Science.gov

Sample records for power systems summaries

  1. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  2. Solar power satellite microwave power transmission system description executive summary

    NASA Astrophysics Data System (ADS)

    Woodcock, G. R.

    1980-12-01

    The history of the concept of microwave power beaming to Earth is reviewed with emphasis on transmission frequency selection. Constraints on the system power level results from (1) required rejection of waste heat resulting from inefficiencies in the cover conversion of dc electric power to microwave power; (2) the rf power intensity in the ionosphere; and (3) the effect of sidelobe level on aperture illumination factors. Transmitter arrangement, the power distribution system, attitude control, subarrays, waveguides, and alignment are discussed.

  3. Microwave Power Transmission System Studies. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Meltz, G.; Haley, J. T.; Howell, J. M.; Nathan, A.

    1975-01-01

    A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included.

  4. Systems definition space based power conversion systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  5. Satellite Power System (SPS) FY 79 program summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Satellite Power System (SPS) program a joint effort to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept is discussed. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. This Program Summary not only covers FY 1979 but includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.

  6. Satellite Power System (SPS) FY 79 Program Summary

    SciTech Connect

    Not Available

    1980-01-01

    The Satellite Power System (SPS) program is a joint effort of the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). It is managed by the SPS Project Office within DOE's Office of Energy Research. SPS project organization is shown in Figure 1. The SPS Project Office was established in 1978 and is responsible for the planning, management and integration of SPS research in four areas: systems definition, environmental assessment, societal assessment, and comparative assessment. In fulfilling its responsibilities, the SPS Project Office directs research and assessment efforts to determine the feasibility of the SPS concept, funds organizations supporting the program, and disseminates information developed from project research and assessments. The objective of the SPS program is to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. The SPS Project Office annually issues a Program Summary which describes the research undertaken during the preceding fiscal year. This Program Summary covers FY 1979. It includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.

  7. Satellite power system: Engineering and economic analysis summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.

  8. Space station WP-04 power system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.

  9. Spaceborne power systems preference analyses. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.

    1985-01-01

    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis to identify promising concepts for further technology development. Four groups interviewed were: safety, systems definition and design, technology assessment, and mission analysis. The ranking results were consistent from group and for different utility function models for individuals.

  10. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  11. Solar power satellite system definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Configuration concepts, option sizes, and systems definitions study design evolutions are reviewed. The main features of the present reference design silicon solar cell solar power satellite are described, as well as the provisions for space construction and support systems. The principal study accomplishments and conclusions are summarized according to the following tasks: (1) baseline critique; (2) construction and maintenance; (3) industrial complex needs, cost estimates, and production capacity; (4) launch complex requirements at KSC or at an offshore facility; (5) integration of the SPS/ground power network; (6) technology advancement and development; (7) costs and schedules; and (8) exploratory technology: laser annealing of solar cells degraded by proton irradiation, and a fiber-optic phase distribution link at 980 MHz.

  12. Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.

    1981-01-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  13. Thermal power systems, small power systems application project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Current small power system technology as applied to power plants up to 10 MWe in size was assessed. Markets for small power systems were characterized and cost goals were established. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Economic studies were conducted and breakeven capital costs were determined for leading contenders among the candidate systems. An application study was made of the potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, estimated to be 1000 MWe by 1985. Criteria and methodologies were developed for application to the ranking of candidate power plant system design concepts. Experimental power plants concepts of 1 MWe rating were studied leading toward the definition of a power plant configuration for subsequent detail design, construction, testing and evaluation as Engineering Experiment No. 1 (EE No. 1). Site selection criteria and ground rules for the solicitation of EE No. 1 site participation proposals by DOE were developed.

  14. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    SciTech Connect

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  15. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W.; Tesche, F.M.; Vance, E.F.

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  16. Power-generation alternatives. The Hellenic power system. Volume 1. Executive Summary. Export trade information

    SciTech Connect

    Not Available

    1987-06-01

    The Phase I study was performed to assist the Public Power Corporation (PPC) of Greece in making decisions regarding the need for new power generation or for repowering existing facilities. An analysis of both new power generation requirements and the feasibility of repowering the existing Aliveri and St. George Stations with coal is provided. The study concludes: Repowering of Aliveri Units 3 and 4 with coal should commence now. Present and committed capacity of the PPC system is adequate until 1997 to 1999, at which time a new 600 MW pulverized coal boiler unit at the Aliveri Station would be commissioned. St. George Station has very little possibility for siting of coal-based new generation or repowering. New facilities should be designed for imported coal to conserve lignite resources for existing and committed units. An alternative to PPC ownership is private sector ownership. A Phase II study for repowering should be initiated and funded by PPC following acceptance of the Phase I study.

  17. A ground based phase control system for the solar power satellite. Executive summary, volume 1, phase 3

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1980-01-01

    The Solar Power Satellite (SPS) concept and the reference phase control system investigated in earlier efforts are reviewed. A summary overview of the analysis and selection of the pilot signal and power transponder design is presented along with the SOLARSIM program development and the simulated SPS phase control performance. Evaluations of the ground based phase control system as an alternate phase control concept are summarized.

  18. Solar power satellite system definition study. Volume 1, phase 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A review of solar energy conversion and utilization is presented. The solar power satellite system is then described. Overall system definition and integration is discussed. Principal reference system study accomplishments and conclusions are presented.

  19. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 1: Project summary

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (1 of 4) gives a summary of the original AMPS software system configuration, points out some of the problem areas in the original software design that this project is to address, and in the appendix collects all the bimonthly status reports. The purpose of AMPS is to provide a self reliant system to control the generation and distribution of power in the space station. The software in the AMPS breadboard can be divided into three levels: the operating environment software, the protocol software, and the station specific software. This project deals only with the operating environment software and the protocol software. The present station specific software will not change except as necessary to conform to new data formats.

  20. Solar power satellite system definition study. Volume 1, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.

  1. Space-Based Solar Power Conversion and Delivery Systems Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The research concerning space-based solar power conversion and delivery systems is summarized. The potential concepts for a photovoltaic satellite solar power system was studied with emphasis on ground output power levels of 5,000 MW and 10,000 MW. A power relay satellite, and certain aspects of the economics of these systems were also studied. A second study phase examined in greater depth the technical and economic aspects of satellite solar power systems. Throughout this study, the focus was on the economics of satellite solar power. The results indicate technical feasibility of the concept, and provide a preliminary economic justification for the first phase of a substantial development program. A development program containing test satellites is recommended. Also, development of alternative solar cell materials (other than silicon) is recommended.

  2. Solar power satellite: System definition study. Part 1, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A study of the solar power satellite system, which represents a means of tapping baseload electric utility power from the sun on a large scale, was summarized. Study objectives, approach, and planning are presented along with an energy conversion evaluation. Basic requirements were considered in regard to space transportation, construction, and maintainability.

  3. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs—Summary Report

    SciTech Connect

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; Leo, R.; Perman, K.

    2013-07-01

    This document is a summarization of the report, Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs, the final report for phase 2 of the SPSP (DOE workforce study) project.

  4. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  5. Satellite power system concept development and evaluation program. Volume 1: Technical assessment summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  6. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  7. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Robson, F. L.

    1981-03-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  8. Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date; Preprint

    SciTech Connect

    Smith, J. C.; DeMeo, E. A.; Parsons, B.; Milligan, M.

    2004-03-01

    Electric utility system planners and operators are concerned that variations in wind plant output may increase the operating costs of the system. This concern arises because the system must maintain an instantaneous balance between the aggregate demand for electric power and the total power generated by all power plants feeding the system. This is a highly sophisticated task that utility operators and automatic controls perform routinely, based on well-known operating characteristics for conventional power plants and a great deal of experience accumulated over many years. System operators are concerned that variations in wind plant output will force the conventional power plants to provide compensating variations to maintain system balance, thus causing the conventional power plants to deviate from operating points chosen to minimize the total cost of operating the system. The operators' concerns are compounded by the fact that conventional power plants are generally under their control and thus are dispatchable, whereas wind plants are controlled instead by nature. Although these are valid concerns, the key issue is not whether a system with a significant amount of wind capacity can be operated reliably, but rather to what extent the system operating costs are increased by the variability of the wind.

  9. Mini-BRU/BIPS 1300 watt (sub)e dynamic power conversion system development: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of the Brayton Isotope Power System (BIPS) is summarized. A 1200 watt sub e ground development unit was built and tested in a 0.000010 torr vacuum environment. Peformance mapping and 1000 hours of proof of concept system testing were completed. Specific components, primarily turbocompressor/alternator and recuperator performed according to predictions, thus achieving the design goal of 25 percent net power conversion efficiency. The system was fabricated from superalloy (Hastelloy-X and Waspaloy) thus placing it entirely within current state-of-the-art technology. The system could be flyable in the early 1980's pending flight qualification.

  10. Solar power satellite system definition study. Volume 5, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of the solar power satellite system is presented. Performance, cost, and operational characteristics are assessed. The photovoltaic system is described and investigated. Alternative construction concepts are discussed. The structural bay configuration is presented along with the antenna structure options.

  11. Electromagnetic pulse research on electric power systems: Program summary and recommendations

    SciTech Connect

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation's power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation's electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  12. Preliminary environmental assessment for the Satellite Power System (SPS), revision 1. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1980-01-01

    A preliminary assessment of the environmental impacts of the proposed satellite power system (SPS) is summarized. In this system, satellites would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on Earth. At the rectennas, the microwaves would be converted to electricity. The assessment considers microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and disruption of communications and other electromagnetic systems.

  13. Preliminary environmental assessment for the satellite power system (SPS). Revision 1. Volume 1. Executive summary

    SciTech Connect

    Not Available

    1980-01-01

    A preliminary assessment of the environmental impacts of the proposed satellite power system (SPS) is summarized here. In this system, satellites would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwaves would be converted to electricity. The assessment considers microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and disruption of communications and other electromagnetic systems.

  14. Solar power satellite system definition study. Volume 1: Executive summary, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Results of a three phase study of the Solar Power Satellite System are summarized. Various options and alternate systems were considered and the following conclusions were reached: antenna mounted solid state transmitters are potentially as cost effective as the klystron approach, althrough limited to 2500 megawatts net output; the free electron laser and optical diode laser appear most promising for laser power transmission; ground antenna siting need not be restricted to below 35 degrees of latitude; and nonrecurring cost reductions attainable by using a smaller Heavy Lift Launch Vehicle are highly attractive.

  15. Space-based solar power conversion and delivery systems study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1976-01-01

    The technical and economic aspects of satellite solar power systems are presented with a focus on the current configuration 5000 MW system. The technical studies include analyses of the orbital system structures, control and stationkeeping, and the formulation of program plans and costs for input to the economic analyses. The economic analyses centered about the development and use of a risk analysis model for a system cost assessment, identification of critical issues and technologies, and to provide information for programmatic decision making. A preliminary economic examination of some utility interface issues is included. Under the present state-of-knowledge, it is possible to formulate a program plan for the development of a satellite solar power system that can be economically justified. The key area of technological uncertainty is man's ability to fabricate and assemble large structures in space.

  16. Satellite Power System Concept Development and Evaluation Program, Critical Supporting Investigations. Summary

    NASA Technical Reports Server (NTRS)

    Seyl, J. W.

    1980-01-01

    Investigations in critical technology of the solar power satellite (SPS) concept development program are summarized. Studies of the potential application of fiber optics transmission links across the SPS one kilometer antenna and evaluation of gallium arsenide field effect transistors and their associated power amplifier circuitry are discussed in more detail.

  17. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  18. Solar power satellite system definition study. Part 1 and part 2, volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Practical designs for power transmission were developed to meet requirements and constraints. Microwave link error was analyzed to confirm attainability of acceptable link efficiency. Silicon photovoltaic was determined to be the best overall choice for energy conversion, with a potassium Rankine cycle as the backup choice. Space transportation operations provide low cost because of traffic level, and the payload volume is the launch vehicle design driver. The power cost is 4 to 5 /kwh, which will be competitive with fossil fuel sources by the year 2000.

  19. Solar power satellite system definition study. Part 1 and part 2, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar Power Satellite principle is illustrated and it shows that in a geostationary orbit 36,000 km above the earth's equator, each SPS is in sunlight 99% of the time and in continuous line of sight contact with its ground receiving station. Electrical power produced on the satellite by photovoltaic or heat engine conversion of sunlight is then converted to radio frequency energy at high efficiency, and formed into a focused beam precisely aimed at the SP ground stations. The ground station receiving antenna reconverts the energy into electricity for distribution.

  20. Thermal power systems point-focusing distributed receiver technology project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Lucas, J.

    1979-01-01

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.

  1. Microwave system performance summary

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Nalos, E. J.

    1980-01-01

    The design of the microwave system for the solar power satellite is described. Design modifications recommended include changes in phase control to the power module level, a reduction in allowable amplitude jitter, the use of metal matrix waveguides, and sequences for startup/shutdown procedures. Investigations into reshaping the beam pattern to improve overall rectenna collection efficiency and improve sidelobe control are surveyed.

  2. Satellite power systems (SPS) concept definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    System definition studies resulted in a further definition of the reference system using gallium arsenide solar arrays, analysis of alternative subsystem options for the reference concept, preliminary solid state microwave concept studies, and an environmental analysis of laser transmission systems. The special emphasis studies concentrated on satellite construction, satellite construction base definition, satellite construction base construction, and rectenna construction. Major emphasis in the transportation studies was put on definition of a two stage parallel burn, vertical takeoff/horizontal landing concept. The electric orbit transfer vehicle was defined in greater detail. Program definition included cost analyses and schedule definition.

  3. Satellite Power Systems (SPS) Concept Definition Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The evolution of a total satellite power is described as well as major subsystem alternatives. Trade study results are given for satellite concepts, ground receiving antennas, satellite construction sites, and transportation. Point design definition, end-to-end analysis, and programmatics are covered. The GaAlAs photovoltaic concept is recommended as the current preliminary baseline satellite concept with silicon photovoltaic and Rankine cycle solar-thermal concepts as viable alternatives. Geosynchronous orbit is preferred for the construction of the satellite. A horizontal takeoff and landing air breathing rocket HLLV concept is preferred for earth-to-LEO transportation, with vertical takeoff options as viable alternatives. An argon electric orbit transfer vehicle is preferred for cargo transport from LEO and GEO orbit, and a chemical LH2/L02, two-stage orbit transfer vehicle is recommended for crew transport. A stripline rectenna array is the current preferred concept.

  4. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An array deployment assembly, power regulation and control assembly, the necessary interface, and display and control equipment comprise the power extension package (PEP) which is designed to provide increased power and duration, as well as reduce fuel cell cryogen consumption during Spacelab missions. Compatible with all currently defined missions and payloads, PEP imposes minimal weight and volume penalties on sortie missions, and can be installed and removed as needed at the launch site within the normal Orbiter turnaround cycle. The technology on which it is based consists of a modified solar electric propulsion array, standard design regulator and control equipment, and a minimally modified Orbiter design. The requirements from which PEP was derived, and the system and its performance capabilities are described. Features of the recommended project are presented.

  5. Mirror Confinement Systems: project summaries

    SciTech Connect

    Not Available

    1980-07-01

    This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided.

  6. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  7. The 5-kwe reactor thermoelectric system summary

    NASA Technical Reports Server (NTRS)

    Vanosdol, J. H. (Editor)

    1973-01-01

    Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.

  8. Lunar power system summary of studies for the lunar enterprise task force NASA-office of exploration

    NASA Technical Reports Server (NTRS)

    Criswell, David R.

    1989-01-01

    The capacity of global power systems must be increased by a factor of ten to provide the predicted power needs of electric power by the year 2050. The Lunar Power System (LPS) would collect solar energy at power bases located on opposing limbs of the moon as seen from Earth. LPS can provide dependable, economic, renewable, and environmentally benign solar energy to Earth. A preliminary engineering and cash flow model of the LPS was developed. Results are shown for a system scaled to a peak capacity of 355 GWe on Earth and to provide 13,600 GWe-Yrs of energy over a 70 year life cycle of construction and full operation. The growth in capacity of the reference system from start of installation on the moon in 2005 to completion of its nominal life cycle in the year 2070 is shown. World needs for power could be accommodated by expansion in capacity of the reference LPS beyond 344 GWe. This would be done by steadily incorporating newer technology during full operation and by establishing additional bases. The results presented encourage consideration of a faster paced program than is assumed herein.

  9. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 1: Executive Summary. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  10. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  11. Wind energy systems: program summary

    SciTech Connect

    1980-05-01

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  12. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  13. A Summary Description of a Computer Program Concept for the Design and Simulation of Solar Pond Electric Power Generation Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.

  14. Design analysis and computer-aided performance evaluation of shuttle orbiter electrical power system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Studies were conducted to develop appropriate space shuttle electrical power distribution and control (EPDC) subsystem simulation models and to apply the computer simulations to systems analysis of the EPDC. A previously developed software program (SYSTID) was adapted for this purpose. The following objectives were attained: (1) significant enhancement of the SYSTID time domain simulation software, (2) generation of functionally useful shuttle EPDC element models, and (3) illustrative simulation results in the analysis of EPDC performance, under the conditions of fault, current pulse injection due to lightning, and circuit protection sizing and reaction times.

  15. Power system

    DOEpatents

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  16. Space Station Power System

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1984-01-01

    The strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program are outlined. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on draft and mass requirements are described with a summary and status of key power systems technology requirements and issues.

  17. Space Station power system

    SciTech Connect

    Baraona, C.R.

    1984-04-01

    The strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program are outlined. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on draft and mass requirements are described with a summary and status of key power systems technology requirements and issues.

  18. Wind Powering America FY06 Activities Summary

    SciTech Connect

    Not Available

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  19. Wind Powering America FY07 Activities Summary

    SciTech Connect

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  20. Aerial Photography Summary Record System

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  1. Summary of collaborative photovoltaic industry work to proactively improve codes and standards for photovoltaic power system applications

    SciTech Connect

    Bower, W.I.

    1997-08-01

    Several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have recently been completed with collaboration of participants from all sectors of the PV industry, utilities and the US Department of Energy`s National Photovoltaic Program. Codes and standards that have been proposed, written or modified include changes and additions for the 1999 National Electrical Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, component qualification, and utility interconnect. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for listing PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc. (UL), with the American Society for Testing and Materials (ASTM), and through critical input and review for international standards with the International Electrotechnical Commission (IEC) have resulted in domestic and international standards for PV. Work related to the codes and standards activities through the International Energy Agency (IEA) is also being supported by the PV industry and the US DOE. This paper will concentrate on and summarize the important new NEC proposals for PV systems and will also describe and show the bonds between the activities in other standards writing activities. The paper will also provide an analysis of changes and resulting impacts of selected proposed NEC changes on PV designs, installations and performance.

  2. North Wind Power Company 2-kilowatt high-reliability wind system. Phase I: design and analysis executive summary

    SciTech Connect

    Mayer, D J; Norton, Jr, J H

    1981-07-01

    The results of Phase I of a program to design a 2kw high reliability wind turbine for use in remote locations and harsh environments are presented. A predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A new low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted, including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were made for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included in this report. Final prototype fabrication and testing will be covered in a subsequent Phase II report.

  3. Biomass energy systems program summary

    SciTech Connect

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  4. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  5. Switched power workshop: Introduction and summary

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.

    This paper discusses the design of a switched power electron gun. Particular topics discussed are: vacuum photodiode switch; laser switched solid state diodes; gun performance; charging supply; and laser requirements.

  6. Space Station power system options

    SciTech Connect

    Baraona, C.R.; Forestieri, A.F.

    1984-08-01

    This paper outlines the strategies, reasoning, and planning guidelines used in the development of the United States Space Station Program. The power required to support Space Station missions and housekeeping loads is a key driver in overall Space Station design. Conversely, Space Station requirements drive the power technology. Various power system technology options are discussed. The mission analysis studies resulting in the required Space Station capabilities are also discussed. An example of Space Station functions and a concept to provide them is presented. The weight, area, payload and altitude requirements on drag and mass requirements are described in this paper with a summary and status of key power systems technology requirements and issues.

  7. 76 FR 50726 - Integrated System Power Rates: Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Southwestern Power Administration Integrated System Power Rates: Correction AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of public review and comment; Correction. SUMMARY: Southwestern Power Administration published a document in the Federal Register (76 FR 48159) on August 8, 2011, announcing...

  8. The space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1986-01-01

    The manned space station is the next major NASA program. It presents many challenges to the power system designers. The power system in turn is a major driver on the overall configuration. In this paper, the major requirements and guidelines that affect the station configuration and the power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts, both fanciful and feasible, are described and linked to the present concept. The recently completed Phase B trade study selections of photovoltaic system technologies are described in detail. A summary of the present solar dynamic and power management and distribution systems is also given for completeness.

  9. US nuclear power plant operating cost and experience summaries

    SciTech Connect

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  10. Renewable Systems Interconnection: Executive Summary

    SciTech Connect

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  11. Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report

    SciTech Connect

    Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

    1980-08-01

    This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

  12. Fluid management systems technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.

    1974-01-01

    A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  13. Power management system

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  14. Secondary power systems

    SciTech Connect

    Not Available

    1985-01-01

    In aeronautical engineering secondary power systems have long played second fiddle to the airframe, the engine, and indeed, the avionics. This collection of papers is thus timely, and its publication by the Institution of Mechanical Engineers appropriate, as secondary power systems in modern aircraft present challenging mechanical engineering problems. In military aircraft demands for electrical and hydraulic power and high pressure air have grown over the past two decades. To these basic needs are added requirements for emergency power, ground power, and independent engine starting. Additionally increased reliability and maintainability is demanded from all secondary power systems. Complete contents: What is a secondary power system. Modern technology secondary power systems for next generation military aircraft; Integrated power units; Secondary power system gearbox; Starting the system - air turbine starters; Auxiliary and emergency power system; Secondary hydraulic power generation; Advanced technology electrical power generation equipment.

  15. Power system restoration issues

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. )

    1991-04-01

    This article describes some of the problems encountered in the three phases of power system restoration (PSR). The three phases of PSR are: Planning for restart and reintegration of the bulk power supply; Actions during system degradation for saving and retaining critical sources of power; Restoration when the power system has stabilized at some degraded level.

  16. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  17. Workshop on Microwave Power Transmission and Reception. Workshop Paper Summaries

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Microwave systems performance and phase control are discussed. Component design and reliability are highlighted. The power amplifiers, radiating elements, rectennas, and solid state configurations are described. The proper sizing of microwave transmission systems is also discussed.

  18. Space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Carpenter, R. T.

    1972-01-01

    Space nuclear power systems are considered for use in those particular spacecraft applications for which nuclear power systems offer unique advantages over solar and/or chemical space power systems. Both isotopic and reactor heated space electrical power units are described in an attempt to illustrate their operating characteristics, spacecraft integration aspects, and factory-to-end of mission operational considerations. The status of technology developments in nuclear power systems is presented. Some projections of those technologies are made to form a basis for the applications of space nuclear power systems to be expected over the next 10-15 years.

  19. Evaluation of the noise impact of satellite power system vehicles on the community and ecology at the launch site. Summary report

    SciTech Connect

    Pearsons, K.S.; White, P.H.; Wilby, J.F.

    1980-12-01

    Placement of the Satellite Power System (SPS) satellites into orbit will require the launch of many heavy space vehicles over a 30-year period. These vehicles will generate rocket noise at launch, and sonic booms at launch and on return to the landing site. In this study, rocket noise levels and sonic boom pressures are predicted for the region around a typical launch/landing site. The response of humans and animals to broadband and impulsive noise is reviewed briefly, and the appropriate information is applied to the specific noise levels and sonic boom pressures predicted for the region around the launch/landing site. It is estimated that noise levels will be high enough that hearing protection will be required for personnel at the launch site, and that there will be significant annoyance (more than 5% highly annoyed) to the population within 9 km from the launch site. Infrasound (sub-audio frequencies) will probably cause significant annoyance over a larger region. With launches over the ocean, the very high sonic boom pressures during ascent will occur over unpopulated areas. However, booms generated during descent of the orbiters will occur over populated areas, and it is predicted that there will be significant annoyance at distances up to 45 km from the launch/landing site. Because of uncertainties present in many areas of the study, further investigations are recommended, particularly with a view to obtaining information from Space Shuttle launches and returns.

  20. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  1. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  2. Management summary report. Auditing and financial system

    SciTech Connect

    Feldmiller, W.H.

    1980-01-01

    Increased leasing of Federal lands for energy exploration will add to the regulatory and administrative responsibilities of the USGS's Conservation Division. Similar responsibilities for Indian lands will arise. The objectives of the Conservation Division is to reduce the regulatory burden on industry while effectively and efficiently discharging its responsibility. This Management Summary Report represents the completion of the Preliminary Systems Design of the Auditing and Financial System, and is the first phase of the Improved Royalty Management Program (IRMP). Work reported includes: a Functional Specifications Report; Technical Specifications Report; Installation Plan; and a cost/benefit analysis. The potential benefits to be realized from the IRMP are significant and include: increased royalty receipts; more timely availability of funds; increased productivity of personnel; reduced regulatory burden on private industry; tighter security over information collected; reduced exposure to fraud and abuse; and better control over activities and funds.

  3. Investigation of S{sub 2}F{sub 10} production and mitigation in compressed SF{sub 6}-insulated power systems. Final report, Volume 1: Executive summary

    SciTech Connect

    Sauers, I.; Griffin, G.D.; James, D.R.; Brunt, R.J. Van; Olthoff, J.K.; Stricklett, K.L.; Morrison, H.D.; Chu, F.Y.; Frechette, M.F.

    1995-10-01

    A CRADA was established in 1991 to study the production and mitigation of S{sub 2}F{sub 10}, one of a number of toxic by-products formed by electrical discharges in the insulating gas SF{sub 6}. Since compressed SF{sub 6} is extensively used as an insulation and current interruption medium in electric power equipment, ensuring the safe operation and maintenance of this equipment is an important issue for utilities, government agencies, and manufacturers. Each of the three research laboratories developed a highly sensitive detection method for S{sub 2}F{sub 10}: (1) Oak Ridge National Laboratory, gas chromatography/cryogenic enrichment (less than 10 ppbv sensitivity); (2) National Institute of Standards and Technology, gas chromatography/mass spectrometry/thermal conversion (less than 10 ppbv); (3) Ontario Hydro Technologies, Fourier transform infrared spectrometry (FTIR) (less than 100 ppbv). Studies showed that S{sub 2}F{sub 10} can be produced in the laboratory by corona, spark, and power arc discharges and that the production rates for each type of discharge decrease in that same respective order. In power arcs, SOF{sub 2} is by far the dominant species. The field survey provided baseline data and demonstrated the feasibility of taking and analyzing field samples using the techniques developed under this CRADA. It was found that in power arcs the amount of S{sub 2}F{sub 10} produced is relatively insignificant compared to the amount of the SOF{sub 2} produced. The knowledge gained from this CRADA should also be beneficial for the development of routine procedures for gas analysis, so that analysis of the decomposition products of SF{sub 6} will become a standard method for addressing the issues of health and safety, equipment reliability and aging, and diagnostics for GIS (Gas-Insulated Substations).

  4. Environmental management system objectives & targets results summary :

    SciTech Connect

    Vetter, Douglas Walter

    2014-04-01

    Sandia National Laboratories/New Mexicos (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NMs operations on the environment. An annual summary of the results achieved towards meeting established Sandia Corporation and SNL/NM Site-specific objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2013.

  5. Economical space power systems

    NASA Technical Reports Server (NTRS)

    Burkholder, J. H.

    1980-01-01

    A commercial approach to design and fabrication of an economical space power system is investigated. Cost projections are based on a 2 kW space power system conceptual design taking into consideration the capability for serviceability, constraints of operation in space, and commercial production engineering approaches. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance estimated costs are detailed.

  6. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  7. Solar Power Satellite Concept Evaluation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was developed to determine the technical feasiblity of a satellite solar power station. The space construction, maintenance, and transport systems are discussed. Environmental factors, in addition to manufacturing, natural resources, and energy were considered. Cost estimates and alternative systems are outlined.

  8. Power system commonality study

    NASA Astrophysics Data System (ADS)

    Littman, Franklin D.

    1992-07-01

    A limited top level study was completed to determine the commonality of power system/subsystem concepts within potential lunar and Mars surface power system architectures. A list of power system concepts with high commonality was developed which can be used to synthesize power system architectures which minimize development cost. Examples of potential high commonality power system architectures are given in this report along with a mass comparison. Other criteria such as life cycle cost (which includes transportation cost), reliability, safety, risk, and operability should be used in future, more detailed studies to select optimum power system architectures. Nineteen potential power system concepts were identified and evaluated for planetary surface applications including photovoltaic arrays with energy storage, isotope, and nuclear power systems. A top level environmental factors study was completed to assess environmental impacts on the identified power system concepts for both lunar and Mars applications. Potential power system design solutions for commonality between Mars and lunar applications were identified. Isotope, photovoltaic array (PVA), regenerative fuel cell (RFC), stainless steel liquid-metal cooled reactors (less than 1033 K maximum) with dynamic converters, and in-core thermionic reactor systems were found suitable for both lunar and Mars environments. The use of SP-100 thermoelectric (TE) and SP-100 dynamic power systems in a vacuum enclosure may also be possible for Mars applications although several issues need to be investigated further (potential single point failure of enclosure, mass penalty of enclosure and active pumping system, additional installation time and complexity). There are also technical issues involved with development of thermionic reactors (life, serviceability, and adaptability to other power conversion units). Additional studies are required to determine the optimum reactor concept for Mars applications. Various screening

  9. Transportation systems analyses: Volume 1: Executive Summary

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This executive summary of the transportation systems analyses (TSM) semi-annual report addresses the SSF logistics resupply. Our analysis parallels the ongoing NASA SSF redesign effort. Therefore, there could be no SSF design to drive our logistics analysis. Consequently, the analysis attempted to bound the reasonable SSF design possibilities (and the subsequent transportation implications). No other strategy really exists until after a final decision is rendered on the SSF configuration.

  10. Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  11. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  12. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  13. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  14. Automatic Summary Assessment for Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    He, Yulan; Hui, Siu Cheung; Quan, Tho Thanh

    2009-01-01

    Summary writing is an important part of many English Language Examinations. As grading students' summary writings is a very time-consuming task, computer-assisted assessment will help teachers carry out the grading more effectively. Several techniques such as latent semantic analysis (LSA), n-gram co-occurrence and BLEU have been proposed to…

  15. Power systems integration

    SciTech Connect

    Brantley, L.W.

    1982-06-01

    Power systems integration in large flexible space structures is discussed with emphasis upon body control. A solar array is discussed as a typical example of spacecraft configuration problems. Information on how electric batteries dominate life-cycle costs is presented in chart form. Information is given on liquid metal droplet generators and collectors, hot spot analysis, power dissipation in solar arrays, solar array protection optimization, and electromagnetic compatibility for a power system platform.

  16. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  17. BPA/Puget Power Northwest Washington Transmission Project : Summary of the Supplemental Draft Environmental Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-04-01

    BPA and Puget Sound Power and Light (Puget Power) are proposing to upgrade the existing electric transmission power system in the Whatcom and Skagit County area of northwest Washington to increase the capacity of the US-Canada Intertie transmission system. The project would satisfy the need to provide more ability to store and return energy with Canada, would provide additional capacity on the Intertie for anticipated increases in power transactions, and would increase flexibility in operation of the US and Canadian hydroelectric system. It would protect Puget Power`s local system against thermal overloads, and improve local reliability. In November 1993, Bonneville Power Administration (BPA), and Whatcom County (Washington) published a draft environmental impact statement (DEIS) for the proposed Northwest Washington Transmission Project. In order to present some shifts in need for the project and to permit additional review, BPA and Whatcom County have elected to issue a Supplemental Draft EIS. This Summary presents background material, explains project needs and purposes, and then focuses on alternatives and the possible effects.

  18. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    NASA Technical Reports Server (NTRS)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  19. Energy integrated farm system technical summary report

    SciTech Connect

    Breckenridge, R.P.; Price, D.R.; Sherwood, R.K.; Thompson, W.N.

    1987-03-01

    The Energy Integrated Farm System program was established by the Department of Energy in 1980 in response to the hardship imposed on US farmers by high fuel costs and unreliable fuel supplies. The program investigated the feasibility of integrating energy conservation practices with on-farm energy production to reduce farm energy consumption and make farms more energy self-sufficient. Seven farms located in various geographical regions in the US and Puerto Rico participated in the program. Each of these farms developed an energy integrated farm system project that used a unique combination of energy production and energy conservation methods to supply energy to the farm and reduce the farm's dependence on energy produced from nonrenewable sources such as coal and oil. Methods used at these projects included conservation tillage, solar heating, waste heat recovery, methane digestion, electricity production from biogas, alcohol fuel production, fluidized-bed combustion of crop wastes, and computer-aided conservation irrigation. This report is a summary of the seven technical manuals prepared at the conclusion of the projects. It presents highlights and results, provides an overview of successes and problems, and lists recommendations.

  20. Honey Lake Hybrid Power Plant Project. Volume 1. Executive summary

    SciTech Connect

    Not Available

    1982-03-01

    A technical and economic feasibility study of the engineering aspects of a hybrid wood-fired geothermal electrical generating plant is presented. The proposed plant location is in Lassen County, California, near the Wendel Amedee Known Geothermal Resource Area. This power plant uses moderate temperature geothermal fluid to augment the heat supplied from a wood waste fired boiler. This report defines major plant systems for implementation into the plant conceptual design and provides sufficient design information for development of budgetary cost estimates. Emphasis is placed on incorporation of geothermal heat into the power generation process. Plant systems are designed and selected based on economic justification and on proven performance. The culminating economic analysis provides the financial information to establish the incentives for construction of the plant. The study concludes that geothermal energy and energy from wood can be combined in a power generating plant to yield attractive project economics.

  1. TROPIX Power System Architecture

    NASA Technical Reports Server (NTRS)

    Manner, David B.; Hickman, J. Mark

    1995-01-01

    This document contains results obtained in the process of performing a power system definition study of the TROPIX power management and distribution system (PMAD). Requirements derived from the PMADs interaction with other spacecraft systems are discussed first. Since the design is dependent on the performance of the photovoltaics, there is a comprehensive discussion of the appropriate models for cells and arrays. A trade study of the array operating voltage and its effect on array bus mass is also presented. A system architecture is developed which makes use of a combination of high efficiency switching power convertors and analog regulators. Mass and volume estimates are presented for all subsystems.

  2. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  3. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.

  4. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.

  5. Site insolation and wind power characteristics. Summary report

    SciTech Connect

    Bray, R E

    1980-08-01

    Design and operation of either large or small scale solar and wind energy conversion systems should be based, in part, on knowledge of expected solar and wind power trends. For this purpose, historic solar and wind data available at 101 National Weather Service stations were processed statistically. Preliminary planning data are provided for selected daily average solar and wind power conditions occurring and persisting for time periods of interest. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Empirical probabilities were constructed from the historic data to provide a reasonable inference of the chance of similar climatological conditions occurring at any given time in the future. (Diurnal wind power variations were also considered.) Ratios were also generated at each station to relate the global radiation data to insolation on a south-facing surface inclined at various angles. In addition, joint probability distributions were derived to show the proportion of days with solar and wind power within selected intervals.

  6. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  7. Power Systems Advanced Research

    SciTech Connect

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  8. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, Dave

    2010-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.

  9. Nuclear power system

    SciTech Connect

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-09-05

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules.

  10. Solar power system

    SciTech Connect

    Hasford, G.S.

    1990-01-30

    This patent describes a solar power system. It comprises: solar concentrator means; power conversion means for converting solar energy from the solar concentrator means to electrical energy, through the medium of a working fluid, to power appropriate loads; integrated combustor/heat exchanger means coupled to the power conversion means for heating the working fluid during periods of solar eclipse and giving off a water combustion product; electrolyzer means for receiving the water combustion product from the integrated combustor/heat exchanger mean and regenerating the water combustion product to gaseous hydrogen and oxygen. The electrolyzer means being coupled to the power conversion means as to be powered thereby during periods of excess electrical energy; and means for supplying the hydrogen and oxygen for combustion in the integrated combustor/heat exchanger during the periods of solar eclipse.

  11. AC power system breadboard

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.

  12. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  13. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  14. Filter system cost comparison for IGCC and PFBC power systems

    SciTech Connect

    Dennis, R.A.; McDaniel, H.M.; Buchanan, T.

    1995-12-01

    A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

  15. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  16. Autonomous power system brassboard

    NASA Astrophysics Data System (ADS)

    Merolla, Anthony

    1992-10-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the

  17. Autonomous power system brassboard

    NASA Technical Reports Server (NTRS)

    Merolla, Anthony

    1992-01-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the

  18. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  19. Summary

    SciTech Connect

    Itoh, Kimitaka

    2009-02-19

    In this presentation, lectures in the school are revisited and a brief summary is given. An emphasis is made to illustrate how the lectures are interconnected so as to constitute the unified basis of knowledge in realizing thermonuclear fusion in ITER.The first message here is the integration of the knowledge. All of conditions (which is imposed by individual characteristic dynamics) must be simultaneously fulfilled. Plasma conditions (density, pressure, current, shape, etc.) set parameter boundaries. Achievement of Q = 10 is expected to be realized near the ridge of boundary, so that exact knowledge of mutual relations between constraints is inevitable. The other message is that, the constraints of plasma, material and design must be subject to a special care. In this regard, the use of tritium in ITER introduces new issue in research. For instance, the containment of tritium in the device leads to a new demand for the system. This issue influences the choice of the wall material. The difference of the wall material (either light element or heavy metal), on the other hand, can have a large impact on confinement. These new features in integration will be explained.The other issue is the need of integration of knowledge to form a law of understanding. The mission of ITER must be realized as fast as possible, considering the fact the necessity for fusion energy will be more keen as time goes on. The operation of ITER has been predicted by extending the empirical scaling relations. More precise prediction and the resolution of possible problems in advance are required. For this urgency, our knowledge must be distilled as a scientific law in which elementary processes are validated.

  20. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  1. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  2. Automotive power steering system

    SciTech Connect

    VanGorder, D.H.; Wilson, K.R.

    1991-04-23

    This patent describes improvement in an automotive power steering system including a pump, a servo-valve, a steering assist fluid motor, a reservoir having a reservoir chamber therein, fluid ducts; a volume of hydraulic oil; a fluid level. The improvement comprises: means defining a fill port; a cover; means connect a gas accumulator.

  3. Integrated Utility Systems Feasibility Study and Conceptual Design at the University of Florida. Executive Summary.

    ERIC Educational Resources Information Center

    Kirmse, Dale W.; Manyimo, Steve B.

    This executive summary presents a brief analysis of findings and recommendations. The concept of the Integrated Utility System (IUS) is to consider the interaction and mutual support of five utility subsystems needed by a campus complex of buildings. The subsystems are: (1) Electric power service; (2) Heating - ventilating - air conditioning and…

  4. Analysis of large power systems

    NASA Technical Reports Server (NTRS)

    Dommel, H. W.

    1975-01-01

    Computer-oriented power systems analysis procedures in the electric utilities are surveyed. The growth of electric power systems is discussed along with the solution of sparse network equations, power flow, and stability studies.

  5. Prospects of thermionic power systems

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1978-01-01

    Potential thermionic power systems for space or terrestrial applications are described so that the development goals can be clearly identified. The thermionic power systems considered are a space nuclear power system, a fossil-fuel thermionic topping steam power system, a solar thermionic topping steam power system, and advanced systems. Attention is given to a discussion of the current status of technology development in thermionic converters and associated elements in power systems. Future prospects of thermionic power systems are also discussed. It is concluded that thermionic conversion has a great potential for a variety of applications.

  6. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  7. Power systems testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Station Freedom (SSF) will give the U.S. a permanent manned presence in space in 1999. The SSF underwent its final design concept in 1991. Launches of hardware will begin in late 1995, and the SSF will become operational in the man tended configuration in 1997. Additional Space Shuttle flights between 1997 and 1999 will complete the SSF. Along with international partners, a crew of four astronauts will conduct long-term experimentation in the microgravity environment of the orbiting spacecraft. Lewis Research Center, along with its prime contractor, will provide the electrical power system (EPS) for SSF. Two major testing facilities at the Lewis Research Center will support the Lewis EPS. The Power Systems Facility provides test beds for life testing the station batteries and the power management distribution system testbed. This testbed simulates two channels of the EPS. The Space Power Facility at the Lewis Plum Brook Station is the largest vacuum chamber in the world. Within this chamber, a simulated space environment, testing of full-size EPS components will occur.

  8. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  9. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  10. Small Power Systems Solar Electric Workshop Proceedings. Volume 1: Executive report. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    Ferber, R. (Editor); Evans, D. (Editor)

    1978-01-01

    The background, objectives and methodology used for the Small Power Systems Solar Electric Workshop are described, and a summary of the results and conclusions developed at the workshop regarding small solar thermal electric power systems is presented.

  11. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  12. Lunar power systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified.

  13. TOPEX electrical power system

    NASA Technical Reports Server (NTRS)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  14. Space station power system

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Baraona, C. R.

    1984-01-01

    It is pointed out that space station planning at NASA began when NASA was created in 1958. However, the initiation of the program for a lunar landing delayed the implementation of plans for a space station. The utility of a space station was finally demonstrated with Skylab, which was launched in 1972. In May 1982, the Space Station Task Force was established to provide focus and direction for space station planning activities. The present paper provides a description of the planning activities, giving particular attention to the power system. The initial space station will be required to supply 75 kW of continuous electrical power, 60 kW for the customer and 15 kW for space station needs. Possible alternative energy sources for the space station include solar planar or concentrator arrays of either silicon or gallium arsenide.

  15. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  16. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  17. The Great Nuclear Power Debate (1)--A Summary

    ERIC Educational Resources Information Center

    Douglas, John H.

    1976-01-01

    Five issues concerning nuclear power--economics, danger from accidents, environmental effects, terrorism, and alternatives are debated, with one paragraph statements from opponents and advocates on each of the topics. (CP)

  18. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  19. Space Station power system selection

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1986-01-01

    The Space Station power system selection process is described with attention given to management organization and technical considerations. A hybrid power system was chosen because of the large life cycle cost savings. The power management and distribution system that was chosen was the 400 Hz system.

  20. Power Systems Development Facility

    SciTech Connect

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  1. Mobile radio alternative systems study, executive summary

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Cromwell, N.; Lester, H. L.

    1983-01-01

    Present day mobile communication technologies, systems and equipment are described from background in evaluating the concepts generated in the study. Average propagation ranges are calculated for terrestrial installations in each of seven physiographic areas of the contiguous states to determine the number of installations that would be required for nationwide coverage. Four system concepts are defined and analyzed to determine how well terrestrial systems can fulfill the requirements at acceptable costs.

  2. LACIE/ERIPS software system summary

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Principal Investigator)

    1979-01-01

    The Earth resources interactive processing system (ERIPS) supports LACIE by classifying LANDSAT sensed data on the basis of the statistical similarity to those portions which were identified by analysts. The development and capabilities of the ERIPS software system are described with emphasis on (1) system requirements; (2) LACIE/ERIPS hardware; (3) system functions; (4) pattern recognition concept; and (5) LACIE/ERIPS data bases. Algorithms used in LACIE/ERIPS for statistics, divergence, feature selection, classification, registration, adaptive clustering, iterative clustering, clustering report functions, Sun angle correction, mean level adjustment, and bias correction are appended.

  3. Preliminary power train design for a state-of-the-art electric vehicle (executive summary)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of a state-of-the-art electric power train is part of a national effort to reap the potential benefit of useful urban electric passenger vehicles. Outlined in a detailed presentation are: (1) assessment of the state-of-the-art in electric vehicle technology; (2) state-of-the-art power train design; (3) improved power train; and (4) summary and recommendations.

  4. Titan 3E/Centaur D-1T Systems Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

  5. A Summary Report of Six School Systems.

    ERIC Educational Resources Information Center

    Miami Univ., Coral Gables, FL. South Florida School Desegregation Consulting Center.

    The conclusions and recommendations of a study of 6 Negro-majority school systems located in Georgia, Mississippi, and South Carolina are presented in this report. Dual school systems are operating in the districts studied, but all have started the desegregation process. Important considerations include past achievement differences, salary…

  6. Human Transportation System (HTS) study: Executive summary

    NASA Astrophysics Data System (ADS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-10-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  7. Human Transportation System (HTS) study: Executive summary

    NASA Technical Reports Server (NTRS)

    Lance, N.; Geyer, M. S.; Gaunce, M. T.

    1993-01-01

    Work completed under the Human Transportation System Study is summarized. This study was conducted by the New Initiatives Office at JSC with the technical support of Boeing, General Dynamics, Lockheed, McDonnell-Douglas, Martin Marietta, and Rockwell. The study was designed to generate information on determining the appropriate path to follow for new system development to meet the Nation's space transportation needs. The study evaluates 18 transportation architecture options using a parametric set of mission requirements. These options include use of current systems as well as proposed systems to assess the impact of various considerations, such as the cost of alternate access, or the benefit of separating people and cargo. The architecture options are compared to each other with six measurable evaluation criteria or attributes. They are the following: funding profile, human safety, probability of mission success, architecture cost risk, launch schedule confidence, and environmental impact. Values for these attributes are presented for the architecture options, with pertinent conclusions and recommendations.

  8. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  9. Transportation systems analyses. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The principal objective is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform crew delivery and return, cargo transfer, cargo delivery and return, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include: the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationship between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. Conceptual studies of transportation elements contribute to the systems approach by identifying elements (such as ETO node and transfer/excursion vehicles) needed in current and planned transportation systems. These studies are also a mechanism to integrate the results of relevant parallel studies.

  10. Satellite communications systems and technology. Executive Summary

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I.; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert; Mahle, Christoph E.

    1993-01-01

    NASA and the National Science Foundation (NSF) commissioned a panel of US experts to study the international status of satellite communications systems and technology. The study covers emerging systems concepts, applications, services, and the attendant technologies. The panel members travelled to Europe, Japan, and Russia to gather information first-hand. They visited 17 sites in Europe, 20 sites in Japan, and four in Russia. These included major manufacturers, government organizations, service providers, and associated R&D facilities. The panel's report was reviewed by the sites visited, by the panel, and by representatives of US industry. The report details the information collected and compares it to US activities.

  11. Pentek concrete scabbling system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek concrete scabbling system consists of the MOOSE{reg_sign} scabbler, the SQUIRREL{reg_sign}-I and SQUIRREL{reg_sign}-III scabblers, and VAC-PAC. The scabblers are designed to scarify concrete floors and slabs using cross section, tungsten carbide tipped bits. The bits are designed to remove concrete in 3/8 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  12. Power flow for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.

    1989-01-01

    A method for constructing the generalized system-level admittance matrix for use with a Newton-Raphson power flow is presented. The network modeling technique presented does not use the standard pi-equivalent models, which assume a lossless return path, for the transmission line and transformer. If the return path cannot be assumed lossless, then the standard algorithms for constructing the system admittance matrix cannot be used. The method presented here uses concepts from linear graph theory to combine network modules to form the system-level admittance matrix. The modeling technique is presented, and the resulting matrix is used with a standard Newton-Raphson power flow to calculate all system voltages and current (power) flows.

  13. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  14. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  15. Design of Training Systems Phase I Summary Report.

    ERIC Educational Resources Information Center

    Lindahl, William H.; And Others

    A summary is provided of the status of Phase I of the three-stage project, "Design of Training Systems" (DOTS). The purpose of the overall project is described as being to introduce the technologies of education, psychology, management and operations research into the management of Navy training. Phase I of the effort is designed to provide a…

  16. High voltage system: Plasma interaction summary

    NASA Technical Reports Server (NTRS)

    Stevens, N. John

    1986-01-01

    The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.

  17. Satellite freeze forecast system: Executive summary

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    A satellite-based temperature monitoring and prediction system consisting of a computer controlled acquisition, processing, and display system and the ten automated weather stations called by that computer was developed and transferred to the national weather service. This satellite freeze forecasting system (SFFS) acquires satellite data from either one of two sources, surface data from 10 sites, displays the observed data in the form of color-coded thermal maps and in tables of automated weather station temperatures, computes predicted thermal maps when requested and displays such maps either automatically or manually, archives the data acquired, and makes comparisons with historical data. Except for the last function, SFFS handles these tasks in a highly automated fashion if the user so directs. The predicted thermal maps are the result of two models, one a physical energy budget of the soil and atmosphere interface and the other a statistical relationship between the sites at which the physical model predicts temperatures and each of the pixels of the satellite thermal map.

  18. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  19. STARPAHC systems report. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A joint NASA and Department of Health, Education, and Welfare/Indian Health Services demonstration project entitled Space Technology Applied to Rural Papago Advanced Health Care (STARPAHC) was conducted to develop a solution for delivering quality health care to people in remote geographical areas. The STARPAHC concept verified the feasibility of telemedicine plus physician assistant - under the direction of a physician as a means of delivering quality health care. The two years of operational evaluation have provided considerable medical and engineering data which will be valuable to the designers and planners of future health care systems on earth and in space.

  20. Satellite Power System (SPS)

    NASA Technical Reports Server (NTRS)

    Edler, H. G.

    1978-01-01

    Potential organizational options for a solar power satellite system (SPS) were investigated. Selection and evaluation criteria were determined to include timeliness, reliability, and adequacy to contribute meaningfully to the U.S. supply; political feasibility (both national and international); and cost effectiveness (including environmental and other external costs). Based on these criteria, four organizational alternatives appeared to offer reasonable promise as potential options for SPS. A large number of key issues emerged as being factors which would influence the final selection process. Among these issues were a variety having to do with international law, international institutions, environmental controls, economics, operational flexibility, congressional policies, commercial-vs-governmental ownership, national dedication, and national and operational stategic issues.

  1. Innovative technology summary report: Transportable vitrification system

    SciTech Connect

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  2. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  3. Automated Power Systems Management (APSM)

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1981-01-01

    A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.

  4. Summary of photovoltaic system performance models

    SciTech Connect

    Smith, J. H.; Reiter, L. J.

    1984-01-15

    The purpose of this study is to provide a detailed overview of photovoltaics (PV) performance modeling capabilities that have been developed during recent years for analyzing PV system and component design and policy issues. A set of 10 performance models have been selected which span a representative range of capabilities from generalized first-order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Next, each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. Then each of the issues is discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. Finally, the models are grouped into categories to illustrate their purposes and perspectives.

  5. Summary of photovoltaic system performance models

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. J.

    1984-01-01

    A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives.

  6. Summary

    SciTech Connect

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's material protection, control, and accountability (MPC&A) system. The MSET process is divided into four distinct and separate parts: (1) Completion of the questionnaire that assembles information about the operations of every aspect of the MPC&A system; (2) Conversion of questionnaire data into numeric values associated with risk; (3) Analysis of the numeric data utilizing the MPC&A fault tree and the SAPHIRE computer software; and (4) Self-assessment using the MSET reports to perform the effectiveness evaluation of the facility's MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. If the need for system improvements or upgrades is indicated when the system is analyzed, MSET provides the capability to evaluate potential or actual system improvements or upgrades. A facility's MC&A system can be evaluated at a point in time. The system can be reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential system improvement can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance and reveals where performance degradation has the greatest impact on total system risk. The risk

  7. Mod-2 wind turbine system development. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of the MOD-2 wind turbine through acceptance testing and initial operational evaluation is documented. Pitch control hydraulic system, yaw control system, drive train, electrical power station, control system, operations and maintenance experience, and availability are discussed.

  8. Switching power pulse system

    DOEpatents

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  9. Optical power distribution system

    SciTech Connect

    Lalmond, R.G.

    1987-09-08

    This patent describes an apparatus for supplying electrical power to electrical components mounted on a circuit board. It consists of: a printed circuit board; electrical components mounted on the printed circuit board; electrically powered sources of optical energy; photovoltaic cell arrays; each photovoltaic cell array being mounted on a corresponding one of the electrical components to provide electrical power to the electrical component on which it is mounted; and means for coupling the optical energy from the electrically powered sources of optical energy to the photovoltaic cell arrays.

  10. Pluto Express power system architecture

    SciTech Connect

    Carr, G.A.

    1996-12-31

    The Pluto Express power system must answer the challenge of the next generation spacecraft by reducing its power, mass and volume envelopes. Technology developed by the New Millennium Program will enable the power system to meet the stringent requirements for the Pluto Express mission without exceeding the spacecraft mass and volume budgets. Traditionally, there has been an increasing trend of the percentage of mass of the power system electronics with respect to the total spacecraft mass. With all of the previous technology focus on high density digital packaging, the power system electronics have not been keeping pace forcing the spacecraft to absorb a relative increase in the power system mass. The increasing trend can be reversed by using mixed signal ASICs and high density multi-chip-module (MCM) packaging techniques validated by the New Millennium Program. As the size of the spacecraft shrinks, the power system electronics must become tightly integrated with the spacecraft loads. The power system architecture needs the flexibility to accommodate the specific load requirements without sacrificing the capability for growth or reduction as the spacecraft requirements change throughout the development. Modularity is a key requirement that will reduce the overall power system cost. Although the focus has been on shrinking the power system volume and mass, the efficiency and functionality cannot be ignored. Increased efficiency and functionality will only enhance the power systems capability to reduce spacecraft power requirements. The combination of the New Millennium packaging technologies with the Pluto Express power system architecture will produce a product with the capability to meet a wide range of mission profiles while reducing system development costs.

  11. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    SciTech Connect

    Oshatz, Daryl

    2004-03-12

    This summary document describes the results of conceptual design and cost estimates performed by LBNL Engineering staff between October 10, 2003 and March 12, 2004 for the proposed {theta}{sub 13} neutrino experiment at the Diablo Canyon Power Plant (DCPP). This document focuses on the detector room design concept and mechanical engineering issues associated with the neutrino detector structures. Every effort has been made not to duplicate information contained in the last LBNL Engineering Summary Report dated October 10, 2003. Only new or updated information is included in this document.

  12. Extension to distributed annotation system: Summary and summaryplot commands.

    PubMed

    Chrysostomou, Charalambos; Brookes, Anthony J

    2015-08-01

    In recent years, the development of high-throughput sequencing technologies provided an effective way to generate data from entire genomes and test variants from thousands of individuals. The information acquired from analysing the data generated from high-throughput sequencing technologies provided useful insights into applications like whole-exome sequencing and targeted sequencing to discover the genetic cause of complex diseases and drug responses. The Distributed Annotation System (DAS) is one of the proposed solution developed to share and unify biological data from multiple local and remote DAS annotation servers. The researchers can use DAS to request data from federated or centralised databases and integrate them into a unified view. Furthermore, with the use of Reference DAS servers, structural and sequence data can be used to accompany annotation data, for the pursue of new knowledge for a particular feature or region. In this paper, two additional commands, summary and summary-plot commands, to the existing DAS protocol are proposed and implemented. The proposed commands were created in order to give the users the capabilities to request a summary of features for a particular region of interest. The summary command was created in order to extend the capabilities of the current DAS protocol, while the summaryplot command was created to provide a more user-friendly alternative to standard XML DAS responses. Finally, three examples are presented based on the GENCODE annotation data. PMID:26738065

  13. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  14. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  15. Summary of Recent Results from NASA's Space Solar Power (SSP) Programs and the Current Capabilities of Microwave WPT Technology

    NASA Technical Reports Server (NTRS)

    McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.

  16. US electric power system reliability

    NASA Astrophysics Data System (ADS)

    Electric energy supply, transmission and distribution systems are investigated in order to determine priorities for legislation. The status and the outlook for electric power reliability are discussed.

  17. Switching power pulse system

    DOEpatents

    Aaland, Kristian

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  18. Nanosatellite Power System Considerations

    NASA Technical Reports Server (NTRS)

    Robyn, M.; Thaller, L.; Scott, D.

    1995-01-01

    The capability to build complex electronic functions into compact packages is opening the path to miniature satellites on the order of 1 kg mass, 10 cm across, packed with the computing processors, motion controllers, measurement sensors, and communications hardware necessary for operation. Power generation will be from short strings of silicon or gallium arsenide-based solar photovoltaic cells with the array power maximized by a peak power tracker (PPT). Energy storage will utilize a low voltage battery with nickel cadmium or lithium ion cells as the most likely selections for rechargeables and lithium (MnO2-Li) primary batteries for one shot short missions.

  19. Autonomous power system: Integrated scheduling

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control and scheduling techniques to space power distribution hardware. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis, isolation, and recovery (FDIR), the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space-based power system. Faults can be introduced into the Brassboard and in turn, be diagnosed and corrected by APEX and AIPS. The Autonomous Intelligent Power Scheduler controls the execution of loads attached to the Brassboard. Each load must be executed in a manner that efficiently utilizes available power and satisfies all load, resource, and temporal constraints. In the case of a fault situation on the Brassboard, AIPS dynamically modifies the existing schedule in order to resume efficient operation conditions. A database is kept of the power demand, temporal modifiers, priority of each load, and the power level of each source. AIPS uses a set of heuristic rules to assign start times and resources to each load based on load and resource constraints. A simple improvement engine based upon these heuristics is also available to improve the schedule efficiency. This paper describes the operation of the Autonomous Intelligent Power Scheduler as a single entity, as well as its integration with APEX and the Brassboard. Future plans are discussed for the growth of the Autonomous Intelligent Power Scheduler.

  20. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  1. Space solar power systems

    NASA Technical Reports Server (NTRS)

    Toliver, C.

    1977-01-01

    Studies were done on the feasibility of placing a solar power station called POwersat, in space. A general description of the engineering features are given as well as a brief discussion of the economic considerations.

  2. Power System State of Health

    NASA Astrophysics Data System (ADS)

    Carpenter, P.

    2012-12-01

    Understanding the state of a polar station's power system can be critical to a successful long-term deployment. Knowing how the system is functioning, prior to service, is key to proper logistics, scheduling and the service performed during a visit. A full record of power system performance is key to proper analysis of the health of the power system. The design of a power system with monitoring is a balance of components to gather information while still trying to keep complexity low. To properly incorporate a system to analyze a stations power system a firm understanding of how the power components function in polar environments as well as communication to data acquisition and / or telemetry is needed. For example designers will need to know how a station's power storage system will change in colder environments then manufactures standard design criteria. This would include the reduced available capacity, change in the mean time between failure and possible new failure modes. This understanding coupled with a system that would collect key information on the state of health of the power system will provide crucial insight in to what service is needed to keep the station functioning.

  3. Western Area Power Administration. Combined power system financial statements

    SciTech Connect

    1998-02-26

    This report presents the results of the independent certified public accountants` audit of the Western Area Power Administration`s combined power system statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Westerns internal control structure disclosed three new reportable conditions concerning the lack of: (1) a reconciliation of stores inventory from subsidiary ledgers to summary financial information, (2) communication of interest during construction and related adjustments to interest on Federal investment, and (3) a system to prevent and detect power billing errors. None of the conditions were considered to be material weaknesses. Western provided concurrence and corrective action plans. The auditors` report on Western`s compliance with laws and regulations also disclosed two new instances of noncompliance. Western failed to calculate nonreimbursable expenses in accordance with the Grand Canyon Protection Act and had an unexplained difference in gross Federal investment balances used to calculate interest on Federal investment. Western provided concurrence and corrective action plans for the instances.

  4. Systems view of power systems autonomy

    SciTech Connect

    Anderson, J.L.

    1984-08-01

    A space station will involve the formation and sustained operation of an assembly of humans and machines in space for a period of 10-20 years. Technology and mission studies of a permanently manned, evolutionary space station have identified the need for automated and eventually some degree of autonomous systems operation. A space station power system will have a high degree of interaction with other onboard systems which will act as power loads. By examining the evolution of an operational power system from a systems viewpoint through increasing degrees of automation the system and technology requirements are identified for an evolutionary system.

  5. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    SciTech Connect

    Reid, RL

    2003-09-18

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

  6. Advanced Power System Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.

  7. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.

  8. MYRIADE Power System In Flight

    NASA Astrophysics Data System (ADS)

    Elisabelar, C.; Fredon, S.

    2011-10-01

    This paper presents the after performance of the power system during more than 6 years in orbit on the 6 first MYRIADE microsatellites launched in 2004: DEMETER, PARASOL and the 4 ESSAIMs. Results on the last CNES MYRIADE mission PICARD which was launched in June 2010 are also presented. First of all a description of the power system and its operation on the different missions is made. The evolutions and degradations of the main power sources : solar generator, battery are presented. Flight performances are compared with prediction by using different methods. In conclusion a synthesis on the power system performance is made and a feedback for future MYRIADE developments is proposed.

  9. Power quality load management for large spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  10. The space station power system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.

  11. Maintenance of photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Hall, M. R.

    1984-08-01

    This publication establishes standard practices for inspection, testing, and maintenance of photovoltaic power systems at Dept. of the Navy installations. The practices and procedures are recommended to ensure reliable operation of the power systems. The manual covers photovoltaic-array, battery, voltage-regulator, inverter, and wiring subsystems. In addition, this manual provides a troubleshooting guide and self-study questions and answers.

  12. Maintenance of photovoltaic power systems

    SciTech Connect

    Hall, M.R.

    1984-08-01

    This publication establishes standard practices for inspection, testing, and maintenance of photovoltaic power systems at Department of the Navy installations. The practices and procedures are recommended to ensure reliable operation of the power systems. The manual covers photovoltaic-array, battery, voltage-regulator, inverter, and wiring subsystems. In addition, this manual provides a troubleshooting guide and self-study questions and answers.

  13. Laser power conversion system analysis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Orbit to orbit and orbit to ground laser power conversion systems and power transfer are discussed. A system overview is presented. Pilot program parameters are considered: SLPS assumptions are listed, a laser SPS overview is presented, specifications are listed, and SLPS coats are considered.

  14. Microelectronic Information Processing Systems: Computing Systems. Summary of Awards Fiscal Year 1994.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Directorate for Computer and Information Science and Engineering.

    The purpose of this summary of awards is to provide the scientific and engineering communities with a summary of the grants awarded in 1994 by the National Science Foundation's Division of Microelectronic Information Processing Systems. Similar areas of research are grouped together. Grantee institutions and principal investigators are identified…

  15. Geomagnetic disturbance effects on power systems

    SciTech Connect

    Albertson, V.D.; Bozoki, B.; Feero, W.E.; Kappenman, J.G.; Larsen, E.V.; Nordell, D.E.; Ponder, J.; Prabhakara, F.S.; Thompson, K.; Walling, R.

    1993-07-01

    In the northern hemisphere, the aurora borealis is visual evidence of simultaneous fluctuations in the earth's magnetic field (geomagnetic field). These geomagnetic disturbances (GMD's), or geomagnetic storms, can affect a number of man-made systems, including electric power systems. The GMD's are caused by the electromagnetic interaction of the solar wind plasma of protons and electrons with the geomagnetic field. These dynamic impulses in the solar wind are due to solar flares, coronal holes, and disappearing filaments, and reach the earth from one to six days after being emitted by a solar event. Instances of geomagnetic storms affecting telegraph systems were noted in England in 1846, and power system disturbances linked to GMD's were first reported in the United States in 1940. This Working Group report is a summary of the state of knowledge and research activity to the present time, and covers the GMD/Geomagnetically-induced currents (GIC) phenomena, transformer effects, the impact on generators, protective relay effects, and communication system effects. It also summarizes modeling and predicting GIC, measuring and monitoring GIC, mitigation methods, system operating guidelines during GMD's, and alerting and forecasting procedures and needs for the power industry.

  16. Limits to power system growth

    SciTech Connect

    Slater, S.M.; Klein, A.C. ); Webb, B.J. ); Pauley, K.A. )

    1993-01-15

    In the design of space nuclear power systems a variety of conversion techniques may be used, each with its own advantages and disadvantages. A study was performed which analyzed over 120 proposed system designs. The designs were compared to identify the optimum conversion system as a function of power level and find limits to specific mass (kg/kWe) for each power cycle. Furthermore, the component masses were studied to determine which component of the overall design contributes the most to total system mass over a variety of power levels. The results can provide a focus for future research efforts by selecting the best conversion technology for the desired power range, and optimizing the system component which contributes most to the total mass.

  17. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  18. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  19. Advanced-technology space station study: Summary of systems and pacing technologies

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.

    1990-01-01

    The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.

  20. Electrical power systems for Mars

    NASA Technical Reports Server (NTRS)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  1. Maximum Power Point Regulator System

    NASA Astrophysics Data System (ADS)

    Simola, J.; Savela, K.; Stenberg, J.; Tonicello, F.

    2011-10-01

    The target of the study done under the ESA contract No.17830/04/NL/EC (GSTP4) for Maximum Power Point Regulator System (MPPRS) was to investigate, design and test a modular power system (a core PCU) fulfilling requirement for maximum power transfer even after a single failure in the Power System by utilising a power concept without any potential and credible single point failure. The studied MPPRS concept is of a modular construction, able to track the MPP individually on each SA sections, maintaining its functionality and full power capability after a loss of a complete MPPR module (by utilizingN+1module).Various add-on DCDC converter topology candidates were investigated and redundancy, failure mechanisms and protection aspects were studied

  2. Electrical power systems for Mars

    NASA Astrophysics Data System (ADS)

    Giudici, Robert J.

    1986-05-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  3. Power system state estimation for a spacecraft power system

    NASA Technical Reports Server (NTRS)

    Berry, F. C.; Benitez, N. L.; Cox, M. D.

    1990-01-01

    An application of the maximum likelihood state estimator to a space-based power system is presented. The state estimator uses current and voltage measurements to generate estimates of node voltages for an electrical power distribution system for the Space Shuttle. Preliminary results on the effect of noisy measurements on estimated parameters are reported. The software used in generating these results is part of an overall package being developed at Louisiana Tech University. Intended applications of this package include the analysis of power systems and real-time parallel processing on the Space Shuttle.

  4. Power system stability

    SciTech Connect

    Not Available

    1984-03-01

    The following papers are included: exact Lagrangians for linear nonconservative systems; linear nonconservative systems with asymmetric parameters derivable from a Lagrangian; some remarks on the derivability of linear nonconservative systems from a Lagrangian; dynamic response by means of functions of matrices; a direct construction of first integrals for certain nonlinear dynamical systems; derivation of the Brayton-Moser equations from a topological mixed potential function; quadratic integrals for linear nonconservative systems and their connection with the inverse problem of Lagrangian dynamics; generalized Lagrangian and conservation law for the damped harmonic oscillator; connections between the generalized Hamilton-Lagrange and Brayton-Moser equations; time-dependent linear systems derivable from a variational principle; the generalized Lagrange formulation for nonlinear RLC networks; the Helmholtz conditions revisited - a new approach to the inverse problem of Lagrangian dynamics; time-dependent linear systems derivable from a variational principle II; and conservation laws for some separable gyroscopic dynamical systems.

  5. Nitrogen dynamics in controlled systems: meeting summary and conclusions.

    PubMed

    Smernoff, D T; Heyenga, G

    1996-01-01

    This article summarizes the findings of a meeting held during September 1995, in Berkeley, CA. The purpose of the meeting was to provide NASA with a summary of the current data, theories, and hypotheses concerning the energetics, dynamics, and stability of nitrogen cycling in controlled systems. NASA's interest stems from the development of advanced life support systems that must recycle and/or regenerate all life support materials. Nitrogen is an important element in biological systems; it undergoes a variety of transformations during both biotic and abiotic processes and, hence, an understanding of its dynamic changes in a closed system is critical to the design of efficient and reliable life support systems. This article reviews the meeting goals and objectives, summarizes the findings of the participants, and outlines future research needs. PMID:11539164

  6. Space power systems technology

    NASA Technical Reports Server (NTRS)

    Coulman, George A.

    1994-01-01

    Reported here is a series of studies which examine several potential catalysts and electrodes for some fuel cell systems, some materials for space applications, and mathematical modeling and performance predictions for some solid oxide fuel cells and electrolyzers. The fuel cell systems have a potential for terrestrial applications in addition to solar energy conversion in space applications. Catalysts and electrodes for phosphoric acid fuel cell systems and for polymer electrolyte membrane (PEM) fuel cell and electrolyzer systems were examined.

  7. 77 FR 48177 - Fuel Oil Systems for Emergency Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; extension of comment period. SUMMARY: On July 5, 2012 (77 FR 39745), the U.S. Nuclear... ADAMS. II. Background On July 5, 2012 (77 FR 39745), the NRC published a notice of issuance...

  8. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  9. Shunt regulation electric power system

    NASA Technical Reports Server (NTRS)

    Wright, W. H.; Bless, J. J. (Inventor)

    1971-01-01

    A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.

  10. Summary of Tactile User Interfaces Techniques and Systems

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2004-01-01

    Mental workload can be defined as the ratio of demand to allocated resources. Multiple- resource theory stresses the importance of distribution of tasks and information across various sensory channels of the human to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display; historic and more recent systems that incorporate tactile display for information presentation; advantages and disadvantages of targeting the tactile channel; and future directions in tactile display research.

  11. Summary of Tactile User Interfaces Techniques and Systems

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2005-01-01

    Mental workload can be de.ned as the ratio of demand to allocated resources. Multiple-resource theory stresses the importance of distribution of tasks and information across various human sensory channels to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display, historic and more recent systems that incorporate tactile display for information presentation, advantages and disadvantages of targeting the tactile channel, and future directions in tactile display research.

  12. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  13. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  14. Power systems for future missions

    NASA Technical Reports Server (NTRS)

    Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.

    1994-01-01

    A comprehensive scenario of future missions was developed and applicability of different power technologies to these missions was assessed. Detailed technology development roadmaps for selected power technologies were generated. A simple methodology to evaluate economic benefits of current and future power system technologies by comparing Life Cycle Costs of potential missions was developed. The methodology was demonstrated by comparing Life Cycle Costs for different implementation strategies of DIPS/CBC technology to a selected set of missions.

  15. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  16. Power turbine ventilation system

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  17. Electric-Power System Simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, R. W.; Grumm, R. L.; Biedebach, B. L.

    1984-01-01

    Shows different combinations of generation, storage, and load components: display, video monitor with keyboard input to microprocessor, and video monitor for display of load curves and power generation. Planning tool for electric utilities, regulatory agencies, and laymen in understanding basics of electric-power systems operation.

  18. Fault diagnosis of power systems

    SciTech Connect

    Sekine, Y. ); Akimoto, Y. ); Kunugi, M. )

    1992-05-01

    Fault diagnosis of power systems plays a crucial role in power system monitoring and control that ensures stable supply of electrical power to consumers. In the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires judgment of complex conditions at various levels. For this reason, research into application of knowledge-based systems go an early start and reports of such systems have appeared in may papers. In this paper, these systems are classified by the method of inference utilized in the knowledge-based systems for fault diagnosis of power systems. The characteristics of each class and corresponding issues as well as the state-of-the-art techniques for improving their performance are presented. Additional topics covered are user interfaces, interfaces with energy management systems (EMS's), and expert system development tools for fault diagnosis. Results and evaluation of actual operation in the field are also discussed. Knowledge-based fault diagnosis of power systems will continue to disseminate.

  19. Satellite power system concept development and evaluation program. Volume 2: System definition

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  20. Powerful Midwest Storm System

    NASA Video Gallery

    This animation of imagery from NOAA’s GOES-13 satellite shows themovement of storm systems in the south central United States on May 20,2013. Warm, moist gulf air flowing across Texas, Oklahoma...

  1. Power enhanced frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.

  2. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    An overview is provided of the Ipad System, including its goals and objectives, organization, capabilities and future usefulness. The systems implementation is also presented with operational cost summaries.

  3. Final Summary Report: Em-Powering Coastal States and Utilities through Model Offshore Wind Legislation and Outreach

    SciTech Connect

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-11-30

    The final summary report summarizes the most significant findings from three project reports detailing: feed-in tariffs, model request for proposals for new generation, and model state offshore wind power legislation.

  4. Fossil power plant systems description

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text presents the functions and relationships between each major component and its auxiliaries within a system. The text also describes the relationships between systems. All major components are addressed, and system boundaries are defined for a generic fossil power plant.

  5. The ac power system testbed

    NASA Technical Reports Server (NTRS)

    Mildice, J.; Sundberg, R.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.

  6. The Ames Power Monitoring System

    NASA Technical Reports Server (NTRS)

    Osetinsky, Leonid; Wang, David

    2003-01-01

    The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also

  7. Solar power generating system

    SciTech Connect

    Watson, J.C.

    1981-08-18

    A volatile liquid is circulated through a normally closed circuit, including expansion tubes within an expansion chamber where the sun's rays are focused on the tubes to heat the liquid, transforming it to an expanding gas to drive a fluid-operated motor, also in the circuit. The motor may drive a mechanical load or an electric generator. The generator drives a pump which compresses the gas back to a liquid state and returns the same to a reservoir and to the inlets of the expansion tubes in the expansion chamber. An air reservoir which is pressurized by a pump driven by the fluid operated motor has its outlet connected to the motor inlet so that during periods of darkness or cloud cover in which the volatile liquid is not expanded into a gas, the pressurized air will be automatically fed into the motor to continue to drive the same. A gimbal system automatically controlled by sun tracking devices supports the expansion chamber to continually focus the sun's rays onto the expansion tubes, regardless of the relative position of the sun and the base on which the gimbal system is mounted.

  8. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  9. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  10. FY07 Summary of System Interface and Support Systems R&D and Technical Issues Map

    SciTech Connect

    Steven R. Sherman

    2007-09-01

    This document provides a summary of research and development activities in the System Interface and Support Systems area of the DOE Nuclear Hydrogen Initiative in FY 2007. Project cost and performance data obtained from the PICS system, at least up through July 2007, are presented and analyzed. Brief summaries of accomplishments and references are provided. A mapping of System Interface and Support Systems technical issues versus the work performed is updated and presented. Lastly, near-term research plans are described, and recommendatioins are provided for additional research.

  11. Mobile integrated temporary utility system. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The Mobile Integrated Temporary Utility System (MITUS) integrates portable electrical power along with communications and emergency alarm and lighting capabilities to provide safe, centralized power to work areas that need to be de-energized for decommissioning work. MITUS consists of a portable unit substation; up to twenty portable kiosks that house the power receptacles, communications, and emergency alarm and lighting systems; and a central communications unit. This system makes sequential decommissioning efforts efficient and cost-effective by allowing the integrated system to remain intact while being moved to subsequent work sites. Use of the MITUS also eliminates the need to conduct zero-energy tests and implement associated lock-out/tag-out procedures at partially de-energized facilities. Since the MITUS is a designed system, it can be customized to accommodate unique facility conditions simply by varying kiosks and transformer configurations. The MITUS is an attractive alternate to the use of portable generators with stand-alone communications and emergency system. It is more cost-effective than upgrading or reconfiguring existing power distribution systems.

  12. Power system interface and umbilical system study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    System requirements and basic design criteria were defined for berthing or docking a payload to the 25 kW power module which will provide electrical power and attitude control, cooling, data transfer, and communication services to free-flying and Orbiter sortie payloads. The selected umbilical system concept consists of four assemblies and command and display equipment to be installed at the Orbiter payload specialist station: (1) a movable platen assembly which is attached to the power system with EVA operable devices; (2) a slave platen assembly which is attached to the payload with EVA operable devices; (3) a fixed secondary platen permanently installed in the power system; and (4) a fixed secondary platen permanently installed on the payload. Operating modes and sequences are described.

  13. Airworthiness criteria development for powered-lift aircraft: A program summary

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Stapleford, R. L.; Rumold, R. C.

    1977-01-01

    A four-year simulation program to develop airworthiness criteria for powered-lift aircraft is summarized. All flight phases affected by use of powered lift (approach, landing, takeoff) are treated with regard to airworthiness problem areas (limiting flight conditions and safety margins: stability, control, and performance; and systems failure). The general features of powered-lift aircraft are compared to conventional aircraft.

  14. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  15. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  16. Power mine door system

    SciTech Connect

    Kennedy, W.R.; Kennedy, J.M.

    1993-06-29

    A mine door system for installation in a passageway in a mine is described, comprising a door frame adapted to be installed in the passageway to define a generally rectangular doorway, said door frame having a top and opposite sides, a mine door comprising a pair of door leaf hinged on opposite sides of the door frame to permit passage through the doorway, each door leaf being generally rectangular in shape with a top horizontal edge, a bottom horizontal edge, a generally vertical hinged side edge adjacent a respective side of the door frame, a generally vertical free side edge opposite the hinged side edge, a first leaf face facing away from the top of the door frame when the door leaf is closed, a second leaf face facing toward the top of the door frame when the door leaf is closed, the door leaf being so dimensioned that there is a substantial vertical gap between the door leaf when they are closed to accommodate convergence of side walls of the passageway, a relatively wide vertical sealing member secured to said first face of one of said door leaf adjacent its free side edge and projecting laterally therefrom for overlapping the first face of the other door leaf adjacent its free side edge thereby to cover said gap between the door leaf when the door leaf are closed, said door leaf having upper corner regions relieved to provide notch-like recesses adjacent the gap on opposite sides of the gap extending from the first leaf faces of the door leaf to the second leaf faces of the door leaf, said sealing member having an inclined upper end portion configured so that, when the door leaf are closed, it slopes upwardly through said recesses and said gap for substantially the full depth of the gap, said inclined upper end portion terminating in a tip engageable with the top of the door frame when the door leaf are closed thereby to inhibit the passage of air through the gap at a location adjacent the top of the door frame.

  17. Fatality Analysis Reporting System, General Estimates System: 2001 Data Summary.

    ERIC Educational Resources Information Center

    2003

    The Fatality Analysis Reporting System (FARS), which became operational in 1975, contains data on a census of fatal traffic crashes within the 50 states, the District of Columbia, and Puerto Rico. The General Estimates System (GES), which began in 1988, provides data from a nationally representative probability sample selected from all…

  18. Dynamic modeling of power systems

    SciTech Connect

    Reed, M.; White, J.

    1995-12-01

    Morgantown Energy Technology Center`s (METC) Process and Project Engineering (P&PE) personnel continue to refine and modify dynamic modeling or simulations for advanced power systems. P&PE, supported by Gilbert/Commonwealth, Inc. (G/C), has adapted PC/TRAX commercial dynamic software to include equipment found in advanced power systems. PC/TRAX`s software contains the equations that describe the operation of standard power plant equipment such as gas turbines, feedwater pumps, and steam turbines. The METC team has incorporated customized dynamic models using Advanced Continuous Simulation Language (ACSL) code for pressurized circulating fluidized-bed combustors, carbonizers, and other components that are found in Advanced Pressurized Fluidized-Bed Combustion (APFBC) systems. A dynamic model of a commercial-size APFBC power plant was constructed in order to determine representative operating characteristics of the plant and to gain some insight into the best type of control system design. The dynamic model contains both process and control model components. This presentation covers development of a model used to describe the commercial APFBC power plant. Results of exercising the model to simulate plant performance are described and illustrated. Information gained during the APFBC study was applied to a dynamic model of a 1-1/2 generation PFBC system. Some initial results from this study are also presented.

  19. Power systems for space exploration

    SciTech Connect

    Shipbaugh, C.; Solomon, K.A.

    1992-01-01

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  20. Power systems for space exploration

    NASA Astrophysics Data System (ADS)

    Shipbaugh, Calvin; Solomon, Kenneth A.

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  1. Hybrid power management system and method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2007-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  2. Hybrid Power Management System and Method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  3. Ignitor Electrical Power Supply System

    NASA Astrophysics Data System (ADS)

    Coletti, Alberto; Coletti, Roberto; Costa, Pietro; Maffia, Giuseppe; Ramogida, Giuseppe; Roccella, Massimo; Santinelli, Maurizio; Starace, Fabio

    2004-11-01

    An iterative optimization process to reduce the total installed electrical power required for Ignitor has been performed, bringing its value down to about 70% of that estimated originally. Ignitor is planned to be installed within the 400 kV Station of Rondissone (near Turin). The required electrical power (1000 MVA / 320 MVAr, including 480 MVAr locally compensated through static system, SVC) has been demonstrated by the technical authority GRTN to be compatible with the Grid capability. The magnet systems of Ignitor are supplied by means of a set of 14, 12 pulse, current regulated, sequentially or internal freewheeling controlled, fully static power amplifier units which are installed inside standard, outdoor-kind containers, located near to the related step-down transformers. Each container can house up to 100 MW, 2x12 pulse power amplifier units. The connection between the power amplifiers and the machine is performed by means of coaxial, outdoor-kind, segregated bus-bars. These choices make the whole power supply system as flexible as possible in terms of the overall layout of the Ignitor plant.

  4. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  5. Nanosat Intelligent Power System Development

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Beaman, Robert G.; Mica, Joseph A.; Truszkowski, Walter F.; Rilee, Michael L.; Simm, David E.

    1999-01-01

    NASA Goddard Space Flight Center is developing a class of satellites called nano-satellites. The technologies developed for these satellites will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections theme and will be of great benefit to other NASA enterprises. A major challenge for these missions is meeting significant scientific- objectives with limited onboard and ground-based resources. Total spacecraft power is limited by the small satellite size. Additionally, it is highly desirable to minimize operational costs by limiting the ground support required to manage the constellation. This paper will describe how these challenges are met in the design of the nanosat power system. We will address the factors considered and tradeoffs made in deriving the nanosat power system architecture. We will discuss how incorporating onboard fault detection and correction capability yields a robust spacecraft power bus without the mass and volume penalties incurred from redundant systems and describe how power system efficiency is maximized throughout the mission duration.

  6. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    SciTech Connect

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  7. Models for multimegawatt space power systems

    SciTech Connect

    Edenburn, M.W.

    1990-06-01

    This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

  8. Systems definition summary. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A standard spacecraft bus for performing a variety of earth orbit missions in the late 1970's and 1980's is defined. Emphasis is placed on a low-cost, multimission capability, benefitting from the space shuttle system. The subjects considered are as follows: (1) performance requirements, (2) internal interfaces, (3) redundancy and reliability, (4) communications and data handling module design, (5) payload data handling, (6) application of the modular design to various missions, and (7) the verification concept.

  9. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  10. NASA's Radioisotope Power Systems - Plans

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  11. Graphical analysis of power systems for mobile robotics

    NASA Astrophysics Data System (ADS)

    Raade, Justin William

    lithium polymer batteries. In summary, this dissertation describes the development and application of two graphical analysis tools for the intuitive design of mobile robotic power systems. Several design examples are discussed involving human exoskeleton power systems.

  12. Modeling of power electronic systems with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  13. Bonneville, Power Administration Timing System

    NASA Technical Reports Server (NTRS)

    Martin, Kenneth E.

    1996-01-01

    Time is an integral part of the Bonneville Power Administration's (BPA) operational systems. Generation and power transfers are planned in advance. Utilities coordinate with each other by making these adjustments on a timed schedule. Price varies with demand, so billing is based on time. Outages for maintenance are scheduled to assure they do not interrupt reliable power delivery. Disturbance records are aligned with recorded timetags for analysis and comparison with related information. Advanced applications like traveling wave fault location and real-time phase measurement require continuous timing with high precision. Most of BPA is served by a Central Time System (CTS) at the Dittmer Control Center near Portland, OR. This system keeps time locally and supplies time to both the control center systems and field locations via a microwave signal. It is kept synchronized to national standard time and coordinated with interconnected utilities. It is the official BPA time. Powwer system control and operation is described, followed by a description of BPA timing systems including CTS, the Fault Location Acquisition Reporter, time dissemination, and phasor measurements. References are provided for further reading.

  14. Satellite power system (SPS) public outreach experiment

    SciTech Connect

    McNeal, S.R.

    1980-12-01

    To improve the results of the Satellite Power System (SPS) Concept Development and Evaluation Program, an outreach experiment was conducted. Three public interest groups participated: the L-5 Society (L-5), Citizen's Energy Project (CEP), and the Forum for the Advancement of Students in Science and Technology (FASST). Each group disseminated summary information about SPS to approximately 3000 constituents with a request for feedback on the SPS concept. The objectives of the outreach were to (1) determine the areas of major concern relative to the SPS concept, and (2) gain experience with an outreach process for use in future public involvement. Due to the combined efforts of all three groups, 9200 individuals/organizations received information about the SPS concept. Over 1500 receipients of this information provided feedback. The response to the outreach effort was positive for all three groups, suggesting that the effort extended by the SPS Project Division to encourage an information exchange with the public was well received. The general response to the SPS differed with each group. The L-5 position is very much in favor of SPS; CEP is very much opposed and FASST is relatively neutral. The responses are analyzed, and from the responses some questions and answers about the satellite power system are presented in the appendix. (WHK)

  15. Economic development through biomass system integration: Summary report

    SciTech Connect

    DeLong, M.M.

    1995-10-01

    Alfalfa is a well-known and widely-planted crop that offers environmental and soil conservation advantages when grown as a 4-year segment in a 7-year rotation with corn and soybeans. Alfalfa fixes nitrogen from the air, thereby enhancing soil nitrogen and decreasing the need for manufactured nitrogen fertilizer. With alfalfa yields of 4 dry tons per acre per year and the alfalfa leaf fraction sold as a high-value animal feed the remaining alfalfa stem fraction can be economically viable fuel feedstock for a gasifier combined cycle power plant. This report is a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power power plant (integrated gasification combined cycle) in a way that benefits the facility owners. The sale of an animal feed co-product and electricity both help cover the production cost of alfalfa and the feedstock processing cost, thereby requiring neither the electricity or leaf meal to carry the total cost. The power plant provides an important continous demand for the feedstock and results in continous supply of leaf product to provide a reliable supply needed for the leaf meal product.

  16. Beamlet pulsed-power system

    SciTech Connect

    Larson, D.

    1996-06-01

    The 13-MJ Beamlet pulsed-power system provides power to the 512 flash lamps in the cavity and booster amplifiers. Since the flash lamps pump all of the apertures in the 2 x 2 amplifier array, the capacitor bank provides roughly four times the energy required to pump the single active beam line. During the 40 s prior to the shot, the capacitors are charged by constant-current power supplies. Ignitron switches transfer the capacitor energy to the flash lamps via coaxial cables. A preionization system triggers the flash lamps and delivers roughly 1 % of the capacitor energy 200 {mu}s prior to the main discharge. This is the first time flash-lamp preionization has been used in a large facility. Preionization improves the amplifier efficiency by roughly 5% and increases the lifetime of the flash lamps. LabVIEW control panels provide an operator interface with the modular controls and diagnostics. To improve the reliability of the system, high-energy-density, self-healing, metallized dielectric capacitors are used. High-frequency, voltage-regulated switching power supplies are integrated into each module on Beamlet, allowing greater independence among the modules and improved charge voltage accuracy, flexibility, and repeatability.

  17. Solar dynamic power system on the International Space Station

    SciTech Connect

    Davis, J.M.; Wanhainen, J.S.

    1996-12-31

    The International Space Station (ISS) Program Office has requested that initial studies be conducted to assess the feasibility of using a solar dynamic (SD) power system on ISS. This effort will include analyses to determine technical and cost benefits of using solar dynamic power systems on the station. Final products from this activity will be presented to the International Space Station Program Office in 1997. This paper provides a brief description of the solar dynamic technology, ISS and project chronology of events, a description of the products and major work elements, project schedule, and a summary of up-to-date findings.

  18. Summary and evaluation of the Strategic Defense Initiative Space Power Architecture Study

    NASA Technical Reports Server (NTRS)

    Edenburn, M. (Editor); Smith, J. M. (Editor)

    1989-01-01

    The Space Power Architecture Study (SPAS) identified and evaluated power subsystem options for multimegawatt electric (MMWE) space based weapons and surveillance platforms for the Strategic Defense Initiative (SDI) applications. Steady state requirements of less than 1 MMWE are adequately covered by the SP-100 nuclear space power program and hence were not addressed in the SPAS. Four steady state power systems less than 1 MMWE were investigated with little difference between them on a mass basis. The majority of the burst power systems utilized H(2) from the weapons and were either closed (no effluent), open (effluent release) or steady state with storage (no effluent). Closed systems used nuclear or combustion heat source with thermionic, Rankine, turboalternator, fuel cell and battery conversion devices. Open systems included nuclear or combustion heat sources using turboalternator, magnetohydrodynamic, fuel cell or battery power conversion devices. The steady state systems with storage used the SP-100 or Star-M reactors as energy sources and flywheels, fuel cells or batteries to store energy for burst applications. As with other studies the open systems are by far the lightest, most compact and simplist (most reliable) systems. However, unlike other studies the SPAS studied potential platform operational problems caused by effluents or vibration.

  19. Advanced Initiation Systems Manufacturing Level 2 Milestone Completion Summary

    SciTech Connect

    Chow, R; Schmidt, M

    2009-10-01

    Milestone Description - Advanced Initiation Systems Detonator Design and Prototype. Milestone Grading Criteria - Design new generation chip slapper detonator and manufacture a prototype using advanced manufacturing processes, such as all-dry chip metallization and solvent-less flyer coatings. The advanced processes have been developed for manufacturing detonators with high material compatibility and reliability to support future LEPs, e.g. the B61, and new weapons systems. Perform velocimetry measurements to determine slapper velocity as a function of flight distance. A prototype detonator assembly and stripline was designed for low-energy chip slappers. Pictures of the prototype detonator and stripline are shown. All-dry manufacturing processes were used to address compatibility issues. KCP metallized the chips in a physical vapor deposition system through precision-aligned shadow masks. LLNL deposited a solvent-less polyimide flyer with a processes called SLIP, which stands for solvent-less vapor deposition followed by in-situ polymerization. LANL manufactured the high-surface-area (HSA) high explosive (HE) pellets. Test fires of two chip slapper designs, radius and bowtie, were performed at LLNL in the High Explosives Application Facility (HEAF). Test fires with HE were conducted to establish the threshold firing voltages. pictures of the chip slappers before and after test fires are shown. Velocimetry tests were then performed to obtain slapper velocities at or above the threshold firing voltages. Figure 5 shows the slapper velocity as a function of distance and time at the threshold voltage, for both radius and bowtie bridge designs. Both designs were successful at initiating the HE at low energy levels. Summary of Accomplishments are: (1) All-dry process for chip manufacture developed; (2) Solventless process for slapper materials developed; (3) High-surface area explosive pellets developed; (4) High performance chip slappers developed; (5) Low-energy chip

  20. Early utility experience with wind power generation. Volume 1. Summary report. Final report

    SciTech Connect

    McCabe, T.; Henry, G.; Tennis, M.; Goldenblatt, M.

    1984-01-01

    This report is one of three presenting the results of EPRI Research Project 1590-1, Evaluation of Electric Utility Experience with Wind Power Generation. The objective of this project was to develop an improved understanding of wind power generation, in particular the process a utility must undergo to initiate and carry out a wind turbine project. The primary tasks of RP1590-1 were to document and evaluate the experience of two utilities with megawatt-scale wind turbine installations from project inception to the first rotation of the wind turbine. This summary report presents in brief form the experiences of two utilities, the Pacific Gas and Electric Company and the Bonneville Power Administration, with wind turbine projects at Solano County, California and Goodnoe Hills, Washington, respectively. All documents and reports pertaining to the experiences with the wind turbine projects were reviewed and excerpts made of the highlights. Gaps in the documentation were filled by talking with appropriate people. Site visits were conducted to monitor current activity. The information obtained was evaluated for its generic relevance and benefit to other utilities. Condensed descriptions of the projects, a comparison of the projects, and highlights of the utilities' experiences are presented. Some of the insights which might benefit other utility wind programs are identified.

  1. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  2. Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1985-01-01

    A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.

  3. Comet/Asteroid Protection System: Concept Study Executive Summary

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.

    2005-01-01

    Many of the major issues have been identified for a futuristic capability to protect against impacting comets and asteroids, and a preliminary space-based concept has been envisioned. Some of the basic concept elements, approaches, methodologies, and features have been identified. When contemplating the ability to monitor comets and asteroids continuously, there are many trade-offs between orbiting observatories and detection systems on planetary bodies without an atmosphere. Future orbit modification techniques have the potential for rapid and controlled alteration of NEO orbits, provided that high-power, compatible thermal management systems are developed. Much additional work and analysis are required to identify a final system concept, and many trade studies need to be performed to select the best mix of system capability, reliability, maintainability, and cost. Finally, it is fully appreciated that at the present time space systems are much more costly than terrestrial-based systems. Hopefully, this will change in the future. Regardless, understanding what it would take to defend against a much wider range of the impact threat will foster ideas, innovations, and technologies that could one day enable the development of such a system. This understanding is vital to provide ways of reducing the costs and quantifying the benefits that are achievable with a system like CAPS.

  4. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  5. Electrical power systems for Space Station

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  6. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    SciTech Connect

    Not Available

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  7. Summary of Resources for the International Space Station Environmental Control and Life Support System

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2003-01-01

    The assembly complete Environmental Control and Life Support (ECLS) s ystem for the International Space Station (ISS) will consist of compo nents and subsystems in both the U.S. and International partner eleme nts which together will perform the functions of Temperature and Hum idity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detect ion and Suppression (FDS), and Vacuum System (VS) for the station. D ue to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems , beginning with estimates during the hardware development phase thr ough measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current on-orbit U.S. ECLS syste m hardware is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics. ..

  8. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  9. Study on photovoltaic power system on ships

    SciTech Connect

    Katagi, Takeshi; Fujii, Yoshimi; Nishikawa, Eiichi; Hashimoto, Takeshi

    1995-11-01

    This paper presents the application of photovoltaic power systems to ships. Two types of leisure or fishing boats powered by photovoltaics are designed. The boats described are single hull and catamaran type with twin hulls. The design of a new electric power system using a photovoltaic power system in a harbor ship having 20 tons is also proposed. The results of this study show that the photovoltaic power system can apply to small ships.

  10. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  11. Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank

    1991-01-01

    The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.

  12. A Small Fission Power System for NASA Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Casani, John; Elliott, John; Fleurial, Jean-Pierre; MacPherson, Duncan; Nesmith, William; Houts, Michael; Bechtel, Ryan; Werner, James; Kapernick, Rick; Poston, David; Qualls, Arthur Lou; Lipinski, Ron; Radel, Ross; Bailey, Sterling; Weitzberg, Abraham

    2011-01-01

    In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

  13. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Poston, David I.

    2011-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.

  14. Summary of the NASA Lewis component technology program for Stirling power converters

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Swec, Diane M.

    1992-10-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  15. Summary of the NASA Lewis component technology program for Stirling power converters

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Swec, Diane M.

    1992-01-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  16. Automatic calorimetry system monitors RF power

    NASA Technical Reports Server (NTRS)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  17. System analysis of global space power problem

    NASA Astrophysics Data System (ADS)

    Latyshev, Leonid

    A brief discussion of Space Power System development problems is presented. Topics covered include the following: solar energy utilization; solar energy concentrators and receivers; solar electric power plants; thermonuclear electric power plants; energy transmission; and lunar bases.

  18. Summary of Propulsion System Needs in Support of Project Constellation

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil; Lorier, Terry; Baine, Michael

    2008-01-01

    In January 2004, the President of the United States established the Vision for Space Exploration (VSE) to return man to the moon and ultimately to extend manned space travel to Mars. This paper will summarize the manned space flight liquid propulsion system needs in support of Project Constellation over the next 10 years. It will include all engine needs to return man to the moon. An overview of engines currently under contract, those baselined but not yet under contract, and those engine needs that hav.e yet to be initiated. Project Constellation includes the components as shown Figure 1. Liquid propulsion systems supporting the manned portion of these elements include the following: the Crew Exploration Vehicle named Orion (crew module reaction control system (CMRCS), service module Orion Main Engine (OME), service module auxiliary RCS, and service module reaction control system (SMRCS)), the Crew Launch Vehicle named Ares 1 (J2X upper stage, first stage roll control system, second stage reaction control system, and the Ares I-X roll control system), the Heavy Lift Launch Vehicle named Ares V (RS68B first stage booster, J-2X upper stage, roll control systems, and the Earth Departure Stage (EDS) (powered by the same Ares V Upper Stage J-2X), and the Lunar Lander named Altair with both descent and ascent stages (lunar orbit insertion and descent main engine, ascent main engine, and attitude control systems for both stages). In addition, there may be additional engine needs for early demonstrators, but those will not be speculated on as part of this paper. Also, other portions of the VSE architecture, including the planned Orion abort demonstrations and the Lunar Precursor Robotic Program, are not addressed here as they either use solid motors or are focused on unmanned precursor missions.

  19. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  20. The emerging roles of energy storage in a competitive power market: Summary of a DOE Workshop

    SciTech Connect

    Gordon, S.P.; Falcone, P.K.

    1995-06-01

    This report contains a summary of the workshop, {open_quotes}The Emerging Roles of Energy Storage in a Competitive Power Market,{close_quotes} which was sponsored by the U.S. Department of Energy and Sandia National Laboratories and was held in Pleasanton, California on December 6-7, 1994. More than 70 people attended, representing government agencies, national laboratories, equipment vendors, electric utilities and other energy providers, venture capital interests, and consultants. Many types of energy storage were discussed, including electrical (batteries and superconducting magnets), mechanical (flywheels and pumped hydro), hydrogen, compressed air, and thermal energy storage. The objectives of the workshop were to communicate within the energy storage community regarding the costs, benefits, and technical status of various technology options; to explore and elucidate the evolving roles of energy storage in a more dynamic and competitive power and energy marketplace; and to discuss the optimum federal role in this area. The goals of the workshop were fully realized through knowledgeable and insightful presentations and vigorous discussion, which are summarized.

  1. Uninterruptible power supply (UPS) systems

    SciTech Connect

    1997-04-01

    Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

  2. Prototype geothermal power plant summary of operation for automatic-run test phase

    SciTech Connect

    Mines, G.L.

    1981-02-01

    The Prototype Power Plant was built to demonstrate and learn the operation of a binary power cycle, and then serve as a test bed for pilot scale components, systems, and/or concepts that have the potential for enhancing the feasibility of power generation from a moderate temperature geothermal fluid resource. The operation to date of the prototype plant is summarized with primary emphasis on the automatic-run phase, during which the plant was operated over a five-month period with minimal operator surveillance.

  3. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 1: Executive Summary & Overview

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C.D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability economics, and technology development needs.

  4. System and method for advanced power management

    DOEpatents

    Atcitty, Stanley; Symons, Philip C.; Butler, Paul C.; Corey, Garth P.

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  5. Simulation of electric vehicles with hybrid power systems

    SciTech Connect

    Burke, A.F.; Cole, G.H.

    1990-01-01

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics. 2 refs., 7 figs., 14 tabs.

  6. "AfterZone:" Outcomes for Youth Participating in Providence's Citywide After-School System. Executive Summary

    ERIC Educational Resources Information Center

    Kauh, Tina J.

    2011-01-01

    This executive summary highlights the main findings from our participation and outcomes analysis of the "AfterZone" initiative--a citywide system-building effort in Providence, Rhode Island, that aims to provide high-quality, accessible out-of-school-time services to middle school youth. The summary briefly defines the AfterZone's unique multisite…

  7. Biomass energy systems program summary. Information current as of September 30, 1979

    SciTech Connect

    Not Available

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  8. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  9. Costing the satellite power system

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1978-01-01

    The paper presents a methodology for satellite power system costing, places approximate limits on the accuracy possible in cost estimates made at this time, and outlines the use of probabilistic cost information in support of the decision-making process. Reasons for using probabilistic costing or risk analysis procedures instead of standard deterministic costing procedures are considered. Components of cost, costing estimating relationships, grass roots costing, and risk analysis are discussed. Risk analysis using a Monte Carlo simulation model is used to estimate future costs.

  10. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  11. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  12. Satellite services system analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service requirements are considered. Topics include development of on-orbit operations scenarios, service equipment summary, crew interaction, and satellite features facilitating servicing. Service equipment concepts are considered. Topics include payload deployment, close proximity retrieval, on-orbit servicing, backup/contingency, delivery/retrieval of high energy payloads, Earth return, optional service, and advanced capabilities. Program requirements are assessed.

  13. Solar-powered cooling system

    SciTech Connect

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  14. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  15. SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.P. McCann

    1999-04-16

    The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side

  16. Satellite Power Systems (SPS) Space Transportation Workshop Summary

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Space transportation requirements are major elements in the technical and economic realization of the entire SPS concept. First, steps in enhancing the shuttle include the Titan based liquid boost module (LBM) and liquid propellant boosters (LPB) to replace the present solid rocket boosters (SRB). The next choice between new ballistic or winged boosters must still be made; as well as the choice between series (staged) and parallel operation. Entirely new vehicles of large size are required before the economic and environmental problems of the prototype, or even demonstration, SPS can be resolved. Social impacts such as noise, and atmospheric pollution, locally and in the ionosphere, must be fully addressed. Although rather advanced technology and well developed operational management is required to properly target the average cost of gross cargo payloads into LEO at 30 $ (1979)/kg for the construction of the initial SPS, the further goal for repetitive construction of 30 to 60 SPS at 15 $ (1979)/kg for all operational payloads require the use of very advanced, long lived vehicles with a sophisticated operational organization using off shore, equatorial launch sites.

  17. Options for Affordable Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; VanDyke, Melissa; Martin Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on free surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized; however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems.

  18. Nova pulse power system description and status

    SciTech Connect

    Holloway, R.W.; Whitham, K.; Merritt, B.T.; Gritton, D.G.; Oicles, J.A.

    1981-06-01

    The Nova laser system is designed to produce critical data in the nation's inertial confinement fusion effort. It is the world's largest peak power laser and presents various unique pulse power problems. In this paper, pulse power systems for this laser are described, the evolutionary points from prior systems are pointed out, and the current status of the hardware is given.

  19. X2000 power system electronics development

    NASA Technical Reports Server (NTRS)

    Carr, Greg; Deligiannis, Frank; Franco, Lauro; Jones, Loren; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treichler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2005-01-01

    The X2000 Power System Electronics (PSE) is a Jet Propulsion Laboratory (JPL) task to develop a new generation of power system building blocks for potential use on future deep space missions. The effort includes the development of electronic components and modules that can be used as building blocks in the design of generic spacecraft power systems.

  20. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  1. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 1: System engineering

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 1, of a seven volume report is presented. Part 1 encompasses Satellite Power Systems (SPS) systems engineering aspects and is divided into three sections. The first section presents descriptions of the various candidate concepts considered and conclusions and recommendations for a preferred concept. The second section presents a summary of results of the various trade studies and analysis conducted during the course of the study. The third section describes the Photovoltaic Satellite Based Satellite Power System (SPS) Point Design as it was defined through studies performed during the period January 1977 through March 1979.

  2. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  3. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  4. Power system characteristics for more electric aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1993-01-01

    It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

  5. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 4, Part 2: Cost and programmatics appendix

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Cost and programmatic aspects of a recommended satellite power system are documented. Computer generated summaries are presented, and the detailed computer runs structured in a Work Breakdown Structure are given. The six configurations developed during the study period are summarized.

  6. Materials in space nuclear power systems

    SciTech Connect

    Cooper, R.H.; Moore, J.P.

    1991-01-01

    Man's presence in space has been limited by the availability of reliable lightweight sources of power. Over the course of the last 30 years, a variety of space nuclear power systems have been designed and, in some cases, built and flown. Although a number of technology issues effect the overall performance of these systems, technical issues associated with the materials of construction have most often been a major limitation in obtaining the desired system performance goals. This paper will review selected materials limitations associated with the three major nuclear power systems being considered at this time: radioisotope power, nuclear power, and nuclear propulsion systems.

  7. Indirect Adaptive Fuzzy Power System Stabilizer

    NASA Astrophysics Data System (ADS)

    Saoudi, Kamel; Bouchama, Ziad; Harmas, Mohamed Naguib; Zehar, Khaled

    2008-06-01

    A power system stabilizer based on adaptive fuzzy technique is presented. The design of a fuzzy logic power system stabilizer (FLPSS) requires the collection of fuzzy IF-THEN rules which are used to initialize an adaptive fuzzy power system AFPSS. The rule-base can be then tuned on-line so that the stabilizer can adapt to the different operating conditions occurring in the power system. The adaptation laws are developed based on a Lyapunov synthesis approach. Assessing the validity of this technique simulation of a power system is conducted and results are discussed.

  8. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  9. Tailoring SCADA systems for standby power applications

    SciTech Connect

    Leslie, D.; Hlushko, A.; Abughazaleh, S.; Garza, F.

    1994-04-01

    Supervisory control and data acquisition (SCADA) systems have been used by the manufacturing and process industries and many electric power utilities for energy management systems, including economic dispatch and the interconnection processing of energy. However, the use of SCADA in smaller power generation systems is not quite so wide spread. This article explains how a SCADA system was custom developed for a stand-by power generation system recently installed in a commercial office building.

  10. Satellite Power Study (SPS) concept definition study (Exhibit D). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Efforts concentrated on updating of the Rockwell reference concept, definition of new system options, studies of special emphasis topics, further definition of the transportation system, and further program definition. The Rockwell reference satellite concept has a gallium arsenide (GaAs) solar cell array having flat concentrators with an effective concentration ratio of 1.83at end of life. Alternatives to this concept includes solid state power amplifiers or magnetrons for dc/RF conversion and multibandgap solar cells for solar to dc energy conversion. Two solid state concepts were studied. It was determined that the magnetron approach was the lowest mass and cost system.

  11. Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  12. Communications and control for electric power systems: Final report

    SciTech Connect

    Kirkham, H.

    1998-04-01

    This report is a summary of some of the work done on the Communications and Control project, with particular emphasis on the achievements during the years 1986--1996. During those years, the project moved away from concern with dispersed storage and generation and its impact on power system operation (the team was responsible for studies in this area, and for making a power system simulator that included DSG), and became involved in more concrete work aimed at applying high-tech solutions to problems of power system communications and control. This report covers work done at JPL on the following topics: (1) the measurement of electric and magnetic fields, both ac and dc; (2) the use of optical power to supply low-power electronics; (3) the design of a fault-tolerant communication system designed for distribution automation; and (4) a digital phase locked loop that allows the use of low-power transmitting electronics to recreate a good-quality signal at the receiver. In a report of this kind, only the results and highlights of the work are described.

  13. The physics of power systems operation

    NASA Astrophysics Data System (ADS)

    Ohler, C.

    2015-08-01

    The article explains the operation of power systems from the point of view of physics. Physicists imagine things, rather than in terms of impedances and circuits, in terms of fields and energy conversions. The account is concrete and simple. The use of alternating current entails the issue of reactive power. Reactive power consists of energy that oscillates between electrical and magnetic fields, it flows on top of the active power which carries the useful energy. The control of active and reactive power is essential for the power system's reliable operation. The frequency of a power system is the same everywhere. The stability of the frequency indicates that generation and demand of active power are equal, a decline in frequency indicates a lack of generation relative to the demand. Adapting the electrical power injected into the system is the way of frequency control. Because of the parasitic inductances and capacitances of overhead lines, cables, and transformers, the voltage at different locations of the power system depends on the load. The voltage is regulated by the combined action of generator excitation, transformer tap changers and series compensation in order to provide consumers with a stable voltage supply. The integration of solar cells and wind turbines into the power system poses some challenges. But the power system is able to accommodate large amounts of fluctuating renewable power generation if the right complementary measures are taken.

  14. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience, Summary for Policymakers

    SciTech Connect

    Cochran, Jaquelin; Bird, Lori; Heeter, Jenny; Arent, Douglas J.

    2012-04-30

    Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  15. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    SciTech Connect

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  16. Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal

    2013-01-01

    The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.

  17. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  18. Environmental Control and Life Support Systems and Power Systems ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Environmental Control and Life Support Systems and Power Systems - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Solid state remote power controllers for 120 Vdc power systems

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Baker, D. E.

    1976-01-01

    Solid state Remote Power Controllers (RPCs) developed for use in any dc power system with voltage up to 120 Vdc and distributed power up to 3.6 kW per bus are described. The RPCs were demonstrated to be reliable, 99 percent efficient, comparatively simple, and potentially low in cost. Advantages of the RPCs include: contactless switching; controlled rates of current rise and fall; current limiting; and fast, well-defined, repeatable response to overloads and faults.

  20. Hubble Space Telescope electrical power system model

    NASA Technical Reports Server (NTRS)

    Baggett, Randy; Miller, Jim; Leisgang, Tom

    1988-01-01

    This paper describes one of the most comprehensive models ever developed for a spacecraft electrical power system (EPS). The model was developed for the Hubble Space Telescope (HST) to evaluate vehicle power system performance and to assist in scheduling maintenance and refurbishment missions by providing data needed to forecast EPS power and energy margins for the mission phases being planned. The EPS model requires a specific mission phase description as the input driver and uses a high granularity database to produce a multi-orbit power system performance report. The EPS model accurately predicts the power system response to various mission timelines over the entire operational life of the spacecraft.

  1. Lower Flathead System Fisheries Study, Executive Summary, Volume I, 1983-1987 Final Report.

    SciTech Connect

    Cross, David; DosSantos, Joseph M.

    1988-06-01

    This Executive Summary, Volume I, of the lower Flathead System Fisheries Study Final Report, was prepared to provide a study overview for persons who are not fisheries scientists. The contents provide an introduction to the study and its objectives, a short description of the study area, a discussion of the major findings and conclusions of the study, and the description of fisheries management alternatives available to managers of the lower Flathead system. Technical reports were prepared for those portions of the study dealing with the lower Flathead River and its tributaries, Volume II, and the South Bay of Flathead Lake, Volume III. The annual hydrographic regime of the Flathead system, consisting of upper rivers, lake and lower river, has been modified by the construction and operation of two major hydroelectric facilities, Hungry Horse Dam on the south fork Flathead River and Kerr Dam at the outlet of Flathead Lake. The modified hydrographic regime has resulted in significant impacts to kokanee (Oncorhynchus nerka) and several species of trout. Kerr Dam, closed in 1938, controls Flathead Lake levels between 878.7 m (2883 ft) and 881.8 m (2893 ft) and discharges into the lower Flathead River. Kerr Dam is a 63.4 m (208 ft) high concrete arch structure located 7.2 km (4.5 miles) downstream from the outlet of Flathead Lake. The facility is used by Montana Power Company primarily for system frequency load control with some use for low level base load. 77 refs., 5 figs.

  2. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  3. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  4. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  5. Feasibility study of wireless power transmission systems

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  6. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  7. Power system with an integrated lubrication circuit

    SciTech Connect

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  8. Nova power systems: status and operating experience

    SciTech Connect

    Whitham, K.; Merritt, B.T.; Gritton, D.G.; Smart, A.J.; Holloway, R.W.; Oicles, J.A.

    1983-11-28

    This paper describes the pulse power systems that are used in these lasers; the status and the operating experiences. The pulsed power system for the Nova Laser is comprised of several distinct technology areas. The large capacitor banks for driving flashlamps that excite the laser glass is one area, the fast pulsers that drive pockels cell shutters is another area, and the contol system for the pulsed power is a third. This paper discusses the capacitor banks and control systems.

  9. Power Coupling Alternatives for the NEP Thermionic Power System

    NASA Technical Reports Server (NTRS)

    Manda, M. L.; Britt, E. J.; Fitzpatrick, G. O.

    1978-01-01

    Three output power coupling methods which can eliminate the high temperature insulator from the Nuclear Electric Propulsion (NEP) power system are described and estimates of their effects on the NEP system masses and cooling requirements are presented. Nominal 400 kWe power systems using push-pull and flux reset inductive output coupling are shown to have specific masses of 22.2 kg/kWe and 18.8 kg/kWe, respectively. Series connected heat pipe systems, which use the heat pipe-to-heat pipe resistance to isolate converters on adjacent heat pipes, are shown to have specific masses 0.5 to 1.4 kg/kWe lower than the NEP baseline system. Increasing the number and temperature of the heat pipes in the system without changing the electric output reduces the calculated system specific mass only slightly, whereas increasing the output power significantly reduces the specific mass. Estimates of cooling requirements indicate that 11-45 sq m of power conditioning radiator are needed. A possible location for the power conditioning radiator may be in the present location of the kapton sputter shield.

  10. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1989-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  11. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Executive summary: Volume 1

    SciTech Connect

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B.

    1995-06-01

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer software used in the safety systems of nuclear power plants. The framework for the work consisted of the following software development and assurance activities: requirements specification; design; coding; verification and validation, including static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire range of software life-cycle activities; the assessment of the technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary, includes an overview of the framework and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; Volume 2 is the main report.

  12. Smart Power Supply for Battery-Powered Systems

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  13. Compact Subsurface Soil Investigation System. Innovative Technology Summary Report

    SciTech Connect

    1998-12-01

    The compact subsurface soil investigation system is a mobile soil sampler used to obtain soil samples, including from below concrete floors, such as under fuel soil basins. If soils under buildings can be sampled and analyzed to document that the soil is not contaminated and thus can remain in place, the concrete structure over it may also be left in place or only partially removed. Taking soil samples through a concrete floor, often in inaccessible or congested locations, required rugged, portable equipment, such as the improved technology tested, the Geoprobe Model 540M soil sampler that is mounted on a hand cart. The traditional (baseline) technology used a comparable probe mounted on a full-size, 1-ton capacity, diesel-powered truck. The truck was not easily able to access all areas, because of its greater size and weight. In two sample holes from below the fuel storage basin at C-Reactor, the Geoprobe Model 540M was able to penetrate to the full sampling target depth of 3.3 m (10 ft). In the other three locations the sampler was stopped at lesser depths because of large stones. The Geoprobe 540M reduced schedule time and reduced costs by approximately 50% versus the baseline technology. For sampling at a congested fuel storage basin at five locations, the improved technology cost $7,300, whereas the baseline technology would have cost $13,000. As an extension of this demonstration, cost savings and schedule acceleration can be expected to increase commensurate with structure complexity/congestion and the number of samples required.

  14. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.; Harper, M.J.; Lindler, K.W.

    1995-12-31

    The United States Naval Academy, under interagency agreement with the Department of Energy (DOE), has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The design was constrained by the physical geometry and photovoltaic cell type of the DOE TPV generator so that a cylindrical emitter at 1,756 K (2,700 F) was dictated. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the DOE requirements. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design. The concept of thermophotovoltaic energy conversion dates to the 1960s and has been the subject of broad research effort. This is a direct energy conversion process that converts thermal energy into electricity with only photonic coupling. The process offers high theoretical efficiency, versatile application as a primary or secondary power cycle, and a number of operational advantages resulting from the lack of a working substance or moving parts.

  15. Wave activated power generation system

    SciTech Connect

    Ono, Y.

    1983-08-09

    A wave activated power generation system of the float type is disclosed, comprising at least one piston-cylinder device having an anchored cylinder and a piston slidable in the cylinder and cooperating with the cylinder to form a pumping chamber above the piston and a low pressure chamber below the piston. The cylinder has an intake port and an exhaust port both formed at an upper port thereof to communicate with the pumping chamber and each provided with a check valve. A float is connected through a cable to the piston of the piston- cylinder device. A pair of fluid storages are connected to the intake port and the exhaust port of the pumping chamber, respectively. A waterwheel generator is driven by the fluid flowing from one of the fluid storages to another. A pressure regulating device is connected to the low pressure chamber so as to maintain the low pressure chamber at a pressure lower than the pressure in the pumping chamber, the difference in pressure ceaselessly applying a downward force on the piston to keep the cable in a tensed condition.

  16. Direct current power delivery system and method

    DOEpatents

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  17. Large-Scale Offshore Wind Power in the United States: Executive Summary

    SciTech Connect

    Musial, W.; Ram, B.

    2010-09-01

    This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

  18. OAST Space Theme Workshop. Volume 2: Theme summary. 1: Space power (no. 7). A. Theme statement. B. 26 April 1976 presentation. C. Summary. D. Initiative action

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A long-lived space-based system that converts on-orbit solar and/or nuclear energy to a suitable form for distribution to using space systems is described. Mission applications, requirements, issues, problems, benefits, and technology thrusts are identified for the multipurpose power platform. Power levels of at least 10-100Kw are required for space manufacturing, satellites, and space station operations. Two Mw are needed for a proposed passive radar system. Propulsion system requirements are in the 100Kw-100Mw range.

  19. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  20. Power Management in Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Crawford, Sekou; Pawlowski, Christopher; Finn, Cory; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Effective management of power can reduce the cost of launch and operation of regenerative life support systems. Variations in power may be quite severe and may manifest as surges or spikes, While the power plant may have some ability to deal with these variations, with batteries for example, over-capacity is expensive and does nothing to address the fundamental issue of excessive demand. Because the power unit must be sized to accommodate the largest demand, avoiding power spikes has the potential to reduce the required size of the power plant while at the same time increasing the dependability of the system. Scheduling of processors can help to reduce potential power spikes. However, not all power-consuming equipment is easily scheduled. Therefore, active power management is needed to further decrease the risk of surges or spikes. We investigate the use of a hierarchical scheme to actively manage power for a model of a regenerative life support system. Local level controllers individually determine subsystem power usage. A higher level controller monitors overall system power and detects surges or spikes. When a surge condition is detected, the higher level controller conducts an 'auction' and describes subsystem power usage to re-allocate power. The result is an overall reduction in total power during a power surge. The auction involves each subsystem making a 'bid' to buy or sell power based on local needs. However, this re-allocation cannot come at the expense of life support function. To this end, participation in the auction is restricted to those processes meeting certain tolerance constraints. These tolerances represent acceptable limits within which system processes can be operated. We present a simulation model and discuss some of our results.

  1. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  2. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  3. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  4. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  5. Critical areas: Satellite power systems concepts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Critical Areas are defined and discussed in the various areas pertinent to satellite power systems. The presentation is grouped into five areas (General, Space Systems, Solar Energy Conversion, Microwave Systems, and Environment/Ecology) with a sixth area (Power Relay) considered separately in an appendix. Areas for Future Consideration as critical areas are discussed in a second appendix.

  6. Space-to-earth power transmission system

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Schuh, R.

    1976-01-01

    A preliminary analysis was conducted to establish the requirements of a space-to-earth microwave power transmission system. The need for accurate phase control on the transmitter was established and methods for assessing the impact of power density and thermal constraints on system performance were demonstrated. Potential radio frequency interference was considered. The sensitivity of transmission system scale to variations in power source, transportation and orbital fabrication and assembly costs was also determined.

  7. Flexibility in 21st Century Power Systems

    SciTech Connect

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O'Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  8. Neutral Beam Power System for TPX

    SciTech Connect

    Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-11-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

  9. Power line monitoring system using fiber optic power supply

    NASA Astrophysics Data System (ADS)

    Tanaka, Yosuke; Shioda, Tatsutoshi; Kurokawa, Takashi; Oka, Junji; Ueta, Kazuyuki; Fukuoka, Toshiharu

    2009-05-01

    We propose a novel power-line-monitoring system using optical fibers for transmitting power as well as signal. The principle is experimentally confirmed with a system composed of a monitoring side with a 1.5-μm laser diode, transmission line of a single mode fiber, and a sensing side having an efficient photovoltaic (PV) cell, electrical junction sensor, and low power liquid crystal optical modulator (LCOM). The PV cell generates the electrical power in the sensing side with a conversion efficiency of 20%. The LCOM is driven with low power of less than 50 μW, modulates the laser light with a signal indicating the power line condition, and transmits the optical signal. The developed sensing unit produces an optical signal having an extinction ratio of 15 dB with low optical power of 1.8 mW. Five systems were in operation for two years, faithfully monitoring the oil pressure in electrical cables every 20 min without incident.

  10. Solar power satellite system definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A synopsis of the study plan for the solar power satellite system is presented. Descriptions of early task progress is reported for the following areas: (1) laser annealing, (2) solid state power amplifiers, (3) rectenna option, (4) construction of an independent electric orbit transfer vehicle, and (5) construction of a 2.5 GW solar power satellite.

  11. Switching System for Redundant Power Supplies

    NASA Technical Reports Server (NTRS)

    Bradford, M.; Grant, R.; Parkinson, G.

    1986-01-01

    Load-transfer unit connects airborne computer to standby power supply in case primary supply fails. Concept adaptable to systems in which power interruptions cannot be tolerated; for example, computers with volatile memories, safety equipment, and precise timers. Load-transfer unit monitors voltages and load current. Microprocessor controls transistor switches that connect load to whichever power supply has highest priority and correct voltage.

  12. 78 FR 39280 - Integrated System Power Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    .... 888, 61 FR 21,540 (5/10/1996), FERC Stats. & Regs. ] 31,036 (1996), order on reh'g, Order No. 888-A, 62 FR 12,274 (3/14/ 1997), FERC Stats. & Regs. ] 31,048 (1997), order on reh'g, Order No. 888-B, 81... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration,...

  13. 75 FR 1363 - Integrated System Power Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... schedule. On September 23, 2009, Southwestern published notice in the Federal Register, (74 FR 48527), of a... Register, September 23, 2009, (74 FR 48527). The consultation and comment period was shortened from the 90... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration,...

  14. 78 FR 62616 - Integrated System Power Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ..., Southwestern published notice in the Federal Register (78 FR 39280) of a 60-day comment period, together with a..., 2013, (78 FR 39280). The consultation and comment period was shortened from the 90 days provided for in... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration,...

  15. 77 FR 2521 - Integrated System Power Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ..., Southwestern published notice in the Federal Register, (76 FR 48159), of a 60-day comment period, together with... were announced by notice published in the Federal Register, August 8, 2011, (76 FR 48159). The... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration,...

  16. 76 FR 48159 - Integrated System Power Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... by Public Utilities and Transmitting Utilities, Order No. 888, 61 FR 21,540 (5/10/1996), FERC Stats. & Regs. ] 31,036 (1996), order on reh'g, Order No. 888-A, 62 FR 12,274 (3/14/ 1997), FERC Stats. & Regs... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration,...

  17. Nuclear power for space based systems

    NASA Astrophysics Data System (ADS)

    Livingston, J. M.; Ivanenok, Joseph F., III

    1991-09-01

    A 100 kWe closed Brayton cycle power conversion system utilizing a recuperator coupled to a NERVA derivative reactor for a lunar power plant is presented. Power plant mass versus recuperator effectiveness, compressor inlet temperature, and turbine pressure ratio are described.

  18. Acceptance test report: Backup power system

    SciTech Connect

    Cole, D.B.

    1996-01-26

    Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control.

  19. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  20. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  2. A new bipolar Qtrim power supply system

    SciTech Connect

    Mi, C.; Bruno, D.; Drozd, J.; Nolan, T.; Orsatti, F.; Heppener, G.; Di Lieto, A.; Schultheiss, C.; Samms, T.; Zapasek, R.; Sandberg, J.

    2015-05-03

    This year marks the 15th run of RHIC (Relativistic Heavy Ion Collider) operations. The reliability of superconducting magnet power supplies is one of the essential factors in the entire accelerator complex. Besides maintaining existing power supplies and their associated equipment, newly designed systems are also required based on the physicist’s latest requirements. A bipolar power supply was required for this year’s main quadruple trim power supply. This paper will explain the design, prototype, testing, installation and operation of this recently installed power supply system.

  3. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  4. System Summary of University Annual Work Plans, 2014-15

    ERIC Educational Resources Information Center

    Board of Governors, State University System of Florida, 2014

    2014-01-01

    The State University System of Florida has developed three tools that aid in guiding the System's future; (1) The Board of Governors' new Strategic Plan 2012-2025 is driven by goals and associated metrics that stake out where the System is headed; (2) The Board's Annual Accountability Report provides yearly tracking for how the System is…

  5. Cargo/Logistics Airlift System Study (CLASS), Executive Summary

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Henderson, R. D.; Macey, F. C.; Tuttle, R. P.

    1978-01-01

    The current air cargo system is analyzed along with advanced air cargo systems studies. A forecast of advanced air cargo system demand is presented with cost estimates. It is concluded that there is a need for a dedicated advance air cargo system, and with application of advanced technology, reductions of 45% in air freight rates may be achieved.

  6. Economic analysis of new space transportation systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An economic analysis of alternative space transportation systems is presented. Results indicate that the expendable systems represent modest investments, but the recurring costs of operation would remain high. The space shuttle and tug system requires a substantial investment, but would substantially reduce the recurring costs of operation. Economic benefits and costs of the different systems are also analyzed. Findings are summarized.

  7. Modeling of DC spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Berry, F. C.

    1995-01-01

    Future spacecraft power systems must be capable of supplying power to various loads. This delivery of power may necessitate the use of high-voltage, high-power dc distribution systems to transmit power from the source to the loads. Using state-of-the-art power conditioning electronics such as dc-dc converters, complex series and parallel configurations may be required at the interface between the source and the distribution system and between the loads and the distribution system. This research will use state-variables to model and simulate a dc spacecraft power system. Each component of the dc power system will be treated as a multiport network, and a state model will be written with the port voltages as the inputs. The state model of a component will be solved independently from the other components using its state transition matrix. A state-space averaging method is developed first in general for any dc-dc switching converter, and then demonstrated in detail for the particular case of the boost power stage. General equations for both steady-state (dc) and dynamic effects (ac) are obtained, from which important transfer functions are derived and applied to a special case of the boost power stage.

  8. SUMMARY REPORT: FINE PORE (FINE BUBBLE) AERATION SYSTEMS

    EPA Science Inventory

    It is estimated that 50-90 percent of the power cost for wastewater treatment is for aeration. ine pore diffusion presents the opportunity to significantly reduce these costs due to its oxygen transfer efficiency. his report provides the latest information on pertormance potentia...

  9. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  10. CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety

    NASA Astrophysics Data System (ADS)

    Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.

    2008-01-01

    Reports were presented covering a selection of topics on the safety of fusion power plants. These included a review on licensing studies developed for ITER site preparation surveying common and non-common issues (i.e. site dependent) as lessons to a broader approach for fusion power plant safety. Several fusion power plant models, spanning from accessible technology to more advanced-materials based concepts, were discussed. On the topic related to fusion-specific technology, safety studies were reported on different concepts of breeding blanket modules, tritium handling and auxiliary systems under normal and accident scenarios' operation. The testing of power plant relevant technology in ITER was also assessed in terms of normal operation and accident scenarios, and occupational doses and radioactive releases under these testings have been determined. Other specific safety issues for fusion have also been discussed such as availability and reliability of fusion power plants, dust and tritium inventories and component failure databases. This study reveals that the environmental impact of fusion power plants can be minimized through a proper selection of low activation materials and using recycling technology helping to reduce waste volume and potentially open the route for its reutilization for the nuclear sector or even its clearance into the commercial circuit. Computational codes for fusion safety have been presented in support of the many studies reported. The on-going work on establishing validation approaches aiming at improving the prediction capability of fusion codes has been supported by experimental results and new directions for development have been identified. Fusion standards are not available and fission experience is mostly used as the framework basis for licensing and target design for safe operation and occupational and environmental constraints. It has been argued that fusion can benefit if a specific fusion approach is implemented, in particular

  11. Conceptual design of a space-based multimegawatt MHD power system. Topical report

    SciTech Connect

    Barton, J.R.; Bernard, F.E.; Carrington, R.A.; Hanson, L.P.; Holman, R.R.

    1988-01-01

    This report presents the system requirements and design guidelines for the space based multimegawatt MHD power system conceptual design, and comprises Volume 2 of the topical report describing the Task 1 MHD Power System Conceptual Design and Development Plan. In the interest of completeness, this report includes a summary description of the MHD power system concept with the functional requirements, design scope and design objectives. Then subsequent sections present the system requirements including operational requirements, space platform/weapon system interfaces, subsystem interfaces, and design guidelines. The analytical methods used for system analysis and parametric studies are also included. A description of the MHD power system, in the standard data table format for multimegawatt space power systems, is included in the Appendices.

  12. High-power VCSEL systems and applications

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2015-03-01

    Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.

  13. Nuclear Space Power Systems Materials Requirements

    SciTech Connect

    Buckman, R.W. Jr.

    2004-02-04

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  14. Nuclear Space Power Systems Materials Requirements

    NASA Astrophysics Data System (ADS)

    Buckman, R. W.

    2004-02-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  15. Thermal power systems small power systems applications project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Small power system technology as applied to power plants up to 10 MW in size was considered. Markets for small power systems were characterized and cost goals were established for the project. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Breakeven capital costs were determined for leading contenders among the candidate systems. The potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, was studied. Criteria and methodologies were developed for the ranking of candidate power plant system design concepts. Experimental power plant concepts of 1 MW rating were studied to define a power plant configuration for subsequent detail design construction, testing and evaluation. Site selection criteria and ground rules were developed.

  16. Fault-tolerant electrical power system

    NASA Astrophysics Data System (ADS)

    Mehdi, Ishaque S.; Weimer, Joseph A.

    1987-10-01

    An electrical system that will meet the requirements of a 1990s two-engine fighter is being developed in the Fault-Tolerant Electrical Power System (FTEPS) program, sponsored by the AFWAL Aero Propulsion Laboratory. FTEPS will demonstrate the generation and distribution of fault-tolerant, reliable, electrical power required for future aircraft. The system incorporates MIL-STD-1750A digital processors and MIL-STD-1553B data buses for control and communications. Electrical power is distributed through electrical load management centers by means of solid-state power controllers for fault protection and individual load control. The system will provide uninterruptible power to flight-critical loads such as the flight control and mission computers with sealed lead-acid batteries. Primary power is provided by four 60 kVA variable speed constant frequency generators. Buildup and testing of the FTEPS demonstrator is expected to be complete by May 1988.

  17. Propulsion element requirements using electrical power system unscheduled power

    NASA Technical Reports Server (NTRS)

    Zimmermann, Frank; Hodge, Kathy

    1989-01-01

    The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.

  18. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  19. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  20. Optical System Critical Design Review (CDR) Flight Software Summary

    NASA Technical Reports Server (NTRS)

    Khorrami, Mori

    2006-01-01

    The Mid Infrared Instrument (MIRI FSW presentation covers: (1) Optical System FSW only and Cooling System FSW is covered at its CDR (2) Requirements & Interfaces (3) Relationship with the ISIM FSW (4) FSW Design Drivers & Solutions.

  1. Disaster warning system study summary. [cost estimates using NOAA satellites

    NASA Technical Reports Server (NTRS)

    Leroy, B. F.; Maloy, J. E.; Braley, R. C.; Provencher, C. E.; Schumaker, H. A.; Valgora, M. E.

    1977-01-01

    A conceptual satellite system to replace or complement NOAA's data collection, internal communications, and public information dissemination systems for the mid-1980's was defined. Program cost and cost sensitivity to variations in communications functions are analyzed.

  2. Space shuttle auxiliary propulsion system design study. Executive summary

    NASA Technical Reports Server (NTRS)

    Kelly, P. J.; Schweickert, T. F.

    1972-01-01

    The development and characteristics of an auxiliary propulsion system for space shuttle applications are presented. The system design data necessary for selection of preferred system concepts and the requirements for complementing component design and test programs are analyzed. The use of cryogenic oxygen and hydrogen as a propellant combination is explained on the basis of high vehicle impulse requirements, safety factors, reuse, and logistics considerations. The final configurations for the alternate propellant system, with primary emphasis on earth storable propellants is described.

  3. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  4. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    SciTech Connect

    Swita, W.R.

    1998-01-05

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

  5. Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities. Executive Summary

    ERIC Educational Resources Information Center

    Kingsley, Chris

    2012-01-01

    This executive summary describes highlights from the report, "Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities." City-led efforts to build coordinated systems of afterschool programming are an important strategy for improving the health, safety and academic preparedness of children and…

  6. Maintenance of photovoltaic power systems, revision 1

    NASA Astrophysics Data System (ADS)

    Hall, M. R.

    1985-06-01

    This publication establishes standard practices for inspection, testing, and maintenance of photovoltaic power systems at Department of the Navy installations. The practices and procedures are recommended to ensure reliable operation of the power systems. The manual covers photovoltaic-array, battery, voltage-regulator, inverter, and wiring subsystems. In addition, this manual provides a troubleshooting guide and self-study questions and answers.

  7. High power laser perforating tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  8. Solar-powered hot-water system

    NASA Technical Reports Server (NTRS)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  9. Automated System Tests High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  10. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  11. Innovative technology summary report: advanced worker protection system

    SciTech Connect

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), which was supported by the Department of Energy's (DOE's) Morgantown Energy Technology Center through a cost sharing research and development contract. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment.

  12. Analysis of information systems for hydropower operations: Executive summary

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W.

    1976-01-01

    An analysis was performed of the operations of hydropower systems, with emphasis on water resource management, to determine how aerospace derived information system technologies can effectively increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined in detail to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results were used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept was outlined.

  13. Concentrators Enhance Solar Power Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  14. Summary of the recent short-haul systems studies

    NASA Technical Reports Server (NTRS)

    Savin, R. C.; Galloway, T. L.; Wilcox, D. E.; Kenyon, G. C.; Ardema, M. D.; Waters, M. H.

    1975-01-01

    The results of several NASA sponsored high density short haul air transportation systems studies are reported as well as analyzed. Included are the total STOL systems analysis approach, a companion STOL composites study conducted in conjunction with STOL systems studies, a STOL economic assessment study, an evaluation of STOL aircraft with and without externally blown flaps, an alternative STOL systems for the San Francisco Bay Area, and the quiet, clean experimental engine studies. Assumptions and results of these studies are summarized, their differences, analyzed, and the results compared with those in-house analyses performed by the Systems Studies Division of the NASA-Ames Research Center. Pertinent conclusions are developed and the more significant technology needs for the evaluation of a viable short haul transportation system are identified.

  15. Systems analysis for the development of small resource recovery systems. Executive summary

    SciTech Connect

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    In response to the increasing need for small-scale solid waste processing facilities, the US DOE contracted with Systems Technology Corporation (SYSTECH) to identify the technologies that should be developed to make such facilities attractive to and viable for small municipalities with solid waste between 50 and 250 tons per day (TPD). In addition to identifying candidate technologies, SYSTECH applied a set of criteria to them to determine those that could best satisfy the existing market conditions. The criteria included costs of the alternative landfill disposal, material and energy prices, developmental status of the technology, and environmental impact of the systems. The system types studied included those with mechanical separation, thermal and thermochemical energy recovery, and bioconversion processes. For these studies, the performance of each system was simulated by a mathematical model. After the systems were evaluated, the most promising were analyzed to determine which components and operating parameters had the greatest impact on system viability. Accordingly, the research and development (R and D) needs to advance the state-of-the-art for small-scale solid waste processing facilities were identified. The study results are documented in four volumes: (1) Executive Summary; (2) Description of Solid Waste Modular Simulator; (3) Research and Development Needs; and (4) System Performance Data.

  16. Bettis Atomic Power Laboratory. Bettis-Pittsburgh Site environmental summary report

    SciTech Connect

    2000-08-01

    This summary report provides a description of the nature and environmental aspects of work and facilities at the Bettis-Pittsburgh site, an historical perspective of Bettis-Pittsburgh operations that is not provided by the annual reports, and background information pertinent to understanding the environmental aspects of Bettis-Pittsburgh operations.

  17. Coal combined cycle system study. Volume I. Summary

    SciTech Connect

    Not Available

    1980-04-01

    The potential advantages for proceeding with demonstration of coal-fueled combined cycle power plants through retrofit of a few existing utility steam plants have been evaluated. Two combined cycle concepts were considered: Pressurized Fluidized Bed (PFB) combined cycle and gasification combined cycle. These concepts were compared with AFB steam plants, conventional steam plants with Flue Gas Desulfurization (FGD), and refueling such as with coal-oil mixtures. The ultimate targets are both new plants and conversion of existing plants. Combined cycle plants were found to be most competitive with conventional coal plants and offered lower air emissions and less adverse environmental impact. A demonstration is a necessary step toward commercialization.

  18. Apparatus for controlling steering power in power steering system

    SciTech Connect

    Hirakushi, S.; Matsubara, H.

    1988-10-04

    This patent describes an apparatus for controlling a steering power in a power steering system which is used in an automobile. The apparatus consists of: a main pump which supplies a first hydraulic coil to the power steering system to operate the same; an oil pressure reaction chamber for controlling the steering power; a subpump of a reduced size smaller than that of the main pump for supplying a second hydraulic oil to the oil pressure reaction chamber to operate the same; a first oil path interconnecting the subpump and oil pressure reaction chamber to each other for flowing the second hydraulic oil through the first oil path; an oil tank; a second oil path branched from the first oil path and connected to the oil tank; a first control valve means disposed in the second oil path for raising the hydraulic pressure of the oil pressure reaction chamber in response to an increase in the running speed of the automobile so as to control the oil pressure reaction chamber to increase the steering power; and a second control valve means connected in parallel relationship with the first control valve means for changing the steering power in response to the hydraulic pressure of the first hydraulic oil supplied from the main pump.

  19. Space power plants and power-consuming industrial systems

    SciTech Connect

    Latyshev, L.; Semashko, N.

    1996-12-31

    An opportunity to create the space power production on the basis of solar, nuclear and fusion energies is analyzed. The priority of solar power production as the most accessible and feasible in comparison with others is emphasized. However, later on, it probably will play an auxiliary role. The possibilities of fusion power production, as a basic one in future, are also considered. It is necessary to create reactors using the fueling cycle with helium-3 (instead of tritium and deuterium, later on). The reaction products--charged particles, mainly--allow one to organize the system of direct fusion energy conversion into electricity. The produced energy is expected not to be transmitted to Earth, but an industry in space is expected to be produced on its basis. The industrial (power and science-consuming) objects located on a whole number of space apparatus will form a single complex with its own basic power plant. The power transmission within the complex will be realized with high power density fluxes of microwave radiation to short distances with their receivers at the objects. The necessary correction of the apparatus positions in the complex will be done with ion and plasma thrusters. The materials present on the Moon, asteroids and on other planets can serve as raw materials for industrial objects. Such an approach will help to improve the ecological state on Earth, to eliminate the necessity in the fast energy consumption growth and to reduce the hazard of global thermal crisis.

  20. Static conversion systems. [for space power reactors

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Mondt, J.

    1985-01-01

    Historically, all space power systems that have actually flown in space have relied on static energy conversion technology. Thus, static conversion is being considered for space nuclear power systems as well. There are four potential static conversion technologies which should be considered. These include: the alkali metal thermoelectric converter (AMTEC), the thermionic converter, the thermoelectric converter, and the thermophotovoltaic converter (TPV). These four conversion technologies will be described in brief detail along with their current status and development needs. In addition, the systems implications of using each of these conversion technologies with a space nuclear reactor power system will be evaluated and some comparisons made.

  1. TFTR neutral-beam power system

    SciTech Connect

    Winje, R.A.

    1982-10-01

    The TFTR Neutral Beam Power System (NBPS) consists of the accelerator grid power supply and the auxiliary power supplies required to operate the TFTR 120-keV ion sources. The current configuration of the NBPS including the 11-MVA accelerator grid power supply and the Arc and Filament power supplies isolated for operation at accelerator grid voltages up to 120 kV, is described. The prototype NBPS has been assembled at the Princeton Plasma Physics Laboratory and has been operated. The results of the initial operation and the description and resolution of some of the technical problems encountered during the commissioning tests are presented.

  2. The Dairy Technology System in Venezuela. Summary of Research 79.

    ERIC Educational Resources Information Center

    Nieto, Ruben D.; Henderson, Janet L.

    A study examined the agricultural technology system in Venezuela with emphasis on the dairy industry. An analytical framework was used to identify the strengths and weaknesses of the following components of Venezuela's agricultural technology system: policy, technology development, technology transfer, and technology use. Selected government…

  3. An Information System for Educational Management: Executive Summary.

    ERIC Educational Resources Information Center

    Farquhar, John

    Six reports concerning design of an information system to aid the Los Angeles city schools in implementing accountability and program budgeting are summarized. Extensive interviewing and system analysis led to focusing decisionmaking and accountability on the individual school principal, unlike the present centralized decisionmaking and resource…

  4. Manned Orbital Systems Concepts Study. Book 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Requirements for and definitions of a cost effective orbital facility concept, capable of supporting extended manned operations in earth orbit beyond those visualized for the 7 to 30 day shuttle/spacelab system, were studied. Data are given on requirements derivation, concepts identification, systems analysis and definition, and programmatics.

  5. Control Systems Security Test Center - FY 2004 Program Summary

    SciTech Connect

    Robert E. Polk; Alen M. Snyder

    2005-04-01

    In May 2004, the US-CERT Control Systems Security Center (CSSC) was established at Idaho National Laboratory to execute assessment activities to reduce the vulnerability of the nation’s critical infrastructure control systems to terrorist attack. The CSSC implements a program to accomplish the five goals presented in the US-CERT National Strategy for Control Systems Security. This report summarizes the first year funding of startup activities and program achievements that took place in FY 2004 and early FY 2005. This document was prepared for the US-CERT Control Systems Security Center of the National Cyber Security Division of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs federal departments to identify and prioritize the critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the National Cyber Security Division to address the control system security component addressed in the National Strategy to Secure Cyberspace and the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems.

  6. Our Solar System at a Glance. Information Summaries.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The United States has explored the solar system with automated spacecraft and human-crewed expeditions that have produced a quantum leap in our knowledge and understanding of the solar system. Through the electronic sight and other "senses" of our automated spacecraft, color and complexion have been given to worlds that for centuries appeared to…

  7. Summary of Resources for the International Space Station Environmental Control and Life Support System For Core Complete Modules

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2004-01-01

    The Core Complete Environmental Control and Life Support (ECLS) System for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the addition of future U.S. ECLS system hardware to get to Core Complete is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.

  8. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  9. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  10. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  11. Nuclear power propulsion system for spacecraft

    NASA Astrophysics Data System (ADS)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  12. Hydrogen turbine power conversion system assessment

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.

    1978-01-01

    A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.

  13. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  14. Extended performance electric propulsion power processor design study. Volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    Electric propulsion power processor technology has processed during the past decade to the point that it is considered ready for application. Several power processor design concepts were evaluated and compared. Emphasis was placed on a 30 cm ion thruster power processor with a beam power rating supply of 2.2KW to 10KW for the main propulsion power stage. Extension in power processor performance were defined and were designed in sufficient detail to determine efficiency, component weight, part count, reliability and thermal control. A detail design was performed on a microprocessor as the thyristor power processor controller. A reliability analysis was performed to evaluate the effect of the control electronics redesign. Preliminary electrical design, mechanical design and thermal analysis were performed on a 6KW power transformer for the beam supply. Bi-Mod mechanical, structural and thermal control configurations were evaluated for the power processor and preliminary estimates of mechanical weight were determined.

  15. Intelligent systems for strategic power infrastructure defense

    NASA Astrophysics Data System (ADS)

    Jung, Ju-Hwan

    A fault or disturbance in a power system can be severe due to the sources of vulnerability such as human errors, protection and control system failures, a failure of communication networks to deliver critical control signals, and market and load uncertainties. There have been several catastrophic failures resulting from disturbances involving the sources of vulnerability while power systems are designed to withstand disturbances or faults. To avoid catastrophic failures or minimize the impact of a disturbance(s), the state of the power system has to be analyzed correctly and preventive or corrective self-healing control actions have to be deployed. This dissertation addresses two aspects of power systems: Defense system and diagnosis, both concerned with the power system analysis and operation during events involving faults or disturbances. This study is intended to develop a defense system that is able to assess power system vulnerability and to perform self-healing control actions based on the system-wide analysis. In order to meet the requirements of the system-wide analysis, the defense system is designed with multi-agent system technologies. Since power systems are dynamic and uncertain the self-healing control actions need to be adaptive. This study applies the reinforcement learning technique to provide a theoretical basis for adaptation. One of the important issues in adaptation is the convergence of the learning algorithm. An appropriate convergence criterion is derived and an application with a load-shedding scheme is demonstrated in this study. This dissertation also demonstrates the feasibility of the defense system and self-healing control actions through multi-agent system technologies. The other subject of this research is to investigate the methodology for on-line fault diagnosis using the information from Sequence-of-Events Recorders (SER). The proposed multiple-hypothesis analysis generates one or more hypothetical fault scenarios to interpret the

  16. A high power TWT power processing system. [for communication satellites

    NASA Technical Reports Server (NTRS)

    Farber, B. F.; Goldin, D. S.; Siegert, C.; Gourash, F.

    1974-01-01

    A power processing system (PPS) is designed for a space-type high power (200W RF) multi-collector traveling-wave tube (TWT). The basic power circuit is presented along with the simplified block diagram and the input, output, and general requirements for the PPS design are tabulated. The paper covers the PPS design as to critical TWT/PPS interface requirements, high voltage cathode/collector supply, high voltage components material, packaging, grounding and isolation, and electrical performance. The use of a single two loop control system for the regulation of cathode and collector voltages is shown to give high efficiency, excellent steady-state and transient performance characteristics, and complete protection for TWT and PPS components under transient conditions.

  17. Aerial photography summary record system - five years later.

    USGS Publications Warehouse

    Lauterborn, T.J.

    1980-01-01

    Describes the APSRS, an automated information system for conventional aerial photography projects, established after the formation of the National Cartographic Information Center in the US Geological Survey in 1974. -after Author

  18. Operationally Efficient Propulsion System Study (OEPSS) data book. Executive summary

    NASA Technical Reports Server (NTRS)

    Wong, George S.

    1990-01-01

    The study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. Summarized here are the salient results of the first year. A synopsis of each volume listed above is presented.

  19. Space Construction System Analysis. Part 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A detailed, end-to-end analysis of the activities, techniques, equipment and Shuttle provisions required to construct a reference project system is described. Included are: platform definition; construction analysis; cost and programmatics; and space construction experiments concepts.

  20. FINE PARTICLE EMISSIONS INFORMATION SYSTEM: SUMMARY REPORT (SUMMER 1976)

    EPA Science Inventory

    The report summarizes the initial loading of data into the Fine Particle Emissions Information System (FPEIS), a computerized database on primary fine particle emissions to the atmosphere from stationary sources, designed to assist engineers and scientists engaged in fine particl...

  1. Hydraulically powered dissimilar teleoperated system controller design

    SciTech Connect

    Jansen, J.F.; Kress, R.L.

    1996-04-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented.

  2. Intermittent/transient faults in computer systems: Executive summary

    NASA Technical Reports Server (NTRS)

    Masson, G. M.

    1980-01-01

    An overview of an approach for diagnosing intermittent/transient (I/T) faults is presented. The development of an interrelated theory and experimental methodology to be used in a laboratory situation to measure the capability of a fault tolerant computing system to diagnose I/T faults, is discussed. To the extent that such diagnosing capability is important to reliability in fault tolerant computing systems, this theory and supporting methodology serves as a foundation for validation efforts.

  3. Multi-Megawatt Power System Trade Study

    SciTech Connect

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but do not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.

  4. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... flight and landing in the event of— (1) Any single failure in the power portion of the system; or (2)...

  5. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... flight and landing in the event of— (1) Any single failure in the power portion of the system; or (2)...

  6. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... flight and landing in the event of— (1) Any single failure in the power portion of the system; or (2)...

  7. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... flight and landing in the event of— (1) Any single failure in the power portion of the system; or (2)...

  8. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... flight and landing in the event of— (1) Any single failure in the power portion of the system; or (2)...

  9. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... flight and landing in the event of— (1) Any single failure in the power portion of the system; or (2)...

  10. Power Supply Systems for Rapid Cycling Synchrotron

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasuhiro; Adachi, Toshikazu; Someya, Hirohiko; Koseki, Shoichiro; Ogawa, Shinichi

    JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV rapid cycling synchrotron (RCS). Two types of resonant excitation systems, parallel and cascade, are introduced to excite DC biased 25Hz AC currents through its main magnets. The parallel excitation is adopted for dipole magnets power supply system, and the cascade excitations are adopted for seven family quadrupole magnets systems. In this paper, two systems are investigated and analyzed, and it is explained why different types are adopted to each system. Authors believe that such hybrid exciting systems are most suitable for high power RCS.

  11. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  12. A Small Fission Power System with Stirling Power Conversion for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Carmichael, Chad

    2011-01-01

    In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.

  13. Task 3.0 - Advanced Power Systems Subtask 3.18 - Ash Behavior in Power Systems

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor

    1997-07-01

    Ash behavior in power systems can have a significant impact on the design and performance of advanced power systems. The Energy & Environmental Research Center (EERC) has focused significant effort on ash behavior in conventional power systems that can be applied to advanced power systems. This initiative focuses on filling gaps in the understanding of fundamental mechanisms of ash behavior that has relevance to commercial application and marketable products. This program develops methods and means to better understand and mitigate adverse coal ash behavior in power systems and can act to relieve the U.S. reliance on diminishing recoverable oil resources, especially those resources that are not domestically available and are fairly uncertain.

  14. The California corridor transportation system: A design summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A design group was assembled to find and research criteria relevent to the design of a California Corridor Transportation System. The efforts of this group included defining the problem, conducting a market analysis, formulation of a demand model, identification and evaluation of design drivers, and the systematic development of a solution. The problems of the current system were analyzed and used to determine design drivers, which were divided into the broad categories of cost, convenience, feasibility, environment, safety, and social impact. The relative importance of individual problems was addressed, resulting in a hierarchy of design drivers. Where possible, methods of evaluating the relative merit of proposed systems with respect to each driver were developed. Short takeoff vertical landing aircraft concepts are also discussed for supersonic fighters.

  15. Satellite voice broadcase system study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Horstein, M.

    1985-01-01

    The feasibility of providing Voice of America (VOA) broadcasts by satellite relay was investigated. Satellite voice broadcast systems are described for three different frequency bands: HF, FHV, and L-band. Geostationary satellite configurations are considered for both frequency bands. A system of subsynchronous, circular satellites with an orbit period of 8 hours was developed for the HF band. The VHF broadcasts are provided by a system of Molniya satellites. The satellite designs are limited in size and weight to the capability of the STS/Centaur launch vehicle combination. At L-band, only four geostationary satellites are needed to meet the requirements of the complete broadcast schedule. These satellites are comparable in size and weight to current satellites designed for the direct broadcast of video program material.

  16. Small reactor power system for space application

    NASA Technical Reports Server (NTRS)

    Shirbacheh, M.

    1987-01-01

    A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.

  17. HIRFL-CSR power supply system

    NASA Astrophysics Data System (ADS)

    Gao, Daqing; Zhou, Zhongzu; Chen, Youxin; Wu, Rong; Shangguan, Jingbin; Bai, Zhen

    2001-12-01

    There are more than 200 power supplies will be employed in CSR power supply system. These power supplies provide DC and pulsed exciting current for all magnets in main ring (CSRm), experiment ring (CSRe), injection line of CSRm and RIB line. Six small-scale prototypes have been designed and made before formal manufacture. One thyristor rectifier pulsed converter was delivered to Lanzhou in January and all measurement has been finished in April. The result is satisfied.

  18. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  19. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    NASA Technical Reports Server (NTRS)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  20. Interservice Procedures for Instructional Systems Development: Executive Summary and Model.

    ERIC Educational Resources Information Center

    Branson, Robert K.

    The document is the last of a five-part series focusing in minute detail on the processes involved in the formulation of an instructional systems development (ISD) program for military interservice training that will adequately train individuals to do a particular job and which can also be applied to any interservice curriculum development…

  1. EMISSIONS ASSESSMENT OF CONVENTIONAL STATIONARY COMBUSTION SYSTEMS: SUMMARY REPORT

    EPA Science Inventory

    The report gives results of a characterization of multimedia emissions from 39 source categories of conventional stationary combustion systems. In the assessment, existing emissions data were first examined to determine the adequacy of the data base. This was followed by a measur...

  2. Mission Information and Test Systems Summary of Accomplishments, 2011

    NASA Technical Reports Server (NTRS)

    McMorrow, Sean E.; Sherrard, Roberta B.

    2013-01-01

    This annual report covers the activities of the NASA DRFC Mission Information and Test Systems, which includes the Western Aeronautical Test Range, the Simulation Engineering Branch, the Information Services and the Dryden Technical Laboratory (Flight Loads Lab). This report contains highlights, current projects and various awards achieved during in 2011

  3. The Educational Information System for Ontario. Summary of Final Report.

    ERIC Educational Resources Information Center

    Auster, Ethel; Lawton, Stephen B.

    This report summarizes the findings of the EISO project, which was funded in 1975 to develop, evaluate, and analyze an information dissemination system based upon computerized retrieval of bibliographies. With much of the research component completed, the service component is operational, providing Ontario educators with online bibliographic…

  4. Massachusetts Integrated Postsecondary Education Data System. Summary Report 1987.

    ERIC Educational Resources Information Center

    Dulac, Betty; Vasily, Jon

    Data compiled from aggregate forms completed by individual Massachusetts colleges and universities as part of the Integrated Postsecondary Education Data System (IPEDS), formerly known as the Higher Education General Information Survey (HEGIS), are presented. Only data pertaining to those institutions authorized to grant degrees in Massachusetts…

  5. 1980-81 University of Nevada System Student Enrollment Summary.

    ERIC Educational Resources Information Center

    Nevada Univ. System, Reno.

    Data on 1980-1981 student enrollments in the University of Nevada system are presented with tables and charts divided into two sections: full-time equated enrollment or credit loads at campuses, and headcount enrollment. The tables report only those course loads or enrollments that are entitled to state funding (private or federally-supported…

  6. A summary of spectral synthesis procedures for multivariable systems

    NASA Technical Reports Server (NTRS)

    Liberty, S. R.; Mielke, R. R.; Maynard, R. A.

    1979-01-01

    A new approach to the eigensystem assignment problem is presented. The approach utilizes a null-space formulation of the eigenvalue/eigenvector assignment problem to simultaneously realize arbitrary eigenvalue specifications, approximate desired modal behavior, and achieve low eigensystem sensitivity with respect to plant parameter variations. The methods are applied to the design of regulator and integral plus proportional servo control systems.

  7. Mechanical Systems Technology Branch research summary, 1985 - 1992

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L. (Editor)

    1993-01-01

    A collection of significant accomplishments from the research of the Mechanical Systems Technology Branch at the NASA Lewis Research Center completed during the years 1985-1992 is included. The publication highlights and accomplishments made in bearing and gearing technology through in-house research, university grants, and industry contracted projects. The publication also includes a complete listing of branch publications for these years.

  8. Virginia Community College System. Summary Assessment Reports, 1995.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Community Colleges, Richmond.

    This report reviews the evaluation process of the 1995 community college assessment reports for the Virginia Community College System (VCCS). It provides evaluation results, which found that the 18 colleges, even within limited resources and major restructuring, were able to demonstrate satisfactory progress as shown by assessment results and the…

  9. Concrete Dust Suppression System. Innovative Technology Summary Report

    SciTech Connect

    1998-12-01

    The improved technology is a water-based dust suppression system for controlling concrete dust generated by demolition equipment, in this case a demolition ram. This demonstration was performed to assess the effectiveness of this system to (1) minimize the amount of water used to suppress potentially contaminated dust, (2) focus the water spray on the dust-generating source and (3) minimize the dust cloud generated by the demolition activity. The technology successfully reduced the water required by a factor of eight compared to the traditional (baseline) method, controlled the dust generated, and permitted a reduction in the work force. The water spray can be focused at the ram point, but it is affected by wind. Prior to the use of this dust control system, dust generated by the demolition ram was controlled manually by spraying with fire hoses (the baseline technology). The improved technology is 18% less expensive than the baseline technology for the conditions and parameters of this demonstration, however, the automated system can save up to 80% versus the baseline whenever waste water treatment costs are considered. For demolishing one high-walled room and a long slab with a total of 413 m{sup 3} (14,580 ft{sup 3}) of concrete, the savings are $105,000 (waste water treatment included). The improved technology reduced the need for water consumption and treatment by about 88% which results in most of the savings.

  10. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  11. Laser satellite power systems - Concepts and issues

    NASA Astrophysics Data System (ADS)

    Walbridge, E. W.

    A laser satellite power system (SPS) converts solar power captured by Earth-orbiting satellites into electrical power on the Earth's surface, the satellite-to-ground transmission of power being effected by a laser beam. The laser SPS is an alternative to the microwave SPS. Lasers and how they work are described, as are the types of lasers - electric discharge, direct and indirect solar pumped, free electron, and closed-cycle chemical - that are candidates for application in a laser SPS. The advantages of a laser SPS over the microwave alternative are pointed out. One such advantage is that, for the same power delivered to the utility busbar, land requirements for a laser system are much smaller (by a factor of 21) than those for a microwave system. The four laser SPS concepts that have been presented in the literature are described and commented on. Finally key issues for further laser SPS research are discussed.

  12. Lunar Solar Power System and Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Criswell, D. R.

    2002-01-01

    Five of the six billion people on Earth produce less than 2,500 per year per person of Gross World Product (GWP). GWP growth is severely limited by the high cost, low availability and reliability, environmental damages, and political uncertainties of conventional fossil, nuclear, and terrestrial renewable power systems. In 2000 the World Energy Council challenged all decision makers to enable the equivalent of 6.7 kWt per person of thermal power within two generations. This implies 67 TWt, or approx.20 to 30 TWe, of sustainable electric power by 2050. Twenty-five power systems were reviewed to select which could: (1) sustainably provide 20 TWe to consumers; (2) profitably sell electricity for less than 0.01 per kWe-h; (3) be environmentally neutral, even nurturing; and (4) use understood technologies. The analyses indicated that only the Lunar Solar Power (LSP) System could meet these requirements within the 21st Century.

  13. Heat stress monitoring system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  14. Summary and status of the Horizons ephemeris system

    NASA Astrophysics Data System (ADS)

    Giorgini, J.

    2011-10-01

    Since 1996, the Horizons system has provided searchable access to JPL ephemerides for all known solar system bodies, several dozen spacecraft, planetary system barycenters, and some libration points. Responding to 18 400 000 requests from 300 000 unique addresses, the system has recently averaged 420 000 ephemeris requests per month. Horizons is accessed and automated using three interfaces: interactive telnet, web-browser form, and e-mail command-file. Asteroid and comet ephemerides are numerically integrated from JPL's database of initial conditions. This small-body database is updated hourly by a separate process as new measurements and discoveries are reported by the Minor Planet Center and automatically incorporated into new JPL orbit solutions. Ephemerides for other objects are derived by interpolating previously developed solutions whose trajectories have been represented in a file. For asteroids and comets, such files may be dynamically created and transferred to users, effectively recording integrator output. These small-body SPK files may then be interpolated by user software to reproduce the trajectory without duplicating the numerically integrated n-body dynamical model or PPN equations of motion. Other Horizons output is numerical and in the form of plain-text observer, vector, osculating element, or close-approach tables, typically expected be read by other software as input. About one hundred quantities can be requested in various time-scales and coordinate systems. For JPL small-body solutions, this includes statistical uncertainties derived from measurement covariance and state transition matrices. With the exception of some natural satellites, Horizons is consistent with DE405/DE406, the IAU 1976 constants, ITRF93, and IAU2009 rotational models.

  15. Testing and modeling of a solar thermophotovoltaic power system

    SciTech Connect

    Stone, K.W.; Chubb, D.L.; Wilt, D.M.; Wanlass, M.W.

    1996-02-01

    A solar thermophotovoltaic (STPV) power system has attractive attributes for both space and terrestrial applications. This paper presents the results of testing by McDonnell Douglas Aerospace (MDA) over the last year with components furnished by the NASA Lewis Research Center (LeRC) and the National Renewable Energy Lab (NREL). The testing has included a large scale solar TPV testbed system and small scale laboratory STPV simulator using a small furnace. The testing apparatus, instrumentation, and operation are discussed, including a description of the emitters and photovoltaic devices that have been tested. Over 50 on-sun tests have been conducted with the testbed system. It has accumulated over 300 hours of on-sun time, and 1.5 MWh of thermal energy incident on the receiver material while temperatures and I-V measurements were taken. A summary of the resulting test data is presented that shows the measured performance at temperatures up to 1220{degree}C. The receiver materials and PV cells have endured the high temperature operation with no major problems. The results of this investigation support MDA belief that STPV is a viable power system for both space and terrestrial power applications. {copyright} {ital 1996 American Institute of Physics.}

  16. HYLIFE-II power conversion system design and cost study

    SciTech Connect

    Hoffman, M.A. . Dept. of Mechanical, Aeronautical and Materials Engineering)

    1990-09-01

    The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report.

  17. Infrastructure for deployment of power systems

    NASA Technical Reports Server (NTRS)

    Sprouse, Kenneth M.

    1991-01-01

    A preliminary effort in characterizing the types of stationary lunar power systems which may be considered for emplacement on the lunar surface from the proposed initial 100-kW unit in 2003 to later units ranging in power from 25 to 825 kW is presented. Associated with these power systems are their related infrastructure hardware including: (1) electrical cable, wiring, switchgear, and converters; (2) deployable radiator panels; (3) deployable photovoltaic (PV) panels; (4) heat transfer fluid piping and connection joints; (5) power system instrumentation and control equipment; and (6) interface hardware between lunar surface construction/maintenance equipment and power system. This report: (1) presents estimates of the mass and volumes associated with these power systems and their related infrastructure hardware; (2) provides task breakdown description for emplacing this equipment; (3) gives estimated heat, forces, torques, and alignment tolerances for equipment assembly; and (4) provides other important equipment/machinery requirements where applicable. Packaging options for this equipment will be discussed along with necessary site preparation requirements. Design and analysis issues associated with the final emplacement of this power system hardware are also described.

  18. An analysis of space power system masses

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Cull, Ronald C.; Kankam, M. David

    1990-01-01

    Various space electrical power system masses are analyzed with particular emphasis on the power management and distribution (PMAD) portion. The electrical power system (EPS) is divided into functional blocks: source, interconnection, storage, transmission, distribution, system control and load. The PMAD subsystem is defined as all the blocks between the source, storage and load, plus the power conditioning equipment required for the source, storage and load. The EPS mass of a wide range of spacecraft is then classified as source, storage or PMAD and tabulated in a database. The intent of the database is to serve as a reference source for PMAD masses of existing and in-design spacecraft. The PMAD masses in the database range from 40 kg/kW to 183 kg/kW across the spacecraft systems studied. Factors influencing the power system mass are identified. These include the total spacecraft power requirements, total amount of load capacity and physical size of the spacecraft. It is found that a new utility class of power systems, represented by Space Station Freedom, is evolving.

  19. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  20. Differential Power Processing for DC Systems

    SciTech Connect

    Shenoy, PS; Krein, PT

    2013-04-01

    This paper introduces an approach to dc power delivery that reduces power loss by minimizing redundant energy conversion. Existing power distribution techniques tend to increase the number of cascaded conversion stages, which limits overall efficiency. Differential power processing enables independent load regulation, while processing only a small portion of the total load power. Bulk power conversion occurs once. Load voltage domains are connected in series, and differential converters act as controllable current sources to regulate intermediate nodes. This enables independent, low supply voltages, which can reduce system energy consumption, especially in digital circuits and solid-state lighting. Since differential voltage regulators process a fraction of the load power, decreased size, cost, and conversion losses are attainable. Under balanced load conditions, secondary differential converters do not process any power. This paper analyzes several differential power delivery architectures that can be applied to homogenous and heterogeneous loads at various levels: chip, board, blade, etc. A variety of operating conditions for a test system with four series voltage domains are examined in simulation and verified with experimental hardware. Results in a reference application show a 7-8% decrease in input power and 6-7 percentage points increase in overall conversion efficiency as compared to a conventional cascaded approach.

  1. Heatpipe space power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Houts, Michael G.; Poston, David I.; Ranken, William A.

    1996-03-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure ≳10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of ˜500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide ≳1 MWt. The baseline HBS produces ≳50 N of thrust at a specific impulse ≳750 s, can

  2. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  3. Geomagnetic Storms and Long-Term Impacts on Power Systems

    SciTech Connect

    Kirkham, Harold; Makarov, Yuri V.; Dagle, Jeffery E.; DeSteese, John G.; Elizondo, Marcelo A.; Diao, Ruisheng

    2011-12-31

    Pacific Northwest National Laboratory was commissioned to study the potential impact of a severe GIC event on the western U.S.-Canada power grid (referred to as the Western Interconnection). The study identified long transmission lines (length exceeding 150 miles) that did not include series capacitors. The basic assumption for the study is that a GIC is more likely to couple to long transmission lines, and that series capacitors would block the flow of the induced DC GIC. Power system simulations were conducted to evaluate impacts to the bulk power system if transformers on either end of these lines failed. The study results indicated that the Western Interconnection was not substantially at risk to GIC because of the relatively small number of transmission lines that met this criterion. This report also provides a summary of the Hydro-Québec blackout on March 13, 1989, which was caused by a GIC. This case study delves into the failure mechanisms of that event, lessons learned, and preventive measures that have been implemented to minimize the likelihood of its reoccurrence. Finally, the report recommends that the electric power industry consider the adoption of new protective relaying approaches that will prevent severe GIC events from catastrophically damaging transformers. The resulting changes may increase the likelihood of smaller disruptions but should prevent an unlikely yet catastrophic national-level event.

  4. Organizational Evaluation Systems and Student Disengagement in Secondary Schools. Executive Summary.

    ERIC Educational Resources Information Center

    Natriello, Gary

    A summary is presented of a study to determine the impact of school authority systems on student disengagement from high school. Student disengagement is defined as the extent to which students refrain from participating in activities offered as part of the school program, tasks of scholarship and citizenship, and extracurricular activities. The…

  5. National Child Abuse and Neglect Data System: Working Paper 2: 1991 Summary Data Component.

    ERIC Educational Resources Information Center

    American Humane Association, Englewood, CO. Children's Div.

    This document was prepared from information provided by state child protective services agencies on the 1991 Summary Data Component Form of the National Child Abuse and Neglect Data System (NCANDS). The report is a working document that provides a basis for developing and refining the approach to collecting national information on child…

  6. ACID PRECIPITATION IN NORTH AMERICA: 1984 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1984 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  7. ACID PRECIPITATION IN NORTH AMERICA: 1983 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1983 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  8. Development of the Runway Incursion Advisory and Alerting System (RIAAS): Research Summary

    NASA Technical Reports Server (NTRS)

    Jones, Denise R. (Technical Monitor); Cassell, Rick

    2005-01-01

    This report summarizes research conducted on an aircraft based Runway Incursion Advisory and Alerting System (RIAAS) developed under a cooperative agreement between Rannoch Corporation and the NASA Langley Research Center. A summary of RIAAS is presented along with results from simulation and flight testing, safety benefits, and key technical issues.

  9. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  10. Space shuttle food system summary, 1981-1986

    NASA Technical Reports Server (NTRS)

    Stadler, Connie R.; Rapp, Rita M.; Bourland, Charles T.; Fohey, Michael F.

    1988-01-01

    All food in the Space Shuttle food system was precooked and processed so it required no refrigeration and was either ready-to-eat or could be prepared for consumption by simply adding water and/or heating. A gun-type water dispenser and a portable, suitcase-type heater were used to support this food system during the first four missions. On STS-5, new rehydratable packages were introduced along with a needle-injection water dispenser that measured the water as it was dispensed into the packages. A modular galley was developed to facilitate the meal preparation process aboard the Space Shuttle. The galley initially flew on STS-9. A personal hygiene station, a hot or cold water dispenser, a convection oven, and meal assembly areas were included in the galley.

  11. Advanced Waste Retrieval System. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    At West Valley, following the baseline removal operations, bulk waste retrieval methods may be augmented if required, with the deployment of the Advanced Waste Retrieval System (AWRS). The AWRS is a hydraulic boom mounted on a trolley on the Mast-Mounted Tool Delivery System. The boom is about 15 ft long with a pan and tilt mechanism at the end. On the end is a steam jet with a suction tool that can reach down around the tank internal structure and vacuum up zeolite or sludge off the bottom of the tank from a thirty-foot diameter reach. A grinder is included topside in the discharge path to pulverize the zeolite so it can be readily retrieved from the destination tank.

  12. Intelligent Propulsion System Foundation Technology: Summary of Research

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions, and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, smart materials and structures, and system studies. Furthermore, this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. This Propulsion 21 - Phase 11 program consisted of four primary research areas and associated work elements at Ohio universities: 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, 3.0 Active Structural Controls and Performance, and 4.0 System Studies and Integration. Phase l, which was conducted during the period August 1, 2003, through September 30, 2004, has been reported separately.

  13. Data Base Management Systems Panel. Third workshop summary

    NASA Technical Reports Server (NTRS)

    Urena, J. L. (Editor)

    1981-01-01

    The discussions and results of a review by a panel of data base management system (DRMS) experts of various aspects of the use of DBMSs within NASA/Office of Space and Terrestrial Applications (OSTA) and related organizations are summarized. The topics discussed included the present status of the use of DBMS technology and of the various ongoing DBMS-related efforts within NASA. The report drafts of a study that seeks to determine the functional requirements for a generalized DBMS for the NASA/OSTA and related data bases are examined. Future problems and possibilities with the use of DBMS technology are also considered. A list of recommendations for NASA/OSTA data systems is included.

  14. Power oscillation suppression by robust SMES in power system with large wind power penetration

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  15. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  16. Pentek metal coating removal system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek metal coating removal system consists of the ROTO-PEEN Scaler, CORNER-CUTTER(R), and VAC-PAC(R). The system is designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M ROTO-PEEN tungsten carbide cutters, while the CORNER-CUTTER(R) uses solid needles for descaling activities. These are used with the VAC-PAC(R) vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each exposure is recommended, since the outdoor environment where the testing demonstration took place may skew the results. It is feasible that dust and noise levels will be higher in an enclosed operating environment. Other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  17. Gamma-ray imaging system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m{sup 2} versus a static measurement of a unit cost of $1.61/m{sup 2} for the baseline.

  18. Wind for Schools Project Power System Brief

    SciTech Connect

    Not Available

    2007-08-01

    This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

  19. Knowledge-based systems for power management

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.

    1992-01-01

    NASA-Marshall's Electrical Power Branch has undertaken the development of expert systems in support of further advancements in electrical power system automation. Attention is given to the features (1) of the Fault Recovery and Management Expert System, (2) a resource scheduler or Master of Automated Expert Scheduling Through Resource Orchestration, and (3) an adaptive load-priority manager, or Load Priority List Management System. The characteristics of an advisory battery manager for the Hubble Space Telescope, designated the 'nickel-hydrogen expert system', are also noted.

  20. State estimation for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Williamson, Susan H.; Sheble, Gerald B.

    1990-01-01

    A state estimator appropriate for spacecraft power systems is presented. Phasor voltage and current measurements are used to determine the system state. A weighted least squares algorithm with a multireference transmission cable model is used. Bad data are identified and resolved. Once the bad data have been identified, they are removed from the measurement set and the system state can be estimated from the remaining data. An observability analysis is performed on the remaining measurements to determine if the system state can be found from the reduced measurement set. An example of the algorithm for a sample spacecraft power system is presented.

  1. PROJECT W-551 SUMMARY INFORMATION FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION

    SciTech Connect

    AR, TEDESCHI

    2008-08-11

    This report provides summary data for use by the decision board to assess and select the final technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-fonnaldebyde resin. This document provides a summary of comparative data against prior weighted criteria to support technology selection. Supporting details and background for this summary are documented in the separate report, RPP-RPT-37741.

  2. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  3. Innovative technology summary report: mobile automated characterization system

    SciTech Connect

    1999-04-01

    The Mobile Automated Characterization System (MACS) has been developed by Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) for the U.S. Department of Energy's (DOE) Robotics Technology Development Program as an automated floor surface contamination characterization system. MACS was designed for use by Health Physics (HP) personnel in the performance of floor surveys of known or suspected contaminated areas, to be used during any floor characterization task which has significant open areas requiring radiological surveys. MACS was designed to automate the collection, storage and analysis of large, open floor areas, relieving the HP personnel of this portion of the floor characterization task. MACS does not require a dedicated full time operator and can be setup by the normal HP staff to survey the open areas while other techniques are used on the more constrained areas. The HP personnel performing the other characterization activities can monitor the MACS progress and address any problems encountered by MACS during survey operations. MACS is designed for unattended operation and has safety and operational monitoring functions which will safely shut the system down if any difficulties are encountered. During survey operations, MACS generates a map of surveyed areas with color-coding indicating radiation levels. This map is displayed on the control console monitor during operation and can be printed for survey result documentation. MACS produces data files containing data for all sensors used during a survey, providing a complete record of samples taken and contamination levels found for all areas traversed during a survey. This data can be processed to produce tabular output of the survey results.

  4. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    SciTech Connect

    Not Available

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  5. The AMSC mobile satellite system: Design summary and comparative analysis

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.

    1989-01-01

    Mobile satellite communications will be provided in the United States by the American Mobile Satellite Consortium (AMSC). Telesat Mobile, Inc. (TMI) and AMSC are jointly developing MSAT, the first regional Mobile Satellite Service (MSS) system. MSAT will provide diverse mobile communications services - including voice, data and position location - to mobiles on land, water, and in the air throughout North America. Described here are the institutional relationships between AMSC, TMI and other organizations participating in MSAT, including the Canadian Department of Communications and NASA. The regulatory status of MSAT in the United States and international allocations to MSS are reviewed. The baseline design is described.

  6. Space shuttle system program definition. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study for the selection of a low cost shuttle system for design and development was conducted. The objective of the final study was to examine and penetrate the major technical and cost issues affecting the choice of the following: (1) liquid propulsion recoverable or solid propulsion recoverable booster, (2) parallel burn/parallel mount or series burn/tandem mount configurations, and (3) payload weight and payload bay size of the orbiter. The matrix of program options which were considered in the study is developed.

  7. Cargo Logistics Airlift Systems Study (CLASS). Volume 5: Summary

    NASA Technical Reports Server (NTRS)

    Burby, R. J.; Kuhlman, W. H.

    1980-01-01

    Findings and conclusions derived during the study of freighter aircraft requirements to the year 2008 are summarized. These results represent the stepping off point for the much needed coordinated planning efforts by government agencies, the airlines, the users, and the aircraft manufacturers. The methodology utilized in the investigations is shown. The analysis of the current system encompassed evaluations of the past and current cargo markets and on sight surveys of airport and cargo terminals. The findings that resulted provided the basis for formulating the case study procedures, developing the future scenario, and developing the future cargo market demand.

  8. Predictive monitoring research: Summary of the PREMON system

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.; Sellers, Suzanne M.; Atkinson, David J.

    1987-01-01

    Traditional approaches to monitoring are proving inadequate in the face of two important issues: the dynamic adjustment of expectations about sensor values when the behavior of the device is too complex to enumerate beforehand, and the selective but effective interpretation of sensor readings when the number of sensors becomes overwhelming. This system addresses these issues by building an explicit model of a device and applying common-sense theories of physics to model causality in the device. The resulting causal simulation of the device supports planning decisions about how to efficiently yet reliably utilize a limited number of sensors to verify correct operation of the device.

  9. Feasible eigenvalue sensitivity for large power systems

    SciTech Connect

    Smed, T. . Dept. of Electric Power Systems)

    1993-05-01

    Traditional eigenvalue sensitivity for power systems requires the formulation of the system matrix, which lacks sparsity. In this paper, a new sensitivity analysis, derived for a sparse formulation, is presented. Variables that are computed as intermediate results in established eigen value programs for power systems, but not used further, are given a new interpretation. The effect of virtually any control action can be assessed based on a single eigenvalue-eigenvector calculation. In particular, the effect of active and reactive power modulation can be found as a multiplication of two or three complex numbers. The method is illustrated in an example for a large power system when applied to the control design for an HVDC-link.

  10. dc power system for deuteron accelerator

    SciTech Connect

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  11. System evaluations of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    1992-01-01

    The major technology options for high-energy FELs and adaptive optics available to the Space Laser Energy (SELENE) program are reviewed. Initial system evaluations of these options are described. A feasibility assessment of laser power beaming is given.

  12. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  13. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  14. Space nuclear power systems for extraterrestrial basing

    NASA Technical Reports Server (NTRS)

    Lance, J. R.; Chi, J. W. H.

    1989-01-01

    Comparative analyses reveal that the nuclear power option significantly reduces the logistic burden required to support a lunar base. The paper considers power levels from tens of kWe for early base operation up to 2000 kWe for a self-sustaining base with a CELSS. It is shown that SP-100 and NERVA derivative reactor (NDR) technology for space power can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are described.

  15. The Lebanese electric power system operational problems

    SciTech Connect

    Yehia, M.; Saidi, M.; Diab, H.; Kabalan, K. )

    1991-09-01

    This article deals with the analysis of the existing practical problems in the Lebanese electric power system and provides guidelines for future research and strategies for solving the operational problems which are now facing the system. These problems are partly due, first, to the socioeconomic situation in Lebanon after 14 years of a devastating war and second, to the particularity of the Lebanese system.

  16. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  17. Satellite power system (SPS) initial insurance evaluation

    SciTech Connect

    1980-09-01

    The beginning of a process to educate the insurance industry about the Satellite Power System is reported. The report is divided into three sections. In the first section a general history describes how space risks are being insured today. This is followed by an attempt to identify the major risks inherent to the SPS. The final section presents a general projection of insurance market reactions to the Satellite Power System.

  18. Thermoelectric power generation system optimization studies

    NASA Astrophysics Data System (ADS)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  19. Systems autonomy technology: Executive summary and program plan

    NASA Technical Reports Server (NTRS)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  20. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    SciTech Connect

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.