Science.gov

Sample records for power generation unit

  1. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all... COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3),...

  2. 76 FR 5216 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption 1.0 Background... authorizes operation of the Crystal River ] Unit 3 Nuclear Generating Plant (Crystal River). The license... under 10 CFR 55.11 from the schedule requirements of 10 CFR 55.59. Specifically for Crystal River,...

  3. 78 FR 285 - Supplemental Final Environmental Impact Statement for Healy Power Generation Unit #2, Healy, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... major modification to the existing Healy power plant, now known as Healy Unit 1. Healy Unit 1 is a 25 megawatt (MW) coal-fired boiler that has been owned and operated by Golden Valley Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal- fired steam generator owned by AIDEA, which...

  4. 75 FR 34776 - Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... COMMISSION Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4; Environmental..., for Facility Operating License Nos. DPR-31 and DPR-41, issued to Florida Power & Light Company (the... quantity of non- radiological effluents. No changes to the National Pollution Discharge Elimination...

  5. 75 FR 13320 - Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... March 27, 2009 (74 FR 13967). There will be no change to radioactive effluents that affect radiation... [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee... COMMISSION Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant;...

  6. 75 FR 69710 - Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... March 27, 2009; 74 FR 13926. There will be no change to radioactive effluents that affect radiation... impact [Part 73, Power Reactor Security Requirements, March 27, 2009; 74 FR 13926]. With its request to... COMMISSION Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant...

  7. Application of CFB technology for large power generating units and CO{sub 2} capture

    SciTech Connect

    Ryabov, G. A. Folomeev, O. M.; Sankin, D. A.; Khaneev, K. V.; Bondarenko, I. G.; Mel'nikov, D. A.

    2010-07-15

    Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units are used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.

  8. Photovoltaic panel-generator based autonomous power source for small refrigeration units

    SciTech Connect

    Kattakayam, T.A.; Srinivasan, K.

    1996-06-01

    This article describes an autonomous power source for a domestic refrigeration unit which is powered by a field of photovoltaic panels backed-up by a generator set. Salient design features and results from some of the tests on the unit are presented. methodologies for reliable and efficient operation of the refrigerator have been evolved. A finite time delay between cut-out and cut-in of the compressor, changes in invertor design to meet the demands at start and at run of the motor, choice of battery capacity so as to eliminate the need for a power conditioner are found to result in energy conservation. The entire unit has been made from indigenously available components and uses minimal electronic controls. Such units have applications for the storage of vaccines and life saving medicines which require uninterrupted refrigeration, in medical shops, rural health centres, veterinary laboratories, etc. 12 refs., 13 figs.

  9. 75 FR 16518 - Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... FR 13926- 13993), effective May 26, 2009, with a full implementation date of March 31, 2010, requires... have a significant effect on the quality of the human environment (75 FR 13320, dated March 19, 2010... COMMISSION Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption...

  10. 75 FR 70953 - Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... site security plans. The amendments to 10 CFR 73.55 published on March 27, 2009 (74 FR 13926... on the quality of the human environment (75 FR 69710 dated November 15, 2010). This exemption is... COMMISSION Florida Power Corporation, et al.; Crystal River Unit 3 Nuclear Generating Plant; Exemption...

  11. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability of Draft Supplement 44 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License...

  12. Construction of power-generating gas turbine units with the use of efficient thermal schemes

    NASA Astrophysics Data System (ADS)

    Ermolenko, D. I.; Gusev, A. A.; Zhuravlev, Yu. I.; Lesnichenko, A. Ya.; Tsai, S. S.

    2008-08-01

    The design features of GTE-30 and GTE-50 power-generating gas turbines, the basic thermal circuit of a PGU-90 (150) combined-cycle plant, and a layout solution for a cogeneration station built around a gas-turbine unit are considered.

  13. Tri-State Generation and Transmission Association's Springverville unit 3 earns POWER's highest honor

    SciTech Connect

    Peltier, R.

    2006-09-15

    It is said that pioneers take the arrows. In the case of Springerville Unit 3 - a 418 MW(net) expansion of a Tucson Electric Power facility in Arizona and the first pulverized coal-fired units built in the US in more than decade, the arrows were many. Although Tri-State (the developer), Tuscon Electric (the host), and Bechtel Power (the EPC contractor) were wounded by delayed deliveries of major equipment, bankruptcy of a major supplier, and a labor shortage, the companies showed their pioneering spirit and completed the project ahead of schedule. For ushering in a new generation of clean and desperately needed baseload capacity, Springerville Unit 3 is POWER magazine's 2006 Plant of the Year. 9 figs.

  14. Climate change impacts on thermoelectric-power generation in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2015-12-01

    Thermoelectric-power generation accounts for more than 70% of the total electricity generation in the United States, which requires large amounts of water for cooling purposes. Water withdrawals for thermoelectric-power generation accounted for 45% of total water use in the United States in 2010. Across the country, water demand from power plants is increasing due to pressures from growing populations and other needs, and is straining existing water resources. Moreover, temperature exceedance in receiving waters has increasingly caused power plants shut downs across parts of the country. Thermoelectric power is vulnerable to climate change owing to the combined effects of lower summer river flows and higher receiving water temperatures. In addition, the efficiency of production is reduced as air temperature rises, which propagates to more unfulfilled power demand during peak seasons. Therefore, a holistic modeling framework of water-energy-climate for the contiguous U.S. is presented here to quantify thermal output from power plants and estimate water use and energy production fluctuations due to ambient climate as well as environmental regulations. The model is calibrated on a plant-by-plant basis for year 2010 and 2011 using the available power plant inventory from the Energy Information Administration (EIA). Simulations were carried out for years 2012 and 2013, and results show moderate improvements in capturing thermal output variabilities after calibration. Future power plant operations under scenarios featuring different climate and regulatory settings were investigated. Results demonstrate the interplay among water, energy and climate, and that future changes in climate and socioeconomics significantly affect power plant operations, which may provide insights to climate change mitigation considerations and energy decisions.

  15. Major design issues of molten carbonate fuel cell power generation unit

    SciTech Connect

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  16. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  17. Thermal and chemical tests of the steam generator of unit 3 at the Kalinin nuclear power station

    NASA Astrophysics Data System (ADS)

    Davidenko, N. N.; Trunov, N. B.; Saakov, E. S.; Berezanin, A. A.; Bogomolov, I. N.; Derii, V. P.; Nemytov, D. S.; Usanov, D. A.; Shestakov, N. B.; Shchelik, S. V.

    2007-12-01

    The results obtained from combined thermal and chemical tests of the steam generator of Unit 3 at the Kalinin nuclear power station are summarized. The obtained data are compared with the results of thermal and chemical tests carried out on steam generators at other nuclear power stations equipped with VVER-1000 reactors, and recommendations on selecting the steam-generator blowdown schedule are given.

  18. Multiobjective optimal unit sizing of hybrid power generation systems utilizing photovoltaic and wind energy

    SciTech Connect

    Yokoyama, Ryohei; Ito, Koichi . Dept. of Energy Systems Engineering); Yuasa, Yoshiro . Technical Research Center)

    1994-11-01

    A deterministic approach to optimal unit sizing is presented for hybrid power generation systems utilizing photovoltaic and wind energy. Device capacities and electric contract demand are determined so as to minimize the annual total cost and annual energy consumption from the viewpoints of economy and energy saving or reduction in NO[sub x] and CO[sub 2] emission, respectively. This optimization problem is considered as a multiobjective one, and a discrete set of Pareto optimal solutions is derived numerically by using the weighting method. Two systems interconnected with the electric power grid are investigated: one has the option of reverse electricity flow into the grid, and the other has no option. By carrying out some case studies, the tradeoff relationships between the two objectives as well as the optimal values of device capacities are clarified. The influence of electricity deficit on unit sizing is also investigated.

  19. 75 FR 4426 - Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... COMMISSION Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental... to Florida Power and Light Company (the licensee), for operation of the Turkey Point Units 3 and 4... National Pollution Discharge Elimination System permit are needed. No effects on the aquatic or...

  20. 76 FR 25378 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... December 14, 2010 (75 FR 77913). However, by letter dated April 26, 2011, the licensee withdrew the... COMMISSION Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and... Nos. DPR-44 and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located...

  1. 75 FR 6071 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ..., 2009 (74 FR 20744). However, by letter dated January 19, 2010, the licensee withdrew the proposed... COMMISSION Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and 3... Operating License Nos. DPR-44 and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and...

  2. 75 FR 58445 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental... operation of Peach Bottom Atomic Power Station (PBAPS), Unit Nos. 2 and 3, located in York and...

  3. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... COMMISSION Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application... Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Nuclear Power Plant, Unit Nos. 1 and 2, respectively, located in Somervell County, Texas. The...

  4. 76 FR 77023 - In the Matter of Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Opportunity for Hearing,'' was published in the Federal Register on August 30, 2011 (76 FR 53972). No comments... COMMISSION In the Matter of Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant...) and nine other entities are the owners of Crystal River Unit 3 Nuclear Generating Plant (Crystal...

  5. 76 FR 39445 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... issuance of the renewed licenses was published in the Federal Register on June 17, 2008 (73 FR 34335). For... COMMISSION Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2... Company--Minnesota (licensee), the ] operator of Prairie Island Nuclear Generating Plant, Units 1 and...

  6. Development of a twin-flapping-foils unit to generate hydroelectric power from a water current

    NASA Astrophysics Data System (ADS)

    Abiru, H.; Yoshitake, A.; Nishi, M.

    2014-03-01

    Most of the conventional hydraulic turbines have been used for those sites having the static head larger than around 1 m. To extensively utilize not only large hydro-power but small one, which is one of renewable energy resources, development of an energy conversion system being operable under an extremely low head stream is crucial. A twin-flapping-foils unit which works based on the lift acting on the flapping foils in a stream is proposed. The foils oscillate in the transverse direction of the flow due to the lift. The pitching motion of the foils is caused by their own transverse movement through the mechanism consisting of crankshafts and con-rods. In the unit, each foil is supported vertically with a shaft in a manner of a cantilever so that no other parts need to be submerged in a water current. An experimental model with symmetric foils of 100 mm chord and 300 mm span was designed to generate average power output of 10 W at a flow velocity of 1 m/s. Through the tests carried out in the circulating water channel, the performance of the unit was verified to satisfy the design specifications. Further, the demonstration tests by using an irrigation stream performed for over a half year clarified the performance equivalent to that in the in-door water channel and the durability to a certain extent, and showed the applicability to the practical use of lighting a LED street lamp during night even at this scale model.

  7. Multiple Unit Instrumentation and Control (I and C) Systems for Generation IV Nuclear Power Systems

    SciTech Connect

    Miller, Don W.; Fiorino, Michael M.; Quinn, Edward 'Ted'; Mauck, Jerry L.

    2002-07-01

    Several Generation IV design concepts involve compact modular reactor configurations that can significantly reduce the overall cost of construction of a nuclear plant. However, the operating costs of independent smaller units are increased on a per-MW basis versus larger scale reactors. To offset this economic penalty, Generation IV nuclear plants will benefit economically from a multi-unit (or multi-module) configuration, where some facilities or power conversion system resources are shared; balance of plant systems, auxiliary systems, and the main control room are all candidates for shared or integrated implementation. However, these multi-modular configurations introduce safety and operational challenges that must be addressed at an early stage in the design process. The goal of this paper is the identification and evaluation of the regulatory, operational, and monitoring issues arising from multi-unit nuclear plant implementations. The paper will provide an overview of a research approach that uses a model of a generic module as a basis for integration of design and monitoring, alongside regulatory requirements, for these proposed configurations. (authors)

  8. 75 FR 9625 - Northern States Power Company-Minnesota Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    .... As noted in the final Power Reactor Security Requirements rule (74 FR 13925, March 27, 2009), the... COMMISSION Northern States Power Company--Minnesota Prairie Island Nuclear Generating Plant, Units 1 and 2... holder of Facility Operating License Nos. DPR-42 and DPR-60, which authorize operation of the...

  9. 77 FR 33004 - Exelon Generation Company, LLC; Clinton Power Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Company, LLC (the licensee, EGC) for operation of the Clinton Power Station, Unit 1 (CPS), located in De... EGC, from CPS to Creek Township to expand the Lisenby Cemetery. Before acceptance of the partial...

  10. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  11. 76 FR 19476 - Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption 1... Operating License Nos. DPR-44 and DPR-56, which authorizes operation of the Peach Bottom Atomic...

  12. 75 FR 63213 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering the issuance of an...

  13. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ...-AA90) published in the Federal Register on April 26, 1991 (56 FR 18997); and (C) The Nuclear Energy... contrary to the rationale for rulemaking, as discussed in 56 FR 18997. On October 26 and December 2, 2009... Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of...

  14. 76 FR 11521 - Prairie Island Nuclear Generating Plant, Unit 1, Northern States Power Company-Minnesota; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... (76 FR 9827), which informed the public that the Nuclear Regulatory Commission was considering the issuance of amendments to Facility Operating License Nos. DPR-42 and DPR-60, respectively, for the Prairie... COMMISSION Prairie Island Nuclear Generating Plant, Unit 1, Northern States Power Company--Minnesota;...

  15. 75 FR 6225 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... revisions to 10 CFR part 73, as discussed in a Federal Register notice dated March 27, 2009 (74 FR 13967... Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee currently maintains a security system... COMMISSION Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant Units 1 and...

  16. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    EIA Publications

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  17. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040. PMID:26061407

  18. New tool to detect operation anomalies on automatic voltage regulator equipment of large power units; Generator simulator (GS)

    SciTech Connect

    Blanchet, P. )

    1990-01-01

    When large generating plants are installed on site remote from the consumer areas, the operation of network with correct margins of stability is conditioned by adjustment of automatic voltage regulator (AVR). Any spoiled deviation in normal operation or especially in abnormal run must be detected at first overhaul or first shutdown. Then, without delay, this new tool which is the generator simulator (GS) contributes to minimize the time necessary for failures investigation and to qualify again AVR equipment after repair. The two main objectives of this paper are: to qualify the AVR performances of power unit during the scheduled overhaul; and to lighten failures research into AVR system, avoiding faulty dismantling during the unit fortuitous shutdown.

  19. Research on a Power Management System for Thermoelectric Generators to Drive Wireless Sensors on a Spindle Unit

    PubMed Central

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-01-01

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189

  20. Research on a power management system for thermoelectric generators to drive wireless sensors on a spindle unit.

    PubMed

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-01-01

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189

  1. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  2. Adapting the monitoring and control systems on the 300 MW power generation units at the Iriklinskaya GRES to modern operational requirements

    SciTech Connect

    Bilenko, V. A.; Chernomzav, I. Z.; Kuznetsov, N. A.; Rogachev, R. L.; Nefedov, K. A.; Gushchin, F. Yu.; Kirillov, N. G.; Kindyakov, V. N.; Butskikh, V. V.; Sadykov, V. S.

    2009-05-15

    Work done by JSC 'Interavtomatika' and the Iriklinskaya GRES (State Regional Electric Power Plant) to create automatic frequency and power control systems is reported. This involved reconstructing the turbine regulator systems and modernizing all the regulators for the power generator unit (those coupled to and those not coupled to the automatic frequency and power control systems) and the automatic burner control systems on the basis of a unified Simatic PCS7 PS controller system for the four 300 MW power generation units at the Iriklinskaya GRES.

  3. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  4. Geothermal Power Generation

    SciTech Connect

    2007-11-15

    The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

  5. Cycling of high-pressure-steam power-generating units with drum boilers. Final report

    SciTech Connect

    Frank, R.L.; Kelley, P.G.; Robinson, G.G.; Siddall, W.F.; White, A.O.

    1982-04-01

    In recent years, there has been an increased need to operate large fossil-fueled boilers in a cyclic mode. Such operation is unfortunately accompanied by a number of problems related to cyclic stresses, turndown limitations, energy losses, boiler-water quality, and control systems. Some success in dealing with these problems is being achieved through the use of variable-pressure operation, turbine bypasses, superheater bypasses, superheater division valves, firing-system modifications, and a number of miscellaneous design-modifications. Nevertheless, the need remains for further study of this topic. In the present study, the cyclic behavior of a boiler-turbine unit was investigated by both analytical and experimental methods. The main thrust of the study was the development of a new analytical model of transient boiler operation. This work was supplemented by a testing program at TVA's Widows Creek Station during which transient test-data was acquired on a cold start-up, a hot start-up, and a warm start-up. The development of the new analytical model included its formulation, implementation, validation, and documentation. The new analytical model is expected to be useful in many ways. It has already been used to identify critical boiler components during transient operation. In the future, the model can be used to determine the optimum operating procedures for boiler-turbine units engaged in cyclic duty and to develop design criteria for boilers intended for this service. The model can also serve as the basis for further model-development activities pertinent to both subcritical- and supercritical-pressure boilers.

  6. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  7. How much nuclear fuel is present in the lavalike fuel-containing mass in the fourth power-generating unit of the Chernobyl nuclear power plant?

    SciTech Connect

    Kiselev, A.N.

    1995-10-01

    At the time of the accident in the reactor of the fourth power-generating unit of the Chernobyl nuclear power plant on April 26, 1986, the core contained 1659 fuel assemblies. Each assembly contained 114.7 kg of uranium, and therefore the reactor contained a total of 114.7 x 1659 = 190,287.3 kg of uranium. If the amount of fuel is calculated according to the uranium dioxide, i.e. in the form in which the fuel was loaded into the fuel elements, then its mass in each fuel element was 3.6 kg. A fuel assembly consists of 36 fuel elements, and therefore the reactor contained 3.6 x 36 x 1659 = 215,006.4 kg of uranium dioxide. The investigations performed in the destroyed buildings showed that the nuclear fuel after the accident is found in three main modifications: in the form of uranium dioxide tablets, in the form in which it was loaded into the reactor; in a dispersed form as dust and aerosol; and in a remelted state, in the form of a lavalike fuel-containing mass. This paper discusses the amount of nuclear fuel in the lavalike mass at the Chernobyl Nuclear Power Plant.

  8. Analysis of compliance effects on power generation of a nonlinear electromagnetic energy harvesting unit; theory and experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Pollock, Tim E.; Salehian, Armaghan

    2013-09-01

    Vibration energy harvesting devices have shown potential applications to power many devices such as electronic self-sustainable units. Most traditional linear energy harvesters exploit the phenomenon of resonance to produce electric power. Nonlinear energy harvesters, however, present more interesting alternatives and there is potential for them to work well over relatively wider bandwidths due to characteristics such as bifurcation. The aim of this study is to introduce an alternative design to a nonlinear electromagnetic energy harvesting device to improve the power production of the unit. The configuration presented in the following work has demonstrated higher power efficiency over a wider range of frequencies compared to the previous design. The numerical power outputs for both designs are compared and validated against their experimental values. Finally, the validated numerical model is used to find the optimal design to produce the maximum power for the unitA summary of some of the results presented in this paper was submitted to the ASME-SMASIS 2012 conference and was then invited for this SMS special issue submission..

  9. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  10. Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve

    2002-01-01

    NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.

  11. Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations

    SciTech Connect

    Wu, Chijui; Lee, Yuangshung )

    1993-03-01

    An active and reactive power (P-Q) simultaneous control scheme which is based on a superconducting magnetic energy storage (SMES) unit is designed to damp out the subsynchronous resonant (SSR) oscillations of a turbine-generator unit. In order to suppress unstable torsional mode oscillations, a proportional-integral-derivative (PID) controller is employed to modulate the active and reactive power input/output of the SMES unit according to speed deviation of the generator shaft. The gains of the proposed PID controller are determined by pole assignment approach based on modal control theory. Eigenvalue analysis of the studied system shows that the PID controller is quite effective over a wide range of operating conditions. Dynamic simulations using the nonlinear system model are also performed to demonstrate the damping effect of the proposed control scheme under disturbance conditions.

  12. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  13. Multipurpose auxiliary power unit

    SciTech Connect

    Rodgers, C.

    1990-04-17

    This patent describes a gas turbine alternately usable as an auxiliary power unit, load compressor, air turbine started or the like. It comprises: a centrifugal compressor mounted for rotation; a turbine wheel mounted for rotation; a clutch interconnecting the compressor and the turbine wheel and selectively operable to couple or decouple the compressor and the turbine wheel; and inlet to the compressor; variable inlet guide vanes in the inlet and movable between positions substantially opening and substantially closing the inlet; a compressed air outlet from the compressor; a gas inlet to the turbine wheel, a combustor interconnecting the gas inlet and the turbine wheel.

  14. Power-processing unit

    NASA Technical Reports Server (NTRS)

    Wessel, Frank J. (Inventor); Hancock, Donald J. (Inventor)

    1987-01-01

    Power-processing unit uses AC buses (30, 32) to supply all current dependent needs such as connections (54, 56) to an ion thruster through an inductor (88) and the primary of a transformer (90), to assure limited currents to such loads. Where temperature control is also required, such as to the main discharge vaporizer heater connection (36, 38), switches (100, 102) are serially connected with inductor (96) and the primary of transformer (98). Temperature sensor (104) controls the switches (100, 102) for temperature regulation.

  15. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  16. Electrochemical power generator

    SciTech Connect

    Shirogami, T.; Ueno, M.

    1985-05-07

    An electrochemical power generator is disclosed which is composed of a plurality of unit cells stacked with interconnectors interposed therebetween; said unit cells being each composed of an anode consisting of a porous carbon plate having on its one surface a plurality of grooves constituting gas passages and on its other surface an anode catalyst layer; a cathode formed on its one surface with a cathode catalyst layer and applied on its other surface a hydrophobic material powder consisting of fluoropolymer resin; and an electrolyte layer interposed between the anode and the cathode in such a manner that its two surfaces are allowed to come into contact, respectively; said anode catalyst layer and said cathode catalyst layer, the electrolyte layer being prepared by causing an acidic electrolyte to be impregnated into an inorganic compound powder having heat resistance and chemical resistance; the interconnectors being each compressed of a high density carbon plate and having, on each surface coming into contact with the cathode, a plurality of grooves for gas passages, being used as an anode-active material, of a gas consisting mainly of hydrogen and, as a cathode-active material, of an oxidizing gas. First ribs and second ribs wider than said first ribs are formed between adjacent ones of the grooves of the anode substrate, and a catalyst is dispersed in the cathode substrate over a range extending from a boundary between a surface of contact of the cathode substrate with the cathode catalyst layer up to a point located inside the cathode substrate.

  17. Combustion Power Unit--400: CPU-400.

    ERIC Educational Resources Information Center

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  18. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  19. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  20. Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation

    SciTech Connect

    Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

    2011-09-15

    The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

  1. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  2. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  3. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  4. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  5. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  6. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  7. Results of examination of the TGMP-314 boiler superheaters of the power-generating units at Kashira state district power plant using a magnetic ferrite meter

    NASA Astrophysics Data System (ADS)

    Bogachev, V. A.; Pshechenkova, T. P.; Shumovskaya, M. A.

    2016-07-01

    The results of investigating the elemental composition of the scale and the metal of a tube circuit from the austenitic steel grade 12Cr18Ni12Ti are presented. The superheater is part of the high-pressure convection steam superheater of a TGMP-314 supercritical-pressure gas-and-oil-fired once-through boiler that had been operated for a long period of time. A structurally transformed layer, poor in iron, manganese, and chromium and rich in nickel was detected on the outer surface. The layer consisted predominantly of the FeNi3 phase with ferromagnetic properties. The heat-resistance test of the steel in contact with ash that simulated the combustion products of fuel oil showed that the higher the temperature and the longer the test time, the higher the content of the ferritic phase in the layer was. The established pattern of the structural transformations underlies a method for nondestructive control of the thermal nonuniformity and detection of "worst" tube circuits of superheaters from austenitic steel. The magnetic ferritometry complements the conventional selective thickness gauging that does not characterize the condition of the heating surfaces of hightemperature steel grades to the full extend. Data on damageability of high-pressure convection superheaters and low-pressure second-stage convection superheaters with rarefied tube banks of TGMP-314 boilers are presented. The damage is caused by overheating resulting from the nonuniform temperature field at the inlet and by the nonuniform flue gas velocity field in rarefied superheater banks. Sections of the tube circuits from the steel grade 12Cr18Ni12Ti, outlet superheater stages of the TGMP-314 boiler of the power-generating units at Kashira SDPP were examined using an MF-51NTs AKASKAN magnetic ferrite meter. Thermal nonuniformity was established and the "worst" superheater tube circuits were detected. It was shown that the zones with the "worst" and damaged tube circuits coincide. The results of examining

  8. Optimization of gas path aerodynamics for PK-39 boiler of power generating unit No. 4 of Troitskaya SDPP using numerical simulation of gas flows

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Grigorev, I. V.; Fomenko, M. V.; Kaverin, A. A.

    2015-12-01

    Power generating unit no. 4 of Troitskaya State District Power Plant (SDPP) is incapable of operating with a nominal load of 278 MW because of high aerodynamic drag of the gas path. At present, the maximum load of the two-boiler single-turbine unit is 210 MW practically without a possibility of adjustment. The results of numerical simulation of the gas flow for the existing gas path from the electrostatic precipitator (EP) to the smoke exhausts (SEs) and two flue designs proposed for renovation of this section are presented. The results of simulation show that the existing flue section has high aerodynamic drag, which is explained by poor, as regards aerodynamics, design. The local loss coefficient, in terms of the dynamic pressure in the sucker pocket of the smoke exhaust is equal to 4.57. The local aerodynamic loss coefficient after renovation at the considered section according to the first version would make 1.48, and according to the second version 1.325, which would reduce losses at this section by more than a factor of three, and ensure the power unit operation with the rated load.

  9. Waterwheel power generator

    SciTech Connect

    Smith, J.

    1982-08-17

    An electrical power generation system includes a waterwheel contained within a housing enclosure above a water collection compartment, a water discharge nozzle in alignment with the waterwheel, means for delivering water to the discharge nozzle including a pump for returning water from the collection compartment, a portion of the output of the waterwheel being used to drive the pump, wherein the waterwheel includes fin elements having inclined water entrapping flange portions and is supported by means of an adjustable support to maintain the waterwheel dynamically balanced and in alignment with the discharge nozzle.

  10. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  11. Theme Unit: Veggie Power.

    ERIC Educational Resources Information Center

    Flagg, Ann

    2000-01-01

    Presents a selection of activities for a cross-curricular unit based on vegetables. Activities address vocabulary, language arts, social studies, and health education. A student reproducible presents a tossed salad game. Game cards can be incorporated into the other activities. A poster describes plant parts that are edible. A sidebar offers…

  12. Photovoltaic power generation

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard J.

    1993-03-01

    The wide acceptance and utilization of the photovoltaic generation of electrical power depends on our ability to reduce the cost of photovoltaic systems. This, in turn, largely hinges on our ability to decrease the cost of production of solar cells and panels while at the same time increasing their conversion efficiency. A short tutorial on solar cells is followed by a discussion of the types of solar cells that are presently being investigated for cost reduction and efficiency improvement. Many types of cells are under investigation as are a wide range of materials. Impressive efficiency improvements have been achieved for many types of cells that are potentially low cost in large-volume production.

  13. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  14. Power Supply Unit

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Cuk DC to DC Switching Converter was developed by Caltech Professors, Slobodan Cuk and R. D. Middlebrook. The converter changes unsuitable dc voltage into one or more voltages suitable for powering electronic equipment; it can also be used in converting dc current to ac and vice versa. It was named one of the 100 most significant technical advances of 1979. The Cuk converter is more efficient than previous conversion devices, simpler, smaller, lighter, cheaper and highly reliable. The first application of the technology is in the Compucorp 685 word/data processor, manufactured by Compucorp. NASA waived title rights; Caltech granted exclusive license to the inventors, who in turn, transferred their rights to a company they founded called TESLA Company, which sublicenses the converter design and related technology to companies making power supplies for use in their own products.

  15. A market focus. [The changing power generation equipment market

    SciTech Connect

    Burr, M.T.

    1991-10-01

    This article is a compilation of the views of the changing power generation equipment market by executives of ASEA-Brown Boveri, General Electric Power Generation, Siemans Power Generation Group, and Westinghouse Electric Corporation Power Generation unit. The topics of the article include a changing market, the home market, the turnkey supplier, and back to baseload.

  16. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  17. 76 FR 52357 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit...\\ Requestors should note that the filing requirements of the NRC's E-Filing Rule (72 FR 49139; August 28, 2007... Power Ratio (SLMCPR) values. The SLMCPR is established to assure that at least 99.9% of the fuel rods...

  18. WATER REQUIREMENTS FOR STEAM-ELECTRIC POWER GENERATION AND SYNTHETIC FUEL PLANTS IN THE WESTERN UNITED STATES

    EPA Science Inventory

    The report describes the procedures for the detailed determination of the water consumed for mining and processing coal and oil shale, and for determining the residuals generated. The processes considered are Lurgi, Synthane, and Synthoil for coal conversion, TOSCO II for shale c...

  19. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... change of control of EFH, EFCH, or Luminant as a result of this internal restructuring. No physical... January 2, 2013 (78 FR 119), and a correction notice was published on January 10, 2013 (78 FR 2295). No... Proposed Internal Restructuring and Indirect Transfer of License I Luminant Generation Company...

  20. Power unit for electric cars

    SciTech Connect

    Ishikawa, Masami; Minezawa, Yukihiro.

    1993-07-06

    A power unit for mounting on the body of an electric car is described, comprising: a sensor for detecting a running condition of the car; a first power supply mounted on the electric car body; a second power supply module; means for detachably mounting different, interchangeable types of the second power supply module on the electric car body; a motor control circuit, including a computer, connected to the first power supply and the second power supply module for feeding a current to a motor as commanded by the computer; the computer including control means for determining (1) whether the second power supply module is mounted or not and (2) for determining the type of second power supply module mounted; setting means for connecting the first power supply and the second power supply module with the motor control circuit, in parallel or in series, responsive to the detected running condition; and the computer controlling the motor control circuit according to determinations of the control means.

  1. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  2. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°С, while the turbine inlet temperature decreases from 1200 to 1250°С. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  3. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (ESTSC)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  4. Power unit for a vehicle

    SciTech Connect

    Yamamoto, S.; Ishihara, T.

    1986-06-10

    A power unit for a vehicle is described comprising an engine housing; a crankshaft rotatably mounted in the engine housing an having a coaxial bore in a first end thereof; and a drive shaft, a first end of the drive shaft being rotatably mounted to the engine housing and a second end of the drive shaft being rotatably mounted in the coaxial bore of the crankshaft, the drive shaft having a driven connection with the crankshaft.

  5. 27. Generator Voltage Regulator Cabinet Interior for Unit 1, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Generator Voltage Regulator Cabinet Interior for Unit 1, view to the northwest. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  6. 14. Generator Fire Protection for Unit 5 (low pressure), view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Generator Fire Protection for Unit 5 (low pressure), view to the southeast. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  7. 100. View of generator room in powerhouse; turbine unit no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. View of generator room in powerhouse; turbine unit no. 2 is to the right, looking southeast. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  8. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Knowles, G.; Carroll, J.

    1983-01-01

    A subscale model of a photovoltaic power system employing spectral splitting and 1000:1 concentration was fabricated and tested. The 10-in. aperture model demonstrated 15.5% efficiency with 86% of the energy produced by a GaAs solar cell and 14% of the energy produced by an Si cell. The calculated efficiency of the system using the same solar cells, but having perfect optics, would be approximately 20%. The model design, component measurements, test results, and mathematical model are presented.

  9. High power microwave generator

    SciTech Connect

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  10. Spin Seebeck power generators

    SciTech Connect

    Cahaya, Adam B.; Tretiakov, O. A.; Bauer, Gerrit E. W.

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  11. Solar power generating system

    SciTech Connect

    Watson, J.C.

    1981-08-18

    A volatile liquid is circulated through a normally closed circuit, including expansion tubes within an expansion chamber where the sun's rays are focused on the tubes to heat the liquid, transforming it to an expanding gas to drive a fluid-operated motor, also in the circuit. The motor may drive a mechanical load or an electric generator. The generator drives a pump which compresses the gas back to a liquid state and returns the same to a reservoir and to the inlets of the expansion tubes in the expansion chamber. An air reservoir which is pressurized by a pump driven by the fluid operated motor has its outlet connected to the motor inlet so that during periods of darkness or cloud cover in which the volatile liquid is not expanded into a gas, the pressurized air will be automatically fed into the motor to continue to drive the same. A gimbal system automatically controlled by sun tracking devices supports the expansion chamber to continually focus the sun's rays onto the expansion tubes, regardless of the relative position of the sun and the base on which the gimbal system is mounted.

  12. The Meteosat Second Generation (MSG) power system

    SciTech Connect

    Haines, J.E.; Levins, D.; Robben, A.; Sepers, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement, the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.

  13. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  14. Tide operated power generating apparatus

    SciTech Connect

    Kertzman, H. Z.

    1981-02-03

    An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

  15. Multiobjective process optimization of a power unit

    SciTech Connect

    Garduno-Ramirez, R.; Lee, K.Y.

    1999-11-01

    Recent years have witnessed an increased participation of fossil fuel power units (FFPU) in wide-range load-following duties in order to match current power demand patterns and to deal with uncertain economic contexts. This mode of operation imposes high physical stress on the main components and leads to conflicting operational and control situations, since most power units were designed to operate most efficiently at constant rated conditions. The needs for extended periods without maintenance and replacement, compliance with stringent emission regulations and efficient operation requirements, call for the development of effective plant wide optimization and control methods and systems. Supervisory control, as an interface between the feedback control loops and the economic dispatch and unit commitment systems at upper control layers in power systems, could certainly play a key role in this regard. This paper presents a systematic procedure to generate optimal set-points for the feedback control loops in a FFPU from a given unit load demand profile. The method is flexible enough to accommodate any number of set-points. Also, the optimization procedure is formulated as a multiobjective optimization problem for which the form and number of the objective functions, as well as their preferences, may be modified as required. This approach facilitates adaptation to different operating policies and the realization of performance trade-off analyses.

  16. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  17. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  18. 4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT FOREGROUND RIGHT, GOVERNORS AND CONTROL VALVES AT LEFT, AND EXCITERS AT BACK LEFT. VIEW TO NORTH. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  19. Taming power: Generative historical consciousness.

    PubMed

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962. PMID:26011649

  20. Solid state pulsed power generator

    SciTech Connect

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  1. Power Control Unit of Irecin Nanosatellite

    NASA Astrophysics Data System (ADS)

    del Re, V.; Ferrrante, M.; Ortenzi, A.; Petrozzi, M.

    2004-08-01

    On board resources necessary to perform the mission tasks are very limited in nano-satellites. This paper proposes a real-time sub-system, which is able to manage Irecin Power Supply. Irecin power supply includes the solar panels, built with silicon solar cells, the batteries and the necessary electronic for Energy generation and distribution to its subsystems. The Power Control Unit (PCU), provided with electrical power by means of solar panels, optimises the batteries recharging using a Peek Power Tracking; generates and stabilizes the voltage of 5 V for all subsystems; checks subsystems power absorption notifying it to the main micro-processor board. The proposed subsystem controls whole satellite subsystems energy adsorption by monitoring battery recharge status and handling subsystems activation /deactivation. It allows isolating damaged subsystems which could put in short cut the nanosatellite power supply and, generally, it increases nanosatellite time-life. Moreover this configuration allows to let free the on board main microprocessor from the power control functions, increasing its communication capabilities with the others subsystems. IRECIN uses rechargeable lithium ion batteries, which ensure very high energy density reducing power system volume and weight. These batteries are characterised also by a wide temperature range, enabling a simpler thermal design and by a very low cost. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic boards are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group. The proposed sub-system is implemented on the Irecin, a modular nano-satellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Attitude is determined by three-axis magnetometer and the solar panels data. Control is provided by an active

  2. 101. View of generator room in powerhouse; turbinegenerator unit no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. View of generator room in powerhouse; turbine-generator unit no. 2 is to the right, looking southeast. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. 9. Generator Barrel and Rotor of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Generator Barrel and Rotor of Unit 1, view to the southeast, showing part of the rotor and generator coils along top of photograph and southeast entry stairwell and doors in lower center of photograph. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  4. 26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view to the northwest. The exciter supplies the DC current to the generator rotor to create electricity. Each of the four original units has an exciter identical to this one, and all are scheduled for replacement. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  5. Northern States Power Company (NSP) Black Dog generating plant - Unit 2 emission reduction, capacity increase and life extension through atmospheric fluidized bed combustion (AFBC) retrofit

    SciTech Connect

    Jenness, B.L.; Rosendahl, S.M.; Gamble, R.L.

    1985-08-01

    The authors report on progress to date of the atmospheric fluidized-bed combustion (AFBC) boiler retrofit at the Black Dog Unit 2 plant of the Northern States Power Company. Construction began in September 1984 after the completion of technical and economic feasibility studies, and initial operation is scheduled for the second quarter of 1986. The project features the largest AFBC boiler to date, a 40 MW capacity regain/upgrade, and 25-year extension of unit life, low leakage regenerative air preheater design, electrostatic precipitator performance improvement, alternate fuel co-firing capacity, and reduced emission on a per MW basis. The authors describe the management and engineering developments associated with the project. 12 figures, 4 tables.

  6. Desalination apparatus with power generation

    SciTech Connect

    Humiston, G.F.

    1981-11-24

    An apparatus for desalinating ocean waters by distillation and furnishing electrical power, utilizes an evaporator, barometric leg conduits, a closed condenser, ocean water circulating circuits for circulating warm surface water to the evaporator and cool ocean water to the condenser and using the mass flow of vapors evolved from the evaporator to drive a prime mover which in turn drives an electrical generator. A portion of the electrical power so-generated is used to control the operation of respective pumps and valves in the apparatus. The liquid level of the condensate water is controlled in a barometric leg condensate outlet conduit. The system is also provided with a vacuum pump at least for initiating a reduced pressure and particle separator channel means is provided to prevent liquid entrainment in the condenser.

  7. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  8. Clean power generation from coal

    SciTech Connect

    Butler, J.W.; Basu, P.

    2007-09-15

    The chapter gives an overview of power generation from coal, describing its environmental impacts, methods of cleaning coal before combustion, combustion methods, and post-combustion cleanup. It includes a section on carbon dioxide capture, storage and utilization. Physical, chemical and biological cleaning methods are covered. Coal conversion techniques covered are: pulverized coal combustion, fluidized-bed combustion, supercritical boilers, cyclone combustion, magnetohydrodynamics and gasification. 66 refs., 29 figs., 8 tabs.

  9. 124. View in Generator Room of exciter unit no. 2; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. View in Generator Room of exciter unit no. 2; looking east. This unit includes a Pelton wheel manufactured by Allis Chalmers, no. 262, type C-1, Breaking Horse Power 600, head 370 feet, and 360 rpm; and a General Electric DC generator, no. 1357610, type MPC 8, 340-350 form LD, 1360 amp, 350 rpm, 250 volts (no load), 250 volts (full load). Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  10. Thermoelectric power generator for variable thermal power source

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  11. Thermoelectric power generation for hybrid-electric vehicle auxiliary power

    NASA Astrophysics Data System (ADS)

    Headings, Leon M.; Washington, Gregory N.; Midlam-Mohler, Shawn; Heremans, Joseph P.

    2009-03-01

    The plug-in hybrid-electric vehicle (PHEV) concept allows for a moderate driving range in electric mode but uses an onboard range extender to capitalize on the high energy density of fuels using a combustion-based generator, typically using an internal combustion engine. An alternative being developed here is a combustion-based thermoelectric generator in order to develop systems technologies which capitalize on the high power density and inherent benefits of solid-state thermoelectric power generation. This thermoelectric power unit may find application in many military, industrial, and consumer applications including range extension for PHEVs. In this research, a baseline prototype was constructed using a novel multi-fuel atomizer with diesel fuel, a conventional thermoelectric heat exchange configuration, and a commercially available bismuth telluride module (maximum 225°C). This prototype successfully demonstrated the viability of diesel fuel for thermoelectric power generation, provided a baseline performance for evaluating future improvements, provided the mechanism to develop simulation and analysis tools and methods, and highlighted areas requiring development. The improvements in heat transfer efficiency using catalytic combustion were evaluated, the system was redesigned to operate at temperatures around 500 °C, and the performance of advanced high temperature thermoelectric modules was examined.

  12. An experimental electrical generating unit using sugarcane bagasse as fuel

    SciTech Connect

    Elkoury, J.M.

    1980-12-01

    The purpose of this paper is to present the alternatives that exist within the Puerto Rico Electric Power Authority to develop an experimental electrical generating unit which would use sugarcane bagasse as fuel. The study includes a comparison between the sugarcane bagasse and other fuels, the location of an experimental electrical generating unit with respect to the sugarcane fields, the transportation of the bagasse and the generating equipment available for this project in terms of its fisical condition. This latter part would include any modifications in the equipment which we would have to undertake in order to carry out the study.

  13. Portable Power And Digital-Communication Units

    NASA Technical Reports Server (NTRS)

    Levin, Richard R.; Henry, Paul K.; Rosenberg, Leigh S.

    1992-01-01

    Conceptual network of electronic-equipment modules provides electrical power and digital radio communications at multiple sites not served by cables. System includes central communication unit and portable units powered by solar photovoltaic arrays. Useful to serve equipment that must be set up quickly at remote sites or buildings that cannot be modified to provide cable connections.

  14. Thermoelectric cooling and power generation

    PubMed

    DiSalvo

    1999-07-30

    In a typical thermoelectric device, a junction is formed from two different conducting materials, one containing positive charge carriers (holes) and the other negative charge carriers (electrons). When an electric current is passed in the appropriate direction through the junction, both types of charge carriers move away from the junction and convey heat away, thus cooling the junction. Similarly, a heat source at the junction causes carriers to flow away from the junction, making an electrical generator. Such devices have the advantage of containing no moving parts, but low efficiencies have limited their use to specialty applications, such as cooling laser diodes. The principles of thermoelectric devices are reviewed and strategies for increasing the efficiency of novel materials are explored. Improved materials would not only help to cool advanced electronics but could also provide energy benefits in refrigeration and when using waste heat to generate electrical power. PMID:10426986

  15. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  16. Electric auxiliary power unit for Shuttle evolution

    NASA Technical Reports Server (NTRS)

    Meyer, Doug; Weber, Kent; Scott, Walter

    1989-01-01

    The Space Shuttle Orbiter currently uses three hydrazine fueled auxiliary power units (APUs) to provide hydraulic power for the vehicle aerodynamic surface controls, main engine thrust vector control, landing gear, steering, and brakes. Electric auxiliary power units have been proposed as possible replacements to the hydrazine auxiliary power units. Along with the potential advantages, this paper describes an Electric APU configuration and addresses the technical issues and risks associated with the subsystem components. Additionally, characteristics of an Electric APU compared to the existing APU and the direction of future study with respect to the Electric APU is suggested.

  17. Indirect combustion noise of auxiliary power units

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  18. An Isotope-Powered Thermal Storage unit for space applications

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Rose, M. F.

    1991-01-01

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  19. 8. Generator Barrel and Shaft of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Generator Barrel and Shaft of Unit 1, view to the northwest, with turbine shaft and thrust bearing visible in upper center of photograph. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  20. 3. Governance equipment at unit 1 generator (background) showing oilpressure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Governance equipment at unit 1 generator (background) showing oil-pressure tank (left foreground), governor stand (center), and brake stand (right foreground). View to northwest. - Holter Hydroelectric Facility, Dam & Power House, End of Holter Dam Road, Wolf Creek, Lewis and Clark County, MT

  1. Advanced piggyback water power generator

    SciTech Connect

    Wiggs, B.R.

    1988-02-16

    A power generating system is described including: a central boat containing gearing and electric and/or power generation equipment, with a forward angled-back deflection screen and a rear non-angled deflection screen, with a smaller outrigger pontoon on each respective side of the central boat, with closed cell, waterproof, plastic foam filling in the central boat and pontoons, and with the bow of the respective outrigger pontoons angled so as to completely turn water away from, and to the outside of, the space and/or incoming water area between each such respective pontooon and the central boat. There are legs with cone shaped bottoms and with wheels attached, with the wheels extending slightly below the cone shaped bottoms; paddle wheels on each side of the central boat, between the central boat, and respective outrigger pontoons, with 90 degree spaced, flat, paddle blades, and with a solid, disk division vertically dividing each respective side paddle wheel in half and extending at right angles to, and from, the central axle, to the outside extreme end of the paddle blades, with each such half of the equally divided paddle wheel being constructed so that the 90 degree spaced paddle blades in one half are offset by 45 degrees from the 90 degree space paddle blades in the other half, and with the extreme ends of each such set of divided paddle wheels being enclosed via a similar solid.

  2. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  3. Development of Electric Power Units Driven by Waste Heat

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi

    For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.

  4. Electronic load for testing power generating devices

    NASA Technical Reports Server (NTRS)

    Friedman, E. B.; Stepfer, G.

    1968-01-01

    Instrument tests various electric power generating devices by connecting the devices to the input of the load and comparing their outputs with a reference voltage. The load automatically adjusts until voltage output of the power generating device matches the reference.

  5. Oilwell Power Controller (OPC Unit). Technical report

    SciTech Connect

    Not Available

    1993-09-01

    Double M Electric, Inc. in Watford City, ND is finalizing the testing of its Oilwell Power Controller (OPC) Prototype Unit. This device can be used as a rod pump controller and it can also monitor, record and store power usage, temperature and pressure data. The unit also has the capability to measure the rod string weight, therefore it can be used as a dynamometer. A total of 10 OPC Units were assembled and installed on oilwells pumped with rod pumps in the Central and Western United States. Data from these wells was analyzed and forwarded to the participating oil companies.

  6. Uniting Generations through Children's Story Books

    ERIC Educational Resources Information Center

    Chowdhary, Usha

    2004-01-01

    This study examined the role of children's story books in uniting generations. Thematic similarities and distinctions depicted in 101 children's story books on intergenerational linkages were examined. They utilized five categories: caring and sharing, fun with grandparents, depiction of multicultural families, relationship with non-relatives, and…

  7. Together: The Generations United Newsletter, 2002.

    ERIC Educational Resources Information Center

    Peterson, Jaia, Ed.

    2002-01-01

    This document is comprised of the three 2002 issues of the newsletter for Generations United, a national membership organization focused on promoting intergenerational policies, strategies, and programs. The first issue reflects on two events: responses to the September 11th terrorist attacks, and on the organization's international conference…

  8. Together: The Generations United Newsletter, 2003.

    ERIC Educational Resources Information Center

    Peterson, Jaia, Ed.

    2003-01-01

    This document is comprised of the three 2003 issues of the newsletter for Generations United, a national membership organization focused on promoting intergenerational policies, strategies, and programs. The first issue focuses on faith-based intergenerational programs and highlights three such programs. The second issue focuses on arts and…

  9. Low cost space power generation

    NASA Technical Reports Server (NTRS)

    Olsen, Randall B.

    1991-01-01

    The success of this study has given a method of fabricating durable copolymer films without size limitations. Previously, only compression molded samples were durable enough to generate electrical energy. The strengthened specimens are very long lived materials. The lifetime was enhanced at least a factor of 1,300 in full pyroelectric conversion cycle experiments compared with extruded, non-strengthened film. The new techniques proved so successful that the lifetime of the resultant copolymer samples was not fully characterized. The lifetime of these new materials is so long that accelerated tests were devised to probe their durability. After a total of more than 67 million high voltage electrical cycles at 100 C, the electrical properties of a copolymer sample remained stable. The test was terminated without any detectable degradation to allow for other experiments. One must be cautious in extrapolating to power cycle performance, but 67 million electrical cycles correspond to 2 years of pyroelectric cycling at 1 Hz. In another series of experiments at reduced temperature and electrical stress, a specimen survived over one-third of a billion electrical cycles during nearly three months of continuous testing. The radiation-limited lifetimes of the copolymer were shown to range from several years to millions of years for most earth orbits. Thus, the pyroelectric copolymer has become a strong candidate for serious consideration for future spacecraft power supplies.

  10. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  11. Wave activated power generation system

    SciTech Connect

    Ono, Y.

    1983-08-09

    A wave activated power generation system of the float type is disclosed, comprising at least one piston-cylinder device having an anchored cylinder and a piston slidable in the cylinder and cooperating with the cylinder to form a pumping chamber above the piston and a low pressure chamber below the piston. The cylinder has an intake port and an exhaust port both formed at an upper port thereof to communicate with the pumping chamber and each provided with a check valve. A float is connected through a cable to the piston of the piston- cylinder device. A pair of fluid storages are connected to the intake port and the exhaust port of the pumping chamber, respectively. A waterwheel generator is driven by the fluid flowing from one of the fluid storages to another. A pressure regulating device is connected to the low pressure chamber so as to maintain the low pressure chamber at a pressure lower than the pressure in the pumping chamber, the difference in pressure ceaselessly applying a downward force on the piston to keep the cable in a tensed condition.

  12. Improving the efficiency of a four-unit generating station

    SciTech Connect

    Kornegay, D.L.

    1995-12-31

    Increasing the efficiency of hydro generating stations is gaining importance as more and more power stations become automated. The increase in annual revenues due to efficiency improvements is one factor in evaluating the cost justification of an automation project. Several previous works have stated that the efficiency of a generating can be improved by using certain generation dispatching methods. The purpose of this study is to quantify the gain in annual revenues for a four-unit hydro generating station, using actual data from an existing station. The method used in this study does not require a rigorous analytical study. It should, however, provide a reasonably accurate estimate of the potential revenue gain achievable by using an automated generation dispatching control. This method is adaptable to stations with any number of units.

  13. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in

  14. Power Line Technician's Training. Instructional Units.

    ERIC Educational Resources Information Center

    Smith, Earle L.

    These instructional units, developed in Oklahoma, are designed for training power line technicians for rural electric cooperatives. Planned to help current employees advance in knowledge and skill, the instructional materials are divided into seven areas of training: Laborer; Groundworker or Equipment Operator; Power Line Technician, Step 1; Power…

  15. Electronic power generators for ultrasonic frequencies

    NASA Technical Reports Server (NTRS)

    Ciovica, D.

    1974-01-01

    The design and construction of an ultrasonic frequency electronic power generator are discussed. The principle design elements of the generator are illustrated. The generator provides an inductive load with an output power of two kilowatts and a variable output frequency in the fifteen to thirty KiloHertz range. The method of conducting the tests and the results obtained with selected materials are analyzed.

  16. Solar power water distillation unit

    NASA Astrophysics Data System (ADS)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  17. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  18. Nuclear power generation and fuel cycle report 1997

    SciTech Connect

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  19. 126. View in Generator Room of exciter unit no. 1; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    126. View in Generator Room of exciter unit no. 1; looking northwest. This unit includes a Pelton wheel manufactured by Allis Chalmers, no. 261, type C-1, Breaking Horse Power 600, head 370 feet, and 360 rpm; a General Electric DC generator, no. 1357609, type MPC 8, 340-350 form LD, 1360 amp, 350 rpm, 250 volts (no load), 250 volts (full load); and a General Electric induction motor, no. 4228863, type KT-4424, 20-500-360 form A, 60 cycles, 45 amp, 6,600 volts, 500 horsepower, continuous 50-degree centigrade rise, 350 rpm with full-load. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  20. Space Shuttle Orbiter auxiliary power unit status

    NASA Astrophysics Data System (ADS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  1. Space Shuttle Orbiter auxiliary power unit status

    NASA Technical Reports Server (NTRS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    1991-01-01

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  2. Power conditioning unit for low-power arcjet flight application

    NASA Astrophysics Data System (ADS)

    Skelly, P. T.; Fisher, J. R.; Golden, C. M.

    1992-07-01

    A power conditioning unit (PCU) has been designed to operate in conjunction with the low-power arcjet thruster for north/south stationkeeping and orbit modification applications on commercial satellites. The major PCU function is to convert direct current input power into a regulated, constant-power output to the arcjet thruster. The PCU is capable of providing a constant power level of 1630 watts to the thruster during steady-state thruster operation despite stochastic variations in arc voltage. The PCU design is based on a push-pull power converter topology and custom-designed power-hybrid microunits for the power-switching function which provide high efficiency and packaging density of the design.

  3. Thermoelectric power generator with intermediate loop

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  4. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  5. Inventory of Power Plants in the United States, October 1992

    SciTech Connect

    Not Available

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  6. Pulse power applications of flux compression generators

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Caird, R. S.; Erickson, D. J.; Freeman, B. L.

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.

  7. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  8. Space Shuttle Orbiter improved auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Hagemann, D. W.; Wicklund, L. L.; Loken, G. R.; Baughman, J. R.; Lance, R. J.

    1984-01-01

    The Space Shuttle Orbiter Auxiliary Power Unit subsystem has operated successfully on three vehicles by meeting mission requirements and has proven the design for space operation. The current Auxiliary Power Unit (APU) operational life is limited to 12 missions and the APU turnaround between flights is longer than originally anticipated. The Improved APU objective is to increase life to 50 missions, reduce the three - APU subsystem vehicle weight by 140 lbs., and reduce turnaround time. The design changes incorporated into the Improved APU and the associated development testing are described.

  9. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  10. E.A. Gilbert Generating Unit, Maysville, Kentucky

    SciTech Connect

    Wicker, K.

    2005-08-01

    The new, 368-MW E.A. Gilbert Generating Unit at the H.L. Spurlock Power Station in Maysville isn't just the cleanest coal-burning plant in Kentucky. Thanks to its circulating liquidized bed boiler from Alstom, it is one of the cleanest in the US. The boiler's ability to burn a wide variety of coals and even pet coke, biomass, or tire-derived fuels - also was a factor in Power's decision to name E.A. Gilbert a Top Plant of 2005. 3 figs., 2 tabs.

  11. 89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING EAST FROM ABOUT THE CENTER, FEBRUARY 26, 1918, AFTER MICHIGAN NORTHERN HAD BROUGHT THE GENERATOR INSTALLATION UP TO FULL CAPACITY. THE NARROW PANEL WESTINGHOUSE SWITCHBOARD INSTALLED IN 1916-17 IS AT THE UPPER RIGHT. THE NEW GENERAL ELECTRIC GENERATORS ARE BELOW THE GALLERY. NOTE THE D.C. EXCITER UNIT ON EXTENDED SHAFT ON THE UNIT IN THE FOREGROUND. A SIMILAR TYPE OF INSTALLATION WAS FOUND AT PENSTOCKS 45 THROUGH 48 AND 62 THROUGH 73. WHAT SEEM TO BE EXTENDED SHAFT UNITS IN THE BACKGROUND ARE MERELY THE OLD STANLEY ALTERNATORS BEFORE THEY HAD BEEN REMOVED FROM THE GENERATOR ROOM. (878) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  12. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  13. Enhancing the calculation accuracy of performance characteristics of power-generating units by correcting general measurands based on matching energy balances

    NASA Astrophysics Data System (ADS)

    Shchinnikov, P. A.; Safronov, A. V.

    2014-12-01

    General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.

  14. 76 FR 29279 - Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... COMMISSION NORTHERN STATES POWER COMPANY Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of... Nuclear Plants Regarding the License Renewal of Prairie Island Nuclear Generating Plants, Units 1 and 2... years of operation for Prairie Island Nuclear Generating Plant, Units 1 and Unit 2 (PINGP 1 and 2)....

  15. Teachers Environmental Resource Unit: Energy and Power.

    ERIC Educational Resources Information Center

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  16. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  17. Probabilistic Evaluation of Wind Power Generation

    NASA Astrophysics Data System (ADS)

    Muhamad Razali, N. M.; Misbah, Muizzuddin

    2013-06-01

    The power supplied by wind turbine generators (WTG) is widely random following the stochastic nature of weather conditions. For planning and decision making purposes, understanding and evaluation of the behaviour and distribution of WTG's output power are crucial. Monte Carlo simulation enables the realization of artificial futures by generating a huge number of sample paths of outcomes to perform this analysis. The paper presents an algorithm developed for a random wind speed generator governed by the probability density function of Weibull distribution and evaluates the WTG's output by using the power curve of wind turbines. The method may facilitate assessment of suitable turbine site as well as generator selection and sizing.

  18. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  19. Boxberg III-2 x 500 MW units: Refurbishing and environmental protection measures on the 815 T/H steam generator of works II in Boxberg Power Station

    SciTech Connect

    Cossman, R.; Fritz, M.; Bauchmueller, R.

    1995-12-01

    The object of the upgrading measures on the steam generators is: (1) To comply with the requirements of the German antipollution law, which imposes a permissible NO{sub x} content in the flue gas of less than 200 Mg/m{sup 3} STP and a CO content of less than 250 Mg/m{sup 3} STP. (2) To increase the boiler efficiency and availability and the efficiency of the water/steam cycle.

  20. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  1. On the possibility of connecting a non-operating main circulation pump with three pumps in operation without preliminary coast-down of power-generating unit No. 5 in the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Vitkovskii, I. L.; Nikonov, S. P.; Ryasnyi, S. I.

    2014-02-01

    The subject of this paper is a transient caused by connection of a standby loop to three operating circulation pumps at the initial reactor heat rate equal to 70% of the rated value without preliminarily reducing it to 30% of the rated level as required by the safe operation regulations. Failure of the following normal operation systems is supposed: the first- and the second-type warning protection systems, all quick-acting reducing devices releasing steam into the auxiliary manifold, the electric heaters of the pressurizer, the pressurizer injection system, the primary cooling circuit fluid makeup/blow-through systems, and the blocking systems to shut down the main circulation pump after the level in the steam generator is exceeded. In addition, it is supposed that, under transient conditions, the valves of the turbine regulation system will be in the position in which they were at the moment of the initial event until generation of the signal for positive closing of the turbine stop valves. The first signal to actuate the reactor emergency protection system (EPS) is skipped. The failure of all quick-acting reducing devices releasing steam into the atmosphere is assumed. In addition to equipment failure, at the moment when the main circulation pump is connected, the operator erroneously puts in a new setting to maintain the power allowable for four pumps in operation-in the calculations it was taken equal to 104% of the rated level at most considering the accuracy of evaluating and maintaining the reactor heat rate-and the working group of the reactor protection and control system (P&CS) starts moving upward. On reaching the set power level, the automatic reactor power regulator stops operating and the P&CS elements remain in the position in which they are at the moment. Compliance with the design safety criteria for the adopted scenario of the transient is demonstrated.

  2. Inventory of power plants in the United States, 1993

    SciTech Connect

    Not Available

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  3. Inventory of power plants in the United States 1994

    SciTech Connect

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  4. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  5. CLOSEUP VIEW OF A GENERATOR UNIT WITH ITS ASSOCIATED INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW OF A GENERATOR UNIT WITH ITS ASSOCIATED INSTRUMENTATION AND CONTROL PANEL. - Wilson Dam & Hydroelectric Plant, Turbine & Generator Unit, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  6. Control units for APS power supplies

    SciTech Connect

    Despe, O.D.; Saunders, C.; McGhee, D.G.

    1993-07-01

    The Advanced Photon Source (APS) accelerator facility is made up of five major subsystems in addition to the linac: the positron accumulator ring (PAR), low energy transport (LET), booster synchrotron (SYNCH), high energy transport (HET), the storage ring (SR). Each subsystem has multiple magnet power supply combinations, some requiring multiple of operation. These magnet and power supply combinations computer controlled and monitored. The power supply control unit (PSCU) is the first layer of hardware and software above the power supply itself and is described in this paper. The description includes the basic philosophy for each of operation and how it influences the topology and of implementing control. The design of the analog reference blocks (ARBs) influenced the design of other custom functions well as the feedback controls for vibration and other dynamic corrections. The command set supported by the PSCU is discussed.

  7. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and...

  8. Optimal generator bidding strategies for power and ancillary services

    NASA Astrophysics Data System (ADS)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  9. Development of the NEXT Power Processing Unit

    NASA Technical Reports Server (NTRS)

    Phelps, Thomas K.; Wiseman, Steve; Komm, David S.; Bond, Thomas; Pinero, Luis R.

    2005-01-01

    Boeing Electron Dynamic Devices, Inc. (EDD) has designed and fabricated a breadboard version of a 6 kW power processing unit (PPU) for gridded ion thrusters. This breadboard PPU will be integrated with an engineering model 40 cm ion engine designed and tested at NASA Glenn. The results of our tests using resistive loads are reported in this paper. The PPU demonstrated efficiencies to date are higher than 95 percent for the beam supply and higher than 92 percent for the discharge supply at full power. Overall PPU efficiency is greater than 94 percent at full throttle settings.

  10. Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect

    J. Weber

    2001-12-12

    Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market.

  11. Space Shuttle Orbiter auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Mckenna, R.; Wicklund, L.; Baughman, J.; Weary, D.

    1982-01-01

    The Space Shuttle Orbiter auxiliary power units (APUs) provide hydraulic power for the Orbiter vehicle control surfaces (rudder/speed brake, body flap, and elevon actuation systems), main engine gimbaling during ascent, landing gear deployment and steering and braking during landing. Operation occurs during launch/ascent, in-space exercise, reentry/descent, and landing/rollout. Operational effectiveness of the APU is predicated on reliable, failure-free operation during each flight, mission life (reusability) and serviceability between flights (turnaround). Along with the accumulating flight data base, the status and results of efforts to achieve these long-run objectives is presented.

  12. Comparison of the Various Methodologies for Estimating Thermoelectric Power Generation Water Withdrawals and Their Effect on Water-Use Trends from 1985-2010 in the United States

    NASA Astrophysics Data System (ADS)

    Hutson, S.

    2013-12-01

    The U.S Geological Survey (USGS) has estimated thermoelectric water withdrawals at 5-year intervals since 1950, and consumptive use from 1950 to 1995. Changes in water demand for cooling water, a significant part of the thermoelectric water use, has important implications for water availability to meet future energy demand, especially at the local level. USGS data show total water withdrawals peaked in 1980, declined in 1985, and have remained relatively stable through 2005. Total water use has been dominated by thermoelectric withdrawals since 1965. USGS estimates through 2005 have been primarily based on compiling self-reported data by powerplant operators to State water regulatory agencies and to the Department of Energy-Energy Information Administration (EIA). The reported data from these sources have often been inconsistent because techniques for measuring or estimating the main water flows are not standardized; and, incomplete because reporting thresholds for water withdrawals vary from State-to-State. EIA only requires the reporting of water use from powerplants that are 100 megawatts or more. Some withdrawals have also been estimated with a gallon per kilowatt-hour coefficient and powerplant net electric generation; however, coefficients were mostly based on reported data, and although the coefficients accounted for differences in cooling systems, fuel type, and flue gas desulfurization and other factors, the coefficients are averages and have not accounted for either weather or climatic conditions. The USGS National Water Use Information Program (NWUIP) developed consistent estimates of water withdrawals and water consumption based on linked heat and water budgets for the entire fleet of 1,284 active water-using powerplants for 2010. In 2010, 802 powerplants reported water-use data to EIA. The linked heat and water budget calculates condenser duty for a powerplant, and estimated water withdrawal is a function of condenser duty and change in temperature in

  13. 78 FR 36277 - Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... COMMISSION Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION..., and Acceptance Criteria (ITAAC) E.2.5.04.05.05.01, for the Vogtle Electric Generating Plant, Unit 3... Vogtle Electric Generating Plant, Unit 3 ] (ADAMS Accession No. ML13032A592). This ITAAC was approved...

  14. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  15. Inventory of Nonutility Electric Power Plants in the United States

    EIA Publications

    2003-01-01

    Final issue of this report. Provides annual aggregate statistics on generating units operated by nonutilities in the United States and the District of Columbia. Provides a 5-year outlook for generating unit additions and changes.

  16. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Energy Regulatory Commission Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy, Inc.; Constellation Power Source Generation, Inc.; Criterion Power..., CER Generation II, LLC, Constellation Mystic Power, LLC, Constellation NewEnergy, Inc.,...

  17. Coal-burning magnetohydrodynamic power generation

    SciTech Connect

    Kessler, R.; Hals, F. )

    1992-01-01

    In this paper, coal-burning magnetohydrodynamic (MHD) electric power generation technology is described, and its economic and environmental advantages are discussed. advanced MHD/steam plants can achieve efficiencies of 55%-60% with less environmental intrusion than form conventional coal-burning steam plants. The national program for development of MHD power generation is outlined and the development status of individual components and subsystems is presented.

  18. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  19. Analytical predictions of RTG power degradation. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Noon, E. L.; Raag, V.

    1979-01-01

    The DEGRA computer code that is based on a mathematical model which predicts performance and time-temperature dependent degradation of a radioisotope thermoelectric generator is discussed. The computer code has been used to predict performance and generator degradation for the selenide Ground Demonstration Unit (GDS-1) and the generator used in the Galileo Project. Results of parametric studies of load voltage vs generator output are examined as well as the I-V curve and the resulting predicted power vs voltage. The paper also discusses the increased capability features contained in DEGRA2 and future plans for expanding the computer code performance.

  20. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  1. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  2. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  3. COMPREHENSIVE STANDARDS: THE POWER GENERATION CASE

    EPA Science Inventory

    This study presents an illustrative data base of material quantities and environmental effluents in the fuel cycles for alternative technologies of thermally generated power. The entire fuel cycle for each of the alternative ten technologies is outlined for a representative power...

  4. Power facility with a built-in multipolar MHD generator

    SciTech Connect

    Kovalev, K.L.; Markina, T.A.

    1995-05-01

    The scheme of a power facility with a built-in multipolar MHD generator is discussed. In most papers devoted to airborne high-power MHD generators (self-contained or built into the nozzle of the propulsion unit), MHD channels are discussed that are based on a two-pole scheme. The processes of energy conversion in these MHD generators are usually accompanied by disturbances of flow in the entire channel volume, which, in many cases, is undesirable for the operation of power facilities. Depending on the number of pairs of poles, the proposed facility makes it possible to accomplish MHD conversion both in the nozzle peripheral zone and in the central part of the flow. An analysis of the methods and results of calculations of volume MHD effects for finite Hall parameters {beta} and MHD-interaction s, as well as of the output characteristics of multipolar MHD generators equipped with electrode modules of different types are given. A comparison of the theoretical and experimental data is made. A scheme involving an advanced propulsion unit fired with cryogenic fuel H{sub 2}+O{sub 2} and a built-in multipolar MHD generator is considered. The problems of using built-in multipolar MHD generators in propulsion units utilizing other fuel pairs are discussed.

  5. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  6. Counter rotating type hydroelectric unit suitable for tidal power station

    NASA Astrophysics Data System (ADS)

    Kanemoto, T.; Suzuki, T.

    2010-08-01

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  7. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  8. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  9. Polygenetic Aspect of Unit Theory Oil Generation

    NASA Astrophysics Data System (ADS)

    Galant, Yuri

    2015-04-01

    In the framework of a unified theory Oil Generation one of important moments is the consideration of the distribution of oil in the Earth's Crust. Analysis of the distribution of oil deposits in the Earth's Crust showed that oil distributed throughout the stratigraphic section from ancient to modern sediments and from a depth of 12 kilometers to the Earth's surface. The distribution of oil almost meets all stages of metamorphism of rocks. Correlation of the section of oil distribution to genetic types of ore deposits showed that each genetic type ore deposits has its analogue oil field . So it is possible to classify oil fields on 1) endogenous: the actual magmatic, post-magmatic, contact-metasomatic (skarn), hydrothermal, exhalation, carbonatite, pegmatite, 2) exogenous: weathering, oxidation, sedimentary,3) metamorphogenic: metamorphosed, metamorphic. Model of such distribution of oil deposits can be a process of successive formation of oil deposits of mantle degassing tube. Thus oil is polygenic by way of formation of deposits, but their source is united.

  10. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  11. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  12. Securing the United States' power infrastructure

    SciTech Connect

    Happenny, Sean F.

    2015-08-01

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.

  13. Power costs of thirteen electric generation technologies

    SciTech Connect

    Lang, R.C.; Doyle, J.F.

    1983-01-01

    This paper reports on a study performed for the Bonneville Power Administration (BPA) to estimate as consistently as possible the cost of future generating technologies using renewable and conventional resources and highly fuel-efficient systems. The primary objective of the study was to evaluate future generating technologies by calculating the 30-yr. levelized busbar power costs of each technology on a consistent basis. Esimates for capital costs, operating costs, project schedules, fuel costs, annual energy generation and cost uncertainty were developed for the busbar power cost analysis. The study was designed to produce the most objective and consistent cost estimates possible for all of the generating technologies. The analysis of the uncertainty in capital cost and project schedule shows that there is a high level of uncertainty in the future costs for the developing technologies. Includes 5 tables.

  14. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  15. Research on HOPE actuator power unit

    NASA Astrophysics Data System (ADS)

    Itagaki, Haruaki; Iida, Tooru; Ishii, Yasuo

    1992-08-01

    An Overview of the review conducted on Actuator Power Unit (APU) of HOPE (H-2 Orbiting Plane) based on a base line constructed combining conventional technologies are presented. Partial trial production and test on lubrication subsystems to acquire fundamental data on lubricant supply and retrieval system which is not affected by microgravity and gravity directions were conducted. The subject subsystem was constructed to facilitate visual observation from the side of gas and liquid separating conditions. The results of test conducted changing parameters such as void ratio, the ratio of lubricant to residual space (GN2 gas) in the gear box are shown. A lubrication system flow chart is shown.

  16. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIV, UNDERSTANDING DC GENERATOR PRINCIPLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) WHAT IS A GENERATOR AND ITS USE, (2) SHUNT GENERATOR PRINCIPLES, (3) POWER AND RATINGS OF A GENERATOR, (4) ARMATURE REACTION, (5) WHAT IS POLARITY, (6) TWO GENERATOR…

  17. Synchrophasor Applications for Wind Power Generation

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  18. Wind Power Price Trends in the United States

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2009-07-15

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  19. Towards to Creation Unit Theory Oil Generation

    NASA Astrophysics Data System (ADS)

    Galant, Yuri

    2014-05-01

    Creating a unified theory of the genesis of oil encompasses all aspects of oil's life beginning from the formation the chemical elements. Globally, in the spatio-temporal aspect oil's life covers a Cosmic (pre geological) stage and geologically stage of formation of the planet Earth. In conces of spatio-temporal aspect unified theory of oil formation is based on the sequence of occurrences of chemical elements from which to create the Planet Earth and its Granite and Basalt Domains. From this standpoint is an independent Oil Domain along with Granite and Basalt. Sequence analysis of the appearance of chemical elements (H, C, N, O, Na, Mg, Al, Si, K, Ca, Ti, Fe, etc.) reveals the genesis of oil at a very early stage of the creation of Earth according appearance first of H and C. Next, according to the sequence of appearance (creation) of the elements are formed of Granite and Basalt Domain. The appearance of: (chemical element - serial number of) H 1, O 8 corresponds to the appearance of the aqueous layer. The appearance of Na 11, Al 13, Si 14 corresponds to the appearance of the Granite layer. The appearance of Ca 20, Fe 26 corresponds to the appearance of the Basalt layer. The process of formation of domains continues to today. Currently, Oil Domain encircles Globe on the south and north and manifests itself from micro quantities to gigantic clusters. In the formation of unit oil involves various methods involving initial elements C and H of various geneses. A unity of theory of oil generation in her polygenic !

  20. Flywheel-powered X-ray generator

    NASA Technical Reports Server (NTRS)

    Siedband, M. P.

    1984-01-01

    The use of a small flywheel appears to be a practical alternative to other power sources for mobile X-ray system applications. A 5 kg flywheel has been constructed which runs at 10 krpm and stores 30 KJ while requiring less than 500 W to bring the system up to speed. The wheel is coupled to an aircraft alternator and can yield pulsed power levels over 50 KWp. The aircraft alternator has the advantage of high frequency output which has also permitted the design of smaller high voltage transformers. A series of optical sensors detecting shaft position function as an electronic commutator so that the alternator may operate as a motor to bring the wheel up to operating speed. The system permits the generation of extremely powerful X-rays from a variety of low power sources such as household power outlets, automobile batteries or sources of poorly regulated electrical power such as those found in third world countries.

  1. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-01-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics. PMID:25804132

  2. Thermoelectric Fabrics: Toward Power Generating Clothing

    NASA Astrophysics Data System (ADS)

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-03-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  3. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  4. Thermoelectric Fabrics: Toward Power Generating Clothing

    PubMed Central

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-01-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics. PMID:25804132

  5. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  6. 21 CFR 890.5950 - Powered heating unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered heating unit. 890.5950 Section 890.5950...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5950 Powered heating unit. (a) Identification. A powered heating unit is a device intended for medical purposes...

  7. 21 CFR 890.5950 - Powered heating unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered heating unit. 890.5950 Section 890.5950...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5950 Powered heating unit. (a) Identification. A powered heating unit is a device intended for medical purposes...

  8. 21 CFR 890.5950 - Powered heating unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered heating unit. 890.5950 Section 890.5950...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5950 Powered heating unit. (a) Identification. A powered heating unit is a device intended for medical purposes...

  9. 14 CFR 25.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary power unit limitations. 25.1522 Section 25.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1522 Auxiliary power unit limitations. If an auxiliary power unit is installed...

  10. 14 CFR 29.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit limitations. 29.1522 Section 29.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1522 Auxiliary power unit limitations. If an auxiliary power unit that meets...

  11. 14 CFR 25.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit limitations. 25.1522 Section 25.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1522 Auxiliary power unit limitations. If an auxiliary power unit is installed...

  12. 14 CFR 23.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit limitations. 23.1522 Section 23.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1522 Auxiliary power unit limitations. If an auxiliary power unit...

  13. 14 CFR 25.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary power unit limitations. 25.1522 Section 25.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1522 Auxiliary power unit limitations. If an auxiliary power unit is installed...

  14. 14 CFR 29.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary power unit limitations. 29.1522 Section 29.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1522 Auxiliary power unit limitations. If an auxiliary power unit that meets...

  15. 14 CFR 23.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary power unit limitations. 23.1522 Section 23.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1522 Auxiliary power unit limitations. If an auxiliary power unit...

  16. 14 CFR 23.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary power unit limitations. 23.1522 Section 23.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1522 Auxiliary power unit limitations. If an auxiliary power unit...

  17. 14 CFR 29.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary power unit limitations. 29.1522 Section 29.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1522 Auxiliary power unit limitations. If an auxiliary power unit that meets...

  18. 14 CFR 25.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary power unit limitations. 25.1522 Section 25.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 25.1522 Auxiliary power unit limitations. If an auxiliary power unit is installed...

  19. 14 CFR 23.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary power unit limitations. 23.1522 Section 23.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1522 Auxiliary power unit limitations. If an auxiliary power unit...

  20. 14 CFR 29.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary power unit limitations. 29.1522 Section 29.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1522 Auxiliary power unit limitations. If an auxiliary power unit that meets...

  1. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  2. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  3. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  4. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  5. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  6. Automatic control system by power distribution in a power-generating reactor

    SciTech Connect

    Aleksakov, A.N.; Podlazov, L.N.; Ryabov, V.I.; Shevchenko, V.V.; Postnikov, V.V.

    1980-12-01

    The development of the theoretical principles of construction of these systems and of sufficiently detailed nonlinear dynamic numerical models of a power-generation unit with an RBMK reactor have allowed a consistent procedure to be produced for the engineering synthesis of an (local automated control) LAC-LEP (local emergency protection) system. The LAC system facilitates the shaping and maintenance of the desired power distribution in the whole volume of the reactor. In emergency situations, the LAC-LEP system qualitatively reduces the power to a safe level and effectively suppresses the power warpings in one-half of the reactor, which are characteristic for these reactors.

  7. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  8. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Brake power unit. 570.6 Section 570.6... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken... power assist system. This test is not applicable to vehicles equipped with full power brake system...

  9. 12. GENERATING UNIT NO. 2, WITH (LR) CONTINUOUS CURRENT EXCITER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. GENERATING UNIT NO. 2, WITH (L-R) CONTINUOUS CURRENT EXCITER, ALTERNATING CURRENT GENERATOR, AND TURBINE GOVERNOR. VIEW TO SOUTH. - Cooke Hydroelectric Plant, Powerhouse, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  10. Interior of Right Powerhouse, generator room, looking east. The unit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, generator room, looking east. The unit in the foreground is turbine-generator No. 11. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  11. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W.; Christenson, Todd R.

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  12. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  13. Thermoelectric unicouple used for power generation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Zoltan, Andrew (Inventor); Zoltan, Leslie (Inventor); Snyder, Jeffrey (Inventor)

    2004-01-01

    A high-efficiency thermoelectric unicouple is used for power generation. The unicouple is formed with a plurality of legs, each leg formed of a plurality of segments. The legs are formed in a way that equalizes certain aspects of the different segments. Different materials are also described.

  14. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  15. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  16. Global Climate Change - The Power Generation Challenge

    EPA Science Inventory

    The planet continues to warm; O.5 C from the 1970’s to the 2000’s. Also, worldwide CO2 emissions have increased at a 3% annual growth rate from 2000 to 2010. Such emissions are driven by fossil fuel combustion, especially in the power generation sector, & especial...

  17. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  18. Thermoelectric power generation system optimization studies

    NASA Astrophysics Data System (ADS)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  19. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  20. Recent advances in RF power generation

    SciTech Connect

    Tallerico, P.J.

    1990-01-01

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

  1. 75 FR 32516 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Surry Power Station, Unit Nos.1 and 2... Station, Unit Nos. 1 and 2 (NAPS) and Surry Power Station, Unit Nos. 1 and 2 (SPS) located in Lake Anna... National Aeronautics and Space Administration and Interek, that the equipment will continue to provide...

  2. Orbiter Auxiliary Power Unit Flight Support Plan

    NASA Technical Reports Server (NTRS)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  3. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  4. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  5. Isotope powered stirling generator for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Tingey, Garth L.; Sorensen, Gerald C.; Ross, Brad A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  6. Isotope powered stirling generator for terrestrial applications

    SciTech Connect

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-20

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  7. Thermophotovoltaic and thermoelectric portable power generators

    NASA Astrophysics Data System (ADS)

    Chan, Walker R.; Waits, Christopher M.; Joannopoulos, John D.; Celanovic, Ivan

    2014-06-01

    The quest for developing clean, quiet, and portable high energy density, and ultra-compact power sources continues. Although batteries offer a well known solution, limits on the chemistry developed to date constrain the energy density to 0.2 kWh/kg, whereas many hydrocarbon fuels have energy densities closer to 13 kWh/kg. The fundamental challenge remains: how efficiently and robustly can these widely available chemical fuels be converted into electricity in a millimeter to centimeter scale systems? Here we explore two promising technologies for high energy density power generators: thermophotovoltaics (TPV) and thermoelectrics (TE). These heat to electricity conversion processes are appealing because they are fully static leading to quiet and robust operation, allow for multifuel operation due to the ease of generating heat, and offer high power densities. We will present some previous work done in the TPV and TE fields. In addition we will outline the common technological barriers facing both approaches, as well as outline the main differences. Performance for state of the art research generators will be compared as well as projections for future practically achievable systems. A viable TPV or TE power source for a ten watt for one week mission can be built from a <10% efficient device which is achievable with current state of the art technology such as photonic crystals or advanced TE materials.

  8. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  9. 78 FR 46616 - Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... COMMISSION Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station... the Emergency Plan, ``Conditions of licenses,'' for North Anna Power Station, Units 1 and 2 (NAPS), for Renewed Facility Operating License Nos. NPF-4 and NPF-7, and Surry Power Station, Units 1 and...

  10. Auxiliary power unit for moving a vehicle

    DOEpatents

    Akasam, Sivaprasad; Johnson, Kris W.; Johnson, Matthew D.; Slone, Larry M.; Welter, James Milton

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  11. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  12. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  13. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  14. New Generation General Purpose Computer (GPC) compact IBM unit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    New Generation General Purpose Computer (GPC) compact IBM unit replaces a two-unit earlier generation computer. The new IBM unit is documented in table top views alone (S91-26867, S91-26868), with the onboard equipment it supports including the flight deck CRT screen and keypad (S91-26866), and next to the two earlier versions it replaces (S91-26869).

  15. Methods for generating hydroelectric power development alternatives

    SciTech Connect

    Chang, Shoou-yuh; Liaw, Shu-liang; Sale, M.J.; Railsback, S.F.

    1989-01-01

    Hydropower development on large rivers can result in a number of environmental impacts, including potential reductions in dissolved oxygen (DO) concentrations. This study presents a methodology for generating different hydropower development alternatives for evaluation. This methodology employs a Streeter-Phelps model to simulate DO, and the Bounded Implicit Enumeration algorithm to solve an optimization model formulated to maximize hydroelectric energy production subject to acceptable DO limits. The upper Ohio River basin was used to illustrate the use and characteristics of the methodology. The results indicate that several alternatives which meet the specified DO constraints can be generated efficiently, meeting both power and environmental objectives. 17 refs., 2 figs., 1 tab.

  16. Unregulated generation relationships at Niagara Mohawk Power Corporation

    SciTech Connect

    Schrayshuen, H.

    1995-10-01

    This paper examines the contractual and mandated power generation pricing relationships between an electric utility and unregulated power generation stations. The topics of the paper include types of generation facilities, current capacity of unregulated generators, rights to power markets, utility planning, responding to a changing market, power purchase agreement relationships, enforcement and renegotiation.

  17. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    PubMed

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-01

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs. PMID:24595200

  18. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  19. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  20. Heat Management in Thermoelectric Power Generators.

    PubMed

    Zebarjadi, M

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  1. Heat Management in Thermoelectric Power Generators

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2016-04-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one.

  2. Heat Management in Thermoelectric Power Generators

    PubMed Central

    Zebarjadi, M.

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  3. Assessment of Japan's Optimal Power Generation Mix Considering Massive Deployment of Variable Renewable Power Generation

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    This paper analyzes Japan's optimal power generation mix considering massive deployment of solar photovoltaic (PV) system and wind power generation. The extensive introduction of PV system and wind power system are expected to play an important role in addressing energy security and climate change concern in Japan. Considering this expected large-scale deployment of PV system in electric power system, it is necessary to investigate the optimal power generation mix which is technologically capable of controlling and accommodating the intermittent output-power fluctuation inherently derived from PV and wind energy system. On these backgrounds, we develop optimal power generation mix model, explicitly analyzing the impact of output fluctuation in variable renewable in detailed resolution of time interval like 10 minutes at consecutive 365 days, with the role of stationary battery technology incorporated. Simulation results reveal that considerable deployment of those variable renewables do not necessarily require the scale of battery capacity similar as that of variable renewable capacity, due to quick load following treatment by thermal power plants, pumped-storage hydro power and battery technology over renewable output fluctuation.

  4. The Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

  5. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  6. Estimation of lifespan and economy parameters of steam-turbine power units in thermal power plants using varying regimes

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2016-08-01

    The use of potent power units in thermal and nuclear power plants in order to regulate the loads results in intense wear of power generating equipment and reduction in cost efficiency of their operation. We review the methodology of a quantitative assessment of the lifespan and wear of steam-turbine power units and estimate the effect of various operation regimes upon their efficiency. To assess the power units' equipment wear, we suggest using the concept of a turbine's equivalent lifespan. We give calculation formulae and an example of calculation of the lifespan of a steam-turbine power unit for supercritical parameters of steam for different options of its loading. The equivalent lifespan exceeds the turbine's assigned lifespan only provided daily shutdown of the power unit during the night off-peak time. We obtained the engineering and economical indices of the power unit operation for different loading regulation options in daily and weekly diagrams. We proved the change in the prime cost of electric power depending on the operation regimes and annual daily number of unloading (non-use) of the power unit's installed capacity. According to the calculation results, the prime cost of electric power for the assumed initial data varies from 11.3 cents/(kW h) in the basic regime of power unit operation (with an equivalent operation time of 166700 hours) to 15.5 cents/(kW h) in the regime with night and holiday shutdowns. The reduction of using the installed capacity of power unit at varying regimes from 3.5 to 11.9 hours per day can increase the prime cost of energy from 4.2 to 37.4%. Furthermore, repair and maintenance costs grow by 4.5% and by 3 times, respectively, in comparison with the basic regime. These results indicate the need to create special maneuverable equipment for working in the varying section of the electric load diagram.

  7. ONU power saving modes in next generation optical access networks: progress, efficiency and challenges.

    PubMed

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2012-12-10

    The optical network unit (ONU), installed at a customer's premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep. PMID:23262897

  8. Cummins Power Generation SECA Phase 1

    SciTech Connect

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  9. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    SciTech Connect

    Chen, T.P.

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  10. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  11. Wind powered generator with cyclic airfoil latching

    SciTech Connect

    Bair, P.

    1981-12-01

    A wind powered generator rotatable about a vertical axis is described. A plurality of vertically disposed airfoils are provided, the airfoils being rotatable about a vertical axis parallel to the axis of the generator. The airfoils are selectively latched to be disposed perpendicularly of the wind direction during one phase of their revolution about the generator axis and are selectively unlatched to be permitted to rotate into a position generally parallel to the wind direction during other phases of their revolution. The latching and unlatching of the airfoils is determined by the wind direction and is effected by electronic means which determine the point of latching and unlatching as a function of the wind direction measured by a wind vane. The airfoils may comprise sails composed of a flexible material stretched into a predetermined shape on a frame.

  12. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  13. Generation adequacy assessment of power systems with significant wind generation: A system planning and operations perspective

    NASA Astrophysics Data System (ADS)

    D'Annunzio, Claudine

    One of the great challenges to increasing the use of wind generation is the need to ensure generation adequacy. In this dissertation, we address that need by investigating and assessing the planning and operational generation adequacy of power systems with significant wind generation. At the onset of this dissertation, key metrics are presented for determining a power system's generation adequacy assessment based on loss-of-load analytical methods. With these key metrics understood, a detailed methodology is put forward on how to integrate wind plants in the assessment's framework. Then, through the examination of a case study, we demonstrate that wind generation does contribute capacity to the system generation adequacy. Indeed, results indicates that at wind penetration levels of less than 5%, a wind plant's reliability impact is comparable to an energy equivalent conventional unit. We then show how to quantify a wind plant's capacity contribution by using the effective load carrying capability metric (ELCC), providing a detailed description of how to implement this metric in the context of wind generation. However, as certain computational setbacks are inherent to the metric, a novel noniterative approximation is proposed and applied to various case studies. The accuracy of the proposed approximation is evaluated in a comparative study by contrasting the resulting estimates to conventionally-computed ELCC values and the wind plant's capacity factor. The non-iterative method is shown to yield accurate ELCC estimates with relative errors averaging around 2%. Case study findings also suggest the importance of period-specific ELCC calculations to better evaluate the variable capacity contribution of wind plants. Even when considering a well-planned system in which wind generation has been appropriately integrated in the adequacy assessment, wind plants do create significant challenges in maintaining generation adequacy on an operational level. To address these

  14. ''An assessment of integrated gasification combined cycle power generation''

    SciTech Connect

    Hauber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-11-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. This study was managed by Argonne National Laboratory for the U.S. Department of Energy, Office of Coal Utilization. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2,150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules.

  15. Assessment of integrated gasification combined cycle power generation

    SciTech Connect

    Huber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-01-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules. 8 figures, 12 tables.

  16. Power systems simulations of the western United States region.

    SciTech Connect

    Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.; Decision and Information Sciences

    2010-03-15

    This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

  17. Steam generator issues in the United States

    SciTech Connect

    Strosnider, J.R.

    1997-02-01

    Alloy 600 steam generator tubes in the US have exhibited degradation mechanisms similar to those observed in other countries. Effective programs have been implemented to address several degradation mechanisms including: wastage; mechanical wear; pitting; and fatigue. These degradation mechanisms are fairly well understood as indicated by the ability to effectively mitigate/manage them. Stress corrosion cracking (SCC) is the dominant degradation mechanism in the US. SCC poses significant inspection and management challenges to the industry and the regulators. The paper also addresses issues of research into SCC, inspection programs, plugging, repair strategies, water chemistry, and regulatory control. Emerging issues in the US include: parent tube cracking at sleeve joints; detection and repair of circumferential cracks; free span cracking; inspection and cracking of dented regions; and severe accident analysis.

  18. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  19. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  20. The Control of the PBMR Nuclear Power Unit

    SciTech Connect

    Rubin, Olis; Venter, Miek; Jordaan, Johannes

    2006-07-01

    PBMR is an advanced, helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). Heat is converted to electric energy by means of a direct recuperative Brayton cycle. This paper considers various design aspects associated with the control of the unit and examples are given of generator load control. Physical material restrictions and process dynamics have a major effect on control, necessitating detail thermo-hydraulic simulation of the plant operation. The Flownex dynamic thermo-hydraulic simulation code was developed to model the plant, which is linked to the control software for co-simulation. Matlab and Simulink are used for controller development while care was taken to ensure compatibility with the operational control code based on IEC standards. Generator load is controlled by regulating the helium inventory in the pressurized system. Helium is injected in order to increase the generator load, and extracted for load reduction. While this method of actuation produces the required steady state response, the plant dynamic response is non minimum phase, i.e. the load initially reduces on a load ramp-up. In base load operation, the extent of the power dip is contained by limiting the rate at which the helium injection can be increased. Feasibility studies show that it is possible to achieve faster load ramp rates by combining helium injection with quick response cycle gas bypass control. Lead compensation on the input load reference signal further enhances the load following capabilities of the unit. (authors)

  1. Power generation properties of Direct Flame Fuel Cell (DFFC)

    NASA Astrophysics Data System (ADS)

    Endo, S.; Nakamura, Y.

    2014-11-01

    This paper investigated the effect of cell temperature and product species concentration induced by small-jet flame on the power generation performance of Direct Flame Fuel Cell (DFFC). The cell is placed above the small flame and heated product gas is impinged toward it and this system is the simplest and smallest unit of the power generation device to be developed. Equivalence ratio (phi) and the distance between the cell and the burner surface (d) are considered as main experimental parameters. It turns out that open circuit voltage (OCV) increases linearly with the increase of temperature in wide range of equivalence ratios. However, it increases drastically at which the equivalence ratio became small (phi <= 2.0) showing inner flame clearly. This result suggests that OCV depends on not only cell temperature but also the species concentration exposed to the cell. It is suggested that Nernst equation might work satisfactory to predict OCV of DFFC.

  2. 2. VIEW OF GOVERNANCE EQUIPMENT AT UNIT 3 GENERATOR (RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF GOVERNANCE EQUIPMENT AT UNIT 3 GENERATOR (RIGHT BACKGROUND) SHOWING PRESSURE TANK (LEFT BACKGROUND), GOVERNOR STAND (CENTER), AND SUMP PUMP (RIGHT FOREGROUND). VIEW TO SOUTHEAST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT

  3. Integrated control of next generation power system

    SciTech Connect

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  4. Neutron generator power supply modeling in EMMA

    SciTech Connect

    Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S; Merewether, K.O.

    1996-12-01

    Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia`s ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described.

  5. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  6. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  7. Power-generation alternatives. The Hellenic power system. Volume 1. Executive Summary. Export trade information

    SciTech Connect

    Not Available

    1987-06-01

    The Phase I study was performed to assist the Public Power Corporation (PPC) of Greece in making decisions regarding the need for new power generation or for repowering existing facilities. An analysis of both new power generation requirements and the feasibility of repowering the existing Aliveri and St. George Stations with coal is provided. The study concludes: Repowering of Aliveri Units 3 and 4 with coal should commence now. Present and committed capacity of the PPC system is adequate until 1997 to 1999, at which time a new 600 MW pulverized coal boiler unit at the Aliveri Station would be commissioned. St. George Station has very little possibility for siting of coal-based new generation or repowering. New facilities should be designed for imported coal to conserve lignite resources for existing and committed units. An alternative to PPC ownership is private sector ownership. A Phase II study for repowering should be initiated and funded by PPC following acceptance of the Phase I study.

  8. Inventory of Electric Utility Power Plants in the United States

    EIA Publications

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  9. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If...

  10. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If...

  11. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If...

  12. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If...

  13. 14 CFR 23.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary power unit controls. 23.1142 Section 23.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on...

  14. 14 CFR 25.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary power unit controls. 25.1142 Section 25.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  15. 14 CFR 25.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary power unit controls. 25.1142 Section 25.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  16. 14 CFR 29.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary power unit controls. 29.1142 Section 29.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1142 Auxiliary power unit...

  17. 14 CFR 23.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary power unit controls. 23.1142 Section 23.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on...

  18. 14 CFR 23.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary power unit controls. 23.1142 Section 23.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on...

  19. 14 CFR 29.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary power unit controls. 29.1142 Section 29.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  20. 14 CFR 23.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 23.1142 Section 23.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on...

  1. 14 CFR 29.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary power unit controls. 29.1142 Section 29.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  2. 14 CFR 25.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary power unit controls. 25.1142 Section 25.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1142 Auxiliary power unit...

  3. 14 CFR 29.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 29.1142 Section 29.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  4. 14 CFR 25.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 25.1142 Section 25.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  5. 14 CFR 29.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary power unit controls. 29.1142 Section 29.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  6. 14 CFR 25.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary power unit controls. 25.1142 Section 25.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  7. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Brake power unit. 570.6 Section 570.6 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IN USE INSPECTION STANDARDS Vehicles With GVWR of 10,000 Pounds or Less § 570.6 Brake power unit....

  8. Installation of new Generation General Purpose Computer (GPC) compact unit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.

  9. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  10. Rotary-Atomizer Electric Power Generator

    NASA Astrophysics Data System (ADS)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  11. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  12. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... thermoelectric generating stations. Increased demands for electric power throughout the East Coast can be... and thermoelectric generation. The direct and indirect effects of existing and proposed...

  13. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... thermoelectric generating stations. Increased demands for electric power throughout the East Coast can be... and thermoelectric generation. The direct and indirect effects of existing and proposed...

  14. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  15. The Solid Rocket Booster Auxiliary Power Unit: Meeting the Challenge

    NASA Technical Reports Server (NTRS)

    Hughes, R. W.

    1985-01-01

    The thrust vector control systems of the solid rocket boosters are turbine-powered, electrically controlled hydraulic systems which function through hydraulic actuators to gimbal the nozzles of the solid rocket boosters and provide vehicle steering for the Space Shuttle. Turbine power for the thrust vector control systems is provided through hydrazine fueled auxiliary power units which drive the hydraulic pumps. The solid rocket booster auxiliary power unit resulted from trade studies which indicated significant advantages would result if an existing engine could be found to meet the program goal of 20 missions reusability and adapted to meet the seawater environments associated with ocean landings. During its maturation, the auxiliary power unit underwent many design iterations and provided its flight worthiness through full qualification programs both as a component and as part of the thrust vector control system. More significant, the auxiliary power unit has successfully completed six Shuttle missions.

  16. Development of a 55 kw diesel powered auxiliary power unit for hybrid electric vehicles. Interim report

    SciTech Connect

    Likos, W.E.; Podnar, D.J.; Smith, J.A.; Steiber, J.

    1998-03-01

    Three auxillary power units (APU) were developed for military hybrid vehicle applications with funding from DARPA. One APU was for the electric M113 troop carrier originally converted to electric power in the 1960`s. The other two APU`s developed during this project were for hybrid electric High Mobility Multipurpose Wheeled Vehicle (HMMWV) projects. For this APU design a Volkswagen 1.5-1 diesel engine drives a permanent magnet generator, that with associated inverter produces 55kW of DC power at 380 volts. Overall thermal efficiencies of 33% were observed. The controller for the APU`s was based on the personal computer (PC) CPU. Basing the controller on the PC allowed flexibility in meeting the individual requirements of the different vehicles. Given a power level request from the vehicle controller, the APU controller set the engine speed for optimum thermal efficiency. The generator electronics adjusts the voltage and thus the current output from the inverter to deliver the requested power to the vehicle`s electrical bus.

  17. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  18. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    SciTech Connect

    Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R.

    2010-07-15

    In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

  19. New power politics will determine generation's path

    SciTech Connect

    Maize, K.; Neville, A.; Peltier, R.

    2009-01-15

    The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

  20. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  1. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  2. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  3. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Power generation responsibilities. 431.4..., DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities. (a)...

  4. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  5. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  6. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  7. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall...

  8. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  9. Foundations for the Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world’s population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developing nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20–25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world’s electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to dealing

  10. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  11. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  12. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  13. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  14. Life cycle assessment analysis of supercritical coal power units

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  15. 78 FR 52987 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ...The U.S. Nuclear Regulatory Commission (NRC) has concluded that existing exemptions from its regulations, ``Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979,'' for Fire Areas ETN-4 and PAB-2, issued to Entergy Nuclear Operations, Inc. (the licensee), for operation of Indian Point Nuclear Generating Unit 3 (Indian Point 3), located in Westchester County,......

  16. 75 FR 12580 - Southern California Edison Company, San Onofre Nuclear Generating Station, Units 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... March 27, 2009 (74 FR 13926). There will be no change to radioactive effluents that affect radiation... impact [Part 73, Power Reactor Security Requirements, 74 FR 13926 (March 27, 2009)]. With its request to... Onofre Nuclear Generating Station, Units 2 and 3 (SONGS 2 and 3), located in San Diego County,...

  17. 75 FR 69136 - Southern California Edison Company, San Onofre Nuclear Generating Station, Units 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Register notice dated March 27, 2009; 74 FR 13926. There will be no change to radioactive effluents or... 73, Power Reactor Security Requirements, March 27, 2009; 74 FR 13926). Thus, through the proposed... Onofre Nuclear Generating Station, Units 2 and 3 (SONGS 2 and 3), located in San Diego County,...

  18. 75 FR 3943 - Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... FR 13967). There will be no change to radioactive effluents that affect radiation exposures to plant... [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee... COMMISSION Southern Nuclear Operating Company, Inc.; Vogtle Electric Generating Plant, Units 1 and...

  19. Inventory of power plants in the United States as of January 1, 1998

    SciTech Connect

    1998-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1998. The publication also provides a 10-year outlook for generating unit additions and generating unit changes. This report is prepared annually by the Energy Information Administration (EIA). Data summarized in this report are useful to a wide audience. This is a report of electric utility data; in cases where summary data or nonconfidential data of nonutilities are presented, it is specifically noted as nonutility data. 19 figs., 36 tabs.

  20. Inventory of power plants in the United States 1989. [Contains glossary

    SciTech Connect

    Not Available

    1990-09-21

    This document is prepared annually by the Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units in operation and to provide a 10-year outlook of future generating unit additions by electric utilities in the United States (the 50 states and the District of Columbia). Data summarized in this report are useful to a wide audience including Congress, federal and state agencies, the electric utility industry, and the general public. The data presented in this report were assembled and published by the EIA, to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Summary Statistics; Operable Electric Generating Units; and Projected Electric Generating Unit Additions.

  1. Diagnostics on the COBRA pulsed power generator

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Chalenski, D. A.; Chandler, K. M.; Douglass, J. D.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; McBride, R. D.; Pikuz, S. A.

    2006-10-01

    The COBRA pulsed power generator has a variable current pulse wave form and amplitude (95-180ns rise time, up to 1MA peak current). It was designed to study wire array Z pinches and X pinches, including plasma formation, pinch implosion dynamics, and pinch plasma parameters as a function of current rise time. These loads have been studied using an extensive set of diagnostics with spatial and/or temporal resolution. The set of electrical diagnostics on the COBRA generator includes Rogowski coils to monitor the total load current and the current through individual return current posts, and there is also an inductive voltage monitor. A set of extreme ultraviolet and x-ray detectors is used to study the load radiation. Wire array and X pinch plasma formation and dynamics are studied using two-frame, point projection X-pinch x-ray imaging as well as with multiframe laser probing. Flat potassium acid phtalate crystal (KAP), convex, extreme luminosity imaging conical spectrograph, and focusing spectrograph with spatial resolution with mica crystal, pinhole cameras, and a camera with a slit and a step filter set (slip step-wedge camera) can be used in each pulse to monitor the x-ray emission from the X pinch(es) and arrays in several spectral bands.

  2. Diagnostics on the COBRA pulsed power generator

    SciTech Connect

    Shelkovenko, T. A.; Chalenski, D. A.; Chandler, K. M.; Douglass, J. D.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; McBride, R. D.; Pikuz, S. A.

    2006-10-15

    The COBRA pulsed power generator has a variable current pulse wave form and amplitude (95-180 ns rise time, up to 1 MA peak current). It was designed to study wire array Z pinches and X pinches, including plasma formation, pinch implosion dynamics, and pinch plasma parameters as a function of current rise time. These loads have been studied using an extensive set of diagnostics with spatial and/or temporal resolution. The set of electrical diagnostics on the COBRA generator includes Rogowski coils to monitor the total load current and the current through individual return current posts, and there is also an inductive voltage monitor. A set of extreme ultraviolet and x-ray detectors is used to study the load radiation. Wire array and X pinch plasma formation and dynamics are studied using two-frame, point projection X-pinch x-ray imaging as well as with multiframe laser probing. Flat potassium acid phtalate crystal (KAP), convex, extreme luminosity imaging conical spectrograph, and focusing spectrograph with spatial resolution with mica crystal, pinhole cameras, and a camera with a slit and a step filter set (slip step-wedge camera) can be used in each pulse to monitor the x-ray emission from the X pinch(es) and arrays in several spectral bands.

  3. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  4. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    NASA Astrophysics Data System (ADS)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-01

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  5. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    SciTech Connect

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N. Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-15

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  6. Space shuttle orbiter auxiliary power unit development challenges

    NASA Technical Reports Server (NTRS)

    Lance, R.; Weary, D.

    1985-01-01

    When the flying spacecraft was approved for development, a power unit for the hydraulic system had to be developed. Unlike other systems on the orbiter, there was no precedent in earlier spacecraft for a hydraulic system nor for the power unit to drive the hydraulic pumps. The only prototypes available were airplane auxiliary power units (APU), which were not required to operate in the severe environments of a spacecraft nor to have the longevity of an orbiter hydraulic power unit. The challenge was to build a hydraulic power unit which could operate in 0g or 3g, in a vacuum or at sea level pressure, and at -65 F or 225 F, which would be capable of restarting while hot, and which would be capable of sustaining the hydraulic loads for the life of the orbiter. The basic approach to providing hydraulic power for the orbiter was to use a small, high speed, monopropellant fueled turbine power unit to drive a conventional aircraft type hydraulic pump. The stringent requirements imposed on the orbiter APU quickly made this machine different from existing aircraft APUs.

  7. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    SciTech Connect

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  8. Investigation of rocket-powered, open-cycle, magnetohydrodynamic generators for high, pulsed power needs in space. Master's thesis

    SciTech Connect

    Power, J.W.

    1986-11-01

    This investigation examined the possibility of using a rocket-powered magnetohydrodynamic generator for pulse power in space of 300 megawatts (MW). The result is a preliminary design of an MHD generator using an open cycle disk channel and a single superconducting solenoid coil. The disk channel acts as a thrust deflector, and internal vanes counteract induced vorticity. The use of a solid-fuel-wafer grain design rocket motor is proposed for increased electrical conductivity and pulse operation of the generator. Using conservative parameters, a generator design capable of being carried on one or two space-shuttle launches is developed with estimated mass of 24,450 kg and estimated power output of 1346 MW. The nominal operation time before refurbishment is 115 seconds; the restriction operation time is deterioration of the channel throat. This design exceeds present nuclear and solar-cell power systems in power output per unit mass.

  9. Innovative gasification technology for future power generation

    SciTech Connect

    Mahajan, K.; Shadle, L.J.; Sadowski, R.S.

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  10. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  11. Power generation from nuclear reactors in aerospace applications

    SciTech Connect

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  12. New Marsulex technology significantly cuts power generation costs

    SciTech Connect

    Walsh, M.A. Jr.

    1999-07-01

    As utility deregulation becomes reality, successful generators of electricity will significantly lower bus bar cost of power by a creative combination of low cost fuel and the application of Marsulex Environmental Technologies'(MET) patented Ammonia Scrubbing Technology. Because fuel constitutes the largest component of generation cost, substantial reductions can be achieved by firing low cost fuels such as petroleum coke. This option has been historically handicapped by sulfur dioxide emission limitations and related economics. MET's proprietary ammonium sulfate technology now enables the use of low cost, 5--7% sulfur fuels without the associated sulfur penalty. The MET technology can reduce generation costs by 25% or more on a typical coal fired unit and does not require any capital outlay by the generator. In addition, this concept can also serve as the cornerstone of a Phase 2 SO{sub 2} compliance strategy, or provide the winning edge in a bid for generation assets. This paper will outline this unique commercial and technical solution and provide economic examples of this cost-cutting strategy.

  13. New Marsulex technology significantly cuts power generation costs

    SciTech Connect

    Walsh, M.A.

    1999-07-01

    As utility deregulation becomes reality, successful generators of electricity will significantly lower bus bar cost of power by a creative combination of low cost fuel and the application of Marsulex Environmental Technologies' (MET) patented Ammonia Scrubbing Technology. Because fuel constitutes the largest component of generation cost, substantial reductions can be achieved by firing low cost fuels such as petroleum coke. Tis option has been historically handicapped by sulfur dioxide emission limitations and related economics. MET's proprietary ammonium sulfate technology now enables the use of low cost, 5-7-% sulfur fuels without the associated sulfur penalty. The MET technology can reduce generation costs by 25% or more on a typical coal fired unit and does not require any capital outlay by the generator. In addition, this concept can also serve as the cornerstone of a Phase 2 SO{sub 2} compliance strategy, or provide the winning edge in a bid for generation assets. This paper will outline this unique commercial and technical solution and provide economic examples of this cost-cutting strategy.

  14. 99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POWER DISTRIBUTION UNITS FOR BATTERIES AND RECTIFIERS, NORTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Space shuttle auxiliary power unit study, phase 2

    NASA Technical Reports Server (NTRS)

    Binsley, R. L.; Krause, A. A.; Maddox, R. D.; Marcy, R. D.; Siegler, R. S.

    1972-01-01

    A study was performed to establish the preliminary design of the space shuttle auxiliary power unit. Details of the analysis, optimizations, and design of the components, subsystems and systems are presented.

  16. Universal power transistor base drive control unit

    DOEpatents

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  17. Universal power transistor base drive control unit

    DOEpatents

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  18. Investigation of Maximum Power Point Tracking for Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Phillip, Navneesh; Maganga, Othman; Burnham, Keith J.; Ellis, Mark A.; Robinson, Simon; Dunn, Julian; Rouaud, Cedric

    2013-07-01

    In this paper, a thermoelectric generator (TEG) model is developed as a tool for investigating optimized maximum power point tracking (MPPT) algorithms for TEG systems within automotive exhaust heat energy recovery applications. The model comprises three main subsystems that make up the TEG system: the heat exchanger, thermoelectric material, and power conditioning unit (PCU). In this study, two MPPT algorithms known as the perturb and observe (P&O) algorithm and extremum seeking control (ESC) are investigated. A synchronous buck-boost converter is implemented as the preferred DC-DC converter topology, and together with the MPPT algorithm completes the PCU architecture. The process of developing the subsystems is discussed, and the advantage of using the MPPT controller is demonstrated. The simulation results demonstrate that the ESC algorithm implemented in combination with a synchronous buck-boost converter achieves favorable power outputs for TEG systems. The appropriateness is by virtue of greater responsiveness to changes in the system's thermal conditions and hence the electrical potential difference generated in comparison with the P&O algorithm. The MATLAB/Simulink environment is used for simulation of the TEG system and comparison of the investigated control strategies.

  19. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  20. Calculation of guaranteed mean power from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1981-01-01

    A method for calculating the 'guaranteed mean' power output of a wind turbine generator is proposed. The term 'mean power' refers to the average power generated at specified wind speeds during short-term tests. Correlation of anemometers, the method of bins for analyzing non-steady data, the PROP Code for predicting turbine power, and statistical analysis of deviations in test data from theory are discussed. Guaranteed mean power density for the Clayton Mod-OA system was found to be 8 watts per square meter less than theoretical power density at all power levels, with a confidence level of 0.999. This amounts to 4 percent of rated power.

  1. A Digital Coreless Maximum Power Point Tracking Circuit for Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Kim, Shiho; Cho, Sungkyu; Kim, Namjae; Baatar, Nyambayar; Kwon, Jangwoo

    2011-05-01

    This paper describes a maximum power point tracking (MPPT) circuit for thermoelectric generators (TEG) without a digital controller unit. The proposed method uses an analog tracking circuit that samples the half point of the open-circuit voltage without a digital signal processor (DSP) or microcontroller unit for calculating the peak power point using iterative methods. The simulation results revealed that the MPPT circuit, which employs a boost-cascaded-with-buck converter, handled rapid variation of temperature and abrupt changes of load current; this method enables stable operation with high power transfer efficiency. The proposed MPPT technique is a useful analog MPPT solution for thermoelectric generators.

  2. 26. Credit JTL. Overview of unit 4 showing exciter, generator, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Credit JTL. Overview of unit 4 showing exciter, generator, air duct, water wheel housing, gate valve control and bypass, needle valve control, deflector motor, and bearing in background. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  3. 58. Photocopy of photograph, no date. VIEW OF GENERATOR UNIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Photocopy of photograph, no date. VIEW OF GENERATOR UNIT 2. (Courtesy of the Potomac Edison Company Library (Hagerstown, MD), Historical Data Files, Properties-Buildings and Equipment listing) - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  4. 57. Photocopy of photograph, c. 1946. DETAIL OF GENERATOR UNIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Photocopy of photograph, c. 1946. DETAIL OF GENERATOR UNIT 2, GOVERNOR, AND SWITCHBOARD. (Courtesy of the Potomac Edison Company Library (Hagerstown, MD), Historical Data Files, Dam No. 5 listing) - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  5. 2. VIEW OF GOVERNANCE EQUIPMENT AT UNIT 4 GENERATOR (BACKGROUND) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF GOVERNANCE EQUIPMENT AT UNIT 4 GENERATOR (BACKGROUND) SHOWING GOVERNOR STAND (RIGHT FOREGROUND) AND PRESSURE TANK (LEFT FOREGROUND). VIEW TO SOUTH-SOUTHWEST. - Ryan Hydroelectric Facility, Powerhouse, On Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  6. Direct charge radioisotope activation and power generation

    DOEpatents

    Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  7. Power generation for offshore oil production

    SciTech Connect

    Chellini, R.

    1997-01-01

    French industry has played a major role in supplying surface equipment for the exploitation of the N`Kossa oil field, located in deep waters (150-300 m) some 60 km offshore the Congo Coast. This immense reservoir (7 km long, 4 km wide, 3000 m under the seabed) was discovered in 1984, and production of oil and LPG started recently. Production of crude oil, which will peak 5 million tons in 1998, and LPG, reaching 300000 tons in 1999, is expected to continue for a period of 30 years. The NKP floating barge used for production is considered a world first in many aspects. It was designed by CTIP Geoproduction (TPG) for the operator, ELF Congo, and was constructed in Marseilles. The barge, which features a prestressed concrete hull, has a bearing capacity of 330000 tons. It is 220 long and 46 m wide, providing a deck area of one hectare. All production facilities as well as living quarters for 160 people are housed on the barge which, for construction purposes, was subdivided into six modules. This paper describes the design of the power generation module. 3 figs.

  8. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  9. Independent Orbiter Assessment (IOA): Analysis of the auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Barnes, J. E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Auxiliary Power Unit (APU). The APUs are required to provide power to the Orbiter hydraulics systems during ascent and entry flight phases for aerosurface actuation, main engine gimballing, landing gear extension, and other vital functions. For analysis purposes, the APU system was broken down into ten functional subsystems. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. A preponderance of 1/1 criticality items were related to failures that allowed the hydrazine fuel to escape into the Orbiter aft compartment, creating a severe fire hazard, and failures that caused loss of the gas generator injector cooling system.

  10. Inventory of power plants in the United States as of January 1, 1996

    SciTech Connect

    1996-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1996. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 as amended.

  11. Inventory of power plants in the United States as of January 1, 1997

    SciTech Connect

    1997-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1997. The publication also provides a 10-yr outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  12. The thermal circuit of a nuclear power station's unit built around a supercritical-pressure water-cooled reactor

    NASA Astrophysics Data System (ADS)

    Silin, V. A.; Zorin, V. M.; Tagirov, A. M.; Tregubova, O. I.; Belov, I. V.; Povarov, P. V.

    2010-12-01

    Main results obtained from calculations of the steam generator and thermal circuit of the steam turbine unit for a nuclear power unit with supercritical-pressure water coolant and integral layout are presented. The obtained characteristics point to the advisability of carrying out further developments of this promising nuclear power technology.

  13. The changing face of international power generation

    SciTech Connect

    Lindsay, I.

    1997-12-31

    The author limits his remarks to a discussion of the international generator`s marketplace, especially aimed at the developing countries. He discusses future global electricity demand, generating capacity build, its financing issues, and to the commercial generating opportunities which now abound outside the US.

  14. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  15. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  16. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  17. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35), or spills....

  18. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  19. 21 CFR 890.5950 - Powered heating unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered heating unit. 890.5950 Section 890.5950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5950 Powered...

  20. 21 CFR 890.5950 - Powered heating unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered heating unit. 890.5950 Section 890.5950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5950 Powered...

  1. Power Generation: The Next 30 Years

    ERIC Educational Resources Information Center

    Holcomb, Robert W.

    1970-01-01

    Discusses pollution problems associated with power production. Estimates power consumption in the 1980's and the availability of fossil and nuclear fuel resources. Emphasizes needed research on air pollution, nuclear pollution, and thermal pollution. (EB)

  2. Ames Lab 101: Next Generation Power Lines

    ScienceCinema

    Russell, Alan

    2012-08-29

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  3. Study on safety operation for large hydroelectric generator unit

    NASA Astrophysics Data System (ADS)

    Yan, Z. G.; Cui, T.; Zhou, L. J.; Zhi, F. L.; Wang, Z. W.

    2012-11-01

    Hydroelectric generator unit is a complex mechanical system which is composed of hydraulic turbine and electric generator. Rotary system is supported by the bearing bracket and the reinforced concrete structures, and vibration problem can't be avoided in the process of operating. Many large-scale hydroelectric units have been damaged because of the vibration problem in recent years. As the increase of the hydraulic turbine unit capacity and water head, the safe operation of hydraulic turbine has become a focus research in many countries. The operating characteristics of the hydraulic turbine have obvious differences at different working conditions. Based on the combination of field measurement and theoretical calculation, this paper shows a deep research on the safe operation of a large-scale Francis turbine unit. Firstly, the measurements of vibration, swing, pressure fluctuation and noise were carried out at 4 different heads. And also the relationships between vibrations and pressure fluctuations at different heads and working conditions were analysed deeply. Then the scientific prediction of safe operation for the unit at high head were done based on the CFD numerical calculation. Finally, this paper shows the division of the operating zone for the hydroelectric unit. According to the experimental results (vibrations, swings, pressure fluctuations and noise) as well as the theoretical results, the operating zone of the unit has been divided into three sections: prohibited operating zone, transition operating zone and safe operating zone. After this research was applied in the hydropower station, the security and economic efficiency of unit increased greatly, and enormous economic benefits and social benefits have been obtained.

  4. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  5. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  6. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  7. Economics of wind-farm power generation in India

    SciTech Connect

    Sinha, C.S.; Kandpal, T.C. . Centre of Energy Studies)

    1990-01-01

    The financial aspects of wind power generation in India are examined. The cost estimate scaling function for horizontal axis wind turbines (HAWT) is empirically obtained. Other cost components have also been examined and effort is made to generate a cost function for wind farms with grid connected HAWT wind energy conversion systems. The cost function is then used to compute the cost of wind generated electricity from the wind farms in India and the results are compared with the reported cost of generation from the wind farms. The potential of wind-farm power generation is discussed in the light of the cost of power generation by selected conventional technologies in India.

  8. Measurements of the reactor neutron power in absolute units

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.

    2015-12-01

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  9. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  10. Power supply control units for APS ring magnets

    SciTech Connect

    Despe, O.D.

    1990-04-15

    The APS storage ring (1104 meters) is divided into 40 sectors. Each sector has 38 magnet coils in five magnet bases. Every alternate sector has an additional quadrupole magnet for skew correction. AR the main dipole magnets, two in each sector are connected in series and fed from one power supply unit. A base is controlled by one power supply control unit (PSCU). Each PSCU is connected to the host computer via a local area network (LAN). This note discusses the hardware configuration of the typical power supply control system used by the APS magnets and the software commands supported by the PSCU.

  11. Alternative power generation concepts for space

    SciTech Connect

    Brandhorst, H.W. Jr.; Juhasz, A.J.; Jones, B.I.

    1994-09-01

    With the advent of the NASA Space Station, there has emerged a general realization that large quantities of power in space are necessary and, in fact, enabling. This realization has led to the examination of alternative options to the ubiquitous solar array/battery power system. Several factors led to the consideration of solar dynamic and nuclear power systems. These include better scaling to high power levels, higher efficiency conversion and storage subsystems, and lower system specific mass. The objective of this paper is to present the results of trade and optimization studies that high-light the potential of solar and nuclear dynamic systems relative to photovoltaic power systems.

  12. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  13. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  14. Underwater vehicle propulsion and power generation

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2008-01-01

    An underwater vehicle includes a shaft with a propeller disposed thereon; a generator/motor having a stator and a rotor, the rotor being operable to rotate with the propeller; at least one energy storage device connected to the generator/motor; and a controller for setting the generator/motor in a charge mode, a propulsion mode and an idle mode.

  15. Generating Functions for the Powers of Fibonacci Sequences

    ERIC Educational Resources Information Center

    Terrana, D.; Chen, H.

    2007-01-01

    In this note, based on the Binet formulas and the power-reducing techniques, closed forms of generating functions for the powers of Fibonacci sequences are presented. The corresponding results are extended to some other famous sequences as well.

  16. Update on use of mine pool water for power generation.

    SciTech Connect

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that

  17. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  18. The analysis of parameters of the cryogenic oxygen unit cooperating with power plant to realize oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Hnydiuk-Stefan, Anna; Składzień, Jan

    2015-03-01

    The paper examines from the thermodynamic point of view operation of coal fired power unit cooperating with the cryogenic oxygen unit, with a particular emphasis on the characteristic performance parameters of the oxygen unit. The relatively high purity technical oxygen produced in the oxygen unit is then used as the oxidant in the fluidized bed boiler of the modern coal fired power unit with electric power output of approximately 460 MW. The analyzed oxygen unit has a classical two-column structure with an expansion turbine (turboexpander), which allows the use of relatively low pressure initially compressed air. Multivariant calculations were performed, the main result being the loss of power and efficiency of the unit due to the need to ensure adequate driving power to the compressor system of the oxygen generating plant.

  19. Generator and rechargeable battery system for pedal powered vehicles

    SciTech Connect

    Ryan, D.

    1985-11-26

    A generator and rechargeable battery system for use with pedal powered vehicles, such as bicycles, and where either the generator or battery can intermittently power a load such as a lighting system of the vehicle in one mode of operation, and in which the generator can recharge the battery in another mode of operation. A simple selection switch which is manually operable by the operator of the vehicle enables selection between powering of the load or recharging of the battery.

  20. Technology Concept for a Near-Term Closed Brayton Cycle Power Conversion Unit

    NASA Astrophysics Data System (ADS)

    Foti, John; Halsey, Dave; Bauch, Tim; Smith, Glen

    2003-01-01

    There is a need in the space science community for nuclear-powered electric propulsion systems to enable high-value, deep space and planetary exploration. Certain missions are driven by once-in-a-lifetime or highly infrequent occurrences that require the near-term development of a flight-capable nuclear space power and electric propulsion system in order to take advantage of the scientific opportunity. The broader applicability of Brayton power systems to the commercial and military aircraft markets has provided fertile ground for the continued development and implementation of new technologies applicable to a closed Brayton cycle space Power Conversion Unit (PCU). One concept for effectively achieving a near-term Brayton space power capability is based on the development work associated with the Integrated Power Unit (IPU). This unit embodies the state of the art in turbomachinery, generators, bearing systems and electric power management and distribution capability that can readily be evolved into a closed Brayton cycle PCU. This paper provides an overview of aircraft-based Brayton power system technologies, their implementation into the IPU and one approach for leveraging this capability into a near-term closed Brayton cycle space power conversion unit.

  1. Dominant flood generating mechanisms across the United States

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter R.; Woods, Ross A.; Hutton, Christopher J.; Sivapalan, M.

    2016-05-01

    River flooding can have severe societal, economic, and environmental consequences. However, limited understanding of the regional differences in flood-generating mechanisms results in poorly understood historical flood trends and uncertain predictions of future flood conditions. Through systematic data analyses of 420 catchments we expose the primary drivers of flooding across the contiguous United States. This is achieved by exploring which flood-generating processes control the seasonality and magnitude of maximum annual flows. The regional patterns of seasonality and interannual variabilities of maximum annual flows are, in general, poorly explained by rainfall characteristics alone. For most catchments soil moisture dependent precipitation excess, snowmelt, and rain-on-snow events are found to be much better predictors of the flooding responses. The continental-scale classification of dominant flood-generating processes we generate here emphasizes the disparity in timing and variability between extreme rainfall and flooding and can assist predictions of flooding and flood risk within the continental U.S.

  2. Efficient millimeter wave 1140 GHz/ diode for harmonic power generation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Epitaxial gallium arsenide diode junction formed in a crossed waveguide structure operates as a variable reactance harmonic generator. This varactor diode can generate power efficiently in the low-millimeter wavelength.

  3. Unalaska geothermal exploration project. Electrical power generation analysis. Final report

    SciTech Connect

    Not Available

    1984-04-01

    The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

  4. Control of Superconducting Magnetic Energy Storage Units in Multi-Machine Power Systems

    NASA Astrophysics Data System (ADS)

    Ranaweera, Aruna

    A new scheme, in which a synchronous generator connected to the SMES busbar is used as a feedback generator, is proposed to control superconducting magnetic energy storage (SMES) units in multi-machine power systems, in this dissertation. The speed and the load angle changes of the feedback generator are used to calculate the necessary real power transfers to the SMES, while the necessary reactive power transfers are calculated from the voltage changes of the common busbar. Expressions are derived for the direct and quadrature axis components of the current drawn by the SMES, for unequal firing angles in the converter bridge, and the relationships of the two currents to the total real and reactive power transfers to the SMES are shown. The expressions derived are valid for small or large systems, under steady state or transient conditions, and it is shown through computer simulations in a small power system that, the proposed scheme is quite effective in stabilizing electromechanical oscillations caused by small as well as large disturbances. It is also shown that, the SMES can improve the power output of wind turbine induction generators, and also stabilize the oscillations caused by wind power losses in a steam turbine generator system, and thereby eliminate the need to use diesel turbine generators for the same purpose. Finally, equations are derived to represent the synchronous machine in terms of its d-q circuits, while it is connected to the network which is described by complex quantities, and the formulations done for the proposed scheme are extended to study the use of SMES units with proposed control in power systems of large and complex configurations. The proposed scheme of control is simple, and does not call for a special design of a controller requiring simplifying assumptions such as the presence of an infinite busbar or steady state operating conditions on the system, and therefore, would help in the widespread use of SMES units in electric

  5. A Novel 500kW High-Speed Turbine PM Synchronous Generator Set for Distributed Power Generation

    NASA Astrophysics Data System (ADS)

    Wendt, Sven; Benecke, Frank; Güldner, Henry

    The paper presents a power generation system based on the cogeneration of heat and electricity with a novel high speed turbogenerator. The machine consists of a single stage steam turbine and a directly coupled permanent magnet synchronous generator in one constructional unit. A PWM IGBT rectifier is the load to the generator and a PWM IGBT three-phase four-wire inverter feeds the power into the low voltage mains. In order to increase the turbine efficiency at light load, variable speed operation of the turbogenerator is realized. Different control schemes for mains parallel operation and stand alone operation are presented. The control schemes allow for the use of a lookup table based control with a speed-power-characteristic or for the use of a maximum power point tracker. Measurement results from the successfully tested turbogenerator set are presented.

  6. Solar salt pond potential site survey for electrical power generation

    NASA Technical Reports Server (NTRS)

    Hurick, M. G.

    1982-01-01

    A solar salt gradient pond acts as a passive heat sink or thermal battery in which energy can be recovered through the conversion of thermal energy into electrical energy. Here, a condensation of a larger report that focused on the identification of potential salt gradient pond sites in the United States using in-situ resources is presented. It is shown that there are at least 24 states that lie in a primary or secondary potential site category. Fourteen states are assigned as primary states and ten are assigned as secondary. The division is subjectively based on the severity of winter weather. The most promising states are those that lie in the southern half of the country. When the primary and secondary category states are combined with the other states that may be able to support a pond, a total of 38 states exhibit the possibility of supporting power generation sites of various size.

  7. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  8. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.

  9. The state and prospects of coal and nuclear power generation in Russia ( review)

    NASA Astrophysics Data System (ADS)

    Salomatov, V. V.

    2009-12-01

    Data on the modern state and development trends for coal and nuclear power engineering in Russia up to 2030 are generalized. It is emphasized that from the viewpoint of strategy, coal and uranium fuel will be the main energy carriers. The forecast of energy consumption is made; the “roadmap” of new power-generating units of heat and nuclear power plants on the territory of Russia is presented.

  10. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Landis, Geoffrey; Hepp, Aloysius; Raffaelle, Ryne

    2002-01-01

    This paper discusses requirements for large earth orbiting power stations that can serve as central utilities for other orbiting spacecraft, or for beaming power to the earth itself. The current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies that may impact the future choice of space solar cells for high power mission applications are addressed.

  11. Study of Low Voltage Ride Through Performance for Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Hirawata, Ryoya; Kai, Takaaki

    Recently, the introduction of wind power generation is increasing rapidly. The ratio of wind power generation to the capacity of a total generation is getting higher and higher. When the phase-to-phase fault occurs in the power system, the frequency of power system is lower due to disconnecting of the wind power generation with doubly fed induction generator (DFIG). Therefore, the power system might become unstable. This paper describes the LVRT (low voltage ride through) performance improvement scheme of the wind power generation with DFIG. The wind power generation is disconnected from the grid in case of the power system fault. It is independently in operation from the grid by controlling of the inverter equipped in the generation. After clearance of the power system fault, the wind power generation is immediately re-connected to the grid. As a result, instability in the power system disappears. The performance of LVRT is confirmed by using simulation software PSCAD/EMTDC. The simulation result shows an excellent result to the three-phase short-circuit fault of the voltage dip 100%.

  12. Dependences of Generator Parameters on Pulsed Power Ice Breaking

    NASA Astrophysics Data System (ADS)

    Ihara, Satoshi; Kominato, Yuichi; Fukuda, Kazuyuki; Yamabe, Chobei; Ushio, Shuki

    In this research, investigation on breaking of ice using a pulsed power generator as a navigation of ice-breaker at ice-covered ocean, was described. In these experiments, pulsed arc discharge was formed by Marx generator. In order to investigate the dependence of input energy required for ice breaking on circuit parameters of generator, the capacitance of generator was changed. The input energy for ice-breaking was calculated from waveforms of electric power. It was found that the input energy for ice-breaking decreased as the peak power increased with decrease of the capacitance of generator.

  13. Development and application of automatic frequency and power control systems for large power units

    NASA Astrophysics Data System (ADS)

    Bilenko, V. A.; Melamed, A. D.; Mikushevich, E. E.; Nikol'Skii, D. Yu.; Rogachev, R. L.; Romanov, N. A.

    2008-10-01

    We describe the results of work carried out at ZAO Interavtomatika on the development and putting into use of a system for automatically controlling the frequency and power output of large power units involving the retrofitting of the turbine’s hydraulic automatic control system. Certificates affirming conformity to the Standard of the System Operator — Centralized Dispatching Administration (SO-CDA) have been received for eight power units as an outcome of these efforts.

  14. New generation low power radiation survey instruments

    SciTech Connect

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Umbarger, C.J.; Wolf, M.A.

    1984-02-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and powersaving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Use of a capacitor as a power source eliminates many problems commonly associated with battery-operated instruments, such as having to open the case to change batteries, battery storage life, availability of batteries in the field, and some savings in weight. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments.

  15. Demystifying new generation silicon high power FETs

    NASA Astrophysics Data System (ADS)

    McIntyre, S.

    1984-04-01

    In the early 70s, an American company developed a shadow-masked version of a power FET which delivered approximately 5 watts at 2 GHz. By 1975, there was considerable interest in the 'V' groove FET. VMOS was particularly suited for RF work. The ISOFET combines today the short channel and low capacitance of the first developments with some of the process techniques developed for the VMOS structure. Similarities and differences between current ISOFET and bipolar power transistors are examined. It is pointed out that, with good power and gain up through 500 MHz, the power FET can be an excellent choice for the RF designer, especially for wideband exciters. Attention is given to dc biasing, RF FET models, coaxial transformers for wideband matching, wideband circuit design, a 40 watt ISOFET amplifier, power FETs in a pulse amplifier, and developments and remaining challenges for the near future.

  16. Power Conditioning Unit for BepiColombo Transfer Module

    NASA Astrophysics Data System (ADS)

    Hansen, Magnus Moberg

    2008-09-01

    The purpose of this paper is to describe a new generation of power conditioning developed to fulfil the power needs of the BepiColombo Mercury Transfer Module (MTM). It will address the functional, electrical, mechanical and thermal aspects of the design.The MTM has very high power demands from electronics, heaters and especially from four Ion propulsion engines, which is used for velocity control during the transfer phase to Mercury. The total power demand is 14KW of continues power, which is provided by the PCU with solar arrays (SA) as the power source. The high power shall be provided with a 100V semi-regulated main bus. A small battery, only sized for low power to the electronics and heaters during eclipse phases at the Moon, Venus and Mercury, is connected directly to the main bus.

  17. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... environment (February 15, 2012; 77 FR 8903). This exemption is effective upon issuance. Dated at Rockville... COMMISSION Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company, the licensee, doing business as Progress Energy Carolinas Inc.,...

  18. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... significant effect on the quality of the human environment (75 FR 3942, dated January 25, 2010). This... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the licensee), now doing business as Progress Energy...

  19. Industrial Arts Power Mechanics. Applying Scientific Principles to Power, Energy, Force. Instructional Units.

    ERIC Educational Resources Information Center

    Woodward, Robert L.; Myers, Norman L.

    The instructional units and related materials in this guide are designed to assist in the preparation of courses of study/instruction in (1) power mechanics specifically, (2) power mechanics which serve as introductory courses in other areas of industrial arts, and (3) automotive mechanics which also cover the broader aspects of power mechanics.…

  20. 76 FR 23846 - Virginia Electric Power Company, LLC, North Anna Power Station, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Virginia Electric Power Company, LLC, North Anna Power Station, Unit No. 1; Exemption 1.0 Background Virginia Electric Power Company (VEPCO, the licensee) is the holder of Facility Operating License No. NPF-4, which authorizes operation of...

  1. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption 1.0 Background Virginia Electric and Power Company (VEPCO, the licensee) is the holder of Facility Operating License Nos. DPR-32 and DRP-37, which...

  2. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  3. Microwave power generation by magnetic superlattices

    NASA Astrophysics Data System (ADS)

    Littlejohn, S.; Nogaret, A.; Davies, S. R.; Henini, M.; Beere, H. E.; Ritchie, D. A.

    2011-12-01

    We report on microwave power emission by ballistic electrons as they cross a region of spatially inhomogeneous magnetic field. Magnetic finger gates were fabricated at the surface of high mobility GaAs/AlGaAs Hall bars embedded in a coplanar waveguide. By modulating the current injected through the Hall bar and measuring the second harmonic of the signal rectified by a Schottky detector, we obtain the microwave power emitted by the superlattice. This power (˜6 W m-2) is compared to the fluorescence of electron spins that undergo spin resonance as they cross domains of opposite magnetic field.

  4. Protection against loss of utility grid supply for a dispersed storage and generation unit

    SciTech Connect

    Redfern, M.A.; Usta, O. . School of Electronic and Electrical Engineering); Fielding, G. . GEC Alsthom Protection and Control)

    1993-07-01

    The installation of small or medium sized dispersed storage and generation units operating in parallel with the utility supply presents several technical complications for the protection and control of the system. Amongst these is the need to protect the system from islanding caused by the loss of the utility grid supply and the possible subsequent out-of-synchronism reconnection of that supply. This paper examines the requirements of an islanding, or loss of grid, protection and outlines the principal methods used for this type of relaying. A new protection algorithm is introduced which is based on the rate of change of power as measured at the generator's terminals. The responses of the different measurands are examined for a selection of power system operating conditions to demonstrate the operation of this type of protection. The new protection algorithm is shown to trip for loss of grid, for load fluctuations while the dispersed storage and generation unit is operating independently of the utility supply following a loss of grid, and for an out-of-synchronism reconnection of the utility supply to the dispersed storage and generation unit. It is also shown to remain stable for major load fluctuations while the utility supply remains connected to the dispersed generator system.

  5. Independent Orbiter Assessment (IOA): Assessment of the auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Barnes, J. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Auxiliary Power Unit (APU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter APU hardware. The IOA product for the APU analysis, covering both APU hardware and APU electrical components, consisted of 344 failure mode worksheets that resulted in 178 potential critical items being identified. A comparison was made of the IOA product to the NASA APU hardware FMEA/CIL baseline which consisted of 184 FMEAs and 57 CIL items. The comparison identified 72 discrepancies.

  6. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

  7. Electrical Auxiliary Power Unit (EAPU) Corona Design Guideline. Revised

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Kirkici, Hulya; Schweickart, Dan L.; Dunbar, William; Hillard, Barry

    2000-01-01

    This document is the result of a collaborative effort between NASA's Johnson Space Center, Marshall Space Flight Center, Glenn Research Center, and the United States Air Force Research Laboratory at Wright Patterson AFB in support of the Space Shuttle Orbiter Upgrades Program, specifically the Electric Auxiliary Power Unit Program. This document is intended as a guideline for design applications for corona and partial discharge avoidance and is not a requirements specification instrument.

  8. 4. FLOOR PLAN AND SECTIONS, ADDITION TO POWER HOUSE. United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FLOOR PLAN AND SECTIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. Also includes plot plan at 1 inch to 100 feet. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet 3. Plan no. 10,548. Scale 1/4 inch and h inch to the foot. April 30, 1945, last revised 6/22/45. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  9. 3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet 4. Plan no. 10,548. Scale 1/4 inch to the foot, elevations, and one inch to the foot, sections and details. April 30, 1945, last revised 6/19/45. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  10. Design of dechlorination units for power plant cooling streams

    SciTech Connect

    Tan, C.S.; Berker, A.; Whitaker, S.

    1980-02-01

    The design of dechlorination units using sulfur dioxide as a reducing agent for once-through power plant cooling streams is considered. The average concentration of hypochlorite ions is determined downstream from the point of injection of sulfurous acid as a function of the number of injection points and the initial sulfurous acid concentration. The results can be used for the design of sulfurous acid injection units required to reduce the hypochlorite ion concentration to a specified level. A sample design calculation is presented for a typical power plant cooling stream.

  11. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    NASA Astrophysics Data System (ADS)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  12. An analysis of problems arising during operation of the perm district power plant 800-MW power unit at sliding pressure

    NASA Astrophysics Data System (ADS)

    Avrutsky, G. D.; Zakharov, A. E.; Sargsyan, V. A.; Frolov, M. S.; Schwartz, A. L.; Adamov, A. S.

    2015-09-01

    The occurrence of cracks at locations in which bottoms are welded to the high-pressure heaters' headers was revealed during planned repairs of the Perm district power plant units. Specialists of the All-Russia Thermal Engineering Institute carried out investigations aimed at obtaining more detailed data on the effect the loading cyclicity and sliding-pressure operating modes have on the reliability of power-generating equipment. Another aim of those investigations was to elaborate recommendations for achieving more reliable operation of power-generating equipment under the conditions of cyclic variation of its load. The state of the main and auxiliary equipment of the Perm district power plant units is analyzed for determining the possibility and advisability of their further operation in sliding-pressure modes. The results obtained from calculating the permissible number of load variation cycles for the headers used in the Perm district power plant units operating under the conditions of startup-shutdown modes are analyzed, and the headers' residual cyclic service life is estimated. The results obtained from a metallographic investigation of the high-pressure header's bottom in the welded joint of which a through crack was revealed are presented. Recommendations for examining the header bottoms and for modifying their design in order to improve their operational reliability are given.

  13. High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.

    2013-01-01

    This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.

  14. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Power generation responsibilities. 431.4 Section 431.4 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT,...

  15. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect

    Paul Tubel

    2004-02-01

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  16. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation estimates. 431.6 Section... BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall submit annually on or before April 15 to Western and Contractors, an estimated annual operation schedule for...

  17. Power generator design for the billings MHD demonstration project

    SciTech Connect

    Pian, C.C.P.; Kessler, R.; Schmitt, E.W.; Morrison, D.J.

    1993-12-31

    The proposed design of the MHD Power generator for the Billings MHD Demonstration Project is presented. The Billings MHD Demonstration Project, proposed by the MHD Development Corporation (MDC) for the U.S. Department of Energy`s Clean Coal Technology V Program, will demonstrate the significant environmental advantages and efficiency potential of MHD electric power generation. A diagonally-loaded, supersonic MHD generator channel is proposed. The generator channel has a thermal input of 250 MW, is 11 meters long and produces 28.5 MW gross power output at the nominal design operating condition. The gasdynamic, gas-side, and mechanical designs of the proposed generator are derived from the design of the 50 MW{sub t} proof-of-concept MHD generator, currently undergoing long duration testing at the CDIF test facility. The design and operation of the proposed generator will be typical of those anticipated in future commercial MHD generator channels.

  18. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  19. Speed tolerant alternator system for wind or hydraulic power generation

    SciTech Connect

    Jallen, G.A.

    1984-07-24

    A wind electric generator employs a freewheeling clutch and an induction generator having several synchronous speeds. By selecting the synchronous speed as a function of the ambient wind speed, the generator can be made to operate more efficiently and without overloading. The freewheeling clutch which connects the generator to the wind turbine prevents the generator from acting as a motor when connected to a power grid, and wasting energy in turning the wind turbine.

  20. Alternative approaches to space-based power generation

    NASA Technical Reports Server (NTRS)

    Gregory, D. L.

    1977-01-01

    Satellite Power Stations (SPS) would generate electrical power in space for terrestrial use. Their geosynchronous orbit location permits continuous microwave power transmission to ground receiving antenna farms. Eight approaches to the generation of the electrical power to be transmitted were investigated. Configurations implementing these approaches were developed through an optimization process intended to yield the lowest cost for each. A complete program was baselined for each approach, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed, including the associated launches, orbital assembly, and maintenance operations. The required electric power charges to amortize these costs were calculated. They range from 26 to 82 mills/kWh (ground busbar).

  1. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  2. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  3. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids. PMID:25532191

  4. Nuclear power generation and fuel cycle report 1996

    SciTech Connect

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  5. A permanent-magnet generator for wind power applications

    SciTech Connect

    Soederlund, L.; Eriksson, J.T.; Salonen, J.; Vihriaelae, H.; Peraelae, R.

    1996-07-01

    In order to achieve a gearless construction of the wind energy conversion system (WECS) a low-speed, i.e., multipole, generator is required. This paper examines an axial-field permanent-magnet synchronous wind power generator (PMWG) mainly from the magnetic viewpoint. Both mechanical and electromagnetic designs are described as well as some primary test results concerning the model generators having nominal power of 5 and 10 kW.

  6. Concepts for central solar electric power generation

    NASA Technical Reports Server (NTRS)

    Kintigh, J. K.

    1974-01-01

    The investigation reported was conducted to select the best conceptual design of a power plant for the dynamic conversion of solar heat to electricity. Conversion of thermal energy to electricity was to be an accomplished with conventional turbomachinery. Questions of site selection are discussed along with solar energy collection systems, aspects of candidate system definition, and reference systems.

  7. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  8. Improving Safety and Reliability of Space Auxiliary Power Units

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1998-01-01

    Auxiliary Power Units (APU's) play a critical role in space vehicles. On the space shuttle, APU's provide the hydraulic power for the aerodynamic control surfaces, rocket engine gimballing, landing gear, and brakes. Future space vehicles, such as the Reusable Launch Vehicle, will also need APU's to provide electrical power for flight control actuators and other vehicle subsystems. Vehicle designers and mission managers have identified safety, reliability, and maintenance as the primary concerns for space APU's. In 1997, the NASA Lewis Research Center initiated an advanced technology development program to address these concerns.

  9. Protective, Modular Wave Power Generation System

    SciTech Connect

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  10. Advanced techniques for noise source identification on a large generator unit

    SciTech Connect

    Williams, R.G.D. ); Yang, S.J. )

    1993-03-01

    Power station acoustic noise assessment, which has experienced increased environmental awareness and subsequently more stringent legislation for a number of years, has received and added stimulus due to the recent advent of powerful measurement and analysis techniques including sound intensity and coherence. These experimental techniques are explained and results, for a generator unit, illustrate their value in providing a unique, correlated insight into noise problems. This includes noise quantification, full explanation of site sound pressure level in terms of the various influences and major noise source identification. These techniques are widely applicable and an invaluable aid to any industrial noise problem.

  11. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  12. Green Propulsion Auxiliary Power Unit Demonstration at MSFC

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.

    2014-01-01

    MSFC has embarked on use of green propellant replacement of hydrazine for a variety of applications. This paper focused on activities for auxiliary power unit but MSFC is actively investigating use of green propellants for thruster applications. MSFC is interested in partnership with the international community to address the infusion of green propellant into greater use.

  13. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken, improperly mounted, or audibly leaking. With residual vacuum exhausted and a constant 25 pound force on the... engine and apply service brakes several times to destroy vacuum in system. Depress brake pedal with...

  14. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken, improperly mounted, or audibly leaking. With residual vacuum exhausted and a constant 25 pound force on the... engine and apply service brakes several times to destroy vacuum in system. Depress brake pedal with...

  15. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken, improperly mounted, or audibly leaking. With residual vacuum exhausted and a constant 25 pound force on the... engine and apply service brakes several times to destroy vacuum in system. Depress brake pedal with...

  16. 14 CFR 23.1142 - Auxiliary power unit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary power unit controls. 23.1142 Section 23.1142 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories §...

  17. 14 CFR 29.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary power unit limitations. 29.1522 Section 29.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Operating Limitations and Information Operating Limitations § 29.1522 Auxiliary...

  18. 14 CFR 25.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary power unit limitations. 25.1522 Section 25.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and Information Operating Limitations § 25.1522 Auxiliary...

  19. 14 CFR 23.1522 - Auxiliary power unit limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary power unit limitations. 23.1522 Section 23.1522 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Operating Limitations and Information § 23.1522...

  20. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... locomotive is equipped with an auxiliary power unit (APU) that operates during an idle shutdown mode, you must account for the APU's emissions rates as specified in this section, unless the APU is part of an... emission rate (g/hr) as specified in § 1033.530. Add the APU emission rate (g/hr) that you determine...

  1. 2. Credit PEM. View of Martinsburg Power Company steam generating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  2. International Space Station United States Oxygen Generator Development Testing

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Mason, Richard K.

    2000-01-01

    A life test of a liquid anode feed oxygen generator assembly (OGA) using SPE(R) (United Technologies Corporation, Hamilton Sundstrand Division) membrane technology was terminated in June of 1999. In the total 15,658 hours of operation at MSFC since delivery in 1995, the OGA has produced 2,103 kilograms (kg) (4,632 pounds mass (lbm)) of oxygen, and 263 kg (579 lbm) of hydrogen. Evaluation of cell stack characteristics and oxygen and hydrogen hydrophilic/hydrophobic membrane separators will be discussed.

  3. RF power generation for future linear colliders

    SciTech Connect

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  4. Alternative power generation concepts for space

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Juhasz, Albert J.; Jones, Barbara I.

    1986-01-01

    Trade and optimization studies that highlight the potential of solar and nuclear dynamic systems relative to photovoltaic power systems are summarized. The solar dynamic case is the LEO Stirling system, while the nuclear system is the SP-100 system goal. Nuclear systems have the potential for the lightest weight, least area, sunlight independent, radiation-durable system. Solar dynamic systems pose a stiff challenge to photovoltaic systems in the midaltitudes because of their insensitivity to the Van Allen radiation belts. While the initial operational capability space station power system is only slightly superior to the SOA PV system, with development focused on the key technologies, advanced solar dynamic systems are fully competitive in LEO midaltitudes with the advanced photovoltaic systems. Advances in energy storage systems (100 Whrs/kg required) are essential.

  5. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  6. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  7. Solar powered Stirling cycle electrical generator

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.

    1991-03-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  8. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  9. High Power Silicon Carbide (SiC) Power Processing Unit Development

    NASA Technical Reports Server (NTRS)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  10. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  11. A mechatronic power boosting design for piezoelectric generators

    SciTech Connect

    Liu, Haili; Liang, Junrui Ge, Cong

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  12. A mechatronic power boosting design for piezoelectric generators

    NASA Astrophysics Data System (ADS)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-10-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  13. Combined fuel and air staged power generation system

    SciTech Connect

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  14. Short-term Operating Strategy with Consideration of Load Forecast and Generating Unit Uncertainty

    NASA Astrophysics Data System (ADS)

    Sarjiya; Eua-Arporn, Bundhit; Yokoyama, Akihiko

    One of the common problems faced by many electric utilities concernes with the uncertainty from both load forecast error and generating unit unavailability. This uncertainty might lead to uneconomic operation if it is not managed properly in the planning stage. Utilities may have many operational tools, e.g. unit commitment, economic dispatch. However, they require a proper operating strategy, taking into account uncertainties. This paper explicitly demonstrates how to include the uncertainties to obtain the best operating strategy for any power systems. The uncertainty of the load forecast is handled using decision analysis method, meanwhile the uncertainty of the generating unit is approached by inclusion of risk cost to the total cost. In addition, three spinning reserve strategies based on deterministic criteria are incorporated in the development of scenario. Meanwhile, Mixed Integer Linear Programming method is utilized to generate unit commitment decision in each created scenario. The best strategy which gives the minimum total cost is selected among the developed scenarios. The proposed method has been tested using a modified of IEEE 24-bus system. Sensitivity analysis with respect to the number of unit, expected unserved energy price, standard deviation of load forecast, and probability of load level is reported.

  15. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM

  16. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  17. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  18. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  19. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  20. Microcomputer-controlled high-power low-frequency random-signal generator

    SciTech Connect

    Baishusin, B.M.; Galin, I.A.; Galishnikov, Y.P.; Voznyi, V.A.

    1986-07-01

    This paper describes a generator of high-power low-frequency random signals that is controlled by a microcomputer and realizes polygaussian expansions. The generator provides random as well as determined periodic or single signals of any shape with a power of up to 25 kW at frequencies of 0-200 Hz. A schematic diagram of the interface is shown. It consists of an Elektronika D3-28 microcomputer, an interface, a control-pulse generator, a thyristor switch unit, and a parallel voltage divider.

  1. Influence of nuclear power unit on decreasing emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Stanek, Wojciech; Szargut, Jan; Kolenda, Zygmunt; Czarnowska, Lucyna

    2015-03-01

    The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.

  2. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC, the Commission) is considering issuance of an exemption,...

  3. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... FR 13926), establish and update generically applicable security requirements similar to those... FR 77919 dated December 14, 2010). This exemption is effective upon issuance. Dated at Rockville... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption...

  4. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect

    Weimer, R.F.

    1995-08-01

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  5. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  6. Recent progress in zirconia-based fuel cells for power generation

    SciTech Connect

    Singhal, S.C.

    1992-01-01

    High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

  7. Recent progress in zirconia-based fuel cells for power generation

    SciTech Connect

    Singhal, S.C.

    1992-12-01

    High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

  8. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  9. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  10. APPLICATION OF MEMBRANE TECHNOLOGY TO POWER GENERATION WATERS

    EPA Science Inventory

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment waste...

  11. Handbook of photovoltaic power generating design for introduction

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The purpose of this handbook is to survey the ways to introduce photovoltaic power generation with specifying a certain region of introduction by international cooperation. Various cases of load requirements and load patterns are taken up for more efficient designing of equipment. When actually introducing photovoltaic power generating facilities, more detailed analyses of the situation would be necessary, but this handbook is effective in investigating and comparing basic designs and possible regions of introduction. Presented are illustrated overall designing procedures of photovoltaic power generating facilities and examples in cases of DC load and AC load. This handbook includes assumed load formats, calculation of storage battery capacity, required capacity of photovoltaic cell, selection of photovoltaic cell module, selection of storage battery, selection of inverter, selection of charge controller, list of possible regions, and amounts and durations of insolation in the selected regions, as data for designing photovoltaic power generation for introduction.

  12. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  13. Coal-gasification combined-cycle power generation

    SciTech Connect

    Roberts, J.A.

    1984-06-01

    Rolls-Royce has joined forces with Foster Wheeler to offer a modern power plant that integrates the benefits of coal gasification with the efficiency advantages of combined-cycle power generation. Powered by fuel gas from two parallel Lurgi slagging gasifiers, the 150-MW power station employs two Rolls-Royce SK60 gas-turbine generating sets. The proposed plant is designed for continuous power generation and should operate efficiently down to one-third of its rated capacity. Rolls estimates that the installed cost for this station would be lower than that for a conventional coal-fired station of the same output with comparable operating costs. Cooling water requirements would be less than half those of a coal-fired station.

  14. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  15. Oil market power and United States national security.

    PubMed

    Stern, Roger

    2006-01-31

    It is widely believed that an oil weapon could impose scarcity upon the United States. Impending resource exhaustion is thought to exacerbate this threat. However, threat seems implausible when we consider strategic deficits of prospective weapon users and the improbability of impending resource exhaustion. Here, we explore a hypothesis relating oil to national security under a different assumption, abundance. We suggest that an oil cartel exerts market power to keep abundance at bay, commanding monopoly rents [or wealth transfers (wt)] that underwrite security threats. We then compare security threats attributed to the oil weapon to those that may arise from market power. We first reexamine whether oil is abundant or scarce by reviewing current development data, then we estimate a competitive price for oil. From this, we derive wt(2004) collections by Persian Gulf states approximately USD $132-178 x 10(9). We find that wt and the behavior of states collecting it interact to actuate security threats. Threats underwritten by wt are (i) the potential for emergence of a Persian Gulf superpower and (ii) terrorism. It is therefore oil market power, not oil per se, that actuates threats. We also describe a paradox in the relation of market power to the United States' defense doctrine of force projection to preempt a Gulf superpower. Because the superpower threat derives from wt, force alone cannot preempt it. A further paradox is that because foreign policy is premised on oil weapon fear, market power is appeased. Threats thereby grow unimpeded. PMID:16428291

  16. Oil market power and United States national security

    PubMed Central

    Stern, Roger

    2006-01-01

    It is widely believed that an oil weapon could impose scarcity upon the United States. Impending resource exhaustion is thought to exacerbate this threat. However, threat seems implausible when we consider strategic deficits of prospective weapon users and the improbability of impending resource exhaustion. Here, we explore a hypothesis relating oil to national security under a different assumption, abundance. We suggest that an oil cartel exerts market power to keep abundance at bay, commanding monopoly rents [or wealth transfers (wt)] that underwrite security threats. We then compare security threats attributed to the oil weapon to those that may arise from market power. We first reexamine whether oil is abundant or scarce by reviewing current development data, then we estimate a competitive price for oil. From this, we derive wt2004 collections by Persian Gulf states ≈ $132-178 × 109. We find that wt and the behavior of states collecting it interact to actuate security threats. Threats underwritten by wt are (i) the potential for emergence of a Persian Gulf superpower and (ii) terrorism. It is therefore oil market power, not oil per se, that actuates threats. We also describe a paradox in the relation of market power to the United States' defense doctrine of force projection to preempt a Gulf superpower. Because the superpower threat derives from wt, force alone cannot preempt it. A further paradox is that because foreign policy is premised on oil weapon fear, market power is appeased. Threats thereby grow unimpeded. PMID:16428291

  17. The MHD disk generator as a multimegawatt power supply operating with chemical and nuclear sources

    NASA Astrophysics Data System (ADS)

    Louis, J. F.

    The characteristics, performance and status of the MHD disk generator are reviewed as a potential multimegawatt power supply working with both chemical and nuclear sources. The disk generator is found to be a compact high interaction power unit with simple construction simple power conditioning and using a circular superconducting coil. The radial flow of the disk assures zero thrust in open loop operation and its construction simplicity may provide significant reliability and weight advantages. The disk generator can be operated as a high voltage, low current power supply. Experiments have shown the disk generator as high power (900 kW), high power density (500 MW/cu cm), high enthalpy extraction (15%) device which has been operated with electrical fields up to 37 kV/m. The disk generator can be operated in an open loop with either chemical or nuclear heat sources. In a closed cycle system, the disk generator can be used in a Braylon cycle using He working fluid and in a Rankin cycle using either potassium or lithium vapors as working fluid. In both cases, the generator operates in the non-equilibrium mode.

  18. High Power Alternator Test Unit (ATU) Electrical System Test

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.

  19. Power conditioning unit development for MAG-TRANSIT

    NASA Astrophysics Data System (ADS)

    Gilliland, R. G.; Smith, R. J.

    The results of a development program which has been completed on a modular inverter, referred to as the Power Conditioning Unit (PCU), employing many parallel TO-3 transistors, are discussed. The PCU has been designed to provide a precisely controlled, variable voltage, variable frequency excitation to a linear induction motor in the MAG-TRANSIT system, a form of magnetically levitated vehicles for people mover applications. The CPU, which consists of eight power modules, with 24 transistors each, has demonstrated a capacity of 73.4 kVA.

  20. Novel power saving architecture for FBG based OCDMA code generation

    NASA Astrophysics Data System (ADS)

    Osadola, Tolulope B.; Idris, Siti K.; Glesk, Ivan

    2013-10-01

    A novel architecture for generating incoherent, 2-dimensional wavelength hopping-time spreading optical CDMA codes is presented. The architecture is designed to facilitate the reuse of optical source signal that is unused after an OCDMA code has been generated using fiber Bragg grating based encoders. Effective utilization of available optical power is therefore achieved by cascading several OCDMA encoders thereby enabling 3dB savings in optical power.