Oak Ridge National Laboratory. The experience with the distribution substation monitoring and control, feeder monitoring, voltage and reactive power (vary) control, system (or circuit) reconfiguration for emergency and maintenance situations, and load control are described. A distribution automation applications software package for assessing system configuration, and volt/var control on automated radial distribution feeders was developed and is also described. 8 refs.

  20. Information theory lateral density distribution for Earth inferred from global gravity field

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1981-01-01

    Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.

  1. Parallel Computing Environments and Methods for Power Distribution System Simulation

    SciTech Connect

    Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

    2005-11-10

    The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

  2. Power laws, discontinuities and regional city size distributions

    USGS Publications Warehouse

    Garmestani, A.S.; Allen, C.R.; Gallagher, C.M.

    2008-01-01

    Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux. ?? 2008.

  3. Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi; Ishigame, Hiroaki; Nishiyama, Shusuke

    2015-07-01

    This paper reports the density distributions of OH, Na, water vapor and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. The densities of OH, Na and H2O had different spatial distributions, while the Na density had a similar distribution to mist, suggesting that mist is the source of Na in the gas phase. When the flow rate of helium toward the electrolyte surface was increased, the distributions of all the species densities concentrated in the neighboring region to the electrolyte surface more significantly. The densities of all the species were sensitive to the electric polarity of the power supply. In particular, we never detected Na and mist when the electrolyte worked as the anode of the dc discharge. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  4. The Effects of Transients on Photospheric and Chromospheric Power Distributions

    NASA Astrophysics Data System (ADS)

    Samanta, T.; Henriques, V. M. J.; Banerjee, D.; Krishna Prasad, S.; Mathioudakis, M.; Jess, D.; Pant, V.

    2016-09-01

    We have observed a quiet-Sun region with the Swedish 1 m Solar Telescope equipped with the CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, Hα line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as “magnetic shadows.” These also show enhanced power close to the photosphere, traditionally referred to as “power halos.” The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore whether small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs), and Rapid Redshifted Excursions (RREs), can strongly influence the power maps. The short and finite lifetime of these events strongly affects all power maps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect on the power suppression around 3 minutes, and wave interaction may play a key role here. Our high-cadence observations reveal that flows, waves, and shocks manifest in the presence of magnetic fields to form a nonlinear magnetohydrodynamic system.

  5. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  6. High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

    SciTech Connect

    2010-04-01

    Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

  7. Reinvestigation of the charge density distribution in arc discharge fusion system

    SciTech Connect

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  8. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  9. Benefits of Power Electronic Interfaces for Distributed Energy Systems

    SciTech Connect

    Kroposki, B.; Pink, C.; DeBlasio, R.; Thomas, H.; Simoes, M.; Sen, P. K.

    2006-01-01

    Optimization of overall electrical system performance is important for the long-term economic viability of distributed energy (DE) systems. With the increasing use of DE systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for distributed energy applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/VAR support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper examines the system integration and optimization issues associated with DE systems and show the benefits of using PE interfaces for such applications.

  10. Electron density distribution in the organic superconductor (TMTSF)/sub 2/AsF/sub 6/

    SciTech Connect

    Wudl, F.; Nalewajek, D.; Troup, J.M.; Extine, M.W.

    1983-10-28

    Excellent crystals of (TMTSF)/sub 2/AsF/sub 6/ (TMTSF, tetramethyltetraselenafulvalene) were employed to obtain x-ray diffraction data for a determination of the electron density distribution in this organic superconductor. Electron density was observed between molecules in a stack of donors of an organic metal and between certain interstack selenium atoms of these donors.

  11. Power law tails in the Italian personal income distribution

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.

    2005-05-01

    We investigate the shape of the Italian personal income distribution using microdata from the Survey on Household Income and Wealth, made publicly available by the Bank of Italy for the years 1977-2002. We find that the upper tail of the distribution is consistent with a Pareto-power law type distribution, while the rest follows a two-parameter lognormal distribution. The results of our analysis show a shift of the distribution and a change of the indexes specifying it over time. As regards the first issue, we test the hypothesis that the evolution of both gross domestic product and personal income is governed by similar mechanisms, pointing to the existence of correlation between these quantities. The fluctuations of the shape of income distribution are instead quantified by establishing some links with the business cycle phases experienced by the Italian economy over the years covered by our dataset.

  12. VizieR Online Data Catalog: Swift GRBs individual power density spectra (Guidorzi+, 2016)

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Dichiara, S.; Amati, L.

    2016-03-01

    Time intervals, redshifts, best-fit parameters of the power density spectra (PDS) for 215 bright long GRBs observed with the Swift Burst Alert Telescope (BAT) from January 2005 to May 2015. Parameters refer to two alternative PDS models: either a power-law (PL) or a bent power-law (BPL) plus a constant background. (5 data files).

  13. Electrical Power Distribution and Control Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Fu, Johnny S.; Liffring, Mark; Mehdi, Ishaque S.

    2001-01-01

    This slide presentation reviews the use of Electrical Power Distribution and Control (EPD&C) Modeling and how modeling can support analysis. The presentation discusses using the EASY5 model to simulate and analyze the Space Shuttle Electric Auxiliary Power Unit. Diagrams of the model schematics are included, as well as graphs of the battery cell impedance, hydraulic load dynamics, and EPD&C response to hydraulic load variations.

  14. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  15. Electric power scheduling - A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity.

  16. Power law distribution of dividends in horse races

    NASA Astrophysics Data System (ADS)

    Park, K.; Domany, E.

    2001-02-01

    We discovered that the distribution of dividends in Korean horse races follows a power law. A simple model of betting is proposed, which reproduces the observed distribution. The model provides a mechanism to arrive at the true underlying winning probabilities, which are initially unknown, in a self-organized collective fashion, through the dynamic process of betting. Numerical simulations yield excellent agreement with the empirical data.

  17. An innovative thermal system approach significantly increases system reliability and power and packaging densities

    SciTech Connect

    Burns, K.K.; Alexander, R.; Burns, J.R.

    1996-12-31

    An innovative self-contained active cooling system for electronic products, which increases power and packaging densities and improves reliability, was investigated. The cooling technology uses low cost, readily available, and reliable components. While this thermal control method can be applied to many applications, a simple power system cooling application will be demonstrated. The application demonstrates increased power density of a common 48 Vdc to 5Vdc high density DC-DC power converter module having standard dimensions of 2.4in.x4.6in.x0.5in. An increase in power density from 50W/in{sup 3} to over 80W/in{sup 3} was realized. In addition, significantly high calculated MTBF, from 300K hours to greater than 3M hours, was realized with low temperature operation.

  18. Power-density spectrum of non-stationary short-lived light curves

    NASA Astrophysics Data System (ADS)

    Guidorzi, Cristiano

    2011-08-01

    The power-density spectrum of a light curve is often calculated as the average of a number of spectra derived on individual time intervals the light curve is divided into. This procedure implicitly assumes that each time interval is a different sample function of the same stochastic ergodic process. While this assumption can be applied to many astrophysical sources, there remains a class of transient, highly non-stationary and short-lived events, such as gamma-ray bursts, for which this approach is often inadequate. The power spectrum statistics of a constant signal affected by statistical (Poisson) noise are known to be a χ22 in the Leahy normalization. However, this is no more the case when a non-stationary signal is also present. As a consequence, the uncertainties on the power spectrum cannot be calculated on the basis of the χ22 properties, as assumed by tools such as XRONOS POWSPEC. We generalize the result in the case of a non-stationary signal affected by uncorrelated white noise and show that the new distribution is a non-central χ22(λ), whose non-central value λ is the power spectrum of the deterministic function describing the non-stationary signal. Finally, we test these results in the case of synthetic curves of gamma-ray bursts. We end up with a new formula for calculating the power spectrum uncertainties. This is crucial in the case of non-stationary short-lived processes affected by uncorrelated statistical noise, for which ensemble averaging does not make any physical sense.

  19. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.

    1995-01-17

    A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.

  20. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  1. System for tomographic determination of the power distribution in electron beams

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  2. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  3. Power-law distribution of family names in Japanese societies

    NASA Astrophysics Data System (ADS)

    Miyazima, Sasuke; Lee, Youngki; Nagamine, Tomomasa; Miyajima, Hiroaki

    2000-04-01

    We study the frequency distribution of family names. From a common data base, we count the number of people who share the same family name. This is the size of the family. We find that (i) the total number of different family names in a society scales as a power law of the population, (ii) the total number of family names of the same size decreases as the size increases with a power law and (iii) the relation between size and rank of a family name also shows a power law. These scaling properties are found to be consistent for five different regional communities in Japan.

  4. Proposal of an Innovative Electric Power Distribution System based on Packet Power Transactions

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Fujii, Yasumasa

    Recently, the introduction of decentralized generators, such as photovoltaic power generations, has been promoted rapidly. In the future, extensive use of PV is thought to give rise to the daytime surplus electricity, and a household will manage the surplus electricity rationally. The purpose of this research is to propose an innovative electric power distribution system based on packet power transactions. First, this paper explains distributed markets of which the price can easily reflect the geographical diversity of renewable energy availability and load curve characteristic within the local area. Second, this paper exemplifies the specific electronic circuit that makes pulse-shaped power transmission to develop the packet power distribution system. Finally, this paper shows the results of multi-agent simulations of electricity trading to evaluate the usefulness of the proposed system.

  5. A Distributed Cooperative Power Allocation Method for Campus Buildings

    SciTech Connect

    Hao, He; Sun, Yannan; Carroll, Thomas E.; Somani, Abhishek

    2015-09-01

    We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designed using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method

  6. Density dependent stopping power and muon sticking in muon catalyzed D-T fusion

    SciTech Connect

    Rafelski, H.E.; Mueller, B.

    1988-12-27

    The origin of the experimentally observed (1) density dependence of the muon alpha sticking fraction ..omega../sub s/ in muon catalyzed deuterium- tritium fusion is investigated. We show that the reactivation probability depends sensitively on the target stopping power at low ion velocities. The density dependence of the stopping power for a singly charged projectile in liquid heavy hydrogen is parametrized to simulate possible screening effects and a density dependent effective ionization potential. We find that, in principle, a description of the measured density dependence is possible, but the required parameters appear too large. Also, the discrepancy with observed (He..mu..) X-ray data widens.

  7. Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities

    ERIC Educational Resources Information Center

    Woods, Carol M.; Thissen, David

    2006-01-01

    The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…

  8. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    SciTech Connect

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K.

    2012-07-11

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  9. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  10. Effectiveness of survey points' density and distribution on vegetation coverage field measurement

    NASA Astrophysics Data System (ADS)

    Yue, Y. J.; Gao, L.; Wang, J. A.; Li, N.

    2009-10-01

    Vegetation coverage is a widely used parameter to measure global and regional environment change. Evaluating the accuracy and efficiency of vegetation coverage using digital photography under various survey points' densities and distribution patterns has an important referential significance for providing an optimized field measurement method. The vegetation field measurement was carried out in a sample with Artemisia ordosica shrubs in Mu Us sandy land using vertical hoisting digital camera, with four densities and nine distribution patterns of survey points. The results showed that: different density of survey points led to a slight accuracy difference, and the precision improves as the density increases. The sample size had great impact on the precision. Different point distribution patterns led to significantly different results. "Diamond" pattern can get relatively higher degree of accuracy with least points and shortest walking distance in field survey. It's the best choice that could meet the requirements of the maximum precision and minimum workload in the vegetation field measurement.

  11. Current density and catalyst-coated membrane resistance distribution of hydro-formed metallic bipolar plate fuel cell short stack with 250 cm2 active area

    NASA Astrophysics Data System (ADS)

    Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.

    2016-01-01

    An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.

  12. Measurements and simulations of ion energy distributions at rf-biased substrate electrodes in high density plasma reactors

    NASA Astrophysics Data System (ADS)

    Edelberg, Erik Andrew

    In plasma etching and deposition processes, the energy distribution of ions incident onto the substrate strongly affects the surface reactions and film deposition and etching rates. A compact floating retarding-field ion energy analyzer and the accompanying electronics have been designed and built to measure the energy distribution of ions bombarding radio frequency (rf) biased electrodes in high-density, inductively coupled plasma (ICP) reactors. The analyzer was designed to be able to operate in the presence of several hundred volts of rf-bias and in the harsh conditions encountered in commercial high density plasma reactors. The operation and capabilities of the energy analyzer are demonstrated through ion energy distribution measurements conducted on a rf-biased electrostatic chuck in a high-density transformer coupled plasma (TCP) reactor. A Langmuir probe is used in conjunction with the ion energy analyzer to verify the accuracy of the analyzer measurements. The effects of plasma power, rf-bias power, gas composition, and ion mass on the ion energy distributions are demonstrated through Ar, Ne, Ar/Ne, O 2 and CF4/O2 discharges. In the operating range studied, the average ion energy increases linearly with increasing rf-bias while the ion flux remains constant indicating that independent control of ion flux and energy is achieved in the TCP reactor. Bimodal ion energy distributions resulting from ion energy modulation in the sheath were observed and multiple peaks in the IEDs measured in gas mixtures were identified as ions with different masses falling through the sheath. The magnitude and frequency of the rf-bias power applied to the substrate electrode determines the spatiotemporal variations of the sheath potentials and hence the energy distribution of the ions impinging upon the substrate. A self-consistent dynamic model of the sheath, capable of predicting ion energy distributions (IEDs) impinging on a rf-biased electrode, was developed. The model

  13. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  14. Analytical Limit Distributions from Random Power-Law Interactions.

    PubMed

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-15

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated. PMID:27472105

  15. Impact of an inhomogeneous density distribution on selected observational characteristics of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Brauer, R.; Wolf, S.

    2016-01-01

    Context. Analysis of observations of circumstellar disks around young stellar objects is often based on disk models with smooth and continuous density distribution. However, spatially resolved observations with increasing angular resolution and dynamical models indicate that circumstellar disks are highly structured. Aims: We investigate the influence of different clumpy density distributions on selected physical properties and on the observable characteristics of circumstellar disks. In particular, these are the temperature distribution, the spectral energy distribution (SED), the radial brightness profile and the degree of polarization of scattered stellar radiation. Methods: Based on radiative transfer modeling we calculated the temperature structure of the disk and simulate observational quantities in the thermal re-emission and scattering regime. The clumpy density distributions are realized using a two-phase medium approach with phases for the clumps and the medium in between. We compared our results to those obtained for a smooth and continuous density distribution to quantify the influence of clumps on internal physical parameters and observable quantities of circumstellar disks. Results: Within the considered model space, the clumpiness has a significant impact on the disk temperature distribution. For instance, in the transition region from the optically thin upper disk layers to the disk interior, it causes a decrease in the mean temperature by up to 12 K (corresponding to ~15%), if compared to continuous disks. In addition, circumstellar disks with clumpy density distributions generally feature a lower spectral index in the submm/mm range of the SED than continuous disks. The strength of this decrease can be varied by changing the dust mass or grain size, but not by changing the inclination of the disk. As a consequence of the lower spectral index, the dust grain size derived from the submm/mm-slope of the SED may be overestimated, if the inhomogeneity

  16. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  17. New-type cable accessories for power distribution

    SciTech Connect

    Sanjo, K.; Kawano, K.; Shiraoka, K.; Yasuda, N.; Yatsuka, K.

    1982-12-01

    This paper describes new types of cable accessories for improving the reliability of power distribution cable systems. The practical development of a 25kV-class cable termination, and a waterproof sleeve for cable joints based on heat-shrinkable components made of irradiated polyolefine is discussed. Furthermore, the theoretical and practical data are given.

  18. Distribution of ion current density on a rotating spherical cap substrate during ion-assisted deposition

    SciTech Connect

    Marushka, Viktor; Zabeida, Oleg Martinu, Ludvik

    2014-11-01

    The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3 A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.

  19. Neutron density distributions analyzed in terms of relativistic impulse approximation for nickel isotopes

    NASA Astrophysics Data System (ADS)

    Kaki, Kaori

    2015-03-01

    Observables of proton elastic scattering from nickel isotopes (48-82Ni) are calculated based on relativistic impulse approximation (RIA), and nuclear density distributions are provided by relativistic mean-field (RMF) calculations. Contributions of a medium effect and multiple scattering to observables are evaluated and shown to be small at incident proton energies from 200 MeV through 500 MeV so that it is confirmed to perform a model analysis based on the fundamental RIA calculation. For 58,60,62,64Ni isotopes, are considered proton distributions which are obtained by means of unfolding the charge form factor of proton from charge densities determined by the experiments of electron scattering. Through comparisons between results for the different proton densities, contributions of proton form factor to proton distributions and to elastic scattering observables at 300 MeV are discussed. It is shown that the neutron distribution is determined from the restricted observables, reaction cross-section and the first dip of differential cross-section, based on a model analysis of Woods-Saxon distribution in the case of 64Ni target at 300 MeV. Contributions of tensor density and empirical proton density are shown to obtaining the neutron distribution with the model analysis. Compared with the similar studies for 40,60Ca and 208Pb, problems of the model analysis, which arise out of errors in observables, are discussed.

  20. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons.

    PubMed

    Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu

    2016-09-01

    Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions. PMID:26826401

  1. Bulk-density distributions of solids in the freeboard of a gas-solid fluidized bed

    SciTech Connect

    Shen, B.C.; Fan, L.T.; Walawender, W.P.

    1995-05-01

    The freeboard region above the bubbling zone of a gas-solid fluidized bed provides the space not only for the disengagement of particles but also for additional contact and reaction between the particles and gas. The flow pattern and behavior of particles as well as their bulk-density distribution in the freeboard have a significant impact on the efficiency of fluidization. The results of numerous previous experimental studies indicate that the bulk density of solids essentially decreases exponentially as a function of the height of the freeboard. In the present work, this distribution has been obtained by first derived the Fokker-Planck equation from the linearized equation of motion of a single particle and then transforming this Fokker-Planck equation into that for the bulk-density distribution of solids. Its simplification to the one-dimensional case readily gives rise to an exponential distribution and agrees well with the available experimental data.

  2. The optical power distribution in a dark room

    NASA Astrophysics Data System (ADS)

    Liner, Andrej; Papes, Martin; Vitasek, Jan; Koudelka, Petr; Látal, Jan; Cubik, Jakub; Vašinek, Vladimir

    2012-01-01

    Nowadays, in the field of communications systems radio transmission frequencies are dominant inside buildings. Due to the increasing of large number of users and devices, that use these frequencies, there is danger of accruing interferences and reducing the transmission performance. Therefore, indoor wireless optical systems are beginning to use as an alternative solution. Indoor wireless optical systems can use for communication direct and reflected light rays. This article deals with the measurement of optical power distribution in the model dark room. As a light source we use white power LEDs located on the ceiling of the room. The measurement of the optical power distribution was performed in dark room, which was specially constructed for this purpose. This room was also modelled in LightTools software that allows simulate a real measurement. This article compares the results of the measurement and the simulation.

  3. Exploring empowerment in settings: mapping distributions of network power.

    PubMed

    Neal, Jennifer Watling

    2014-06-01

    This paper brings together two trends in the empowerment literature-understanding empowerment in settings and understanding empowerment as relational-by examining what makes settings empowering from a social network perspective. Specifically, extending Neal and Neal's (Am J Community Psychol 48(3/4):157-167, 2011) conception of network power, an empowering setting is defined as one in which (1) actors have existing relationships that allow for the exchange of resources and (2) the distribution of network power among actors in the setting is roughly equal. The paper includes a description of how researchers can examine distributions of network power in settings. Next, this process is illustrated in both an abstract example and using empirical data on early adolescents' peer relationships in urban classrooms. Finally, implications for theory, methods, and intervention related to understanding empowering settings are explored. PMID:24213301

  4. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    NASA Astrophysics Data System (ADS)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2016-03-01

    The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  5. Multi-kw dc power distribution system study program

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  6. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  7. Is cortical distribution of spectral power a stable individual characteristic?

    PubMed

    Knyazev, Gennady G

    2009-05-01

    General understanding in EEG research is that cortical distribution of spectral power varies as a function of time, frequency, state, and experimental condition. There are findings, however, which show that individual-specific patterns of cortical spectral power distribution could be amazingly stable, at least in some experimental conditions. In this study two different experimental datasets were used to analyze stability and variability of individual pattern of cortical spectral power distribution across time, experimental conditions, and frequency bands. First experiment consisted of presentation of pictures of emotional facial expressions. Second experiment was an auditory stop-signal task. In both experiments a number of psychometric measures were obtained from each participant. It has been shown that in spite of high short-term variability, individual-specific patterns of cortical spectral power distribution are remarkably stable across frequency bands, long periods of time, and experimental conditions. These patterns are related to state and trait participant's characteristics. The antero-posterior spectral power gradient emerged as the most prominent feature associated with important personality dimensions. Relatively higher oscillatory activity in the frontal cortical region relates to female gender and Behavioral Inhibition tendencies. Relatively higher activity at posterior sites is associated with Extraversion. Significant differences in event-related spectral perturbations upon presentation of emotionally loaded stimuli were found between high and low antero-posterior gradient participants. These data show that cortical distribution of oscillatory activity may be seen as a relatively stable individual characteristic. Enhanced or diminished oscillatory activity of some cortical regions, such as the prefrontal cortex, may play an important role in organization of human behavior. PMID:19047002

  8. Learning geotemporal nonstationary failure and recovery of power distribution.

    PubMed

    Wei, Yun; Ji, Chuanyi; Galvan, Floyd; Couvillon, Stephen; Orellana, George; Momoh, James

    2014-01-01

    Smart energy grid is an emerging area for new applications of machine learning in a nonstationary environment. Such a nonstationary environment emerges when large-scale failures occur at power networks because of external disruptions such as hurricanes and severe storms. Power distribution networks lie at the edge of the grid, and are especially vulnerable to external disruptions. Quantifiable approaches are lacking and needed to learn nonstationary behaviors of large-scale failure and recovery of power distribution. This paper studies such nonstationary behaviors in three aspects. First, a novel formulation is derived for an entire life cycle of large-scale failure and recovery of power distribution. Second, spatial-temporal models of failure and recovery of power distribution are developed as geolocation-based multivariate nonstationary GI(t)/G(t)/∞ queues. Third, the nonstationary spatial-temporal models identify a small number of parameters to be learned. Learning is applied to two real-life examples of large-scale disruptions. One is from Hurricane Ike, where data from an operational network is exact on failures and recoveries. The other is from Hurricane Sandy, where aggregated data is used for inferring failure and recovery processes at one of the impacted areas. Model parameters are learned using real data. Two findings emerge as results of learning: 1) failure rates behave similarly at the two different provider networks for two different hurricanes but differently at the geographical regions and 2) both the rapid and slow-recovery are present for Hurricane Ike but only slow recovery is shown for a regional distribution network from Hurricane Sandy. PMID:24806656

  9. Distribution automation pilot project at Georgia Power Company. Final report

    SciTech Connect

    Hall, J.M.

    1997-12-01

    This report includes a Benefit-Cost Study for Distribution Automation (DA) at Georgia Power Company, an Evaluation of two communication systems for Distribution Automation, and Development and Evaluation of a standards-based interface between an AM/FM system and SCADA. The Benefit-Cost Study addresses the functional requirements and performance of the major Distribution Automation functions under GPC`s conditions. Five implementation scenarios for Distribution Automation are analyzed. The performance of the DA functions is simulated for four prototype GPC substations in the Carrollton and Tucker areas. The results of the simulation are extrapolated for the entire GPC distribution system. A number of reliability related functions along with real-time modeling and volt/var control functions are recommended for implementation at GPC. GPC has installed two pilot communication systems for Distribution Automation. Both pilot systems use proprietary radio technologies for communications with pole-top power system devices and customer meters. One of these systems, in the Carrollton area, uses a Metricom{trademark} UtiliNet{trademark} radio system, and the other, in the Tucker area, uses a CellNet{trademark} Data Systems, Inc. CellNet radio system. The performance of these two systems is described and evaluated in the project. The advantages and disadvantages of the communication systems for the recommended distribution automation system at GPC are analyzed. A transfer format from a mapping and facilities database to a SCADA database for the Georgia Power Company was developed and tested for the project. The mapping and facilities database is implemented as an Oracle database in the ARC/Info AM/FM/GIS application by ESRI, and the SCADA database is implemented on the OASyS 5.0 SCADA platform provided by Valmet Automation. The National Transfer Format (NTF) is the vehicle for the transfer of data from the GIS to the SCADA system.

  10. A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Submodule Differential Power Processing

    SciTech Connect

    Qin, SB; Cady, ST; Dominguez-Garcia, AD; Pilawa-Podgurski, RCN

    2015-04-01

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented. The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.

  11. Enhanced power production from microbial fuel cells with high cell density culture.

    PubMed

    Zhai, Dan-Dan; Li, Bing; Sun, Jian-Zhong; Sun, De-Zhen; Si, Rong-Wei; Yong, Yang-Chun

    2016-01-01

    Improvement of power production in a microbial fuel cell (MFC) with a high cell density culture strategy was developed. By using high cell density culture, the voltage output and power density output of the MFC were enhanced about 0.6 and 1.6 times compared to the control, respectively. Further analysis showed that riboflavin concentration in the MFC was dramatically increased from 0.1 mg/L to 1.2 mg/L by high cell density culture. Moreover, the biofilm formation on the anode surface was significantly enhanced by this new strategy. The increased accumulation of electron shuttle (riboflavin) as well as enhanced biofilm formation contributed to the improvement in anodic electrochemical activity and these factors were the underlying mechanism for MFC performance improvement by high cell density culture. This work demonstrated that high cell density culture would be a simple and practical strategy for MFC manipulation. PMID:27148719

  12. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.

    PubMed

    Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T

    2014-11-01

    Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation

  13. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

    PubMed Central

    Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030

  14. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  15. The power associated with density fluctuations and velocity fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.

    1974-01-01

    Direct observations from Pioneer 6 of solar-wind-proton fluctuations have been used to obtain the power spectra associated with solar-wind-proton number density and velocity fluctuations in the frequency range of 0.001 to 0.01 Hz, extending previous analyses by an order of magnitude at the higher frequencies. The slopes of the power spectra associated with the density fluctuations and the velocity fluctuations are similar and are in agreement with the shape of the power spectra found at the lower frequencies. The power spectra indicate that the power-law density spectrum observed at lower frequencies extends to at least 0.01 Hz. This smooth variation in the spectrum at these frequencies is consistent with previous extrapolations of both spacecraft and interplanetary scintillation observations.

  16. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    SciTech Connect

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  17. Density-based empirical likelihood procedures for testing symmetry of data distributions and K-sample comparisons

    PubMed Central

    Vexler, Albert; Tanajian, Hovig; Hutson, Alan D.

    2016-01-01

    In practice, parametric likelihood-ratio techniques are powerful statistical tools. In this article, we propose and examine novel and simple distribution-free test statistics that efficiently approximate parametric likelihood ratios to analyze and compare distributions of K groups of observations. Using the density-based empirical likelihood methodology, we develop a Stata package that applies to a test for symmetry of data distributions and compares K-sample distributions. Recognizing that recent statistical software packages do not sufficiently address K-sample nonparametric comparisons of data distributions, we propose a new Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio tests using K samples. To calculate p-values of the proposed tests, we use the following methods: 1) a classical technique based on Monte Carlo p-value evaluations; 2) an interpolation technique based on tabulated critical values; and 3) a new hybrid technique that combines methods 1 and 2. The third, cutting-edge method is shown to be very efficient in the context of exact-test p-value computations. This Bayesian-type method considers tabulated critical values as prior information and Monte Carlo generations of test statistic values as data used to depict the likelihood function. In this case, a nonparametric Bayesian method is proposed to compute critical values of exact tests.

  18. Excessive magnetic field flux density distribution from overhead isolated powerline conductors due to neutral line current.

    PubMed

    Netzer, Moshe

    2013-06-01

    Overhead isolated powerline conductors (hereinafter: "OIPLC") are the most compact form for distributing low voltage currents. From the known physics of magnetic field emission from 3-phase power lines, it is expected that excellent symmetry of the 120° shifted phase currents and where compact configuration of the 3-phase+neutral line exist, the phase current vectorial summation of the magnetic field flux density (MFFD) is expected to be extremely low. However, despite this estimation, an unexpectedly very high MFFD was found in at least three towns in Israel. This paper explains the reasons leading to high MFFD emissions from compact OIPLC and the proper technique to fix it. Analysis and measurement results had led to the failure hypothsis of neutral line poor connection design and poor grounding design of the HV-LV utility transformers. The paper elaborates on the low MFFD exposure level setup by the Israeli Environmental Protection Office which adopted a rather conservative precaution principal exposure level (2 mG averaged over 24 h). PMID:23675630

  19. Percolation of randomly distributed growing clusters: the low initial density regime

    NASA Astrophysics Data System (ADS)

    Tsakiris, N.; Maragakis, M.; Kosmidis, K.; Argyrakis, P.

    2011-06-01

    We investigate the problem of growing clusters, which is modeled by two dimensional disks and three dimensional droplets. In this model we place a number of seeds on random locations on a lattice with an initial occupation probability, p. The seeds simultaneously grow with a constant velocity to form clusters. When two or more clusters eventually touch each other they immediately stop their growth. The probability that such a system will result in a percolating cluster depends on the density of the initially distributed seeds and the dimensionality of the system. For very low values of p we find a power law behavior for several properties that we investigate, namely for the size of the largest and second largest cluster, for the probability for a spanning cluster to occur, and for the mean radius of the finally formed droplets. We report the values of the corresponding scaling exponents. Finally, we show that for very low initial concentration of seeds the final coverage takes a constant value which depends on the system dimensionality.

  20. Photoelectric instrument for measuring relative energy density distribution in beams of pulse lasers

    NASA Astrophysics Data System (ADS)

    Arbekov, V. I.; Ulanovskiy, M. V.; Zagorskiy, Y. T.; Levi, A. M.; Glazov, A. I.

    1984-11-01

    The relative energy density distribution over the beam cross section of pulse lasers can be measured with both high space resolution and high accuracy when a photoelectric transducer array is used for this purpose. Such a transducer combines high sensitivity with a wide dynamic range. Its photoreceiver stage is preceded by a fiber optic light collector and is followed by an integrator feeding into an analog memory. Both integrator and memory are energized from a power supply controllable by a multichannel commutator with analog to digital and digital to analog conversion. Use of fiber optics allows spacing of the transducer components so as to almost completely eliminate any coupling between channels. The spectral range of the light collector is 0.4 to 2.0 microns. The photoreceiver consists of commercially produced FD-8K silicon photodiodes, each serving as a current generator and loaded by the input impedance of the operational amplifier built with microcircuits which converts each photodiode current into a voltage proportional to the radiation pulse energy.

  1. The Influence of Orthographic Neighborhood Density and Word Frequency on Visual Word Recognition: Insights from RT Distributional Analyses

    PubMed Central

    Lim, Stephen Wee Hun

    2016-01-01

    The effects of orthographic neighborhood density and word frequency in visual word recognition were investigated using distributional analyses of response latencies in visual lexical decision. Main effects of density and frequency were observed in mean latencies. Distributional analyses additionally revealed a density × frequency interaction: for low-frequency words, density effects were mediated predominantly by distributional shifting whereas for high-frequency words, density effects were absent except at the slower RTs, implicating distributional skewing. The present findings suggest that density effects in low-frequency words reflect processes involved in early lexical access, while the effects observed in high-frequency words reflect late postlexical checking processes. PMID:27065902

  2. Distributed renewable power from biomass and other waste fuels

    NASA Astrophysics Data System (ADS)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  3. Automatic control system by power distribution in a power-generating reactor

    SciTech Connect

    Aleksakov, A.N.; Podlazov, L.N.; Ryabov, V.I.; Shevchenko, V.V.; Postnikov, V.V.

    1980-12-01

    The development of the theoretical principles of construction of these systems and of sufficiently detailed nonlinear dynamic numerical models of a power-generation unit with an RBMK reactor have allowed a consistent procedure to be produced for the engineering synthesis of an (local automated control) LAC-LEP (local emergency protection) system. The LAC system facilitates the shaping and maintenance of the desired power distribution in the whole volume of the reactor. In emergency situations, the LAC-LEP system qualitatively reduces the power to a safe level and effectively suppresses the power warpings in one-half of the reactor, which are characteristic for these reactors.

  4. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  5. The power law distribution for lower tail cities in India

    NASA Astrophysics Data System (ADS)

    Devadoss, Stephen; Luckstead, Jeff; Danforth, Diana; Akhundjanov, Sherzod

    2016-01-01

    The city size distribution for lower tail cities has received scant attention because a small portion of the population lives in rural villages, particularly in developed countries, and data are not readily available for small cities. However, in developing countries much of the population inhabits rural areas. The purpose of this study is to test whether power law holds for small cities in India by using the most recent and comprehensive Indian census data for the year 2011. Our results show that lower tail cities for India do exhibit a power law.

  6. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  7. Power-law distributions in noisy dynamical systems

    NASA Astrophysics Data System (ADS)

    Wilkinson, Michael; Guichardaz, Robin; Pradas, Marc; Pumir, Alain

    2015-09-01

    We consider a dynamical system which is non-autonomous, has a stable attractor and which is perturbed by an additive noise. We establish that under some quite typical conditions, the intermittent fluctuations from the attractor have a probability distribution with power-law tails. We show that this results from a stochastic cascade of amplification of fluctuations due to transient periods of instability. The exponent of the power-law is interpreted as a negative fractal dimension, and is explicitly determined, using numerics or perturbation expansion, in the case of a model of colloidal particles in one-dimension.

  8. Power management and distribution considerations for a lunar base

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Coleman, Anthony S.

    1991-01-01

    Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.

  9. Density distribution of a rotating plasma in Tornado magnetic confinement systems

    SciTech Connect

    Kuznetsov, V.M.; Pakhomov, A.B.; Rusakov, A.I.

    1984-12-01

    The density distribution of a rotating plasma in a Tornado magnetic confinement system is calculated under the assumption that the plasma rotates at constant angular velocity throughout the region bounded by the separatrix. The component of the centrifugal inertial force parallel to the magnetic force lines is shown to pinch the plasma toward the equatorial plane of the system. The density distribution depends on the ratio v/T of the plasma drift velocity and temperature. The experimentally measured density distribution can be used to determine v/T and thus to analyze the rotating plasma. If v is known for the rotating plasma then T can be calculated from v, and vice versa.

  10. Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gamba, Humberto R.; Bayford, Richard; Holder, David

    1999-01-01

    Knowledge of the influence of the human skull on the electrical current (d.c.) distribution within the brain tissue could prove useful in measuring impedance changes inside the human head. These changes can be related to physiological functions. The studies presented in this paper examine the current density distribution in a simple phantom consisting of a saline filled tank (to simulate scalp and brain) and a ring made of dental grade plaster of Paris (to simulate the human skull). Images of the distribution of the d.c. density of the phantom with and without the plaster of Paris ring were produced using a magnetic resonance imaging technique. These images indicate that the skull is likely to produce a more uniform d.c. density within the brain.

  11. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Backhaus, Scott; Sule, Petr

    2009-01-01

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

  12. Electric power scheduling: A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity. The value-driven free-market economic model is such a tool.

  13. Modeling Uncertainties in Power System by Generalized Lambda Distribution

    NASA Astrophysics Data System (ADS)

    Xiao, Qing

    2014-06-01

    This paper employs the generalized lambda distribution (GLD) to model random variables with various probability distributions in power system. In the context of the probability weighted moment (PWM), an optimization-free method is developed to assess the parameters of GLD. By equating the first four PWMs of GLD with those of the target random variable, a polynomial equation with one unknown is derived to solve for the parameters of GLD. When employing GLD to model correlated multivariate random variables, a method of accommodating the dependency is put forward. Finally, three examples are worked to demonstrate the proposed method.

  14. Power system distributed oscilation detection based on Synchrophasor data

    NASA Astrophysics Data System (ADS)

    Ning, Jiawei

    Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed

  15. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma. PMID:23285847

  16. Universal scaling of density and momentum distributions in Lieb-Liniger gases

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Rigol, Marcos

    2015-12-01

    We present an exact numerical study of the scaling of density and momentum distribution functions of harmonically trapped one-dimensional bosons with repulsive contact interactions at zero and finite temperatures. We use path integral quantum Monte Carlo with worm updates in our calculations at finite interaction strengths, and the Bose-Fermi mapping in the Tonks-Girardeau regime. We discuss the homogeneous case and, within the local density approximation, use it to motivate the scaling in the presence of a harmonic trap. For the momentum distribution function, we pay special attention to the high momentum tails and their k-4 asymptotic behavior.

  17. On the theoretical model for vertical ozone density distributions in the mesosphere and upper stratosphere.

    NASA Technical Reports Server (NTRS)

    Shimazaki, T.; Wuebbles, D. J.

    1973-01-01

    Calculations based on an improved, time-dependent theoretical model for the vertical ozone density distribution in the upper atmosphere are shown to clarify the cause and determine the appearance precondition for the depression at the 70-85 km altitude region in the ozone density distribution suggested by several theoretical models and only sometimes experimentally observed. It is concluded that the depression develops at night through the effects of hydrogen-oxygen and nitrogen-oxygen reactions, as well as those of eddy diffusion transports.

  18. Expansion-free evolving spheres must have inhomogeneous energy density distributions

    SciTech Connect

    Herrera, L.; Le Denmat, G.; Santos, N. O.

    2009-04-15

    In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.

  19. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  20. Power-law distribution in Japanese racetrack betting

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2006-08-01

    Gambling is one of the basic economic activities that humans indulge in. An investigation of gambling activities provides deep insights into the economic actions of people and sheds lights on the study of econophysics. In this paper we present an analysis of the distribution of the final odds of the races organized by the Japan Racing Association. The distribution of the final odds Po(x) indicates a clear power-law Po(x)∝1/x, where x represents the final odds. This power-law can be explained on the basis of the assumption that every bettor bets his money on the horse that appears to be the strongest in a race.

  1. On estimating the exponent of power-law frequency distributions.

    PubMed

    White, Ethan P; Enquist, Brian J; Green, Jessica L

    2008-04-01

    Power-law frequency distributions characterize a wide array of natural phenomena. In ecology, biology, and many physical and social sciences, the exponents of these power laws are estimated to draw inference about the processes underlying the phenomenon, to test theoretical models, and to scale up from local observations to global patterns. Therefore, it is essential that these exponents be estimated accurately. Unfortunately, the binning-based methods traditionally used in ecology and other disciplines perform quite poorly. Here we discuss more sophisticated methods for fitting these exponents based on cumulative distribution functions and maximum likelihood estimation. We illustrate their superior performance at estimating known exponents and provide details on how and when ecologists should use them. Our results confirm that maximum likelihood estimation outperforms other methods in both accuracy and precision. Because of the use of biased statistical methods for estimating the exponent, the conclusions of several recently published papers should be revisited. PMID:18481513

  2. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  3. Carbon dioxide laser vaporization: Relationship of scar formation to power density

    SciTech Connect

    Dobry, M.M.; Padilla, R.S.; Pennino, R.P.; Hunt, W.C.

    1989-07-01

    A direct relationship exists between the power density of a carbon dioxide laser and the thickness of scars it produces in rat skin. Statistically significant positive relationships were noted between laser power and scar thickness at days 14, 21, and 32. The slope of the curve increased as the number of days elapsed. At day 32, the ratio of scar thickness to CO/sub 2/ laser power density delivered was 0.3 microns/W-cm/sup 2/. Scar formation took longer for completion at higher wattages of irradiation.

  4. 250 degrees C SiC High Density Power Module Development

    SciTech Connect

    Ning, Puqi; Wang, Fei; Ngo, Khai

    2011-01-01

    Taking full advantage of SiC devices, a team from Oak Ridge National Laboratory, the University of Tennessee and Virginia Polytechnic Institute and State University have designed, developed, and tested a phase-leg power module based on a high temperature wirebond package. Details of the layout, gate drive, and cooling system designs are described. Continuous power tests confirmed that our design process produced a high density power module that operated successfully at high junction temperatures.

  5. Initial energy density and gluon distribution from the glasma in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Fujii, Hirotsugu; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-02-01

    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of heavy-ion collisions. In the McLerran-Venugopalan model, we first decompose the energy density into the momentum components exactly, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement that occurs with the inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.

  6. Initial energy density and gluon distribution from the glasma in heavy-ion collisions

    SciTech Connect

    Fujii, Hirotsugu; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-02-15

    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of heavy-ion collisions. In the McLerran-Venugopalan model, we first decompose the energy density into the momentum components exactly, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement that occurs with the inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.

  7. Pseudodynamic planning for expansion of power distribution sytems

    SciTech Connect

    Ramirez-Rosado, I.J. ); Gonen, T. )

    1991-02-01

    This paper presents basic and extended planning models, based on a pseudodynamic methodology, to solve the global expansion problem (sizing, locating, and timing) of distribution substations and feeders throughout the planning time period. The objective functions, that represent the expansion costs, are minimized by successive concatenated optimizations subject to the Kirchhoff's current law, power capacity limits and logical constraints, in the basic model. It also presents an extended model that is obtained by including the voltage drop constraints in the basic model.

  8. Application of geographic information system in distribution power network automation

    NASA Astrophysics Data System (ADS)

    Wei, Xianmin

    2011-02-01

    Geographic information system (GIS) is the computer system in support of computer software with collection, storage, management, retrieval and comprehensive analysis of a variety of geospatial information, with various forms output data and graphics products. This paper introduced GIS data organization and its main applications in distribution power network automation, including both offline and online, and proposed component-based system development model and the need to establish WEBGIS and reliability.

  9. Kink and Sausage Modes in Nonuniform Magnetic Slabs with Continuous Transverse Density Distributions

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Li, Bo; Chen, Shao-Xia; Guo, Ming-Zhe

    2015-11-01

    We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introduces a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.

  10. Study of density distribution in a near-critical simple fluid (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Michels, Teun

    1992-01-01

    This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.

  11. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  12. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  13. E→H mode transition density and power in two types of inductively coupled plasma configuration

    SciTech Connect

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang

    2014-07-15

    E → H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4 Pa (ν/ω=1) for argon. Then the transition density hardly changes at low pressures (ν/ω≪1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E → H mode transition and control the transition points in real plasma processes.

  14. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  15. A novel high-density power energy harvesting methodology for transmission line online monitoring devices

    NASA Astrophysics Data System (ADS)

    Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen; Liu, Yilu

    2016-07-01

    This paper presents a novel energy-harvesting model which takes the primary current, secondary turns, dimension, the magnitude of magnetic flux density B, and the core loss resistance into consideration systematically. The relationship among the potential maximum output power, the dimension of energy harvesting coil (EHC), the load type of EHC, and the secondary turns is predicted by theoretical analysis and further verified by experiments. A high power density harvester is also developed and tested. It is shown that the power density of this novel harvester is 0.7 mW/g at 10 A, which is more than 2 times powerful than the traditional ones. Hence, it could lighten the half weight of the harvester at the same conditions.

  16. Durability of Low Platinum Fuel Cells Operating at High Power Density

    SciTech Connect

    Polevaya, Olga; Blanchet, Scott; Ahluwalia, Rajesh; Borup, Rod; Mukundan, Rangachary

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  17. Assessment of distributed solar power systems: Issues and impacts

    NASA Astrophysics Data System (ADS)

    Moyle, R. A.; Chernoff, H.; Schweizer, T. C.; Patton, J. B.

    1982-11-01

    The installation of distributed solar-power systems presents electric utilities with a host of questions. Some of the technical and economic impacts of these systems are discussed. Among the technical interconnect issues are isolated operation, power quality, line safety, and metering options. Economic issues include user purchase criteria, structures and installation costs, marketing and product distribution costs, and interconnect costs. An interactive computer program that allows easy calculation of allowable system prices and allowable generation-equipment prices was developed as part of this project. It is concluded that the technical problems raised by distributed solar systems are surmountable, but their resolution may be costly. The stringent purchase criteria likely to be imposed by many potential system users and the economies of large-scale systems make small systems (less than 10 to 20 kW) less attractive than larger systems. Utilities that consider life-cycle costs in making investment decisions and third-party investors who have tax and financial advantages are likely to place the highest value on solar-power systems.

  18. D0 Cryogenic Controls I/O Base Power Distribution

    SciTech Connect

    Markley, D.; /Fermilab

    1991-03-09

    The D0 cryogenic control system has 3 I/O bases and 1 25 amp 24vdc power supply. Each I/O base uses both 120 vac and 24 vdc. There are as many as 14 modules in each base, depending on what type of module it may require ac or dc. Then there are as many as 32 devices (instrumentation) per module. There is a power distribution network that provides power to this system. It was configured so that no conductors, devices, or components could carry or receive more current or voltage than they could safely handle. This is done to protect both personel and components from fire, heat, and electric shock.

  19. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    SciTech Connect

    Matos, Al; Stuby, Rick

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  20. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  1. Power Management and Distribution (PMAD) Model Development: Final Report

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    2011-01-01

    Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.

  2. Klystron Cluster Scheme for ILC High Power RF Distribution

    SciTech Connect

    Nantista, Christopher; Adolphsen, Chris; /SLAC

    2009-07-06

    We present a concept for powering the main linacs of the International Linear Collider (ILC) by delivering high power RF from the surface via overmoded, low-loss waveguides at widely spaced intervals. The baseline design employs a two-tunnel layout, with klystrons and modulators evenly distributed along a service tunnel running parallel to the accelerator tunnel. This new idea eliminates the need for the service tunnel. It also brings most of the warm heat load to the surface, dramatically reducing the tunnel water cooling and HVAC requirements. In the envisioned configuration, groups of 70 klystrons and modulators are clustered in surface buildings every 2.5 km. Their outputs are combined into two half-meter diameter circular TE{sub 01} mode evacuated waveguides. These are directed via special bends through a deep shaft and along the tunnel, one upstream and one downstream. Each feeds approximately 1.25 km of linac with power tapped off in 10 MW portions at 38 m intervals. The power is extracted through a novel coaxial tap-off (CTO), after which the local distribution is as it would be from a klystron. The tap-off design is also employed in reverse for the initial combining.

  3. Maximum theoretical power density of lithium-air batteries with mixed electrolyte

    NASA Astrophysics Data System (ADS)

    Mehta, M.; Bevara, V.; Andrei, P.

    2015-07-01

    An analytical model is developed for the discharge voltage of Li-air batteries with mixed organic/aqueous electrolyte and used to analyze the effects of the oxygen dissolution, solubility, pressure, and diffusivity, reaction rates, and internal resistance on the power density of Li-air batteries. By carefully identifying the model parameters using experimental data it is shown that, for discharge currents above 25 mA cm-2 the power of these batteries is mainly limited by the large internal resistance of the membrane and membrane/electrolyte interfaces (which is currently larger than 100 Ω cm2), while for smaller discharge currents the power is limited by the low oxygen concentration at the reaction sites. The maximum power density can be increased by approximately 1.5 times if the internal resistance is decreased from 100 Ω cm2 to 25 Ω cm2. This relatively small increase in the power density is due to the low dissolution rate and solubility of the oxygen in the liquid electrolyte. Finally, when the battery is operated at maximum discharge power, the oxygen diffusion length in the aqueous electrolyte is under 1 μm, which shows that one needs to use partly wet cathodes in order to achieve high power densities in these batteries.

  4. Random sampling of skewed distributions implies Taylor's power law of fluctuation scaling.

    PubMed

    Cohen, Joel E; Xu, Meng

    2015-06-23

    Taylor's law (TL), a widely verified quantitative pattern in ecology and other sciences, describes the variance in a species' population density (or other nonnegative quantity) as a power-law function of the mean density (or other nonnegative quantity): Approximately, variance = a(mean)(b), a > 0. Multiple mechanisms have been proposed to explain and interpret TL. Here, we show analytically that observations randomly sampled in blocks from any skewed frequency distribution with four finite moments give rise to TL. We do not claim this is the only way TL arises. We give approximate formulae for the TL parameters and their uncertainty. In computer simulations and an empirical example using basal area densities of red oak trees from Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. Our results show that the correlated sampling variation of the mean and variance of skewed distributions is statistically sufficient to explain TL under random sampling, without the intervention of any biological or behavioral mechanisms. This finding connects TL with the underlying distribution of population density (or other nonnegative quantity) and provides a baseline against which more complex mechanisms of TL can be compared. PMID:25852144

  5. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  6. Nest-density distribution patterns in a yellow-legged gull archipelago colony

    NASA Astrophysics Data System (ADS)

    Vidal, Eric; Roche, Philip; Bonnet, Véronique; Tatoni, Thierry

    2001-12-01

    The nest density distribution of yellow-legged gulls Larus cachinnans was investigated on the large Marseille archipelago colony (south-east France) which houses c. 18 000 breeding pairs. The study was performed at two investigation scales, including both mean nesting density on the nine study islands and density distribution within 171 sampling plots. The mean nesting density on each island was negatively correlated with island surface area and with the distance from the initial colony location (south-east end of the archipelago). No significant correlation was found with the other island parameters analysed (maximum elevation, shape index and distance from continent). A partial least squares regression performed between denstiy data from 171 500 m 2 sampling plots and environmental variables showed that the mostly explaining factors were island isolation and percentage of rocks in the plots (positive correlation), and distance of the island from the south-east end of the archipelago, island area, distance from plot to seaside and percentage of stone in the plots (negative correlation). Thus in our case, vegetation parameters (cover and height) were not influencial factors in nest density distribution.

  7. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  8. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  9. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  10. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  11. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  12. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density.

    PubMed

    Zhang, Sui; Chung, Tai-Shung

    2013-09-01

    We have investigated the instant and accumulative effects of salt permeability on the sustainability of high power density in the pressure-retarded osmosis (PRO) process experimentally and theoretically. Thin-film composite (TFC) hollow-fiber membranes were prepared. A critical wall thickness was observed to ensure sufficient mechanical stability and hence a low salt permeability, B. The experimental results revealed that a lower B was essential to enhance the maximum power density from 15.3 W/m(2) to as high as 24.3 W/m(2) when 1 M NaCl and deionized water were feeds. Modeling work showed that a large B not only causes an instant drop in the initial water flux but also accelerates the flux decline at high hydraulic pressures, leading to reduced optimal operating pressure and maximal power density. However, the optimal operating pressure to harvest energy can be greater than one-half of the osmotic pressure gradient across the membrane if one can carefully design a PRO membrane with a large water permeability, small B value, and reasonably small structural parameter. It was also found that a high B accumulates salts in the feed, leads to the oversalinization of the feed, and largely lowers both the water flux and power density along the membrane module. Therefore, a low salt permeability is highly desirable to sustain high power density not only locally but also throughout the whole module. PMID:23941367

  13. Distribution, density, and biomass of introduced small mammals in the southern mariana islands

    USGS Publications Warehouse

    Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.

    2009-01-01

    Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely

  14. 1.0 Mm Maps and Radial Density Distributions of Southern Hii/molecular Cloud Complexes

    NASA Technical Reports Server (NTRS)

    Cheung, L. H.; Frogel, J. A.; Gezar, D. Y.; Hauser, M. G.

    1980-01-01

    Several 1.0 continuum mapping observations were made of seven southern hemisphere h12/molecular cloud complexes with 65 arcsec resolution. The radial density distribution of the clouds with central luminosity sources was determined observationally. Strong similarities in morphology and general physical conditions were found to exist among all of the southern clouds in the sample.

  15. ESTIMATION OF SOYBEAN ROOT LENGTH DENSITY DISTRIBUTION WITH DIRECT AND SENSOR BASED MEASUREMENTS OF CLAYPAN MORPHOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic and morphological properties of claypan landscapes cause variability in soybean root and shoot biomass. This study was conducted to develop predictive models of soybean root length density distribution (RLDd) using direct measurements and sensor based estimators of claypan morphology. A c...

  16. Control of ion density distribution by magnetic traps for plasma electrons

    SciTech Connect

    Baranov, Oleg; Romanov, Maxim; Fang Jinghua; Cvelbar, Uros; Ostrikov, Kostya

    2012-10-01

    The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasma electrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  18. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  19. Progress in High Power Density SOFC Material Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Sofie, Stephen W.; Setlock, John A.; Misra, Ajay K.

    2004-01-01

    Solid oxide fuel cell (SOFC) systems for aircraft applications require order of magnitude increase in specific power density and long life under aircraft operating conditions. Advanced SOFC materials and fabrication processes are being developed at NASA GRC to increase specific power density and durability of SOFC cell and stack. Initial research efforts for increasing specific power density are directed toward increasing the operating temperature for the SOFC system and reducing the weight of the stack. While significant research is underway to develop anode supported SOFC system operating at temperatures in the range of 650 - 850 C for ground power generation applications, such temperatures may not yield the power densities required for aircraft applications. For electrode-supported cells, SOFC stacks with power densities greater than 1.0 W/sq cm are favorable at temperatures in excess of 900 C. The performance of various commercial and developmental anode supported cells is currently being evaluated in the temperature range of 900 to 1000 C to assess the performance gains and materials reliability. The results from these studies will be presented. Since metal interconnects developed for lower temperature operation are not practical at these high temperatures, advanced perovskite based ceramic interconnects with high electronic conductivity and lower sintering temperatures are being developed. Another option for increasing specific power density of SOFC stacks is to decrease the stack weight. Since the interconnect contributes to a significant portion of the stack weight, considerable weight benefits can be derived by decreasing its thickness. Eliminating the gas channels in the interconnect by engineering the pore structure in both anode and cathode can offer significant reduction in thickness of the ceramic interconnect material. New solid oxide fuel cells are being developed with porous engineered electrode supported structures with a 10 - 20 micron thin

  20. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    NASA Astrophysics Data System (ADS)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  1. Non-Cubic Power-law Scaling of Density in Metallic Glasses (Invited)

    NASA Astrophysics Data System (ADS)

    Zeng, Q. C.; Kono, Y.; Lin, Y.; Zeng, Z.; Wang, J.; Sinogeikin, S. V.; Park, C.; Meng, Y.; Yang, W.; Mao, W. L.

    2013-12-01

    Understanding structure-property relationships and dimensionality plays a central role in materials science. A cubic power law relationship between the average interatomic distance and the global density is commonly expected in 'disordered' glasses and has been extensively employed in various measurements. However, this relationship has never been rigorously verified which challenges our understanding of glass materials. Here, by using high pressure as a tuning tool, we rigorously demonstrated that the density of metallic glass (MG) varies with the 2.5 power of its fundamental atomic-level length scale (the inverse of the principal diffraction peak position, 1/q1). This falls between the 3-dimensional density and 1-dimensional length instead of the expected cubic power-law relationship. We further demonstrated the 2.5 power-law is universally valid for MGs of different compositions, as well as the same MG at different pressures. This study includes high quality data from multiple techniques which provides compelling evidence of the non-cubic power-law scaling in MGs. It has important implications not only in the practical measurements of density, or any measurement involving a change in length scale under various environments by correcting the extensively employed cubic power-law, but also in understanding the real atomic packing in glasses by providing a critical new constraint on a structure-property relationship.

  2. Infrared divergence of pure Einstein gravity contributions to the cosmological density power spectrum.

    PubMed

    Noh, Hyerim; Jeong, Donghui; Hwang, Jai-Chan

    2009-07-10

    We probe the pure Einstein gravity contributions to the second-order density power spectrum. On the small scale, we discover that Einstein's gravity contribution is negligibly small. This guarantees that Newton's gravity is currently sufficient to handle the baryon acoustic oscillation scale. On the large scale, however, we discover that Einstein's gavity contribution to the second-order power spectrum dominates the linear-order power spectrum. Thus, the pure Einstein gravity contribution appearing in the third-order perturbation leads to an infrared divergence in the power spectrum. PMID:19659195

  3. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  4. Life cycle assessment of overhead and underground primary power distribution.

    PubMed

    Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack

    2010-07-15

    Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems. PMID:20553042

  5. Development of Optimized Core Design and Analysis Methods for High Power Density BWRs

    NASA Astrophysics Data System (ADS)

    Shirvan, Koroush

    Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR capital cost. Generally, the core power density in BWRs is limited by the thermal Critical Power of its assemblies, below which heat removal can be accomplished with low fuel and cladding temperatures. The present study investigates both increases in the heat transfer area between ~he fuel and coolant and changes in operating parameters to achieve higher power levels while meeting the appropriate thermal as well as materials and neutronic constraints. A scoping study is conducted under the constraints of using fuel with cylindrical geometry, traditional materials and enrichments below 5% to enhance its licensability. The reactor vessel diameter is limited to the largest proposed thus far. The BWR with High power Density (BWR-HD) is found to have a power level of 5000 MWth, equivalent to 26% uprated ABWR, resulting into 20% cheaper O&M and Capital costs. This is achieved by utilizing the same number of assemblies, but with wider 16x16 assemblies and 50% shorter active fuel than that of the ABWR. The fuel rod diameter and pitch are reduced to just over 45% of the ABWR values. Traditional cruciform form control rods are used, which restricts the assembly span to less than 1.2 times the current GE14 design due to limitation on shutdown margin. Thus, it is possible to increase the power density and specific power by 65%, while maintaining the nominal ABWR Minimum Critical Power Ratio (MCPR) margin. The plant systems outside the vessel are assumed to be the same as the ABWR-Il design, utilizing a combination of active and passive safety systems. Safety analyses applied a void reactivity coefficient calculated by SIMULA TE-3 for an equilibrium cycle core that showed a 15% less negative coefficient for the BWR-HD compared to the ABWR. The feedwater

  6. A Multi-Agent Design for Power Distribution Systems Automation

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. Jawad

    A new Multi Agent System (MAS) design for fault location, isolation and restoration in power distribution systems is presented. In proposed approach, when there is a fault in the Power Distribution System (PDS), MAS quickly isolates the fault and restores the service to fault-free zones. Hierarchical coordination strategy is introduced to manage the agents which integrate the advantages of both centralized and decentralized coordination strategies. In this framework, Zone Agent (ZA) locate and isolate the fault based on the locally available information and assist the Feeder Agent (FA) for reconfiguration and restoration. FA can solve the restoration problem using the existing algorithms for the 0-1 Knapsack problem. A novel Q-learning mechanism is also introduced to support the FAs in decision making for restoration. Also a distributed MAS-Based Load Shedding (LS) technique has been used to supply as many of higher priority customers as possible, in case there is more demand than generation. The design is illustrated by the use of simulation case studies for fault location, isolation and restoration on West Virginia Super Circuit (WVSC) and hardware implementation for fault location and isolation in a laboratory platform. The results from the case studies indicate the performance of proposed MAS designs.

  7. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  8. Power density of piezoelectric transformers improved using a contact heat transfer structure.

    PubMed

    Shao, Wei Wei; Chen, Li Juan; Pan, Cheng Liang; Liu, Yong Bin; Feng, Zhi Hua

    2012-01-01

    Based on contact heat transfer, a novel method to increase power density of piezoelectric transformers is proposed. A heat transfer structure is realized by directly attaching a dissipater to the piezoelectric transformer plate. By maintaining the vibration mode of the transformer and limiting additional energy losses from the contact interface, an appropriate design can improve power density of the transformer on a large scale, resulting from effective suppression of its working temperature rise. A prototype device was fabricated from a rectangular piezoelectric transformer, a copper heat transfer sheet, a thermal grease insulation pad, and an aluminum heat radiator. The experimental results show the transformer maintains a maximum power density of 135 W/cm(3) and an efficiency of 90.8% with a temperature rise of less than 10 °C after more than 36 h, without notable changes in performance. PMID:22293737

  9. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest

    PubMed Central

    Meneses, Francisco M.; Queirós, Fernanda C.; Montoya, Pedro; Miranda, José G. V.; Dubois-Mendes, Selena M.; Sá, Katia N.; Luz-Santos, Cleber; Baptista, Abrahão F.

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F(1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F(1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F(1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA. PMID:27540360

  10. Non-power law behavior of the radial profile of phase-space density of halos

    SciTech Connect

    Popolo, A. Del

    2011-07-01

    We study the pseudo phase-space density, ρ(r)/σ{sup 3}(r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ{sup 3}(r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ{sup 3}(r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ{sup 3}(r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  11. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.

    PubMed

    Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA. PMID:27540360

  12. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. PMID:27214752

  13. Low density, microcellular, dopable, agar/gelatin foams for pulsed power experiments

    SciTech Connect

    McNamara, W.F.; Aubert, J.H.

    1997-04-01

    Low-density, microcellular foams prepared from the natural polymers agar and gelatin have been developed for pulsed-power physics experiments. Numerous experiments were supported with foams having densities at or below 10 mg/cm{sup 3}. For some of the experiments, the agar/gelatin foam was uniformly doped with metallic elements using soluble salts. Depending on the method of preparation, cell sizes were typically below 10 microns and for one process were below 1.0 micron.

  14. Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel-Ziv complexity.

    PubMed

    Liu, Xiaokun; Zhang, Chunlai; Ji, Zheng; Ma, Yi; Shang, Xiaoming; Zhang, Qi; Zheng, Wencheng; Li, Xia; Gao, Jun; Wang, Ruofan; Wang, Jiang; Yu, Haitao

    2016-04-01

    To investigate the electroencephalograph (EEG) background activity in patients with Alzheimer's disease (AD), power spectrum density (PSD) and Lempel-Ziv (LZ) complexity analysis are proposed to extract multiple effective features of EEG signals from AD patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared with the control group, the relative PSD of AD group is significantly higher in the theta frequency band while lower in the alpha frequency bands. In order to explore the nonlinear information, Lempel-Ziv complexity (LZC) and multi-scale LZC is further applied to all electrodes for the four frequency bands. Analysis results demonstrate that the group difference is significant in the alpha frequency band by LZC and multi-scale LZC analysis. However, the group difference of multi-scale LZC is much more remarkable, manifesting as more channels undergo notable changes, particularly in electrodes O1 and O2 in the occipital area. Moreover, the multi-scale LZC value provided a better classification between the two groups with an accuracy of 85.7 %. In addition, we combine both features of the relative PSD and multi-scale LZC to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature, reaching 91.4 %. The obtained results show that analysis of PSD and multi-scale LZC can be taken as a potential comprehensive measure to distinguish AD patients from the normal controls, which may benefit our understanding of the disease. PMID:27066150

  15. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  16. Operational maintenance data for power generation distribution and HVAC components

    SciTech Connect

    Hollis, H.D.; Hale, P.S. Jr.; Arno, R.G.; Briggs, S.J.

    1995-12-31

    This paper describes the culmination of a 24,000 man hour effort to collect operational and maintenance data on 239 power generation, power distribution and HVAC items, including gas turbine generators, diesel engine generators, switch gear assemblies, cables, boilers, piping, valves and chillers. This program was designed to determine the effects of new technology equipment, i.e., equipment installed after 1971, on availability. The central hypothesis was that this new equipment would exhibit a significant increase in availability, with corresponding decreases in required maintenance and the occurrence of failures. Information was obtained on a variety of commercial and industrial facility types (including office buildings, hospitals, water treatment facilities, prisons, utilities, manufacturing facilities, school universities and bank computer centers), with varying degrees of maintenance quality.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  18. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  19. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    negotiation. Communication latency is modeled using a user-defined probability density function. Failure-tolerant communication strategies are developed for agent communications. Major elements of advanced DA are developed in a completely distributed way and successfully tested for several IEEE standard systems, including: Fault Detection, Location, Isolation, and Service Restoration (FLISR); Coordination of Distributed Energy Storage Systems (DES); Distributed Power Flow (DPF); Volt-VAR Control (VVC); and Loss Reduction (LR).

  20. Neutron density distribution and the halo structure of {sup 22}C

    SciTech Connect

    Sharma, Manjari; Khan, Z. A.; Haider, W.; Bhagwat, A.; Gambhir, Y. K.

    2011-03-15

    The recently measured reaction cross sections for the neutron-rich carbon isotopes ({sup 19}C, {sup 20}C, and {sup 22}C) on a proton target at 40 A MeV are analyzed using the finite range Glauber model (FRGM) and the microscopic optical potential calculated within the Brueckner-Hartree-Fock formalism (BHF). In FRGM nucleon-nucleon cross sections are used, while in the latter (BHF), Hamada-Johnston, Urbana v-14, and the Argonne v-18 internucleon potentials are employed to calculate the microscopic optical potential. The required nucleon density distributions are calculated within the relativistic mean-field (RMF) framework. To test the halo structure, the extended neutron density distribution for {sup 22}C is also used. The analysis reveals that the BHF results of all three internucleon potentials are very close to each other, and also agree with the corresponding results of the FRGM. Our results, using RMF densities, are in agreement with the experimental data for all isotopes of carbon except {sup 22}C, for which we require extended neutron density distribution, indicating a halo structure.

  1. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  2. Optimal multi-stage planning of power distribution systems

    SciTech Connect

    Gonen, T.; Ramirez-Rosado, I.J.

    1987-04-01

    This paper presents a completely-dynamic mixed-integer model to solve the optimal sizing, timing, and location of distribution substation and feeder expansion problems simultaneously. The objective function of the model represents the present worth of costs of investment, energy, and demand losses of the system which takes place throughout the planning time horizon. It is minimized subject to the Kirchhoff's current law, power capacity limits, and logical constraints by using a standard mathematical programming system. The developed model allows to include the explicit constraints of radiality and voltage drop in its formulation.

  3. Raising the Bar: Increased Hydraulic Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis

    SciTech Connect

    Straub, AP; Yip, NY; Elimelech, M

    2014-01-01

    Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation at this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.

  4. Automated fault location and diagnosis on electric power distribution feeders

    SciTech Connect

    Zhu, J.; Lubkeman, D.L.; Girgis, A.A.

    1997-04-01

    This paper presents new techniques for locating and diagnosing faults on electric power distribution feeders. The proposed fault location and diagnosis scheme is capable of accurately identifying the location of a fault upon its occurrence, based on the integration of information available from disturbance recording devices with knowledge contained in a distribution feeder database. The developed fault location and diagnosis system can also be applied to the investigation of temporary faults that may not result in a blown fuse. The proposed fault location algorithm is based on the steady-state analysis of the faulted distribution network. To deal with the uncertainties inherent in the system modeling and the phasor estimation, the fault location algorithm has been adapted to estimate fault regions based on probabilistic modeling and analysis. Since the distribution feeder is a radial network, multiple possibilities of fault locations could be computed with measurements available only at the substation. To identify the actual fault location, a fault diagnosis algorithm has been developed to prune down and rank the possible fault locations by integrating the available pieces of evidence. Testing of the developed fault location and diagnosis system using field data has demonstrated its potential for practical use.

  5. A model for (non-lognormal) density distributions in isothermal turbulence

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2013-04-01

    We propose a new, physically motivated fitting function for density probability distribution functions (PDFs) in turbulent, ideal gas. Although it is generally known that when gas is isothermal, the PDF is approximately lognormal in the core, high-resolution simulations show large deviations from exact lognormality. The proposed function provides an extraordinarily accurate description of the density PDFs in simulations with Mach numbers ˜0.1-15 and dispersion in log (ρ) from ˜0.01 to 4 dex. Compared to a lognormal or lognormal-skew-kurtosis model, the fits are improved by orders of magnitude in the wings of the distribution (with fewer free parameters). This is true in simulations using a variety of distinct numerical methods, including or excluding magnetic fields. Deviations from lognormality are represented by a parameter T that appears to increase systematically with the compressive Mach number of the simulations. The proposed distribution can be derived from intermittent cascade models of the longitudinal (compressive) velocity differences, which should be directly related to density fluctuations, and we also provide a simple interpretation of the density PDF as the product of a continuous-time relaxation process. As such this parameter T is consistent with the same single parameter needed to explain the (intermittent) velocity structure functions; its behaviour is consistent with turbulence becoming more intermittent as it becomes more dominated by strong shocks. It provides a new and unique probe of the role of intermittency in the density (not just velocity) structure of turbulence. We show that this naturally explains some apparent contradictory results in the literature (for example, in the dispersion-Mach number relation) based on use of different moments of the density PDF, as well as differences based on whether volume-weighted or mass-weighted quantities are measured. We show how these are fundamentally related to the fact that mass conservation

  6. Altitude and forest edges influence the density and distribution of pygmy tarsiers (Tarsius pumilus).

    PubMed

    Grow, Nanda; Gursky, Sharon; Duma, Yulius

    2013-05-01

    In this study, we examine how high-altitude ecology and anthropogenic edges relate to the density and distribution of pygmy tarsiers. Pygmy tarsiers (Tarsius pumilus) are extremely small-bodied primates (55 g) that are endemic to high-altitude forest and exhibit several differences from lowland Sulawesian tarsier species. From June to September 2010 and January to March 2012, we conducted a population census of pygmy tarsiers across multiple altitudes. Sampling took place within a 1.2 km(2) area encompassing altitudes of 2,000-2,300 m a.s.l. on Mt. Rore Katimbu in Lore Lindu National Park, central Sulawesi, Indonesia. We observed 22 individuals, with an estimated population density of 92 individuals per 100 ha. These results indicate that pygmy tarsiers live at a lower density than lowland Sulawesian tarsier species. Lower density was associated with decreased resources at higher altitudes, including decreased tree size, tree density, and insect biomass. Within the sample area, we found pygmy tarsiers in only 8 of 24 (33%) quadrats, suggesting a nonrandom distribution that probably overinflated this population density estimate. Pygmy tarsiers exhibited a clumped distribution near anthropogenic edges that were associated with increased insect abundance and biomass. Airborne insects were more abundant along forest edges than within the forest interior, and pygmy tarsiers were observed to forage along edges where there was a higher abundance of Lepidoptera and Orthoptera. Tarsiers may mitigate the decreased availability of insects at high altitudes by adjusting their ranging patterns to remain near forest edges. PMID:23325720

  7. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  8. Space Station module Power Management And Distribution (PMAD) system

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1990-01-01

    This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface

  9. Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy.

    PubMed

    Wielgoszewski, Grzegorz; Pałetko, Piotr; Tomaszewski, Daniel; Zaborowski, Michał; Jóźwiak, Grzegorz; Kopiec, Daniel; Gotszalk, Teodor; Grabiec, Piotr

    2015-12-01

    The use of scanning thermal microscopy (SThM) and Kelvin probe force microscopy (KPFM) to investigate silicon nanowires (SiNWs) is presented. SThM allows imaging of temperature distribution at the nanoscale, while KPFM images the potential distribution with AFM-related ultra-high spatial resolution. Both techniques are therefore suitable for imaging the resistance distribution. We show results of experimental examination of dual channel n-type SiNWs with channel width of 100 nm, while the channel was open and current was flowing through the SiNW. To investigate the carrier distribution in the SiNWs we performed SThM and KPFM scans. The SThM results showed non-symmetrical temperature distribution along the SiNWs with temperature maximum shifted towards the contact of higher potential. These results corresponded to those expressed by the distribution of potential gradient along the SiNWs, obtained using the KPFM method. Consequently, non-uniform distribution of resistance was shown, being a result of non-uniform carrier density distribution in the structure and showing the pinch-off effect. Last but not least, the results were also compared with results of finite-element method modeling. PMID:26381074

  10. A distributed control approach for power and energy management in a notional shipboard power system

    NASA Astrophysics Data System (ADS)

    Shen, Qunying

    The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability

  11. Cell density in prostate histopathology images as a measure of tumor distribution

    NASA Astrophysics Data System (ADS)

    Reynolds, Hayley M.; Williams, Scott; Zhang, Alan M.; Ong, Cheng Soon; Rawlinson, David; Chakravorty, Rajib; Mitchell, Catherine; Haworth, Annette

    2014-03-01

    We have developed an automatic technique to measure cell density in high resolution histopathology images of the prostate, allowing for quantification of differences between tumour and benign regions of tissue. Haemotoxylin and Eosin (H&E) stained histopathology slides from five patients were scanned at 20x magnification and annotated by an expert pathologist. Colour deconvolution and a radial symmetry transform were used to detect cell nuclei in the images, which were processed as a set of small tiles and combined to produce global maps of cell density. Kolmogorov-Smirnov tests showed a significant difference in cell density distribution between tumour and benign regions of tissue for all images analyzed (p < 0.05), suggesting that cell density may be a useful feature for segmenting tumour in un-annotated histopathology images. ROC curves quantified the potential utility of cell density measurements in terms of specificity and sensitivity and threshold values were investigated for their classification accuracy. Motivation for this work derives from a larger study in which we aim to correlate ground truth histopathology with in-vivo multiparametric MRI (mpMRI) to validate tumour location and tumour characteristics. Specifically, cell density maps will be registered with T2-weighted MRI and ADC maps from diffusion-weighted MRI. The validated mpMRI data will then be used to parameterise a radiobiological model for designing focal radiotherapy treatment plans for prostate cancer patients.

  12. Distributed Power Control with Multiple Agents in a Distributed Base Station Scheme Using Macrodiversity

    NASA Astrophysics Data System (ADS)

    Leroux, Philippe; Roy, Sébastien

    Power management in wireless networks has been thoroughly studied and applied in many different contexts. However, the problem has not been tackled from a multiple-agent perspective (MA). This paper intends to do so in the context of a wireless network comprised of distributed base stations using macrodiversity. The proposed design is shown to provide efficient use of macrodiversity resources and high energy efficiency when compared with more traditional algorithms. Moreover, the power control mechanism is completely decentralized, while avoiding direct information exchange or excessive signaling, which makes it highly scalable. Its auto-configuration property, stemming from its MA basis, offers high adaptivity when experiencing high or low interference levels. This leads to a naturally balanced resource usage, while also maintaining nearly full efficiency with only a reduced set of discrete power levels, thus making low-cost electronic implementation practical.

  13. Power Law Distributions of Patents as Indicators of Innovation

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion; Hendy, Shaun

    2013-03-01

    The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Such figures however give an overly simplistic measure of innovation within a country. Here we present evidence that the distribution of patents amongst applicants within many countries is well-fitted to a power law distribution with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.

  14. Power-law distribution of gene expression fluctuations

    NASA Astrophysics Data System (ADS)

    Nacher, J. C.; Ochiai, T.

    2008-09-01

    Large-scale genomic technologies has opened new possibilities to infer gene regulatory networks from time series data. Here, we investigate the relationship between the dynamic information of gene expression in time series and the underlying network structure. First, our results show that the distribution of gene expression fluctuations (i.e., standard deviation) follows a power-law. This finding indicates that while most genes exhibit a relatively low variation in expression level, a few genes are revealed as highly variable genes. Second, we propose a stochastic model that explains the emergence of this power-law behavior. The model derives a relationship that connects the standard deviation (variance) of each node to its degree. In particular, it allows us to identify a global property of the underlying genetic regulatory network, such as the degree exponent, by only computing dynamic information. This result not only offers an interesting link to explore the topology of real systems without knowing the real structure but also supports earlier findings showing that gene networks may follow a scale-free distribution.

  15. Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3

    SciTech Connect

    Chandler, David; Primm, Trent; Maldonado, G Ivan

    2010-01-01

    The mission of the Reduced Enrichment for Research and Test Reactors Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low-enriched uranium (LEU) fuel and targets. Oak Ridge National Laboratory (ORNL) is currently reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction offlux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. Power distributions were calculated in the fuel elements of the HFIR, a research reactor at ORNL, via MCNP and were compared to experimentally obtained data. This study was performed to validate Monte Carlo methods for power density calculations and to observe biases. A current three-dimensional MCNP model was modified to replicate the 1965 HFIR Critical Experiment 3 (HFIRCE-3). In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. 'Foils' (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation, and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil's activity to the activity of a normalizing foil. This analysis consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the reference foil

  16. Density and energy distribution of interface states in the grain boundaries of polysilicon nanowire.

    PubMed

    Amit, Iddo; Englander, Danny; Horvitz, Dror; Sasson, Yaniv; Rosenwaks, Yossi

    2014-11-12

    Wafer-scale fabrication of semiconductor nanowire devices is readily facilitated by lithography-based top-down fabrication of polysilicon nanowire (P-SiNW) arrays. However, free carrier trapping at the grain boundaries of polycrystalline materials drastically changes their properties. We present here transport measurements of P-SiNW array devices coupled with Kelvin probe force microscopy at different applied biases. By fitting the measured P-SiNW surface potential using electrostatic simulations, we extract the longitudinal dopant distribution along the nanowires as well as the density of grain boundaries interface states and their energy distribution within the band gap. PMID:25299928

  17. Single-phase power distribution system power flow and fault analysis

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  18. EMC and power quality standards for 20-kHz power distribution

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1987-01-01

    The Space Station Power Distribution System has been baselined as a sinusoidal single phase, 440 VRMS system. This system has certain unique characteristics directly affecting its application. In particular, existing systematic description and control documents were modified to reflect the high operating frequency. This paper will discuss amendments made on Mil STD 704 (Electrical Power Characteristics), and Mil STD 461-B (Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference). In some cases these amendments reflect changes of several orders of magnitude. Implications and impacts of these changes are discussed.

  19. Comparison study of the charge density distribution induced by heavy ions and pulsed lasers in silicon

    NASA Astrophysics Data System (ADS)

    Tian, Kai; Cao, Zhou; Xue, Yu-Xiong; Yang, Shi-Yu

    2010-01-01

    Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the Bethe-Bloch formula and the Kobetich-Katz theory, and some ionization damage parameters of Fe ions in silicon, such as the track structure and ionized charge density distribution, have been calculated and analyzed according to the theoretical calculation results. Using the Gaussian function and Beer's law, the parameters of the track structure and charge density distribution induced by a pulsed laser in silicon have also been calculated and compared with those of Fe ions in silicon, which provides a theoretical basis for ionization damage effect modeling.

  20. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    NASA Astrophysics Data System (ADS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-06-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  1. Fission fragment mass yield deduced from density distribution in the pre-scission configuration

    NASA Astrophysics Data System (ADS)

    Warda, M.; Zdeb, A.

    2015-11-01

    Static self-consistent methods usually allow one to determine the most probable fission fragments mass asymmetry. We have applied random neck rupture mechanism to the nuclei in the configuration at the end of fission paths. Fission fragment mass distributions have been deduced from the pre-scission nuclear density distribution obtained from the self-consistent calculations. Potential energy surfaces as well as nuclear shapes have been calculated in the fully microscopic theory, namely the constrained Hartree-Fock-Bogoliubov model with the effective Gogny D1S density-dependent interaction. The method has been applied for analysis of fission of {}{256,258}Fm, 252Cf and 180Hg and compared with the experimental data.

  2. Power Spectral Density plots inside MRF spots made with a polishing abrasive-free MR fluid

    SciTech Connect

    DeGroote, J.E.; Marino, A.E.; Spencer, K.E.; Jacobs, S.D.

    2005-05-31

    We present power spectral density (PSD) data measured inside magnetorheological finishing (MRF) spots in orthogonal directions. MRF spots exhibit a distinct grooving pattern that varies for each fluid/material combination. This spot analysis may provide new insights on the material removal process. Issues associated with taking orthogonal PSD measurements are also discussed.

  3. The reasons for the high power density of fuel cells fabricated with directly deposited membranes

    NASA Astrophysics Data System (ADS)

    Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon

    2016-09-01

    In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.

  4. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  5. Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping

    SciTech Connect

    Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

    2012-09-30

    The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

  6. Using Horizontal Cosmic Muons to Investigate the Density Distribution of the Popocatepetl Volcano Lava Dome

    NASA Astrophysics Data System (ADS)

    Grabski, V.; Lemus, V.; Nuñez-Cadena, R.; Aguilar, S.; Menchaca-Rocha, A.; Fucugauchi, J. U.

    2013-05-01

    Study of volcanic inner density distributions using cosmic muons is an innovative method, which is still in stage of development[1]. The method can be used to determine the average density along the muon track, as well as the density distribution of any volume by measuring the attenuation of cosmic muon flux in it[2]. In this study we present an analysis of using the muon radiography, integrating geophysical data to determine the density distribution of the Popocatepetl volcano. Popocatepelt is a large andesitic stratovolcano built in the Trans-Mexican volcanic arc, which has been active over the past years. The recent activity includes emplacement of a lava dome, with vulcanian explosions and frequent scoria and ash emissions. The study is directed to detect any variations in the dome and magmatic conduit system in some interval of time in the volume of Popocatepetl volcano lava dome. The study forms part of a long-term project of volcanic hazard monitoring that includes the Popocatepetl and Colima volcanoes[3]. The volcanoes are being studied by conventional geophysical techniques, including aerogeophysical surveys directed to determine the internal structure and characterize source characteristics and mechanism. The detector design mostly depends on the volume size to be investigated as well as the image-taking frequency to detect dynamic density variations. In this study we present a detector prototype design and suggestions on data taking, transferring and analyzing systems. We also present the approximate cost estimation of the suggested detector and discussion on a proposal about the creation of a national network for a volcanic alarm system. References [1] eg.H. Tanaka, et al., Nucl. Instr. and Meth. A 507 (2003) 657. [2] V. Grabski et al, NIM A 585 (2008) 128-135. [3] G. Conte, J. Urrutia-Fucugauchi, et al., International Geology Review, Vol. 46, 2004, p. 210-225.

  7. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California

    NASA Astrophysics Data System (ADS)

    Campbell, Gregory S.; Thomas, Len; Whitaker, Katherine; Douglas, Annie B.; Calambokidis, John; Hildebrand, John A.

    2015-02-01

    Trends in cetacean density and distribution off southern California were assessed through visual line-transect surveys during thirty-seven California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises from July 2004-November 2013. From sightings of the six most commonly encountered cetacean species, seasonal, annual and overall density estimates were calculated. Blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) were the most frequently sighted baleen whales with overall densities of 0.91/1000 km2 (CV=0.27), 2.73/1000 km2 (CV=0.19), and 1.17/1000 km2 (CV=0.21) respectively. Species specific density estimates, stratified by cruise, were analyzed using a generalized additive model to estimate long-term trends and correct for seasonal imbalances. Variances were estimated using a non-parametric bootstrap with one day of effort as the sampling unit. Blue whales were primarily observed during summer and fall while fin and humpback whales were observed year-round with peaks in density during summer and spring respectively. Short-beaked common dolphins (Delphinus delphis), Pacific white-sided dolphins (Lagenorhynchus obliquidens) and Dall's porpoise (Phocoenoidesdalli) were the most frequently encountered small cetaceans with overall densities of 705.83/1000 km2 (CV=0.22), 51.98/1000 km2 (CV=0.27), and 21.37/1000 km2 (CV=0.19) respectively. Seasonally, short-beaked common dolphins were most abundant in winter whereas Pacific white-sided dolphins and Dall's porpoise were most abundant during spring. There were no significant long-term changes in blue whale, fin whale, humpback whale, short-beaked common dolphin or Dall's porpoise densities while Pacific white-sided dolphins exhibited a significant decrease in density across the ten-year study. The results from this study were fundamentally consistent with earlier studies, but provide greater temporal and seasonal resolution.

  8. Distributed fusion of multitarget densities and consensus PHD/CPHD filters

    NASA Astrophysics Data System (ADS)

    Battistelli, G.; Chisci, L.; Fantacci, C.; Farina, A.; Mahler, Ronald P. S.

    2015-05-01

    The paper presents a theoretical approach to the multiagent fusion of multitarget densities based on the information-theoretic concept of Kullback-Leibler Average (KLA). In particular, it is shown how the KLA paradigm is inherently immune to double counting of data. Further, it is shown how consensus can effectively be adopted in order to perform in a scalable way the KLA fusion of multitarget densities over a peer-to-peer (i.e. without coordination center) sensor network. When the multitarget information available in each node can be expressed as a (possibly Cardinalized) Probability Hypothesis Density (PHD), application of the proposed KLA fusion rule leads to a consensus (C)PHD filter which can be successfully exploited for distributed multitarget tracking over a peer-to-peer sensor network.

  9. The evolution of electron density and temperature distributions in the topside ionosphere during magnetic storms

    NASA Technical Reports Server (NTRS)

    Cole, K. D.; Findlay, J. A.

    1974-01-01

    The latitudinal distributions of electron density and temperature during geomagnetic storms in the mid-latitude topside ionosphere are observed to change in a manner than can be related to the evolution of ring current particle populations. The region of auroral precipitation is characterized by correlated increases in electron temperature and density. Equatorwards of this region, there is a broad belt of elevated electron temperatures and depressed electron densities which is usually much broader than any stable auroral red arc distinguishable from the ground, but which is nevertheless the same basic physical phenomenon. The changes of position of this belt can be related to prior bursts of geomagnetic activity and injection of ring current particles into the magnetosphere.

  10. The effects of pure density evolution on the brightness distribution of cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Horack, J. M.; Emslie, A. G.; Hartmann, D. H.

    1995-01-01

    In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.

  11. Thulium heat source for high-endurance and high-energy density power systems

    SciTech Connect

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

  12. Thulium heat source for high-endurance and high-energy density power systems

    NASA Astrophysics Data System (ADS)

    Walter, C. E.; Kammeraad, J. E.; Vankonynenburg, R.; Vansant, J. H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5 to 50 kW(sub th) coupled with a power conversion efficiency of approximately 30 percent, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered.

  13. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2-215 solar radii and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances of about 20 solar radii the equivalent spacecraft-measured one-dimensional density spectrum is well modeled by a single power law in the frequency range 0.0001-0.05 Hz. The flattening of the density spectrum within 20 solar radii is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind.

  14. Power law distributions and dynamic behaviour of stock markets

    NASA Astrophysics Data System (ADS)

    Richmond, P.

    2001-04-01

    A simple agent model is introduced by analogy with the mean field approach to the Ising model for a magnetic system. Our model is characterised by a generalised Langevin equation = F ϕ + G ϕ t where t is the usual Gaussian white noise, i.e.: t t' = 2Dδ t-t' and t = 0. Both the associated Fokker Planck equation and the long time probability distribution function can be obtained analytically. A steady state solution may be expressed as P ϕ = exp{ - Ψ ϕ - ln G(ϕ)} where Ψ ϕ = - F/ G dϕ and Z is a normalization factor. This is explored for the simple case where F ϕ = Jϕ + bϕ2 - cϕ3 and fluctuations characterised by the amplitude G ϕ = ϕ + ɛ when it readily yields for ϕ>>ɛ, a distribution function with power law tails, viz: P ϕ = exp{ 2bϕ-cϕ2 /D}. The parameter c ensures convergence of the distribution function for large values of ϕ. It might be loosely associated with the activity of so-called value traders. The parameter J may be associated with the activity of noise traders. Output for the associated time series show all the characteristics of familiar financial time series providing J < 0 and D | J|.

  15. THE STELLAR NUMBER DENSITY DISTRIBUTION IN THE LOCAL SOLAR NEIGHBORHOOD IS NORTH-SOUTH ASYMMETRIC

    SciTech Connect

    Yanny, Brian; Gardner, Susan

    2013-11-10

    We study the number density distribution of a sample of K and M dwarf stars, matched north and south of the Galactic plane within a distance of 2 kpc from the Sun, using observations from the Ninth Data Release of the Sloan Digital Sky Survey. We determine distances using the photometric parallax method, and in this context systematic effects exist which could potentially impact the determination of the number density profile with height from the Galactic plane—and ultimately affect a number density north-south asymmetry. They include: (1) the calibration of the various photometric parallax relations, (2) the ability to separate dwarfs from giants in our sample, (3) the role of stellar population differences such as age and metallicity, (4) the ability to determine the offset of the Sun from the Galactic plane, and (5) the correction for reddening from dust in the Galactic plane, though our stars are at high Galactic latitudes. We find the various analyzed systematic effects to have a negligible impact on our observed asymmetry, and using a new and larger sample of stars we confirm and refine the earlier discovery of Widrow et al. of a significant Galactic north-south asymmetry in the stellar number density distribution.

  16. The Stellar Number Density Distribution in the Local Solar Neighborhood is North-South Asymmetric

    NASA Astrophysics Data System (ADS)

    Yanny, Brian; Gardner, Susan

    2013-11-01

    We study the number density distribution of a sample of K and M dwarf stars, matched north and south of the Galactic plane within a distance of 2 kpc from the Sun, using observations from the Ninth Data Release of the Sloan Digital Sky Survey. We determine distances using the photometric parallax method, and in this context systematic effects exist which could potentially impact the determination of the number density profile with height from the Galactic plane—and ultimately affect a number density north-south asymmetry. They include: (1) the calibration of the various photometric parallax relations, (2) the ability to separate dwarfs from giants in our sample, (3) the role of stellar population differences such as age and metallicity, (4) the ability to determine the offset of the Sun from the Galactic plane, and (5) the correction for reddening from dust in the Galactic plane, though our stars are at high Galactic latitudes. We find the various analyzed systematic effects to have a negligible impact on our observed asymmetry, and using a new and larger sample of stars we confirm and refine the earlier discovery of Widrow et al. of a significant Galactic north-south asymmetry in the stellar number density distribution.

  17. Plasmaspheric Electron Density Distributions Sampled by Radio Plasma Imager on the IMAGE Satellite

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; Garcia, L. N.; Green, J. L.; Gallagher, D. L.; Carpenter, D. L.; Reinisch, B. W.; Galkin, I. A.; Khmyrov, G.; Sandel, B. R.

    2001-12-01

    Distribution of plasmaspheric density changes in response to plasma electrodynamical processes in both the ionosphere and magnetosphere. During a geomagnetic storm, for example, the plasmasphere can significantly diminish in size during the main phase of the storm and relax to regain its more normal size during recovery phase. During unusually quiet times, the plasmasphere can become quite large. The processes by which the plasmasphere is eroded and refilled are still areas of active research [Carpenter and Lemaire, 1997]. Previous in situ observations (e.g., CRRES) have shown that the plasmasphere has a lot of structures [Carpenter et al., 2000], quite possibly results of plasma dynamical processes. Recent global EUV images obtained by IMAGE also reveal large-scale plasma structures as well as large-scale variations of the plasmasphere resulting from magnetospheric activities. In this paper, we investigate the large-scale plasmaspheric density variations as a function of solar wind and geomagnetic activities by analyzing a large collection of passive RPI observations of quasi-thermal noise through the plasmasphere obtained over the first year of the IMAGE mission. We will compare our results with existing models of plasmaspheric density distributions. Carpenter, D. L., and J. Lemaire, Erosion and recovery of the plasmasphere in the plasmapause region, Space Sci. Rev., 80, 153, 1997. Carpenter, D. L., R. R. Anderson, W. Calvert, and M. B. Moldwin, CRRES observations of density cavities inside the plasmasphere, J. Geophys. Res., 105, 23323, 2000.

  18. Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins

    PubMed Central

    Pham, Christopher K.; Ramirez-Llodra, Eva; Alt, Claudia H. S.; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B.; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L.; Huvenne, Veerle A. I.; Isidro, Eduardo; Jones, Daniel O. B.; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A.

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments. PMID:24788771

  19. Marine litter distribution and density in European seas, from the shelves to deep basins.

    PubMed

    Pham, Christopher K; Ramirez-Llodra, Eva; Alt, Claudia H S; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L; Huvenne, Veerle A I; Isidro, Eduardo; Jones, Daniel O B; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments. PMID:24788771

  20. Bimodal Density Distribution of Cryptodome Dacite from the 1980 Eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hoblitt, R.P.; Harmon, R.S.

    1993-01-01

    The explosion of a cryptodome at Mount St. Helens in 1980 produced two juvenile rock types that are derived from the same source magma. Their differences-color, texture and density-are due only to vesicularity differences. The vesicular gray dacite comprises bout 72% of the juvenile material; the black dacite comprises the other 28%. The density of juvenile dacite is bimodally distributed, with peaks at 1.6 g cm-3 (gray dacite) and 2.3 g cm-3 (black dacite). Water contents, deuterium abundances, and the relationship of petrographic structures to vapor-phase crystals indicate both rock types underwent pre-explosion subsurface vesiculation and degassing. The gray dacite underwent a second vesiculation event, probably during the 18 May explosion. In the subsurface, gases probably escaped through interconnected vesicles into the permeable volcanic edifice. We suggest that nonuniform degassing of an initially homogeneous magma produced volatile gradients in the cryptodome and that these gradients were responsible for the density bimodality. That is, water contents less than about 0.2-0.4 wt% produced vesicle growth rates that were slow in comparison to the pyroclast cooling rates; greater water contents produced vesicle growth rates that were fast in comparison to cooling rates. In this scheme, the dacite densities are bimodally distributed simply because, following decompression on 18 May 1980, one clast population vesiculated while the other did not. For clasts that did vesiculate, vesicle growth continued until it was arrested by fragmentation. ?? 1993 Springer-Verlag.

  1. Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds

    SciTech Connect

    GJ Schuster, FA Simonen, SR Doctor

    2008-04-01

    The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

  2. Real time reconstruction of 3-D electron density distribution over Europe with TaD profiler

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Marinov, Pencho; Belehaki, Anna

    2015-04-01

    TaD (TSM-assisted Digisonde) profiler, developed on the base of Topside Sounder Model (TSM), provides vertical electron density profile (EDP) from the bottom of ionosphere up to the GNSS orbit heights over Digisonde sounding stations. TaD EDP uses the bottomside profile provided by Digisonde software and extends it above the F layer peak by representing O+ distribution by α-Chapman formula and H+ distribution by a single exponent. The profile above F layer peak takes the topside scale height HT and transition height hT from TSM and plasmasphere scale height Hp defined as a function of HT. All these profile parameters are adjusted to the current conditions by comparing the profile integral with measured GNSS TEC. The latter is taken from GNSS TEC maps produced by Royal Observatory of Belgium in the area (35˚, 60˚)N and (-15˚, 25˚)E. Maps of foF2 and hmF2 are produced in the same area on the base of DIAS (European Digital Upper Atmosphere Server) network of Digisonde stations and TaD profiles are calculated at all grid nodes (1˚x1˚) on latitude and longitude. Electron density at any point of the 3-D space is then obtained by simple interpolation between nodes. Possible use of reconstruction technique to GNSS applications is demonstrated by calculating the distribution of electron density along various ray paths of GNSS signals.

  3. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  4. Publication of Proceedings for the 6th Workshop on High Energy Density and High Power RF (RF 2003)

    SciTech Connect

    Victor L. Granatstein

    2004-08-08

    The 6th Workshop on High Energy Density and High Power RF (RF 2003) was held from June 22 to June 26 at the Coolfont Resort and Conference Center in Berkeley Springs, West Virginia. The Workshop was hosted by the Institute for Research in Electronics and Applied Physics (IREAP) of the University of Maryland, College Park and by the Naval Research Laboratory, Washington DC. As its name implies this was the sixth in a series of biennial workshops devoted to exchanging information and ideas on high power microwave sources and components. The applications addressed included particle accelerators, radar, HPM, space exploration, neutron sources and plasma heating and current driven in controlled thermonuclear fusion research. This Final Report includes a brief description of the RF 2003 Workshop and the distribution of the published proceedings.

  5. Ion Energy Distribution Measurements Downstream of the High Power Helicon Plasma Thruster with a Flux Conserving Nozzle Configuration

    NASA Astrophysics Data System (ADS)

    Slobodov, Ilia; Winglee, Robert; Prager, James; Ziemba, Tim; Race Roberson, B.

    2010-11-01

    The high power helicon (HPH) deposits up to 40 kW of power into a plasma, generating a plasma beam with a measured source density of 1x10^20 m-3 and energies in the range of 20-40 eV. Recently, the arrangement of magnetic nozzles downstream of the plasma source has been modified in order to produce a flux conserving configuration. Retarded field energy analyzer (RFEA) measurements of the ion energy distribution functions at two locations downstream of the plasma source, 67 cm and 144 cm away, have been carried out. Data on the number density, ion velocity, and energy density of the plasma beam at these locations will be presented. An improvement in performance over the previous nozzle configuration is observed. Additionally, results suggest that the energy density of the beam does not decrease with distance from the source between the two locations.

  6. Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics

    SciTech Connect

    Britun, Nikolay Palmucci, Maria; Konstantinidis, Stephanos; Snyders, Rony

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms of the absolute density of species, are stressed.

  7. Distribution and density of moose in relation to landscape characteristics: Effects of scale

    USGS Publications Warehouse

    Maier, J.A.K.; Ver Hoef, J.M.; McGuire, A.D.; Bowyer, R.T.; Saperstein, L.; Maier, H.A.

    2005-01-01

    We analyzed the relation between early winter distribution and density of female moose (Alces alces L.) and habitat heterogeneity in interior Alaska. We tested for effects of vegetation type, topography, distance to rivers and towns, occurrence and timing of fire, and landscape metrics. A spatial linear model was used to analyze effects of independent variables organized at multiple scales. Because densities of moose vary widely as a result of differences in management and other factors, a spatial response surface of the log of moose density was fit to remove large-scale effects. The analysis revealed that the densest populations of moose occurred closer to towns, at moderate elevations, near rivers, and in areas where fire occurred between 11 and 30 years ago. Furthermore, moose tended to occur in areas with large compact patches of varied habitat and avoided variable terrain and nonvegetated areas. Relationships of most variables with moose density occurred at or below 34 km2, suggesting that moose respond to environmental variables within a few kilometres of their location. The spatial model of density of moose developed in this study represents an important application for effective monitoring and management of moose in the boreal forest. ?? 2005 NRC.

  8. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    SciTech Connect

    Matlis, N. H. Gonsalves, A. J.; Steinke, S.; Tilborg, J. van; Shaw, B.; Mittelberger, D. E.; Geddes, C. G. R.; Matlis, E. H.; Leemans, W. P.

    2015-11-28

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function of the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.

  9. The spatial distribution of negative oxygen ion densities in a dc reactive magnetron discharge

    NASA Astrophysics Data System (ADS)

    Scribbins, Steven; Bowes, Michael; Bradley, James W.

    2013-01-01

    Using Langmuir probe-assisted eclipse laser photodetachment, the spatial distribution of O- densities in the bulk plasma of magnetron sputter tool has been determined for a range of pressures, 0.79 to 2.40 Pa. The discharge was operated in dc (200 W) with a Ti target and a fixed oxygen-argon pressure ratio of 0.2, in poisoned mode. Measurements show significant O- densities occupying an annulus downstream from the magnetic trap in regions of most positive plasma potential. With increasing pressure the region of high O- density expands and the peak densities increase reaching ˜1.5 × 1016 m-3 at 2.40 Pa, corresponding to an O- to electron density ratio (electronegativity α) of ˜2. Outside the area of dense negative ions, and in regions of the magnetic trap accessible to our probe we measure α < 0.2. The results show that these reactive magnetron plasmas, utilized for oxide film production, to be highly electronegative in regions close to the substrate.

  10. Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation

    PubMed Central

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558

  11. Curve fitting of the corporate recovery rates: the comparison of Beta distribution estimation and kernel density estimation.

    PubMed

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558

  12. The reliability of observational measurements of column density probability distribution functions

    NASA Astrophysics Data System (ADS)

    Ossenkopf-Okada, V.; Csengeri, T.; Schneider, N.; Federrath, C.; Klessen, R. S.

    2016-05-01

    Context. Probability distribution functions (PDFs) of column densities are an established tool to characterize the evolutionary state of interstellar clouds. Aims: Using simulations, we show to what degree their determination is affected by noise, line-of-sight contamination, field selection, and the incomplete sampling in interferometric measurements. Methods: We solve the integrals that describe the convolution of a cloud PDF with contaminating sources such as noise and line-of-sight emission, and study the impact of missing information on the measured column density PDF. In this way we can quantify the effect of the different processes and propose ways to correct for their impact to recover the intrinsic PDF of the observed cloud. Results: The effect of observational noise can be easily estimated and corrected for if the root mean square (rms) of the noise is known. For σnoise values below 40% of the typical cloud column density, Npeak, this involves almost no degradation in the accuracy of the PDF parameters. For higher noise levels and narrow cloud PDFs the width of the PDF becomes increasingly uncertain. A contamination by turbulent foreground or background clouds can be removed as a constant shield if the peak of the contamination PDF falls at a lower column or is narrower than that of the observed cloud. Uncertainties in cloud boundary definition mainly affect the low-column density part of the PDF and the mean density. As long as more than 50% of a cloud is covered, the impact on the PDF parameters is negligible. In contrast, the incomplete sampling of the uv-plane in interferometric observations leads to uncorrectable PDF distortions in the maps produced. An extension of the capabilities of the Atacama Large Millimeter Array (ALMA) would allow us to recover the high-column density tail of the PDF, but we found no way to measure the intermediate- and low-column density part of the underlying cloud PDF in interferometric observations.

  13. The 3D heat flux density distribution on a novel parabolic trough wavy absorber

    NASA Astrophysics Data System (ADS)

    Demagh, Yassine; Kabar, Yassine; Bordja, Lyes; Noui, Samira

    2016-05-01

    The non-uniform concentrated solar flux distribution on the outer surface of the absorber pipe can lead to large circumferential gradient temperature and high concentrated temperature of the absorber pipe wall, which is one of the primary causes of parabolic trough solar receiver breakdown. In this study, a novel shape of the parabolic trough absorber pipe is proposed as a solution to well homogenize the solar flux distribution, as well as, the temperature in the absorber wall. The conventional straight absorber located along the focal line of the parabola is replaced by wavy one (invention patent by Y. Demagh [1]) for which the heat flux density distribution on the outer surface varies in both axial and azimuthal directions (3D) while it varies only in the azimuthal direction on the former (2D). As far as we know, there is not previous study which has used a longitudinally wavy pipe as an absorber into the parabolic trough collector unit.

  14. The density distribution of refractory elements away from the Galactic plane

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Savage, Blair D.

    1989-01-01

    The density distributions of the three refractory elements Ti II, Ca II, and Fe II away from the Galactic plane are compared with the distribution of hydrogen and dust by examining plots of N s in b versus z. It is found that Ti II and Ca II are considerably more extended in z than the H I and dust and that Fe II has an intermediate extension. Although the results are strongly influenced by sample bias, the indicated exponential scale heights for the data sample are h(Ti II) not less than 2 kpc, h(Ca II) = 1 kpc, h(Fe II) = 0.5 kpc, H(H I) = 0.3 kpc, and h(E/B-V) = 0.1 kpc. Furthermore, it is demonstrated that Ti II and Ca II are much more smoothly distributed in space than the hydrogen or dust. The large scale heights for Ti II and Ca II and their smooth distributions are most easily understood as the effect of a mixture along the line of sight of two H I phases namely, a diffuse cloud phase, in which nearly all of the Ti and Ca are tied up in dust, and an intercloud medium, where refractory elements are less depleted. It is found that Ti II and Ca II mostly trace the smoothly distributed intercloud medium. The smoothness of the distributions of Ti II and Ca II makes them candidates for use as distance indicators.

  15. A distributed power market for the Smart Grid

    NASA Astrophysics Data System (ADS)

    McCulloch, Ryan James

    To address the challenges of resource allocation in the Smart Electrical Grid a new power market is proposed. A distributed and autonomous contract net based market system in which participants, represented by the agents, engage in two distinct yet interconnected markets in order to determine resource allocation. Key to this proposed design is the 2 market structure which separates negotiations between consumers and reliable generation from negotiations between consumers and intermittent energy resources. The first or primary market operates as a first price sealed bid reverse auction while the second or secondary market utilizes a uniform price auction. In order to evaluate this new market a simulator is developed and the market is modeled and tested within it. The results of these tests indicate that the proposed design is an effective method of allocating electrical grid resources amongst consumers, generators, and intermittent energy resources with some feasibility and scalability limitations.

  16. Leadership in Mammalian Societies: Emergence, Distribution, Power, and Payoff.

    PubMed

    Smith, Jennifer E; Gavrilets, Sergey; Mulder, Monique Borgerhoff; Hooper, Paul L; El Mouden, Claire; Nettle, Daniel; Hauert, Christoph; Hill, Kim; Perry, Susan; Pusey, Anne E; van Vugt, Mark; Smith, Eric Alden

    2016-01-01

    Leadership is an active area of research in both the biological and social sciences. This review provides a transdisciplinary synthesis of biological and social-science views of leadership from an evolutionary perspective, and examines patterns of leadership in a set of small-scale human and non-human mammalian societies. We review empirical and theoretical work on leadership in four domains: movement, food acquisition, within-group conflict mediation, and between-group interactions. We categorize patterns of variation in leadership in five dimensions: distribution (across individuals), emergence (achieved versus inherited), power, relative payoff to leadership, and generality (across domains). We find that human leadership exhibits commonalities with and differences from the broader mammalian pattern, raising interesting theoretical and empirical issues. PMID:26552515

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  18. Characteristics of High-density Lipoprotein Subclasses Distribution for Subjects with Desirable Total Cholesterol Levels

    PubMed Central

    2011-01-01

    Background To investigate alteration of high density lipoproteins (HDL) subclasses distribution in different total cholesterol (TC) levels, mainly the characteristics of HDL subclasses distribution in desirable TC levels and analyze the related mechanisms. Methods ApoA-I contents of plasma HDL subclasses were determined by 2-dimensional gel electrophoresis coupled with immunodetection. 486 Chinese Adults subjects were assigned to different TC groups according to the third Report of NCEP (ATP- III) guidelines. Results The increase in contents of small preβ1-HDL, HDL3c, HDL3b, and HDL3a particles clustered and reduce in HDL2b with increased of TC. The distribution of HDL subclasses have shown abnormality characterized by the lower HDL2b (324.2 mg/L) contents and the higher preβ1-HDL (90.4 mg/L) contents for desirable TC Chinese subjects. Among 176 desirable TC subjects, 58.6% subjects with triglyceride (TG) < 2.26 mmol/L, 61.2% subjects with HDL-C ≥1.03 mmol/L and 88.6% subjects with low density lipoprotein cholesterol(LDL-C) < 3.34 mmol/L, and the profile of HDL subclasses distribution for above these subjects was reasonable. Conclusions The particles size of HDL subclasses shifted towards smaller with increased TC levels. The TC was liner with HDL2b contents and those can be reduced 17 mg/L for 0.5 mmol/L increment in TC levels. The HDL subclasses distribution phenotype was not expectation for Chinese Population with desirable TC levels. Thus, from the HDL subclasses distribution point, when assessing the coronary heart disease(CHD) risk not only rely on the TC levels, but also the concentrations of TG, HDL-C and LDL-C must considered in case the potential risk for desirable TC subjects with other plasma lipids metabolism disorders. PMID:21513524

  19. C -parameter distribution at N 3 LL ' including power corrections

    DOE PAGESBeta

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less

  20. C -parameter distribution at N3LL' including power corrections

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-01

    We compute the e+e- C -parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O (αs3), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O (ΛQCD) renormalon ambiguity in the soft function, we switch from the MS ¯ to a short distance "Rgap" scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C -parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≃ 2.5 % at Q =mZ.

  1. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  2. Power Law Distributions of Patents as Indicators of Innovation

    PubMed Central

    O’Neale, Dion R. J.; Hendy, Shaun C.

    2012-01-01

    The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries. PMID:23227144

  3. Response of Potato Tuber Number and Spatial Distribution to Plant Density in Different Growing Seasons in Southwest China.

    PubMed

    Zheng, Shun-Lin; Wang, Liang-Jun; Wan, Nian-Xin; Zhong, Lei; Zhou, Shao-Meng; He, Wei; Yuan, Ji-Chao

    2016-01-01

    The aim of this study was to explore the effects of different density treatments on potato spatial distribution and yield in spring and fall. Plant density influenced yield and composition, horizontal, and vertical distribution distances between potato tubers, and spatial distribution position of tuber weights. The results indicated that: (1) Spring potato yield had a convex quadratic curve relationship with density, and the highest value was observed at 15.75 × 10(4) tubers per hectare. However, the yield of fall potatoes showed a linear relationship with plant density, and the highest value was observed at 18 × 10(4) tubers per hectare; (2) Density had a greater influence on the tuber weight of spring potatoes and fruit number of single fall potatoes; (3) The number of potato tubers in the longitudinal concentration exhibited a negative linear relationship with density, whereas the average vertical distribution distance of tubers exhibited a positive incremental hyperbolic relationship. For spring and fall potato tubers, the maximum distances were 8.4152 and 6.3316 cm, and the minimum distances 8.7666 and 6.9366 cm, respectively; and (4) Based on the artificial neural network model of the spatial distribution of tuber weight, density mainly affected the number and spatial distribution of tubers over 80 g. Tubers over 80 g were mainly distributed longitudinally (6-10 cm) and transversely (12-20 cm) within the high density treatment, and the transverse distribution scope and number of tubers over 80 g were reduced significantly. Spring potato tubers over 80 g grown at the lowest density were mainly distributed between 12 and 20 cm, whereas those at the highest density were primarily distributed between 10 and 15 cm. PMID:27092146

  4. Response of Potato Tuber Number and Spatial Distribution to Plant Density in Different Growing Seasons in Southwest China

    PubMed Central

    Zheng, Shun-Lin; Wang, Liang-Jun; Wan, Nian-Xin; Zhong, Lei; Zhou, Shao-Meng; He, Wei; Yuan, Ji-Chao

    2016-01-01

    The aim of this study was to explore the effects of different density treatments on potato spatial distribution and yield in spring and fall. Plant density influenced yield and composition, horizontal, and vertical distribution distances between potato tubers, and spatial distribution position of tuber weights. The results indicated that: (1) Spring potato yield had a convex quadratic curve relationship with density, and the highest value was observed at 15.75 × 104 tubers per hectare. However, the yield of fall potatoes showed a linear relationship with plant density, and the highest value was observed at 18 × 104 tubers per hectare; (2) Density had a greater influence on the tuber weight of spring potatoes and fruit number of single fall potatoes; (3) The number of potato tubers in the longitudinal concentration exhibited a negative linear relationship with density, whereas the average vertical distribution distance of tubers exhibited a positive incremental hyperbolic relationship. For spring and fall potato tubers, the maximum distances were 8.4152 and 6.3316 cm, and the minimum distances 8.7666 and 6.9366 cm, respectively; and (4) Based on the artificial neural network model of the spatial distribution of tuber weight, density mainly affected the number and spatial distribution of tubers over 80 g. Tubers over 80 g were mainly distributed longitudinally (6–10 cm) and transversely (12–20 cm) within the high density treatment, and the transverse distribution scope and number of tubers over 80 g were reduced significantly. Spring potato tubers over 80 g grown at the lowest density were mainly distributed between 12 and 20 cm, whereas those at the highest density were primarily distributed between 10 and 15 cm. PMID:27092146

  5. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    SciTech Connect

    Yip, NY; Elimelech, M

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the

  6. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the

  7. Effects of motor programming on the power spectral density function of finger and wrist movements.

    PubMed

    Van Galen, G P; Van Doorn, R R; Schomaker, L R

    1990-11-01

    Power spectral density analysis was applied to the frequency content of the acceleration signal of pen movements in line drawing. The relative power in frequency bands between 1 and 32 Hz was measured as a function of motoric and anatomic task demands. Results showed a decrease of power at the lower frequencies (1-4 Hz) of the spectrum and an increase in the middle (9-12 Hz), with increasing motor demands. These findings evidence the inhibition of visual control and the disinhibition of physiological tremor under conditions of increased programming demands. Adductive movements displayed less power than abductive movements in the lower end of the spectrum, with a simultaneous increase at the higher frequencies. The relevance of the method for the measurement of neuromotor noise as a possible origin of delays in motor behavior is discussed. PMID:2148590

  8. Design of a power management and distribution system for a thermionic-diode powered spacecraft

    SciTech Connect

    Kimnach, G.L.

    1996-12-31

    The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force`s integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TIDs) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TID-emitters reach peak temperatures of approximately 2,200 K, and the TID-collectors are run at approximately 1,000 K. Because of the high Specific Impulse (I{sub sp}) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN and C, power, etc., a substantial increase in payload mass is possible. This potentially allows for a step-down in the required launch vehicle size or class for similar payload mass using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1,000 W{sub e} at 28 {+-} 6V{sub dc} to the payload/spacecraft from a maximum TID generation capability of 1,070 W{sub e} at 2,200 K, producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TIDs is the responsibility of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed.

  9. Design of a power management and distribution system for a thermionic-diode powered spacecraft

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.

    1996-01-01

    The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force's Integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TMD's) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TDM-emitters reach peak temperatures of approximately 2200K, and the TID-collectors are run at approximately 1000K. Because of the high Specific Impulse (I(sup sp)) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN&C, power, etc., a substantial increase in payload weight is possible. This potentially allows for a stepdown in the required launch vehicle size or class for similar payload weight using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1000W(sub e) at 28+/-6V(sub dc) to the payload/spacecraft from a maximum TID generation capability of 1070W(sub e) at 2200K. Producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TID's are the responsibilities of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed herein.

  10. Universal scaling of density and momentum distributions in Lieb-Liniger gases

    NASA Astrophysics Data System (ADS)

    Rigol, Marcos

    We present numerically exact results for the scaling of density and momentum distribution functions of harmonically trapped one-dimensional bosons with repulsive contact interactions. We consider systems in the continuum, and in the presence of a lattice, both in the ground state and at finite temperature. We use path integral quantum Monte Carlo with worm updates in calculations at finite interaction strengths, and the Bose-Fermi mapping in the Tonks-Girardeau limit. We first discuss the homogeneous case and, within the local density approximation, use it to motivate the scaling in the presence of a harmonic trap. For the momentum distribution function, we pay special attention to the high momentum tails and their k-4 asymptotic behavior. When available, we compare our results to experimental measurements of the momentum distribution function of ultracold bosonic gases in two-dimensional optical lattices. We acknowledge support from the National Science Foundation Grant No. PHY13-18303 and the Office of Naval Research.

  11. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    NASA Astrophysics Data System (ADS)

    Wang, Guanglei; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Yang, Xueming; Feng, Chao; Zhang, Meng; Deng, Haixiao; Wang, Dong; Zhao, Zhentang

    2015-06-01

    The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  12. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    NASA Astrophysics Data System (ADS)

    Taylor, Zachariah David

    In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.

  13. Distributions and averages of electron density parameters: Explaining the effects of gradient corrections

    NASA Astrophysics Data System (ADS)

    Zupan, Ales; Burke, Kieron; Ernzerhof, Matthias; Perdew, John P.

    1997-06-01

    We analyze the electron densities n(r) of atoms, molecules, solids, and surfaces. The distributions of values of the Seitz radius rs=(3/4πn)1/3 and the reduced density gradient s=|∇n|/(2(3π2)1/3n4/3) in an electron density indicate which ranges of these variables are significant for physical processes. We also define energy-weighted averages of these variables, and , from which local spin density (LSD) and generalized gradient approximation (GGA) exchange-correlation energies may be estimated. The changes in these averages upon rearrangement of the nuclei (atomization of molecules or solids, stretching of bond lengths or lattice parameters, change of crystal structure, etc.) are used to explain why GGA corrects LSD in the way it does. A thermodynamic-like inequality (essentially d/>d/2) determines whether the gradient corrections drive a process forward. We use this analysis to explain why gradient corrections usually stretch bonds (but not for example H-H bonds), reduce atomization and surface energies, and raise energy barriers to formation at transition states.

  14. Plasma lipoprotein and apolipoprotein distribution as a function of density in the rainbow trout (Salmo gairdneri).

    PubMed Central

    Babin, P J

    1987-01-01

    I have previously described [Babin (1987) J. Biol. Chem. 262, 4290-4296] the apolipoprotein composition of the major classes of trout plasma lipoproteins. The present work describes the use of an isopycnic density gradient centrifugation procedure and sequential flotation ultracentrifugation to show: (1) the presence of intermediate density lipoproteins (IDL) in the plasma, between 1.015 and 1.040 g/ml; (2) the existence of a single type of Mr 240,000 apoB-like in the low density lipoproteins (LDL, 1.040 less than p less than 1.085 g/ml); (3) the presence of apoA-I-like (Mr 25,000) in the densest LDL; (4) the adequacy of 1.085 g/ml as a cutoff between the LDL and high density lipoproteins (HDL); (5) the accumulation of Mr 55,000 and 76,000 apolipoproteins and apoA-like apolipoproteins in the 1.21 g/ml infranatant. The fractionation of trout lipoprotein spectrum thus furnishes the distribution of the different lipoprotein classes and leads to the description of the constituent apolipoproteins, which account for about 36% of circulating plasma proteins in this species. Images Fig. 2. Fig. 3. PMID:3689318

  15. High excitation power photoluminescence studies of ultra-low density GaAs quantum dots

    SciTech Connect

    Sonnenberg, D.; Graf, A.; Paulava, V.; Heyn, Ch.; Hansen, W.

    2013-12-04

    We fabricate GaAs epitaxial quantum dots (QDs) by filling of self-organized nanoholes in AlGaAs. The QDs are fabricated under optimized process conditions and have ultra-low density in the 10{sup 6} cm{sup −2} regime. At low excitation power the optical emission of single QDs exhibit sharp excitonic lines, which are attributed to the recombination of excitonic and biexcitonic states. High excitation power measurements reveal surprisingly broad emission lines from at least six QD shell states.

  16. Imaging subsurface density distribution beneath Montserrat (West Indies) from Bouguer gravity data

    NASA Astrophysics Data System (ADS)

    Hautmann, S.; Camacho, A. G.; Gottsmann, J.; Odbert, H. M.; Syers, T.

    2012-12-01

    High resolution static gravity data allow to resolve for spatial inhomogeneities in the Earth's gravity field by providing information on the density distribution in the shallow subsurface. Images of the subsurface density distribution and identification of structural discontinuities in the ground are of particular interest in active volcanic regions, as they bear implications for fluid migration, edifice stability and the subsurface transmission of volcanically induced stresses. Although the persistently active Soufrière Hills Volcano (SHV; Montserrat, West Indies) is currently one of the most extensively studied actively erupting stratovolcanos, a local Bouguer anomaly map of the volcano and the island of Montserrat is missing to date. In June/July 2012 we conducted a static gravity survey on Montserrat. Using a Scintrex CG-5 Autograv a total of 160 new gravity data were collected on the entire island. Site positions and elevations were obtained via a TOPCON Hiperpro dual frequency GNSS receiver/antenna. Our Bouguer gravity network provides a dense coverage (distance of 200 m between adjacent sites) of the accessible regions of the older volcanic complexes Silver Hills and Centre Hills, while (due to operator's safety) the network coverage around the active SHV is more sparse with about 1 km distance between adjacent sites. The recorded gravity data were corrected for Solid Earth Tides and ocean loading and reduced for the effect of benchmark elevation (free-air effect) and latitude. The correction for topographic effects was done via an automated algorithm based on a digital elevation model and bathymetric data. In order to model our data we performed a non-linear inversion using the inversion package GROWTH 2.0. The inversion is based on a 3-D aggregation of M parallelepiped cells, which are filled, in a growth process, by means of prescribed positive and/or negative density contrasts. This methodology provides, via an automatic approach, a free 3-D geometry

  17. Review of Rapidity Density Distributions in Heavy-Ion Induced Interactions at Relativistic Energies

    NASA Astrophysics Data System (ADS)

    Aggarwal, Madan M.; Garpman, Sten I. A.

    Violent interactions among colliding nuclei ultimately provide the suitable conditions for creating new and hitherto unexplored phenomena like color rope and quark-gluon plasma formation. The systemmatics achieved so far in pseudorapidity and density distributions of charged particles emitted from relativistic nucleus-nucleus collisions is reviewed and comparisons to model predictions are made. Data from both emulsion and counter experiments are utilized and the dependence of the angular spectra on projectile energy, centrality measured by means of forward charge or enegy flow, and on the projectile/target masses are reported. For a few central events, energy densities of the hot overlap zone are estimated to be beyond onset of deconfinement phase transition.

  18. Analytical model for the density distribution in the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Mei, YI; Thorne, Richard M.; Bagenal, Fran

    1995-01-01

    An analytical model is developed for the diffusive equilibrium plasma density distribution in the Io plasma torus. The model has been employed successfully to follow the ray path of plasma waves in the multi-ion Jovian magnetosphere; it would also be valuable for other studies of the Io torus that require a smooth and continuous description of the plasma density and its gradients. Validity of the analytical treatment requires that the temperature of thermal electrons be much lower than the ion temperature and that superthermal electrons be much less abundant than the thermal electrons; these two conditions are satisfied in the warm outer region of the Io torus from L = 6 to L = 10. The analytical solutions agree well with exact numerical calculations for the most dense portion of the Io torus within 30 deg of the equator.

  19. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    PubMed Central

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-01-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874

  20. Modal density and modal distribution of bending wave vibration fields in ribbed plates.

    PubMed

    Dickow, Kristoffer Ahrens; Brunskog, Jonas; Ohlrich, Mogens

    2013-10-01

    Plates reinforced by ribs or joists are common elements in lightweight building structures, as well as in other engineering structures such as vehicles, ships, and aircraft. These structures, however, are often not well suited for simple structural acoustic prediction models such as statistical energy analysis. One reason is that the modal density is not uniformly distributed due to the spatial periodicity introduced by the ribs. This phenomenon is investigated in the present paper, using a modal model of a ribbed plate. The modal model uses the Fourier sine modes, and the coupling between the plate and ribs is incorporated using Hamilton's principle. This model is then used to investigate the modal density of the considered spatially periodic structure, and a grouping of the modes in different dominating directions is proposed. Suggestions are also given regarding how to proceed towards a simplified prediction model for ribbed plates. PMID:24116410

  1. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.

    PubMed

    Pavarini, E; Andreani, L C

    2002-09-01

    The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties. PMID:12366275

  2. Total electron content and F-region electron density distribution near the magnetic equator in India

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Sethia, G.; Chandra, H.; Deshpande, M. R.; Davies, K.; Murthy, B. S.

    1979-01-01

    Total electron content derived from the group delay measurements of ATS-6 radio beacons received at Ootacamund (India) are compared with the electron-density vs height distributions derived from the ionosonde data of the nearby station Kodaikanal. The daily variation of equivalent vertical total electron content does not show the midday bite out which is so prominently present in the corresponding daily variation of the maximum F-region electron density. The topside electron content continues to increase from sunrise to a maximum value around 1500 LT, while the bottomside electron content reaches a maximum value around 0500 LT. Daily variations of these as well as other parameters, e.g. the vertical slab thickness, the bottomside semi-thickness, the height of the F2 peak have been also studied for a geomagnetically quiet and a disturbed day.

  3. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    NASA Astrophysics Data System (ADS)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  4. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    SciTech Connect

    Wang, Ruxi; Wang, Fei; Boroyevich, Dushan; Burgos, Rolando; Lai, Rixin; Ning, Puqi; Rajashekara, Kaushik

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  5. Computed lateral power spectral density response of conventional and STOL airplanes to random atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1974-01-01

    A method of computing the power spectral densities of the lateral response of airplanes to random atmospheric turbulence was adapted to an electronic digital computer. By use of this program, the power spectral densities of the lateral roll, yaw, and sideslip angular displacement of several conventional and STOL airplanes were computed. The results show that for the conventional airplanes, the roll response is more prominent than that for yaw or sideslip response. For the STOL airplanes, on the other hand, the yaw and sideslip responses were larger than the roll response. The response frequency of the STOL airplanes generally is higher than that for the conventional airplanes. This combination of greater sensitivity of the STOL airplanes in yaw and sideslip and the frequency at which they occur could be a factor causing the poor riding qualities of this class of airplanes.

  6. Density, distribution, and activity of the ocelot Leopardus pardalis (Carnivora: Felidae) in Southeast Mexican rainforests.

    PubMed

    Pérez-Irineo, Gabriela; Santos-Moreno, Antonio

    2014-12-01

    The ocelot Leopardus pardalis is of particular significance in terrestrial communities due to its ecological role within the group of small-sized felids and as a mesopredator. However, despite the reduction of ocelot habitat in Southeast Mexico, there are still very few ecological studies. This research aimed to contribute with some ecological aspects of the species in this region. For this, 29 camera trap stations were established in a rain forest in Los Chimalapas (an area of 22 km2) during a two years period (March 2011-June, 2013), in Oaxaca state, Southeast Mexico. Data allowed the estimation of the population density, activity pattern, sex ratio, residence time, and spatial distribution. Population density was calculated using Capture-Recapture Models for demographically open populations; besides, circular techniques were used to determine if nocturnal and diurnal activity varied significantly over the seasons, and Multiple Discriminant Analysis was used to determine which of the selected environmental variables best explained ocelot abundance in the region. A total of 103 ocelot records were obtained, with a total sampling effort of 8,529 trap-days. Density of 22-38 individuals/100 km2 was estimated. Ocelot population had a high proportion of transient individuals in the zone (55%), and the sex ratio was statistically equal to 1:1. Ocelot activity was more frequent at night (1:00-6:00h), but it also exhibited diurnal activity throughout the study period. Ocelot spatial distribution was positively affected by the proximity to the village as well as by the amount of prey. The ocelot population here appears to be stable, with a density similar to other regions in Central and South America, which could be attributed to the diversity of prey species and a low degree of disturbance in Los Chimalapas. PMID:25720177

  7. Electron density distribution and static dipole moment of KNbO3 at high pressure

    NASA Astrophysics Data System (ADS)

    Yamanaka, T.; Okada, T.; Nakamoto, Y.

    2009-09-01

    The electron-density distribution of single-crystal KNbO3 has been measured as a function of pressure using synchrotron-radiation techniques in order to understand the variation in its static dielectric properties. KNbO3 adopts three different polymorphs at varying pressures and ambient temperature: the ambient pressure phase adopts an orthorhombic Cm2m (Amm2) structure that transforms to a tetragonal (P4mm) phase at about 7.0 GPa, which then transforms further to a cubic Pm3m phase at about 10.0 GPa. The cubic phase is paraelectric, while the two lower-pressure phases are ferroelectric. Difference Fourier and maximum entropy method maps clearly show d-p-π hybridization, which is composed of Nb4d and O2p states. The ferroelectric-to-paraelectric transition in KNbO3 at high pressure is discussed with reference to the variation in the electron-density distribution with pressure. Covalent bonding is reduced in the tetragonal phase as valence electrons become more localized with increasing pressure. The effective charge calculated from the valence electron density indicates that the tetragonal phase has the largest dipole moment among the three polymorphs. Orientation of the polarization in the tetragonal phase is possible in the [001] direction as a result of strain, but the orthorhombic phase shows a considerably strong polarization in both the [010] and [001] directions. In the cubic phase, a statistical distribution of Nb atoms around the inversion center in the [001] and [110] directions, rather than the [111] direction, results in paraelectric character.

  8. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    SciTech Connect

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  9. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m‑2 & 3.09  ±  0.04 W m‑2 and 17.7  ±  0.03 A m‑2 & 7.72  ±  0.09 W m‑2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  10. Two-Dimensional Plasma Density Distributions in Low-Pressure Gas Discharges

    SciTech Connect

    Berlin, E.V.; Dvinin, S.A.; Mikheev, V.V.; Omarov, M.O.; Sviridkina, V. S.

    2004-12-15

    The plasma density distribution in a two-dimensional nonuniform positive column of a low-pressure gas discharge is studied in the hydrodynamic approximation with allowance for ion inertia. Exact solutions are derived for discharges in a rectangular and a cylindrical chamber. Asymptotic solutions near the coordinate origin and near the critical surface are considered. It is shown that, for potential plasma flows, the flow velocity component normal to the plasma boundary is equal to the ion acoustic velocity. The results obtained can be used to analyze the processes occurring in low-pressure plasmochemical reactors.

  11. Properties of the probability density function of the non-central chi-squared distribution

    NASA Astrophysics Data System (ADS)

    András, Szilárd; Baricz, Árpád

    2008-10-01

    In this paper we consider the probability density function (pdf) of a non-central [chi]2 distribution with arbitrary number of degrees of freedom. For this function we prove that can be represented as a finite sum and we deduce a partial derivative formula. Moreover, we show that the pdf is log-concave when the degrees of freedom is greater or equal than 2. At the end of this paper we present some Turán-type inequalities for this function and an elegant application of the monotone form of l'Hospital's rule in probability theory is given.

  12. Modeling the potential energy field caused by mass density distribution with Eton approach

    NASA Astrophysics Data System (ADS)

    Alkahtani, Badr Saad T.; Atangana, Abdon

    2016-04-01

    A new approach for modeling real world problems called the "Eton Approach" was presented in this paper. The "Eton approach" combines both the concept of the variable order derivative together with Atangana derivative with memory derivative. The Atangana derivative with memory is used to account for the memory and fractional derivative for its filter effect. The approach was used to describe the potential energy field that is caused by a given charge or mass density distribution.We solve the modified model numerically and present supporting numerical simulations.

  13. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  14. 3D Distribution of the Coronal Electron Density and its Evolution with Solar Cycle

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Reginald, Nelson Leslie; Davila, Joseph M.; St. Cyr, Orville Chris

    2016-05-01

    The variability of the solar white-light corona and its connection to the solar activity has been studied for more than a half century. It is widely accepted that the temporal variation of the total radiance of the K-corona follows the solar cycle pattern (e.g., correlated with sunspot number). However, the origin of this variation and its relationships with regard to coronal mass ejections and the solar wind are yet to be clearly understood. We know that the COR1-A and –B instruments onboard the STEREO spacecraft have continued to perform high-cadence (5 min) polarized brightness measurements from two different vantage points over a long period of time that encompasses the solar minimum of Solar Cycle 23 to the solar maximum of Solar Cycle 24. This extended period of polarized brightness measurements can now be used to reconstruct 3D electron density distributions of the corona between the heliocentric heights of 1.5-4.0 solar radii. In this study we have constructed the 3D coronal density models for 100 Carrington rotations (CRs) from 2007 to 2014 using the spherically symmetric inversion (SSI) method. The validity of these 3D density models is verified by comparing with similar 3D density models created by other means such as tomography, MHD modeling, and 2D density distributions inverted from the polarized brightness images from LASCO/C2 instrument onboard the SOHO spacecraft. When examining the causes for the temporal variation of the global electron content we find that its increase from the solar minimum to maximum depends on changes to both the total area and mean density of coronal streamers. We also find that the global and hemispheric electron contents show quasi-periodic variations with a period of 8-9 CRs during the ascending and maximum phases of Solar Cycle 24 through wavelet analysis. In addition, we also explore any obvious relationships between temporal variation of the global electron content with the photospheric magnetic flux, total mass of

  15. A high power density miniaturized microbial fuel cell having carbon nanotube anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Pyo, Soonjae; Lee, Jae-Ik; Park, Tae-Jin; Gittleson, Forrest S.; Leung, Frederick C. C.; Kim, Jongbaeg; Taylor, André D.; Lee, Hyung-Sool; Chae, Junseok

    2015-01-01

    Microbial fuel cells (MFCs) are a promising technology capable of directly converting the abundant biomass on the planet into electricity. Prior studies have adopted a variety of nanostructured materials with high surface area to volume ratio (SAV), yet the current and power density of these nanostructured materials do not deliver a significant leap over conventional MFCs. This study presents a novel approach to implement a miniaturized MFC with a high SAV of 4000 m-1 using three different CNT-based electrode materials: Vertically Aligned CNT (VACNT), Randomly Aligned CNT (RACNT), and Spin-Spray Layer-by-Layer (SSLbL) CNT. These CNT-based electrodes show unique biofilm morphology and thickness. The study of performance parameters of miniaturized MFCs with these CNT-electrodes are conducted with respect to a control bare gold electrode. The results show that CNT-based materials attract more exoelectrogens, Geobacter sp., than bare gold, yielding thicker biofilm formation. Among CNT-based electrodes, low sheet resistance electrodes result in thick biofilm generation and high current/power density. The miniaturized MFC having an SSLbL CNT anode exhibits a high volumetric power density of 3320 W m-3. This research may help lay the foundation for future research involving the optimization of MFCS with 2D and 3D nanostructured electrodes.

  16. Effect of Ultrasonic Frequency and Power Density for Degradation of Dichloroacetonitrile by Sonolytic Ozonation

    NASA Astrophysics Data System (ADS)

    Park, Beomguk; Shin, Donghoon; Cho, Eunju; Khim, Jeehyeong

    2012-07-01

    The degradation of dichloroacetonitrile (DCAN) by means of the processes of sonolysis, ozonolysis and sonolytic ozonolysis was studied, and degradation rate constants were evaluated at various frequencies and power densities of ultrasound. The ultrasonic frequencies used were 35, 170, 283, 450, and 935 kHz. The power densities were in the range of 9.5 to 20 W/L. The degradation rate constants for the sonolytic ozonolysis were (3.1-4.4)×10-3 min-1 with the power density of 9.5 W/L and the ozone dose of 3.7 g/h. And the synergistic effect in sonolytic ozonolysis was significant at 35 and 283 kHz among the five frequencies. The sonolytic ozonolysis provided an extra oxidation mechanism by generating additional hydroxyl radicals, giving significant enhancement on the process. The calculated values of synergistic effect were 2.56 and 2.15 at 35 and 283 kHz, respectively.

  17. Graphene-based in-plane micro-supercapacitors with high power and energy densities

    PubMed Central

    Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088

  18. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    NASA Technical Reports Server (NTRS)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  19. Predicting photoemission intensities and angular distributions with real-time density-functional theory

    NASA Astrophysics Data System (ADS)

    Dauth, M.; Kümmel, S.

    2016-02-01

    Photoemission spectroscopy is one of the most frequently used tools for characterizing the electronic structure of condensed matter systems. We discuss a scheme for simulating photoemission from finite systems based on time-dependent density-functional theory. It allows for the first-principles calculation of relative electron binding energies, ionization cross sections, and anisotropy parameters. We extract these photoemission spectroscopy observables from Kohn-Sham orbitals propagated in real time. We demonstrate that the approach is capable of estimating photoemission intensities, i.e., peak heights. It can also reliably predict the angular distribution of photoelectrons. For the example of benzene we contrast calculated angular distribution anisotropy parameters to experimental reference data. Self-interaction free Kohn-Sham theory yields meaningful outer valence single-particle states in the right energetic order. We discuss how to properly choose the complex absorbing potential that is used in the simulations.

  20. Radar meteors range distribution model. III. Ablation, shape-density and self-similarity parameters

    NASA Astrophysics Data System (ADS)

    Pecinová, D.; Pecina, P.

    2007-10-01

    The theoretical radar meteors Range Distribution of the overdense echoes developed by Pecinová and Pecina (2007 a) is applied here to observed range distributions of meteors belonging to the Quadrantid, Perseid, Leonid, Geminid, γ Draconid (Giacobinid), ζ Perseid and β Taurid streams to study the variability of the shape-density, ablation, and self-similarity parameters of meteoroids of these streams. We have found in accordance with results of photographical observations that ablation parameter σ is higher for members of showers of clearly cometary origin, and is lower for Geminid and daytime shower meteoroids. Levin's self-similarity parameter μ was found to be much greater than the classical value 2/3 for all investigated streams with the exception of Geminids, for which the value found is almost classical, i.e. 0.66 ± 0.01. The method of getting μ by means of fitting the light curve of faint TV meteors is also suggested.