Science.gov

Sample records for power plants summary

  1. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  2. Honey Lake Hybrid Power Plant Project. Volume 1. Executive summary

    SciTech Connect

    Not Available

    1982-03-01

    A technical and economic feasibility study of the engineering aspects of a hybrid wood-fired geothermal electrical generating plant is presented. The proposed plant location is in Lassen County, California, near the Wendel Amedee Known Geothermal Resource Area. This power plant uses moderate temperature geothermal fluid to augment the heat supplied from a wood waste fired boiler. This report defines major plant systems for implementation into the plant conceptual design and provides sufficient design information for development of budgetary cost estimates. Emphasis is placed on incorporation of geothermal heat into the power generation process. Plant systems are designed and selected based on economic justification and on proven performance. The culminating economic analysis provides the financial information to establish the incentives for construction of the plant. The study concludes that geothermal energy and energy from wood can be combined in a power generating plant to yield attractive project economics.

  3. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  4. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    SciTech Connect

    Reid, RL

    2003-09-18

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

  5. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    SciTech Connect

    Oshatz, Daryl

    2004-03-12

    This summary document describes the results of conceptual design and cost estimates performed by LBNL Engineering staff between October 10, 2003 and March 12, 2004 for the proposed {theta}{sub 13} neutrino experiment at the Diablo Canyon Power Plant (DCPP). This document focuses on the detector room design concept and mechanical engineering issues associated with the neutrino detector structures. Every effort has been made not to duplicate information contained in the last LBNL Engineering Summary Report dated October 10, 2003. Only new or updated information is included in this document.

  6. Steam/power plant modernization program, Twin Cities Army Ammunition Plant, New Brighton, Minnesota. Executive summary

    SciTech Connect

    1982-12-20

    This study is to develop a cost-effective and technically practical modernization program for the steam/power plants at the Twin Cities Army Ammunition Plant (TCAAP) while meeting the intent of the Army energy goals of reduced dependence on oil and natural gas. The recommended modernization approach is to provide new coal-fired boilers complete with required auxiliary equipment in an addition to Building 515. One existing oil-fired boiler in Building 515 will be converted to burn coal. This approach will satisfy facility steam requirements from peacetime through mobilization demands. Upon completion of construction the remaining boilers in Building 115 and 515 will be abandoned in-place. Total expenditures required to complete this modernization program are $59 million in FY 1982 dollars or $69 million in actual dollars. Funding allocations are anticipated for FY 1985 through FY 1989.

  7. Prototype geothermal power plant summary of operation for automatic-run test phase

    SciTech Connect

    Mines, G.L.

    1981-02-01

    The Prototype Power Plant was built to demonstrate and learn the operation of a binary power cycle, and then serve as a test bed for pilot scale components, systems, and/or concepts that have the potential for enhancing the feasibility of power generation from a moderate temperature geothermal fluid resource. The operation to date of the prototype plant is summarized with primary emphasis on the automatic-run phase, during which the plant was operated over a five-month period with minimal operator surveillance.

  8. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 1: Executive Summary & Overview

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C.D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability economics, and technology development needs.

  9. LETTER REPORT SUMMARY RESULTS OF THE NRC TEAM INTERACTION SKILLS STUDY AT DIABLO CANYON POWER PLANT

    SciTech Connect

    Hauth, J. T.; Toquam, J. L.; Bramwell, A. T.; Fleming, T. E.

    1990-12-01

    This report presents information to participants in the Team Interaction Skills study conducted at Diablo Canyon Power Plant from September to November 1989. A study was conducted to develop and assess measures of team interaction skills of nuclear power plant control room crews in simulated emergency conditions. Data were collected at a boiling water reactor (BWR) and pressurized water reactor (PWA) using three sets of rating scales; Behaviorally Anchored Rating Scales (BARS), Behavioral Frequency rating scales, and Technical Performance rating scales. Diablo Canyon Power Plant agreed to serve as the PWR plant in the study. Obse!Vers consisting of contract license examiners, Diablo Canyon Power Plant training instructors, and project staff used the rating scales to provide assessments of team interaction skills and technical skills of control room crews during emerg-3ncy scenarios as part of license requalification training. Crew members were also asked to providH self-ratings of their performance to gather information regarding crew responses to the Team Interactions Skills rating scales.

  10. CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety

    NASA Astrophysics Data System (ADS)

    Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.

    2008-01-01

    Reports were presented covering a selection of topics on the safety of fusion power plants. These included a review on licensing studies developed for ITER site preparation surveying common and non-common issues (i.e. site dependent) as lessons to a broader approach for fusion power plant safety. Several fusion power plant models, spanning from accessible technology to more advanced-materials based concepts, were discussed. On the topic related to fusion-specific technology, safety studies were reported on different concepts of breeding blanket modules, tritium handling and auxiliary systems under normal and accident scenarios' operation. The testing of power plant relevant technology in ITER was also assessed in terms of normal operation and accident scenarios, and occupational doses and radioactive releases under these testings have been determined. Other specific safety issues for fusion have also been discussed such as availability and reliability of fusion power plants, dust and tritium inventories and component failure databases. This study reveals that the environmental impact of fusion power plants can be minimized through a proper selection of low activation materials and using recycling technology helping to reduce waste volume and potentially open the route for its reutilization for the nuclear sector or even its clearance into the commercial circuit. Computational codes for fusion safety have been presented in support of the many studies reported. The on-going work on establishing validation approaches aiming at improving the prediction capability of fusion codes has been supported by experimental results and new directions for development have been identified. Fusion standards are not available and fission experience is mostly used as the framework basis for licensing and target design for safe operation and occupational and environmental constraints. It has been argued that fusion can benefit if a specific fusion approach is implemented, in particular

  11. Summary of inspection findings of licensee inservice testing programs at United States commercial nuclear power plants

    SciTech Connect

    Dunlop, A.; Colaccino, J.

    1996-12-01

    Periodic inspections of pump and valve inservice testing (IST) programs in United States commercial nuclear power plants are performed by Nuclear Regulatory Commission (NRC) Regional Inspectors to verify licensee regulatory compliance and licensee commitments. IST inspections are conducted using NRC Inspection Procedure 73756, {open_quotes}Inservice Testing of Pumps and Valves{close_quotes} (IP 73756), which was updated on July 27, 1995. A large number of IST inspections have also been conducted using Temporary Instruction 2515/114, {open_quotes}Inspection Requirements for Generic Letter 89-04, Acceptable Inservice Testing Programs{close_quotes} (TI-2515/114), which was issued January 15, 1992. A majority of U.S. commercial nuclear power plants have had an IST inspection to either IP 73756 or TI 2515/114. This paper is intended to summarize the significant and recurring findings from a number of these inspections since January of 1990.

  12. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  13. Optimization of public and occupational radiation protection at nuclear power plants. Executive summary

    SciTech Connect

    Cohen, J.J.

    1984-09-01

    An area of growing concern in recent years has been the apparent increase in levels of collective radiation dose to workers at nuclear power plants in the USA. US Nuclear Regulatory Commission (NRC) decisions and rulings related to in-service inspection, retrofits, and plant upgrades have been primarily intended to reduce the risk of public radiation exposure resulting from either routine release of radioactivity or potential accident situations. However, implementation of the required control measures and procedures can often result in increased levels of occupational radiation exposure. Recognizing the need to incorporate occupational dose into probabilistic risk assessments (PRA), value-impact, and cost-benefit analyses, the NRC has sponsored this study with the objective of developing an appropriate methodology to factor potential worker exposures into safety assessments. This report on the study is presented in three volumes. The following are subtitles for Volumes 1 to 3: Volume 1, A Review of Occupational Dose Assessment Considerations in Current Probabilistic Risk Assessments and Cost-Benefit Analyses, Volume 2, Considerations in Factoring Occupational Dose into Value-Impact and Cost-Benefit Analyses, and Volume 3, A Calculation Method.

  14. Summary of the financial and ratepayer impacts of nuclear power plant regulatory reform

    SciTech Connect

    Turpin, A.Y.

    1985-05-01

    This report estimates the financial impact on utilities and ratepayers of nuclear power plant regulatory reforms. Three situations are investigated: (1) no reform, (2) combined early-site-permit and preapproval-of-design reforms, and (3) total reform. Also, two types of capacity additions are evaluated using two utility companies as case studies: (1) nuclear plus generic capacity, and (2) all-nuclear capacity. Results indicate that both the shorter construction lead-time afforded by nuclear regulatory reform and the timing of new capacity additions are extremely important in enabling a utility to remain in a healthy financial position while adding capacity to meet future demand and at the same time reducing the price of electricity to the ratepayers. The lower added capital costs and fuel cost savings obtained from reformed nuclear units allow a utility dependent on oil and gas steam generation to experience price decreases as these new units begin commercial operation. The study also points out that in simulations excluding the shorter lead-time generic capacity, price increases were greater and financial performance was worse for both utilities. These facts indicate the importance of shortening the construction lead-time through nuclear regulatory reform so that nuclear power will be more competitive with coal. 19 refs., 4 figs., 3 tabs.

  15. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 1, Executive summary and overview, Final report

    SciTech Connect

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe.

  16. Summary and evaluation of the parametric study of potential early commercial MHD power plants (PSPEC)

    NASA Technical Reports Server (NTRS)

    Staigner, P. J.; Abbott, J. M.

    1980-01-01

    Two parallel contracted studies were conducted. Each contractor investigated three base cases and parametric variations about these base cases. Each contractor concluded that two of the base cases (a plant using separate firing of an advanced high temperature regenerative air heater with fuel from an advanced coal gasifier and a plant using an intermediate temperature metallic recuperative heat exchanger to heat oxygen enriched combustion air) were comparable in both performance and cost of electricity. The contractors differed in the level of their cost estimates with the capital cost estimates for the MHD topping cycle and the magnet subsystem in particular accounting for a significant part of the difference. The impact of the study on the decision to pursue a course which leads to an oxygen enriched plant as the first commercial MHD plant is described.

  17. Hwange power plant stage 3 expansion: Feasibility study update. Executive summary. Export trade information

    SciTech Connect

    1996-02-29

    The study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report presents the study objectives and approach for the expansion of the Hwange Coal Fired Thermal Power Station- stage III. The objectives of the study include the identification of the least-cost-option, to determine the suitable conceptual design, and to review project implementation and financing. The report is divided into the following sections: (1) Introduction; (2) Objective and Approach; (3) Study Basis and Assumptions; (4) Sumamry of Conclusions and Recommendations; (5) Project Implementation.

  18. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Executive summary: Volume 1

    SciTech Connect

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B.

    1995-06-01

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer software used in the safety systems of nuclear power plants. The framework for the work consisted of the following software development and assurance activities: requirements specification; design; coding; verification and validation, including static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire range of software life-cycle activities; the assessment of the technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary, includes an overview of the framework and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; Volume 2 is the main report.

  19. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants. Summary

    SciTech Connect

    Uhrig, R.E. |

    1990-12-31

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ``noise`` data from TVA`s Sequoyah Nuclear Power Plant, and (5) examination of the NRC`s database of ``Letter Event Reports`` for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  20. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  1. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  2. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  3. Health effects models for nuclear power plant accident consequence analysis. Part 1, Introduction, integration, and summary: Revision 2

    SciTech Connect

    Evans, J.S.; Abrahmson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.; Gilbert, E.S.

    1993-10-01

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ``other``. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk.

  4. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  5. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  6. Summary of the contractor information exchange meeting for improving the safety of Soviet-Designed Nuclear Power Plants, February 19, 1997

    SciTech Connect

    1997-04-01

    This report summarizes a meeting held on February 19, 1997, in Washington, D.C. The meeting was held primarily to exchange information among the contractors involved in the U.S. Department of Energy`s efforts to improve the safety of Soviet-designed nuclear power plants. Previous meetings have been held on December 5-6, 1995, and May 22, 1996. The meetings are sponsored by the U.S. Department of Energy and coordinated by the Pacific Northwest National Laboratory. The U.S. Department of Energy works with countries to increase the level of safety at 63 Soviet-designed nuclear reactors operating in Armenia, Bulgaria, the Czech Republic, Hungary, Lithuania, Russia, Slovakia, and Ukraine. The work is implemented largely by commercial companies and individuals who provide technologies and services to the countries with Soviet-designed nuclear power plants. Attending the meeting were 71 representatives of commercial contractors, the U.S. Department of Energy, the U.S. Department of State, national laboratories, and other federal agencies. The presentations and discussions that occurred during the exchange are summarized in this report. While this report captures the general presentation and discussion points covered at the meeting, it is not a verbatim, inclusive record. To make the report useful, information presented at the meeting has been expanded to clarify issues, respond to attendees` requests, or place discussion points in a broader programmatic context. Appendixes A through F contain the meeting agenda, list of attendees, copies of presentation visuals and handouts, the Strategy Document discussed at the meeting, and a summary of attendees` post-meeting evaluation comments. As with past information exchanges, the participants found this meeting valuable and useful. In response to the participant`s requests, a fourth information exchange will be held later in 1997.

  7. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  8. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  9. Power plant design

    SciTech Connect

    Khalil, E.E. )

    1990-01-01

    This overviews basic theories and concepts of power plant design using an accessible approach that moves smoothly from simple to real configurations. Utilizing a large number of worked examples the book provides a treatment and understanding of all aspects of power plant design from basic thermodynamics to complex applications.

  10. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  11. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 1: Executive Summary. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  12. New baseload power plants

    SciTech Connect

    Not Available

    1993-04-01

    This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

  13. Nuclear power plant maintainability.

    PubMed

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants. PMID:15676441

  14. Martin Drake power plant

    SciTech Connect

    Schimmoller, B.K.

    2005-08-01

    The relatively old Martin Drake coal-fired plant at Colorado Springs is facing challenges to meet environmental requirements whilst satisfying power demands and remaining competition. The article describes measures taken and planned to tackle these challenges. 2 photos.

  15. Amedee geothermal power plant

    SciTech Connect

    Hodgson, S.F.

    1988-12-01

    In September 1988, the power plant began generating electricity in Northern California, near Honey Lake. The plant generates 2 megawatts, net, of electricity in the winter, and from 20 to 30% less in the summer, depending on the temperature. Geothermal fluids from two wells are used to operate the plant, and surface discharge is used to dispose of the spent fluids. This is possible because the geothermal fluids have a very low salinity and a composition the same as area hot spring waters. The binary power plant has a Standard Offer No. 4 contract for 5 megawatts with pacific Gas and Electric Company. Sometime in the near future, they will expand the project to add another 3 megawatts of electrical generation.

  16. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  17. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    SciTech Connect

    Not Available

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  18. Power Plant Construction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Stone & Webster Engineering Corporation utilized TAP-A, a COSMIC program originally developed as part of a NASA investigation into the potential of nuclear power for space launch vehicles. It is useful in nuclear power plant design to qualify safety-related equipment at the temperatures it would experience should an accident occur. The program is easy to use, produces accurate results, and is inexpensive to run.

  19. Shoreham Nuclear Power Plant

    SciTech Connect

    1992-12-31

    The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated on such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.

  20. Evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants. Task D topical report summary analyses

    SciTech Connect

    Vidt, E.J.

    1982-06-08

    In previous tasks, ten coal gas system configurations were chosen for fuel supply to MCFC power plants. In this report, we have ranked configurations by efficiency, investment, cost of electricity, operability, and environmental effects. The ranking shows that, for MCFC power plants, air-blown, low-Btu, fluidized-bed or entrained-bed gasification systems with hot gas cleanup have cost, operability, efficiency, and environmental advantages over other systems. The cost of electricity, for example, from a hot-gas cleanup, low-Btu, fluidized-bed fuel supply system is 12 percent less than from a medium-Btu system with hot cleanup, and is about 20 percent less than a medium-Btu system with conventional wet, low-temperature cleanup. Additional development of hot cleanup systems is required. Hot halogen removal costs used in this report need to have experimental verification, as does the effectiveness of ZnO for removing H/sub 2/S/COS to below 1 ppM at 650/sup 0/C. Also, the availability of a more effective hot bulk desulfurization system, such as the zinc ferrite system now under development by DOE/METC, would have additional benefits in cost and efficiency for MCFC power plants.

  1. Health effects model for nuclear power plant accident consequence analysis. Part I. Introduction, integration, and summary. Part II. Scientific basis for health effects models

    SciTech Connect

    Evans, J.S.; Moeller, D.W.; Cooper, D.W.

    1985-07-01

    Analysis of the radiological health effects of nuclear power plant accidents requires models for predicting early health effects, cancers and benign thyroid nodules, and genetic effects. Since the publication of the Reactor Safety Study, additional information on radiological health effects has become available. This report summarizes the efforts of a program designed to provide revised health effects models for nuclear power plant accident consequence modeling. The new models for early effects address four causes of mortality and nine categories of morbidity. The models for early effects are based upon two parameter Weibull functions. They permit evaluation of the influence of dose protraction and address the issue of variation in radiosensitivity among the population. The piecewise-linear dose-response models used in the Reactor Safety Study to predict cancers and thyroid nodules have been replaced by linear and linear-quadratic models. The new models reflect the most recently reported results of the follow-up of the survivors of the bombings of Hiroshima and Nagasaki and permit analysis of both morbidity and mortality. The new models for genetic effects allow prediction of genetic risks in each of the first five generations after an accident and include information on the relative severity of various classes of genetic effects. The uncertainty in modeloling radiological health risks is addressed by providing central, upper, and lower estimates of risks. An approach is outlined for summarizing the health consequences of nuclear power plant accidents. 298 refs., 9 figs., 49 tabs.

  2. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  3. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  4. Beloyarsk Nuclear Power Plant

    SciTech Connect

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  5. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  6. Power plant emissions reduction

    SciTech Connect

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  7. Delano Biomass Power Plant

    SciTech Connect

    Middleton, M.; Hendershaw, W.K.; Corbin, H.R.; Taylor, T.A.

    1995-12-31

    The Delano Biomass Power Plant utilizes orchard prunings, urban wood waste, almond shells, and cotton stalks to fuel a boiler for steam generation. The steam is condensed in a steam turbine/generator to produce 31.8 MW of power. The electrical power generated (27 MW net) is then sold to Southern California Edison Co. for distribution. By incorporating a cooling tower, demineralizer, brine concentration tower, and evaporation ponds this system is able to achieve zero discharge. Steam at 97{degrees}F is condensed with cooling water. The cooling water is recirculated through an evaporator tower. Due to the temperature of the water entering the tower (83{degrees}F), evaporation occurs leaving behind concentrated salts. A blowdown is used to remove these salts from the tower. Losses from evaporation or leaks require make up to the tower. Wastewater from various processes in the plant are passed to a brine concentration tower. This concentrate is then taken to the evaporation ponds. Concentrated blowdown of small volumes (approximately 2-4 gpm) from the brine tower is disposed of in evaporation ponds.

  8. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft section revision; request for comment. SUMMARY: The U.S. Nuclear...

  9. Wind Powering America FY06 Activities Summary

    SciTech Connect

    Not Available

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  10. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  11. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  12. Wind Powering America FY07 Activities Summary

    SciTech Connect

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  13. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  14. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  15. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  16. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  17. ESP IMPROVEMENTS AT POWER PLANTS

    EPA Science Inventory

    An on-going ORD and OIA collaborative project in the Newly Independent States (NIS) is designed to upgrade ESPs used in NIS power plants and has laid the foundation for implementing cost-effective ESP modernization efforts at power plants. Thus far, state-of-the-art ESP performan...

  18. Steam Power Plants in Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, E E

    1926-01-01

    The employment of steam power plants in aircraft has been frequently proposed. Arguments pro and con have appeared in many journals. It is the purpose of this paper to make a brief analysis of the proposal from the broad general viewpoint of aircraft power plants. Any such analysis may be general or detailed.

  19. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  20. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  1. Asbury power plant, Asbury, Missouri

    SciTech Connect

    Wicker, K.

    2005-08-01

    The Asbury power plant in rural southwest Missouri is off the beaten path in more ways than one. Three years ago, Empire District Electric Co., the plant's owner/operator, began mixing pieces of discarded tires into its coal fuel supply. Each ensuing year, without compromising local air quality, the plant has rid the area of millions of tires that otherwise would have ended up in a landfill. For demonstrating that a blight can be made right, Asbury is one of Power's 2005 top plants. 2 figs., 1 tab.

  2. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  3. Power Plant Water Intake Assessment.

    ERIC Educational Resources Information Center

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  4. Proceedings of cogeneration power plants

    SciTech Connect

    Schroeter, J.W. )

    1991-01-01

    This book contains proceedings of Cogeneration Power Plants. Topics as diverse as extended operational performance findings, updating of control systems, the complex relationships involved in cogeneration projects, and correction of station noise complaints are covered.

  5. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  6. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  7. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (ESTSC)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  8. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  9. ALARA at nuclear power plants

    SciTech Connect

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  10. FIREDATA. Nuclear Power Plant Fire Database

    SciTech Connect

    Wheelis, W.T.

    1986-08-01

    FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean `and` or `or` logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name or calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information.

  11. Financing Solar Thermal Power Plants

    SciTech Connect

    Price, H. W.; Kistner, R.

    1999-11-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  12. Toxic releases from power plants

    SciTech Connect

    Rubin, E.S.

    1999-09-15

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results.

  13. State power plant productivity programs

    SciTech Connect

    Not Available

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  14. Switched power workshop: Introduction and summary

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.

    This paper discusses the design of a switched power electron gun. Particular topics discussed are: vacuum photodiode switch; laser switched solid state diodes; gun performance; charging supply; and laser requirements.

  15. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  16. Solar thermionic power plant. II

    NASA Astrophysics Data System (ADS)

    Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

    It has been shown that the geometric configuration of a central receiver solar electric power plant SEPP can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a TDC constructed on the top of a SEPP in Riyadh area is 5 to 6 hours per day in winter and 6 to 8 hours in summer. At the 25 percent conversion efficiency achieved by a laboratory test model, a reduction in the cost per unit power of 8-12 per cent is expected. The spectral behavior and work functions of the working surface of the thermionic electrodes were investigated

  17. Solar power satellite microwave power transmission system description executive summary

    NASA Astrophysics Data System (ADS)

    Woodcock, G. R.

    1980-12-01

    The history of the concept of microwave power beaming to Earth is reviewed with emphasis on transmission frequency selection. Constraints on the system power level results from (1) required rejection of waste heat resulting from inefficiencies in the cover conversion of dc electric power to microwave power; (2) the rf power intensity in the ionosphere; and (3) the effect of sidelobe level on aperture illumination factors. Transmitter arrangement, the power distribution system, attitude control, subarrays, waveguides, and alignment are discussed.

  18. Fossil power plant systems description

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text presents the functions and relationships between each major component and its auxiliaries within a system. The text also describes the relationships between systems. All major components are addressed, and system boundaries are defined for a generic fossil power plant.

  19. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    SciTech Connect

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  20. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  1. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  2. Wave-operated power plant

    SciTech Connect

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  3. World electric power plants database

    SciTech Connect

    2006-06-15

    This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

  4. 2. VIEW OF POWER PLANT LOOKING SOUTHEAST. Potomac Power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF POWER PLANT LOOKING SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  5. Microwave Power Transmission System Studies. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Meltz, G.; Haley, J. T.; Howell, J. M.; Nathan, A.

    1975-01-01

    A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included.

  6. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    SciTech Connect

    Erika Bailey

    2011-07-07

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  7. Power plant intake entrainment analysis

    SciTech Connect

    Edinger, J.E.; Kolluru, V.S.

    2000-04-01

    Power plant condenser cooling water intake entrainment of fish eggs and larvae is becoming an issue in evaluating environmental impacts around the plants. Methods are required to evaluate intake entrainment on different types of water bodies. Presented in this paper is a derivation of the basic relationships for evaluating entrainment from the standing crop of fish eggs and larvae for different regions of a water body, and evaluating the rate of entrainment from the standing crop. These relationships are coupled with a 3D hydrodynamic and transport model that provides the currents and flows required to complete the entrainment evaluation. Case examples are presented for a simple river system, and for the more complex Delaware River Estuary with multiple intakes. Example evaluations are made for individual intakes, and for the cumulative impacts of multiple intakes.

  8. Hybrid solar powered desalination plant

    SciTech Connect

    Hamester, H.L.; Husseiny, A.; Lumdstrom, J.; La Porta, C.; McLagan, G.

    1981-01-01

    A solar powered sea water desalination system design is described. The commercial size plant is specified to provide at least 1.8*10/sup 6/m/sup 3//year of product water (<500 kg/m/sup 3/ total dissolved solids) from sea water containing 44,000 kg/m/sup 3/ total dissolved solids. The basis of the design is a two-stage desalination system employing membrane technologies. Membrane technologies were selected since they require about a factor of five less energy than desalination technologies which use distillation.

  9. State power plant productivity programs

    NASA Astrophysics Data System (ADS)

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Michigan are described. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility.

  10. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740

  11. Kosova coal gasification plant health effects study: Volume 1, Summary

    SciTech Connect

    Morris, S.C.; Jackson, J.O.; Haxhiu, M.A.

    1987-03-01

    This is the summary volume of a three-volume report of the Kosova coal gasification plant health effects study. The plant is of the Lurgi type and began commercial operation in 1971. The study was conducted under the auspices of the U.S.-Yugoslav Joint Board for Scientific and Technological Cooperation. It had five overall purposes: (1) Identify potential health risks in the gasification plant and provide information on possible control measures. (2) Use the experience in Kosova as a basis of judging potential health risks and avoiding potential problems at future commercial scale gasification plants in the United States and Yuogoslavia. (3) Acquire information on industrial hygiene practices at an operating commercial scale coal gasification plant. (4) Use the experience in Kosova to contribute to understanding dose-response relationships of exposure to complex organic mixtures. (5) Increase the scientific capabilities of scientists in Kosova in the areas of epidemiology and industrial hygiene. This report introduced the Kosova gasification plant and the study design and summarizes the preliminary studies of 1981 to 1983, the detailed characterization campaign of 1984, the retrospective epidemiology study, ongoing clinical studies, and the successful technology transfer. It presents conclusions and recommendations from the industrial hygiene and epidemiology studies. 18 refs.

  12. Systems definition space based power conversion systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  13. Sabotage at Nuclear Power Plants

    SciTech Connect

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  14. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  15. Floristic summary of plant species in the air pollution literature

    USGS Publications Warehouse

    Bennett, J.P.

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  16. Satellite Power System (SPS) FY 79 program summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Satellite Power System (SPS) program a joint effort to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept is discussed. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. This Program Summary not only covers FY 1979 but includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.

  17. 15. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. PA-A-36692, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  18. 14. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. 4415, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  19. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  20. TS Power Plant, Eureka County, Nevada

    SciTech Connect

    Peltier, R.

    2008-10-15

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  1. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  2. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  3. Introduction and overall description of nuclear power plant. Volume I

    SciTech Connect

    Not Available

    1986-01-01

    Topics covered in this volume include content and purpose of booklets; how to study; producing electricity; the fossil fuel power plant; the nuclear power plant; the nuclear reactor; generating steam in a nuclear power plant; using the steam in a nuclear power plant; nuclear power station facilities; and special features of nuclear power plants.

  4. Demonstration of 5MW PAFC power plant

    SciTech Connect

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  5. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  6. Wind Power Plant SCADA and Controls

    SciTech Connect

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.; Janakiraman, R.; Kennedy, R.; Klein, S.; Smith, Travis M; Vargas, L.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  7. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  8. Thermal spray applications for power plant components

    SciTech Connect

    Sampson, E.R.

    2000-03-01

    Power plants usually are located near water and many are in salt water environments. Corrosion occurring in these environments is a problem often solved with thermal spray coatings. The use of thermal spray aluminum and zinc in three power plants for various components is reviewed. Special emphasis is on the cooling tower at the Seabrook, New Hampshire plant. A guide to selection of the coating and process also is given.

  9. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  10. Satellite Power System (SPS) FY 79 Program Summary

    SciTech Connect

    Not Available

    1980-01-01

    The Satellite Power System (SPS) program is a joint effort of the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). It is managed by the SPS Project Office within DOE's Office of Energy Research. SPS project organization is shown in Figure 1. The SPS Project Office was established in 1978 and is responsible for the planning, management and integration of SPS research in four areas: systems definition, environmental assessment, societal assessment, and comparative assessment. In fulfilling its responsibilities, the SPS Project Office directs research and assessment efforts to determine the feasibility of the SPS concept, funds organizations supporting the program, and disseminates information developed from project research and assessments. The objective of the SPS program is to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. The SPS Project Office annually issues a Program Summary which describes the research undertaken during the preceding fiscal year. This Program Summary covers FY 1979. It includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.

  11. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Draft EIS was published in the Federal Register at 76 FR 20624, on April 13, 2011, and in local...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation; Proposed Biomass Power Plant... (NEPA) and 7 CFR part 1794 related to possible financial assistance to Oglethorpe Power...

  12. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  13. Thermal power systems, small power systems application project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Current small power system technology as applied to power plants up to 10 MWe in size was assessed. Markets for small power systems were characterized and cost goals were established. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Economic studies were conducted and breakeven capital costs were determined for leading contenders among the candidate systems. An application study was made of the potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, estimated to be 1000 MWe by 1985. Criteria and methodologies were developed for application to the ranking of candidate power plant system design concepts. Experimental power plants concepts of 1 MWe rating were studied leading toward the definition of a power plant configuration for subsequent detail design, construction, testing and evaluation as Engineering Experiment No. 1 (EE No. 1). Site selection criteria and ground rules for the solicitation of EE No. 1 site participation proposals by DOE were developed.

  14. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants - Final Technical Report

    SciTech Connect

    Ritterbusch, Stanley; Golay, Michael; Duran, Felicia; Galyean, William; Gupta, Abhinav; Dimitrijevic, Vesna; Malsch, Marty

    2003-01-29

    OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.

  15. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  16. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  17. Electromagnetic compatibility of nuclear power plants

    SciTech Connect

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  18. Revised FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1

    SciTech Connect

    Erika Bailey

    2011-10-27

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education (ORISE

  19. 34. SOUTH PLANT NORTHCENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT (BUILDING 325) AT LEFT AND CELL BUILDING (BUILDING 242) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  20. 35. SOUTH PLANT NORTHCENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS 325 AND 321) AT LEFT, FUEL TOWER AT CENTER AND CHLORINE EVAPORATOR (BUILDING 251) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  1. Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis.

    PubMed

    Kim, Jaeyoung; Bang, Yejin; Lee, Won Jin

    2016-02-01

    There has been public concern regarding the safety of residing near nuclear power plants, and the extent of risk for thyroid cancer among adults living near nuclear power plants has not been fully explored. In the present study, a systematic review and meta-analysis of epidemiologic studies was conducted to investigate the association between living near nuclear power plants and the risk of thyroid cancer. A comprehensive literature search was performed on studies published up to March 2015 on the association between nuclear power plants and thyroid cancer risk. The summary standardized incidence ratio (SIR), standardized mortality ratio (SMR), and 95% confidence intervals (CIs) were calculated using a random-effect model of meta-analysis. Sensitivity analyses were performed by study quality. Thirteen studies were included in the meta-analysis, covering 36 nuclear power stations in 10 countries. Overall, summary estimates showed no significant increased thyroid cancer incidence or mortality among residents living near nuclear power plants (summary SIR=0.98; 95% CI 0.87-1.11, summary SMR=0.80; 95% CI 0.62-1.04). The pooled estimates did not reveal different patterns of risk by gender, exposure definition, or reference population. However, sensitivity analysis by exposure definition showed that living less than 20 km from nuclear power plants was associated with a significant increase in the risk of thyroid cancer in well-designed studies (summary OR=1.75; 95% CI 1.17-2.64). Our study does not support an association between living near nuclear power plants and risk of thyroid cancer but does support a need for well-designed future studies. PMID:26638017

  2. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  3. Approach to nitinol power plant cost analysis

    SciTech Connect

    McNichols, J.L. Jr.; Cory, J.S.; Curtis, E.H.

    1982-11-01

    The objective of this paper is tof provide a method for cost evaluation of low grade thermal energy conversion by Nitinol power plants. To accomplish this objective Nitinol power plant costs are subdivided int those which can be obtained through conventional cost analysis, and those which are associated with the Nitino heat engine and are not subject to conventional analysis. Analytic expressions are provided for the Nitinol heat engine capital costs and Nitinol replacement costs in terms of Nitinol performance, heat engine configuration, plant operating factors, material costs, and the cost of capital. Nitinol working material factors are identified that require further definition before firm and reliable costs can be determined. Where data are lacking, plausible assumptions and estimates are utilized tof perform a first-cut analysis. It is found that the Nitinol heat engine capital costs per unit power generating capacity are approximately $0.15/W, and that the cost of produced energy for the Nitinol heat engine portion of the power plant is approximately 0.74 /kWh, includin operation, maintenance, Nitinol replacements and the cost of capital for the heat engine. It is concluded tha Nitinol power plants for the conversion of low grade thermal energy may have a significant economical advantage over conventionally fueled power plants.

  4. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  5. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  6. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments Database

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  7. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Availability (NOA) of the Draft EIS was published in the Federal Register at 76 FR 20624, on April 13, 2011... NOA of the Final EIS for the proposed Project in the Federal Register on December 15, 2011 at 76 FR... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY:...

  8. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Prepare an EIS and Hold a Scoping Meeting was published in the Federal Register at 74 FR 30520, on June 26... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural... Environmental Policy Act (NEPA) and 7 CFR part 1794 related to possible financial assistance to Oglethorpe...

  9. Fossil power plant operating procedures

    SciTech Connect

    Not Available

    1984-01-01

    This three-volume text presents the theory and interaction of all components within a system. Startup, normal, emergency, and shutdown operating techniques are discussed for each component and subsystem within the sixteen systems addressed. In addition to the plant systems, pump operation, fluid piping, instrumentation and control, and piping and instrument drawings (P and IDs) are covered.

  10. Questions and Answers About Nuclear Power Plants.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  12. Sowing seed, planting trees, producing power

    SciTech Connect

    Moon, S.

    1997-07-01

    With three crops-to-power projects, the US DOE and US DOA have their biomass power for rural development initiative in high gear. Farmers can produce abundant supplies of fast-growing energy crops on marginal or underutilized acreage to feed power plants. This article summarizes the three projects in Minnesota, Iowa, and New York, and discusses the importance of the necessity for cooperation.

  13. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  14. Video camera use at nuclear power plants

    SciTech Connect

    Estabrook, M.L.; Langan, M.O.; Owen, D.E. )

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

  15. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  16. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  17. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  18. Nuclear power plant security assessment technical manual.

    SciTech Connect

    O'Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  19. Progress in developing tidal electric power plants reported

    NASA Astrophysics Data System (ADS)

    Blokhnin, A.

    1984-12-01

    The natural energy potential of tides on the shores of the U.S.S.R. is equal to about a third of the world's total. The Achilles heel of tidal power plants is their pulsating operation. One solution to this problem was to build a hydroelectric power plant for use in tandem with the tidal power plant. During lulls in the tidal plant, the hydraulic power plant switches on at full power. Possible sites for dual plants were discussed.

  20. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  1. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  2. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 1: Final summary report; Volume 1

    SciTech Connect

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  3. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  4. Activities in support of continuing the service of nuclear power plant concrete structures

    SciTech Connect

    Naus, Dan J

    2012-01-01

    In general, nuclear power plant concrete structure s performance has been very good; however, aging of concrete structures occurs with the passage of time that can potentially result in degradation if is effects are not controlled. Safety-related nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The interaction of the license renewal process and concrete structures is noted. A summary of operating experience related to aging of nuclear power plant concrete structures is provided. Several candidate areas are identified where additional research would be beneficial for aging management of nuclear power plant concrete structures. Finally, an update on recent activities at Oak Ridge National Laboratory related to aging management of nuclear power plant concrete structures is provided.

  5. Active Faults and Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Chapman, Neil; Berryman, Kelvin; Villamor, Pilar; Epstein, Woody; Cluff, Lloyd; Kawamura, Hideki

    2014-01-01

    The destruction of the Fukushima Daiichi Nuclear Power Plant (NPP) following the March 2011 Tohoku earthquake and tsunami brought into sharp focus the susceptibility of NPPs to natural hazards. This is not a new issue—seismic hazard has affected the development of plants in the United States, and volcanic hazard was among the reasons for not commissioning the Bataan NPP in the Philippines [Connor et al., 2009].

  6. A numerical method for power plant simulations

    SciTech Connect

    Carcasci, C.; Facchini, B.

    1996-03-01

    This paper describes a highly flexible computerized method of calculating operating data in a power cycle. The computerized method presented here permits the study of steam, gas and combined plants. Its flexibility is not restricted by any defined cycle scheme. A power plant consists of simple elements (turbine, compressor, combustor chamber, pump, etc.). Each power plant component is represented by its typical equations relating to fundamental mechanical and thermodynamic laws, so a power plant system is represented by algebraic equations, which are the typical equations of components, continuity equations, and data concerning plant conditions. This equation system is not linear, but can be reduced to a linear equation system with variable coefficients. The solution is simultaneous for each component and it is determined by an iterative process. An example of a simple gas turbine cycle demonstrates the applied technique. This paper also presents the user interface based on MS-Windows. The input data, the results, and any characteristic parameters of a complex cycle scheme are also shown.

  7. Report on Hawaii geothermal power plant project

    SciTech Connect

    Not Available

    1983-06-01

    The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

  8. Slim Holes for Small Power Plants

    SciTech Connect

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  9. Syngas treating options for IGCC power plants

    SciTech Connect

    Wen, H.; Mohammad-zadeh, Y.

    1996-12-31

    Increased environmental awareness, lower cost of gas turbine based combined cycle power plants, and advances in gasification processes have made the integrated gasification combined cycle (IGCC) a viable technology to convert solid fuel to useful energy. The raw solid fuel derived synthesis gas (syngas) contains contaminants that should be removed before combustion in a gas turbine. Therefore, an important process in a gasification based plant is the cleaning of syngas. This paper provides information about various syngas treating technologies and describes their optimal selections for power generation or cogeneration of steam for industrial applications.

  10. Planting for power in central New York

    SciTech Connect

    Moon, S.

    1997-12-31

    The Salix consortium has joined forces with the US DOE and USDA to grow dedicated plantations of willows strategically located within a 50 mile radius (or easy hauling distance) of coal-burning power plants. At harvest time, the energy farmers could have as much as 7.5 tonnes of oven dry wood per acre per year. This article describes this project, covering the following areas: biomass power for rural development; energy farming; the Salix plan; New York State`s utilities; commercializing a new crop; the SUNY ESF team; biomass test field station; planting and harvesting; what lies ahead. 2 figs.

  11. Virtual environments for nuclear power plant design

    SciTech Connect

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  12. NRC Research Program on Plant Aging: Listing and summaries of reports issued through September 1993. Revision 4

    SciTech Connect

    Vora, J.P.

    1993-12-01

    The US Nuclear Regulatory Commission is conducting the Nuclear Plant Aging Research (NPAR) Program. This is a comprehensive hardware-oriented engineering research program focused on understanding the aging mechanisms of components and systems in nuclear power plants. The NPAR program also focuses on methods for simulating and monitoring the aging-related degradation of these components and systems. In addition, it provides recommendations for effective maintenance to manage aging and for implementation of the research results in the regulatory process. This document contains a listing and index of reports generated in the NPAR Program that were issued through September 1993 and summaries of those reports. Each summary describes the elements of the research covered in the report and outlines the significant results. For the convenience of the user, the reports are indexed by personal author, corporate author, and subject.

  13. LNG combined cycle power plant for stable power supply for Kiheung semiconductor plant

    SciTech Connect

    Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool

    1995-12-31

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormous loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.

  14. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  15. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  16. Establishing Competence: Qualification of Power Plant Personnel.

    ERIC Educational Resources Information Center

    Chapman, Colin R.

    1992-01-01

    Discusses the International Atomic Energy Agency's definition of competence for nuclear power plant operations personnel, how competence can be identified with intellectual, physical, and psychological attributes, how levels of competence are determined, how education, training, and experience establish competence, objectives and costs of training…

  17. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    ERIC Educational Resources Information Center

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  18. Modesty garment use at nuclear power plants

    SciTech Connect

    Owen, D.E. ); Johnstone, G. )

    1990-02-01

    This article presents the results of a telephone survey of modesty garment use at U.S. nuclear power plants. Modesty garments are launderable or disposable lightweight garments worn in radiological areas under cloth protective clothing (PCs). The types of modesty garments used, the benefits they provide, and other issues related to their used are discussed.

  19. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  20. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  1. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  2. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  3. MCFC and microturbine power plant simulation

    NASA Astrophysics Data System (ADS)

    Orecchini, F.; Bocci, E.; Di Carlo, A.

    The consistent problem of the CO 2 emissions and the necessity to find new energy sources, are motivating the scientific research to use high efficiency electric energy production's technologies that could exploit renewable energy sources too. The molten carbonate fuel cell (MCFC) due to its high efficiencies and low emissions seems a valid alternative to the traditional plant. Moreover, the high operating temperature and pressure give the possibility to use a turbine at the bottom of the cells to produce further energy, increasing therefore the plant's efficiencies. The basic idea using this two kind of technologies (MCFC and microturbine), is to recover, via the microturbine, the necessary power for the compressor, that otherwise would remove a consistent part of the MCFC power generated. The purpose of this work is to develop the necessary models to analyze different plant configurations. In particular, it was studied a plant composed of a MCFC 500 kW Ansaldo at the top of a microturbine 100 kW Turbec. To study this plant it was necessary to develop: (i) MCFC mathematical model, that starting from the geometrical and thermofluidodynamic parameter of the cell, analyze the electrochemical reaction and shift reaction that take part in it; (ii) plate reformer model, a particular compact reformer that exploit the heat obtained by a catalytic combustion of the anode and part of cathode exhausts to reform methane and steam; and (iii) microturbine-compressor model that describe the efficiency and pressure ratio of the two machines as a function of the mass flow and rotational regime. The models developed was developed in Fortran language and interfaced in Chemcad © to analyze the power plant thermodynamic behavior. The results show a possible plant configuration with high electrical and global efficiency (over 50 and 74%).

  4. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Shezel-Ayagh

    2005-05-01

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  5. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  6. America's top fifty power plant mercury pollutants

    SciTech Connect

    2008-11-15

    The fifty most-polluting coal-burning power plants in the United States emitted twenty tons of mercury into the air in 2007. Of the ten highest-emitting plants, all but one reported an increase as compared to 2006. Coal-fired power plants are the single largest source of mercury air pollution in the U.S., accounting for roughly 40 per cent of all mercury emissions. This report rates the power plants both in terms of sheer mercury pollution and mercury pollution adjusted per kilowatt hour. It also outlines the ways in which mercury removal is achievable with existing technology. Activated carbon injection, which is commercially available and has been tested, can achieve mercury reductions of 90 per cent (and better when coupled with a fabric filter for particulate control) on both bituminous and sub-bituminous coals. In addition, mercury can be significantly reduced as a 'co-benefit' of controls for other pollutants, such as fabric filters, flue gas desulphurization, and selective catalytic reduction. 3 tabs.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  9. Safety in nuclear power plants in India.

    PubMed

    Deolalikar, R

    2008-12-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  10. Safety in nuclear power plants in India

    PubMed Central

    Deolalikar, R.

    2008-01-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  11. Numerical flow modeling of power plant windboxes

    SciTech Connect

    LaRose, J.A.; Hopkins, M.W.

    1995-12-31

    Numerical flow modeling has become an increasingly important design and analysis tool for improving the air distribution to power plant burners. Uniform air distribution allows the burners to perform as designed to achieve the lowest possible emissions and best fuel burn-out. Modifications can be made internal to the existing windbox to improve the burner-to-burner and burner peripheral air distributions. These modifications can include turning vanes, flow splitters, perforated plate, and burner shrouding. Numerical modeling allows the analysis of design trade-offs between adding flow resistance, fan power, and windbox modification construction cost. Numerical modeling has advantages over physical modeling in that actual geometric scales and air temperatures are used. Advantages over a field data based study include the ability to quickly and cheaply analyze a variety of design options without actually modifying the windbox, and the availability of significantly more data with which to interpret the results. Costs to perform a numerical study are generally one-half to one-third of the cost to perform a physical flow model and can be one-forth of the cost to perform a field study. The continued development of affordable, high speed, large memory workstations and reliable, commercially available computation fluid dynamics (CFD) software allows practical analyses of power plant windboxes. This paper discusses (1) the impact of air distribution on burner performance, (2) the methodology used to perform numerical flow modeling of power plant windboxes, and (3) the results from several windbox analyses including available post-modification observations.

  12. GDA steamboat power plant: a case history

    SciTech Connect

    Booth, G.M. III

    1987-08-01

    Located 10 mi south of Reno, Nevada, Steamboat Springs has long been recognized as a prime geothermal resource for electric power generation potential by the US Geological Survey and numerous energy companies. Extensive leasing and exploration by Phillips and Gulf led to the discovery of a high-temperature (over 400/sup 0/F) reservoir in 1979. Geothermal Development Associates obtained a geothermal resources lease on a 30-acre parcel and a 10-year power sales agreement for 5 MW from the local utility, Sierra Pacific Power Company, in late 1983. Drilling commenced in March 1985, modular power plant construction began in October, and initial plant startup with power to the grid was accomplished in December 1985. Owing to cooling-water access and treatment costs, air-cooled condensers replaced the planned cooling towers, and full-time scale continuous production at rated capacity did not begin until late 1986. Three production wells and two injection wells, completed in highly fractured Cretaceous granodiorite and Tertiary andesite at depths of less than 1000 ft, produce 340/sup 0/F water having a salinity of 2300 ppm. Production well line-shaft pumps deliver in excess of 3000 gpm water to seven 1.2 MW-Rankine cycle binary power plant modules. The heat extracted from the geothermal water vaporizes the low boiling point N-pentane working fluid that expands to drive the turbines. The geothermal water is injected back into the reservoir. Both the pentane and the geothermal water are in separate closed-loop systems, which provides for an environmentally clean operation in this sensitive, highly visible site on the periphery of a metropolitan area.

  13. Neural network recognition of nuclear power plant transients

    SciTech Connect

    Bartlett, E.B.; Danofsky, R.; Adams, J.; AlJundi, T.; Basu, A.; Dhanwada, C.; Kerr, J.; Kim, K.; Lanc, T.

    1993-02-23

    The objective of this report is to describe results obtained during the first year of funding that will lead to the development of an artificial neural network (ANN) fault - diagnostic system for the real - time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety - parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the first of three scheduled years for the project. Included herein is a summary of the first year's results as, well as individual descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period.

  14. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    SciTech Connect

    Not Available

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  15. Space power plants and power-consuming industrial systems

    SciTech Connect

    Latyshev, L.; Semashko, N.

    1996-12-31

    An opportunity to create the space power production on the basis of solar, nuclear and fusion energies is analyzed. The priority of solar power production as the most accessible and feasible in comparison with others is emphasized. However, later on, it probably will play an auxiliary role. The possibilities of fusion power production, as a basic one in future, are also considered. It is necessary to create reactors using the fueling cycle with helium-3 (instead of tritium and deuterium, later on). The reaction products--charged particles, mainly--allow one to organize the system of direct fusion energy conversion into electricity. The produced energy is expected not to be transmitted to Earth, but an industry in space is expected to be produced on its basis. The industrial (power and science-consuming) objects located on a whole number of space apparatus will form a single complex with its own basic power plant. The power transmission within the complex will be realized with high power density fluxes of microwave radiation to short distances with their receivers at the objects. The necessary correction of the apparatus positions in the complex will be done with ion and plasma thrusters. The materials present on the Moon, asteroids and on other planets can serve as raw materials for industrial objects. Such an approach will help to improve the ecological state on Earth, to eliminate the necessity in the fast energy consumption growth and to reduce the hazard of global thermal crisis.

  16. Open cycle gas fired MHD power plants

    SciTech Connect

    Medin, S.A. ); Negrini, F. )

    1991-01-01

    In this paper, the main objectives for the present development of gas fired MHD power generation are considered. The state of the world-wide natural gas consumption and its utilization for electricity production is analyzed. The experimental efforts in gas-fired MHD studies are briefly described. The essential features of the two major world gas-fired MHD project - the Ryazan MHDES-580 (U-500) power plant and the Italian 230 MWt retrofit are presented. New suggestions for improving the efficiency of MHD systems and the theoretical and experimental aspects of MHD development are discussed.

  17. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  18. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  19. Fuel cell power plants for transportation applications

    SciTech Connect

    Huff, J.R.

    1991-12-31

    Over the past 35 years, the transportation sector has accounted fr approximately 25% of the total gross energy consumption in the United States. As the largest energy user in the United States, transportation accounts for approximately 66% of the country`s current petroleum consumption. Fuel cell power plants using nonpetroleum fuels such as methanol could significantly reduce US dependency on petroleum resources. They offer the additional advantage of minimal air pollution thereby addressing another issue of major concern in the US fuel cell power plant use in city buses and other vehicles is being explored in a number of US Department of Energy and industrial programs that will be described in this paper. 5 refs.

  20. New, environmentally friendly power plants being sought

    SciTech Connect

    Hansen, T.

    2007-01-15

    The common theme at the Power-Gen International Conference in November 2006 was: the world's appetite for electricity must be fed with new power plant construction. These new plants must be designed and built in an environmentally responsible way. The article reports on keynote highlights, on presentations on carbon capture and on panel discussions. TXU plans to add 9.1 GW of new coal-fired generation in Texas by 2011. Bradley Jones said the company plans to spend $2 billion on carbon sequestration research. David Ekins described a carbon capture effort that EPRI and We Energies are pursuing. Joubert, of Alstom, thought that IGCC might one day become competitive but not before 2020. 2 photos.

  1. The design of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    The conversion of solar energy into electricity in solar thermal tower power plants is examined. Mirrors attached to mobile, sun-following heliostats concentrate solar rays into the opening of a receiver mounted on a tower. In the receiver, the radiant energy is absorbed by a system of pipes filled with a flowing material which is heated and drives a turbogenerator directly or via a heat exchanger. It is shown that the optics involved in this concept preclude the optimization of the pipe material, since the local distribution of rays in the heater of tower power plants varies diurnally and annually. This requires each pipe section to be designed for maximum stress, even though that stress occurs only at brief intervals during the day.

  2. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  3. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  4. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  5. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  6. MARS, 600 MWth NUCLEAR POWER PLANT

    SciTech Connect

    Cumo, M.; Naviglio, A.; Sorabella, L.

    2004-10-06

    MARS (Multipurpose Advanced Reactor, inherently Safe) is a 600 MWth, single loop, pressurized light water reactor (PWR), developed at the Dept. of Nuclear Engineering and Energy Conversion of the University of Rome ''La Sapienza''. The design was focused to a multipurpose reactor to be used in high population density areas also for industrial heat production and, in particular, for water desalting. Using the well-proven technology and the operation experience of PWRs, the project introduces a lot of innovative features hugely improving the safety performance while keeping the cost of KWh competitive with traditional large power plants. Extensive use of passive safety, in depth plant simplification and decommissioning oriented design were the guidelines along the design development. The latest development in the plant design, in the decommissioning aspects and in the experimental activities supporting the project are shown in this paper.

  7. Running dry at the power plant

    SciTech Connect

    Barker, B.

    2007-07-01

    In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

  8. Power plant practices to ensure cable operability

    SciTech Connect

    Toman, G.J. ); Gradin, L.P. )

    1992-07-01

    This report describes the design, installation, qualification, maintenance, and testing of nuclear power plant cables with regard to continued operability. The report was initiated after questions arose concerning inadvertent abuse of cables during installation at two nuclear power plants. The extent of the damage was not clear and there was a concern as to whether cables, if damaged, would be able to function under accident conditions. This report reviews and discusses installation practices in the industry. The report also discusses currently available troubleshooting and in-situ testing techniques and provides cautions for some cases which may lead to further cable damage. Improved troubleshooting techniques currently under development are also discussed. These techniques may reduce the difficulty of testing while being able to identify cable flaws more definitively. The report finds, in general, that nuclear power plant cables have been relatively trouble-free; however, there is a need for further research and development of troubleshooting techniques which will make cable condition testing easier and more reliable. Also, recommendations for good'' installation practices are needed.

  9. Power plant productivity improvement in New York

    SciTech Connect

    1981-03-01

    The New York Public Service Commission (PSC), under contract with the US Department of Energy (DOE), began a joint program in September 1978 to improve the productivity of coal and nuclear electric generating units in New York State. The project had dual objectives: to ensure that the utilities in New York State have or develop a systematic permanent, cost-effective productivity improvement program based on sound engineering and economic considerations, and to develop a model program for Power Plant Productivity Improvement, which, through DOE, can also be utilized by other regulatory commissions in the country. To accomplish these objectives, the program was organized into the following sequence of activities: compilation and analysis of power plant performance data; evaluation and comparison of utility responses to outage/derating events; power plant productivity improvement project cost-benefit analysis; and evaluation of regulatory procedures and policies for improving productivity. The program that developed for improving the productivity of coal units is substantially different than for nuclear units. Each program is presented, and recommendations are made for activities of both the utilities and regulatory agencies which will promote improved productivity.

  10. Power plant efficiency and combustion optimization

    SciTech Connect

    Chatterjee, A.K.; Nema, N.; Jain, A.

    1998-07-01

    Grasim, a leader producer of Rayon grade staple fiber has, with time come up with its own Captive Electric Power Generation Industry with a capacity of generating 113 MW Thermal Power for its in-house use involving state of the art technology and system. In the present paper, it is desired to share the technical development in the global environment and receive expert feedback for its own upgrade. The on site power plants have a variety of steam turbines and boilers of different capacities. At times the plants had to face power crisis due to number of reasons and has always come up with number of solutions for performance enhancement and efficiency improvement. It is desired to present the following cases: (1) Development of spiral coal caps--for atmospheric fluidized bed boilers, it is often experienced that unburned carbon is high in ash. The reason being that coal particles do not get sufficient retention time after being injected into the bed. Attempt has been made to increase the retention time and better mixing by creating a cyclone around the coal cap with help of spiral coal caps. (2) Combustion optimization--in view of the inherent design deficiency, combustion was optimized by controlling the three parameters i.e., time, temperature and turbulence. In pulverized fuel combustion boilers this was done by providing air damper regulation and in atmospheric fluidized bed combustion boilers this was done by creating a vortex and regulating fluidizing air. The details shall be given in paper. (3) Power plant efficiency improvement--by introducing online monitoring system and identifying various areas of losses for various operating reasons and the cost associated with each operating parameter and the impact of each variation.

  11. Large-scale wind power farms as power plants

    NASA Astrophysics Data System (ADS)

    Gjengedal, Terje

    2005-07-01

    The integration of large-scale wind power into weak power systems raises several issues that must be clarified. Typically these include the practical connection to the network, integration with the network system, system stability, system operation, necessary installations and extensions of the network, etc. At the same time, careful attention must be paid to the functional requirements such wind farms should meet in order to enhance system responses. Different wind power technologies have different characteristics and control possibilities. In this article, three technologies have been studied with respect to their dynamic performance, and a transient stability study has been performed in order to illustrate the differences in the three technologies. The results clearly show that there are differences in behaviour and in control possibilities. Hence there are also differences in how well they can meet functional requirements. When discussing to what degree strict requirements should be imposed on wind power, it should be kept in mind that some requirements can be met with small or moderate costs, while others may be expensive or difficult to meet. Some requirements may also mean a reduction in generation and hence in revenues. Rather than imposing strict requirements on wind turbines as such, ancillary services should be met in the most suitable way. It is not obvious that the same requirements should apply to wind power in hydro power-dominated systems compared with, for instance, systems with a large share of nuclear or thermal power. It may well be cheaper to incorporate primary power control and system-stabilizing equipment in other power plants or grid points than in many small wind turbine generators. General conclusions cannot be made on this, but the issue should be the focal point of system operators everywhere. Copyright

  12. McHuchuma/Katewaka coal fired power plant feasibility study. Final report. Export trade information

    SciTech Connect

    1996-11-22

    This study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility for the development of a new coal fueled power plant in Tanzania at the Mchuchuma/Katewaka coal concession area. Volume 3, the Main Report, is divided into the following sections: (1.0) Introduction; (2.0) Power System Development Studies; (3.0) Conceptual Design Summary of the Mchuchuma Coal Fired Power Plant; (4.0) Fuel Supply Evaluation; (5.0) Transmission System Evaluation; (6.0) Power Plant Site and Infrastructure Evaluation; (7.0) Environmental Impact Assessment; (8.0) Institutional Aspects; (9.0) Financial Evaluation and Benefit Analysis; (10.0) Sources of Finance; Appendix (A) Preliminary Design of Mchuchuma Coal Plant.

  13. Process monitoring for reprocessing plant safeguards: a summary review

    SciTech Connect

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed.

  14. Inventory of power plants in the United States 1994

    SciTech Connect

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  15. Worldwide supercritical power plants: Status and future

    SciTech Connect

    Gorokhov, V.A.; Ramezan, M.; Ruth, L.A.; Kim, S.S.

    1999-07-01

    During the last decade leading industrial countries initiated a new wave of research and development on supercritical (SC) steam power plants. This new interest is accompanied by the jump from SC steam parameters to ultra-supercritical (USC) parameters and was initiated mostly due to the increase in cost of fuel on the world market, and by increased environmental regulations including reduction of greenhouse gases. As a result, a significant number of new pulverized coal (PC) power units with increased efficiency and reduced emissions were installed in the last two decades, and a few more are planned to be installed in the near future. Different driving forces are responsible for development and implementation of highly efficient advanced PC-fired systems: need for new capacity, quality and cost of fuel, level of technology development, environmental requirements, and internal situation with regard to power supply (deregulation). For example, in Europe, Germany in particular, controlling CO{sub 2} is a major issue in any new installation, while in Japan economics is the major issue as the costs of imported fuels are high, and there are greater economic incentives for efficiency improvement. This paper discusses the status of existing and planned SC and USC power plants worldwide and their technical and environmental performance.

  16. Central-station solar hydrogen power plant.

    SciTech Connect

    Diver, Richard B., Jr.; Siegel, Nathan Phillip; Kolb, Gregory J.

    2005-04-01

    Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature ({approx}1000 C) power tower with a sulfuric acid/hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is 'hybrid' because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.

  17. Digital AVR application to power plants

    SciTech Connect

    Hirayama, K.; Tone, Y.; Takagi, K.; Murakami, H.; Shibata, M.; Nagamura, H.; Takagi, Y.

    1993-12-01

    The digital AVR must have the level of redundancy and control functions that conform to the configuration of the excitation control system and to the importance of a particular generator for the user. The digital AVR is not simply a digital version of the analog AVR, but can realize sophisticated control functions that were difficult to achieve with analog circuits, thus making it possible to enhance the stability of power system by PSS (power system stabilizer). This paper describes the test results of the digital AVRs applied to power plants, their system configuration and functions, as well as the outline of an auto-tuning PSS or AT-PSS planned to be incorporated in the digital AVR in the future.

  18. Proceedings: EPRI power plant valves symposium 3

    SciTech Connect

    Evans, S.O. )

    1991-06-01

    The third in a series of on-going activities entitled EPRI Power Plant Valves Symposiums'' was conducted in Charlotte, North Carolina on August 21--23, 1990. The activity was co-sponsored by the Nuclear Power Division and the Generation and Storage Division of EPRI and was hosted by the Duke Power Company, which is headquartered in Charlotte. Approximately 320 attendees, consisting of representatives from the utility industry, valve manufacturers and service organizations, and government and other organizations participated in the symposium. The list of attendees represents an increase of approximately 80% over the attendance of the previous symposium. A total of 40 technical papers were presented in the following major categories of valve technology: control valves; motor operated valves; applications and testing; materials performance; maintenance; check valves. The National Association of Valve Rebuilders (NAVR) provided new and significant support and industry perspective to this symposium.

  19. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. 11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  2. 4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  3. 1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES VISIBLE IN FRONT OF BUILDING. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  4. 9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY CANAL BED IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  5. 8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING LOOKING NORTH. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  6. 10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  7. 3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS OF THE TURBINE FLUMES. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  8. 7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF TRASH RACK IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  9. 6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL BED TO THE LEFT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  10. 12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  11. 1. View of east elevation of power plant, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of east elevation of power plant, radar tower in background, looking west - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  12. 8. View of power plant and radar tower, looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of power plant and radar tower, looking southwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. 20. Power plant engine piping details and schedules, sheet 82 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  14. 4. View of south elevation of power plant, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of south elevation of power plant, looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 18. Power plant engine piping floor plan, sheet 71 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. 15. Power plant elevations and cross sections, sheet 64 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  18. 2. View of north elevation of power plant, looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of north elevation of power plant, looking south - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  19. 11. Interior view, east side of power plant, close of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view, east side of power plant, close of up fuel tanks, looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  20. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. 16. Power plant roof plan and wall sections, sheet 65 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Power plant roof plan and wall sections, sheet 65 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. 19. Power plant engine pipinglower level plan, sheet 80 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  3. 1. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE DIRECT CURRENT GENERATORS WITH CONTROL PANEL AT LEFT. - Pratt Institute, Power Generating Plant, Willoughby Avenue between Classen & Hall Streets, Brooklyn, Kings County, NY

  4. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  5. 2. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE DIRECT CURRENT GENERATORS WITH STEAM PIPES TO RIGHT. - Pratt Institute, Power Generating Plant, Willoughby Avenue between Classen & Hall Streets, Brooklyn, Kings County, NY

  6. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  7. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  8. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  9. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  10. BN-800 advanced nuclear power plant with fast reactor

    SciTech Connect

    Shishkin, A.N.; Kuzavkov, N.G.; Sobolev, V.A.; Shestakov, G.V.; Bagdasarov, Yu.E.; Kochetkov, L.A.; Matveyev, V.I.; Poplavsky, V.M.

    1993-12-31

    Bn-800 reactor plant with fast reactor and sodium coolant in the primary and secondary circuits is designed for operation as part of the power units in the Yuzhno-Uralskaya nuclear power plant scheduled to be constructed in Chelyabinsk region and as part unit 4 in the Beloyarskaya nuclear power plant. Reactor operations are described.

  11. Analysis of nuclear power plant construction costs

    SciTech Connect

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  12. Pollution on the rise: local trends in power plant pollution

    SciTech Connect

    Corrigan, Z.; Emily Figdor, E.

    2005-01-15

    More than 1,200 power plants report emissions to US EPA, which compiles the information in its acid rain database. To examine trends in power plant pollution, this report analyzes the data for carbon dioxide, sulphur dioxide and nitrogen oxide emissions since 1995, the first year the Acid Rain Program capped SO{sub 2} emissions from the electricity-generating sector. Power plants contribute 39% of the USA's CO{sub 2} emissions. In 2003, power plants released 2.5 billion tons of CO{sub 2}, a 9% increase over 1995 levels. Power plants in Texas, Ohio, Florida, Indiana, Pennsylvania, Illinois, Kentucky, West Virginia, Alabama, and Georgia released the most CO{sub 2} in 2003. Power plants contribute 67%t of sootforming SO{sub 2} emissions. Although federal law caps SO{sub 2} emissions from power plants, more than half (216 of 400, or 54 percent) of the nation's dirtiest power plants increased their annual emissions from 1995 to 2003, even while annual SO{sub 2} emissions from power plants decreased by 10% nationwide. Power plants in Ohio had highest emissions, releasing 1.2 million tons in 2003, with Pennsylvania a close second. Power plants contribute 22% of smog-forming NOx emissions. NOx also contributes to fine particle pollution. Though regional initiatives limit NOx emissions from power plants, 38% (188 of 500) of the nation's dirtiest power plants increased their annual NOx emissions from 1995 to 2003, even while annual NOx emissions from power plants declined by 29 percent nationwide. Power plants in Ohio also led the nation for the most NOx emissions in 2003. The report recommends that tighter national caps should be accompanied by rigorous enforcement of New Source Review and other Clean Air Act programs that ensure that every plant installs modern pollution controls. 57 refs., 5 apps.

  13. Space station WP-04 power system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.

  14. Workshop on Microwave Power Transmission and Reception. Workshop Paper Summaries

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Microwave systems performance and phase control are discussed. Component design and reliability are highlighted. The power amplifiers, radiating elements, rectennas, and solid state configurations are described. The proper sizing of microwave transmission systems is also discussed.

  15. The Great Nuclear Power Debate (1)--A Summary

    ERIC Educational Resources Information Center

    Douglas, John H.

    1976-01-01

    Five issues concerning nuclear power--economics, danger from accidents, environmental effects, terrorism, and alternatives are debated, with one paragraph statements from opponents and advocates on each of the topics. (CP)

  16. Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.

    1981-01-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  17. Satellite power system: Engineering and economic analysis summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.

  18. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  19. Raft River 5MW power plant: A small binary power plant

    NASA Astrophysics Data System (ADS)

    Whitbeck, J. F.; Dibello, E. G.; Walrath, L. F.

    1982-06-01

    The Raft River 5MW power plant is a binary cycle pilot plant. The system uses isobutane in a dual boiling cycle. This cycle was selected because the well field and temperatures were not well known at the time of cycle selection, and therefore, a boiling cycle was desirable. The dual boiling features provides about 15 to 20% more power and makes the output less sensitive to changes in geothermal temperature changes than a single boiler system. The plant design was based upon a 290F geothermal fluid temperature at the inlet to the plant and has a gross nominal generator rating of 5MW; however, actual output will vary according to ambient wet bulb temperatures over a range from 4.4MW to 6.2MW with the actual plant inlet temperature of 278F being obtained. The plant is supplied by three production wells. Geothermal fluid boost pumps within the plant inlet provide the pressure necessary to overcome plant pressure drop and return the fluid to the two injection sites.

  20. Modularization Technology in Power Plant Construction

    SciTech Connect

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-07-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  1. Thermionic topping of electric power plants

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. O.; Rasor, N. S.

    1975-01-01

    The most likely use of thermionic conversion is in the form of a topping cycle combined with a steam-turbogenerator plant. A specific reference system is chosen in which the thermionic topping cycle occurs in thermionic heat exchangers referred to as large, modular thermionic units to which heat is transferred from a separate heat source and which reject their heat to a conventional steam turboelectric system. Results of analysis show that the performance and cost criteria for practical thermionic topping of large electric power plants are well within the reach of demonstrated and foreseeable converter capabilities. Thermionic topping has many significant advantages over unconventional cycles proposed for topping applications, including level of demonstrated and projected performance and lifetime, development time, and design simplicity.

  2. Preliminary power train design for a state-of-the-art electric vehicle (executive summary)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of a state-of-the-art electric power train is part of a national effort to reap the potential benefit of useful urban electric passenger vehicles. Outlined in a detailed presentation are: (1) assessment of the state-of-the-art in electric vehicle technology; (2) state-of-the-art power train design; (3) improved power train; and (4) summary and recommendations.

  3. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  4. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP),...

  5. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69...

  6. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  7. Biocorrosion in a geothermal power plant

    SciTech Connect

    Navarrette-Bedolla, M.; Ballesteros-Almanza, M.L.; Sanchez-Yanez, J.M.; Valdez-Salas, B.; Hernandez-Duque, G.

    1999-04-01

    Hyperthermophilic archaebacteria (Thermoproteus neutrophilus) promoting the corrosion of type 316 stainless steel (SS) (UNS S31600) in vapor ducts of the Tejamaniles geothermal electric power plant in Los Azufres, Michoacan, Mexico, were isolated from condensed steam. Metallographic analysis and scanning electron microscopy were performed to determine the morphology of microbiological attack on the SS. Electrochemical corrosion tests showed that the bacteria induced corrosion on type 316 SS preferentially at grain boundaries. Large amounts of elemental sulfur and carbon were detected where the bacterial culture was located.

  8. Site insolation and wind power characteristics. Summary report

    SciTech Connect

    Bray, R E

    1980-08-01

    Design and operation of either large or small scale solar and wind energy conversion systems should be based, in part, on knowledge of expected solar and wind power trends. For this purpose, historic solar and wind data available at 101 National Weather Service stations were processed statistically. Preliminary planning data are provided for selected daily average solar and wind power conditions occurring and persisting for time periods of interest. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Empirical probabilities were constructed from the historic data to provide a reasonable inference of the chance of similar climatological conditions occurring at any given time in the future. (Diurnal wind power variations were also considered.) Ratios were also generated at each station to relate the global radiation data to insolation on a south-facing surface inclined at various angles. In addition, joint probability distributions were derived to show the proportion of days with solar and wind power within selected intervals.

  9. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  10. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique