Science.gov

Sample records for power performance test

  1. Performance map of a cluster detection test using extended power

    PubMed Central

    2013-01-01

    Background Conventional power studies possess limited ability to assess the performance of cluster detection tests. In particular, they cannot evaluate the accuracy of the cluster location, which is essential in such assessments. Furthermore, they usually estimate power for one or a few particular alternative hypotheses and thus cannot assess performance over an entire region. Takahashi and Tango developed the concept of extended power that indicates both the rate of null hypothesis rejection and the accuracy of the cluster location. We propose a systematic assessment method, using here extended power, to produce a map showing the performance of cluster detection tests over an entire region. Methods To explore the behavior of a cluster detection test on identical cluster types at any possible location, we successively applied four different spatial and epidemiological parameters. These parameters determined four cluster collections, each covering the entire study region. We simulated 1,000 datasets for each cluster and analyzed them with Kulldorff’s spatial scan statistic. From the area under the extended power curve, we constructed a map for each parameter set showing the performance of the test across the entire region. Results Consistent with previous studies, the performance of the spatial scan statistic increased with the baseline incidence of disease, the size of the at-risk population and the strength of the cluster (i.e., the relative risk). Performance was heterogeneous, however, even for very similar clusters (i.e., similar with respect to the aforementioned factors), suggesting the influence of other factors. Conclusions The area under the extended power curve is a single measure of performance and, although needing further exploration, it is suitable to conduct a systematic spatial evaluation of performance. The performance map we propose enables epidemiologists to assess cluster detection tests across an entire study region. PMID:24156765

  2. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  3. Performance test results for the Eaton dc development power train in an electric test bed vehicle

    NASA Astrophysics Data System (ADS)

    Crumley, R. L.; Donaldson, M. R.

    1987-09-01

    This report presents the results of the tests performed on a direct current (dc) power train in a test bed vehicle developed by the Eaton Corporation for the U.S. Department of Energy (DOE). The tests were performed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The purpose of the INEL testing was to provide test results from which an evaluation of the performance capabilities of the Eaton dc power train could be made and compared with other vehicle propulsion systems. The planned tests were primarily oriented toward road testing, chassis dynamometer testing, and associated dynamometer coastdown tests for road loss determination. Range tests of the Eaton dc test bed vehicle using an ALCO 2200 lead acid battery pack, produced ranges of 97 km at 56 km/h (60 miles at 35 mph), 79 km at 72 km/h (49 miles at 45 mph), and 47 km at 88 km/h (29 miles at 55 mph). The corresponding net dc energy consumptions are 135 Wh/km (217 Wh/mile), 145 Wh/km (233 Wh/mile), and 178 Wh/km (287 Wh/mile). The energy consumption for the D-cycle test was 241 Wh/km (387 Wh/mile).

  4. Power Performance Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect

    Roadman, J.; Murphy, M.; van Dam, J.

    2012-12-01

    This report contains the results of the power performance test that was performed on a Viryd CS8 wind turbine as part of the DOE Independent Testing project. The test is an accredited test to the IEC 61400-12-1 power performance standard.

  5. The Relationship between Field Tests of Anaerobic Power and 10-km Run Performance.

    ERIC Educational Resources Information Center

    Sinnett, Aaron M.; Berg, Kris; Latin, Richard W.; Noble, John M.

    2001-01-01

    Investigated the relationship between several field tests of anaerobic power (e.g., +various sprints, vertical jumps, and a plyometric leap) and distance running performance in trained adult male and female runners. Results indicate that anaerobic power is significantly related to distance running performance and may explain a meaningful…

  6. Power Performance Verification of a Wind Farm Using the Friedman's Test.

    PubMed

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L

    2016-01-01

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628

  7. Power Performance Verification of a Wind Farm Using the Friedman’s Test

    PubMed Central

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.

    2016-01-01

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628

  8. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    SciTech Connect

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  9. Performance of conventionally powered vehicles tested to an electric vehicle test procedure

    NASA Technical Reports Server (NTRS)

    Slavik, R. J.; Dustin, M. O.; Lumannick, S.

    1977-01-01

    A conventional Volkswagen transporter, a Renault 5, a Pacer, and a U. S. Postal Service general DJ-5 delivery van were treated to an electric vehicle test procedure in order to allow direct comparison of conventional and electric vehicles. Performance test results for the four vehicles are presented.

  10. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    SciTech Connect

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  11. Survey of the power ramp performance testing of KWU'S PWR UO 2, fuel

    NASA Astrophysics Data System (ADS)

    Ga¨rtner, M.; Fischer, G.

    1987-06-01

    To determine the power ramp performance of KWU's PWR UO 2 fuel, 134 fuel rodlets with burnups of up to 46 GWd/ t (U) and several fuel assemblies with 19 to 30 GWd/t (U) burnup were ramped in power in the research reactors HFR Petten/The Netherlands and R2 Studsvik/Sweden and in the power plants KWO and KWB-A/Germany, respectively. The power ramp tests demonstrate decreasing resistance of the PWR fuel rods to PCI (pellet-to-clad interaction) up to fuel burnups of 35 GWd/t (U) and a reversal effect at higher burnups. The fuel rods can be operated free of defects at fast power transients to linear heat generation rates of up to 400 W/cm, at least.Power levels of up to 490 W/cm can be reached without defects by reducing the ramp rate. After reshuffling according to an out-in scheme, 1-cycle fuel assemblies may return to rod powers of up to 480 W/cm with a power increase rate of up to 10 W/(cm min) without fuel rod damage. Set points basing on these test results and incorporated into the power distribution control and power density limitation system of KWU's advanced power plants guarantee safe plant operation under normal and load follow operating conditions.

  12. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect

    Kearney, D.

    2013-03-01

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  13. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  14. Testing of optical components to assure performance in a high acerage power environment

    SciTech Connect

    Chow, R.; Taylor, J.R.; Eickelberg, W.K.; Primdahl, K.A.

    1997-06-24

    Evaluation and testing of the optical components used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant is critical for qualification of suppliers, development of new optical multilayer designs and monufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  15. Power Performance Testing Activities in the DOE-EPRI Turbine Verification Program

    SciTech Connect

    VandenBosche, J.; McCoy, T.; Rhoads, H.; McNiff, B.; Smith, B.

    2000-09-11

    As part of the US Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program, Global Energy Concepts (GEC) is engaged in planning and conducting power performance tests for wind turbines in Searsburg, Vermont; Glenmore, Wisconsin; Algona, Iowa; Springview, Nebraska; Kotzebue, Alaska; and Big Spring, Texas. The turbines under investigation include a 550-kW Zond Z-40 FS, a 600-kW Tacke 600e, two 750-kW Zond Z-50s, a 66-kW AOC 15/50, a 660-kW Vestas V-47, and a 1.65-MW Vestas V-66. The testing is performed in a variety of terrain types, including mountains, plains, deserts, and coastal tundra; and under a wide range of atmospheric conditions from arid to arctic. Because one goal of this testing program is to gain experience with the new International Electrotechnical Commission (IEC) 61400-12 standard, all of the measurements are being performed in accordance with this new standard. This paper presents the status of the power performance testing at each site, the methodologies employed, test results available, and lessons learned from the application of the IEC standard. Any sources of uncertainty are discussed, and attention is given to the relative importance of each aspect of the IEC standard in terms of its contribution to the overall measurement uncertainty.

  16. Performance tests.

    PubMed

    Wetherell, A

    1996-04-01

    This paper discusses the use of psychological performance tests to assess the effects of environmental stressors. The large number and the variety of performance tests are illustrated, and the differences between performance tests and other psychological tests are described in terms of their design, construction, use, and purpose. The stressor emphasis is on the effects of drugs since that is where most performance tests have found their main application, although other stressors, e.g., fatigue, toxic chemicals, are mentioned where appropriate. Diazepam is used as an example. There is no particular performance emphasis since the tests are intended to have wide applicability. However, vehicle-driving performance is discussed because it has been the subject of a great deal of research and is probably one of the most important areas of application. Performance tests are discussed in terms of the four main underlying models--factor analysis, general information processing, multiple resource and strategy models, and processing-stage models--and in terms of their psychometric properties--sensitivity, reliability, and content, criterion, construct, and face validity. Some test taxonomies are presented. Standardization is also discussed with reference to the reaction time, mathematical processing, memory search, spatial processing, unstable tracking, verbal processing, and dual task tests used in the AGARD STRES battery. Some comments on measurement strengths and appropriate study designs and methods are included. PMID:9182033

  17. Performance tests.

    PubMed Central

    Wetherell, A

    1996-01-01

    This paper discusses the use of psychological performance tests to assess the effects of environmental stressors. The large number and the variety of performance tests are illustrated, and the differences between performance tests and other psychological tests are described in terms of their design, construction, use, and purpose. The stressor emphasis is on the effects of drugs since that is where most performance tests have found their main application, although other stressors, e.g., fatigue, toxic chemicals, are mentioned where appropriate. Diazepam is used as an example. There is no particular performance emphasis since the tests are intended to have wide applicability. However, vehicle-driving performance is discussed because it has been the subject of a great deal of research and is probably one of the most important areas of application. Performance tests are discussed in terms of the four main underlying models--factor analysis, general information processing, multiple resource and strategy models, and processing-stage models--and in terms of their psychometric properties--sensitivity, reliability, and content, criterion, construct, and face validity. Some test taxonomies are presented. Standardization is also discussed with reference to the reaction time, mathematical processing, memory search, spatial processing, unstable tracking, verbal processing, and dual task tests used in the AGARD STRES battery. Some comments on measurement strengths and appropriate study designs and methods are included. PMID:9182033

  18. Ergometer error and biological variation in power output in a performance test with three cycle ergometers.

    PubMed

    Paton, C D; Hopkins, W G

    2006-06-01

    When physical performance is monitored with an ergometer, random error arising from the ergometer combines with biological variation from the subject to limit the precision of estimation of performance changes. We report here the contributions of ergometer error and biological variation to the error of measurement in a performance test with two popular cycle ergometers (air-braked Kingcycle, mobile SRM crankset) and a relatively new inexpensive mobile ergometer (PowerTap hub). Eleven well-trained male cyclists performed a familiarization trial followed by three 5-min time trials within 2 wk on a racing cycle fitted with the SRM and PowerTap and mounted on the Kingcycle. Mean power output in each trial was recorded with all ergometers simultaneously. A novel analysis using mixed modelling of log-transformed mean power provided estimates of the standard error of measurement as a coefficient of variation and its components arising from the ergometer and the cyclists. The usual errors of measurement were: Kingcycle 2.2 %, PowerTap 1.5 %, and SRM 1.6 % (90 % confidence limits +/- 1.3). The components of these errors arising purely from the ergometers and the cyclists were: Kingcycle 1.8 %, PowerTap 0.9 %, SRM 1.1 %, and cyclists 1.2 % (+/- 1.5). Thus, ergometer errors and biological variation made substantial contributions to the usual error of measurement. Use of the best ergometers and of test protocols that reduce biological variation would improve monitoring of the small changes that matter to elite athletes. PMID:16767608

  19. Performance Testing of a Liquid Metal Pump for In-Space Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt

    2011-01-01

    Fission surface power (FSP) systems could be used to provide power on the surface of the moon, Mars, or other planets and moons of our solar system. Fission power systems could provide excellent performance at any location, including those near the poles or other permanently shaded regions, and offer the capability to provide on demand power at any time, even at large distances from the sun. Fission-based systems also offer the potential for outposts, crew and science instruments to operate in a power-rich environment. NASA has been exploring technologies with the goal of reducing the cost and technical risk of employing FSP systems. A reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system is also readily extensible for use on Mars, where it would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Detailed development of the FSP concept and the reference mission are documented in various other reports. The development discussed in this paper prepares the way for testing of the Technology Demonstration Unit (TDU), which is a 10 kWe end-to-end test of FSP technologies intended to raise the entire FSP system to technology readiness level (TRL) 6. The Early Flight Fission Test Facility (EFF-TF) was established by NASA s Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a nonnuclear test methodology. This includes fabrication and testing at both the module/component level and at near prototypic reactor components and configurations allowing for realistic thermal-hydraulic evaluations of systems. The liquid-metal pump associated with the FSP system must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National

  20. An extended life and performance test of a low-power arcjet

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.

    1988-01-01

    An automated, cyclic life test was performed to demonstrate the reliability and endurance of a low power dc cycle arcjet thruster. Over 1000 hr and 500 on-off cycles were accumulated which would represent the requirements for about 15 years of on-orbit lifetime. A hydrogen/nitrogen propellant mixture was used to simulate decomposed hydrazine propellant and the power level was nominally 1.2 kW after the burn-in period. The arcjet operated in a very repeatable fashion from cycle to cycle. The steady state voltage increased by approximately 6 V over the first 300 hr, and then by only 3 V through the remainder of the test. Thrust measurements taken before, during, and after the test verified that the thruster performed in a consistent fashion throughout the tests at a specific impulse of 450 to 460 sec. Post-test component evaluation revealed limited erosion on both the anode and cathode. Other thruster components, including graphite seals, appeared undamaged.

  1. Power performance

    SciTech Connect

    Anderson, J.

    1996-04-01

    Two power generation engineering and construction firms with international markets are briefly described in this article. Bibb and Associates and Black & Veatch, both Kansas-based companies, are discussed. Current projects and services provided by the companies are described.

  2. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  3. Speed, force, and power values produced from nonmotorized treadmill test are related to sprinting performance.

    PubMed

    Mangine, Gerald T; Hoffman, Jay R; Gonzalez, Adam M; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; McCormack, William P; Robinson, Edward H; Fragala, Maren S; Fukuda, David H; Stout, Jeffrey R

    2014-07-01

    The relationships between 30-m sprint time and performance on a nonmotorized treadmill (TM) test and a vertical jump test were determined in this investigation. Seventy-eight physically active men and women (22.9 ± 2.7 years; 73.0 ± 14.7 kg; 170.7 ± 10.4 cm) performed a 30-second maximal sprint on the curve nonmotorized TM after 1 familiarization trial. Pearson product-moment correlation coefficients produced significant (p ≤ 0.05) moderate to very strong relationships between 30-m sprint time and body mass (r = -0.37), %fat (r = 0.79), peak power (PP) (r = -0.59), relative PP (r = -0.42), time to peak velocity (r = -0.23) and TM sprint times at 10 m (r = 0.48), 20 m (r = 0.59), 30 m (r = 0.67), 40 m (r = 0.71), and 50 m (r = 0.75). Strong relationships between 30-m sprint time and peak (r = -0.479) and mean vertical jump power (r = -0.559) were also observed. Subsequently, stepwise regression was used to produce two 30-m sprint time prediction models from TM performance (TM1: body mass + TM data and TM2: body composition + TM data) in a validation group (n = 39), and then crossvalidated against another group (n = 39). As no significant differences were observed between these groups, data were combined (n = 72) and used to create the final prediction models (TM1: r = 0.75, standard error of the estimate (SEE) = 0.27 seconds; TM2: r = 0.84, SEE = 0.22 seconds). These final movement-specific models seem to be more accurate in predicting 30-m sprint time than derived peak (r = 0.23, SEE = 0.48 seconds) and mean vertical jump power (r = 0.31, SEE = 0.45 seconds) equations. Consequently, sprinting performance on the TM can significantly predict short-distance sprint time. It, therefore, may be used to obtain movement-specific measures of sprinting force, velocity, and power in a controlled environment from a single 30-second maximal sprinting test. PMID:24950225

  4. Performance Testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Systems Technology, Inc., Hawthorne, CA, developed an electronic Critical Tracking Task (CTT) system that analyzes and rates a subject's visual/motor responses for Ames Research Center. Originally applied to measuring the effects of long term confinement in the mid 1960's, the CTT system is now marketed as FACTOR 1000 by Performance Factors, Inc. Alameda, CA, under a licensing agreement with Systems Technology. The system is a non-invasive, self-administered test that takes less than a minute and detects impairment from a broad range of causes, including stress, fatigue, illness, drugs, or alcohol. It is used daily by Old Town Trolley Tours, San Diego, CA, to assess each driver's physical coordination skills prior to the start of each shift. FACTOR 1000 reduces liabilities and costs related to accidents, and costs less than one dollar per day per employee. Performance Factors is now BioFactors, Inc.

  5. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test.

    PubMed

    Petr, Miroslav; Stastny, Petr; Št'astný, Petr; Pecha, Ondřej; Šteffl, Michal; Šeda, Ondřej; Kohlíková, Eva

    2014-01-01

    To date, polymorphisms in several genes have been associated with a strength/power performance including alpha 3 actinin, ciliary neurotrophic factor, vitamin D receptor, or angiotensin I converting enzyme, underlining the importance of genetic component of the multifactorial strength/power-related phenotypes. The single nucleotide variation in peroxisome proliferator-activated receptor alpha gene (PPARA) intron 7 G/C (rs4253778; g.46630634G>C) has been repeatedly found to play a significant role in response to different types of physical activity. We investigated the effect of PPARA intron 7 G/C polymorphism specifically on anaerobic power output in a group of 77 elite male Czech ice hockey players (18-36 y). We determined the relative peak power per body weight (Pmax.kg(-1)) and relative peak power per fat free mass (W.kg(-1)FFM) during the 30-second Wingate Test (WT30) on bicycle ergometer (Monark 894E Peak bike, MONARK, Sweden). All WT30s were performed during the hockey season. Overall genotype frequencies were 50.6% GG homozygotes, 40.3% CG heterozygotes, and 9.1% CC homozygotes. We found statistically significant differences in Pmax.kg(-1) and marginally significant differences in Pmax.kg(-1)FFM values in WT30 between carriers and non-carriers for C allele (14.6 ± 0.2 vs. 13.9 ± 0.3 W.kg(-1) and 15.8 ± 0.2 vs. 15.2 ± 0.3 W.kg(-1)FFM, P = 0.036 and 0.12, respectively). Furthermore, Pmax.kg(-1)FFM strongly positively correlated with the body weight only in individuals with GG genotypes (R = 0.55; p<0.001). Our results indicate that PPARA 7C carriers exhibited higher speed strength measures in WT30. We hypothesize that C allele carriers within the cohort of trained individuals may possess a metabolic advantage towards anaerobic metabolism. PMID:25198533

  6. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  7. Long Term Performance Retention Test Using High Power COTS NiCd and NiMH Cells

    NASA Technical Reports Server (NTRS)

    Hall, Dan; Darcy, Eric; Strangways, Brad; Nelson, Tim

    2003-01-01

    This slide presentation reviews the tests and results for performance retention of high powered commercial off the shelf (COTS) NiCd, and NiMH cells. Electromechanical actuators for space flight requires short duration high power batteries. The concern is that NiCd battery designs demonstrate an unfavorable power degradation after long periods of inactivity. Cycling can recover some of the decay, but this reduces the readiness that these batteries must have. Two 5-cell SubC stick test batteries ere chosen using NiCd and NiMH were tested and then the differences for charge maintenance were compared.

  8. Comparison of Mental Toughness and Power Test Performances in High-Level Kickboxers by Competitive Success

    PubMed Central

    Slimani, Maamer; Miarka, Bianca; Briki, Walid; Cheour, Foued

    2016-01-01

    Background Kickboxing is a high-intensity intermittent striking combat sport, which is characterized by complex skills and tactical key actions with short duration. Objectives The present study compared and verified the relationship between mental toughness (MT), countermovement jump (CMJ) and medicine ball throw (MBT) power tests by outcomes of high-level kickboxers during National Championship. Materials and Methods Thirty two high-level male kickboxers (winner = 16 and loser = 16: 21.2 ± 3.1 years, 1.73 ± 0.07 m, and 70.2 ± 9.4 kg) were analyzed using the CMJ, MBT tests and sports mental toughness questionnaire (SMTQ; based in confidence, constancy and control subscales), before the fights of the 2015 national championship (16 bouts). In statistical analysis, Mann-Withney test and a multiple linear regression were used to compare groups and to observe relationships, respectively, P ≤ 0.05. Results The present results showed significant differences between losers vs. winners, respectively, of total MT (7(7;8) vs. 11(10.2;11), confidence (3(3;3) vs. 4(4;4)), constancy (2(2;2) vs. 3(3;3)), control (2(2;3) vs. 4(4;4)) subscales and MBT (4.1(4;4.3) vs. 4.6(4.4;4.8)). The multiple linear regression showed a strong associations between MT results and outcome (r = 0.89), MBT (r = 0.84) and CMJ (r = 0.73). Conclusions The findings suggest that MT will be more predictive of performance in those sports and in the outcome of competition. PMID:27625755

  9. Beyond Genetics in Mental Rotation Test Performance: The Power of Effort Attribution

    ERIC Educational Resources Information Center

    Moe, Angelica; Pazzaglia, Francesca

    2010-01-01

    This study compares the effects on Mental Rotation Test (MRT) performance of instructions that stress the importance of (a) personal effort, and (b) genetically driven ability. A total of 120 high-school students were assigned to three groups, and administered two sub-tests of the MRT. Between the first and second sub-tests, the groups received…

  10. Shuttle communication systems compatibility and performance tests. [transponder, range error, and power amplifier problems

    NASA Technical Reports Server (NTRS)

    Bromley, L. K.; Travis, A. D.

    1980-01-01

    The compatibility and performance of the Shuttle communications system must be certified prior to operational missions. For this purpose, NASA has established the Electronics Systems Test Laboratory (ESTL) at the Johnson Space Center. This paper discusses the Shuttle communications system compatibility and performance testing being performed in the ESTL. The ESTL system verification test philosophy, including capabilities, procedures, and unique testing equipment are summarized. Summaries of the significant results of compatibility and performance tests of the Orbiter/Space-flight Tracking and Data Network, Orbiter/Air Force Remote Tracking Station, Orbiter/Tracking and Data Relay Satellite System and Orbiter/Shuttle Launch Support System interfaces are presented. The ESTL's unique ability to locate potential communication problems and participate in the resolution of these problems are discussed in detail.

  11. Demagnetization Tests Performed on a Linear Alternator for a Stirling Power Convertor

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2012-01-01

    The NASA Glenn Research Center (GRC) is conducting in-house research on rare-earth permanent magnets and linear alternators to assist in developing free-piston Stirling convertors for radioisotope space power systems and for developing advanced linear alternator technology. This research continues at GRC, but, with the exception of Advanced Stirling Radioisotope Generator references, the work presented in this paper was conducted in 2005. A special arc-magnet characterization fixture was designed and built to measure the M-H characteristics of the magnets used in Technology Demonstration Convertors developed under the 110-W Stirling Radioisotope Generator (SRG110) project. This fixture was used to measure these characteristics of the arc magnets and to predict alternator demagnetization temperatures in the SRG110 application. Demagnetization tests using the TDC alternator on the Alternator Test Rig were conducted for two different magnet grades: Sumitomo Neomax 44AH and 42AH. The purpose of these tests was to determine the demagnetization temperatures of the magnets for the alternator under nominal loads. Measurements made during the tests included the linear alternator terminal voltage, current, average power, magnet temperatures, and stator temperatures. The results of these tests were found to be in good agreement with predictions. Alternator demagnetization temperatures in the Advanced Stirling Convertor (ASC-developed under the Advanced Stirling Radioisotope Generator project) were predicted as well because the prediction method had been validated through the SRG110 alternator tests. These predictions led to a specification for maximum temperatures of the ASC pressure vessel.

  12. OTEC-1 power system test program: performance of one-megawatt heat exchangers

    SciTech Connect

    Lorenz, J.J.; Yung, D.; Howard, P.A.; Panchal, C.B.; Poucher, F.W.

    1981-11-01

    Heat exchanger test results for the first deployment of OTEC-1 are reported. These tests were aimed at evaluating the performance of a state-of-the-art, 1-MWe titanium shell-and-tube evaporator and condenser in an ocean environment. The evaporator consisted of both a plain and an enhanced (Union Carbide High Flux) tube bundle, whereas the condenser had plain tubes only. All tests with the evaporator were conducted in the sprayed-bundle mode. Experimental results for the condenser and plain-tube portion of the evaporator were in excellent agreement with performance predictions. This result demonstrates that the thermal performance of large plain-tube heat exchangers can be predicted with a high level of confidence. However, the performance of the enhanced-tube portion of the evaporator was much lower thn predicted. Evidence strongly suggested that this poor performance was attributable mainly to fouling of the High Flux surface by corrosion products consisting predominantly of hydrated aluminum oxides.

  13. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2009-12-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  14. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2010-03-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  15. Cavitation performance tests on the primary pump model of a nuclear power plant

    SciTech Connect

    Rao, A.S.L.K.; Kale, R.D.; Chougule, R.J.; Joshi, S.G.

    1994-12-31

    This paper discusses in detail cavitation performance tests on a 1/3 model of the primary sodium pump for the proposed Prototype fast Breeder Reactor. The prototype pump has a rated capacity of 2.09 m{sup 3}/s at a delivery head of 80 mlc when operating at the rated speed of 700 rpm. The available NPSH is a modest 14 mlc and it is required that the hydraulic design of the pump be such as to have zero cavitation at the normal operating speed. The details of cavitational study of the model pump and comparison of experimental observations with model predictions is discussed.

  16. SPEED, FORCE AND POWER VALUES PRODUCED FROM A NON-MOTORIZED TREADMILL TEST ARE RELATED TO SPRINTING PERFORMANCE.

    PubMed

    Mangine, Gerald T; Hoffman, Jay R; Gonzalez, Adam M; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; McCormack, William; Robinson, Edward H; Fragala, Maren S; Fukuda, David H; Stout, Jeffrey R

    2013-11-22

    The relationships between 30m sprint time and performance on a non-motorized treadmill test, as well as a vertical jump test were determined in the present investigation. Seventy-eight physically active men and women (22.9±2.7 y; 73.0±14.7 kg; 170.7±10.4 cm) performed a 30-s maximal sprint on the Curve™ non-motorized treadmill (TM) following one familiarization trial. Pearson product-moment correlation coefficients produced significant (p<0.05) moderate to very strong relationships between 30m sprint time and body mass (r= -0.37), %Fat (r=0.79), peak power (r= -0.59), relative peak power (r= -0.42), time to peak velocity (r= -0.23), as well as TM sprint times at 10m (r=0.48), 20m (r=0.59), 30m (r=0.67), 40m (r=0.71), and 50m (r=0.75). Strong relationships between 30m sprint time and peak- (r= -0.479) and mean vertical jump power (r= -0.559) were also observed. Subsequently, stepwise regression was used to produce two 30m sprint time prediction models from TM performance (TM1: body mass+TM-data; and TM2: body composition+TM-data) in a validation group (n=39) and then cross-validated against another group (n=39). As no significant differences were observed between these groups, data was combined (n=72) and used to create the final prediction models (TM1: r=0.75, SEE=0.27s; TM2: r=0.84, SEE=0.22s). These final movement-specific models appear to be more accurate in predicting 30m sprint time than derived peak- (r=0.23, SEE=0.48s) and mean vertical jump power (r=0.31, SEE=0.45s) equations. Consequently, sprinting performance on the TM can significantly predict short-distance sprint time. It therefore, may be used to obtain movement-specific measures of sprinting force, velocity, and power in a controlled environment from a single 30-s maximal sprinting test. PMID:24276309

  17. The Relationship between College Performance and Basic Skills Assessment Using SAT Scores, the Nelson Denny Reading Test, and Degrees of Reading Power.

    ERIC Educational Resources Information Center

    King, Bruce W.; And Others

    1994-01-01

    Describes a study of basic skills testing in mathematics and reading. Examines the relationships between mathematics course performance and class standing, gender, age, transfer status, and math Scholastic Assessment Tests (SAT) scores; and reading course performance and verbal SAT, Nelson Denny Reading Test, and Degrees of Reading Power Test…

  18. Demagnetization Tests Performed on a Linear Alternator for a Stirling Power Convertor

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2011-01-01

    Demagnetization temperature of a linear alternator (LA) can be accurately predicted through an analytical Maxwell model. The M-H characteristics of the alternator magnets must be known. Vendor data are given for cube-shaped magnets, and the shape of a LA magnet may affect its magnetic properties. At GRC, M-H data are directly measured for each LA magnet. This method was validated using TDC alternator tests on the Alternator Test Rig. The analytical Maxwell modeling was utilized on a different style linear alternator to predict demagnetization temperatures for the Advanced Stirling Convertor.

  19. FUEL PERFORMANCE IMPROVEMENT PROGRAM Power-Ramp Testing and Postirradiation Examination of PCI- Resistant LWR Fuel Rod Designs

    SciTech Connect

    Barner, J. O.; Guenther, R. J.

    1982-09-01

    This report describes the power-ramp testing results from 10 fuel rods irradiated in the Halden Boiling Water Reactor (HBWR), Halden, Norway. Tne work is part of the Fuel Performance Improvement Program (FPIP), which is sponsored by the U.S. Department of Energy (DUE) and is conducted through the joint efforts of Consumers Power Company, Exxon Nuclear Company, lnc., and Pacific Northwest Laboratory. The objective of the FPlP is to identify and demonstrate fuel concepts with improved pellet-cladding interaction (PCl) behavior that will be capable of extended burnup. The postirradiation examination results obtained from one nonramped rod are also presented. The power-ramping behavior of three basic fuel rod types--rods with annular-pellet fuel, sphere-pac fuel, and dished-pellet (reference) fuel--are compared in terms of mechanisms known to promote PCl failures. The effects of graphite coating on the inside cladding surface and helium pressurization in rods witn annular fuel are also evaluated .

  20. Power systems testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Station Freedom (SSF) will give the U.S. a permanent manned presence in space in 1999. The SSF underwent its final design concept in 1991. Launches of hardware will begin in late 1995, and the SSF will become operational in the man tended configuration in 1997. Additional Space Shuttle flights between 1997 and 1999 will complete the SSF. Along with international partners, a crew of four astronauts will conduct long-term experimentation in the microgravity environment of the orbiting spacecraft. Lewis Research Center, along with its prime contractor, will provide the electrical power system (EPS) for SSF. Two major testing facilities at the Lewis Research Center will support the Lewis EPS. The Power Systems Facility provides test beds for life testing the station batteries and the power management distribution system testbed. This testbed simulates two channels of the EPS. The Space Power Facility at the Lewis Plum Brook Station is the largest vacuum chamber in the world. Within this chamber, a simulated space environment, testing of full-size EPS components will occur.

  1. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  2. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  3. Performance testing accountability measurements

    SciTech Connect

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  4. UNIFORMLY MOST POWERFUL BAYESIAN TESTS

    PubMed Central

    Johnson, Valen E.

    2014-01-01

    Uniformly most powerful tests are statistical hypothesis tests that provide the greatest power against a fixed null hypothesis among all tests of a given size. In this article, the notion of uniformly most powerful tests is extended to the Bayesian setting by defining uniformly most powerful Bayesian tests to be tests that maximize the probability that the Bayes factor, in favor of the alternative hypothesis, exceeds a specified threshold. Like their classical counterpart, uniformly most powerful Bayesian tests are most easily defined in one-parameter exponential family models, although extensions outside of this class are possible. The connection between uniformly most powerful tests and uniformly most powerful Bayesian tests can be used to provide an approximate calibration between p-values and Bayes factors. Finally, issues regarding the strong dependence of resulting Bayes factors and p-values on sample size are discussed. PMID:24659829

  5. Factor Analysis of Various Anaerobic Power Tests.

    ERIC Educational Resources Information Center

    Manning, James M.; And Others

    A study investigated the relationship between selected anthropometric variables and of numerous anaerobic power tests with measures obtained on an isokinetic dynamometer. Thirty-one male college students performed several anaerobic power tests, including: the vertical jump using the Lewis formula; the Margaria-Kalamen stair climb test; the Wingate…

  6. Test and Performance Anxiety

    ERIC Educational Resources Information Center

    Huberty, Thomas J.

    2010-01-01

    Test and performance anxiety is not recognized easily in schools, in large part because adolescents rarely refer themselves for emotional concerns. Not wanting to risk teasing or public attention, anxious adolescents suffer in silence and under perform on school-related tasks. In school, anxiety is experienced often by students when being…

  7. Medium power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bullock, S. Ray; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.

    1991-01-01

    An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difiicult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.

  8. Automated System Tests High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  9. Composite rod insulators for ac power lines; Electrical performance of various designs at a coastal testing station

    SciTech Connect

    Houlgate, R.G.; Swift, D.A. )

    1990-10-01

    The electrical performance of thirty-six composite insulators - of four commercial types for each AC system level of 34.5 kV, 230 kV and 500 kV - has been determined at the CEGB insulator testing station, Brighton, England. The weathershed materials were epoxy-resin, ethylene propylene rubber and silicone rubber; half of the 230 kV insulators had no stress rings. Surface leakage current was recorded for surge levels of 25 mA, 150 mA and 500 mA; a special technique was developed to obtain the flashover statistics of the 500 kV insulators, thereby enabling performance of the composite insulator to be quantified relative to that of a string of cap and pin porcelain insulators of anti-fog design, the deterioration of the insulators was observed by making regular visual inspections. The practical consequences of the findings and the causes of the degradation are discussed.

  10. Testing batteries for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Verardo, A. E.; Butler, P. C.; Bush, D. M.; Miller, D. W.

    A battery evaluation laboratory was established to investigate the application of various battery technologies for energy storage in a photovoltaic power system. The evaluation laboratory provides a controlled test environment in which batteries can be exposed to any one or all of the following: (1) long term performance testing; (2) accelerated life testing; (3) simulated photovoltaic power system operational testing. Several battery systems are being tested. A description is presented of the laboratory and the tests currently being conducted and a brief description of the battery systems under test.

  11. The Power To Perform.

    ERIC Educational Resources Information Center

    Education Next, 2003

    2003-01-01

    Argues that attracting nontraditional leaders to school administration requires the adoption of results-based practices tying compensation to performance. Includes profiles of two nontraditional leaders: Jennifer Henry, executive director of the Academy for Urban School Leadership in Chicago and Paula Dawning, superintendent of the Benton Harbor…

  12. CLIC RF High Power Production Testing Program

    SciTech Connect

    Syratchev, I.; Riddone, G.; Tantawi, S.G.; /SLAC

    2011-11-02

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  13. High Power Alternator Test Unit (ATU) Electrical System Test

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.

  14. SI PC104 Performance Test Report

    SciTech Connect

    Montelongo, S

    2005-12-16

    The Spectral Instruments (SI) PC104 systems associated with the SI-1000 CCD camera exhibited intermittent power problems during setup, test and operations which called for further evaluation and testing. The SI PC104 System is the interface between the SI-1000 CCD camera and its associated Diagnostic Controller (DC). As such, the SI PC104 must be a reliable, robust system capable of providing consistent performance in various configurations and operating conditions. This SI PC104 system consists of a stackable set of modules designed to meet the PC104+ Industry Standard. The SI PC104 System consists of a CPU module, SI Camera card, Media converter card, Video card and a I/O module. The root cause of power problems was identified as failing solder joints at the LEMO power connector attached to the SI Camera Card. The recommended solution was to provide power to the PC104 system via a PC104+ power supply module configured into the PC104 stack instead of thru the LEMO power connector. Test plans (2) were developed to test SI PC104 performance and identify any outstanding issues noted during extended operations. Test Plan 1 included performance and image acquisition tests. Test Plan 2 verified performance after implementing recommendations. Test Plan 2 also included verifying integrity of system files and driver installation after bootup. Each test plan was implemented to fully test against each set of problems noted. Test Plan presentations and Test Plan results are attached as appendices. Anticipated test results will show successful operation and reliable performance of the SI PC104 system receiving its power via a PC104 power supply module. A SI PC104 Usage Recommendation Memo will be sent out to the SI PC104 User Community. Recommendation memo(s) are attached as appendices.

  15. Anxiety and Test Performance.

    ERIC Educational Resources Information Center

    Hickey, Kevin S.

    Test anxiety is a variable cognitive, affective, or physiological response, or any combination thereof, occurring during evaluative, self-report examinations. Research suggests that the cognitive, affective, and physiological components of test anxiety are interrelated and that these components in addition to global test anxiety, are negatively…

  16. Performance testing of thermoelectric generators at JPL

    NASA Technical Reports Server (NTRS)

    Rouklove, P.; Truscello, V.

    1974-01-01

    Results of life tests of thermoelectric generators ranging in output power from 800 microwatts to 170 watts. Emphasis is placed on the results obtained from tests of three advanced prototypes - a high-performance generator, a transit-type generator, and a ring converter. In addition, the results of life tests of a number of generators representing Nimbus, Pioneer, and Viking technology are presented.

  17. HTS power lead testing at the Fermilab magnet test facility

    SciTech Connect

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  18. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  19. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be

  20. Power Performance Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune; Curtis, Amy

    2015-08-11

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL). This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  1. Cryostat for testing RF power couplers

    SciTech Connect

    Kuchnir, M.; Champion, M.S.; Koepke, K.P.; Misek, J.R.

    1996-03-01

    Similar to the power leads of accelerator superconducting magnets, the power couplers of accelerator superconducting cavities are components that link room temperature to superfluid helium temperature for the purpose of energy transfer. Instead of conducting kiloamperes of current they guide megawatts of RF power between those two temperatures. In this paper we describe a cryostat designed for testing the performance of these components and measuring their heat loads. A special feature of this cryostat is its minimum liquid inventory that considerably simplifies safety related requirements. This cryostat is part of a Fermilab facility contributing to the international collaboration working on TESLA (TeV Electron Superconducting Linear Accelerator). This facility is now operational and we will be presenting specifications as well as performance data on the cryostat as well as the first pair of power couplers tested with it.

  2. Infiniband Performance Testing

    SciTech Connect

    Minich, M

    2005-10-13

    A look at the performance of the infiniband interconnect using the Voltaire host stack. This will attempt to compare not only infiniband to other high-performance interconnects, but will also take a look at comparing some of the different hardware choices available at the time of writing (e.g. Opteron, EM64T, pci-express and pci-x).

  3. Surface Power Radiative Cooling Tests

    SciTech Connect

    Vaughn, Jason; Schneider, Todd

    2006-01-20

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. {approx}5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  4. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  5. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  6. PNGV Battery Performance Testing and Analyses

    SciTech Connect

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Sutula, Raymond; Duong, T.Q.; Barnes, J.A.; Miller, Ted J.; Haskind, H. J.; Tartamella, T. J.

    2002-03-01

    In support of the Partnership for a New Generation of Vehicles (PNGV), the Idaho National Engineering and Environmental Laboratory (INEEL) has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles (HEV’s). Tests have been designed for both Power Assist and Dual Mode applications. They include both characterization and cycle life and/or calendar life. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. PNGV goals, test procedures, analytical methodologies, and representative results are presented.

  7. Uniform peanut performance test 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....

  8. Uniform Peanut Performance Tests 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 3 Georgia lines,...

  9. Uniform peanut performance test 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....

  10. Uniform Peanut Performance Tests 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 6 Georgia lines,...

  11. Uniform Peanut Performance Tests 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 7 Georgia lines,...

  12. Uniform Peanut Performance Tests 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 4 Georgia lines,...

  13. Uniform Peanut Performance Tests 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 6 Georgia lines,...

  14. Power wheelchair range testing and energy consumption during fatigue testing.

    PubMed

    Cooper, R A; VanSickle, D P; Albright, S J; Stewart, K J; Flannery, M; Robertson, R N

    1995-10-01

    The range of a power wheelchair depends on many factors including: battery type, battery state, wheelchair/rider weight, terrain, the efficiency of the drive train, and driving behavior. The purpose of this study was to evaluate the feasibility of three methods of estimating power wheelchair range. Another significant purpose was to compare the current draw on pavement to current draw on an International Standards Organization (ISO) Double Drum tester at one m/sec. Tests were performed on seven different power wheelchairs unloaded, and loaded with an ISO 100 kg test dummy. Each chair was configured according to the manufacturer's specifications, and tires were properly inflated. Experienced test technicians were used for the tennis court tests, and treadmill tests. An ISO 100 kg test dummy was used for the ISO Double Drum test. Energy consumption was measured over a distance of 1500 m for each of the three test conditions. The rolling surface was level in all cases. Repeated measure analysis of variance (ANOVA) revealed a significant difference (p = 0.0001) between the predicted range at maximum speed for the three tests. Post hoc analysis demonstrated a significant difference (p < 0.01) in estimated range at maximum speed between the Double Drum test and the treadmill test, as well as between the Double Drum test and the tennis court test. Our results indicate no significant difference (p > 0.05) between the predicted range at maximal speed between the treadmill and tennis court tests. A simple relationship does not exist between the results of range testing with the Double Drum tester and the tennis court. An alternative would be to permit the use of a treadmill for range testing as simple relationships between all pertinent treadmill and tennis court range data were found. For the Double Drum tester used, the current demand is higher than under normal usage. This presents a problem as current is related to load torque in a power wheelchair. Hence, the Double

  15. Collaborative Test Reviews: Student Performance

    ERIC Educational Resources Information Center

    Bhatia, Anuradha; Makela, Carole J.

    2010-01-01

    A group study method proved helpful in improving senior-level students' performance on unit tests through collaborative learning. Students of a History of Textiles course voluntarily attended study sessions to review course content and prepare for unit tests. The students who attended the group reviews scored better on tests than those who did…

  16. Where Lab Tests Are Performed

    MedlinePlus

    ... labs also vary in complexity, the volume of tests performed, the technology utilized, and the number and type of professionals who conduct the testing . There are important differences among the various testing settings. This information will be useful in ... Proudly sponsored by ... Learn ...

  17. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  18. Thermophotovoltaic Converter Performance for Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher J.; Elkouh, Nabil A.; Murray, Susan; Chubb, Donald L.

    2005-02-01

    The development of lightweight, efficient power for emerging NASA missions and recent advances in thermophotovoltaic (TPV) conversion technology have renewed interest in combining radioisotope heat sources with photovoltaic energy conversion for Radioisotope Power Systems (RPS) for spacecraft. TPV power conversion uses advanced materials able to utilize a broader, spectrally tuned range of wavelengths for more efficient power conversion than Si solar cells. Spectral control, through choices of selective radiant emitters, TPV modules, and filters, is key to high-efficiency operation. This paper describes performance tests of an array of TPV cells with boundary conditions prototypical of an RPS. TPV performance tests were conducted at prototypical array size (≅100 cm2), emitter temperature (1350 K), and heat rejection temperature (300 K). Test hardware included InGaAs TPV cells at 0.60 eV band-gap, with tandem plasma/interference filters for spectral control. At the target emitter temperature of 1350 K, a conversion efficiency of 19% has been demonstrated for the TPV module. Results are consistent with measured cell efficiency (28%), calculated spectral control efficiency (80%), and calculated thermal efficiency in the optical cavity (90%).

  19. Interindividual Differences in Alpha and Theta Power Reflect Memory Performance.

    ERIC Educational Resources Information Center

    Klimesch, W.; Vogt, F.; Doppelmayr, M.

    1999-01-01

    Tested whether tonic EEG power is related to memory performance by analyzing ongoing EEG for 60 subjects in 5 experimental conditions. Subjects with good memory performance had significantly larger upper alpha power, but less theta and lower alpha power. Also discusses findings for subjects good at calculation. (SLD)

  20. High-power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.; Curran, Francis M.

    1991-01-01

    A hydrogen arcjet was operated at power levels ranging from 5 to 30 kW with three different nozzle geometries. Test results using all three nozzle geometries are reported and include variations of specific impulse with flow rate, and thrust with power. Geometric variables investigated included constrictor diameter, length, and diverging exit angle. The nozzle with a constrictor diameter of 1.78 mm and divergence angle of 20 degrees was found to give the highest performance. A specific impulse of 1460 s was attained with this nozzle at a thrust efficiency of 29.8 percent. The best efficiency measured was 34.4 percent at a specific impulse of 1045 s. Post test examination of the cathode showed erosion after 28 hours of operation to be small, and limited to the conical tip where steady state arc attachment occurred. Each nozzle was tested to destruction.

  1. High-power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.; Curran, Francis M.

    1991-01-01

    A hydrogen arcjet was operated at power levels ranging from 5 to 30 kW with three different nozzle geometries. Test results using all three nozzle geometries are reported and include variations of specific impulse with flow rate, and thrust with power. Geometric variables investigated included constrictor diameter, length, and diverging exit angle. The nozzle with a constrictor diameter of 1.78 mm and divergence angle of 20 deg was found to give the highest performance. A specific impulse of 1460 s was attained with this nozzle at a thrust efficiency of 29.8 percent. The best efficiency measured was 34.4 percent at a specific impulse of 1045 s. Post test examination of the cathode showed erosion after 28 hours of operation to be small, and limited to the conical tip where steady state arc attachment occurred. Each nozzle was tested to destruction.

  2. TESTING AND REPORTING SOLAR COOKER PERFORMANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Standard for quantifying solar cooker performance specifies that test results be presented as cooking power, in Watts, normalized for ambient conditions, relative to the temperature difference betweeen cooker contents and ambient air, both as a plot and as a regression equation for no less than...

  3. Radiative resistojet performance characterization tests

    NASA Technical Reports Server (NTRS)

    Miyake, C. I.

    1984-01-01

    The test article, test approach, data analysis and results of a study undertaken to characterize performance of the augmentation section of the Rocket Research Company Augmented Catalytic Thruster as a gas resistojet using hydrogen, nitrogen and ammonia as propellants are described. This renewed interest in resistojets is a result of propulsion systems definition studies which indicate potential application to space station auxiliary propulsion.

  4. Proctored and Unproctored Test Performance

    ERIC Educational Resources Information Center

    Brallier, Sara; Palm, Linda

    2015-01-01

    This study examined test performance as a function of test format (proctored versus unproctored) and course type (traditional versus distance). The participants were 246 undergraduate students who completed introductory sociology courses during four semesters at a southeastern university. During each semester, the same instructor taught a…

  5. Managing hospital emergency power testing programs.

    PubMed

    Stymiest, D L

    1997-04-01

    All hospitals must have an emergency power testing program that includes generator load testing and emergency power supply system maintenance. This document examines a management program that uses lessons learned from an emergency power testing program to improve the hospital's facilities and training. PMID:10166993

  6. A power semiconductor test circuit with reduced power requirements

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1970-01-01

    Switching circuit utilizing silicon controlled rectifier reduces input power requirements normally associated with testing power semiconductors in an operational type mode. Circuit alleviates problems of inaccessibility, lack of large amounts of power, physical size of power resistors, wiring, and heat generation.

  7. MPD arcjet system performance test

    NASA Astrophysics Data System (ADS)

    Kuriki, Kyoichi; Shimizu, Yukio; Morimoto, Shinji; Kuwahara, Keiichi; Kisaragi, Takayasu; Uematsu, Kazuo; Enya, Shintaro; Sasao, Yoshio

    A new MPD (magnetoplasmadynamic) arcjet system was developed and tested to demonstrate its technological readiness for flight model design. The MPD arcjet, of quasisteady type, was repetitively operated. In the endurance test, more than 10 5 shots were cleared in continuous operation. Some components cleared more than 10 6 shots. Cathode erosion was markedly reduced through the use of newly developed material. Thermal data were obtained which define the thermal interface between the spacecraft and the MPD arcjet system. Waste heat from the electrodes was found to be 20-30% of the input power and to vary with repetition frequency. No technological difficulties are foreseen for further continuation of repetitive operation.

  8. Performance testing of extremity dosimeters

    SciTech Connect

    Harty, R.; Reece, W.D.; Hooker, C.D.

    1987-06-01

    The Health Physics Society Standing Committee (HPSSC) Working Group on Performance Testing of Extremity Dosimeters has issued a draft of a proposed standard for extremity dosimeters. The draft standard proposes methods to be used for testing dosimetry systems that determine occupational radiation dose to the extremities and the performance criterion used to determine compliance. The draft standard has been evaluated by testing the performance of existing processors of extremity dosimeters against the standard's proposed criterion. The proposed performance criterion is: absolute value of B + S less than or equal to 0.35, where B is the bias (calculated as the average of the performance quotients) of 15 dosimeter measurements and S is the standard deviation of the performance quotients. Dosimeter performance was tested in seven irradiation categories: low-energy photons (general and accident dosimetry), high-energy photons (general and accident dosimetry), beta particles, neutrons, and a mixture category. Twenty-one types of extremity dosimeters (both finger ring and wrist/ankle dosimeters) were received from 11 processors. The dosimeters were irradiated by the Pacific Northwest Laboratory (PNL) to specific dose levels in one or more of the seven categories as specified in the draft standard and were returned to the processors. The processors evaluated the doses and returned the results to PNL for analysis. The results were evaluated against the performance criterion specified in the draft standard. The results indicate that approximately 60% of both the finger ring and the wrist/ankle dosimeters met the performance criterion. Two-thirds of the dosimeters that did not meet the performance criterion had large biases (ranging from 0.25 to 0.80) but small standard deviations (less than 0.15). 21 refs., 3 figs., 20 tabs.

  9. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  10. Fundamentals of power plant performance for utility engineers

    SciTech Connect

    Not Available

    1984-01-01

    This three-volume, looseleaf text reviews power plant components and their operation from a performance perspective and presents the basics of performance testing. It provides the background to develop performance monitoring programs that improve component performance and provide operators with performance feedback and maintenance planning information.

  11. Radiation effects on power transistor performance

    NASA Technical Reports Server (NTRS)

    Frasca, Albert J.

    1987-01-01

    The D60T, D62T, and D75T transistors in the nuclear reactor were irradiated with bias voltage and high current I sub c vs. V sub ec curves were obtained to evaluate gain degradation at high power levels. Pre- and post-irradiation high current switching tests were performed to evaluate the response. The gamma ray damage work done at Sandia was correlated with the neutron work done at the O.S.U. reactor with the above specified transistors. Theoretical analyses of damage and electrical performance were conducted in terms of semiconductor physics. The experimental high current pulser was improved in order to measure switching time changes which are less than one microsecond at currents of 100 to 200 amperes for in-situ testing.

  12. Acceptance test report: Backup power system

    SciTech Connect

    Cole, D.B.

    1996-01-26

    Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control.

  13. Cascade Distiller System Performance Testing Interim Results

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  14. GEM: Performance and aging tests

    SciTech Connect

    Cho, H.S.; Kadyk, J.; Han, S.H.; Hong, W.S.; Perez-Mendez, V.; Wenzel, W.; Pitts, K.; Martin, M.D.; Hutchins, J.B.

    1999-06-01

    Performance and aging tests have been done to characterize Gas Electron Multipliers (GEMs), including further design improvements such as a thicker GEM and a closed GEM. Since the effective GEM gain is typically smaller than the absolute GEM gain, due to trapping of avalanche electrons at the bottom GEM electrode, the authors performed field simulations and measurements for better understanding, and discuss methods to eliminate this effect. Other performance parameters of the GEMs are also presented, including absolute GEM gain, short-term and long-term gain stabilities.

  15. Uniform Peanut Performance Tests 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) were established in 1973 through an informal arrangement among cooperating scientists involving seven major peanut-producing states. In 1995, plant material transfer agreements were also accepted among all cooperators in the UPPT. The year 2012 completed...

  16. Performance of Low-Power Pulsed Arcjets

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.

    1995-01-01

    The Electric Propulsion Laboratory at UIUC has in place all the capability and diagnostics required for performance testing of low power pulsed and DC arcjets. The UIUC thrust stand is operating with excellent accuracy and sensitivity at very low thrust levels. An important aspect of the experimental setup is the use of a PID controller to maintain a constant thruster position, which reduces hysterisis effects. Electrical noise from the arcjet induces some noise into the thrust signal, but this does not affect the measurement.

  17. Electronic load for testing power generating devices

    NASA Technical Reports Server (NTRS)

    Friedman, E. B.; Stepfer, G.

    1968-01-01

    Instrument tests various electric power generating devices by connecting the devices to the input of the load and comparing their outputs with a reference voltage. The load automatically adjusts until voltage output of the power generating device matches the reference.

  18. Variable load automatically tests dc power supplies

    NASA Technical Reports Server (NTRS)

    Burke, H. C., Jr.; Sullivan, R. M.

    1965-01-01

    Continuously variable load automatically tests dc power supplies over an extended current range. External meters monitor current and voltage, and multipliers at the outputs facilitate plotting the power curve of the unit.

  19. Validity and Reliability of a Medicine Ball Explosive Power Test.

    ERIC Educational Resources Information Center

    Stockbrugger, Barry A.; Haennel, Robert G.

    2001-01-01

    Evaluated the validity and reliability of a medicine ball throw test to evaluate explosive power. Data on competitive sand volleyball players who performed a medicine ball throw and a standard countermovement jump indicated that the medicine ball throw test was a valid and reliable way to assess explosive power for an analogous total-body movement…

  20. Power plant performance monitoring and improvement. Volume 3. Power plant performance instrumentation systems

    SciTech Connect

    Crim, H.G.; Westcott, J.C.; de Mello, R.W.; Brandon, R.E.; Parkinson, D.W.; Czuba, J.S.

    1986-02-01

    PEPCO's Morgantown Unit 2 and the PJM system control center are serving as the test facilities for this project. This first phase of the project utilizes currently (or soon to be) available instrumentation for monitoring and analyzing plant and system performance on a continuous basis. The overall approach is to demonstrate in one facility all sensors, monitoring devices, and necessary computer hardware and software for on-line performance monitoring and dispatch purposes. Significant developments include turbine packing leakage measurement, condenser back-pressure measurement, power cycle testing, and studies of the application of advanced instrumentation to system dispatch.

  1. In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Kurtz, S.

    2013-08-01

    The extent of potential-induced degradation of crystalline silicon modules in an environmental chamber is estimated using in-situ dark I-V measurements and applying superposition analysis. The dark I-V curves are shown to correctly give the module power performance at 200, 600 and 1,000 W/m2 irradiance conditions, as verified with a solar simulator. The onset of degradation measured in low light in relation to that under one sun irradiance can be clearly seen in the module design examined; the time to 5% relative degradation measured in low light (200 W/m2) was 28% less than that of full sun (1,000 W/m2 irradiance). The power of modules undergoing potential-induced degradation can therefore be characterized in the chamber, facilitating statistical analyses and lifetime forecasting.

  2. High Power Flex-Propellant Arcjet Performance

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2011-01-01

    A MW-class electrothermal arcjet based on a water-cooled, wall-stabilized, constricted arc discharge configuration was subjected to extensive performance testing using hydrogen and simulated ammonia propellants with the deliberate aim of advancing technology readiness level for potential space propulsion applications. The breadboard design incorporates alternating conductor/insulator wafers to form a discharge barrel enclosure with a 2.5-cm internal bore diameter and an overall length of approximately 1 meter. Swirling propellant flow is introduced into the barrel, and a DC arc discharge mode is established between a backplate tungsten cathode button and a downstream ringanode/ spin-coil assembly. The arc-heated propellant then enters a short mixing plenum and is accelerated through a converging-diverging graphite nozzle. This innovative design configuration differs substantially from conventional arcjet thrusters, in which the throat functions as constrictor and the expansion nozzle serves as the anode, and permits the attainment of an equilibrium sonic throat (EST) condition. During the test program, applied electrical input power was varied between 0.5-1 MW with hydrogen and simulated ammonia flow rates in the range of 4-12 g/s and 15-35 g/s, respectively. The ranges of investigated specific input energy therefore fell between 50-250 MJ/kg for hydrogen and 10-60 MJ/kg for ammonia. In both cases, observed arc efficiencies were between 40-60 percent as determined via a simple heat balance method based on electrical input power and coolant water calorimeter measurements. These experimental results were found to be in excellent agreement with theoretical chemical equilibrium predictions, thereby validating the EST assumption and enabling the utilization of standard TDK nozzle expansion analyses to reliably infer baseline thruster performance characteristics. Inferred specific impulse performance accounting for recombination kinetics during the expansion process

  3. Reflectors for SAR performance testing.

    SciTech Connect

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  4. Submicrosecond Power-Switching Test Circuit

    NASA Technical Reports Server (NTRS)

    Folk, Eric N.

    2006-01-01

    A circuit that changes an electrical load in a switching time shorter than 0.3 microsecond has been devised. This circuit can be used in testing the regulation characteristics of power-supply circuits . especially switching power-converter circuits that are supposed to be able to provide acceptably high degrees of regulation in response to rapid load transients. The combination of this power-switching circuit and a known passive constant load could be an attractive alternative to a typical commercially available load-bank circuit that can be made to operate in nominal constant-voltage, constant-current, and constant-resistance modes. The switching provided by a typical commercial load-bank circuit in the constant-resistance mode is not fast enough for testing of regulation in response to load transients. Moreover, some test engineers do not trust the test results obtained when using commercial load-bank circuits because the dynamic responses of those circuits are, variously, partly unknown and/or excessively complex. In contrast, the combination of this circuit and a passive constant load offers both rapid switching and known (or at least better known) load dynamics. The power-switching circuit (see figure) includes a signal-input section, a wide-hysteresis Schmitt trigger that prevents false triggering in the event of switch-contact bounce, a dual-bipolar-transistor power stage that drives the gate of a metal oxide semiconductor field-effect transistor (MOSFET), and the MOSFET, which is the output device that performs the switching of the load. The MOSFET in the specific version of the circuit shown in the figure is rated to stand off a potential of 100 V in the "off" state and to pass a current of 20 A in the "on" state. The switching time of this circuit (the characteristic time of rise or fall of the potential at the drain of the MOSFET) is .300 ns. The circuit can accept any of three control inputs . which one depending on the test that one seeks to perform: a

  5. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  6. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  7. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  8. DEVELOPMENT AND TESTING OF HIGH POWER RF VECTOR MODULATORS*

    SciTech Connect

    Kang, Yoon W; Wilson, Joshua L; Champion, Mark; Hardek, Thomas W; Kim, Sang-Ho; McCarthy, Mike; Vassioutchenko, Alexandre V

    2007-01-01

    A fan-out RF power distribution system can allow many accelerating cavities to be powered by a single high-power klystron amplifier. High-power vector modulators can perform independent control of amplitudes and phases of RF voltages at the cavities without changing the klystron signal. A prototype highpower RF vector modulator employing a quadrature hybrid and two ferrite phase shifters in coaxial TEM transmission lines has been built and tested for 402.5 MHz. RF properties of the design and results of high power testing are presented.

  9. Testing experience of photovoltaic modules for a multimegawatt power plant

    SciTech Connect

    Iliceto, A.; Previ, A.; Fleres, S.; Scuto, M.

    1994-12-31

    The planning of the 3,3 MWp photovoltaic power station of Serre (Salerno) required that ENEL performed a complete set of tests, both on the module types proposed by five pv module manufacturers (type test), and during the test sessions at manufacturer`s site on the batches of modules to be shipped to Serre (acceptance tests), and at the assembly line at Serre on the pv panels (on field tests). Type tests on modules were performed by JRC and CONPHOEBUS, module acceptance tests were performed by CONPHOEBUS and CISE, on field tests were performed by CONPHOEBUS. A list of the tests performed, and the most frequent defects encountered during the testing sessions will be shown in this paper. It is important to note that the aim of these notes is not to give a mark to any PV supplier, but only to put in evidence the actual state of the art of photovoltaic industry.

  10. Test Results From a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.

  11. Test Results from a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.

  12. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  13. MUSE instrument global performance test

    NASA Astrophysics Data System (ADS)

    Loupias, M.; Kosmalski, J.; Adjali, L.; Bacon, R.; Boudon, D.; Brotons, L.; Caillier, P.; Capoani, L.; Daguisé, E.; Jarno, A.; Hansali, G.; Kelz, A.; Laurent, F.; Migniau, J. E.; Pécontal-Rousset, A.; Piqueras, L.; Remillieux, A.; Renault, E.; Streicher, O.; Weilbacher, P.; Zins, G.

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument developed for ESO (European Southern Observatory) and will be assembled to the VLT (Very Large Telescope) in 2013. The MUSE instrument can simultaneously record 90.000 spectra in the visible wavelength range (465-930nm), across a 1*1arcmin² field of view, thanks to 24 identical Integral Field Units (IFU). A collaboration of 7 institutes has partly validated and sent their subsystems to CRAL (Centre de Recherche Astrophysique de Lyon) in 2011, where they have been assembled together. The global test and validation process is currently going on to reach the Preliminary Acceptance in Europe in 2012. The sharing of performances has been based on 5 main functional sub-systems. The Fore Optics sub-system derotates and anamorphoses the VLT Nasmyth focal plane image, the Splitting and Relay Optics associated with the Main Structure are feeding each IFU with 1/24th of the field of view. Each IFU is composed of a 3D function insured by an image slicer system and a spectrograph, and a detection function by a 4k*4k CCD cooled down to 163°K. The 5th function is the calibration and data reduction of the instrument. This article depicts the sequence of tests that has been completely reshafled mainly due to planning constraints. It highlights the priority given to the most critical performances tests of the sub-systems and their results. It enhances then the importance given to global tests. Finally, it makes a status on the verification matrix and the validation of the instrument and gives a critical view on the risks taken.

  14. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  15. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation`s hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation`s system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  16. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  17. PUREX SAMCONS uninterruptible power supply (UPS) acceptance test report

    SciTech Connect

    Blackaby, W.B.

    1997-10-07

    This Acceptance Test Report for the PUREX Surveillance and Monitoring and Control System (SAMCONS) Uninterruptible Power Supply (UPS) Acceptance Test Procedure validates the operation of the UPS, all alarming and display functions and the ability of the UPS to supply power to the SAMCONS as designed. The proper installation of the PUREX SAMCONS Trailer UPS components and wiring will be systematically evaluated by performance of this procedure. Proper operation of the SAMCONS computer UPS will be verified by performance of a timed functional load test, and verification of associated alarms and trouble indications. This test procedure will be performed in the SAMCONS Trailer and will include verification of receipt of alarms at the SAMCONS computer stations. This test may be performed at any time after the completion of HNF-SD-CP-ATP-083, PUREX Surveillance and Monitoring and Control System (SAMCONS) Acceptance Test Procedure, when computer display and alarm functions have been proven to operate correctly.

  18. Initial Performance Results on IBM POWER6

    NASA Technical Reports Server (NTRS)

    Saini, Subbash; Talcott, Dale; Jespersen, Dennis; Djomehri, Jahed; Jin, Haoqiang; Mehrotra, Piysuh

    2008-01-01

    The POWER5+ processor has a faster memory bus than that of the previous generation POWER5 processor (533 MHz vs. 400 MHz), but the measured per-core memory bandwidth of the latter is better than that of the former (5.7 GB/s vs. 4.3 GB/s). The reason for this is that in the POWER5+, the two cores on the chip share the L2 cache, L3 cache and memory bus. The memory controller is also on the chip and is shared by the two cores. This serializes the path to memory. For consistently good performance on a wide range of applications, the performance of the processor, the memory subsystem, and the interconnects (both latency and bandwidth) should be balanced. Recognizing this, IBM has designed the Power6 processor so as to avoid the bottlenecks due to the L2 cache, memory controller and buffer chips of the POWER5+. Unlike the POWER5+, each core in the POWER6 has its own L2 cache (4 MB - double that of the Power5+), memory controller and buffer chips. Each core in the POWER6 runs at 4.7 GHz instead of 1.9 GHz in POWER5+. In this paper, we evaluate the performance of a dual-core Power6 based IBM p6-570 system, and we compare its performance with that of a dual-core Power5+ based IBM p575+ system. In this evaluation, we have used the High- Performance Computing Challenge (HPCC) benchmarks, NAS Parallel Benchmarks (NPB), and four real-world applications--three from computational fluid dynamics and one from climate modeling.

  19. Cut performance levels and testing.

    PubMed

    Bennett, Bill; Moreland, Jeff

    2011-11-01

    While the ISEA performance levels and general recommendations detailed above can help tp provide guidance when selecting hand protection products, the responsibility for testing products for specific end-user applications still rests with the end user. We can indicate, for example, that a medium-weight, uncoated Kevlar glove will typically have an ISEA cut rating of 3, but we cannot say the glove will provide the level of protection needed for the range of jobs on an automobile assembly line. Another Level 3 glove might be better suited to an application the require the worker to have an oil grip. As glove manufacturers, we know gloves. We do not know the details about every workplace. We therefore, must look to our customers to provide us the properties they need for hand protection products that will sufficiently protect their workers on the job. PMID:22135955

  20. 40 CFR 60.8 - Performance tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Performance tests. 60.8 Section 60.8... PERFORMANCE FOR NEW STATIONARY SOURCES General Provisions § 60.8 Performance tests. (a) Except as specified in... conduct performance test(s) and furnish the Administrator a written report of the results of...

  1. 40 CFR 60.8 - Performance tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduct performance test(s) and furnish the Administrator a written report of the results of such performance test(s). (1) If a force majeure is about to occur, occurs, or has occurred for which the affected... regulatory deadline, but the notification must occur before the performance test deadline unless the...

  2. Recent Radiation Test Results for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Topper, Alyson D.; Casey, Megan C.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak S.; LaBel, Kenneth A.

    2013-01-01

    Single-event effect (SEE) and total ionizing dose (TID) test results are presented for various hardened and commercial power metal-oxide-semiconductor field effect transistors (MOSFETs), including vertical planar, trench, superjunction, and lateral process designs.

  3. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  4. PERFORMANCE TESTING OF SELECTED SORBENT BOOMS

    EPA Science Inventory

    Performance tests on three commercially available sorbent booms were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) test facility. Test variables included wave condition, tow speed, and quantity of o...

  5. Stereotype Threat, Test Anxiety, and Mathematics Performance

    ERIC Educational Resources Information Center

    Tempel, Tobias; Neumann, Roland

    2014-01-01

    We investigated the combined effects of stereotype threat and trait test anxiety on mathematics test performance. Stereotype threat and test anxiety interacted with each other in affecting performance. Trait test anxiety predicted performance only in a diagnostic condition that prevented stereotype threat by stereotype denial. A state measure of…

  6. 40 CFR 610.63 - Performance tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Performance tests. 610.63 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.63 Performance tests... 0 to 60 mph acceleration tests (at normal ambient temperatures) on the baseline...

  7. 40 CFR 610.63 - Performance tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Performance tests. 610.63 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.63 Performance tests... 0 to 60 mph acceleration tests (at normal ambient temperatures) on the baseline...

  8. 40 CFR 610.63 - Performance tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Performance tests. 610.63 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.63 Performance tests... 0 to 60 mph acceleration tests (at normal ambient temperatures) on the baseline...

  9. 40 CFR 610.63 - Performance tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Performance tests. 610.63 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.63 Performance tests... 0 to 60 mph acceleration tests (at normal ambient temperatures) on the baseline...

  10. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  11. Operational Results From a High Power Alternator Test Bed

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.

  12. Trinity Acceptance Tests Performance Summary.

    SciTech Connect

    Rajan, Mahesh

    2015-12-01

    Ensuring Real Applications perform well on Trinity is key to success. Four components: ASC applications, Sustained System Performance (SSP), Extra-Large MiniApplications problems, and Micro-benchmarks.

  13. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  14. ac power control in the Core Flow Test Loop

    SciTech Connect

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report.

  15. An Affordable Test Approach for Lunar Fission Surface Power Systems

    SciTech Connect

    Werner, James; Mason, Lee

    2008-01-21

    The objective of the Fission Surface Power System (FSPS) development and qualification program is to assure that the components, subsystems and complete power system satisfy all of their mission requirements with a sufficiently high level of confidence. To accomplish this objective, the FSPS program will conduct nuclear and non-nuclear development and testing in compliance with standard NASA practice for all of the reactor, power conversion, and system integration hardware and software items. The anticipated program includes extensive performance and environmental testing of components throughout their predicted operational conditions and possible fault conditions.

  16. Verification Test of Power Fluctuation Suppression System for Large PV

    NASA Astrophysics Data System (ADS)

    Noro, Yasuhiro; Naoi, Shinya; Toba, Koji; Kimura, Misao; Minegishi, Toshiaki; Shimizu, Masanao; Aoki, Shinichi; Okuda, Yasuo

    The large scale photovoltaic (PV) generation station is expected to spread in the future. However, output power of renewable energy sources such as PV is affected by weather conditions and their output tends to be unstable. As a result, the penetration of PV power station makes it difficult to maintain frequency of power system in allowable range. The authors have developed a suppression system to stabilize output power fluctuation of a large PV generation station. To reduce short term fluctuation, storage batteries applying SCiBTM are used. In this paper, verification test results are explained and simulation results to improve control performance are also shown.

  17. Confidence and Cognitive Test Performance

    ERIC Educational Resources Information Center

    Stankov, Lazar; Lee, Jihyun

    2008-01-01

    This article examines the nature of confidence in relation to abilities, personality, and metacognition. Confidence scores were collected during the administration of Reading and Listening sections of the Test of English as a Foreign Language Internet-Based Test (TOEFL iBT) to 824 native speakers of English. Those confidence scores were correlated…

  18. Laser Powered Launch Vehicle Performance Analyses

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)

    2001-01-01

    The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.

  19. Test results of Ya-21u thermionic space power system

    SciTech Connect

    Paramonov, D.V.; El-Genk, M.S.

    1997-01-01

    The Soviet-made TOPAZ-II space nuclear power system unit designated Ya-21u underwent a total of 15 tests both in the Union of Soviet Socialist Republic (USSR) (1989--1990) and in the US (August 1993 to March 1995) for a cumulative test/operation time of 7681 h at conditions far exceeding design limits. These tests included steady-state operation at different power levels, fast start-ups and power optimizations, and shock and vibration tests. Test results are presented and analyzed. Results indicate a gradual change in the performance parameters such as the optimum cesium pressure and optimum load voltage. The electric power and conversion efficiency of the unit at an input thermal power of 105 kW decreased from 3.7 kW (electric) and 4% in the test in the USSR to 2.13 kW (electric) and 2.3% in the last test in the US. A discussion and qualitative assessment of potential causes of the performance changes of the Ya-21u unit are given.

  20. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice...

  1. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Performance tests. 76.601 Section 76.601... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable... cable television system shall conduct complete performance tests of that system at least twice...

  2. Spent fuel metal storage cask performance testing and future spent fuel concrete module performance testing

    SciTech Connect

    McKinnon, M.A.; Creer, J.M.

    1988-10-01

    REA-2023 Gesellshaft fur Nuklear Service (GNS) CASTOR-V/21, Transnuclear TN-24P, and Westinghouse MC-10 metal storage casks, have been performance tested under the guidance of the Pacific Northwest Laboratory to determine their thermal and shielding performance. The REA-2023 cask was tested under Department of Energy (DOE) sponsorship at General Electric's facilities in Morris, Illinois, using BWR spent fuel from the Cooper Reactor. The other three casks were tested under a cooperative agreement between Virginia Power Company and DOE at the Idaho National Engineering Laboratory (INEL) by EGandG Idaho, Inc., using intact spent PWR fuel from the Surry reactors. The Electric Power Research Institute (EPRI) made contributions to both programs. A summary of the various cask designs and the results of the performance tests is presented. The cask designs include: solid and liquid neutron shields; lead, steel, and nodular cast iron gamma shields; stainless steel, aluminum, and copper baskets; and borated materials for criticality control. 4 refs., 8 figs., 6 tabs.

  3. Testing in Support of Fission Surface Power System Qualification

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bragg-Sitton, Shannon; Godfroy, Tom; Martin, Jim; Pearson, Boise; VanDyke, Melissa

    2007-01-01

    The strategy for qualifying a FSP system could have a significant programmatic impact. The US has not qualified a space fission power system since launch of the SNAP-10A in 1965. This paper explores cost-effective options for obtaining data that would be needed for flight qualification of a fission system. Qualification data could be obtained from both nuclear and non-nuclear testing. The ability to perform highly realistic nonnuclear testing has advanced significantly throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modern FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.) and extensive data to be taken from the core region. For transient testing, pin power during a transient is calculated based on the reactivity feedback that would occur given measured values of test article temperature and/or dimensional changes. The reactivity feedback coefficients needed for the test are either calculated or measured using cold/warm zero-power criticals. In this way non-nuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. FSP fuels and materials are typically chosen to ensure very high confidence in operation at design burnups, fluences, and temperatures. However, facilities exist (e.g. ATR, HFIR) for affordably performing in-pile fuel and materials irradiations, if such testing is desired. Ex-core materials and components (such as alternator materials, control drum drives, etc.) could be irradiated in university or DOE

  4. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  5. Protoflight photovoltaic power module system-level tests in the space power facility

    NASA Technical Reports Server (NTRS)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.

  6. Protoflight photovoltaic power module system-level tests in the Space Power Facility

    NASA Technical Reports Server (NTRS)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: the 'protoflight' vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF) are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations, are presented.

  7. NIF Power Conditioning System Testing at LLNL

    SciTech Connect

    Fulkerson, E S; Newton, M; Hulsey, s; Hammon, J; Moore, W

    2001-06-05

    The National Ignition Facility (NIF) is now under construction at the Lawrence Livermore National Laboratory (LLNL). The Power Conditioning System (PCS) for NIF, when completed will consist of a 192 nearly identical 2 megajoule capacitor storage banks driving 7680 two meter long flashlamps. A fully integrated single-module test facility was completed in August of 2000 at LLNL. The purpose to the Test Facility is to conduct Reliability and Maintainability (RAM) testing of a true ''First Article'' system (built to the final drawing package as opposed to a prototype). The test facility can be fired once every ten minutes with a total peak output current of 580kA with a pulse width of 400us. To date over 4000 full power shots have been conducted at this facility.

  8. Resonant AC power system proof-of-concept test program

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.

    1986-01-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  9. Detonation Performance Testing of LX-19

    NASA Astrophysics Data System (ADS)

    Vincent, Samuel; Aslam, Tariq; Jackson, Scott

    2015-06-01

    CL-20 was developed at the Naval Surface Weapons Center at China Lake, CA in the mid 80's. Being less sensitive than PETN, but considerably more powerful than HMX, it is the highest energy and density compound known among organic chemicals. LX-19 was developed at LLNL in the early 90's. It is a high-energy plastic bonded explosive, composed of 95.8 wt% CL-20 and 4.2 wt% Estane binder, and is similar to LX-14 (composed of HMX and Estane), but with greater sensitivity characteristics with use of the more energetic CL-20 explosive. We report detonation performance results for unconfined cylindrical rate sticks of LX-19. The experimental diameter effects are shown, along with detonation front shapes, and reaction zone profiles for different test diameters. This data is critical for calibration to Detonation Shock Dynamics (DSD). LA-UR-15-20672.

  10. ASME PTC 46 -- Acceptance test code for overall plant performance

    SciTech Connect

    Friedman, J.R.; Yost, J.G.

    1999-11-01

    ASME published PTC 46 in 1996 after five years of development. PTC 46 is the first industry standard providing explicit procedures for conducting acceptance tests to determine the overall thermal performance and output of power generating units. It is applicable to any heat cycle power generating unit. This survey paper provides an overview of PTC 46 and discusses how PTC 46 can be used for acceptance testing of new combined cycle and fossil steam power generating units. Several technical papers have been previously presented that provide more detailed information and discussion on the use of PTC 46 in acceptance testing.

  11. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  12. Enhanced vision: flight test and performance measurement

    NASA Astrophysics Data System (ADS)

    Balon, Kevin G.; Connor, Sidney A.

    1997-06-01

    This paper presents a flight test methodology and performance measurement system for evaluation of enhanced vision systems (EVS). The architecture for the performance measurements system used on a low operating cost Cessna 402 EVS flight test aircraft and on the DARPA Autonomous Landing Guidance Boeing 727 flight test aircraft is described. The data collection and analysis system is presented in the context of civil aviation requirements. A summary of the flight test accomplishments with the performance measurements system to data is also presented.

  13. Performance of the Carrisa 6-MW photovoltaic power plant

    SciTech Connect

    Shushnar, G.J.; Caldwell, J.H.; Hoff, T.E.

    1986-01-01

    Photovoltaic (PV) power generation for the electric utility industry will soon become a commercial reality in the United States. Arco Solar's Carrisa 6.4-MWp (dc at standard test conditions (STC)) PV Power Plant is the world's largest. As such, the lessons to be learned from its performance are significant. The energy output of the plant for 1 yr has been analyzed and compared to plant performance predictions. This comparison required a prediction of insolation, ambient temperature, and wind speed. The results of the study indicate the performance of a PV power plant is highly predictable. In addition, this power plant has been highly reliable with a high capacity factor. Pacific Gas and Electric (PG and E), the utility that purchases Carrisa's energy, has reported capacity factors exceeding 65% when PG and E's hourly load is 85% or greater than their system peak load.

  14. 8. STATIC TEST TOWER NORTHWEST ELEVATION FROM THE POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. STATIC TEST TOWER - NORTHWEST ELEVATION FROM THE POWER PLANT TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  15. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating...

  16. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating...

  17. Performance testing of lidar receivers

    NASA Technical Reports Server (NTRS)

    Shams, M. Y.

    1986-01-01

    In addition to the considerations about the different types of noise sources, dynamic range, and linearity of a lidar receiver, one requires information about the pulse shape retaining capabilities of the receiver. For this purpose, relatively precise information about the height resolution as well as the recovery time of the receiver, due both to large transients and to fast changes in the received signal, is required. As more and more analog receivers using fast analog to digital converters and transient recorders will be used in the future lidar systems, methods to test these devices are essential. The method proposed for this purpose is shown. Tests were carried out using LCW-10, LT-20, and FTVR-2 as optical parts of the optical pulse generator circuits. A commercial optical receiver, LNOR, and a transient recorder, VK 220-4, were parts of the receiver system.

  18. PNNI Performance Validation Test Report

    NASA Technical Reports Server (NTRS)

    Dimond, Robert P.

    1999-01-01

    Two Private Network-Network Interface (PNNI) neighboring peers were monitored with a protocol analyzer to understand and document how PNNI works with regards to initialization and recovery processes. With the processes documented, pertinent events were found and measured to determine the protocols behavior in several environments, which consisted of congestion and/or delay. Subsequent testing of the protocol in these environments was conducted to determine the protocol's suitability for use in satellite-terrestrial network architectures.

  19. RTG performance on Galileo and Ulysses and Cassini test results

    SciTech Connect

    Kelly, C. Edward; Klee, Paul M.

    1997-01-10

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted.

  20. RTG performance on Galileo and Ulysses and Cassini test results

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-01-01

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. {copyright} {ital 1997 American Institute of Physics.}

  1. Power Systems for the RHIC First Sextant Test

    NASA Astrophysics Data System (ADS)

    Lambiase, R. F.; Bruno, D.; Feng, P. K.; Haque, T.; Schultheiss, C.

    1997-05-01

    The first sextant test of the RHIC project is an opportunity to evaluate the many systems that must work together for the accelerator to operate. For the main dipole string, the actual main quadrupole power supply with its DSP regulator and output circuit compartments will be used. Temporary supplies will be used for the main quadrupole string, quadrupole offset, and quadrupole shunt supplies. This will let us both measure the performance of the main supply as well as determine the interaction among other power elements in the circuit. Correction elements will also be powered. The actual gamma-T power supplies will be used, as well as temporary supplies for the dipole correctors and sextupole supplies. Some of these units are required for beam to be transported, others are to be operated without beam to measure their performance, and how they interact with their superconducting loads. The power supply equipment, and that of other systems, required an infrastucture of AC power and output cable distribution in the RHIC tunnel, outlying service buildings, and interconnecting the tunnel to the service buildings. This note will describe the performance of the RHIC power supply systems during the sextant test, and the experience gained from this exercise.

  2. Power systems for the RHIC first sextant test

    SciTech Connect

    Schultheiss, C.; Bruno, D.; Feng, P.K.

    1997-07-01

    The first sextant test of the RHIC project is an opportunity to evaluate the many systems that must work together for the accelerator to operate. For the main dipole string, the actual main quadrupole power supply with its DSP regulator and output circuit compartment will be used. Temporary supplies will be used for the main quadrupole string, quadrupole offset, and quadrupole shunt supplies. This will let the authors both measure the performance of the main supply as well as determine the interaction among other power elements in the circuit. Correction elements will also be powered. The actual gamma-T power supplies will be used, as well as temporary supplies for the dipole correctors and sextupole supplies. Some of these units are required for beam to be transported, others are to be operated without beam to measure their performance, and how they interact with their superconducting loads. The power supply equipment, and that of other systems, required an infrastucture of AC power and output cable distribution in the RHIC tunnel, outlying service buildings, and interconnecting the tunnel to the service buildings. This note will describe the performance of the RHIC power supply systems during the sextant test, and the experience gained from this exercise.

  3. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  4. AGS tune jump power supply design and test

    SciTech Connect

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-03-28

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  5. Enhanced INL Power Grid Test Bed Infrastructure – Phase I

    SciTech Connect

    Reid, Carol Ann; West, Grayson Shawn; McBride, Scott Alan

    2014-06-01

    Idaho National Laboratory (INL), a Department of Energy (DOE) laboratory, owns, operates, and maintains transmission and distribution power grid infrastructure to support the INL multi program mission. Sections of this power infrastructure, known as the INL Power Grid Test Bed, have been and are being used by government and industry to develop, demonstrate, and validate technologies for the modern grid, including smart grid, on a full scale utility test bed. INL’s power grid includes 61 miles of 140 MW, 138 kV rated electrical power transmission supplying seven main substations, each feeding a separate facility complex (or ‘city’) within the INL’s 890 square mile Site. This power grid is fed by three commercial utilities into the INL’s main control substation, but is operated independently from the commercial utility through its primary substation and command and control center. Within the INL complex, one of the seven complexes, the Critical Infrastructure Test Range Complex (CITRC), has been designated as the INL complex for supporting critical infrastructure research and testing. This complex includes its own substation and 13.8kV distribution network, all configurable and controlled by the INL research and development programs. Through investment partnership with the DOE Office of Electricity Delivery and Energy Reliability (DOE OE), INL is enhancing its existing distribution infrastructure to expand the types of testing that can be conducted and increase flexibility for testing configurations. The enhancement of the INL Power Grid Test Bed will enable development and full scale testing of smart-grid-related technologies and smart devices including testing interoperability, operational performance, reliability, and resiliency contribution at multiple distribution voltage classes, specifically 15kV, 25kV, and 35kV. The expected time frame for completion of the Phase I portion of the enhancement would be 4th quarter fiscal year (FY) 2015.

  6. ATS-6 engineering performance report. Volume 3: Telecommunications and power

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Functional design requirements and in-orbit operations, performance, and anomalies are discussed for (1) the communications subsystem, (2) the electrical power system, and (3) the telemetry and command subsystem. The latter includes a review of ground support. Tracking and data relay experiments and the Apollo-Soyuz test program are reviewed.

  7. Performance Test on Polymer Waste Form - 12137

    SciTech Connect

    Lee, Se Yup

    2012-07-01

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation

  8. Astronaut Scott Carpenter tests balance mechanism performance

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  9. Research of laser stealth performance test technology

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-xing; Shi, Sheng-bing; Han, Fu-li; Wu, Yan-lin; Song, Chun-yan

    2014-09-01

    Laser stealth is an important way of photoelectric stealth weapons systems. According to operational principle of laser range finder, we actively explore and study the stealth performance approval testing technology of laser stealth materials, and bring forward and establish the stealth performance field test methods of stealth efficiency evaluation. Through contrastive test of two kinds of materials, the method is correct and effective.

  10. Stirling space power demonstrator engine test/analytical comparison

    NASA Astrophysics Data System (ADS)

    Dochat, George R.

    The U.S. Government is evaluating power requirements for future space applications. As power requirements increase, solar or nuclear dynamic systems become increasingly attractive. Free Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation at reasonable hot-side temperatures. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSEs are at an early stage of technological development; however, they are recognized as a potential backup and/or growth version within the SP-100 program, which is developing a space power system utilizing a liquid metal nuclear reactor as a heat source and thermoelectric cells for power generation. As part of the SP-100 technology assessment program and the continuing NASA advanced technology development program, Mechanical Technology Incorporated (MTI) was awarded a contract (managed by NASA/Lewis Research Center) to design, fabricate, test, and demonstrate a 25-kW e Space Power Demonstrator Engine (SPDE). Full pressure testing of the SPDE was initiated in November 1985. Initial test results indicated that the SPDE was significantly down in power compared to analytical predictions at the design pressure. The first three months of 1986 were spent performing an extensive diagnostic test series to identify and correct the cause of the power discrepancy. The diagnostic test phase has been completed successfully with a resolution of the SPDE power discrepancy. This paper briefly reviews the SPDE design and presents the experimental results generated to date compared with analytical predictions.

  11. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) or measure the concentration of HCl (and Cl2 for hydrochloric acid regeneration plants) in gases... to the initial test or tests. (c) Establishment of hydrochloric acid regeneration plant...

  12. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) or measure the concentration of HCl (and Cl2 for hydrochloric acid regeneration plants) in gases... to the initial test or tests. (c) Establishment of hydrochloric acid regeneration plant...

  13. Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1985-01-01

    A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.

  14. Test Report : GS battery, EPC power HES RESCU.

    SciTech Connect

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

  15. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  16. Power Actuation and Switching Module Test Results

    NASA Technical Reports Server (NTRS)

    Carr, Greg; Deligiannis, Frank; Franco, Lauro; Jones, Loren; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treichler, John; Wester, Gene

    2006-01-01

    The X2000 Power System Electronics (PSE) is a Jet Propulsion Laboratory (JPL) task to develop a new generation of power system building blocks for use on future deep-space missions. The effort includes the development of electronic components and modules that can be used as building blocks in the design of generic spacecraft power systems. All X2000 avionics components and modules are designed for use in centralized or distributed spacecraft architectures. The Power Actuation and Switching Module (PASM) has been developed under the X2000 program. This component enables a modular and scalable design approach for power switching applications, which can result in a wide variety of power switching architectures using this simple building block. The PASM is designed to provide most of the necessary power switching functions of spacecraft for various Deep Space missions including future missions to Mars, comets, Jupiter and its moons. It is fabricated using an ASIC process that is tolerant of high radiation. The development included two application specific integrated circuits (ASICs) and support circuitry all packaged using High Density Interconnect (HDI) technology. It can be operated in series or parallel with other PASMs. It can be used as a high-side or low-side switch and it can drive thruster valves, pyrotechnic devices such as NASA standard initiators, bus shunt resistors, and regular spacecraft component loads. Each PASM contains two independent switches with internal current limiting and over-current trip-off functions to protect the power subsystem from load faults. During turnon and turnoff each switch can limit the rate of current change (di/dt) to a value determined by the user. Three-way majority-voted On/Off commandability and full switch status telemetry (both analog and digital) are built into the module. This paper is a follow up to the one presented at he IECEC 2004 conference that will include the lessons learned and test results from the development.

  17. Improved conventional testing of power plant cables. Final report

    SciTech Connect

    Anadakumaran, K.; Braun, J.M.; DiPaul, J.A. |

    1995-09-01

    The objective of the project is to develop improved condition monitoring techniques to assess the condition of power plant cables, particularly the unshielded cables found in older thermal plants. The cables of interest were insulated with PVC, butyl rubber, SBR (styrene butadiene rubber), EPR (ethylene propylene rubber), PE and XLPE (crosslinked polyethylene) as either single conductor, twisted pair, shielded and unshielded. The cables were thermally aged to embrittlement and characterized by physical, chemical and electrical tests. Physical characterization included, in addition to reference tensile elongation, tests performed on microscopic samples for quasi-nondestructive examination. Different tests proved particularly suited to different types of insulation. The dielectric characterization underlined the value of performing tests at other than power frequency and/or dc. Electric field calculations were carried out to develop a field testing strategy for unshielded cables and notably to investigate the feasibility of providing a suitable ground plane by testing conductor to grounded conductors(s). Two major electrical diagnostic test techniques were investigated in detail, low frequency insulation analysis to probe the bulk condition of insulations and partial discharge (PD) testing to detect cracks and defects. PD testing is well established but more challenging to perform with unshielded cables. Because of the attenuation properties of typical plant cables, a dual ended detector configuration is necessary. Two novel techniques were developed to provide dual ended detection without need for a second cable as the return path from the far end detector.

  18. Integrated Performance Testing Workshop, Modules 6 - 11

    SciTech Connect

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  19. Performance of female alcoholics on neuropsychological testing.

    PubMed

    Acker, C

    1985-01-01

    Female alcoholics performed significantly less well on neuropsychological tests than matched non-alcoholic controls. The range of performance deficits was similar to that previously reported for male alcoholics despite significantly shorter drinking histories. PMID:4084369

  20. ACCESS: Design, Strategy, and Test Performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, M. J.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Pelton, R. S.; Feldman, P. D.; Moos, H. W.; Riess, A. G.; Benford, D. J.; Foltz, R.; Gardner, J. P.; Mott, D. B.; Wen, Y.; Woodgate, B. E.; Bohlin, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Kurucz, R. L.; Lampton, M.; Perlmutter, S.

    2013-01-01

    Improvements in the astrophysical flux scale are needed to answer fundamental scientific questions ranging from cosmology to stellar physics. In particular, the precise calibration of the flux scale across the visible-NIR bandpass is fundamental to the precise determination of dark energy parameters based on SNeIa photometry. ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass. The telescope is a Dall-Kirkham Cassegrain with a 15.5-inch primary. The spectrograph is a Rowland circle design, with the grating operating as a low order (m=1-4) echelle, a Fery prism provides cross dispersion, and a HST/WFC3 heritage HAWAII-1R HgCdTe detector is used across the full spectral bandpass. The telescope mirrors have received their flight coatings. The flight detector and detector spare have been integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been performed. Detector characterization testing is in progress (Morris et al.). Fabrication, integration, and automation of the ground-based calibration subsystems are also in progress. The ACCESS design, calibration strategy, and ground-based integration and test results will be presented. Launch is expected this year. NASA sounding rocket grant NNX08AI65G and DOE DE-FG02-07ER41506 support this work.

  1. Relationships Between Anaerobic Performance, Field Tests and Game Performance of Sitting Volleyball Players

    PubMed Central

    Marszalek, Jolanta; Molik, Bartosz; Gomez, Miguel Angel; Skučas, Kęstutis; Lencse-Mucha, Judit; Rekowski, Witold; Pokvytyte, Vaida; Rutkowska, Izabela; Kaźmierska-Kowalewska, Kalina

    2015-01-01

    The aim of this study was to evaluate relationships between anaerobic performance, field tests, game performance and anthropometric variables of sitting volleyball players. Twenty elite Polish sitting volleyball players were tested using the 30 s Wingate Anaerobic Test for arm crank ergometer and participated in six physical field tests. Heights in position to block and to spike, as well as arm reach were measured. Players were observed during the game on the court in terms of effectiveness of the serve, block, attack, receive and defense. Pearson analysis and the Spearman’s rank correlation coefficient were used. The strongest correlations were found between the chest pass test and mean power and peak power (r=.846; p=.001 and r=.708; p=.0005, respectively), and also between the T-test and peak power (r= −.718; p=.001). Mean power correlated with the 3 m test (r= −.540; p=.014), the 5 m test (r= −.592; p=.006), and the T-test (r= −.582; p=.007). Peak power correlated with the 3 m test (r= −.632; p=.003), the 5 m test (r= −.613; p=.004), speed & agility (r= −.552; p=.012) and speed & endurance (r=−.546; p=.013). Significant correlations were observed between anthropometric parameters and anaerobic performance variables (p≤.001), and also between anthropometric parameters and field tests (p≤.05). Game performance and physical fitness of sitting volleyball players depended on their anthropometric variables: reach of arms, the position to block and to spike. The chest pass test could be used as a non-laboratory field test of anaerobic performance of sitting volleyball players. PMID:26834870

  2. Relationships Between Anaerobic Performance, Field Tests and Game Performance of Sitting Volleyball Players.

    PubMed

    Marszalek, Jolanta; Molik, Bartosz; Gomez, Miguel Angel; Skučas, Kęstutis; Lencse-Mucha, Judit; Rekowski, Witold; Pokvytyte, Vaida; Rutkowska, Izabela; Kaźmierska-Kowalewska, Kalina

    2015-11-22

    The aim of this study was to evaluate relationships between anaerobic performance, field tests, game performance and anthropometric variables of sitting volleyball players. Twenty elite Polish sitting volleyball players were tested using the 30 s Wingate Anaerobic Test for arm crank ergometer and participated in six physical field tests. Heights in position to block and to spike, as well as arm reach were measured. Players were observed during the game on the court in terms of effectiveness of the serve, block, attack, receive and defense. Pearson analysis and the Spearman's rank correlation coefficient were used. The strongest correlations were found between the chest pass test and mean power and peak power (r=.846; p=.001 and r=.708; p=.0005, respectively), and also between the T-test and peak power (r= -.718; p=.001). Mean power correlated with the 3 m test (r= -.540; p=.014), the 5 m test (r= -.592; p=.006), and the T-test (r= -.582; p=.007). Peak power correlated with the 3 m test (r= -.632; p=.003), the 5 m test (r= -.613; p=.004), speed & agility (r= -.552; p=.012) and speed & endurance (r=-.546; p=.013). Significant correlations were observed between anthropometric parameters and anaerobic performance variables (p≤.001), and also between anthropometric parameters and field tests (p≤.05). Game performance and physical fitness of sitting volleyball players depended on their anthropometric variables: reach of arms, the position to block and to spike. The chest pass test could be used as a non-laboratory field test of anaerobic performance of sitting volleyball players. PMID:26834870

  3. Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 2, Task 3.1: Evaluation of system performance, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    SciTech Connect

    Felix, L.G.; Dismukes, E.B.; Gooch, J.P.; Klett, M.G.; Demian, A.G.

    1992-04-20

    This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

  4. Putting Performance Assessment to the Test.

    ERIC Educational Resources Information Center

    O'Neil, John

    1992-01-01

    The desire for students to graduate with more than basic skills has fueled interest in performance assessment methods such as essay writing, group science experiments, or portfolio preparation. Officials in Vermont, California, Kentucky, Maryland, and other states are betting that performance assessments may prove as powerful a classroom influence…

  5. The Semiautomated Test System: A Tool for Standardized Performance Testing.

    ERIC Educational Resources Information Center

    Ramsey, H. Rudy

    For performance tests to be truly standardized, they must be administered in a way that will minimize variation due to operator intervention and errors. Through such technological developments as low-cost digital computers and digital logic modules, automatic test administration without restriction of test content has become possible. A…

  6. Condenser performance test and back-pressure improvement: Final report

    SciTech Connect

    Piskorowski, J.; Beckett, G.; Bell, R.

    1988-04-01

    This document describes condenser performance test and analyses experiences. The testing was performed by Indianapolis Power and Light Company (IPL) on the Petersburg Unit 3 condenser. The initial testing revealed a performance deficiency. Modifications were made to the condenser, air in-leakage was reduced and the vacuum pumps were brought back to their original design capacity. Testing was reperformed after these activities and although a significant performance improvement was achieved deficiencies were still evident. Heat Exchanger Systems, Inc. (HES) was retained as consultants during this testing program. The Central Electricity Generating Board's (CEGB) Central Electricity Research Laboratory (CERL) acting as a subcontractor to HES were retained to perform an analysis of the Petersburg Unit 3 condenser using their EPOC computer code. The results of this analysis are also contained in this document. 3 refs., 48 figs., 3 tabs.

  7. Space Power Facility Readiness for Space Station Power System Testing

    NASA Technical Reports Server (NTRS)

    Smith, Roger L.

    1995-01-01

    This document provides information which shows that the NASA Lewis Research Center's Space Power Facility (SPF) will be ready to execute the Space Station electric power system thermal vacuum chamber testing. The SPF is located at LeRC West (formerly the Plum Brook Station), Sandusky, Ohio. The SPF is the largest space environmental chamber in the world, having an inside horizontal diameter of 100 ft. and an inside height at the top of the hemisphere of 122 ft. The vacuum system can achieve a pressure lower than 1 x 10(exp -5) Torr. The cryoshroud, cooled by gaseous nitrogen, can reach a temperature of -250 F, and is 80 ft. long x 40 ft. wide x 22 ft. high. There is access to the chamber through two 50 ft. x 50 ft. doors. Each door opens into an assembly area about 150 ft. long x 70 ft. wide x 80 ft. high. Other available facilities are offices, shop area, data acquisition system with 930 pairs of hard lines, 7 megawatts of power to chamber, 245K gal. liquid nitrogen storage, cooling tower, natural gas, service air, and cranes up to 25 tons.

  8. Adaptive prefetching on POWER7: Improving performance and power consumption

    SciTech Connect

    Jimenez, Victor; Cazorla, Francisco; Gioiosa, Roberto; Buyuktosunoglu, Alper; Bose, Pradip; O'Connel, Francis P.; Mealey, Bruce G.

    2014-10-03

    Hardware data prefetch engines are integral parts of many general purpose server-class microprocessors in the field today. Some prefetch engines allow users to change some of their parameters. But, the prefetcher is usually enabled in a default configuration during system bring-up, and dynamic reconfiguration of the prefetch engine is not an autonomic feature of current machines. Conceptually, however, it is easy to infer that commonly used prefetch algorithms—when applied in a fixed mode—will not help performance in many cases. In fact, they may actually degrade performance due to useless bus bandwidth consumption and cache pollution, which in turn, will also waste power. We present an adaptive prefetch scheme that dynamically modifies the prefetch settings in order to adapt to workloads

  9. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Performance tests. 76.601 Section 76.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable television system shall be...

  10. 40 CFR 63.1546 - Performance testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Performance testing. 63.1546 Section 63... Emission Standards for Hazardous Air Pollutants for Primary Lead Smelting § 63.1546 Performance testing. (a... must be used for gas analysis. (iv) Method 4 must be used to determine moisture content of the...

  11. 40 CFR 63.1546 - Performance testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Performance testing. 63.1546 Section... Emission Standards for Hazardous Air Pollutants for Primary Lead Smelting § 63.1546 Performance testing. (a... must be used for gas analysis. (iv) Method 4 must be used to determine moisture content of the...

  12. 40 CFR 63.1546 - Performance testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Performance testing. 63.1546 Section... Emission Standards for Hazardous Air Pollutants for Primary Lead Smelting § 63.1546 Performance testing. (a... must be used for gas analysis. (iv) Method 4 must be used to determine moisture content of the...

  13. Performance tuned radioisotope thermophotovoltaic space power system

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, M. D.; Saban, S. B.

    1998-01-01

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1% efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The

  14. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2003-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  15. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  16. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  17. Adult Cognitive Styles and Test Performance

    ERIC Educational Resources Information Center

    Andrulis, Richard S.; Bush, David

    1977-01-01

    Adult males (N=90) ages 25 to 58 were individually tested with three cognitive style measures. Error scores on the MFF (Matching Familiar Figures Test) are a better predictor of test performance than are latencies. Presented at the 84th Annual Convention of the American Psychological Association, Washington, D.C., 1976. (Author)

  18. Perform Ultrasonic Testing on Cs Capsule Overpacks

    SciTech Connect

    DAVIS, S.J.

    2000-04-06

    This procedure provides a safe, uniform method for the performance of the ultrasonic weld inspection of the Cesium capsule overpacks. The inspection system will detect cracks, lack of fusion, and lack of penetration. This computer controlled automated system will perform the examination once the capsule overpack has been placed in the pool cell. Examination of the capsule overpacks will be in accordance with drawing H-283014, REV. 0 ,and a certified NDE examiner will perform the test procedure, provide analysis, and test documentation.

  19. On Reducing Test Power, Volume and Routing Cost by Chain Reordering and Test Compression Techniques

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Yi; Hsu, Li-Chung; Chen, Hung-Ming

    With the advancement of VLSI manufacturing technology, entire electronic systems can be implemented in a single integrated circuit. Due to the complexity in SoC design, circuit testability becomes one of the most challenging works. Without careful planning in Design For Testability (DFT) design, circuits consume more power in test mode operation than that in normal functional mode. This elevated testing power may cause problems including overall yield lost and instant circuit damage. In this paper, we present two approaches to minimize scan based DFT power dissipation. First methodology includes routing cost consideration in scan chain reordering after cell placement, while second methodology provides test pattern compression for lower power. We formulate the first problem as a Traveling Salesman Problem (TSP), with different cost evaluation from [18], [19], and apply an efficient heuristic to solve it. In the second problem, we provide a selective scan chain architecture and perform a simple yet effective encoding scheme for lower scan testing power dissipation. The experimental results of ISCAS'89 benchmarks show that the first methodology obtains up to 10% average power saving under the same low routing cost compared with a recent result in [19]. The second methodology reduces over 17% of test power compared with filling all don't care (X) bit with 0 in one of ISCAS'89 benchmarks. We also provide the integration flow of these two approaches in this paper.

  20. SPALLATION NEUTRON SOURCE HIGH-POWER PROTECTION MODULE TEST STAND

    SciTech Connect

    Lee, Sung-Woo; Ball, Jeffrey Allen; Crofford, Mark T; Davidson Jr, Taylor L; Jones, Stacey L; Hardek, Thomas W

    2010-01-01

    The Spallation Neutron Source (SNS) High-Power Protection Module (HPM) provides interlocks and fast shutdown for the radio frequency (RF) system to protect the accelerating structures and high power RF (HPRF) Distribution System. The HPM has required some functional upgrades since the start of beam operations and an upgrade to the HPM test stand was required to support these added features. The HPM test stand currently verifies functionality, RF channel calibration, and measurement of the speed of shutdown to ensure the specifications are met. The upgraded test stand was implemented in a Field Programmable Gate Array (FPGA) to allow for future growth and flexibility. Work is currently progressing on automation of the test stand to better perform the required module calibration schedule.

  1. Increasing Power of Groupwise Association Test with Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Sul, Jae Hoon; Han, Buhm; Eskin, Eleazar

    Sequencing studies have been discovering a numerous number of rare variants, allowing the identification of the effects of rare variants on disease susceptibility. As a method to increase the statistical power of studies on rare variants, several groupwise association tests that group rare variants in genes and detect associations between groups and diseases have been proposed. One major challenge in these methods is to determine which variants are causal in a group, and to overcome this challenge, previous methods used prior information that specifies how likely each variant is causal. Another source of information that can be used to determine causal variants is observation data because case individuals are likely to have more causal variants than control individuals. In this paper, we introduce a likelihood ratio test (LRT) that uses both data and prior information to infer which variants are causal and uses this finding to determine whether a group of variants is involved in a disease. We demonstrate through simulations that LRT achieves higher power than previous methods. We also evaluate our method on mutation screening data of the susceptibility gene for ataxia telangiectasia, and show that LRT can detect an association in real data. To increase the computational speed of our method, we show how we can decompose the computation of LRT, and propose an efficient permutation test. With this optimization, we can efficiently compute an LRT statistic and its significance at a genome-wide level. The software for our method is publicly available at http://genetics.cs.ucla.edu/rarevariants.

  2. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  3. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  4. Design and performance of a prototype fuel cell powered vehicle

    SciTech Connect

    Lehman, P.A.; Chamberlin, C.E.

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  5. On the road performance tests of electric test vehicle for correlation with road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    A dynamometer (road load simulator) is used to test and evaluate electric vehicle propulsion systems. To improve correlation between system tests on the road load simulator and on the road, similar performance tests are conducted using the same vehicle. The results of track tests on the electric propulsion system test vehicle are described. The tests include range at constant speeds and over SAE J227a driving cycles, maximum accelerations, maximum gradability, and tire rolling resistance determination. Road power requirements and energy consumption were also determined from coast down tests.

  6. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    SciTech Connect

    Not Available

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  7. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  8. Vitrification Facility integrated system performance testing report

    SciTech Connect

    Elliott, D.

    1997-05-01

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

  9. Gender comparisons in anaerobic power and anaerobic capacity tests.

    PubMed Central

    Maud, P J; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gross work completed and relative to body weight. However, these differences are reduced when data is adjusted for body weight and further reduced when corrected for FFM. The study found no significant differences between men and women in either anaerobic power or anaerobic capacity when values were given relative to FFM. PMID:3730753

  10. Demonstration of enhanced warhead performance with more powerful explosives

    SciTech Connect

    Murphy, M.J.; Baum, D.; Simpson, R.L.; Monoto, J.; Montesi, L.; Newman, K.; Tuerpe, D.; Osborn, J.

    1997-12-01

    Enhanced warhead performance has been demonstrated for several warhead configurations loaded with more powerful explosives. This paper presents experimental results from several warheads loaded with one of the new more powerful explosives, LX-19. The LX-19 formulation is a volume analog to LX-14 (HMX/Estane) that consists of 95.8 wt.% epsilon CL-20 formulated with 4.2 wt.% Estane binder. The LX-19 formulation, characterization, and evaluation efforts presseted in this paper are the result of several studies that have been ongoing since 1991. The warhead configurations that have been tested include a trumpet lined shaped charge, a hemispherical lined shaped cahrge, an EFP charge, and a fragmentation warhead, Performation improvements have been demonstrated with all configurations that were tested.

  11. Dynamic performance of fossil-fueled power plants

    SciTech Connect

    Armor, A.F.; Bennett, W.E.; Di Domenico, P.N.; Shor, S.W.W.; Smith, L.P.

    1982-10-01

    Dynamic simulation is a valuable tool for optimizing the design and operation of steam electric power plants, especially those that change load or shut down frequently. However, its use has been limited because it has required experienced modeling specialists. An easy-to-use modeling system has therefore been developed under Electric Power Research Institute sponsorship. It has been tested by simulating transients performed on Boston Edison Company's Mystic Unit 7, a 550-MW oil-fired plant, with good agreement between the simulations and the recorded plant transients.

  12. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Performance testing and test methods. 63.1161 Section 63.1161 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards...

  13. Integrated Performance Testing for Nonproliferation Support Project

    SciTech Connect

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  14. The ATS-6 power system: Hardware implementation and orbital performance

    NASA Technical Reports Server (NTRS)

    Lavigna, T. A.; Hornbuckle, F. L.

    1977-01-01

    The Applications Technology Satellite-6 power system, a shunt-boost configuration, uses partial shunt regulation of the solar array and a boost regulator for control of battery power. Regulation is provided for three different operating modes: shunt, charge, and boost. This configuration achieves the highest efficiency of power transfer from the solar array to the loads. The excellent dynamic regulation and low output impedance of the power system virtually eliminated the problem of subsystem interactions on the power bus due to conducted interference from load current fluctuations. The performance of the power system continues to be excellent. The solar array degradation (18.5 percent) was less than the specified 20 percent in two years in spite of extreme cycling from -160 C to 60 C. A unique battery cycling regime of discharges varying from 5 percent to 60 percent daily is being encountered. During the second year, noneclipse discharges have occurred twice a day to depths of 35 percent and 45 percent. Battery performance was good with only a small decrease in end-of-discharge voltage. A recent test to evaluate capacity gave 12.4 AH (83% of the nominal capacity of 15 AH) after over 1400 battery discharge cycles. A small increase in the end-of-charge voltage has recently occurred necessitating a change in the charge regime to achieve full charge conditions.

  15. Testing and modeling of a solar thermophotovoltaic power system

    SciTech Connect

    Stone, K.W.; Chubb, D.L.; Wilt, D.M.; Wanlass, M.W.

    1996-02-01

    A solar thermophotovoltaic (STPV) power system has attractive attributes for both space and terrestrial applications. This paper presents the results of testing by McDonnell Douglas Aerospace (MDA) over the last year with components furnished by the NASA Lewis Research Center (LeRC) and the National Renewable Energy Lab (NREL). The testing has included a large scale solar TPV testbed system and small scale laboratory STPV simulator using a small furnace. The testing apparatus, instrumentation, and operation are discussed, including a description of the emitters and photovoltaic devices that have been tested. Over 50 on-sun tests have been conducted with the testbed system. It has accumulated over 300 hours of on-sun time, and 1.5 MWh of thermal energy incident on the receiver material while temperatures and I-V measurements were taken. A summary of the resulting test data is presented that shows the measured performance at temperatures up to 1220{degree}C. The receiver materials and PV cells have endured the high temperature operation with no major problems. The results of this investigation support MDA belief that STPV is a viable power system for both space and terrestrial power applications. {copyright} {ital 1996 American Institute of Physics.}

  16. Predicting edge seal performance from accelerated testing

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar; Vitkavage, Dan; Saproo, Ajay; Krajewski, Todd

    2014-10-01

    Degradation in performance of a PV module attributable to moisture ingress has received significant attention in PV reliability research. Assessment of field performance of PV modules against moisture ingress through product-level testing in temperature-humidity control chambers poses challenges. Development of a meaningful acceleration factor model is challenging due to different rates of degradation of components embedded in a PV module, when exposed to moisture. Test results are typically a convolution of moisture barrier performance of the edge seal and degradation of laminated components when exposed to moisture. It is desirable to have an alternate method by which moisture barrier performance of the edge seal in its end product form can be assessed in any given field conditions, independent of particular cell design. In this work, a relatively inexpensive test technique was developed to test the edge seal in its end product form in a manner that is decoupled from other components of the PV module. A theoretical framework was developed to assess moisture barrier performance of edge seal with desiccants subjected to different conditions. This framework enables the analysis of test results from accelerated tests and prediction of the field performance of the edge seal. Results from this study lead to the conclusion that the edge seal on certain Miasole glass-glass modules studied is effective for the most aggressive weather conditions examined, beyond the intended service.

  17. PERFORMANCE TESTING OF FOUR SKIMMING SYSTEMS

    EPA Science Inventory

    Performance tests were conducted at the U.S. Environmental Protection Agency's oil and hazardous simulated environmental test tank (OHMSETT) on four commercial oil spill cleanup devices: the Sapiens Sirene skimming system, the Oil Mop remote skimmer, the Troil/Destroil skimming s...

  18. Performance Testing in Electronic Technology. Final Report.

    ERIC Educational Resources Information Center

    Williamson, Bert; Pedersen, Joe F.

    This set of 21 performance tests in electronics technology was developed on the basis of a review of commercial and noncommercial instructional materials dealing with electronics technology. The tests, which were reviewed by a group of community college instructors and an advisory committee for electronics technology, address the following…

  19. Laboratory Performance Testing of Residential Dehumidifiers (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

  20. Verification and performance tests of HYCAR program

    NASA Technical Reports Server (NTRS)

    Bhatia, Veena

    1985-01-01

    The HYCAR program simulates the network protocols of HYPERchannel and Fiber Optic Demonstration System (FODS) and other related protocols. Verification tests of the program were conducted using the FODS protocol. The tests validated the operation of the program through deterministic and analytical means. Extensive experimentation with the simulator produced a set of performance characteristics for the FODS protocol under varied loading conditions. These characteristics are consistent with those expected, and are documented with the validation tests.

  1. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  2. Design and performance test of spacecraft test and operation software

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Cui, Yan; Wang, Shuo; Meng, Xiaofeng

    2011-06-01

    Main test processor (MTP) software is the key element of Electrical Ground Support Equipment (EGSE) for spacecraft test and operation used in the Chinese Academy of Space Technology (CAST) for years without innovation. With the increasing demand for a more efficient and agile MTP software, the new MTP software was developed. It adopts layered and plug-in based software architecture, whose core runtime server provides message queue management, share memory management and process management services and forms the framework for a configurable and open architecture system. To investigate the MTP software's performance, the test case of network response time, test sequence management capability and data-processing capability was introduced in detail. Test results show that the MTP software is common and has higher performance than the legacy one.

  3. Output gating performance overhead elimination for scan test

    NASA Astrophysics Data System (ADS)

    Suhag, Ashok Kumar; Ahlawat, Satdev; Shrivastava, Vivek; Choudhary, Rahul Raj

    2015-07-01

    Switching activity is much higher in test mode as compared to normal mode of operation which causes higher power dissipation, and this leads to several reliability issues. Output gating is proposed as a very effective low-power test technique, which is used to eliminate redundant switching activity in the combinational logic of circuit under test (CUT) during the shifting of test vectors in a scan chain. This method reduces the average power significantly, but it introduces performance overhead in normal mode of operation. In this work, a new output gating technique is proposed which eliminates redundant switching activity in combinational logic of CUT during shifting of test vectors without any negative impact on performance as compared to earlier proposed output gating techniques. The proposed design also improves the performance of the scan flop in functional mode with negligible area overhead incurred due to extra transistors. Experimental results show that our design has a more robust performance over wide range of capacitive load as compared to earlier designs.

  4. Flight Testing of Hybrid Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  5. High performance magnet power supply optimization

    SciTech Connect

    Jackson, L.T.

    1988-01-01

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems.

  6. Performance testing of the Silo Flow Model

    SciTech Connect

    Stadler, S.P.; O`Connor, D.; Gould, A.F.

    1994-12-31

    Several instruments are commercially available for on-line analysis of coal properties such as total moisture, ash, sulfur, and mineral matter content. These instruments have found use in coal cleaning and coal-fired utility applications. However, in many instances, the coal is stored in large bunkers or silos after on-line analysis, making the data gathered from on-line analysis a poor predictor of short-term coal quality due to the flow pattern and mixing within the silo. A computerized model, the Silo Flow Model, has been developed to model the flow of coal through a silo or bunker thus providing a prediction of the output coal quality based on on-line measurements of the quality of coal entering the silo. A test procedure was developed and demonstrated to test the performance of the Silo Flow Model. The testing was performed using controlled addition of silver nitrate to the coal, in conjunction with surface profile measurements using an array of ultrasonic gauges and data acquired from plant instrumentation. Results obtained from initial testing provided estimates of flow-related parameters used in the Silo flow Model. Similar test techniques are also used to compare predicted and actual silver content at the silo outlet as a measure of model performance. This paper describes test procedures used to validate the Silo Flow Model, the testing program, and the results obtained to data. The Silo Flow Model performance is discussed and compared against other modeling approaches.

  7. Bias and spread in EVT performance tests.

    NASA Technical Reports Server (NTRS)

    Smith, J. G.

    1971-01-01

    Performance tests (error probability measurements) of communications systems characterized by low bit rates and high reliability requirements frequently utilize classical extreme value theory (EVT) to avoid the excessive test times encountered with bit error rate (BER) tests. If the underlying noise is Gaussian or perturbed Gaussian, the EVT error estimates have either excessive bias or excessive variance if an insufficient number of test samples is used. EVT is examined to explain the cause of this bias and spread. Experimental verification is made by testing a known Gaussian source, and procedures that minimize these effects are described. It seems apparent that even under the best of conditions the EVT test results are not particularly better than those of BER tests.

  8. Free-piston stirling component test power converter test results of the initial test phase

    NASA Astrophysics Data System (ADS)

    Dochat, George R.; Dudenhoefer, James E.

    1992-01-01

    The National Aeronautics and Space Administration (NASA)—Lewis Research Center (LeRC) has the responsibility to develop power technologies that have the potential of satisfying anticipated future space mission power requirements. The Free-Piston Stirling Power Converter (FPSC) is one of the many power technologies being evaluated and developed by NASA. FPSPCs have the potential to provide high reliability, long life, efficient operation; and they can be coupled with all potential heat sources, nuclear, radioisotope and solar, various heat input, heat rejection systems, and various power management and distribution systems. FPSPCs can complete favorably with alternative power conversion systems over a range of hundreds of watts to hundreds of kilowatts and to megawatts. Mechanical Technology Incorporated (MTI) is developed FPSPC technology under contract to NASA-LeRC and will demonstrate this technology in two full-scale power converters. The first of these, the Component Test Power Converter (CTPC), initiated testing in Spring 1991 to evaluate mechanical operation at space operating temperatures. This paper reviews the testing of the CTPC at MTI and the companion testing of the earlier technology engine, the Space Power Research Engine (SPRE) at NASA-LeRC.

  9. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  10. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration

    NASA Technical Reports Server (NTRS)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.

    2016-01-01

    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  11. High performance TWT development for the microwave power module

    SciTech Connect

    Whaley, D.R.; Armstrong, C.M.; Groshart, G.; Stolz, R.

    1996-12-31

    Northrop Grumman`s ongoing development of microwave power modules (MPM) provides microwave power at various power levels, frequencies, and bandwidths for a variety of applications. Present day requirements for the vacuum power booster traveling wave tubes of the microwave power module are becoming increasingly more demanding, necessitating the need for further enhancement of tube performance. The MPM development program at Northrop Grumman is designed specifically to meet this need by construction and test of a series of new tubes aimed at verifying computation and reaching high efficiency design goals. Tubes under test incorporate several different helix designs, as well as varying electron gun and magnetic confinement configurations. Current efforts also include further development of state-of-the-art TWT modeling and computational methods at Northrop Grumman incorporating new, more accurate models into existing design tools and developing new tools to be used in all aspects of traveling wave tube design. Current status of the Northrop Grumman MPM TWT development program will be presented.

  12. Condenser performance recovery in nuclear power plants

    SciTech Connect

    Saxon, G. Jr.; Putman, R.E.

    1996-12-31

    Fouling of the tubes in the main condenser can have a significant impact on nuclear plant performance. Recent experiences suggest that the effects of fouling have been underestimated and that the results of an effective tube cleaning can be measured in improved unit capacity. In particular two nuclear power plants have reported recovery of 20 and 25 MW respectively. While the types of deposition often vary as they did in these two cases, the deposit elements were accurately identified, the deposits` impact on heat transfer was evaluated and an effective cleaning methodology was developed for successful deposit removal. These experiences have prompted the development of a number of diagnostic monitoring and inspection methods which can be utilized in the field or in the laboratory; to detect, identify and quantify the presence of fouling and its impact on heat transfer, to determine the relative effectiveness of a cleaning method and to evaluate condenser performance as related to MW capacity for both single and multiple compartment condensers.

  13. A modular electric power system test bed for small spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Baez, Anastacio N.

    1994-01-01

    In the new climate of smaller, faster, and cheaper space science satellites, a new power system topology has been developed at the NASA Lewis Research Center. This new topology is based on a series connected boost converter (SCBC) and can greatly affect the size, weight, fault tolerance, and cost of any small spacecraft using photovoltaic solar arrays. The paper presents electric power system design factors and requirements as background information. The series connected boost converter topology is discussed and several advantages over existing technologies are illustrated. Besides being small, lightweight, and efficient, this topology has the added benefit of inherent fault tolerance. A positive ground power system test bed has been developed for the TROPIX spacecraft program. Performance of the SCBC in the test bed is described in detail. SCBC efficiencies of 95 percent to 98 percent have been measured. Finally, a modular, photovoltaic regulator 'kit' concept is presented. Two SCBC's are used to regulate solar array charging of batteries and to provide 'utilitytype' power to the user loads. The kit's modularity will allow a spacecraft electric power system to be built from off-the-shelf hardware; resulting in smaller, faster, and cheaper spacecraft.

  14. Performance and test results of a regulated magnetron pulser

    SciTech Connect

    Rose, C.R.; Warren, D.S.

    1998-12-31

    This paper describes the test results and performance of a 5.0-kV, 750-mA, regulated current pulser used to drive an Hitachi model 2M130 2,425-MHz magnetron. The magnetron is used to modulate the plasma in a particle accelerator injector. In this application, precise and stable rf power is crucial to extract a stable and accurate particle beam. A 10-kV high-voltage triode vacuum tube with active feedback is used to control the magnetron current and output rf power. The pulse width may be varied from as little as ten microseconds to continuous duty by varying the width of a supplied gate pulse. The output current level can be programmed between 10 and 750 mA. Current regulation and accuracy are better than 1%. The paper discusses the overall performance of the pulser and magnetron including anode current and rf power waveforms, linearity compliance, and vacuum tube performance.

  15. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    NASA Technical Reports Server (NTRS)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  16. Fission Surface Power Technology Development Testing at NASA's Early Flight Fission Test Facility

    NASA Technical Reports Server (NTRS)

    Houts. Michael G.

    2009-01-01

    while still providing excellent performance on the surface of the moon or Mars. Recent testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference FSP system, and has helped evaluate methods for system integration. In June, 2009, a representative pumped NaK loop (provided by Marshall Space Flight Center) was coupled to a Stirling power converter (provided by Glenn Research Center) and tested at various conditions representative of those that would be seen during actual FSP system operation. In all areas, performance of the integrated system exceeded project goals. High-temperature NaK pump testing has also been performed at the EFF-TF, as has testing of methods for providing long-duration NaK purity.

  17. Performance tests for steam methane reformers

    SciTech Connect

    Wang, S.I.; DiMartino, S.P.; Patel, N.M.; Smith, D.D.

    1982-08-01

    Most of the synthesis gas plants in operation in the United States for production of hydrogen, carbon monoxide, methanol, and ammonia use steam methane reforming (SMR). Economic projections indicate that the SMR plant may continue to be the most favorable process choice through the 1980s or until partial oxidation or coal gasification processes are technically proven. The complexity of an efficiently designed SMR plant for production of these chemicals requires a thorough understanding of many unit operations to correctly evaluate the performance of an operating plant. Air Products and Chemicals, Inc. (APCI) owns and operates various types of SMR plants for production of hydrogen and carbon monoxide gases for pipe line sales, liquid hydrogen for merchant sale, methanol and ammonia. Over the past few years, APCI has developed guidelines and procedures for plant performance tests done at its major SMR plants. This article documents the plant test procedure used in conducting onsite SMR plant performance tests.

  18. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  19. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  20. Performance tests of a two phase ejector

    SciTech Connect

    Harrell, G.S.; Kornhauser, A.A.

    1995-12-31

    The ejector expansion refrigeration cycle is a modified vapor compression cycle in which a two phase ejector is used to recover a portion of the work otherwise lost in the expansion valve. The ejector improves cycle performance by increasing compressor inlet pressure and by lowering the quality of liquid entering the evaporator. Theoretically, a cooling COP improvement of approximately 23% is achievable for a typical refrigerating cycle and an ideal ejector. If the ejector performed as well as typical single phase ejectors an improvement of 12% could be achieved. Previous tests have demonstrated a smaller 3.7% improvement; the difference is in the poor performance of the two phase ejector. The purpose of this research is to understand the operating characteristics of the two phase ejector and to devise design improvements. A two phase ejector test rig has been constructed and tested. Preliminary data show performance superior to previously tested two phase ejectors, but still inferior to single phase ejectors. Ejector performance corresponds to refrigeration cycle COP improvements ranging from 3.9% to 7.6%.

  1. Upper-limb power test in rock-climbing.

    PubMed

    Laffaye, G; Collin, J-M; Levernier, G; Padulo, J

    2014-07-01

    The goal of the present study was to validate a new ecological power-test on athletes of different levels and to assess rock climbers' profiles (boulderers vs. route climbers). 34 athletes divided into novice, skilled and elite groups performed the arm-jump board test (AJ). Power, time, velocity, and efficiency index were recorded. Validity was assessed by comparing the distance with the value extracted from the accelerometer (500 Hz) and the reliability of intra- and inter-session scores. Moreover, a principal component analysis (PCA) was used to assess the climbers' profiles. The AJ test was quite valid, showing a low systematic bias of -0.88 cm (-1.25%) and low limits of agreement (< 6%), and reliable ( Intra-class correlation coefficient = 0.98 and CV < 5%), and was able to distinguish between the 3 samples (p < 0.0001). There was a good correlation between relative upper-limb power (r = 0.70; p < 0.01) and the AJ score. Moreover, the PCA revealed an explosive profile for boulderers and either a weak and quick or slow profile for route climbers, revealing a biomechanical signature of the sub-discipline. The AJ test provides excellent absolute and relative reliabilities for climbing, and can effectively distinguish between climbing athletes of different competitive levels. Thus, the AJ may be suitable for field assessment of upper limb strength in climbing practitioners. PMID:24554556

  2. OTEC-1 Power System Test Program: test plan for first deployment

    SciTech Connect

    1980-03-01

    This report describes in detail all tests planned for the first eight-month deployment of OTEC-1, a test facility constructed by the US Department of Energy in order to test heat exchangers for closed-cycle power plants using ocean thermal energy. Tests to be performed during the first-deployment period are aimed primarily at determining (1) the effectiveness of countermeasures in preventing biofouling of the heat exchanters, (2) the extent of environmental impacts associated with operation of an OTEC facility, and (3) the performance of a 1-MWe, titanium shell-and-tube evaporator and condenser pair. The condenser to be tested has plain tubes, and the evaporator employs the Linde High Flux surface on the working-fluid (ammonia) side to enhance the heat-transfer rate. This plan provides a statement of the objectives and priorities of the test program, describes the test equipment, gives a detailed account of all tests to be performed and the test schedule, and discusses provisions for management of the test program.

  3. Testing of an HTS Power Cable Made from YBCO Tapes

    SciTech Connect

    Gouge, Michael J; Duckworth, Robert C; Demko, Jonathan A; Rey, Christopher M; Lindsay, David T; Roden, Mark L; Tolbert, Jerry Carlton

    2007-01-01

    Oak Ridge National Laboratory (ORNL) has designed, built, and tested a 1.25-m-long, prototype high temperature superconducting (HTS) power cable made from second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in liquid nitrogen at 77 K. DC testing of the HTS cable included determination of the V-I curve with a critical current of about 2100 A, which was consistent with the critical currents of the two layers of 4.4-mm wide YBCO tapes. AC testing of the cable was conducted at currents up to about 1500 Arms. The ac losses were determined calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. Over-current testing was conducted at peak current values up to 4.9 kA for pulse lengths of 0.3-0.5 s. Test results are compared to earlier data from a 1.25-m-long power cable made from 1-cm-wide YBCO tapes and also comparable BSCCO cables. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  4. High Performance Nickel Electrodes for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Adanuvor, Prosper K.; Pearson, Johnnie A.; Miller, Brian; Tatarchuk, Bruce; Britton, Doris L.

    1996-01-01

    Performance characteristics such as efficiency, specific energy density and power density of nickel electrodes are generally limited by the electrode microstructure and nature of the active material within the electrode matrix. Progress is being made in our laboratory in a collaborative effort with NASA-Lewis Research Center to develop lighter weight, mechanically stable and highly efficient nickel electrodes for aerospace applications. Our approach is based on an electrode microstructure fabricated from a mixture of nickel fibers as small as 2 microns diameter and cellulose fibers. Performance data in flooded cell tests and cycle life data are presented. Performance characteristics are compared to other electrode microstructures such as the Fibrex Fiber mat and the Fibrex Powder substrate. The flexibility of our electrode microstructure and the significant advantages it offers in terms of weight and performance are demonstrated, in particular, its ability to accept charge at high rates and to discharge at high rates.

  5. Load responsive multilayer insulation performance testing

    SciTech Connect

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  6. Power Differences among Tests of Combined Significance.

    ERIC Educational Resources Information Center

    Becker, Betsy Jane

    Power is an indicator of the ability of a statistical analysis to detect a phenomenon that does in fact exist. The issue of power is crucial for social science research because sample size, effects, and relationships studied tend to be small and the power of a study relates directly to the size of the effect of interest and the sample size.…

  7. SAS molecular tests Salmonella detection kit. Performance tested method 021202.

    PubMed

    Bapanpally, Chandra; Montier, Laura; Khan, Shah; Kasra, Akif; Brunelle, Sharon L

    2014-01-01

    The SAS Molecular tests Salmonella Detection method, a Loop-mediated Isothermal Amplification method, performed as well as or better than the U.S. Department of Agriculture-Food Safety Inspection Service Microbiology Laboratory Guidebook and the U.S. Food and Drug Administration Bacteriological Analytical Manual reference methods for ground beef, beef trim, ground turkey, chicken carcass rinses, bagged mixed lettuce, and fresh spinach. The ground beef (30% fat, 25 g test portion), poultry matrixes and leafy greens were validated in a 6-7 h enrichment, and ground beef (30% fat, 375 g composite test portion) and beef trim (375 g composite test portion) were validated in a 16-20 h enrichment. The method performance for meat and leafy green matrixes was shown to be acceptable under conditions of co-enrichment with Escherichia coli 0157. Thus, after a short 6-7 h co-enrichment step, ground beef, beef trim, lettuce, and spinach can be tested for both Salmonella and E. coli O157. Inclusivity and exclusivity testing revealed no false negatives and no false positives among the 100 Salmonella serovars and 30 non-Salmonella species examined. The method was shown to be robust when enrichment time, DNA extract hold time, and DNA volume were varied. PMID:25051629

  8. A performance benchmark test for geodynamo simulations

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Heien, E. M.

    2013-12-01

    In the last ten years, a number of numerical dynamo models have successfully represented basic characteristics of the geomagnetic field. As new models and numerical methods continue to be developed, it is important to update and extend benchmarks for testing these models. The first dynamo benchmark of Christensen et al. (2001) was applied to models based on spherical harmonic expansion methods. However, only a few groups have reported results of the dynamo benchmark using local methods (Harder and Hansen, 2005; Matsui and Okuda, 2005; Chan et al., 2007) because of the difficulty treating magnetic boundary conditions based on the local methods. On the other hand, spherical harmonics expansion methods perform poorly on massively parallel computers because global data communications are required for the spherical harmonics expansions to evaluate nonlinear terms. We perform benchmark tests to asses various numerical methods for the next generation of geodynamo simulations. The purpose of this benchmark test is to assess numerical geodynamo models on a massively parallel computational platform. To compare among many numerical methods as possible, we consider the model with the insulated magnetic boundary by Christensen et al. (2001) and with the pseudo vacuum magnetic boundary, because the pseudo vacuum boundaries are implemented easier by using the local method than the magnetic insulated boundaries. In the present study, we consider two kinds of benchmarks, so-called accuracy benchmark and performance benchmark. In the accuracy benchmark, we compare the dynamo models by using modest Ekman and Rayleigh numbers proposed by Christensen et. al. (2001). We investigate a required spatial resolution for each dynamo code to obtain less than 1% difference from the suggested solution of the benchmark test using the two magnetic boundary conditions. In the performance benchmark, we investigate computational performance under the same computational environment. We perform these

  9. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Performance tests. 76.601 Section 76.601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... standards set forth in § 76.605(a) (3), (4), and (5) shall be made on each of the NTSC or similar...

  10. A Litmus Test for Performance Assessment.

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Beaver, John B.

    1992-01-01

    Presents 10 guidelines for developing performance-based assessment items. Presents a sample activity developed from the guidelines. The activity tests students ability to observe, classify, and infer, using red and blue litmus paper, a pH-range finder, vinegar, ammonia, an unknown solution, distilled water, and paper towels. (PR)

  11. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... television and FM broadcasting (as described in §§ 73.603 and 73.210 of this chapter) is required to conduct... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable television system shall be responsible for insuring that each such system is designed, installed,...

  12. Ultraviolet through infrared imager performance testing

    NASA Astrophysics Data System (ADS)

    Mazzetta, Jason A.; Scopatz, Stephen D.

    2009-09-01

    The objective of any imaging system is to optimize the amount of pertinent information collected from a scene. Whether it is used for artistic reproduction, scientific research, or camouflage detection, a camera has the same ultimate requirement. In the era of broadband, multi-spectral, hyperspectral, and fused sensor systems, both spectral and spatial data continue to play battling roles in determining which is dominant in how well an imaging system meets its definitive objective. Typically sensor testing requires hardware and software exclusively designed for the spectral region of interest. Thus an imaging system with ultraviolet through infrared imaging capabilities could require three or more separate test benches for sensor characterization. Obviously this not only increases the complexity, and subsequently the cost of testing, but also more importantly tends to produce discontinuous results. This paper will outline the hardware and software developed by the authors that employ identical test methods and shared optics to complete infrared, visible, and ultraviolet sensor performance analysis. Challenges encompassing multiple emitting source switching, splitting, and combining will be addressed along with new single fused type source designs. Decisions related to specifying optics and targets of sufficient quality and construction to provide coverage of the full spectral region will be discussed along with sample performance specifications and data. Test methodology controlled by a single automated software suite will be summarized including modulation transfer function, signal to noise ratio, uniformity, focus, distortion, intrascene dynamic range, and sensitivity. Selected examples of results obtained by this test set will be presented.

  13. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise

    2010-01-01

    The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal

  14. Power Systems Development Facility Gasification Test Campaign TC17

    SciTech Connect

    Southern Company Services

    2004-11-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  15. Thermal Performance Testing Of Cryogenic Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

    2003-01-01

    Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

  16. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  17. Honeywell Cascade Distiller System Performance Testing Interim Results

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam

    2014-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. The Cascade Distillation System (CDS) is a vacuum rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. The CDS was previously under development through Honeywell and NASA. In 2009, an assessment was performed to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. Based on the results of this testing, an expert panel concluded that the CDS showed adequate development maturity, TRL-4, together with the best product water quality and competitive weight and power estimates to warrant further development. The Advanced Exploration Systems (AES) Water Recovery Project (WRP) worked to address weaknesses identified by The Panel; namely bearing design and heat pump power efficiency. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades. The CDS will also have been challenged with ISS analog waste streams and a subset of those being considered for Exploration architectures. This paper details interim results of the AES WRP CDS performance testing.

  18. Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24

    SciTech Connect

    Luchau, D.W.; Bruns, D.R.; Izhvanov, O.; Androsov, V.

    1996-03-01

    A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

  19. Testing for robust speech recognition performance

    NASA Astrophysics Data System (ADS)

    Simpson, C. A.; Moore, C. A.; Ruth, J. C.

    Results are reported from two studies which evaluated speaker-dependent connected-speech template-matching algorithms. One study examined the recognition performance for vocabularies spoken within a spacesuit. Two token vocabularies were used that were recorded in different noise levels. The second study evaluated the rejection accuracy for two commercial speech recognizers. The spoken test tokens were variations on a single word. The tests underscored the inferiority of speech recognizers relative to the human capability for discerning among phonetically different words. However, one commercial recognizer exhibited over 96-percent rejection accuracy in a noisy environment.

  20. Testing Solutions for Adult Film Performers.

    PubMed

    Bergman, Zachary R

    2014-01-01

    The majority of the nation's adult films are produced in California, and within California, most production occurs in Los Angeles. In order to regulate that content, the County of Los Angeles passed the Safer Sex in the Adult Film Industry Act (Measure B) by way of referendum in November 2012. Measure B requires that adult film producers wishing to film in Los Angeles County obtain permits from the Los Angeles County Department of Public Health, and it also mandates that adult film performers use condoms while filming and "engaging in anal or vaginal sexual intercourse." Nevertheless, between August 2013 and January 2014, several adult film performers in California tested positive for HIV, and the threat of infection remains. Although Measure B is not the best way forward for Los Angeles County, elements of the ordinance should be incorporated into future legislative efforts. Given the economic ramifications of industry flight due to more localized regulations, this Note concludes that California should pass statewide comprehensive reform. Any such new legislation must treat "independent contractors," the classification generally used for adult film performs, as if they were regular employees. Legislation should also couple mandatory testing mechanisms with provisions granting performers the right to choose whether they use condoms. Finally, legislation must include mechanisms that ensure performers' preferences are not improperly tainted by outside forces and pressures. While there will always be risks associated with the production of adult content, if undertaken, these reforms could significantly mitigate those hazards. PMID:26809162

  1. 8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  2. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  3. Motivation and Test Anxiety in Test Performance across Three Testing Contexts: The CAEL, CET, and GEPT

    ERIC Educational Resources Information Center

    Cheng, Liying; Klinger, Don; Fox, Janna; Doe, Christine; Jin, Yan; Wu, Jessica

    2014-01-01

    This study examined test-takers' motivation, test anxiety, and test performance across a range of social and educational contexts in three high-stakes language tests: the Canadian Academic English Language (CAEL) Assessment in Canada, the College English Test (CET) in the People's Republic of China, and the General English Proficiency…

  4. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  5. Testing Devices Garner Data on Insulation Performance

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To develop a test instrument that could garner measurements of the thermal performance of insulation under extreme conditions, researchers at Kennedy Space Center devised the Cryostat 1 and then Cryostat 2. McLean, Virginia-based QinetiQ North America licensed the technology and plans to market it to organizations developing materials for things like piping and storage tank insulation, refrigeration, appliances, and consumer goods.

  6. RHIC Sextant Test -- Physics and performance

    SciTech Connect

    Wei, J.; Fischer, W.; Ahrens, L.

    1997-07-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (AtR) transfer line during the Sextant Test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. Good agreement was achieved between measured and design lattice optics. The gold ion beam quality was shown to approach RHIC design requirements.

  7. HSE performance tests for dosimetry services.

    PubMed

    Birch, R; Simpson, J A; Hedley, R P; Wardle, J

    2000-12-01

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. PMID:11140715

  8. Performance testing of large metallic seals

    SciTech Connect

    Leisher, W. B.; Trujillo, A. A.

    1980-01-01

    Containment of radioactive material in spent fuel shipping casks can be achieved if the internal cavity pressure boundary is kept intact under both normal and accident conditions. The major potential boundary weakness is the seal used for cask closure. In an effort to evaluate parameters which influence closure seal performance, an experimental program has been undertaken. This paper describes the program, early results, and test hardware.

  9. Flight test of takeoff performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Srivatsan, Raghavachari; Person, Lee H., Jr.

    1994-01-01

    The Takeoff Performance Monitoring System (TOPMS) is a computer software and hardware graphics system that visually displays current runway position, acceleration performance, engine status, and other situation advisory information to aid pilots in their decision to continue or to abort a takeoff. The system was developed at the Langley Research Center using the fixed-base Transport Systems Research Vehicle (TSRV) simulator. (The TSRV is a highly modified Boeing 737-100 research airplane.) Several versions of the TOPMS displays were evaluated on the TSRV B-737 simulator by more than 40 research, United States Air Force, airline and industry and pilots who rated the system satisfactory and recommended further development and testing. In this study, the TOPMS was flight tested on the TSRV. A total of 55 takeoff and 30 abort situations were investigated at 5 airfields. TOPMS displays were observed on the navigation display screen in the TSRV research flight deck during various nominal and off-nominal situations, including normal takeoffs; reduced-throttle takeoffs; induced-acceleration deficiencies; simulated-engine failures; and several gross-weight, runway-geometry, runway-surface, and ambient conditions. All tests were performed on dry runways. The TOPMS software executed accurately during the flight tests and the displays correctly depicted the various test conditions. Evaluation pilots found the displays easy to monitor and understand. The algorithm provides pretakeoff predictions of the nominal distances that are needed to accelerate the airplane to takeoff speed and to brake it to a stop; these predictions agreed reasonably well with corresponding values measured during several fully executed and aborted takeoffs. The TOPMS is operational and has been retained on the TSRV for general use and demonstration.

  10. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  11. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  12. Electric Power Delivery Testing Feasibility Study Task 6 Final Report

    SciTech Connect

    Thomas Tobin

    2009-07-01

    This Final Report is covers the completion of the Electric Power Delivery Testing Feasibility Study. The objective of this project was to research, engineer, and demonstrate high-power laboratory testing protocols to accurately reproduce the conditions on the electric power grid representing both normal load switching and abnormalities such as short-circuit fault protection. Test circuits, equipment, and techniques were developed and proven at reduced power levels to determine the feasibility of building a large-scale high-power testing laboratory capable of testing equipment and systems at simulated high-power conditions of the U.S. power grid at distribution levels up through 38 kiloVolts (kV) and transmission levels up through 230 kV. The project delivered demonstrated testing techniques, high-voltage test equipment for load testing and synthetic short-circuit testing, and recommended designs for future implementation of a high-power testing laboratory to test equipment and systems, enabling increased reliability of the electric transmission and distribution grid.

  13. MEMS performance challenges: packaging and shock tests

    NASA Astrophysics Data System (ADS)

    Chang, Jiyoung; Yang, Chen; Zhang, Bin; Lin, Liwei

    2011-06-01

    This paper describes recent advances in the MEMS performance challenges with emphases on packaging and shock tests. In the packaging area, metal to metal bonding processes have been developed to overcome limitations of the glass frit bonding by means of two specific methods: (1) pre-reflow of solder for enhanced bonding adhesion, and (2) the insertion of thin metal layer between parent metal bonding materials. In the shock test area, multiscale analysis for a MEMS package system has been developed with experimental verifications to investigate dynamic responses under drop-shock tests. Structural deformation and stress distribution data are extracted and predicted for device fracture and in-operation stiction analyses for micro mechanical components in various MEMS sensors, including accelerometers and gyroscopes.

  14. Test results of high-voltage, high-power, solid-state remote power controllers

    NASA Technical Reports Server (NTRS)

    Johnson, Yvette Binford; Kapustka, Robert E.

    1988-01-01

    This report discusses the results of testing high-voltage, high-power, solid-state remote power controllers (RPC) using RPCs designed and built by John C. Sturman at the Lewis Research Center, Cleveland, Ohio, and utilizing the Autonomously Managed Power Systems (AMPS) breadboard/test facility. These test results are used to determine usefulness of the RPCs for future applications in high-voltage direct-current space power.

  15. Performance of the NEXT Engineering Model Power Processing Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Hopson, Mark; Todd, Philip C.; Wong, Brian

    2007-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. An engineering model (EM) power processing unit (PPU) for the NEXT project was designed and fabricated by L-3 Communications under contract with NASA Glenn Research Center (GRC). This modular PPU is capable of processing up from 0.5 to 7.0 kW of output power for the NEXT ion thruster. Its design includes many significant improvements for better performance over the state-of-the-art PPU. The most significant difference is the beam supply which is comprised of six modules and capable of very efficient operation through a wide voltage range because of innovative features like dual controls, module addressing, and a high current mode. The low voltage power supplies are based on elements of the previously validated NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) PPU. The highly modular construction of the PPU resulted in improved manufacturability, simpler scalability, and lower cost. This paper describes the design of the EM PPU and the results of the bench-top performance tests.

  16. Feasibility Investigation for Performing Fireball Temperature Tests

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.; Kurtz, Joe

    1997-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) was requested by the Launch Abort Subpanel and the Power Systems Subpanel of the Interagency Nuclear Safety Review Panel to investigate the feasibility of using spectroscopic techniques to measure propellant fireball gas temperatures. This report outlines the modeling and experimental approaches and results of this investigation. Descriptions of the theoretical particle temperature and mass effusion models are presented along with the results of the survivability of small plutonium dioxide (less than or equal to 1000 microns diameter) particles entrained in various propellant fireball scenarios. The experimental test systems used to measure the hydroxide radical, water, and particle graybody spectral emissions and absorptions are discussed. Spectral results along with temperatures extracted by analyzing the spectral features are presented for the flames investigated in the laboratory environment. Methods of implementing spectroscopic measurements for future testing using the WSTF Large-scale Hydrogen/Oxygen Explosion Facility are discussed, and the accuracy expected for these measurements is estimated from laboratory measurements.

  17. Test Program of the "Combined Data and Power Management Infrastructure"

    NASA Astrophysics Data System (ADS)

    Eickhoff, Jens; Fritz, Michael; Witt, Rouven; Bucher, Nico; Roser, Hans-Peter

    2013-08-01

    As already published in previous DASIA papers, the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques and Onboard Software design. This satellite furthermore features an innovative hybrid architecture of Onboard Computer and Power Control and Distribution Unit. One of the main challenges was the development of an ultra-compact and performing Onboard Computer (OBC), which was intended to support an RTEMS operating system, a PUS standard based Onboard Software (OBSW) and CCSDS standard based ground/space communication. The developed architecture (see [1, 2, 3]) is called a “Combined Onboard Data and Power Management Infrastructure” - CDPI. It features: The OBC processor boards based on a LEON3FT architecture - from Aeroflex Inc., USA The I/O Boards for all OBC digital interfaces to S/C equipment (digital RIU) - from 4Links Ltd. UK CCSDS TC/TM decoder/encoder boards - with same HW design as I/O boards - just with limited number of interfaces. HW from 4Links Ltd, UK, driver SW and IP-Core from Aeroflex Gaisler, SE Analog RIU functions via enhanced PCDU from Vectronic Aerospace, D OBC reconfiguration unit functions via Common Controller - here in PCDU [4] The CDPI overall assembly is meanwhile complete and a exhaustive description can be found in [5]. The EM test campaign including the HW/SW compatibility testing is finalized. This comprises all OBC EM units, OBC EM assembly and the EM PCDU. The unit test program for the FM Processor-Boards and Power-Boards of the OBC are completed and the unit tests of FM I/O-Boards and CCSDS-Boards have been completed by 4Links at the assembly house. The subsystem tests of the assembled OBC also are completed and the overall System tests of the CDPI with system reconfiguration in diverse possible FDIR cases also reach the last steps. Still ongoing is the subsequent integration of the CDPI with the satellite's avionics components

  18. 42 CFR 493.1421 - Condition: Laboratories performing moderate complexity testing; testing personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... complexity testing; testing personnel. 493.1421 Section 493.1421 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity Testing § 493.1421 Condition: Laboratories performing moderate complexity testing; testing personnel....

  19. Solar simulator for solar dynamic space power system testing

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent S.

    1993-01-01

    Planned vacuum tank testing of a solar dynamic space power system requires a solar simulator. Several solar simulators were previously built and used for vacuum tank testing of various space systems. However, the apparent solar subtense angle, i.e., the angular size of the apparent sun as viewed from the experiment, of these solar simulators is too large to enable testing of solar dynamic systems. A new design was developed to satisfy the requirements of the solar dynamic testing. This design provides 1.8 kW/m(sup 2) onto a 4.5M diameter test area from a source that subtends only 1 deg, full cone angle. Key features that enable this improved performance are (1) elimination of the collimating mirror commonly used in solar simulators to transform the diverging beam into a parallel beam; (2) a redesigned lamp module that has increased efficiency; and (3) the use of a segmented reflective surface to combine beams from several individual lamp modules at the pseudosun. Each segment of this reflective surface has complex curvature to control the distribution of light. By developing a new solar simulator design for testing of the solar dynamic system instead of modifying current designs, the initial cost was cut in half, the efficiency was increased by 50 percent reducing the operating costs by one-third, and the volume occupied by the solar simulator was reduced by a factor of 10.

  20. Aerodynamic and propeller performance characteristics of a propfan-powered, semispan model

    NASA Technical Reports Server (NTRS)

    Levin, Alan D.; Smith, Ronald C.; Wood, Richard D.

    1985-01-01

    A semispan wing/body model with a powered propeller was tested to provide data on a total powerplant installation drag penalty of advanced propfan-powered aircraft. The test objectives were to determine the total power plant installation drag penalty on a representative propfan aircraft; to study the effect of configuration modifications on the installed powerplant drag; and to determine performance characteristics of an advanced design propeller which was mounted on a representative nacelle in the presence of a wing.

  1. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  2. High power performance limits of fiber components

    NASA Astrophysics Data System (ADS)

    Holehouse, Nigel; Magné, Julien; Auger, Mathieu

    2015-03-01

    High power combiners are essential for practical fiber lasers, recent developments in pump technology has increased the available brightness and power of pumps significantly, enabling multi kW lasers and pushing combiner designs to new limits. I will present the challenges, measurements and some solutions to these issues. Traditional calculations for combiners underestimate the issues associated with the `tails' of the pump NA distribution, losses in fully filled combiners increase rapidly as pump NA blooms, and subsequent heating effects dominate the combiner's power handling. Acrylate coated pump fibers are reaching their limits and devices and measurements on double clad pump combiners with losses <0.05dB, will be presented enabling multi kW operation, The use of triple clad fibers in the gain section will discussed as a solution for multi kW applications. Results on ultra-low background loss FBG's will be presented, along with developed measurement techniques.

  3. Space power distribution system technology. Volume 3: Test facility design

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  4. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  5. Ground-based testing of space nuclear power plants

    SciTech Connect

    McDonald, T.G.

    1990-10-22

    Small nuclear power plants for space applications are evaluated according to their testability in this two part report. The first part introduces the issues involved in testing these power plants. Some of the concerns include oxygen embrittlement of critical components, the test environment, the effects of a vacuum environment on materials, the practically of racing an activated test chamber, and possible testing alternative the SEHPTR, king develop at the Idaho National Engineering Laboratory. 10 refs., 6 figs., 1 tab.

  6. Performance testing of a Savonius windmill rotor in shear flows

    NASA Astrophysics Data System (ADS)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteadiness on the power producing performance of a Savonius windmill rotor are studied. Measurements are made in two laboratory statistically-steady shear flows, and in the natural wind, which is both viscous and unsteady. The measurements were made of the speed, torque, and power of the rotor at a number of streamwise stations for each of four values of the bucket overlap ratio. Flow velocity profiles and graphs of wind shear variation are given. It is concluded that even in the presence of shear, the power coefficient of a Savonius windmill rotor is most strongly dependent on the tip speed ratio. As in inviscid flow, the power coefficient peaked at a tip speed ratio = 0.8. The major effect of shear was to reduce the power coefficient below the inviscid flow level, the magnitude of reduction depending on the magnitude of shear present. In field testing of the Savonius rotor, the unsteadiness of the wind proved to be a greater source of power loss than the wind shear.

  7. Fuel accident performance testing for small HTRs

    NASA Astrophysics Data System (ADS)

    Schenk, W.; Pott, G.; Nabielek, H.

    1990-04-01

    Irradiated spherical fuel elements containing 16400 coated UO 2 particles each were heated at temperatures between 1600 and 1800°C and the fission product release was measured. The demonstrated fission product retention at 1600°C establishes the basis for the design of small modular HTRs which inherently limit the temperature to 1600°C by passive means. In addition to this demonstration, the test data show that modern TRISO fuels provide an ample performance margin: release normally sets in at 1800°C; this occurs at 1600°C only with fuels irradiated under conditions which significantly exceed current reactor design requirements.

  8. Test results for 20-GHz GaAs FET spacecraft power amplifier

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.

    1985-01-01

    Test were conducted to measure the performance of the 20-GHz solid state, proof-of-concept amplifier. The amplifier operates over the 17.7 to 20.2-GHz frequency range and uses high power gallium arsenide field effect transistors. The amplifier design and test methods are briefly described. NASA and contractor performance data are compared.

  9. Reducing Electrical Power Use with a Performance Based Incentive

    SciTech Connect

    M. Kathleen Nell

    2004-07-01

    This Departmental Energy Management Program (DEMP) funded Model Program Study developed out of a potential DOE-ID Performance Based Incentive for the Idaho National Engineering and Environmental Laboratory (INEEL), lasting from October 2001 through May 2002, which stressed reductions in electrical usage. An analysis of demand usage obtained from monthly INEEL Power Management electric reports revealed reductions in demand from a majority of the site areas. The purpose of this Model Program study was to determine the methods and activities that were used at these site areas to achieve the reductions in demand and to develop these demand reduction methods and activities into a Model Program that could be shared throughout the INEEL and DOE complex-wide for additional demand savings. INEEL Energy Management personnel interviewed contacts from the eight areas which had achieved a consistent reduction in demand during the study period, namely, Idaho Nuclear Technology and Engineering Center (INTEC), Test Area North (TAN), Power Burst Facility (PBF), Test Reactor Area (TRA) including Advanced Test Reactor ATR), Engineering Test Reactor (ETR), and Materials Test Reactor (MTR) areas, Central Facilities Area (CFA), Specific Manufacturing Capability (SMC), Radioactive Waste Management Complex (RWMC), and Argonne National Laboratory-West (ANLW). The information that resulted from the interviews indicated that more than direct demand and energy reduction actions were responsible for the recorded reductions in demand. INEEL Energy Management identified five categories of actions or conditions that contributed to the demand reduction. These categories are Decontamination and Decommissioning (D&D), employee actions, improvements, inactivation for maintenance, and processes. The following information details the findings from the study.

  10. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  11. Power Systems Development Facility Gasification Test Run TC07

    SciTech Connect

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  12. Spike Decomposition Technique: Modeling and Performance Tests

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory D.; Gary, Dale E.

    2008-12-01

    We develop an automated technique for fitting the spectral components of solar microwave spike bursts, which are characterized by narrowband spectral features. The algorithm is especially useful for periods when the spikes occur in densely packed clusters, where the algorithm is capable of decomposing overlapping spike structures into individual spectral components. To test the performance and applicability limits of this data reduction tool, we perform comprehensive modeling of spike clusters characterized by various typical bandwidths, spike densities, and amplitude distributions. We find that, for a wide range of favorable combinations of input parameters, the algorithm is able to recover the characteristic features of the modeled distributions within reasonable confidence intervals. Having model-tested the algorithm against spike overlap, broadband spectral background, noise contamination, and possible malfunction of some spectral channels, we apply the technique to a spike cluster recorded by the Chinese Purple Mountain Observatory (PMO) spectrometer, operating above 4.5 GHz. We study the variation of the spike distribution parameters, such as amplitude, bandwidth, and related derived physical parameters, as a function of time. The method can be further applied to observations from other instruments and to other types of fine structures.

  13. NASA Boeing 757 HIRF test series low power on-the-ground tests

    SciTech Connect

    Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.; Avalle, C.A.; Carney, H.L.

    1996-08-01

    The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. The tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.

  14. Performance Testing of a Resistojet Thruster for Small Satellite Applications

    NASA Astrophysics Data System (ADS)

    Lawrence, Timothy J.; Sweeting, Martin; Paul, Malcolm; Sellers, J. J.; LeDuc, J. R.

    1998-07-01

    Resistojets operating at low power (less than lOO W) and using liquid propellants have re-emerged as attractive propulsion options for orbit-raising small satellites deployed at Space Shuttle altitudes (approx. 2OO km). Compared to low power pulsed plasma thrusters (PPT), the resistojet produces two orders of magnitude more thrust (approximately 1.4 mN compared to 140 mN) which is required to overcome drag at solar maximum. The wet mass of both systems is approximately equal although the propellant volume for the PPT is significantly lower since it is stored in solid form. The major disadvantage of the resistojet propulsion system compared to the PPT, is in the complexity added from the propellant tanks. Shuttle integration concerns for the solid Teflon (trademark) propellant of the PPT are minimal or non-existent. Although non-toxic, the water or nitrous oxide propellant of the resistojet requires pressurized tanks and valves which increase safety requirements. To investigate the usefulness of the resistojet for small satellite applications, a series of performance tests have been completed at the AFRL Electric Propulsion Laboratory using the JPL inverted pendulum thrust stand. The tests were conducted for two types of resistojet thrusters developed at the University of Surrey which utilize a packed bed of SiC particles for the heat exchanger. Performance testing eas accomplished at power levels from 0-600 W for five propellants: water, nitrous oxide, water/ methanol, nitrogen, and helium. Two endurance tests were conducted to determine possible failure modes. Performance characterization and thermal models were developed for future design applications of these thrusters. Future USAF and Surrey Satellite Technology, Ltd. (SSTL) missions using these resistojets are also discussed.

  15. Energy and Performance: The Power of Metaphor.

    ERIC Educational Resources Information Center

    Phillips, Bill

    1998-01-01

    "Operating metaphors" that people unconsciously use to understand life and work experiences may limit behavior and performance. A psychometric instrument under development can reveal a person's underlying metaphors as a first step to changing them. (SK)

  16. Power Burst Facility (PBF) severe fuel damage test 1-4 test results report

    SciTech Connect

    Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

    1989-04-01

    A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

  17. Performance and stability analysis of a photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1978-01-01

    The performance and stability characteristics of a 10 kVA photovoltaic power system are studied using linear Bode analysis and a nonlinear analog simulation. Power conversion efficiencies, system stability, and system transient performance results are given for system operation at various levels of solar insolation. Additionally, system operation and the modeling of system components for the purpose of computer simulation are described.

  18. Simulation test beds for the Space Station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are respnsible for developing the electrical power system on the Space Station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  19. Simulation test beds for the space station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  20. Statistical Performances of Resistive Active Power Splitter

    NASA Astrophysics Data System (ADS)

    Lalléchère, Sébastien; Ravelo, Blaise; Thakur, Atul

    2016-03-01

    In this paper, the synthesis and sensitivity analysis of an active power splitter (PWS) is proposed. It is based on the active cell composed of a Field Effect Transistor in cascade with shunted resistor at the input and the output (resistive amplifier topology). The PWS uncertainty versus resistance tolerances is suggested by using stochastic method. Furthermore, with the proposed topology, we can control easily the device gain while varying a resistance. This provides useful tool to analyse the statistical sensitivity of the system in uncertain environment.

  1. Pulsed power performance of PBFA Z

    SciTech Connect

    Spielman, R.B.; Stygar, W.A.; Seamen, J.F.

    1997-08-01

    PBFA Z is a new 60-TW/5-MJ electrical driver located at Sandia National Laboratories. The authors use PBFA Z to drive z pinches. The pulsed power design of PBFA Z is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn and PBFA II accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 60-TW/105-ns pulse to the output water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, the authors attain peak currents of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV/cm. The current from the four independent conical-disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The authors achieved x-ray powers of 200 TW and x-ray energies of 1.9 MJ from tungsten wire-array z-pinch loads.

  2. Objective and Performance Indicators for North Carolina Competency Testing Program for TOPICS Test and SHARP Test.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    Student performance objectives for the North Carolina Senior High Assessment of Reading Performance (SHARP) and the Test of Proficiency in Computation Skills (TOPICS) are given. These minimum competency tests are structured in such a way as to facilitate the transference of school-based learning into everyday life. For example, students taking the…

  3. Performance tests of a cryogenic hybrid magnetic bearing for turbopumps

    NASA Technical Reports Server (NTRS)

    Dirusso, Eliseo; Brown, Gerald V.

    1992-01-01

    Experiments were performed on a Hybrid Magnetic Bearing designed for cryogenic applications such as turbopumps. This bearing is considerably smaller and lighter than conventional magnetic bearings and is more efficient because it uses a permanent magnet to provide a bias flux. The tests were performed in a test rig that used liquid nitrogen to simulate cryogenic turbopump temperatures. The bearing was tested at room temperature and at liquid nitrogen temperature (-320 F). The maximum speed for the test rig was 14000 rpm. For a magnetic bearing stiffness of 20000 lb/in, the flexible rotor had two critical speeds. A static (nonrotating) bearing stiffness of 85000 lb/in was achieved. Magnetic bearing stiffness, permanent magnet stiffness, actuator gain, and actuator force interaction between two axes were evaluated, and controller/power amplifier characteristics were determined. The tests revealed that it is feasible to use this bearing in the cryogenic environment and to control the rotor dynamics of flexible rotors when passing through bending critical speeds. The tests also revealed that more effort should be placed on enhancing the controller to achieve higher bearing stiffness and on developing displacement sensors that reduce drift caused by temperature and reduce sensor electrical noise.

  4. Teaching and Testing Solutions to the Problem of Debilitating Effects of Test Anxiety on Test Performance.

    ERIC Educational Resources Information Center

    Hill, Kennedy T.; Horton, Margaret W.

    Educational solutions to the problem of test anxiety were explored. Test anxiety has a debilitating effect on performance which increases over the school years. The solution is, first, to measure test anxiety so that the extent of it, as well as the effectiveness of programs designed to alleviate it, can be measured. The seven-item Comfort Index,…

  5. Determining the power performance effect from modernization of power equipment and process systems at a nuclear power station

    NASA Astrophysics Data System (ADS)

    Khomenok, L. A.; Kruglikov, P. A.; Smolkin, Yu. V.; Sokolov, K. V.

    2012-05-01

    The main stages of a calculation and experimental analysis of measures aimed at achieving better power performance of a nuclear power station and a procedure for carrying out such analysis are considered. The results of a calculated and experimental assessment of the power-performance effect from modernization of the moisture separators-steam superheaters used in turbine generators Nos. 7 and 8 of Unit 4 at the Leningrad nuclear power station are presented.

  6. A laboratory test for the examination of alactic running performance.

    PubMed

    Kibele, Armin; Behm, David

    2005-12-01

    A new testing procedure is introduced to evaluate the alactic running performance in a 10s sprint task with near-maximal movement velocity. The test is performed on a motor-equipped treadmill with inverted polarity that increases mechanical resistance instead of driving the treadmill belt. As a result, a horizontal force has to be exerted against the treadmill surface in order to overcome the resistant force of the engine and to move the surface in a backward direction. For this task, subjects lean with their hands towards the front safety barrier of the treadmill railing with a slightly inclined body posture. The required skill resembles the pushing movement of bobsleigh pilots at the start of a race. Subjects are asked to overcome this mechanical resistance and to cover as much distance as possible within a time period of 10 seconds. Fifteen male students (age: 27.7 ± 4.1 years, body height: 1.82 ± 0.46 m, body mass: 78.3 ± 6.7 kg) participated in a study. As the resistance force was set to 134 N, subjects ran 35.4 ± 2.6 m on the average corresponding to a mean running velocity of 3.52 ± 0.25 m·s(-1). The validity of the new test was examined by statistical inference with various measures related to alactic performance including a metabolic equivalent to estimate alactic capacity (2892 ± 525 mL O2), an estimate for the oxygen debt (2662 ± 315 ml), the step test by Margaria to estimate alactic energy flow (1691 ± 171 W), and a test to measure the maximal strength in the leg extensor muscles (2304 ± 351 N). The statistical evaluation showed that the new test is in good agreement with the theoretical assumptions for alactic performance. Significant correlation coefficients were found between the test criteria and the measures for alactic capacity (r = 0.79, p < 0.01) as well as alactic power (r = 0.77, p < 0.01). The testing procedure is easy to administer and it is best suited to evaluate the alactic capacity for bobsleigh pilots as well as for any other

  7. RHIC Sextant Test --- Physics and Performance

    NASA Astrophysics Data System (ADS)

    Wei, J.; Fischer, W.; Ahrens, L.; Brennan, J. M.; Brown, K.; Connolly, R.; dell, G. F.; Harrison, M.; Kewisch, J.; Mackay, W. W.; Mane, V.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C. G.; Trbojevic, D.; Tsoupas, N.

    1997-05-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (ATR) transfer line during the Sextant test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. The flexibility of the ATR and RHIC Sextant lattices is demonstrated by a widely tunable range of phase advance per cell. Longitudinal tomography is employed to reconstruct beam motion in phase space. Digitized two-dimensional video profile monitors are used to measure transverse beam emittances and beamline optics. The gold ion beam parameters are shown to be comparable to the RHIC design requirements.

  8. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  9. Spike Decomposition Technique: Modeling and Performance Tests

    NASA Astrophysics Data System (ADS)

    Nita, G. M.; Fleishman, G. D.; Gary, D. E.

    2008-05-01

    We develop an automated technique for fitting the spectral components of solar microwave spike bursts characterized by narrow-band (1-50~MHz) features of 1-10~ms duration, which are thought to be due to Electron-Cyclotron Maser emission. The algorithm is especially useful for periods when the spikes occur in densely packed clusters, where the algorithm is capable of decomposing overlapping spike structures into individual spectral components. To test the performance and applicability limits of this forward fitting algorithm, we perform comprehensive modeling of spike clusters characterized by various typical bandwidths, spike densities, and amplitude distributions. We find that, for a wide range of input parameters, the algorithm is able to recover the characteristic features of the modeled distributions within reasonable confidence intervals. Having model-tested the algorithm comprehensively against spike overlap, broadband spectral background, noise contamination, and possible contamination of cross-channel polarization, we apply the technique to observational data obtained from different instruments in different frequency ranges. Specifically, we studied spike clusters recorded by a Chinese Purple Mountain Observatory (PMO) spectrometer above 4.5 GHz and by Owens Valley Solar Array's FASR Subsystem Testbed instrument above 1 GHz. We study variation of the spike distribution parameters, such as amplitude, bandwidth and related derived physical parameters as a function of frequency and time. We discuss the implications of our results for the choice between competing models of spike generation and underlying physical processes. The method can be further applied to observations from other instruments and to other types of radio spectral fine structures. This work was supported in part by NSF grants AST-0607544 and ATM-0707319 and NASA grant NNG06GJ40G to New Jersey Institute of Technology.

  10. High Power Tests of Normal Conducting Single-Cell Structures

    SciTech Connect

    Dolgashev, V.A.; Tantawi, S.G.; Nantista, C.D.; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2007-11-07

    We report the results of the first high power tests of single-cell traveling-wave and standing-wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the gradient potential of normal-conducting rf-powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures and is powered by SLAC's XL-4 klystron. This setup was created for economical testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the SLAC Klystron Test Lab.

  11. Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2015-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 500 to 750 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  12. Hover performance tests of full scale variable geometry rotors

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.

    1976-01-01

    Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.

  13. Low-temperature performance of a power-pack for a 2-watt ELT

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser; Fuksa, Radek

    The performance characteristics of two power packs for an airborne emergency locator transmitter (ELT) are described. One of these power packs is based on the use of 12 C-size alkaline cells; the other, on the use of four Li/SOCl2 cells. The performance under load of the two power packs was tested as a function of operating temperature. In these tests, the ELT with power pack was held in a cold chamber at the desired temperature for 24 h or longer prior to turning on the ELT; at this point, the load voltage across both the continuous drain and the pulse load circuits was monitored. It was found that, at temperatures lower than -10 C, only the Li/SOCl2-based power pack was capable of meeting both the desired discharge lifetime and power output requirements.

  14. 1981 flower power field testing program

    SciTech Connect

    Walter, J.; Aakre, P.; Derry, J.

    1982-01-01

    Twelve typical farm tractors representing three manufacturers were operated on North Dakota farms during the 1981 crop season. The two fuels that were used were blends of 50% sunflower oil - 50% diesel fuel and 25% sunflower oil - 75% diesel fuel. The fuel handling characteristics of the blends and the durability effect on the engies were evaluated. There were no particular problems with fuel handling or engine performance while the tractors accumulated 6300 total hours. Engine inspection did reveal excess carbon deposits on several engine components. Engines with rectangular style compression rings were more prone to ring sticking problems which accelerated liner wear. 6 figures, 2 tables.

  15. Engineering Development of Coal-Fired High Performance Power Systems

    SciTech Connect

    2000-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47% NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input all solid wastes benign cost of electricity {le}{le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.2 HITAF Air Heaters

  16. Performance analysis and visualization of electric power systems

    NASA Astrophysics Data System (ADS)

    Dong, Xuejiang; Shinozuka, Masanobu

    2003-08-01

    This paper describes a method of system performance evaluation for electric power network. The basic element that plays a crucial role here is the fragility information for transmission system equipment. The method utilizes the fragility information for evaluation of system performance degradation of LADWP's (Los Angeles Department of Water and Power's) power network damaged by a severe earthquake by comparing its performance before and after the earthquake event. One of the highlights of this paper is the use of computer code "PowerWorld" to visualize the state of power flow of the network, segment by segment. Similarly, the method can evaluate quantitatively the effect of various measures of rehabilitation or retrofit performed on equipment and/or facilities of the network. This is done by comparing the system performance with or without the rehabilitation. In this context, the results of experimental and analytical studies carried out by other researchers are used to determine the possible range of fragility enhancement associated with the rehabilitation of transformers in terms of base-isolation systems. In this analysis, 47 scenario earthquakes are used to develop the risk curves for the LADWP"s power transmission system. The risk curve can then be correlated to economic impact of the reduction in power supply due to earthquake. Recovery aspects of the damaged power system will be studied from this point of view in future.

  17. LARGO hot water system thermal performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  18. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  19. The Great Plains Wind Power Test Facility

    SciTech Connect

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  20. The Importance of Teaching Power in Statistical Hypothesis Testing

    ERIC Educational Resources Information Center

    Olinsky, Alan; Schumacher, Phyllis; Quinn, John

    2012-01-01

    In this paper, we discuss the importance of teaching power considerations in statistical hypothesis testing. Statistical power analysis determines the ability of a study to detect a meaningful effect size, where the effect size is the difference between the hypothesized value of the population parameter under the null hypothesis and the true value…

  1. PERFORMANCE TESTING OF THE DIPERNA SWEEPER

    EPA Science Inventory

    The DiPerna Sweeper, a partial-vacuum oil skimmer, was tested in a two-week test program conducted at the U.S. Environmental Test Tank (OHMSETT) in Leonardo, New Jersey. Forty-three oil recovery tests were run. The object of the program was to establish a range of best performanc...

  2. Effects of Test Familiarization on SAT Performance.

    ERIC Educational Resources Information Center

    Powers, Donald E.; Alderman, Donald L.

    1983-01-01

    Prepublication copies of an extensive test familiarization booklet were sent to a random sample of Scholastic Aptitude Test candidates. The booklet had little, if any, effect on test scores, but it did alter examinees' tendencies to omit questions and improved their confidence with various aspects of test taking. (Author/PN)

  3. Long duration tests of a low power arcjet thruster

    NASA Astrophysics Data System (ADS)

    Nakajima, Hirofumi; Yasuda, Yuzuru; Onoe, Ken-Ichi; Yoshikawa, Takao; Ishii, Masahiro; Uematsu, Kazuo

    Endurance tests of a low power arcjet thruster have been carried out at a power level of about 0.6 kW using a hydrogen/nitrogen propellant mixture simulating fully decomposed hydrazine. In order to settle the problems of steady-state and startup erosion, the following life tests were conducted: (1) steady-state test over 50 hours of operation; (2) on-off (startup) test of 1000 cycles. The steady-state voltage increase of about 15 V signaled a recession of the cathode tip. The amounts of cathode and anode erosion were 1.1 mg and 3.5 mg, respectively. The anode and cathode erosion rates after startup test were 4.4 micro-g/cycle and 4.9 micro-g/cycle, respectively. The thruster characteristics after these testing were very similar to those observed before testing. No life limiting mechanisms were observed during the course of testing.

  4. Power Measurement for High Performance Computing: State of the Art

    SciTech Connect

    Hsu, Chung-Hsing; Poole, Stephen W

    2011-01-01

    Power utilization is a primary concern for high performance computing (HPC). Understanding it through physical measurements provides the critical first step to developing effective control techniques, yet obtaining power measurements remains an ad hoc process. In this paper, we survey popular measurement methods for HPC in terms of their measurement domains. We point out that the measurement process is slowly being standardized, and the real challenge lies in the real-time analysis of massive power data.

  5. Design of an Adaptive Power Regulation Mechanism and a Nozzle for a Hydroelectric Power Plant Turbine Test Rig

    NASA Astrophysics Data System (ADS)

    Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.

  6. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  7. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    SciTech Connect

    Stirbet, M; Campisi, I E; Daly, E F; Davis, G K; Drury, M; Kneisel, P; Myneni, G; Powers, T; Schneider, W J; Wilson, K M; Kang, Y; Cummings, K A; Hardek, T

    2001-06-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement.

  8. TESTING PROCEDURES AND RESULTS OF THE PROTOTYPE FUNDAMENTAL POWER COUPLER FOR THE SPALLATION NEUTRON SOURCE

    SciTech Connect

    M. STIRBET; I.E. CAMPISI; ET AL

    2001-06-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement.

  9. When does power disparity help or hurt group performance?

    PubMed

    Tarakci, Murat; Greer, Lindred L; Groenen, Patrick J F

    2016-03-01

    Power differences are ubiquitous in social settings. However, the question of whether groups with higher or lower power disparity achieve better performance has thus far received conflicting answers. To address this issue, we identify 3 underlying assumptions in the literature that may have led to these divergent findings, including a myopic focus on static hierarchies, an assumption that those at the top of hierarchies are competent at group tasks, and an assumption that equality is not possible. We employ a multimethod set of studies to examine these assumptions and to understand when power disparity will help or harm group performance. First, our agent-based simulation analyses show that by unpacking these common implicit assumptions in power research, we can explain earlier disparate findings--power disparity benefits group performance when it is dynamically aligned with the power holder's task competence, and harms group performance when held constant and/or is not aligned with task competence. Second, our empirical findings in both a field study of fraud investigation groups and a multiround laboratory study corroborate the simulation results. We thereby contribute to research on power by highlighting a dynamic understanding of power in groups and explaining how current implicit assumptions may lead to opposing findings. PMID:26524111

  10. Power Enhancement in High Dimensional Cross-Sectional Tests

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Yao, Jiawei

    2016-01-01

    We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. PMID:26778846

  11. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  12. Tiny biomedical amplifier combines high performance, low power drain

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1965-01-01

    Transistorized, portable, high performance amplifier with low power drain facilitates biomedical studies on mobile subjects. This device, which utilizes a differential input to obtain a common-mode rejection, is used for amplifying electrocardiogram and electromyogram signals.

  13. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    PubMed

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939

  14. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  15. Development of a field test for upper-body power.

    PubMed

    Shim, A L; Bailey, M L; Westings, S H

    2001-05-01

    The purpose of this study was to develop a field test capable of measuring upper-body power through the use of a common weight-training apparatus, a Smith machine (SM), set up for bench press (BP) movement. A small, battery-operated digital timing device was designed and constructed to allow a precise calculation of power (in conjunction with measures of distance and force) for this specific movement, which involved an explosive press from the chest to a position just short of full arm extension. In pilot work, 1 repetition maximums (1RM) were determined on the SM BP for 3 male subjects, and by subsequently testing power on the same subjects at varying resistances, an average relative percentage of the 1RM-producing peak power values was found by power curve analysis for test standardization. Reliability was assessed (using 11 men) by SM power measurements taken over 3 days on the SM fitted with the timer. An intraclass R (0.998) indicated a high correlation between the 3 separate field-test trials. Finally, 8 male subjects were used to compare SM scores with a criterion measure, the Linea Isokinetic BP station (Loredan Biomedical, Inc., Sacramento CA). A Pearson product moment coefficient found a high correlation between the field test (SM) and Linea power scores (r = 0.987). A 2-tailed dependent t-test between the field and criterion scores was not significant, suggesting that no consistent error variable was present. It can be concluded that this is a valid field test of power for this movement. PMID:11710404

  16. When the Test of Mediation is More Powerful than the Test of the Total Effect

    PubMed Central

    O'Rourke, Holly P.; MacKinnon, David P.

    2014-01-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. First, a study compared analytical power of the mediated effect to the total effect in a single mediator model to identify the situations in which the inclusion of one mediator increased statistical power. Results from the first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were non-zero and equal across models. Next, a study identified conditions where power was greater for the test of the total mediated effect compared to the test of the total effect in the parallel two mediator model. Results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results found in the first study. Finally, a study assessed analytical power for a sequential (three-path) two mediator model and compared power to detect the three-path mediated effect to power to detect both the test of the total effect and the test of the mediated effect for the single mediator model. Results indicated that the three-path mediated effect had more power than the mediated effect from the single mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed. PMID:24903690

  17. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    PubMed

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. PMID:25888684

  18. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  19. Power- and Cooling-Aware Parallel Performance Diagnosis

    SciTech Connect

    Knapp, Rashawn; Karavanic, Karen; Krishnamoorthy, Sriram; Marquez, Andres

    2011-12-14

    Increasing concern about the power consumption of data centers and computer laboratories, which in some cases matches or exceeds the resources required to power a small city, drive a need for a new, integrated approach to parallel performance diagnosis that integrates traditional application oriented performance data with measurements of the physical runtime environment. We have developed infrastructure for combined evaluation of system, application, and machine room performance in the high end environment. We motivate our approach, with a case study of the performance, power and cooling impact of the choice of physical location for a scientific application within the machine room. We present a new intensity metric for use in automated performance diagnosis tools, and discuss the challenges encountered.

  20. Performance testing of LiDAR exploitation software

    NASA Astrophysics Data System (ADS)

    Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-04-01

    Mobile LiDAR systems are being used widely in recent years for many applications in the field of geoscience. One of most important limitations of this technology is the large computational requirements involved in data processing. Several software solutions for data processing are available in the market, but users are often unknown about the methodologies to verify their performance accurately. In this work a methodology for LiDAR software performance testing is presented and six different suites are studied: QT Modeler, AutoCAD Civil 3D, Mars 7, Fledermaus, Carlson and TopoDOT (all of them in x64). Results depict as QTModeler, TopoDOT and AutoCAD Civil 3D allow the loading of large datasets, while Fledermaus, Mars7 and Carlson do not achieve these powerful performance. AutoCAD Civil 3D needs large loading time in comparison with the most powerful softwares such as QTModeler and TopoDOT. Carlson suite depicts the poorest results among all the softwares under study, where point clouds larger than 5 million points cannot be loaded and loading time is very large in comparison with the other suites even for the smaller datasets. AutoCAD Civil 3D, Carlson and TopoDOT show more threads than other softwares like QTModeler, Mars7 and Fledermaus.

  1. Solar power plant performance evaluation: simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  2. Long life testing of spare Mariner Venus '67 hardware. [power conditioning electronics

    NASA Technical Reports Server (NTRS)

    Silverman, S. W.

    1976-01-01

    The faultless performance of the Mariner Venus '67 Power Conditioning Electronics (PCE) throughout six years of continuous operation in a simulated space environment is reported. Weekly functional tests supplemented by daily monitoring verified that the PCE equipment can perform to its intended functions for at least six years without apparent performance degradation. Performance throughout the test period was very stable, there are no circuit or redundancy improvements to be considered. When the equipment was examined after the test was completed, there was no evidence of any physical damage nor any difficulty in disconnecting the wiring connectors.

  3. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-02-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  4. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-20

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  5. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  6. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  7. High power tests of dressed supconducting 1.3 GHz RF cavities

    SciTech Connect

    Hocker, A.; Harms, E.R.; Lunin, A.; Sukhanov, A.; /Fermilab

    2011-03-01

    A single-cavity test cryostat is used to conduct pulsed high power RF tests of superconducting 1.3 GHz RF cavities at 2 K. The cavities under test are welded inside individual helium vessels and are outfitted ('dressed') with a fundamental power coupler, higher-order mode couplers, magnetic shielding, a blade tuner, and piezoelectric tuners. The cavity performance is evaluated in terms of accelerating gradient, unloaded quality factor, and field emission, and the functionality of the auxiliary components is verified. Test results from the first set of dressed cavities are presented here.

  8. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    SciTech Connect

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  9. High Power RF Test Facility at the SNS

    SciTech Connect

    Y.W. Kang; D.E. Anderson; I.E. Campisi; M. Champion; M.T. Crofford; R.E. Fuja; P.A. Gurd; S. Hasan; K.-U. Kasemir; M.P. McCarthy; D. Stout; J.Y. Tang; A.V. Vassioutchenko; M. Wezensky; G.K. Davis; M. A. Drury; T. Powers; M. Stirbet

    2005-05-16

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

  10. Predicting Death from Behavioral Test Performance

    ERIC Educational Resources Information Center

    Botwinick, Jack; And Others

    1978-01-01

    This study described several brief behavioral measures which, with further validation, could be useful in predicting the deaths of older adults within a five-year period following testing. Such tests can be used in routine biomedical examinations, alerting the physician to possible problems in the future. (Author)

  11. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  12. Failure at the top: How power undermines collaborative performance.

    PubMed

    Hildreth, John Angus D; Anderson, Cameron

    2016-02-01

    All too commonly, we see groups of leaders fail to accomplish their stated goals when working together--legislators who cannot agree on a bill, heads of state who cannot draft meaningful environmental policy, or boards of trustees who make disastrous decisions for their school. The current research examines whether groups of leaders fail as often as they do in part because of the power each leader is accustomed to possessing among his or her constituents. In multiple studies we found that high power individuals, when working together in groups, performed worse than did other groups: individuals randomly assigned power in an initial task were less creative when they then worked together in groups on a subsequent task (Studies 1A and 4). Individuals with higher power who worked together in groups were also less likely to reach agreement on a difficult negotiation task, whether these groups comprised actual executives from an extant organization (Study 2) or participants randomly assigned power in the laboratory (Study 3). Mediation analyses suggest that groups of high power individuals performed worse because they fought over their relative status in the group, were less focused on the task, and shared information with each other less effectively. However, high power individuals were more effective when working on tasks that required less coordination: they were more creative (Studies 1B and 4) and persisted longer on a difficult task than other groups. Therefore, group processes are the key problem for groups of high power individuals when they work together. PMID:26785063

  13. 10 CFR 26.168 - Blind performance testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Blind performance testing. 26.168 Section 26.168 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Laboratories Certified by the Department of Health and Human Services § 26.168 Blind performance testing. (a) Each licensee and other entity shall submit blind performance test samples to...

  14. Research on Methods of Synthetic Performance Testing. Final Report.

    ERIC Educational Resources Information Center

    Osborn, William C.; Ford, J. Patrick

    A synthetic performance test is a job performance test that has been degraded to some degree in the range of tasks covered or in the fidelity of stimulus/response features. Since further development is needed before synthetic performance testing is valid and efficient, this research project focused on three objectives: to (1) identify problems…

  15. Virtex-II Pro PowerPC SEE Characterization Test Methods and Results

    NASA Technical Reports Server (NTRS)

    Petrick, David; Powell, Wesley; LaBel, Ken; Howard, James

    2005-01-01

    The Xilinx Vix-11 Pro is a platform FPGA that embeds multiple microprocessors within the fabric of an SRAM-based reprogrammable FPGA. The variety and quantity of resources provided by this family of devices make them very attractive for spaceflight applications. However,these devices will be susceptible to single event effects (SEE), which must be mitigated. Observations from prior testing of the Xilinx Virtex-II Pro suggest that the PowerPC core has significant vulnerability to SEES. However, these initial tests were not designed to exclusively target the functionality of the PowerPC, therefore making it difficult to distinguish processor upsets from fabric upsets. The main focus of this paper involves detailed SEE testing of the embedded PowerPC core. Due to the complexity of the PowerPC, various custom test applications, both static and dynamic, will be designed to isolate each Unit of the processor. Collective analysis of the test results will provide insight into the exact upset mechanism of the PowerPC. With this information, mitigations schemes can be developed and tested that address the specific susceptibilities of these devices. The test bed will be the Xilinx SEE Consortium Virtex-II Pro test board, which allows for configuration scrubbing, design triplication, and ease of data collection. Testing will be performed at the Indiana University Cyclotron Facility using protons of varying energy levels and fluencies. This paper will present the detailed test approach along with the results.

  16. Power electronics performance in cryogenic environment: evaluation for use in HTS power devices

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Valtchev, S.; Pina, J.; Gonçalves, A.; Ventim Neves, M.; Rodrigues, A. L.

    2008-02-01

    Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.

  17. The NASA B-757 HIRF test series: Low power on-the-ground tests

    SciTech Connect

    Poggio, A.J.; Zacharias, R.A.; Pennock, S.T.; Avalle, C.A.; Carney, H.

    1995-07-01

    The data acquisition phase of a program intended to provide data for the validation of computational, analytical and experimental for the assessment of electromagnetic effects i n transports, for the checkout of instrumentation for following test programs, and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. A series of fly-by experiments were conducted in early 1995 in which the NASA B-757 was flown in the vicinity of a Voice of America station ({approximately}25 MHz), a fixed transmitter driving an LP array (172 MHz), and an ASRF radar at Wallops Island (430 MHz). In this paper, the overall test program is defined with particular attention to the on-the-ground portion. It is described in detail with presentation of the test rationale, test layout, and samples of the data. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation will also be presented.

  18. Tracking Standardized Test Performance of Rural Low Income Youth.

    ERIC Educational Resources Information Center

    Cloy, Charles S.; And Others

    1984-01-01

    High school students trained in test-taking skills performed markedly higher on the Nelson-Denny Reading Test than did controls. On two subtests, vocabulary and comprehension, controls scored significantly lower than the experimental group. A relationship was noted between parental help with test-taking preparation and level of test performance.…

  19. A High-power Electric Propulsion Test Platform in Space

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  20. Initial results of sensitivity tests - Performed on the RE-1000 free-piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Schreiber, J. G.

    1984-01-01

    Tests have been performed over several years to investigate the dynamics of a free-piston Stirling engine for the purpose of computer code validation. Tests on the 1 kW (1.33 hp) single cylinder engine have involved the determination of the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass, and displacer dynamics. Maps of engine performance have been recorded with the use of an 81.2 percent porosity regenerator. Both a high-efficiency displacer and a high-power displacer were tested; efficiencies up to 33 percent were recorded, and power output of approximately 1500 W was obtained. Preliminary results of the sensitivity tests are presented, and descriptions of future tests are given.

  1. Test plan for dig-face characterization performance testing

    SciTech Connect

    Josten, N.E.

    1993-09-01

    The dig-face characterization concept has been under development at the Idaho National Engineering Laboratory (INEL) since FY 1992 through the support of the Buried Waste Integrated Demonstration Program. A Dig-face Characterization System conducts continuous subsurface characterization simultaneously with retrieval of hazardous and radioactive waste from buried waste sites. The system deploys multiple sensors at the retrieval operation dig-face and collects data that provide a basis for detecting, locating, and identifying hazardous conditions before they are disturbed by the retrieval equipment. This test plan describes initial efforts to test the dig-face characterization concept at the INEL Cold Test Pit using a simplified prototype apparatus and off-the-shelf sensors. The Cold Test Pit is a simulated waste site containing hazardous and radioactive waste surrogates at known locations. Testing will be directed toward three generic characterization problems: metal detection, plume detection, and radioactive source detection. The prototype apparatus will gather data using magnetometers, a ground conductivity meter, a trace gas analyzer, and a gamma ray sensor during simulated retrieval of the surrogate waste materials. The data acquired by a dig-face characterization system are unique because of the high precision, high data density, and multiple viewpoints attainable through the dig-face deployment approach. The test plan establishes procedures for collecting and validating a representative dig-face characterization data set. Analysis of these data will focus on developing criteria for predicting the depth, location, composition, and other characteristics of the surrogate waste materials. If successful, this proof-of-concept exercise will provide a foundation for future development of a fully-operational system that is capable of operating on an actual waste site.

  2. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  3. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    NASA Astrophysics Data System (ADS)

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  4. Transit car demonstration test program on the roll dynamics unit. Volume 2. Demonstration of a transit car performance test on the roll dynamic unit. Final report

    SciTech Connect

    Arnold, G.; Nelson, S.; Cooperrider, N.K.; Law, E.H.; Fries, R.H.

    1982-02-11

    This report, Volume II, contains the results, conclusions, and recommendations of the first performance test of a transit care on the RDU. This report is limited to performance tests. The objective is to identify advantages and disadvantages of performance testing on the rollers of the RDU as highlighted by the SOAC test. The report involved separate testing, done by TTC personnel, in such traditional performance areas of transit vehicle operation ass traction, acceleration/deceleration, energy consumption, and spin/slide performance. The results of the successful performance test of a transit car on a roller unit is presented and the advantages of this method of testing is discussed. Acceleration, deceleration, spin/slide, and power consumption tests, although of limited scope in comparison to the track tests performed on the same transit car, did show the feasibility of roller testing. It is concluded that the RDU is most suited for developmental testing of transit car systems particularly for power consumption and for cars with non-standard wheel gage. Tests should be of such scope as to justify the cost of car setup on the RDU. The following two test are recommended: (1) a power consumption study for a standard/non-standard gage transit car which investigates methods of reducing power consumption and (2) a non-standard gage full performance test.

  5. Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.

    2000-01-01

    An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of

  6. Performance of a flight-type laminar radiator with a Brayton power system. [for space electric power plant

    NASA Technical Reports Server (NTRS)

    Cintula, T. C.; Prok, G. M.; Smith, R. B.

    1974-01-01

    A space-type laminar flow radiator was designed and integrated with a 2- to 15-kilowatt Brayton electrical power generating system. The design, fabrication, and testing of this radiator are presented. Test results include performance under steady state and transient conditions. Included in the transient results is performance in a simulated low earth orbit. Results show that the computer design is conservative. Orbital transients show that a further reduction in radiator area over that determined from steady state conditions is possible. Radiator efficiency was always greater than 83 percent.

  7. 40 CFR 60.444 - Performance test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Performance test procedures. 60.444... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Pressure Sensitive Tape and Label Surface Coating Operations § 60.444 Performance test procedures. (a)...

  8. Familiarization Effects of an Elliptical All-out Test and the Wingate Test Based on Mechanical Power Indices.

    PubMed

    Ozkaya, Ozgur

    2013-01-01

    The Wingate all-out test (WAT) is commonly used to estimate anaerobic capabilities of athletes by using an upper or lower body cycle ergometer, however, a new test modality called elliptical all-out test (EAT) which measures activated whole-body locomotor tasks has recently been proposed. The purpose of this study was to evaluate the familiarization effects of a 30-s EAT versus WAT. Twenty male trained athletes performed pre-familiarization (Trial- I), post-familiarization (Trial-II) and retest of Trial-II (Trial-III) sessions on both cycle ergometer and elliptical trainer. Peak power (PP), average power (AP), power drop (PD) and fatigue index ratio (FI%) were analyzed using student's t-test for paired samples and correlated by intra-class correlation coefficients (ICC). Moreover, an error detection procedure was administered using data attained from illogical interrelations among 5-s segments of 30-s tests. The main results showed that there were significant familiarization effects in all mechanical power outputs obtained from Trial-I and Trial-II in both EAT (ICC = 0.49-0.55) and WAT (ICC = 0.50-0.57) performances (p ≤ 0.01). Significant segmental disorders were detected in power production during Trial-I of EAT, however, none existed in any of test trails in the WAT (p ≤ 0.001). After familiarization sessions, reliability coefficients between Trial-II and Trial-III showed moderate to strong-level agreements for both EAT (ICC = 0.74-0.91) and the WAT (ICC=0.76-0.93). Our results suggested that prior to the performance tests, combination of a well designed familiarization session with one full all-out test administration is necessary to estimate the least moderately reliable and accurate test indices for both WAT and EAT. Key PointsA well designed familiarization session, and then, one additional all-out test administration, several days prior to main test, is suggested to estimate more accurate and reliable retest correlations for both cycling and elliptical

  9. A Design Tool for Matching UAV Propeller and Power Plant Performance

    NASA Astrophysics Data System (ADS)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  10. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  11. Radiation protection performance indicators at the Nuclear Power Plant Krsko.

    PubMed

    Janzekovic, Helena

    2006-06-01

    Nuclear power plant safety performance indicators are developed "by nuclear operating organisations to monitor their own performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on performance relative to that of other plants". In addition, performance indicators are widely used by regulatory authorities although the use is not harmonised. Two basic performance indicators related to good radiation protection practice are collective radiation exposure and volume of low-level radioactive waste. In 2000, Nuclear Power Plant Krsko, a Westinghouse pressurised water reactor with electrical output 700 MW, finished an extensive modernisation including the replacement of both steam generators. While the annual volume of low-level radioactive waste does not show a specific trend related to modernisation, the annual collective dose reached maximum, i.e. 2.60 man Sv, and dropped to 1.13 man Sv in 2001. During the replacement of the steam generators in 2000, the dose associated with this activity was 1.48 man Sv. The annual doses in 2002 and 2003 were 0.53 and 0.80 man Sv, respectively, nearing thus the goal set by the US Institute of Nuclear Power Operators, which is 0.65 man Sv. Therefore, inasmuch as collective dose as the radiation protection performance indicator are concerned, the modernisation of the Krsko nuclear power plant was a success. PMID:16832974

  12. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  13. High performance protection circuit for power electronics applications

    SciTech Connect

    Tudoran, Cristian D. Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  14. International Space Station Electric Power System Performance Code-SPACE

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; Rodriguez, Carlos

    2005-01-01

    The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

  15. MSR performance enhancements and modifications at St. Lucie Power Plant

    SciTech Connect

    Rubano, V.F.; Ugelow, A.G. ); Menocal, A.G. )

    1989-01-01

    The St. Lucie Power Plant provides an excellent historical prospective on various moisture separator/reheater improvements. Between the two essentially identical units there is a total of 14 years of operating experience with various moisture separator/reheater configurations, with a combination of four different heat transfer surfaces and three moisture removal configurations. Through various modifications and enhancements, the performance and the reliability of the moisture separator/reheaters at the St. Lucie Power Plant and consequently the overall plant performance has been improved. This improvement has taken place over several years and involves changes in both the heat transfer and moisture removal areas. This paper provides an overview of the history and description of moisture separator/reheater modifications at the St. Lucie Power Plant with the resulting performance improvements.

  16. Baseline tests of the power-train electric delivery van

    NASA Technical Reports Server (NTRS)

    Lumannick, S.; Dustin, M. O.; Bozek, J. M.

    1977-01-01

    Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.

  17. Interfering Effects of Test Anxiety on Test Performance: A Growing Educational Problem and Solutions to It.

    ERIC Educational Resources Information Center

    Hill, Kennedy T.

    1983-01-01

    Reviews a 20-year program of research on motivation and test performance, concluding that test anxiety and test-taking skill deficits are distorting factors in efforts to test student aptitude, achievement, and competency. (FL)

  18. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  19. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  20. Optical performance test & analysis of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Choi, Junoh

    Cataract is a condition in the eye that if left untreated, could lead to blindness. One of the effective ways to treat cataract is the removal of the cataractous natural crystalline lens and implantation of an artificial lens called an intraocular lens(IOL). The designs of the IOLs have shown improvements over the years to further imitate natural human vision. A need for an objective testing and analysis tool for the latest IOLs grow with the advancements of the IOLs. In this dissertation, I present a system capable of objective test and analysis of the advanced IOLs. The system consists of (1) Model eye into which an IOL can be inserted to mimic conditions of the human eye. (2) Modulation Transfer Function measurement setup capable of through-focus test for depth of field studies and polychromatic test for study of effects of chromatization. (3) Use of Defocus Transfer Function to simulate depth of field characteristic of rotationally symmetric multifocal designs and extension of the function to polychromatic conditions. (4) Several target imaging experiments for comparison of stray light artifacts and simulation using a non-sequential ray trace package.

  1. Physical performance testing of digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Kuwabara, Takao; Yoshikawa, Kenji

    2015-03-01

    Digital breast tomosynthesis has become accepted in clinical use. It is important to physically evaluate a system to ensure that it is working at full performance. Non-linear reconstruction processing is proposed to improve interpretation of clinical images by enhancing the minute contrasts of breast tissue while suppressing metal artifacts. Because existing measuring methods assume a linear system, physical evaluation applied to images reconstructed with non-linear processing may result in unnatural values. We investigated the influence of different reconstruction methods on physical evaluations. We suggest using images reconstructed by back projection processing without a filter to ensure the device performance directly.

  2. 42 CFR 493.1487 - Condition: Laboratories performing high complexity testing; testing personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity... REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing High Complexity Testing § 493.1487 Condition: Laboratories performing high complexity testing; testing personnel. The laboratory has...

  3. Wind turbine performance: Methods and criteria for reliability of measured power curves

    SciTech Connect

    Griffin, D.A.

    1996-12-31

    In order to evaluate the performance of prototype turbines, and to quantify incremental changes in performance through field testing, Advanced Wind Turbines (AWT) has been developing methods and requirements for power curve measurement. In this paper, field test data is used to illustrate several issues and trends which have resulted from this work. Averaging and binning processes, data hours per wind-speed bin, wind turbulence levels, and anemometry methods are all shown to have significant impacts on the resulting power curves. Criteria are given by which the AWT power curves show a high degree of repeatability, and these criteria are compared and contrasted with current published standards for power curve measurement. 6 refs., 5 figs., 5 tabs.

  4. SIMS prototype system 4 - performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A self-contained, preassembled air type solar system, designed for installation remote from the dwelling, to provide space heating and hot water was evaluated. Data analysis is included which documents the system performance and verifies its suitability for field installation.

  5. PUREX (SAMCONS) uninterruptible power supply (UPS) acceptance test procedure

    SciTech Connect

    Blackaby, W.B.

    1997-09-01

    This Acceptance Test Procedure for the PUREX Surveillance and Monitoring and Control System (SAMCONS) Uninterruptible Power Supply (UPS) provides for testing and verifying the proper operation of the control panel alarms and trouble functions, the 6roper functioning of the AC inverter, ability of the battery supply to maintain the SAMCONS load for a minimum of two hours , and proper interaction with the SAMCONS Video graphic displays for alarm displays.

  6. Aerodynamics and performance testing of the VAWT

    SciTech Connect

    Klimas, P.C.

    1981-01-01

    Early investigations suggest that reductions in cost of energy (COE) and increases in reliability for VAWT systems may be brought about through relatively inexpensive changes to the current aerodynamic design. This design uses blades of symmetrical cross-section mounted such that the radius from the rotating tower centerline is normal to the blade chord at roughly the 40% chord point. The envisioned changes to this existing design are intended to: (1) lower cut-in windspeed; (2) increase maximum efficiency; (3) limit maximum aerodynamic power; and (4) limit peak aerodynamic torques. This paper describes certain experiments designed to both better understand the aerodynamics of a section operating in an unsteady, curvilinear flowfield and achieve some of the desired changes in section properties. The common goal of all of these experiments is to lower VAWT COE and increase system reliability.

  7. When the test of mediation is more powerful than the test of the total effect.

    PubMed

    O'Rourke, Holly P; MacKinnon, David P

    2015-06-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed. PMID:24903690

  8. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  9. Off-Ice Anaerobic Power Does Not Predict On-Ice Repeated Shift Performance in Hockey.

    PubMed

    Peterson, Ben J; Fitzgerald, John S; Dietz, Calvin C; Ziegler, Kevin S; Baker, Sarah E; Snyder, Eric M

    2016-09-01

    Peterson, BJ, Fitzgerald, JS, Dietz, CC, Ziegler, KS, Baker, SE, and Snyder, EM. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J Strength Cond Res 30(9): 2375-2381, 2016-Anaerobic power is a significant predictor of acceleration and top speed in team sport athletes. Historically, these findings have been applied to ice hockey although recent research has brought their validity for this sport into question. As ice hockey emphasizes the ability to repeatedly produce power, single bout anaerobic power tests should be examined to determine their ability to predict on-ice performance. We tested whether conventional off-ice anaerobic power tests could predict on-ice acceleration, top speed, and repeated shift performance. Forty-five hockey players, aged 18-24 years, completed anthropometric, off-ice, and on-ice tests. Anthropometric and off-ice testing included height, weight, body composition, vertical jump, and Wingate tests. On-ice testing consisted of acceleration, top speed, and repeated shift fatigue tests. Vertical jump (VJ) (r = -0.42; r = -0.58), Wingate relative peak power (WRPP) (r = -0.32; r = -0.43), and relative mean power (WRMP) (r = -0.34; r = -0.48) were significantly correlated (p ≤ 0.05) to on-ice acceleration and top speed, respectively. Conversely, none of the off-ice tests correlated with on-ice repeated shift performance, as measured by first gate, second gate, or total course fatigue; VJ (r = 0.06; r = 0.13; r = 0.09), WRPP (r = 0.06; r = 0.14; r = 0.10), or WRMP (r = -0.10; r = -0.01; r = -0.01). Although conventional off-ice anaerobic power tests predict single bout on-ice acceleration and top speed, they neither predict the repeated shift ability of the player, nor are good markers for performance in ice hockey. PMID:26808844

  10. Development of traveling wave resonator based test bed for high power transmission line component testing

    NASA Astrophysics Data System (ADS)

    Jha, Akhil; Harikrishna, JVS; Ajesh, P.; Anand, Rohit; Trivedi, Rajesh; Mukherjee, Aparajita

    2015-12-01

    India is responsible for delivery of 8+1(prototype) RF sources to ITER Organization. Each RF source will provide 2.5MW of RF power at 2 VSWR in the frequency range of 35 to 65MHz. Eight such RF sources will generate total 20MW of RF power. A large number of high power transmission line components are required for connecting various stages of RF source. To test these passive transmission line components at high power, prior to connecting with RF source system, a test facility is required. India is developing a 3MW test facility based on the concept of Traveling Wave Resonator (TWR) for testing of transmission line components. TWR is basically a ring resonator which will build high power under certain operation condition at resonant frequency (˜55MHz in this case). In TWR, power is fed to the ring via a directional coupler continuously which leads to development of high circulating power in the ring. The voltage and current magnitude inside the ring increases with the increasing circulating power. Detailed RF simulation and design of the TWR test bed has been done using high frequency simulator Microwave Studio (MWS). Calculations done for the ring gain, transmission loss, resonance frequency etc. and are verified with the simulation results. Concept validated using 3-1/8 inch prototype TWR test bed, where experiments were carried out with a ˜10dB (λ/4 coupled) coupler to feed the ring. Ring gain of ˜13.24dB (˜21times) was achieved with ˜0.17 dB of ring loss. Around 9.2 kW ring power is achieved with an input power of 440W. At present, the 3-1/8inch TWR test bed is being upgraded with a ˜15dB coupler to achieve ring gain ˜19-20dB (˜80-100 times). This concept will be finally adopted for 12inch TWR test bed to achieve 3MW ring power with ˜30-40kW of input power. In this paper, detailed design, simulation, test results out of prototype activity and future plan for establishing MW level transmission line test bed is described.

  11. RHIC GAMMA TRANSITION JUMP POWER SUPPLY PROTOTYPE TEST.

    SciTech Connect

    MI,J.; GANETIS,G.; LOUIE,W.; BRUNO,D.; ZAPASEK,R.; SANDBERG,J.; ZHANG,W.

    2001-06-18

    This paper describes the principle and test results of the prototype RHIC Gamma Transition Jump Power Supply. The jump power supply principle is introduced and illustrated along with diagrams in this paper. The prototype is built with Insulated Gate Bipolar Transistors (IGBT) as current direction switch components. Optically coupled IGBT drivers are used for the jump control switch. The jump time among the power supplies is synchronized from 40 to 60 milliseconds to meet the RHIC beam transition-crossing requirement. The short jump time is needed to avoid particle loss and to preserve the initial bunch area during the transition, thus successfully transferring the ion beams from the acceleration RF system to storage system. There are a total of twenty four jump power supplies that will be used. They synchronously switch the direction of the magnets current while the beam is being accelerated through the transition to reach the top storage energy. Each power supply will energize a group of super conducting magnets, which consists of four magnets that are connected in series. At the end, test results are listed, accompanied with the dummy load current waveform and prototype power supply picture.

  12. Comparative performance of solar thermal power generation concepts

    NASA Technical Reports Server (NTRS)

    Wen, L.; Wu, Y. C.

    1976-01-01

    A performance comparison is made between the central receiver system (power tower) and a distributed system using either dishes or troughs and lines to transport fluids to the power station. These systems were analyzed at a rated capacity of 30 MW of thermal energy delivered in the form of superheated steam at 538 C (1000 F) and 68 atm (1000 psia), using consistent weather data, collector surface waviness, pointing error, and electric conversion efficiency. The comparisons include technical considerations for component requirements, land utilization, and annual thermal energy collection rates. The relative merits of different representative systems are dependent upon the overall conversion as expressed in the form of performance factors in this paper. These factors are essentially indices of the relative performance effectiveness for different concepts based upon unit collector area. These performance factors enable further economic tradeoff studies of systems to be made by comparing them with projected production costs for these systems.

  13. Performance analysis of a solar-powered organic rankine cycle engine.

    PubMed

    Bryszewska-Mazurek, Anna; Swieboda, Tymoteusz; Mazurek, Wojciech

    2011-01-01

    This paper presents the performance analysis of a power plant with the Organic Rankine Cycle (ORC). The power plant is supplied by thermal energy utilized from a solar energy collector. R245fa was the working fluid in the thermodynamic cycle. The organic cycle with heat regeneration was built and tested experimentally. The ORC with a heat regenerator obtained the maximum thermodynamic efficiency of approximately 9%. PMID:21305882

  14. Dynamic testing of nuclear power plant structures: an evaluation

    SciTech Connect

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants.

  15. How Much Power and Speed Is Measured in This Test?

    ERIC Educational Resources Information Center

    Partchev, Ivailo; De Boeck, Paul; Steyer, Rolf

    2013-01-01

    An old issue in psychological assessment is to what extent power and speed each are measured by a given intelligence test. Starting from accuracy and response time data, an approach based on posterior time limits (cut-offs of recorded response time) leads to three kinds of recoded data: time data (whether or not the response precedes the cut-off),…

  16. For Tests That Are Predictively Powerful and without Social Prejudice

    ERIC Educational Resources Information Center

    Soares, Joseph A.

    2012-01-01

    In Philip Pullman's dark matter sci-fi trilogy, there is a golden compass that in the hands of the right person is predictively powerful; the same was supposed to be true of the SAT/ACT--the statistically indistinguishable standardized tests for college admissions. They were intended to be reliable mechanisms for identifying future trajectories,…

  17. Tests Of A Stirling-Engine Power Converter

    NASA Technical Reports Server (NTRS)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  18. Allometric Scaling of Wingate Anaerobic Power Test Scores in Women

    ERIC Educational Resources Information Center

    Hetzler, Ronald K.; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    In this study, we developed allometric exponents for scaling Wingate anaerobic test (WAnT) power data that are reflective in controlling for body mass (BM) and lean body mass (LBM) and established a normative WAnT data set for college-age women. One hundred women completed a standard WAnT. Allometric exponents and percentile ranks for peak (PP)…

  19. Results of Laboratory Testing of Advanced Power Strips

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  20. Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.

  1. D0 Experimental Area Emergency Backup Power and Generator Test

    SciTech Connect

    Markley, D.; /Fermilab

    1991-01-24

    The DO experimental area has a generator designated as emergency power. This generator provides power for critical loads and starts automatically upon loss of commercial power. This note concerns the testing of this generator. A list of loads is attached to this note. One of the loads on the emergency power grid is a 10KVA Uninterruptable Power Supply(UPS). The UPS powers the cryogenic controls and Oxygen deficiency hazard equipment(ODH) and has a minimum rating of 20 minutes while on its batteries(to cover the transfer time to/from the emergency generator). Jan 23,1991 at 1640 hrs this system was tested under the supervision of the Terry Ross, Marv Johnson, Dan Markley, Kelly Dixon, and John Urbin. The power feeder to the emergency power grid at DO was disconnected. The generator responded immediately and was supplying power to the emergency power grid in less than 10 seconds. During the 10 seconds that there was no power on the emergency grid the UPS switched on its inverter and provided uninterrupted power to the cryogenic control system and the ODH system. All of the motorized equipment shut off instrument air compressor, vacuum pumps 1 and 2, insulating vacuum blower, glycol cooling pumps, cooling tower fan, and Exhaust Fan 7(EF7). Upon reengagement of power to the grid from the emergency generator, all of the motorized loads started back up with the exception of vacuum pumps 1 and 2, and the UPS inverter turned off. Vacuum pumps 1 and 2 were delay started 20 seconds by the cryogenic control system as not to cause too large of a surge in power by all of the inductive loads starting at once. The DO building elevator which is also on emergency power was test run while the emergency generator was on line with all other emergency loads. The emergency generator current was 140 amps with all loads on line and running except the building elevator. This load of 140 amps is 27% of the generator's capacity. The cryogenic control and ODH system continued to function

  2. Performance of a Low-Power Cylindrical Hall Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Raitses, Yevgeny; Smirnov, Artem; Fisch, Nathaniel J.

    2007-01-01

    Recent mission studies have shown that a Hall thruster which operates at relatively constant thrust efficiency (45-55%) over a broad power range (300W - 3kW) is enabling for deep space science missions when compared with slate-of-the-art ion thrusters. While conventional (annular) Hall thrusters can operate at high thrust efficiency at kW power levels, it is difficult to construct one that operates over a broad power envelope down to 0 (100 W) while maintaining relatively high efficiency. In this note we report the measured performance (I(sub sp), thrust and efficiency) of a cylindrical Hall thruster operating at 0 (100 W) input power.

  3. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  4. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    NASA Astrophysics Data System (ADS)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  5. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically Coupled Configuration

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.

    2011-01-01

    A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  6. Survey of integrated gasification combined cycle power plant performance estimates

    NASA Astrophysics Data System (ADS)

    Larson, J. W.

    1980-03-01

    The idea of a combined cycle power plant integrated with a coal gasification process has attracted broad interest in recent years. This interest is based on unique attributes of this concept which include potentially low pollutant emissions, low heat rate and competitive economics as compared to conventional steam plants with stack gas scrubbing. Results from a survey of technical literature containing performance and economic predictions have been compiled for comparison and evaluation of this new technique. These performance and economic results indicate good promise for near-term commercialization of an integrated gasification combined cycle power plant using current gas turbine firing temperatures. Also, these data show that advancements in turbine firing temperature are expected to provide sufficiently favorable economics for the concept to penetrate the market now held by conventional steam power plants.

  7. Qualification testing of solar photovoltaic powered refrigerator freezers for medical use in remote geographic locations

    NASA Technical Reports Server (NTRS)

    Kaszeta, W. J.

    1982-01-01

    One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.

  8. System tests with electric thruster beam and accelerator directly powered from laboratory solar arrays

    NASA Technical Reports Server (NTRS)

    Stover, J. B.

    1976-01-01

    Laboratory high voltage solar arrays were operated directly connected to power the beam and accelerator loads of an 8-centimeter ion thruster. The beam array comprised conventional 2 by 2 centimeter solar cells; the accelerator array comprised multiple junction edge-illuminated solar cells. Conventional laboratory power supplies powered the thruster's other loads. Tests were made to evaluate thruster performance and to investigate possible electrical interactions between the solar arrays and the thruster. Thruster performance was the same as with conventional laboratory beam and accelerator power supplies. Most of the thruster beam short circuits that occurred during solar array operation were cleared spontaneously without automatic or manual intervention. No spontaneous clearing occurred during conventional power supply operation.

  9. Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

    PubMed

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971

  10. Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks

    PubMed Central

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971

  11. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  12. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    NASA Astrophysics Data System (ADS)

    1985-02-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  13. Performance of electric power meters and analyzers in adjustable-speed drive applications

    SciTech Connect

    Czarkowski, D.; Domijan, A. Jr.

    1997-12-31

    Electric adjustable-speed drives (ASDs) are increasingly used in heating, ventilating, and air-conditioning (HVAC) equipment due to the energy savings and comfort of operation they offer. Power electronic circuits that are employed in ASDs shape their input and output voltage and current waveforms, making them highly distorted from typical power-grid sinusoids. Accurate measurements of voltage, current, and power under nonsinusoidal conditions are essential for determining the efficiency of an HVAC unit and performing separation of losses between an ASD and an electric motor. That information is invaluable for HVAC equipment designers, manufacturers, and users. Three modern power meters and analyzers were tested to determine their accuracy with various nonsinusoidal waveforms applied. The meters were subjected to waveforms that are produced by the three most common ASD technologies used in air conditioners and heat pumps, namely, PWM induction, DC-brushless, and switched-reluctance drives. The tests were performed under field conditions and in a computer-controlled laboratory environment. The results obtained show that some meters can accurately measure electric power at the input to ASDs. However, the output power of ASDs for DC-brushless and switched-reluctance technology was not measured with acceptable accuracy by any of the tested meters. Possible reasons for meter inaccuracies and suggestions for performance improvement are given.

  14. New High Power Test Facility for VHF Power Amplifiers at LANSCE

    SciTech Connect

    Lyles, John T.; Archuletta, Steve; Baca, David M.; Bratton, Ray E.; Brennan, Nicholas W.; Davis, Jerry L.; Lopez, Luis J.; Rees, Daniel E.; Rodriguez, Manuelita B.; Sandoval, Gilbert M. Jr.; Steck, Andy I.; Summers, Richard D.; Vigil, Danny J.

    2011-01-01

    A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing the Thales TH628 Diacrode{sup R} and TH781 tetrode power amplifiers. Anode power requirements for the TH628 are 28 kV DC, with peak currents of 190 Amperes in long pulses. A charging power supply was obtained by reconfiguring a 2 MW beam power supply remaining from another project. A traditional ignitron crowbar was designed to rapidly discharge the 88 kJ stored energy. The anode power supply was extensively tested using a pulsed tetrode switch and resistor load. A new Fast Protect and Monitor System (FPMS) was designed to take samples of RF reflected power, anode HV, and various tube currents, with outputs to quench the HV charging supply, remove RF drive and disable the conduction bias pulse to the grid of each tube during fault events. The entire test stand is controlled with a programmable logic controller (PLC), for normal startup sequencing and timing, protection against loss of cooling, and provision for operator GUI.

  15. The Consequence of Consequence: Motivation, Anxiety, and Test Performance.

    ERIC Educational Resources Information Center

    Wolf, Lisa F.; Smith, Jeffrey K.

    1995-01-01

    The relationships of test consequence, motivation, anxiety, and performance were studied with 158 undergraduates taking a child development course. Results indicated that test consequence (grade or no grade) had a strong influence on motivation and a modest influence on performance. Motivation and anxiety had opposite effects on performance. (SLD)

  16. X-38 De-orbit Propulsion Stage MLI Performance Test

    NASA Technical Reports Server (NTRS)

    Kittredge, Ken

    2002-01-01

    This paper presents a performance test of the X-38 Deorbit Propulsion Stage (DPS) Multi-Layer Insulation (MLI) system. The purpose of this test is to determine if MLI performance meets or exceeds thermal analyses requirements and if there is performance degradation due to seams.

  17. HPM (high power microwave) testing of electronic components

    SciTech Connect

    Antinone, R.; Ng, W.C.

    1989-05-10

    This report documents the results of a study of high power microwave (HPM) vulnerability of electronic components commonly used in weapon systems. The study was carried out at the Lawrence Livermore National Laboratory from August through October 1988. The objective of this study was to determine the threshold levels for upset or disturbance and damage of the devices under test (DUT). In these tests pulsed microwave energy was directly injected into the terminal of the DUT and in most cases a 50-ohm microstrip test fixture was used to ensure that 50-ohm transmission was maintained as close to the DUT as possible. 3 refs., 41 figs., 10 tabs.

  18. Design concepts for a pulse power test facility to simulate EMP surges in overhead power lines. Part I. Fast pulse

    SciTech Connect

    Ramrus, A.

    1986-02-01

    Objective of the study was to create conceptual designs of high voltage pulsers capable of simulating two types of electromagnetic pulses (EMPs) caused by a high-altitude nuclear burst; the slow rise time magnetohydrodynamic (MHD-EMP) and the fast rise time high-altitude EMP (HEMP). The pulser design was directed towards facilities capable of performing EMP vulnerability testing of components used in the national electric power system.

  19. Predictors of Academic Performance: National Senior Certificate versus National Benchmark Test

    ERIC Educational Resources Information Center

    Rankin, N.; Schoer, V.; Sebastiao, C.; van Walbeek, C.

    2012-01-01

    This article considers students' performance in an identical Economics test at two universities to investigate the predictive power of the NBT against that of Mathematics in the National Senior Certificate (NSC) exam. We find that, on average, both NBT and NSC results are useful predictors of performance in first year Economics. However, for…

  20. Effects of speed, agility, quickness training method on power performance in elite soccer players.

    PubMed

    Jovanovic, Mario; Sporis, Goran; Omrcen, Darija; Fiorentini, Fredi

    2011-05-01

    The purpose of this study was to evaluate the effects of the speed, agility, quickness (SAQ) training method on power performance in soccer players. Soccer players were assigned randomly to 2 groups: experimental group (EG; n = 50) and control group (n = 50). Power performance was assessed by a test of quickness--the 5-m sprint, a test of acceleration--the 10-m sprint, tests of maximal speed--the 20- and the 30-m sprint along with Bosco jump tests--squat jump, countermovement jump (CMJ), maximal CMJ, and continuous jumps performed with legs extended. The initial testing procedure took place at the beginning of the in-season period. The 8-week specific SAQ training program was implemented after which final testing took place. The results of the 2-way analysis of variance indicated that the EG improved significantly (p < 0.05) in 5-m (1.43 vs. 1.39 seconds) and in 10-m (2.15 vs. 2.07 seconds) sprints, and they also improved their jumping performance in countermovement (44.04 vs. 4.48 cm) and continuous jumps (41.08 vs. 41.39 cm) performed with legs extended (p < 0.05). The SAQ training program appears to be an effective way of improving some segments of power performance in young soccer players during the in-season period. Soccer coaches could use this information in the process of planning in-season training. Without proper planning of the SAQ training, soccer players will most likely be confronted with decrease in power performance during in-season period. PMID:21522073

  1. Conservation and Achievement Test Performance among Fifth-Graders.

    ERIC Educational Resources Information Center

    Silliphant, Virginia M.; Cox, David L.

    The relationship between conservation and achievement is examined on specific tests and test items on the Stanford Achievement Test Battery used in the elementary years. Specifically, performance on two tests (Word Meaning and Arithmetic Concepts) were analyzed according to subjects level of thinking (concrete or formal) for total score,…

  2. Qualification Plus: Performance and Durability Tests Beyond IEC 61215 (Presentation)

    SciTech Connect

    Kurtz, S.; Jordan, J.; Kempe, M.; Miller, D.; Bosco, N.; Silverman, T.; Hacke, P.; Phillips, N.; Earnest, T.; Romero, R.

    2014-03-01

    Qualification Plus is an accelerated test protocol and quality management system that gives higher confidence in field performance of PV modules compared with conventional qualification testing. The test sequences are being developed as consensus standards, but the early publication of these tests enables the community to begin benefiting from them sooner.

  3. Mission Performance of High-Power Electromagnetic Thruster Systems

    NASA Astrophysics Data System (ADS)

    Gilland, James; McGuire, Melissa; Corle, Tyacie; Clem, Michelle

    2006-01-01

    Electromagnetic thrusters such as the Magnetoplasmadynamic (MPD) thruster and Pulsed Inductive Thruster provide the relatively unique capability to process megawatts (MW) of power compactly at specific impulses (Isp) of 2,000 to 10,000 seconds. This capability is well suited to demanding future missions such as cargo and piloted missions to Mars, in which large payload masses or short trip times require MW power levels. These two thrusters have been modeled at both the performance and system mass level, addressing thruster efficiency, Isp, voltage and current, and the mass of thrusters as well as their corresponding heat rejection and power processing subsystems. The resulting data have been assessed for representative Mars exploration missions using detailed low thrust trajectory codes in conjunction with the thruster system models. Analyses indicate that the thruster type and technology levels have less impact on overall mission performance than the total power level. For the 2.5 and 5 MW cases considered, the lower power delivered 50% more payload.

  4. Information Model for Machine-Tool-Performance Tests

    PubMed Central

    Lee, Y. Tina; Soons, Johannes A.; Donmez, M. Alkan

    2001-01-01

    This report specifies an information model of machine-tool-performance tests in the EXPRESS [1] language. The information model provides a mechanism for describing the properties and results of machine-tool-performance tests. The objective of the information model is a standardized, computer-interpretable representation that allows for efficient archiving and exchange of performance test data throughout the life cycle of the machine. The report also demonstrates the implementation of the information model using three different implementation methods.

  5. AiResearch QCGAT engine performance and emissions tests

    NASA Technical Reports Server (NTRS)

    Norgren, W. M.

    1980-01-01

    Results of aerodynamic performance and emission tests, conducted on a specially designed QCGAT engine in the 17,793-N (4,000 lb) thrust class, are presented. Performance of the AiResearch QCGAT engine was excellent throughout all testing. No serious mechanical malfunctions were encountered, and no significant test time was lost due to engine-related problems. Emissions were drastically reduced over similar engines, and the engine exhibited good smoke performance.

  6. Motivational and Cognitive Test-Taking Strategies and Their Influence on Test Performance in Mathematics

    ERIC Educational Resources Information Center

    Peng, Yun; Hong, Eunsook; Mason, Elsa

    2014-01-01

    A structural equation model of relationships among testing-related motivation variables (test value, effort, self-efficacy, and test anxiety), test-taking strategies (test tactics and metacognitive strategies), gender, and math test performance were examined with a sample of 10th graders (N = 438; 182 males and 256 females). In general, motivation…

  7. Chinese College Test Takers' Individual Differences and Reading Test Performance: A Structural Equation Modeling Approach.

    PubMed

    Zhang, Limei

    2016-06-01

    This study reports on the relationships between test takers' individual differences and their performance on a reading comprehension test. A total of 518 Chinese college students (252 women and 256 men; M age = 19.26 year, SD = 0.98) answered a questionnaire and sit for a reading comprehension test. The study found that test takers' L2 language proficiency was closely linked to their test performance. Test takers' employment of strategies was significantly and positively associated with their performance on the test. Test takers' motivation was found to be significantly associated with reading test performance. Test anxiety was negatively related to their use of reading strategies and test performance. The results of the study lent support to the threshold hypothesis of language proficiency. The implications for classroom teaching were provided. PMID:27173665

  8. HIGH POWER RF DISTRIBUTION AND CONTROL FOR MULTI-CAVITY CRYOMODULE TESTING

    SciTech Connect

    Kang, Yoon W; Broyles, Michael R; Crofford, Mark T; Geng, Xiaosong; Kim, Sang-Ho; Lee, Sung-Woo; Phibbs, Curtis L; Shin, Ki; Strong, William Herb

    2011-01-01

    Qualification of the superconducting radio-frequency (SRF) cavities in the cryomodules for the accelerating performance needs to be done through high power processing. A four-way waveguide power distribution system with independent control of power outputs has been being developed for testing the multi-cavity cryomodules for the SNS linac. SNS is employing two types of cryomodules: one type with three medium beta six-cell cavities and the other with four high beta six-cell cavities. The cryomodule that is being manufactured as a spare and the new crymodules for the future power upgrade project (PUP) of SNS will be high beta types. The four-way power distribution with independently controlled power outputs was considered useful for powering all cavities at the same time with a klystron amplifier since the SNS test facility was configured for a single klystron operation. Since certain interaction between the cavities under severe field emission was suspected in existing cryomodules, this type of high power test can be valuable for characterization of SRF cavities. By implementing a vector modulator at each arm of the splitting system, the amplitudes and the phases of RF outputs can be controlled independently. This paper discusses the present status of the development.

  9. Test Demonstration of Magnet Power Supply with Floating Capacitor Method

    NASA Astrophysics Data System (ADS)

    Shimogawa, Tetsushi; Morita, Yuichi; Sagawa, Ryu; Kurimoto, Yoshinori; Nakamura, Shu; Miura, Kazuki

    The Japan Proton Accelerator Research Complex (J-PARC) aims at achieving a MW-class proton accelerator facility. We plan to increase the beam power by shortening the repetition period of the Main Ring (MR) from the present period of 2.5 to 1 s in the future. In this scheme, there are serious concerns regarding the main magnets. One involves the increasing output voltage, and the other is related to the power variation of the electric system. We propose an innovative floating capacitor method to produce a high output voltage and suppress the power variation with capacitor energy storage for addressing these concerns. Nevertheless, the driving power supply used with this method needs to establish control of the floating capacitor voltage. We developed and introduced recovery control of the floating capacitor voltage for each accelerator cycle. We also confirmed that the tracking error can be corrected by iterative learning control with the floating capacitor method. In this article, the magnet power supply with the floating capacitor method is described, and test results achieved with the mini model power supply are presented.

  10. DOE/NETL's field tests of mercury control technologies for coal-fired power plants

    SciTech Connect

    Thomas Feeley; James Murphy; Lynn Brickett; Andrew O'Palko

    2005-08-01

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research and development program directed at advancing the performance and economics of mercury control technologies for coal-fired power plants. This article presents results from ongoing full-scale and slipstream field tests of several mercury control technologies. 15 refs., 4 figs., 3 tabs.

  11. Reliability of Maximal Voluntary Muscle Strength and Power Testing in Older Men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Maximal voluntary muscle strength (MVMS) and leg power are important measures of physical function in older adults. We hypothesized that performing these measures twice within 7-10 days would demonstrate a >5% increase due to learning and familiarization of the testing procedures. Methods...

  12. Orbit-to-ground Wireless Power Transfer test mission

    NASA Astrophysics Data System (ADS)

    Bergsrud, C.; Noghanian, S.; Straub, J.; Whalen, D.; Fevig, R.

    Since the 1970s the concept of transferring power from orbit for use on Earth has had a great deal of consideration for future energy and environmental sustainability here on Earth. The cost, size and complexity of a production-grade system are extremely large, and have many environmental considerations. There has never been a publicly disclosed orbit-to-ground power transfer test mission. A proposed project provides an opportunity to test the conceptual operation of such a system, albeit at a much lower power level than the `grand' or `real scale' system. During this test, a small Solar Powered (SP) 6-U CubSat will be deployed into Low-Earth Orbit (LEO) (225 or 325 km) to collect and store 1 KW of power from solar energy as the satellite is orbiting. The goal is to transmit 1 KW of wireless power at a microwave frequency of 5.8 or 10 GHz to a ground antenna array system. This paper presents the architecture for the proposed mission and discusses the regulatory, legal, and environmental issues that such a mission poses. Furthermore, the gain of the transmitter is analyzed at 20 and 30 dB as well as the gain of the receiver is analyzed at 30, 40, and 50 dB. A SP 6-U CubeSat will have a Lithium Ion (LIon) battery capable of storing enough energy for 83.33 Whr charge to run the satellites controls, and 1 KW necessary for a 5-minute demonstration and test (in addition to power required for its own operational requirements). Once charged, the satellite will use highly accurate position and attitude knowledge provided by an onboard star-tracker, Global Positioning Satellite (GPS) and inertial measurement unit to determine the proper orientation for the power transfer test. The onboard Attitude Determination and Control (ADCS) will be utilized to achieve and maintain this orientation during the test period. A cold-gas propulsion system will be available to de-spin the reaction wheels to ensure that sufficient ADCS capabilities exist for attitude-stabilization use during

  13. A photovoltaic-powered water electrolyzer - Its performance and economics

    NASA Technical Reports Server (NTRS)

    Hancock, O. G., Jr.

    1986-01-01

    A prototype water electrolyzer designed to operate from a solar photovoltaic (PV) array without power conditioning was operated for three months at the Florida Solar Energy Center. A 1 kWpk PV array was used to operate the electrolyzer at internal gas pressure from 0 to 40 psig. Performance of the elecrolyzer/PV array was measured and characterized in terms of charge efficiency and power efficiency calculated from the operation data. The economics of residential production of hydrogen for energy purposes were calculated and summarized. While the near-term outlook for this energy storage technique was not found to be favorable, the long-term outlook was encouraging.

  14. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56 MHz, 5.2 kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  15. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  16. Power Systems Development Facility Gasification Test Campaing TC18

    SciTech Connect

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  17. Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility

    NASA Technical Reports Server (NTRS)

    Sorge, Richard N.

    2013-01-01

    The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

  18. RF Distribution System for High Power Test of the SNS Cryomodule

    SciTech Connect

    Lee, Sung-Woo; Kang, Yoon W; Broyles, Michael R; Crofford, Mark T; Geng, Xiaosong; Kim, Sang-Ho; Phibbs, Curtis L; Strong, William Herb; Peglow, Robert C; Vassioutchenko, Alexandre V

    2012-01-01

    A four-way waveguide RF power distribution system for testing the Spallation Neutron Source (SNS) multi-cavity cryomodule to investigate the collective behavior has been developed. A single klystron operating at 805MHz for 1.3 msec at 60Hz powers the 4-way waveguide splitter to deliver up to 400 kW to individual cavities. Each cavity is fed through a combination of waveguide splitters and vector modulators (VM) to provide independent magnitude and phase controls. The waveguide vector modulator consists of two quadrature hybrids and two motorized waveguide phase shifters. The phase shifters and the assembled waveguide vector modulators were individually tested and characterized for low power and high RF power in the SNS RF test facility. Precise calibrations of magnitude and phase were performed to generate the look up tables (LUTs) to provide operational references during the cryomodule test. An I-Q demodulator module was developed and utilized to measure relative phases in pulsed high RF power operation. PLC units were developed for mechanical control of the phase shifters. Initial low/high power measurements were made using LabVIEW. An operation algorithm has been implemented into EPICS control for the cryomodule test stand.

  19. Testing strength and power in soccer players: the application of conventional and traditional methods of assessment.

    PubMed

    Paul, Darren J; Nassis, George P

    2015-06-01

    Soccer is a highly complex sport influenced by many physical, psychological, tactical, and technical factors. In terms of basic physical components, strength and power are considered requisites for many important actions such as tackling, jumping, and shooting. Hence, assessment of strength and power is commonly performed within a soccer club's test battery. The objective is to use valid, reliable, and sensitive measures that allow for trustworthy analysis of the physical characteristics of players. Before any credence can be placed in test results, test's validity, reliability, and sensitivity needs to be established. This will allow practitioners to make informed decisions about test selection. This review examines the reliability, validity, and sensitivity of different strength and power assessments in soccer. The suitability of conventional and functional tests is detailed and the strengths and weaknesses of isokinetic dynamometry, hand-held dynamometry (HHD), repetition maximum, and power testing are also addressed. Generally, the tests considered in this review provide moderate to high reliability in soccer players of different training level. Similarly, the consensus demonstrates test methods to be sensitive to training interventions. In comparison, test validity seems less established. Isokinetic dynamometry has often been recognized as a gold standard measure of testing strength. Other methods of assessment are emerging as viable options (e.g., HHD), likely due to functionality and suitability of testing. Given the demands within a soccer club setting, practitioners should endeavor to use testing procedures that are informative yet not time consuming or labor intensive. By providing this, practitioners may have the option to perform more regular monitoring throughout the season rather than a limited number of specific time periods. PMID:25546446

  20. ROPS performance during field upset and static testing.

    PubMed

    Harris, J R; McKenzie, E A; Etherton, J R; Cantis, D M; Ronaghi, M

    2010-01-01

    Agriculture remains one of the most hazardous occupations in the U.S. By conservative estimates, tractor overturns alone claim 120 lives annually. A rollover protective structure (ROPS) and a seatbelt are a highly effective engineering safety control that can prevent many of these fatalities and reduce the severity of injuries associated with tractor overturn. SAE J2194 is a consensus performance standard established for agricultural ROPS. According to this standard, satisfactory ROPS performance can be demonstrated through static testing, field upset testing, or impact testing. A previous modeling study suggested that static testing may underpredict the strain induced in a ROPS during afield upset. In the current study, field upset testing and laboratory static testing results were compared. Field upset testing included six rear and six side upset tests performed according to SAE J2194 guidelines. Additionally, static testing was performed on a ROPS of the same model. The results support findings from the modeling study. Near the lowest sections of the ROPS, the plastic strain resulting from rear upset testing exceeded the plastic strain from static testing for 18 of 24 data points. Conversely, the ROPS plastic strain from side upset testing was typically less than plastic strain from laboratory static testing. However, data indicate that the side upset test may not be very repeatable. This study suggests that the longitudinal loading energy criterion for static testing might not be a conservative predictor of rear upset ROPS response. PMID:20222267

  1. The Relationship Between the Yo-Yo Tests, Anaerobic Performance and Aerobic Performance in Young Soccer Players

    PubMed Central

    Karakoç, Barış; Akalan, Cengiz; Alemdaroğlu, Utku; Arslan, Erşan

    2012-01-01

    The purposes of this study were to determine the relationship between performance in the Yo-Yo intermittent recovery test level 1 (YIRT1), the Yo-Yo intermittent recovery test level 2 (YIRT2) and the Yo-Yo endurance test (continuous) (YET) with maximal oxygen uptake (VO2max) and Wingate anaerobic performance (WaNT) test results in young soccer players (age 15.00 ± 0.0 years, body height 176.3 ± 4.2 cm and body mass 68.1 ± 3.6 kg). An ergospirometry device was used during the treadmill test (TRT) to determine VO2max. At the end of the study, significant differences were found between the Yo-Yo tests and TRT in terms of HRmax (TRT = 195,92, YIRT1 = 197,83, YIRT2 = 198,5 YET = 198) (p > 0.05). While there were moderate correlations between VO2max and YIRT 1–2 performances (respectively, r = 0.56, r = 0.53), there was only a weak relationship between VO2max and YET performance (r = 0.43) (distance covered). There were also moderate significant negative correlations between performance in the YIRT2 and peak power measured in the WaNT (r = −0.55), although there were no significant correlations between performance in the three tests and average power. A moderate negative correlation was found between performance in the YIRT2 and Fatigue index (FI) (r = −0,66). In conclusion, the YIRT2 may be a more suitable field test for determining both aerobic and anaerobic performance in soccer players. PMID:23486008

  2. Fenestration System Performance Research, Testing, and Evaluation

    SciTech Connect

    Jim Benney

    2009-11-30

    The US DOE was and is instrumental to NFRC's beginning and its continued success. The 2005 to 2009 funding enables NFRC to continue expanding and create new, improved ratings procedures. Research funded by the US DOE enables increased fenestration energy rating accuracy. International harmonization efforts supported by the US DOE allow the US to be the global leader in fenestration energy ratings. Many other governments are working with the NFRC to share its experience and knowledge toward development of their own national fenestration rating process similar to the NFRC's. The broad and diverse membership composition of NFRC allows anyone with a fenestration interest to come forward with an idea or improvement to the entire fenestration community for consideration. The NFRC looks forward to the next several years of growth while remaining the nation's resource for fair, accurate, and credible fenestration product energy ratings. NFRC continues to improve its rating system by considering new research, methodologies, and expanding to include new fenestration products. Currently, NFRC is working towards attachment energy ratings. Attachments are blinds, shades, awnings, and overhangs. Attachments may enable a building to achieve significant energy savings. An NFRC rating will enable fair competition, a basis for code references, and a new ENERGY STAR product category. NFRC also is developing rating methods to consider non specular glazing such as fritted glass. Commercial applications frequently use fritted glazing, but no rating method exists. NFRC is testing new software that may enable this new rating and contribute further to energy conservation. Around the world, many nations are seeking new energy conservation methods and NFRC is poised to harmonize its rating system assisting these nations to better manage and conserve energy in buildings by using NFRC rated and labeled fenestration products. As this report has shown, much more work needs to be done to

  3. 49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Tests To Be Performed at the Bus Testing Facility A Appendix A to Part 665 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BUS TESTING Pt. 665, App. A Appendix A to Part 665—Tests To Be Performed at the Bus...

  4. Comparing the Effects of Test Anxiety on Independent and Integrated Speaking Test Performance

    ERIC Educational Resources Information Center

    Huang, Heng-Tsung Danny; Hung, Shao-Ting Alan

    2013-01-01

    Integrated speaking test tasks (integrated tasks) offer textual and/or aural input for test takers on which to base their subsequent oral responses. This path-analytic study modeled the relationship between test anxiety and the performance of such tasks and explored whether test anxiety would differentially affect the performance of independent…

  5. Development of a test protocol for evaluating EVA glove performance

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine M.

    1992-01-01

    Testing gloved hand performance involves work from several disciplines. Evaluations performed in the course of reenabling a disabled hand, designing a robotic end effector or master controller, or hard-suit design have all yielded relevant information, and, in most cases, produced performance test methods. Most times, these test methods have been primarily oriented toward their parent discipline. For space operations, a comparative test which would provide a way to quantify pressure glove and end effector performance would be useful in dividing tasks between humans and robots. Such a test would have to rely heavily on sensored measurement, as opposed to questionnaires, to produce relevant data. However, at some point human preference would have to be taken into account. This paper presents a methodology for evaluating gloved hand performance which attempts to respond to these issues. Glove testing of a prototype glove design using this method is described.

  6. Specification and testing for power by wire aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-01-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  7. Power Systems Development Facility Gasification Test Campaing TC14

    SciTech Connect

    Southern Company Services

    2004-02-28

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

  8. Specification and testing for power by wire aircraft

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-08-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  9. Reliability of the one-repetition-maximum power clean test in adolescent athletes.

    PubMed

    Faigenbaum, Avery D; McFarland, James E; Herman, Robert E; Naclerio, Fernando; Ratamess, Nicholas A; Kang, Jie; Myer, Gregory D

    2012-02-01

    Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the 1-repetition maximum (1RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 years, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had >1 year of training experience in weightlifting exercises performed a 1RM power clean on 2 nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for 1 repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC[2,k]), Pearson correlation coefficient (r), repeated measures analysis of variance, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% confidence interval = 0.96-0.99). Testing also demonstrated a strong relationship between 1RM measures in trials 1 and 2 (r = 0.98, p < 0.0001) with no significant difference in power clean performance between trials (70.6 ± 19.8 vs. 69.8 ± 19.8 kg). Bland-Altman plots confirmed no systematic shift in 1RM between trials 1 and 2. The typical error to be expected between 1RM power clean trials is 2.9 kg, and a change of at least 8.0 kg is indicated to determine a real change in lifting performance between tests in young lifters. No injuries occurred during the study period, and the testing protocol was well tolerated by all the subjects. These findings indicate that 1RM power clean testing has a high degree of reproducibility in trained male adolescent athletes when standardized testing procedures are followed and qualified

  10. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is tile back-up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  11. Cassini RTG acceptance test results and RTG performance on Galileo and Ulysses

    SciTech Connect

    Kelly, C.E.; Klee, P.M.

    1997-12-31

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, mass properties (weight and c.g.) and thermal vacuum test. This paper presents the thermal vacuum test results. Three RTGs are to be used, F-2, F-6, and F-7. F-5 is the backup RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at the Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on these tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also shown. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over 5% are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  12. Cassini RTG Acceptance Test Results and RTG Performance on Galileo and Ulysses

    DOE R&D Accomplishments Database

    Kelly, C. E.; Klee, P. M.

    1997-06-01

    Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F 2, F 6, and F 7. F 5 is tile back up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

  13. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R., IV; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  14. Performance calculations for 1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.

    1981-01-01

    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.

  15. Power/energy use cases for high performance computing.

    SciTech Connect

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  16. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  17. Writing about testing worries boosts exam performance in the classroom.

    PubMed

    Ramirez, Gerardo; Beilock, Sian L

    2011-01-14

    Two laboratory and two randomized field experiments tested a psychological intervention designed to improve students' scores on high-stakes exams and to increase our understanding of why pressure-filled exam situations undermine some students' performance. We expected that sitting for an important exam leads to worries about the situation and its consequences that undermine test performance. We tested whether having students write down their thoughts about an upcoming test could improve test performance. The intervention, a brief expressive writing assignment that occurred immediately before taking an important test, significantly improved students' exam scores, especially for students habitually anxious about test taking. Simply writing about one's worries before a high-stakes exam can boost test scores. PMID:21233387

  18. Mode S beacon system terminal configuration performance test report

    NASA Astrophysics Data System (ADS)

    Alimenti, Raymond J.

    1995-05-01

    This document reports the findings of the performance tests conducted on the terminal configuration of the Mode S Beacon System. The tests were conducted at the FAA Technical Center using the first article system from the Mode S production contract. The Mode S system under test was a fully configured dual channel system having all required external interfaces connected to actual NAS equipment. A combination of live aircraft and simulated targets were used in the test conduct and data collection. The tests were conducted in accordance with the Mode S Master Test Plan (DOTIFAA/CT-88128) and the Node S Performance Test Plan (DOTIFAA/CT-Th 90124). The test goals are to characterize the performance of the Mode S system in key areas and to establish a baseline from which to evaluate future changes.

  19. Real-time performance testing of photovoltaic-concentrator modules

    SciTech Connect

    Pritchard, D.A.

    1981-01-01

    A description of the resources at the Photovoltaic Advanced Systems Test Facility (PASTF) is presented. These resources include a multi-level data acquisition system for collector module performance testing, associated user-interactive software for accomplishing these tests, and extensive support hardware. A group of standard tests has been developed for module characterization. Descriptions of these tests and sample results for a variety of module designs are also presented.

  20. Performance testing of the high altitude observatory PDS microdensitometer

    NASA Technical Reports Server (NTRS)

    Poland, A.; Munro, R.; Friend, D.

    1984-01-01

    High Altitude Observatory HAO microdensitometer undergoes monthly testing to assure its consistent performance. These tests check positional and photometric stability at the 10 micron aperture level. The HAO test procedure is designed to run without operator intervention following initial configuration of the microdensitometer for each subprocedure. Specialized test software is resident in the PDP 8. The operator selects the proper subprocedure by entering commands. Once computer control is established, it is not relinquished until the test is complete.

  1. High-power testing of the first PEP-II RF cavity

    SciTech Connect

    Rimmer, R.A.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Saba, J.; Schwarz, H.; Franks, R.M.

    1996-06-01

    This paper describes the high-power testing of the first RF cavity for the PEP-II B-factory. The cavity is designed for continuous operation at 476 MHz with up to 150 kW wall dissipation and heavy beam loading. Three rectangular waveguides and broad-band loads are used to damp the cavity higher-order modes. The test configuration, RF conditioning history and high-power performance are described and plans for processing of the production run of cavities are discussed.

  2. Power Systems Development Facility Gasification Test Run TC11

    SciTech Connect

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  3. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.

  4. Comparative Performance of Four Single Extreme Outlier Discordancy Tests from Monte Carlo Simulations

    PubMed Central

    Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2014-01-01

    Using highly precise and accurate Monte Carlo simulations of 20,000,000 replications and 102 independent simulation experiments with extremely low simulation errors and total uncertainties, we evaluated the performance of four single outlier discordancy tests (Grubbs test N2, Dixon test N8, skewness test N14, and kurtosis test N15) for normal samples of sizes 5 to 20. Statistical contaminations of a single observation resulting from parameters called δ from ±0.1 up to ±20 for modeling the slippage of central tendency or ε from ±1.1 up to ±200 for slippage of dispersion, as well as no contamination (δ = 0 and ε = ±1), were simulated. Because of the use of precise and accurate random and normally distributed simulated data, very large replications, and a large number of independent experiments, this paper presents a novel approach for precise and accurate estimations of power functions of four popular discordancy tests and, therefore, should not be considered as a simple simulation exercise unrelated to probability and statistics. From both criteria of the Power of Test proposed by Hayes and Kinsella and the Test Performance Criterion of Barnett and Lewis, Dixon test N8 performs less well than the other three tests. The overall performance of these four tests could be summarized as N2≅N15 > N14 > N8. PMID:24737992

  5. Comparative performance of four single extreme outlier discordancy tests from Monte Carlo simulations.

    PubMed

    Verma, Surendra P; Díaz-González, Lorena; Rosales-Rivera, Mauricio; Quiroz-Ruiz, Alfredo

    2014-01-01

    Using highly precise and accurate Monte Carlo simulations of 20,000,000 replications and 102 independent simulation experiments with extremely low simulation errors and total uncertainties, we evaluated the performance of four single outlier discordancy tests (Grubbs test N2, Dixon test N8, skewness test N14, and kurtosis test N15) for normal samples of sizes 5 to 20. Statistical contaminations of a single observation resulting from parameters called δ from ±0.1 up to ±20 for modeling the slippage of central tendency or ε from ±1.1 up to ±200 for slippage of dispersion, as well as no contamination (δ = 0 and ε = ±1), were simulated. Because of the use of precise and accurate random and normally distributed simulated data, very large replications, and a large number of independent experiments, this paper presents a novel approach for precise and accurate estimations of power functions of four popular discordancy tests and, therefore, should not be considered as a simple simulation exercise unrelated to probability and statistics. From both criteria of the Power of Test proposed by Hayes and Kinsella and the Test Performance Criterion of Barnett and Lewis, Dixon test N8 performs less well than the other three tests. The overall performance of these four tests could be summarized as N2≅N15 > N14 > N8. PMID:24737992

  6. Performance of some environmental power systems in Antarctica.

    NASA Astrophysics Data System (ADS)

    Rose, M. C.; Maxfield, D.; Junyent, J.

    2009-04-01

    In the austral summer season of 2007/8 we deployed four systems to measure the geo-electric field at three remote locations in Antarctica at 78°S 23°W 1525m, 81°S 22°W 1180m, 75°S 71°W 1560m. The scientific measurements are the Air to Earth current (about 2-6pAm-2), the electric field potential (100-200Vm-1) and the supporting meteorology. Here, however, we concern ourselves with the design and performance of the environmental power supply. Each site is powered by a combination of 80W of photovoltaic panels, three different manufacturer's wind generators (each capable of outputs greater than 100W in high wind speeds), and thermally insulated AGM lead acid cells. The power system was sized to provide 30W continuous average power over the whole year but is modular and variants can be used to provide up to 100W. The use of multiple wind generators from different manufacturers not only allows scalability but also provides some redundancy and protection from systematic failure modes. The control of the generators is by bespoke electronics which we developed to maximize high wind speed survivability and to provide performance data that can be logged for both design verification and to provide maintenance information.

  7. Program optimizations: The interplay between power, performance, and energy

    DOE PAGESBeta

    Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; Dosanjh, Matthew

    2016-05-16

    Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less

  8. Initial results of sensitivity tests performed on the RE-1000 free-piston stirling engine

    SciTech Connect

    Schreiber, J.G.

    1984-08-01

    A 1 kW (1.33hp) single cylinder free-piston Stirling engine has been tested in the test facilities at the Lewis laboratory. Tests have been performed over the past several years on an engine designed to investigate the dynamics of a free-piston Stirling engine for the purpose of computer code validation. A description of the engine and its instrumentation is given in a prior NASA report TM-82999. Some initial test results are given in NASA Report TM-83407. Tests to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics have been initiated at Lewis. Maps of engine performance have been recorded with the use of an 81.2% porosity regenerator; both a high efficiency displacer and a high power displacer were tested; efficiencies up to 33% were recorded and power output of approximately 1500 watts was recorded. This report presents preliminary results from the Lewis sensitivity tests being performed on the RE-1000 free-piston Stirling engine. Descriptions of future tests are also given.

  9. Performance characterization of a low power hydrazine arcjet

    NASA Technical Reports Server (NTRS)

    Knowles, S. C.; Smith, W. W.; Curran, F. M.; Haag, T. W.

    1987-01-01

    Hydrazine arcjets, which offer substantial performance advantages over alternatives in geosynchronous satellite stationkeeping applications, have undergone startup, materials compatibility, lifetime, and power conditioning unit design issues. Devices in the 1000-3000 W output range have been characterized for several different electrode configurations. Constrictor length and diameter, electrode gap setting, and vortex strength have been parametrically studied in order to ascertain the influence of each on specific impulse and efficiency; specific impulse levels greater than 700 sec have been achieved.

  10. 40 CFR 63.7 - Performance testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Performance testing requirements. 63.7 Section 63.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.7 Performance testing requirements....

  11. Impact of Educational Level on Performance on Auditory Processing Tests

    PubMed Central

    Murphy, Cristina F. B.; Rabelo, Camila M.; Silagi, Marcela L.; Mansur, Letícia L.; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor “years of schooling” was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  12. 40 CFR 610.35 - Driveability and performance tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Driveability and performance tests. 610.35 Section 610.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY... § 610.35 Driveability and performance tests. If the Administrator determines that driveability...

  13. Impact of Educational Level on Performance on Auditory Processing Tests.

    PubMed

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  14. Distributed Power Control Network and Green Building Test-Bed for Demand Response in Smart Grid

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Kei; Nguyen, Van Ky; Tao, Yu; Tran, Gia Khanh; Araki, Kiyomichi

    It is known that demand and supply power balancing is an essential method to operate power delivery system and prevent blackouts caused by power shortage. In this paper, we focus on the implementation of demand response strategy to save power during peak hours by using Smart Grid. It is obviously impractical with centralized power control network to realize the real-time control performance, where a single central controller measures the huge metering data and sends control command back to all customers. For that purpose, we propose a new architecture of hierarchical distributed power control network which is scalable regardless of the network size. The sub-controllers are introduced to partition the large system into smaller distributed clusters where low-latency local feedback power control loops are conducted to guarantee control stability. Furthermore, sub-controllers are stacked up in an hierarchical manner such that data are fed back layer-by-layer in the inbound while in the outbound control responses are decentralized in each local sub-controller for realizing the global objectives. Numerical simulations in a realistic scenario of up to 5000 consumers show the effectiveness of the proposed scheme to achieve a desired 10% peak power saving by using off-the-shelf wireless devices with IEEE802.15.4g standard. In addition, a small scale power control system for green building test-bed is implemented to demonstrate the potential use of the proposed scheme for power saving in real life.

  15. Nuclear power plant control room operators' performance research

    SciTech Connect

    Gray, L.H.; Haas, P.M.

    1984-01-01

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis.

  16. Operational testing of the Power Conditioning Unit for a 30 kWe arcjet

    NASA Astrophysics Data System (ADS)

    Wong, See-Pok; Britt, Edward J.; McCracken, Kevin; Lin, Raymond

    Two arcjet Power Conditioning Units (PCU's) were recently tested with off-site arcjet thrusters. The first of these recent tests was conducted at NASA Lewis Research Center with a hydrogen arcjet. The second one was conducted in Jet Propulsion Laboratory with an ammonia arcjet. The major thrust of the tests was on thruster performance, so the technical objectives and the interests of these tests were not limited to the PCU performance. The major objectives of these tests were to demonstrate the stable operation of the PCU's with arcjet thrusters, to prove the capability of initiating the arc breakdown with its built-in starter, and to demonstrate the endurance of the PCU. The personnel at NASA LeRC and JPL successfully operated the PCUs with their arcjet and obtained valuable test data.

  17. Sacramento Power Authority experience of building and testing a successful turn key combined cycle project

    SciTech Connect

    Maring, J.; Yost, J.; Zachary, J.

    1998-07-01

    The following paper will describe a combined cycle power plant providing power and steam to a food processing plant. The project owner is Sacramento Power Authority in Sacramento, California, USA. A consortium led by Siemens supplied the equipment and provided the turn key project management. The project was completed in 23 months and the plant was released for dispatch 3 weeks ahead of schedule. The formal performance tests conducted in December 1997, indicated a better net output and a lower net heat rate from the guaranteed values. The thermal acceptance test procedure was in full compliance with the new Performance Test Code PTC-46 of the American Society of Mechanical Engineers (ASME) for combined cycle power plant testing, issued in 1996 and also met all the requirements of ISO 2314 Procedure. The paper will also discuss the performance of an evaporative cooler, used to lower compressor air inlet temperature and the methodology used to reduce the additional instrumentation uncertainty associated with such devices. The paper will also deal with the unique environmental emissions restrictions imposed on the project.

  18. International Space Station power module thermal control system hydraulic performance

    SciTech Connect

    Goldberg, V.

    1997-12-31

    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  19. Performance testing of extremity dosimeters against a draft standard

    SciTech Connect

    Harty, R.; Reece, W.D.; Hooker, C.D.; McDonald, J.C.

    1990-09-01

    The assurance of worker radiation safety is directly related to the performance of personnel dosimetry. The US Department of Energy (DOE) has long recognized this critical relationship and has addressed this issue by instituting the DOE Laboratory Accreditation Program (DOELAP) which strives to improve the quality of personnel dosimetry through performance testing, dosimetry calibration, intercomparisons, evaluations and accreditations. One area of personnel dosimetry that has not been specifically addressed by DOELAP is extremity dosimeter testing. This task was directed at assessing the problems of implementing extremity dosimeter performance testing. A series of performance tests were made based on a draft standard written by the Health Physics Society Standards Committee (HPSSC) using extremity dosimeters currently in use at DOE and DOE contractor facilities. The results of this study indicate the need to incorporate performance testing of extremity dosimetry systems into DOELAP. Based on the results of this study, recommendations are made for improvements to the draft standard. 20 refs., 6 figs., 3 tabs.

  20. Testing and Evaluation of Batteries for a Fuel Cell Powered Hybrid Bus

    SciTech Connect

    Miller, J.F.; Webster, C.E.; Tummillo, A.F.; DeLuca, W.H.

    1997-05-01

    Argonne National Laboratory conducted performance characterization and life-cycle tests on various batteries to qualify them for use in a fuel cell/battery hybrid bus. On this bus, methanol-fueled, phosphoric acid fuel cells provide routine power needs, while batteries are used to store energy recovered during bus braking and to produce short-duration power during acceleration. Argonne carried out evaluation and endurance testing on several lead-acid and nickel/cadmium batteries selected by the bus developer as potential candidates for the bus application. Argonne conducted over 10,000 hours of testing, simulating more than 80,000 miles of fuel cell bus operation, for the nickel/cadmium battery, which was ultimately selected for use in the three hybrid buses built under the direction of H-Power Corp.

  1. Design and testing of piezoelectric energy harvester for powering wireless sensors of electric line monitoring system

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Yang, Jin

    2012-04-01

    Scavenging electromagnetic and vibration energy from environments is an attractive technique for powering wireless sensors in a wireless sensor network. This paper reports our design and testing results on the electric output performance of a piezoelectric energy harvesting device, which consists of cantilever beams, magnetoelectric (ME) transducers, and permanent magnets. The geometric parameters of the device are based on an optimization design with a targeted resonant frequency of 50 Hz. Experimental results show that an output voltage of 56.1 V and an average power of 0.24 mW are achieved responding to a current of 3 A at 50 Hz. Remarkably, this power is a very encouraging power figure that gives the prospect of being able to power a wide range of wireless sensors in an electric line monitoring system.

  2. Power plant performance monitoring and improvement: Volume 5, Turbine cycle performance analysis: Interim report

    SciTech Connect

    Crim, H.G. Jr.; Westcott, J.C.; de Mello, R.W.; Brandon, R.E.; Kona, C.; Schmehl, T.G.; Reddington, J.R.

    1987-12-01

    This volume describes advanced instrumentation and computer programs for turbine cycle performance analysis. Unit conditions are displayed on-line. Included are techniques for monitoring the performance of feedwater heaters and the main condenser, procedures for planning turbine maintenance based on an analysis of preoutage testing and performance history, and an overview of the project's computerized data handling and display systems. (DWL)

  3. CISN Testing Center ShakeAlert Performance Summaries

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Liukis, M.; Jordan, T. H.

    2013-12-01

    SCEC and CISN ShakeAlert researchers have developed an operational testing system for the CISN ShakeAlert system called the CISN Testing Center (CTC). The CTC generates two main types of ShakeAlert performance summaries: (1) Event Summaries (for each significant California event), and (2) Cumulative Summaries (for ShakeAlert system performance over a specific period of time). Event Summaries are generated for each M3.0 and larger ANSS catalog California earthquake. Event Summaries show performance of the individual ShakeAlert algorithms, and the performance of the Decision Module that sends the public communications. Cumulative Summaries show ShakeAlert performance for a given earthquake catalog. In general, CTC Cumulative Summaries compare ShakeAlert forecast parameters, such as location and magnitude, against final observed parameters in the ANSS earthquake catalog. The CTC processing system uses the SCEC CSEP open-source scientific testing framework to automate the test processing. This testing framework provides tools to retrieve catalog data retrieval for ANSS and other catalog sources, software utilities for filtering earthquake catalogs by region and magnitude, and utilities for automating performance summary generation. The CTC system calculates performance summaries for the CISN ShakeAlert system on a daily basis. Each day, twenty-four hours of California earthquakes are retrieved from the ANSS catalog, and the testing center retrieves ShakeAlert logs for each event, and compares the forecasts to the observations. The CTC testing approach is intended to be open, transparent, and well defined so that all testing center results can be reproduced externally. The CTC ShakeAlert testing system provides standardized, and repeatable, testing of the ShakeAlert algorithms and decision modules, along with overall ShakeAlert system performance evaluation, providing robust testing capabilities with low development and operations cost by leveraging the capabilities of

  4. Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.

    2015-01-01

    The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.

  5. PERFORMANCE TESTING OF SELECTED INLAND OIL SPILL CONTROL EQUIPMENT

    EPA Science Inventory

    Standardized performance tests were conducted at the Environmental Protection Agency's test facility, OHMSETT, with various off-the-shelf inland oil-spill control and clean-up devices. Operability limits were defined and then quantified via testing for eight boom systems and eigh...

  6. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  7. Item Response Theory Models for Performance Decline during Testing

    ERIC Educational Resources Information Center

    Jin, Kuan-Yu; Wang, Wen-Chung

    2014-01-01

    Sometimes, test-takers may not be able to attempt all items to the best of their ability (with full effort) due to personal factors (e.g., low motivation) or testing conditions (e.g., time limit), resulting in poor performances on certain items, especially those located toward the end of a test. Standard item response theory (IRT) models fail to…

  8. History and Performance of Chinese LSAT Test Takers.

    ERIC Educational Resources Information Center

    Wang, Xiang Bo; Harris, Vincent

    Although the Law School Admission Test (LSAT) has been administered to Chinese test takers in Taiwan and Hong Kong for more than 22 years and in China for the past decade, there is very little documentation on the history, test taker volumes, performance, or law school admission rates of these candidates. The current study addresses the following…

  9. PERFORMANCE TESTS OF FOUR SELECTED OIL SPILL SKIMMERS

    EPA Science Inventory

    A series of performance tests were conducted at the U.S. Environmental Protection Agency's OHMSETT test facility with four selected oil spill pickup devices (skimmers). Each of the four skimmers was tested for two weeks with both high and low viscosity oils. The objectives of the...

  10. Radiation Testing of PICA at the Solar Power Tower

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  11. Halogen occultation experiment (HALOE) performance verification test procedure

    NASA Astrophysics Data System (ADS)

    Mauldin, L. E., III

    1986-07-01

    The Performance Verification Test Procedure is given for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This procedure is used for comprehensive performance testing of the HALOE instrument which occurs before, during, and after flight environmental tests. The radiometric performance tests include noise, drift, linearity, instantaneous field-of-view, cal wheel gas cell characterization, and self thermal emissions. Pointer/tracker performance tests include sun sensor performance, gimbal performance, control system performance, and boresight alignment. In addition, the instrument is tested functionally in simulated orbit sequences and all command operating modes are exercised. The data analysis required for each test is specified and pass/fail criteria are given where applicable. This test will fully demonstrate the HALOE instrument's ability to achieve science mission requirements. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HCl, HF, NO, CH4, H2O, NO2, and CO2.

  12. Halogen occultation experiment (HALOE) performance verification test procedure

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III

    1986-01-01

    The Performance Verification Test Procedure is given for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This procedure is used for comprehensive performance testing of the HALOE instrument which occurs before, during, and after flight environmental tests. The radiometric performance tests include noise, drift, linearity, instantaneous field-of-view, cal wheel gas cell characterization, and self thermal emissions. Pointer/tracker performance tests include sun sensor performance, gimbal performance, control system performance, and boresight alignment. In addition, the instrument is tested functionally in simulated orbit sequences and all command operating modes are exercised. The data analysis required for each test is specified and pass/fail criteria are given where applicable. This test will fully demonstrate the HALOE instrument's ability to achieve science mission requirements. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HCl, HF, NO, CH4, H2O, NO2, and CO2.

  13. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  14. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE PAGESBeta

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash).he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions.he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns.here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD.he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal).hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  15. Relation of test-specific motivation and anxiety to test performance.

    PubMed

    Smith, Lisa F; Smith, Jeffrey K

    2002-12-01

    The relations between consequence of test scores and motivation, anxiety, and test performance were studied with 112 persons in four undergraduate educational psychology courses. Students were given two versions of an hourly course examination that varied in consequence, with one counting for part of their grade and the other not counting. Each student completed the Learning and Study Strategies Inventory prior to taking the examination. Afterwards students completed a measure of test anxiety and test motivation specific to the examination they had just taken. Significant main effects were found for consequence of test with scores for test anxiety, test performance, and test motivation. Also, the subscales showed a consistent pattern of relations with test performance and test anxiety across the two conditions, but not for test motivation for which few relations were found under the condition with no consequence. PMID:12530760

  16. A quasi-optical resonant ring for high power millimeter-wave testing

    SciTech Connect

    Bigelow, T.S.

    1997-08-01

    Gyrotrons of > 1-MW cw power in the 110- to 160-GHz frequency range with HE{sub 11} output beams are being developed for electron cyclotron heating (ECH) of plasmas. Windows are required for gyrotrons and for waveguide transmission systems at the plasma device to provide vacuum isolation and containment. Windows ar difficult to build for these systems because the window dielectric losses increase with frequency and the centrally peaked output power beam concentrates the power deposition near the center. Development and testing of a window independent of gyrotron development is desirable since window failure on a cw gyrotron usually means an expensive reprocessing of the entire tube or possibly even total loss. A quasi-optical resonant ring is being developed for testing of millimeter wave components, windows and low-loss materials at very high power levels using medium power level sources. The resonant ring generates a traveling wave resonance of uniform amplitude along the waveguide that is ideal for testing components and materials. Both smooth-wall TE{sub 01} mode and a corrugated-wall HE{sub 11} mode versions have been constructed. These units use highly oversized waveguide and four miter bends to form a quasi-optical resonant ring. A perforated plate miter bend serves as the input directional coupler. A water-cooled tube array is being designed for a coupler capable high-power cw operation. A theoretical power gain of > 10 is possible using the 63.5 mm HE{sub 11} version at 53 GHz. Low power measurements have been performed to confirm the operation and > 1.5 MW high power tests using a 200 kW gyrotron are expected in the near future.

  17. Guidelines for inservice testing at nuclear power plants

    SciTech Connect

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  18. 40 CFR 60.723 - Performance tests and compliance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Performance tests and compliance provisions. 60.723 Section 60.723 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Industrial Surface Coating: Surface Coating...

  19. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Performance test and compliance provisions. 60.543 Section 60.543 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry §...

  20. 40 CFR 60.393 - Performance test and compliance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Performance test and compliance provisions. 60.393 Section 60.393 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Automobile and Light Duty Truck Surface...