Science.gov

Sample records for power transmission lines

  1. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  2. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Power transmission lines. 644.431 Section 644... Power transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus... power transmission line and the right of way acquired for its construction is needed for or adaptable...

  3. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Power transmission lines. 644.431 Section 644... Power transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus... power transmission line and the right of way acquired for its construction is needed for or adaptable...

  4. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Power transmission lines. 644.431 Section 644.431... transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus Property Act of... transmission line and the right of way acquired for its construction is needed for or adaptable to...

  5. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Power transmission lines. 644.431 Section 644.431... transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus Property Act of... transmission line and the right of way acquired for its construction is needed for or adaptable to...

  6. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Power transmission lines. 644.431 Section 644.431... transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus Property Act of... transmission line and the right of way acquired for its construction is needed for or adaptable to...

  7. Five Mass Power Transmission Line of a Ship Computer Modelling

    NASA Astrophysics Data System (ADS)

    Kazakoff, Alexander Borisoff; Marinov, Boycho Ivanov

    2016-03-01

    The work, presented in this paper, appears to be a natural continuation of the work presented and reported before, on the design of power transmission line of a ship, but with different multi-mass model. Some data from the previous investigations are used as a reference data, mainly from the analytical investigations, for the developed in the previ- ous study, frequency and modal analysis of a five mass model of a power transmission line of a ship. In the paper, a profound dynamic analysis of a concrete five mass dynamic model of the power transmission line of a ship is performed using Finite Element Analysis (FEA), based on the previously recommended model, investigated in the previous research and reported before. Thus, the partially validated by frequency analysis five mass model of a power transmission line of a ship is subjected to dynamic analysis. The objective of the work presented in this paper is dynamic modelling of a five mass transmission line of a ship, partial validation of the model and von Mises stress analysis calculation with the help of Finite Element Analysis (FEA) and comparison of the derived results with the analytically calculated values. The partially validated five mass power transmission line of a ship can be used for definition of many dy- namic parameters, particularly amplitude of displacement, velocity and acceleration, respectively in time and frequency domain. The frequency behaviour of the model parameters is investigated in frequency domain and it corresponds to the predicted one.

  8. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources

    NASA Astrophysics Data System (ADS)

    Reale, D. V.; Parson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.

  9. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources.

    PubMed

    Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW. PMID:27036802

  10. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  11. A study of electric power transmission lines for use on the lunar surface

    SciTech Connect

    Gordon, L.B.; Gaustad, K.L. )

    1991-01-10

    Analytical models have been developed to study the operating characteristics of electrical transmission lines for use on the lunar surface. Important design considerations for a transmission line operating on the lunar surface are mass, temperature, and efficiency. Transmission line parameters which impact these considerations include voltage, power loss, and waveform. The electrical and thermal models developed are used to calculate transmission line mass, size, and temperature as a function of voltage, geometry, waveform, location, and efficiency. The analyses include AC and DC for above and below ground operation. Geometries studied include a vacuum-insulated, two-wire transmission line and a solid-dielectric insulated, coaxial transmission line. A brief discussion of design considerations and the models developed is followed by results for parameter studies for both DC and AC transmission lines.

  12. Performance analysis of radiation cooled dc transmission lines for high power space systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1985-01-01

    As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on the power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.

  13. Performance analysis of radiation cooled dc transmission lines for high power space systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1985-01-01

    As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.

  14. Power market analysis and potential revenues of new transmission lines in a deregulated environment.

    SciTech Connect

    Koritarov, V. S.; Veselka, T. D.; Trouille, B.

    2002-05-15

    This paper describes an approach that was developed to analyze the market potential for power transactions via proposed transmission lines among the electric power utilities of Macedonia, Bulgaria, and Albania. The approach uses an integrated modeling framework consisting of several computer models that estimate the financial and economic benefits of constructing new transmission lines. The integrated model simulates open power markets under several scenarios that include cases with and without the proposed interconnections. The approach estimates power transactions among the three Balkan utility systems and the benefits of coordinated or joint system operations, including short-term power sales agreements.

  15. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  16. The effect analysis of strain rate on power transmission tower-line system under seismic excitation.

    PubMed

    Tian, Li; Wang, Wenming; Qian, Hui

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  17. 78 FR 76140 - Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...The U.S. Department of Energy (DOE) is extending the public comment period for the Champlain Hudson Power Express Transmission Line Project Draft Environmental Impact Statement (DOE/EIS-0447). The Draft EIS evaluates the environmental impacts of DOE's proposed Federal action of issuing a Presidential permit to the Applicant, Champlain Hudson Power Express, Inc. (CHPEI), to construct, operate,......

  18. High-Power Ka-Band Transmission Line with a Frequency Bandwidth of 1 GHZ

    NASA Astrophysics Data System (ADS)

    Bogdashov, A. A.; Denisov, G. G.; Samsonov, S. V.; Gachev, I. G.; Dominyuk, Ya. V.; Murzin, V. N.; Levitan, B. A.

    2016-03-01

    We present experimental results on a high-power transmission line from the broadband pulsed Ka-band gyro-TWT to the phased antenna array. The transmission line is designed to operate in a pulse-periodic regime with a pulse width of up to 250 μs, a duty factor of 8, and an average output power of up to 15 kW. Amplitude-frequency and phase-frequency characteristics of the transmission line were measured at a low power level. It is shown that the nonlinearity of the phase-frequency characteristic does not exceed ±10° in the 34 ± 0.5 GHz frequency band.

  19. Transmission line design for a power distribution system at 20 kHz for aircraft

    NASA Technical Reports Server (NTRS)

    Zelby, L. W.; Mathes, J. B.; Shawver, J. W.

    1986-01-01

    A low inductance, low characteristic impedance transmission line was designed for a 20 kHz power distribution system. Several different conductor configurations were considered: strip lines, interdigitated metal ribbons, and standard insulated wires in multiwire configurations (circular and rectangular cylindrical arrangements). The final design was a rectangular arrangement of multiple wires of the same gauge with alternating polarities from wire to wire. This offered the lowest inductance per unit length (on the order of several nanohenries/meter) and the lowest characteristic impedance (on the order of one Ohm). Standard multipin connectors with gold-plated elements were recommended with this transmission line, the junction boxes to be internally connected with flat metal ribbons for low inductance, and the line to be constructed in sections of suitable length. Computer programs for the calculation of inductance of multiwire lines and of capacitances of strip lines were developed.

  20. Lumped-element model of a tapered transmission line for impedance matching in a pulsed power system

    NASA Astrophysics Data System (ADS)

    Lee, Kun-A.; Ko, Kwang-Cheol

    2016-07-01

    In a pulsed power system, impedance matching is one of the significant factors for increasing the efficiency of the system. One of the most general methods for impedance matching is to use a tapered transmission line. Because the characteristics of a tapered transmission line are changed continuously according to its position, modeling the tapered transmission line by using lumped elements is difficult. In this study, we investigated a tapered transmission line to match the impedance of power supply to that of a load by using lumped elements especially in a pulsed power system. In modeling the tapered transmission line, we used the concept of a transmission, and we introduced an efficient modeling method. We propose a simulation model based on the investigation results. The results of the study will be useful for research on tapered transmission lines.

  1. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    SciTech Connect

    Reale, D. V. Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  2. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    PubMed

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance. PMID:24880394

  3. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Reale, D. V.; Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  4. Low-loss Transmission Lines for High-power Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio Alessandro; Jawla, Sudheer Kumar; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-07-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE11 mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE11 mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE11 mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends.

  5. Low-Loss Transmission Lines for High-Power Terahertz Radiation.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer K; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-07-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE(11) mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE(11) mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE(11) mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends. PMID:23162673

  6. Low-Loss Transmission Lines for High-Power Terahertz Radiation

    PubMed Central

    Nanni, Emilio A.; Jawla, Sudheer K.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE11 mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE11 mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE11 mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends. PMID:23162673

  7. Development of traveling wave resonator based test bed for high power transmission line component testing

    NASA Astrophysics Data System (ADS)

    Jha, Akhil; Harikrishna, JVS; Ajesh, P.; Anand, Rohit; Trivedi, Rajesh; Mukherjee, Aparajita

    2015-12-01

    India is responsible for delivery of 8+1(prototype) RF sources to ITER Organization. Each RF source will provide 2.5MW of RF power at 2 VSWR in the frequency range of 35 to 65MHz. Eight such RF sources will generate total 20MW of RF power. A large number of high power transmission line components are required for connecting various stages of RF source. To test these passive transmission line components at high power, prior to connecting with RF source system, a test facility is required. India is developing a 3MW test facility based on the concept of Traveling Wave Resonator (TWR) for testing of transmission line components. TWR is basically a ring resonator which will build high power under certain operation condition at resonant frequency (˜55MHz in this case). In TWR, power is fed to the ring via a directional coupler continuously which leads to development of high circulating power in the ring. The voltage and current magnitude inside the ring increases with the increasing circulating power. Detailed RF simulation and design of the TWR test bed has been done using high frequency simulator Microwave Studio (MWS). Calculations done for the ring gain, transmission loss, resonance frequency etc. and are verified with the simulation results. Concept validated using 3-1/8 inch prototype TWR test bed, where experiments were carried out with a ˜10dB (λ/4 coupled) coupler to feed the ring. Ring gain of ˜13.24dB (˜21times) was achieved with ˜0.17 dB of ring loss. Around 9.2 kW ring power is achieved with an input power of 440W. At present, the 3-1/8inch TWR test bed is being upgraded with a ˜15dB coupler to achieve ring gain ˜19-20dB (˜80-100 times). This concept will be finally adopted for 12inch TWR test bed to achieve 3MW ring power with ˜30-40kW of input power. In this paper, detailed design, simulation, test results out of prototype activity and future plan for establishing MW level transmission line test bed is described.

  8. Theory and simulation of high-power microwave generation in a magnetically insulated transmission line oscillator

    NASA Astrophysics Data System (ADS)

    Lemke, Raymond W.; Clark, Collins M.

    1987-10-01

    The magnetically insulated transmission line (MITE-LINE) oscillator is an electron beam diode comprised of a field emitting cathode and a corrugated anode. The device is similar to a linear magnetron except that the insulating magnetic field is self-generated. The self-insulating property makes this device a robust high-power microwave tube. Using the thin-beam approximation a dispersion relation for a cylindrical MITE-LINE oscillator is derived. The dispersion relation is used to predict frequency and growth rate of the microwave generating instability. Analytical results are compared with CCUBE particle simulations.

  9. Theory and simulation of high-power microwave generation in a magnetically insulated transmission line oscillator

    SciTech Connect

    Lemke, R.W.; Collins Clark, M.

    1987-10-15

    The magnetically insulated transmission line (MITE-LINE) oscillator is an electron beam diode comprised of a field emitting cathode and a corrugated anode. The device is similar to a linear magnetron except that the insulating magnetic field is self-generated. The self-insulating property makes this device a robust high-power microwave tube. Using the thin-beam approximation we have derived a dispersion relation for a cylindrical MITE-LINE oscillator. The dispersion relation is used to predict frequency and growth rate of the microwave generating instability. Analytical results are compared with c-smcapsc-smcapsu-smcapsb-smcapse-smcaps particle simulations.

  10. Design and fabrication of the high-power RF transmission line into the PEFP linac tunnel

    NASA Astrophysics Data System (ADS)

    Seol, Kyung-Tae; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub

    2012-07-01

    The 100-MeV proton linear accelerator (linac) for the Proton Engineering Frontier Project (PEFP) has been developed and will be installed at the Gyeong-ju site. For the linac, a total of 11 sets of RF systems are required, and the waveguide layout was fixed to install high-power RF (HPRF) systems. One of the important interfaces with the building construction is the high-power radio-frequency (HPRF) transmission line embedded in the tunnel, which is used to transmit 1-MW RF power to each cavity in the tunnel. The waveguide section penetrating into the linac tunnel was designed with a bending structure for radiation shielding, and the dependence of its voltage standing-wave ratio (VSWR) on the chamfer length of the bending was calculated. The HPRF transmission line was fabricated into a piece of waveguide to prevent moisture and any foreign debris inside the 2.5-m thick concrete block. Air leakage was checked with a pressure of 0.25 psig of nitrogen gas, and a maximum VSWR of 1.196 was obtained by measuring the vector reflection coefficients with the quarter-wave transmission section. In this paper, the design and the fabrication of the HPRF transmission line into the PEFP linac tunnel are presented.

  11. Multivariable time series prediction for the icing process on overhead power transmission line.

    PubMed

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653

  12. Multivariable Time Series Prediction for the Icing Process on Overhead Power Transmission Line

    PubMed Central

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653

  13. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOEpatents

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  14. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOEpatents

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  15. Performance Of The DIII-D ECH High Power Transmission Lines And Launching Systems

    NASA Astrophysics Data System (ADS)

    Cengher, Mirela; Lohr, J.; Gorelov, Y.; Torrezan, A.; Ponce, D.; Moeller, C.; Ellis, R. A.; Kolemen, E.

    2015-11-01

    The Electron Cyclotron Heating (ECH) transmission system on the DIII D tokamak consists of corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. Total power injected into plasma can reach up to 3.5 MW, with pulse length up to 5 seconds. The ECH power injected to the tokamak from each gyrotron is measured on a shot-to-shot basis and shows individual average injected powers from a gyrotron into the plasma between 540 and 700 kW. The transmission coefficient including the waveguide line and the MOU is between -1.04 dB and -1.43 dB. The maximum ECH energy injected into DIII-D is 16.6 MJ. The HE11 mode content is over 85 % for all the lines. The four dual waveguide launchers have increased poloidal scanning speed, and can steer the RF beams 40 degrees poloidally in 200 ms, with real-time poloidal motion control by the plasma control system. A new method of in-situ calibration of the mirror angle was used in conjunction with the upgrading of the encoders and motors for the launchers. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.

  16. Alleviation SSR and Low Frequency Power Oscillations in Series Compensated Transmission Line using SVC Supplementary Controllers

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Kumar, Narendra

    2016-07-01

    In this work, supplementary sub-synchronous damping controllers (SSDC) are proposed for damping sub-synchronous oscillations in power systems with series compensated transmission lines. Series compensation have extensively been used as effective means of increasing the power transfer capability of a transmission lines and improving transient stability limits of power systems. Series compensation with transmission lines may cause sub-synchronous resonance (SSR). The eigenvalue investigation tool is used to ascertain the existence of SSR. It is shown that the addition of supplementary controller is able to stabilize all unstable modes for T-network model. Eigenvalue investigation and time domain transient simulation of detailed nonlinear system are considered to investigate the performance of the controllers. The efficacies of the suggested supplementary controllers are compared on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation in Matlab/Simulink environment. Supplementary SSDC are considered in order to compare effectiveness of SSDC during higher loading in alleviating the small signal stability problem.

  17. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  18. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Romanchenko, I. V.; Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-01

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  19. K-Band Power Enbedded Transmission Line (ETL) MMIC Amplifiers for Satellite Communication Applications

    NASA Technical Reports Server (NTRS)

    Tserng, Hua-Quen; Ketterson, Andrew; Saunier, Paul; McCarty, Larry; Davis, Steve

    1998-01-01

    The design, fabrication, and performance of K-band high-efficiency, linear power pHEMT amplifiers implemented in Embedded Transmission Line (ETL) MMIC configuration with unthinned GaAs substrate and topside grounding are reported. A three-stage amplifier achieved a power-added efficiency of 40.5% with 264 mW output at 20.2 GHz. The linear gain is 28.5 dB with 1-dB gain compression output power of 200 mW and 31% power-added efficiency. The carrier-to-third-order intermodulation ratio is approx. 20 dBc at the 1-dB compression point. A RF functional yield of more than 90% has been achieved.

  20. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or

  1. Losses at magnetic nulls in pulsed-power transmission line systems

    NASA Astrophysics Data System (ADS)

    Mendel, C. W.; Pointon, T. D.; Savage, M. E.; Seidel, D. B.; Magne, I.; Vézinet, R.

    2006-04-01

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  2. Losses at magnetic nulls in pulsed-power transmission line systems

    SciTech Connect

    Mendel, C.W. Jr.; Pointon, T.D.; Savage, M.E.; Seidel, D.B.; Magne, I.; Vezinet, R.

    2006-04-15

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  3. Losses at magnetic nulls in pulsed-power transmission line systems.

    SciTech Connect

    Magne, I.; Savage, Mark Edward; Seidel, David Bruce; Mendel, Clifford Will, Jr.; Pointon, Timothy David; Vezinet, R.

    2004-08-01

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  4. Concepts of static VAR system control for enhancing power transfer in long transmission lines

    SciTech Connect

    Padiyar, K.R. . Dept. of Electrical Communication Engineering); Varma, R.K. . Dept. of Electrical Engineering)

    1990-01-01

    This paper is conserved with the influence of different levels of complexity in modelling various constituent subsystems on the dynamic stability of power systems compensated by static var systems (SVS) operating on pure voltage control. The system components investigated include thyristor controlled reactor (TCR) transients, SVS delays, network transients, the synchronous generator and automatic voltage regulator (AVR). An overall model is proposed which adequately describes the system performance for small signal perturbations. The SVS performance is validated through detailed nonlinear simulation on a physical simulator. Static VAR systems are finding increased application in present day power systems due to their fast controllability for enhancement of dynamic and transient stability limits, control of dynamic overvoltages, damping of torsional oscillations, improvement in HVDC converter terminal performance, etc. In long transmission lines, a significant improvement in power transfer can be achieved by connecting an SVS at the midpoint, which is actuated by a control signal derived from local bus voltage.

  5. Series Transmission Line Transformer

    DOEpatents

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  6. 18 CFR 2.2 - Transmission lines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transmission lines. 2.2... Under the Federal Power Act § 2.2 Transmission lines. In a public statement dated March 7, 1941, the Commission announced its determination that transmission lines which are not primary lines transmitting...

  7. 18 CFR 2.2 - Transmission lines.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transmission lines. 2.2... Under the Federal Power Act § 2.2 Transmission lines. In a public statement dated March 7, 1941, the Commission announced its determination that transmission lines which are not primary lines transmitting...

  8. 18 CFR 2.2 - Transmission lines.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transmission lines. 2.2... Under the Federal Power Act § 2.2 Transmission lines. In a public statement dated March 7, 1941, the Commission announced its determination that transmission lines which are not primary lines transmitting...

  9. 18 CFR 2.2 - Transmission lines.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transmission lines. 2.2... Under the Federal Power Act § 2.2 Transmission lines. In a public statement dated March 7, 1941, the Commission announced its determination that transmission lines which are not primary lines transmitting...

  10. 18 CFR 2.2 - Transmission lines.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Transmission lines. 2.2... Under the Federal Power Act § 2.2 Transmission lines. In a public statement dated March 7, 1941, the Commission announced its determination that transmission lines which are not primary lines transmitting...

  11. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source.

    PubMed

    Johnson, J M; Reale, D V; Krile, J T; Garcia, R S; Cravey, W H; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-05-01

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed. PMID:27250448

  12. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source

    NASA Astrophysics Data System (ADS)

    Johnson, J. M.; Reale, D. V.; Krile, J. T.; Garcia, R. S.; Cravey, W. H.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2016-05-01

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  13. Transmission Line Security Monitor

    SciTech Connect

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  14. Transmission Line Security Monitor

    ScienceCinema

    None

    2013-05-28

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  15. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOEpatents

    Winkelman, Paul F.

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  16. Real-time simulation of power transmission lines using Marti model with optimal fitting on dual-DSP card

    SciTech Connect

    Dufour, C.; Le-Huy, H.; El Hakimi, A.; Soumagne, J.C.

    1996-01-01

    Real-time simulation of a small power network containing a Marti modeled transmission line is made using 2 parallel DSP`s. A new fitting method is used in the modeling of the Marti line which is optimized with regards to the fitting error curve. Results are presented which show the time costs of the Marti line modeling versus constant-parameter line modeling and the time savings by using two parallel DSP`s.

  17. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  18. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    SciTech Connect

    Romanchenko, I. V. Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-07

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  19. 41 CFR 102-75.380 - May power transmission lines and rights-of-way be disposed of in other ways?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May power transmission... REGULATION REAL PROPERTY 75-REAL PROPERTY DISPOSAL Surplus Real Property Disposal Power Transmission Lines § 102-75.380 May power transmission lines and rights-of-way be disposed of in other ways? Yes,...

  20. 41 CFR 102-75.380 - May power transmission lines and rights-of-way be disposed of in other ways?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false May power transmission... REGULATION REAL PROPERTY 75-REAL PROPERTY DISPOSAL Surplus Real Property Disposal Power Transmission Lines § 102-75.380 May power transmission lines and rights-of-way be disposed of in other ways? Yes,...

  1. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  2. Investigation of potential driver modules and transmission lines for a high frequency power system on the space station

    NASA Technical Reports Server (NTRS)

    Brush, Harold T.

    1986-01-01

    The feasibility of using Series Resonant Inverter as the driver module for high frequency power system on the Space Station was assessed. The performance of the Series Resonant Inverter that was used in the testing of the single-phase, 2.0-kw resonant AC power system breadboard is summarized. The architecture is descirbed and the driver modules of the 5.0 kw AC power system breadboard are analyzed. An investigation of the various types of transmission lines is continued. Measurements of equivalent series resistor and inductor and equivalent parallel capacitors are presented. In particular, a simplified approach is utilized to describe the optimal transmission line.

  3. Treatment of biodiversity issues in impact assessment of electricity power transmission lines: A Finnish case review

    SciTech Connect

    Soederman, Tarja . E-mail: tarja.soderman@ymparisto.fi

    2006-05-15

    The Environmental Impact Assessment (EIA) process concerning the route of a 400 kV power transmission line between Loviisa and Hikiae in southern Finland was reviewed in order to assess how biodiversity issues are treated and to provide suggestions on how to improve the effectiveness of treatment of biodiversity issues in impact assessment of linear development projects. The review covered the whole assessment process, including interviews of stakeholders, participation in the interest group meetings and review of all documents from the project. The baseline studies and assessment of direct impacts in the case study were detailed but the documentation, both the assessment programme and the assessment report, only gave a partial picture of the assessment process. All existing information, baseline survey and assessment methods should be addressed in the scoping phase in order to promote interaction between all stakeholders. In contrast to the assessment of the direct effects, which first emphasized impacts on the nationally important and protected flying squirrel but later expanded to deal with the assessment of impacts on ecologically important sites, the indirect and cumulative impacts of the power line were poorly addressed. The public was given the opportunity to become involved in the EIA process. However, they were more concerned with impacts on their properties and less so on biodiversity and species protection issues. This suggests that the public needs to become more informed about locally important features of biodiversity.

  4. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    SciTech Connect

    Han, S. T.; Comfoltey, E. N.; Shapiro, Michael; Sirigiri, Jagadishwar R.; Tax, David; Temkin, Richard J; Woskov, P. P.; Chang, Won; Rasmussen, David A

    2008-08-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3 {+-} 0.1 dB per miter bend using a VNA; and 0.22 {+-} 0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05 {+-} 0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications.

  5. Investigation of potential driver modules and transmission lines for a high frequency power system on the space station

    NASA Technical Reports Server (NTRS)

    Brush, H. T.

    1986-01-01

    The objective was to assess the feasibility of using the Series Resonant inverter as the driver module for the high frequency power system on the Space Station. This study evaluates the performance of the Series Resonant driver when it was operated with a dc input voltage and run through a series of tests to determine its start-up performance, response to load changes, load regulation, and efficiency. Also, this study compares the Series Resonant driver to another kind of driver that uses a Power Transistor snubber. An investigation of the various types of transmission lines is initiated. In particular, a simplified approach is utilized to describe the optimal transmission line.

  6. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  7. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  8. A Line Weighted Frequency Droop Controller for Decentralized Enforcement of Transmission Line Power Flow Constraints in Inverter-Based Networks

    SciTech Connect

    Ainsworth, Nathan G; Grijalva, Prof. Santiago

    2013-01-01

    Recent works have shown that networks of voltagesource inverters implementing frequency droop control may be analyzed as consensus-like networks. Based on this understanding, we show that enforcement of network line power flows can be viewed as an edge-preservation problem in a -disk dynamic interaction graph. Inspired by other works solving similar problems in other domains, we propose a line weighted frequency droop controller such that a network of all active buses implementing this controller enforces the specified line power flow constraints without need for communication. We provide simulation results verifying that our proposed controller limits line power to enforce constraints, and otherwise acts as a traditional droop controller.

  9. 77 FR 2268 - Dairyland Power Cooperative: CapX 2020 Hampton-Rochester-La Crosse Transmission Line Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Rural Utilities Service Dairyland Power Cooperative: CapX 2020 Hampton-Rochester-La Crosse Transmission Line Project AGENCY: Rural Utilities Service, USDA. ACTION: Notice of intent to extend public...

  10. 76 FR 78235 - Dairyland Power Cooperative: CapX 2020 Hampton-Rochester-La Crosse Transmission Line Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Rural Utilities Service Dairyland Power Cooperative: CapX 2020 Hampton-Rochester-La Crosse Transmission Line Project AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a...

  11. 77 FR 41369 - Dairyland Power Cooperative: CapX 2020 Hampton-Rochester-La Crosse Transmission Line Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Dairyland Power Cooperative: CapX 2020 Hampton-Rochester-La Crosse Transmission Line Project AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a...

  12. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    PubMed Central

    Han, S. T.; Comfoltey, E. N.; Shapiro, M. A.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Woskov, P. P.; Rasmussen, D. A.

    2008-01-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774

  13. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications.

    PubMed

    Han, S T; Comfoltey, E N; Shapiro, M A; Sirigiri, J R; Tax, D S; Temkin, R J; Woskov, P P; Rasmussen, D A

    2008-11-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774

  14. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  15. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; DeGrassie, John S.

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  16. Power transmission

    SciTech Connect

    Gunda, R.; McCarty, M.R.; Rode, M.A.

    1988-05-03

    This patent describes an electrohydraulic servo system which includes, in combination, a pressure compensated flow control servo valve for proportionally variably feeding hydraulic fluid to a load at a flow rate which is a predetermined proportional function of an electronic valve control signal, a variable output pump for coupling to a source of motive power to feed hydraulic fluid under pressure from a source to the servo valve, pump control means for controlling output of the pump, and an electronic servo control coupled to the valve and including means for receiving a first signal indicative of motion desired at the load, means for receiving a second signal indicative of actuation motion at the load and means for generating the valve control signal to the valve as a function of a difference between the first and second signals. The valve control signal is indicative of fluid flow velocity at the valve required to obtain the desired motion at the load, characterized in that the pump control means comprises: means for receiving the valve control signal, means for providing a signal indicative of fluid flow rate at the valve as the predetermined function of the valve control signal, and means for providing an output control signal to the pump as a function of the flow-indicative signal.

  17. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    NASA Astrophysics Data System (ADS)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  18. Number of lightning discharges causing damage to lightning arrester cables for aerial transmission lines in power systems

    SciTech Connect

    Nikiforov, E. P.

    2009-07-15

    Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces the number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.

  19. Drill string transmission line

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  20. Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    NASA Astrophysics Data System (ADS)

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2016-06-01

    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive suppression of the undesirable vibrations in the finite time. To compensate the supposed parametric uncertainties with unknown bands, proper adaption laws are introduced. To avoid the vibration devastating consequences as quickly as possible, appropriate control laws are designed. The vibration suppression in the finite time with supposed adaption and control laws is mathematically proved via Lyapunov finite time stability theory. Finally, to illustrate and validate the efficiency and robustness of the proposed finite time control scheme, a parametric case study with three piezoelectric actuators is performed. It is observed that the proposed active control strategy is more efficient and robust than the passive control methods.

  1. Application of fiber-optic bragg grating sensors in monitoring environmental loads of overhead power transmission lines.

    PubMed

    Bjerkan, L

    2000-02-01

    We demonstrate the capability of using fiber-optic sensors for measurements on environmental loads on a high-power, overhead transmission line. A trial system with three Bragg gratings, including a temperature reference, was installed on a 160-m span of a 60-kV line. An interrogation system with a tunable distributed Bragg reflector laser source was used. Several measurements of the induced loads on a conductor were recorded in various wind conditions. In particular, aeolian vibrations were frequently observed, and several measurements of this phenomenon were made. The results correlate well with simple theoretical predictions and visual observations. PMID:18337925

  2. Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films

    NASA Technical Reports Server (NTRS)

    Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.

    1991-01-01

    Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.

  3. Theory of magnetically insulated electron flows in coaxial pulsed power transmission lines

    NASA Astrophysics Data System (ADS)

    Lawconnell, Robert I.; Neri, Jesse

    1990-03-01

    The Cartesian magnetically insulated transmission line (MITL) theory of Mendel et al. [Appl. Phys. 50, 3830 (1979); Phys. Fluids 26, 3628 (1983)] is extended to cylindrical coordinates. A set of equations that describe arbitrary electron flows in cylindrical coordinates is presented. These equations are used to derive a general theory for laminar magnetically insulated electron flows. The laminar theory allows one to specify the potentials, fields, and densities across a coaxial line undergoing explosive electron emission at the cathode. The theory is different from others available in cylindrical coordinates in that the canonical momentum and total energy for each electron may be nonzero across the electron sheath. A nonzero canonical momentum and total energy for the electrons in the sheath allows the model to produce one-dimensional flows that resemble flows from lines with impedance mismatches and perturbing structures. The laminar theory is used to derive two new self-consistent cylindrical flow solutions: (1) for a constant density profile and (2) for a quadratic density profile of the form ρ=ρc[(r2m-r2)/(r2m-r2c)]. This profile is of interest in that it is similar to profiles observed in a long MITL simulation [Appl. Phys. 50, 4996 (1979)]. The theoretical flows are compared to numerical results obtained with two-dimensional (2-D) electromagnetic particle-in-cell (PIC) codes.

  4. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  5. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  6. Transmission Line Security Monitor: Final Report

    SciTech Connect

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  7. Birds on power lines

    NASA Astrophysics Data System (ADS)

    Arnaldo Redinz, José

    2014-07-01

    Why can a bird safely rest on a high-voltage power line? We discuss three effects that can lead to the development of voltages and currents in the bird's body. To explain the absence of electric shocks, we give numerical estimates of these voltages and currents obtained from the standard solution for the voltage along a two-wire transmission line.

  8. A Quantitative Transmission Line Experiment

    ERIC Educational Resources Information Center

    Johnston, D. C.; Silbernagel, B. G.

    1969-01-01

    Describes modifications of a commercially available strip-type transmission line, which makes possible reproducible measurements of standing waves on the line. Experimental data yield values for the characteristic impedance, phase velocity and line wavelength of radiation in the transmission line, and the dielectric constant of material in the…

  9. Numerical investigation of the physical model of a high-power electromagnetic wave in a magnetically insulated transmission line

    SciTech Connect

    Samokhin, A. A.

    2010-02-15

    An efficient numerical code for simulating the propagation of a high-power electromagnetic pulse in a vacuum transmission line is required to study the physical phenomena occurring in such a line, to analyze the operation of present-day megavolt generators at an {approx}10-TW power level, and to design such new devices. The main physical theoretical principles are presented, and the stability of flows in the near-threshold region at the boundary of the regime of magnetic self-insulation is investigated based on one-dimensional telegraph equations with electron losses. Numerical (difference) methods-specifically, a method of characteristics and a finite-difference scheme-are described and their properties and effectiveness are compared by analyzing the high-frequency modes.

  10. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    NASA Astrophysics Data System (ADS)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  11. EC Transmission Line Materials

    SciTech Connect

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  12. Transmission Line Series Compensation for Wind Energy Transmission

    NASA Astrophysics Data System (ADS)

    Palanichamy, Dr C., Prof; Wong, Y. C.

    2015-04-01

    Wind energy has demonstrated to be a clean, copious and absolutely renewable source of energy, and the large penetration of it into the power grid indicates that wind energy is considered an effective means of power generation, Transmission of wind energy from remote locations to load centers necessitates long transmission lines. Series compensation is a proven and economical transmission solution to address system power transfer strength, grid stability, and voltage profile issues of long transmission lines. In this paper, a programmable approach to determine the capacitive reactance of series capacitor and optimum location for its placement to achieve maximum power transfer gas been presented. The respective program with sample solutions has been provided for real-time applications.

  13. Electrical transmission line diametrical retainer

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  14. A novel high-density power energy harvesting methodology for transmission line online monitoring devices

    NASA Astrophysics Data System (ADS)

    Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen; Liu, Yilu

    2016-07-01

    This paper presents a novel energy-harvesting model which takes the primary current, secondary turns, dimension, the magnitude of magnetic flux density B, and the core loss resistance into consideration systematically. The relationship among the potential maximum output power, the dimension of energy harvesting coil (EHC), the load type of EHC, and the secondary turns is predicted by theoretical analysis and further verified by experiments. A high power density harvester is also developed and tested. It is shown that the power density of this novel harvester is 0.7 mW/g at 10 A, which is more than 2 times powerful than the traditional ones. Hence, it could lighten the half weight of the harvester at the same conditions.

  15. Single transmission line data acquisition system

    DOEpatents

    Fasching, George E.

    1984-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.

  16. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  17. Single and three-phase AC losses in HTS superconducting power transmission line prototype cables

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; Coulter, J.Y.; Fleshler, S.

    1997-11-01

    AC losses in two, one-meter-long lengths of HTS prototype multi-strand conductors (PMC`s) are measured with a temperature-difference calorimeter. Both single-phase and three-phase losses are examined with ac currents up to 1,000 A rms. The calorimeter, designed specifically for these measurements, has a precision of 1 mW. PMC {number_sign}1 has two helically-wound, non-insulated layers of HTS tape (19 tapes per layer), each layer wrapped with opposite pitch. PMC {number_sign}2 is identical except for insulation between the layers. The measured ac losses show no significant effect of interlayer insulation and depend on about the third power of the current--a result in agreement with the Bean-Norris model adapted to the double-helix configuration. The three-phase losses are a factor of two higher than those exhibited by a single isolated conductor, indicating a significant interaction between phases.

  18. HVDC power transmission technology assessment

    SciTech Connect

    Hauth, R.L.; Tatro, P.J.; Railing, B.D.; Johnson, B.K.; Stewart, J.R.; Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  19. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  1. 75 FR 25195 - Kake to Petersburg Transmission Line Intertie Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Forest Service Kake to Petersburg Transmission Line Intertie Project AGENCY: Forest Service, USDA. ACTION... operate a new electric transmission line intertie that would extend west across the Tongass National... transmission line that would transmit power at either 69 or 138 kilovolt (kV) and consist of single wood...

  2. Conservation with underground power lines

    SciTech Connect

    Graneau, P.

    1980-01-01

    The following aspects of underground power transmission lines are discussed: their contribution to area beautification; line losses and their causes; the energy conservation potential of large-conductor underground cables; reliability and outage advantages as compared with overhead lines; the history of underground systems; problems with polyethylene insulation; and the development and performance of sodium conductors for underground cables. (LCL)

  3. Feasibility study of monitoring of plasma etching chamber conditions using superimposed high-frequency signals on rf power transmission line.

    PubMed

    Kasashima, Y; Uesugi, F

    2015-10-01

    An in situ monitoring system that can detect changes in the conditions of a plasma etching chamber has been developed. In the system, low-intensity high-frequency signals are superimposed on the rf power transmission line used for generating plasma. The system measures reflected high-frequency signals and detects the change in their frequency characteristics. The results indicate that the system detects the changes in the conditions in etching chambers caused by the changes in the electrode gap and the inner wall condition and demonstrate the effectiveness of the system. The system can easily be retrofitted to mass-production equipment and it can be used with or without plasma discharge. Therefore, our system is suitable for in situ monitoring of mass-production plasma etching chambers. The system is expected to contribute to development of predictive maintenance, which monitors films deposited on the inner wall of the chamber and prevents equipment faults caused by misalignment of chamber parts in mass-production equipment. PMID:26520984

  4. Coaxial tube array space transmission line characterization

    NASA Technical Reports Server (NTRS)

    Switzer, Colleen A.; Bents, David J.

    1987-01-01

    The coaxial tube array tether/transmission line used to connect an SP-100 nuclear power system to the space station was characterized over the range of reactor-to-platform separation distances of 1 to 10 km. Characterization was done with respect to array performance, physical dimensions and masses. Using a fixed design procedure, a family of designs was generated for the same power level (300 kWe), power loss (1.5 percent), and meteoroid survival probability (99.5 percent over 10 yr). To differentiate between vacuum insulated and gas insulated lines, two different maximum values of the E field were considered: 20 kV/cm (appropriate to vacuum insulation) and 50 kV/cm (compressed SF6). Core conductor, tube, bumper, standoff, spacer and bumper support dimensions, and masses were also calculated. The results of the characterization show mainly how transmission line size and mass scale with reactor-to-platform separation distance.

  5. Coaxial tube array space transmission line characterization

    NASA Astrophysics Data System (ADS)

    Switzer, Colleen A.; Bents, David J.

    The coaxial tube array tether/transmission line used to connect an SP-100 nuclear power system to the space station was characterized over the range of reactor-to-platform separation distances of 1 to 10 km. Characterization was done with respect to array performance, physical dimensions and masses. Using a fixed design procedure, a family of designs was generated for the same power level (300 kWe), power loss (1.5 percent), and meteoroid survival probability (99.5 percent over 10 yr). To differentiate between vacuum insulated and gas insulated lines, two different maximum values of the E field were considered: 20 kV/cm (appropriate to vacuum insulation) and 50 kV/cm (compressed SF6). Core conductor, tube, bumper, standoff, spacer and bumper support dimensions, and masses were also calculated. The results of the characterization show mainly how transmission line size and mass scale with reactor-to-platform separation distance.

  6. Nonceramic insulators for transmission lines

    SciTech Connect

    Schneider, H.M. . High Voltage Transmission Research Center); Hall, J.F. ); Karady, G. ); Rendowden, J. )

    1989-10-01

    Progress in development of nonceramic transmission lines insulator technology is reviewed. The results of a survey to utilities in the United States are presented to indicate the range of applications, distribution by voltage class, appraisal of performance, and failure modes. Concerns expressed by utility representatives at a recent workshop are described and future research and standardization needs are presented.

  7. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  8. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  9. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  10. 75 FR 66750 - Albany-Eugene Transmission Line Rebuild Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Bonneville Power Administration Albany-Eugene Transmission Line Rebuild Project AGENCY: Bonneville Power... Transmission Line Rebuild Project EIS and requesting comments about the potential environmental impacts it should consider as it prepares the EIS for the proposed project. DATES: Written comments are due to...

  11. Wildlife and electric power transmission

    USGS Publications Warehouse

    Ellis, D.H.; Goodwin, J.G., Jr.; Hunt, J.R.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  12. Deep electromagnetic sounding of the lithosphere in the eastern Baltic (fennoscandian) shield with high-power controlled sources and industrial power transmission lines (FENICS experiment)

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Korotkova, T. G.; Kopytenko, Yu. A.; Ismagilov, V. S.; Petrishev, M. S.; Efimov, B. V.; Barannik, M. B.; Kolobov, V. V.; Prokopchuk, P. I.; Smirnov, M. Yu.; Vagin, S. A.; Pertel, M. I.; Tereshchenko, E. D.; Vasil'Ev, A. N.; Grigoryev, V. F.; Gokhberg, M. B.; Trofimchik, V. I.; Yampolsky, Yu. M.; Koloskov, A. V.; Fedorov, A. V.; Korja, T.

    2011-01-01

    The paper addresses the technique and the first results of a unique experiment on the deep tensor frequency electromagnetic sounding, the Fennoscandian Electrical conductivity from results of sounding with Natural and Controlled Sources (FENICS). In the experiment, Energy-1 and Energy-2 generators with power of up to 200 kW and two mutually orthogonal industrial 109- and 120-km-long power transmission lines were used. The sounding frequency range was 0.1-200 Hz. The signals were measured in the Kola-Karelian region, in Finland, on Svalbard, and in Ukraine at distances up to 2150 km from the source. The parameters of electric conductivity in the lithosphere are studied down to depths on the order of 50-70 km. A strong lateral homogeneity (the one-dimensionality) of a geoelectric section of the Earth's crust is revealed below depths of 10-15 km. At the same time, a region with reduced transverse crustal resistivity spread over about 80 000 square kilometers is identified within the depth interval from 20 to 40 km. On the southeast the contour of the anomaly borders the zone of deepening of the Moho boundary down to 60 km in Central Finland. The results are compared with the AMT-MT sounding data and a geodynamic interpretation of the obtained information is carried out.

  13. 77 FR 6554 - Zephyr Power Transmission, LLC; Pathfinder Power Transmission, LLC; Duke-American Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Energy Regulatory Commission Zephyr Power Transmission, LLC; Pathfinder Power Transmission, LLC; Duke-American Transmission Company, LLC; Notice of Petition for Declaratory Order Take notice that on January 30... (Commission), 18 CFR 381.302, Zephyr Power Transmission, LLC (Zephyr), Pathfinder Power Transmission, LLC...

  14. Complex magnetically insulated transmission line oscillator

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Shu, Ting; Li, Zhi-Qiang

    2008-08-01

    A magnetically insulated transmission line oscillator (MILO) is a crossed-field device designed specifically to generate microwave power at the gigawatt level, which is a major hotspot in the field of high-power microwaves (HPM) research at present. It is one of the major thrust for MILO development to improve the power conversion efficiency. In order to improve the power conversion efficiency of MILO, a complex MILO is presented and investigated theoretically and numerically, which comprises the MILO-1 and MILO-2. The MILO-2 is used as the load of the MILO-1. The theoretical analyses show that the maximum power conversion efficiency of the complex MILO has an increase of about 50% over the conventional load-limited MILO. The complex MILO is optimized with KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992), and the simulation results agree with the theoretical results.

  15. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  16. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  17. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  18. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  19. Free-Space Power Transmission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA Lewis Research Center organized a workshop on technology availability for free-space power transmission (beam power). This document contains a collection of viewgraph presentations that describes the effort by academia, industry, and the national laboratories in the area of high-frequency, high-power technology applicable to free-space power transmission systems. The areas covered were rectenna technology, high-frequency, high-power generation (gyrotrons, solar pumped lasers, and free electron lasers), and antenna technology.

  20. Transmission line icing measurement on photogrammetry method

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Ma, Xiaohong; Zhao, Lijin; Du, Hao; Luo, Hong; Mao, Xianyin; Tang, Min; Liu, Yawen

    2015-12-01

    Icing thickness parameter is the basic data for power sector to make decision for icing accident prevention. In this paper, a transmission line icing measurement method is proposed. It used the photogrammetry method to realize icing parameters measurement through the integration of high resolution camera, laser range finder and inertial measurement unit. Compared with traditional icing measurement method, this method is flexible and is the effective supplement of the fixed icing detection terminal. And its high accuracy measurement guarantees the reliability of the icing thickness parameters.

  1. RF Transmission Lines on Silicon Substrates

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    A review of RF transmission lines on silicon substrates is presented. Through measurements and calculated results, it is shown that attenuation is dominated by conductor loss if silicon substrates with a resistivity greater than 2500 Ohm-cm are used. Si passivation layers affect the transmission line attenuation; however, measured results demonstrate that passivation layers do not necessarily increase attenuation. If standard, low resistivity Si wafers must be used, alternative transmission lines such as thin film microstrip and Co-Planar Waveguide (CPW) on thick polyimide layers must be used. Measured results presented here show that low loss per unit length is achievable with these transmission lines.

  2. Reconfigurable transmission lines with memcapacitive materials

    NASA Astrophysics Data System (ADS)

    Pershin, Y. V.; Slipko, V. A.; Di Ventra, M.

    2015-12-01

    We study transmission lines made of memory capacitive (memcapacitive) materials. The transmission properties of these lines can be adjusted on demand using an appropriate sequence of pulses. In particular, we demonstrate a pulse combination that creates a periodic modulation of dielectric properties along the line. Such a structure resembles a distributed Bragg reflector having important optical applications. We present simulation results demonstrating all major steps of such a reconfigurable device operation including reset, programming, and transmission of small amplitude signals. The proposed reconfigurable transmission lines employ only passive memory materials and can be realized using available memcapacitive devices.

  3. Detonator comprising a nonlinear transmission line

    SciTech Connect

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  4. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  5. CMOS mixed-signal MODEM for data transmission and control of electrical household appliances using the low-voltage power line

    NASA Astrophysics Data System (ADS)

    Escalera, Sara; Dominguez-Matas, Carlos M.; Garcia-Gonzalez, Jose M.; Guerra, Oscar; Rodriguez-Vazquez, Angel

    2003-04-01

    This paper presents a CMOS mixed-signal MODEM ASIC for data transmission on the low-voltage power line. The circuit includes all the analog circuitry needed for input interfacing and modulation/demodulation (PLL-based frequency synthesis, slave filter banks with PLL master VCO for tuning, and decision circuitry) plus the logic circuitry needed for control purposes. To allow the communication between the electrical household appliances and a remote unit to control them as well as to reduce the cost, an unique mixed-signal ASIC, made of two parts, one operating at high frequencies and another operating at lower frequencies, has been designed. The High Frequencies Module must allow the connection with the external control systems and, to ensure reasonable robustness, has to be able to send and receive signals using at least two different channels (to avoid local and temporary degradations of the communication). The Low Frequencies Module is needed to manage the indoors communication. This module enables the transmission of signals within distances between 50 and 100 meters with a speed in the order of, but never less than, 100 bits/s. This link should be accomplished by using a frequency range in such a way that a maximum number of channels are disposable to allow the control of as many different in-house devices as possible. Again, to this end, two different tunable channels have to be simultaneously available: one to control the quality of the signal and the other to allow the effective communication.

  6. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  7. Laser power transmission.

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Christiansen, W. H.; Hertzberg, A.

    1971-01-01

    Description of studies which have led to the design of a conceptual device in which the limitation of transforming heat into coherent radiation can be examined. By exploring the basic thermodynamic relationships controlling the operation of this device, it is concluded that a closed-cycle gasdynamic laser is possible in which all of the shaft energy supplied can be turned into laser radiation. Hence, it is possible in principle to convert heat into coherent radiation with approximately the same efficiency with which heat may be converted into electricity. By modifying the closed-cycle-gasdynamic-laser system, this system can be operated in reverse and the incoming radiation may be used to pump the gas in the loop so that shaft power can be extracted. By carefully controlling the temperature distribution in this machine, laser energy can be converted into useful shaft energy with an efficiency approaching 1 .

  8. Effect of tornado loads on transmission lines

    SciTech Connect

    Ishac, M.F.; White, H.B.

    1995-01-01

    Of all the populated areas in Canada, southwestern Ontario has experienced the highest tornado incidence and faces the greatest tornado damage. About 1 or 2 tornadoes per 10,000 km{sup 2} can be expected there annually. The probability of a tornado strike at a given point is very small but the probability of a transmission line being crossed by a tornado is significant. The purpose of this paper is to review the literature related to tornadoes in Ontario and to investigate the effect of tornado loads on transmission lines. Based on this investigation a design basis tornado loading for transmission towers is proposed.

  9. Effect of tornado loads on transmission lines

    SciTech Connect

    Ishac, M.F.; White, H.B.

    1994-12-31

    Of all the populated areas in Canada, southwestern Ontario has experienced the highest tornado incidence and faces the greatest tornado damage. About 1 or 2 tornadoes per 10,000 km{sup 2} can be expected there annually. The probability of a tornado strike at a given point is very small but the probability of a transmission line being crossed by a tornado is significant. The purpose of this paper is to review the literature related to tornadoes in Ontario and to investigate the effect of tornado loads on transmission lines. Based on this investigation a design basis tornado loading for transmission towers is proposed.

  10. Single transmission line interrogated multiple channel data acquisition system

    DOEpatents

    Fasching, George E.; Keech, Jr., Thomas W.

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  11. Load-resistant coaxial transmission line

    DOEpatents

    Hall, David R.; Fox, Joe

    2006-01-03

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  12. Bird streamer flashovers on FPL transmission lines

    SciTech Connect

    Burnham, J.T.

    1995-04-01

    FPL transmission lines with excessive unknown cause outages were investigated and determined to have experiences bird streamer flashovers. Findings are extended to similar lines and the frequency of bird streamer occurrences are estimated. Outage patterns associated with bird streamer flashovers are presented.

  13. Upgrading a 24-in. gas transmission line

    SciTech Connect

    Stiles, R.E.

    1986-10-01

    Because of increasing population density, Texas Eastern Transmission Corp. removed an existing 24-in. gas line and replaced it with a higher yield line pipe with a greater wall thickness. Work was through exclusive lake subdivisions and across a golf course and required special construction techniques.

  14. Quasi-Optical Transmission Line for 94-GHz Radar

    NASA Technical Reports Server (NTRS)

    Perez, Raul M.; Veruttipong, Watt

    2008-01-01

    A quasi-optical transmission line (QOTL) has been developed as a low-loss transmission line for a spaceborne cloudobserving radar instrument that operates at a nominal frequency of 94 GHz. This QOTL could also readily be redesigned for use in terrestrial millimeter-wave radar systems and millimeter-wave imaging systems. In the absence of this or another lowloss transmission line, it would be necessary to use a waveguide transmission line in the original radar application. Unfortunately, transmission losses increase and power-handling capacities of waveguides generally decrease with frequency, such that at 94 GHz, the limitation on transmitting power and the combined transmission and reception losses (greater than 5 dB) in a waveguide transmission line previously considered for the original application would be unacceptable. The QOTL functions as a very-lowloss, three-port circulator. The QOTL includes a shaped input mirror that can be rotated to accept 94-GHz transmitter power from either of two high-power amplifiers. Inside the QOTL, the transmitter power takes the form of a linearly polarized beam radiated from a feed horn. This beam propagates through a system of mirrors, each of which refocuses the beam to minimize diffraction losses. A magnetically biased ferrite disc is placed at one of the foci to utilize the Faraday effect to rotate the polarization of the beam by 45 degrees. The beam is then transmitted via an antenna system. The radar return (scatter from clouds, and/or reflections from other objects) is collected by the same antenna and propagates through the Faraday rotator in the reverse of the direction of propagation of the transmitted beam. In the Faraday rotator, the polarization of the received signal is rotated a further 45 degrees, so that upon emerging from the Faraday rotator, the received beam is polarized at 90 with respect to the transmitted beam. The transmitted and received signals are then separated by a wire-grid polarizer.

  15. Project Plan for Taft-Bell 500 KV Transmission Line on Federal Lands Administrated by United States Department of Interior, Bureau of Land Management and United States Department of Agriculture Forest Service, Construction by Bonneville Power Administration.

    SciTech Connect

    Gillard, C.E.; Miller, C.S.

    1985-08-01

    The project described includes the Taft-Bell 500 kV Transmission Line. This facility crosses 52.05 miles of National Forest System lands, and 2.54 miles of lands managed by the Bureau of Land Management. Between the Coeur d'Alene River and Wallace, a 10.5 mile portion will parallel the Washington Water Power Company's Noxon-Wallace-Pine Creek 230 kV Transmission Line. BPA will do road construction and right-of-way clearing for both The Washington Water Power Company and BPA transmission lines in this parallel area. This Project Plan is a compilation of Points of Agreement. It is intended to serve as permanent documentation and as a field guide during the construction period.

  16. A Generalized Lossy Transmission-Line Model for Tunable Graphene-Based Transmission Lines with Attenuation Phenomenon.

    PubMed

    Wu, Yongle; Qu, Meijun; Liu, Yuanan

    2016-01-01

    To investigate the frequency shift phenomenon by inserting graphene, a generalized lossy transmission-line model and the related electrical parameter-extraction theory are proposed in this paper. Three kinds of graphene-based transmission lines with attenuation phenomenon including microstrip line, double-side parallel strip line, and uniplanar coplanar waveguide are analyzed under the common conditions where different chemical potentials are loaded on graphene. The values of attenuation constant and phase constant, and the real and imaginary parts of the characteristic impedance of transmission lines are extracted to analyze in details. When the attenuation constant and the reactance part of the characteristic impedance are approximately equal to zero, this kind of transmission line has low or zero insertion loss. On the contrary, the transmission line is under the radiation mode with obvious insertion loss. The phase constant changes linearly under the transmission mode and can be varied with changing of chemical potentials which attributes to the property of frequency tunability. Furthermore, a bandwidth reconfigurable uniplanar coplanar waveguide power divider is simulated to demonstrate that this theory can be applied to the design of three-port devices. In summary, this work provides a strong potential approach and design theory to help design other kinds of terahertz and mid-infrared reconfigurable devices. PMID:27553759

  17. A Generalized Lossy Transmission-Line Model for Tunable Graphene-Based Transmission Lines with Attenuation Phenomenon

    PubMed Central

    Wu, Yongle; Qu, Meijun; Liu, Yuanan

    2016-01-01

    To investigate the frequency shift phenomenon by inserting graphene, a generalized lossy transmission-line model and the related electrical parameter-extraction theory are proposed in this paper. Three kinds of graphene-based transmission lines with attenuation phenomenon including microstrip line, double-side parallel strip line, and uniplanar coplanar waveguide are analyzed under the common conditions where different chemical potentials are loaded on graphene. The values of attenuation constant and phase constant, and the real and imaginary parts of the characteristic impedance of transmission lines are extracted to analyze in details. When the attenuation constant and the reactance part of the characteristic impedance are approximately equal to zero, this kind of transmission line has low or zero insertion loss. On the contrary, the transmission line is under the radiation mode with obvious insertion loss. The phase constant changes linearly under the transmission mode and can be varied with changing of chemical potentials which attributes to the property of frequency tunability. Furthermore, a bandwidth reconfigurable uniplanar coplanar waveguide power divider is simulated to demonstrate that this theory can be applied to the design of three-port devices. In summary, this work provides a strong potential approach and design theory to help design other kinds of terahertz and mid-infrared reconfigurable devices. PMID:27553759

  18. Low-noise cryogenic transmission line

    NASA Technical Reports Server (NTRS)

    Norris, D.

    1987-01-01

    New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.

  19. Ecological benefits of dc power transmission

    SciTech Connect

    Kutuzova, N. B.

    2011-05-15

    The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

  20. Lecture 4: transmission lines and capacitors

    SciTech Connect

    Butcher, R.R.

    1980-01-01

    The topic of this lecture is pulse forming networks. The first item of discussion will be transmission lines because they are so prevalent, even if only in the form of coaxial cable. From there the subject will proceed to pulse-forming networks: the practical problems encountered with them, their advantages, and disadvantages. Capacitors will be our final topic, as they are the limiting factor in lumped transmission elements.

  1. Robust hyperchaotic synchronization via analog transmission line

    NASA Astrophysics Data System (ADS)

    Sadoudi, S.; Tanougast, C.

    2016-02-01

    In this paper, a novel experimental chaotic synchronization technique via analog transmission is discussed. We demonstrate through Field-Programmable Gate Array (FPGA) implementation design the robust synchronization of two embedded hyperchaotic Lorenz generators interconnected with an analog transmission line. The basic idea of this work consists in combining a numerical generation of chaos and transmitting it with an analog signal. The numerical chaos allows to overcome the callback parameter mismatch problem and the analog transmission offers robust data security. As application, this technique can be applied to all families of chaotic systems including time-delayed chaotic systems.

  2. Flux Cloning in Josephson Transmission Lines

    SciTech Connect

    Gulevich, D.R.; Kusmartsev, F.V.

    2006-07-07

    We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The 'baby' vortex arises at the moment when a 'mother' vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect.

  3. EC Transmission Line Risk Identification and Analysis

    SciTech Connect

    Bigelow, Tim S

    2012-04-01

    The purpose of this document is to assist in evaluating and planning for the cost, schedule, and technical project risks associated with the delivery and operation of the EC (Electron cyclotron) transmission line system. In general, the major risks that are anticipated to be encountered during the project delivery phase associated with the implementation of the Procurement Arrangement for the EC transmission line system are associated with: (1) Undefined or changing requirements (e.g., functional or regulatory requirements) (2) Underperformance of prototype, first unit, or production components during testing (3) Unavailability of qualified vendors for critical components Technical risks associated with the design and operation of the system are also identified.

  4. Atlas Transmission Line/Transition Design and Fabrication Status

    SciTech Connect

    Ballard, E.O.; Baca, D.M.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Nielsen, K.E.; Parker, G.V.; Ricketts, R.L.; Valdez, G.

    1999-06-27

    Atlas is a pulsed-power facility under development at Los Alamos National Laboratory to drive high-energy density experiments. Design has been completed for this new generation pulsed-power machine consisting of an azimuthal array of 24, 240-kV Marx modules and transmission lines supplying current to the load region at the machine center. The transmission line consists of a cable header, load protection switch, and tri-plate assembly interfacing to the center transition section. The cable header interface to the Marx module provides a mechanism to remove the Marx module for maintenance without removing other components of the transmission line. The load protection switch provides a mechanism for protecting the load during charging of the Marx in the event of a pre-fire condition. The aluminum tri-plate is a low-inductance transmission line carries radial current flow from the Marx energy storage system at the machine periphery toward the load. All transmission line components are oil insulated except the solid-dielectric insulated power flow channel connected directly to the load. The transition region at the machine center consists of several components that enable the radial converging vertical transmission lines to interface to a horizontal disk/conical power flow channel delivering current to the load. The current carrying transition components include the high-voltage and ground conductors interfacing to the tri-plate transmission lines. The tri-plate tank attachment ring interfaces to the tri-plate tanks and the base-plate. The base-plate supports the transition components and interfaces to the center support structure of the machine. The bottom insulator also attaches to the base-plate and to the high-voltage conductor, providing an oil containment seal between the transition and vacuum vessel. Design has been completed for all Atlas components. Some prototype hardware fabrication has been completed and first article hardware is in various stages of

  5. How financial transmission rights curb market power

    SciTech Connect

    Stoft, S.

    1997-06-01

    This paper demonstrates that financial transmission rights allow their owners to capture at least a portion, and sometimes all, of the congestion rents. This extends work in this area by Shmuel Oren which was limited to the case in which generators could not purchase financial transmission rights. One form of financial rights, Transmission Congestion Contracts (TCCs), is shown to be so effective in reducing market power that as few as two generators facing a demand curve with zero elasticity may be forced to sell at marginal cost. The extent to which market power is limited depends on the extent to which total generation capacity exceeds export capacity and on the size of individual generators. A relationship is derived that determines when TCCs will eliminate market power. In the case of a three line network, it is shown that the reduction in market power that can be accomplished with {open_quotes}active transmission rights{close_quotes} can also be accomplished with simple contracts for differences.

  6. Transmission Lines: An Overview of Electrical Properties and Environmental Effects.

    SciTech Connect

    United States. Bonneville Power Administration. Biological Studies Task Team.

    1982-03-01

    A brief overview is provided of environmental and biological effects of high-voltage power transmission lines. Paragraph length descriptions of electric fields, induced voltage and currents, biological effects, magnetic fields, corona, radio and television interference, and ozone are given. 13 figs.

  7. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  8. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  9. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  10. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  11. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  12. Power transmission studies for tethered SP-100

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1988-01-01

    The tether and/or transmission line connecting the SP-100 to space station presents some unorthodox challenges in high voltage engineering, power transmission, and distribution. The line, which doubles as a structural element of this unusual spacecraft, will convey HVDC from SP-100 to the platform in low Earth orbit, and environment where the local plasma is sufficient to cause breakdown of exposed conductors at potentials of only a few hundred volts. Its anticipated several years operation, and continuously accumulating exposure to meteoroids and debris, raises an increasing likelihood that mechanical damage, including perforation, will be sustained in service. The present concept employs an array of gas insulated solid wall aluminum coaxial tubes; a conceptual design which showed basic feasibility of the SP-100 powered space station. Practical considerations of launch, deployment and assembly have lead to investigation of reel deployable, dielectric insulated coaxial cables. To be competitive, the dielectric would have to operate reliably in a radiation environment under electrical stresses exceeding 50 kV/cm. The SP-100 transmission line high voltage interfaces are also considered.

  13. Power transmission studies for tethered SP-100

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1988-01-01

    The tether and/or transmission line connecting the SP-100 to Space Station presents some unorthodox challenges in high voltage engineering, power transmission, and distribution. The line, which doubles as a structural element of this unusual spacecraft, will convey HVDC from SP-100 to the platform in low Earth orbit, and environment where the local plasma is sufficient to cause breakdown of exposed conductors at potentials of only a few hundred volts. Its anticipated several years operation, and continuously accumulating exposure to meteoroids and debris, raises an increasing likelihood that mechanical damage, including perforation, will be sustained in service. The present concept employs an array of gas insulated solid wall aluminum coaxial tubes; a conceptual design which showed basic feasibility of the SP-100 powered Space Station. Practical considerations of launch, deployment and assembly have led to investigation of reel deployable, dielectric insulated coaxial cables. To be competitive, the dielectric would have to operate reliably in a radiation environment under electrical stresses exceeding 50 kV/cm. The SP-100 transmission line high voltage interfaces are also considered.

  14. Environmental Assessment for Central Power and Light Company`s proposed Military Highway-CFE tie 138/69-kV transmission line project Brownsville, Cameron County, Texas

    SciTech Connect

    Not Available

    1992-04-01

    Central Power and Light Company (CPL) intends to upgrade its existing transmission line ties with the Commision Federal de Electricidad (CFE) system in Mexico. CPL currently has a single 69-kilovolt (kV) transmission line in the Brownsville area which connects CPL`s system with the system of CFE. This existing line runs between the Brownsville Switching Station, located on Laredo Road in Brownsville, Cameron County, Texas, and an existing CFE 69-kV line at the Rusteberg Bend of the Rio Grande in Cameron County. Under current conditions of need, the existing 69-kV line does not possess sufficient capability to engage in appropriate power exchanges. Therefore, CPL is proposing to build a new line to link up with CFE. This proposed line would be a double-circuit line, which would (1) continue (on a slightly relocated route) the existing 69-kV tie from CPL`s Brownsville Switching Station to CFE`s facilities, and (2) add a 138-kV tie from the Military Highway Substation, located on Military Highway (US Highway 281), to CFE`s facilities. The proposed 138/69-kV line, which will be constructed and operated by CPL, will be built primarily on steel single-pole structures within an average 60-foot (ft) wide right-of-way (ROW). It will be approximately 6900--9200 ft (1.3--1.7 miles) in length, depending on the alternative route constructed.

  15. 29 CFR 1926.1411 - Power line safety-while traveling under or near power lines with no load.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... qualified person with respect to electrical power transmission and distribution). ... 29 Labor 8 2014-07-01 2014-07-01 false Power line safety-while traveling under or near power lines... CONSTRUCTION Cranes and Derricks in Construction § 1926.1411 Power line safety—while traveling under or...

  16. 29 CFR 1926.1411 - Power line safety-while traveling under or near power lines with no load.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... qualified person with respect to electrical power transmission and distribution). ... 29 Labor 8 2013-07-01 2013-07-01 false Power line safety-while traveling under or near power lines... CONSTRUCTION Cranes and Derricks in Construction § 1926.1411 Power line safety—while traveling under or...

  17. A novel approach to smart grid technology for electrical power transmission lines by a self-organized optical network node based on optical bistability

    NASA Astrophysics Data System (ADS)

    Nakanishi, Soichiro; Sasaki, Wakao

    2011-01-01

    In this work, we have demonstrated a new smart grid model by our novel green photonics technology based on selforganized optical networks realizing an autonomous peer-to-peer electric power transmissions without centralized control for the power grid. In this optical network, we introduced an adaptive algorithm for concurrent peer-to-peer communications, by utilizing optical nonlinearity depending only on the signal strength passing through the network. This method is applicable for autonomous organization of functions for ad-hoc electric power distribution systems for the power grid. For this purpose, a simple optical- electrical hybrid bistable circuit composed of such as light emitting diode (LED) and photo diode (PD), has been incorporated into the network node. In the experiment, the method uses a simple, local adaptation of transmission weights at each network node, which enables self-organizing functions of the network, such as self-routing, self-optimization, self-recovery and self-protection. Based on this method, we have demonstrated experimentally a new smart grid model applicable for ad-hoc electric power distribution systems mediated by power comsumptions. In this model, electric power flow is controlled autonomously through the self-organized network nodes associated with individual power facilities having photovoltaics and electric storage devices, etc., and the nodes convert the amounts of electric power supply and/or comsumption to the light intensity values using above mentioned transmission weights at each node. As a consequence, we have experimentally demonstrated a simple shorthaul system model for ad-hoc electric power distribution with a self-organized optical network as a novel green photonics technology application for smart grid.

  18. Transmission line environmental assessment guidance document

    SciTech Connect

    Jackson, J.; Pentecost, E.; Muzzarelli, J.

    1994-01-01

    Since 1939, U.S. utility companies have been required to obtain a Presidential Permit to construct electric transmission lines that cross a U.S. border and connect with a foreign utility. The purpose of this document is to provide Presidential Permit applicants with two types of guidance: (1) on the type of environmental and project descriptive information needed to assess the potential impacts of the proposed and alternative actions and (2) on compliance with applicable federal and state regulations. The main three chapters present information on the purpose and content of this document (Chapter 1); legislative, regulatory, and consultation requirements for transmission line interconnect projects (Chapter 2); and identification of basic transmission system design parameters and environmental data requirements for analysis of potential impacts of the proposed action (Chapter 3). Chapter 3 also includes information on possible techniques or measures to mitigate impacts. Appendix A presents an overview of NEPA requirements and DOE`s implementing procedures. Appendix B summarizes information on legislation that may be applicable to transmission line projects proposed in Presidential Permit applications.

  19. Integrated survey and design for transmission lines

    SciTech Connect

    Miller, M.A.; Simpson, K.D.

    1994-12-31

    Gathering and compiling information on the features and uses of the land within a proposed corridor provides the basis for selecting a route, obtaining easements, and designing and constructing a transmission line. Traditionally, gathering this information involved searches of existing maps and records to obtain the available information, which would then be supplemented with aerial photography to record current conditions. Ground surveys were performed to collect topographic data for design purposes. This information was manually transferred to drawings and other documents to show the terrain, environmentally sensitive areas, property ownership, and existing facilities. These drawing served as the base to which the transmission line right-of-way, structures, and other design information were added. As the design was completed, these drawings became the source of information for constructing the line and ultimately, the record of the facility. New technologies and the every growing need for instantly accessible information have resulted in changes in almost every step of gathering, storing and using information. Electronic data collection, global positioning systems (GPS), digitized terrain models, computerized design techniques, development of drawings using CAD, and graphical information systems (GIS) have individually resulted in significant advancements in this process. Combining these components into an integrated system, however, is truly revolutionizing transmission line engineering. This paper gives an overview of the survey and mapping information that is required for transmission line projects, review the traditional techniques that have been employed to obtain and utilize this information, and discuss the recent advances in the technology. Additionally, a system is presented that integrates the components in this process to achieve efficiency, minimize chances of errors, and provide improved access to project information.

  20. Citizens, farmers fight huge transmission lines

    SciTech Connect

    Brummer, J.

    1982-02-01

    Opposition to high tension power lines with a 20-story towers is growing as coalitions of farmers and advocates of safe energy respond with legal intervention and sabotage, and sometimes with success. Examples of citizen action are the efforts opposing a 450 kilovolt direct current line connecting the US with Quebec Hydro and another opposing a 500 kilovolt alternating current line from Georgia Power Co.'s nuclear plants to Florida. The opposition derives partly from evidence of health hazards to humans and adverse effects on livestock. High voltage lines are felt to symbolize a utility and regulatory failure to assess the recent decline in power demand. It is stated that administration efforts to outlaw organized resistence will not deter the opposition, which cites instances of ground shock, aborted and stillborn cattle, physical irritants, and other phenomena. The General Assembly to Stop the Powerline (GASP) objects to the guinea pig position forced upon residents by the utilities. 6 references. (DCK)

  1. 7 CFR 1726.77 - Substation and transmission line construction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Substation and transmission line construction. 1726... and Transmission Facilities § 1726.77 Substation and transmission line construction. (a) Contract... substation and transmission line construction (including minor modifications or improvements), exclusive...

  2. 7 CFR 1726.77 - Substation and transmission line construction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Substation and transmission line construction. 1726... and Transmission Facilities § 1726.77 Substation and transmission line construction. (a) Contract... substation and transmission line construction (including minor modifications or improvements), exclusive...

  3. 7 CFR 1726.77 - Substation and transmission line construction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Substation and transmission line construction. 1726... and Transmission Facilities § 1726.77 Substation and transmission line construction. (a) Contract... substation and transmission line construction (including minor modifications or improvements), exclusive...

  4. 7 CFR 1726.77 - Substation and transmission line construction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Substation and transmission line construction. 1726... and Transmission Facilities § 1726.77 Substation and transmission line construction. (a) Contract... substation and transmission line construction (including minor modifications or improvements), exclusive...

  5. 7 CFR 1726.77 - Substation and transmission line construction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Substation and transmission line construction. 1726... and Transmission Facilities § 1726.77 Substation and transmission line construction. (a) Contract... substation and transmission line construction (including minor modifications or improvements), exclusive...

  6. Application of composite insulators to transmission lines

    SciTech Connect

    Cherney, E.A.; Brown, R.L.; Karady, G.; Nicholls, J.L.; Orbeck, T.; Pargamin, L.

    1983-05-01

    The paper provides guidelines for the application of composite insulators to transmission lines. These guidelines are based on utility field experiences, results of research laboratory tests and manufacturers' recommendations. Discussed are interchangeability with porcelain and glass insulators, application in contaminated environments, material ageing, insulator icing, the use of grease, resistance to vandalism, temperature extremes, and the need for grading rings. Clarification is provided on the mechanical rating of composite insulators because there is not yet general agreement by various industry groups.

  7. HTS DC Transmission Line for Megalopolis Grid Development

    NASA Astrophysics Data System (ADS)

    Kopylov, S.; Sytnikov, V.; Bemert, S.; Ivanov, Yu; Krivetskiy, I.; Romashov, M.; Shakaryan, Yu; Keilin, V.; Shikov, A.; Patrikeev, V.; Lobyntsev, V.; Shcherbakov, V.

    2014-05-01

    Using of HTS AC and DC cables in electric power grids allows increasing of the transferred power, losses diminishing, decreasing of exclusion zone areas, the enhancement of the environmental conditions and fire/explosion safety of electric power systems. However, the use of DC superconducting cable lines together with converters brings additional advantages as reduction of losses in cables and suitable lowering of refrigerating plant capacity, as well as the realization of the function of short-circuit currents limitation by means of the appropriate setting of converter equipment. Russian Federal Grid Company and its R&D Center started the construction of the DC HTS power transmission line which includes the cable itself, cryogenic equipment, AC/DC converters, terminals and cable coupling boxes. This line will connect two substations in Saint-Petersburg - 330 kV "Centralnaya" and 220 kV "RP-9". The length of this HTS transmission line will be about 2500 meters. Nowadays are developed all the elements of the line and technologies of the cable manufacturing. Two HTS cable samples, each 30 m length, have been made. This paper describes the results of cables tests.

  8. Remote sensing for industrial applications in the energy business: digital territorial data integration for planning of overhead power transmission lines (OHTLs)

    NASA Astrophysics Data System (ADS)

    Terrazzino, Alfonso; Volponi, Silvia; Borgogno Mondino, Enrico

    2001-12-01

    An investigation has been carried out, concerning remote sensing techniques, in order to assess their potential application to the energy system business: the most interesting results concern a new approach, based on digital data from remote sensing, to infrastructures with a large territorial distribution: in particular OverHead Transmission Lines, for the high voltage transmission and distribution of electricity on large distances. Remote sensing could in principle be applied to all the phases of the system lifetime, from planning to design, to construction, management, monitoring and maintenance. In this article, a remote sensing based approach is presented, targeted to the line planning: optimization of OHTLs path and layout, according to different parameters (technical, environmental and industrial). Planning new OHTLs is of particular interest in emerging markets, where typically the cartography is missing or available only on low accuracy scale (1:50.000 and lower), often not updated. Multi- spectral images can be used to generate thematic maps of the region of interest for the planning (soil coverage). Digital Elevation Models (DEMs), allow the planners to easily access the morphologic information of the surface. Other auxiliary information from local laws, environmental instances, international (IEC) standards can be integrated in order to perform an accurate optimized path choice and preliminary spotting of the OHTLs. This operation is carried out by an ABB proprietary optimization algorithm: the output is a preliminary path that bests fits the optimization parameters of the line in a life cycle approach.

  9. Proposed amendment for Presidential Permit PP-63 and associated modifications to 500 kV international transmission line, Forbes, Minnesota to Manitoba, Canada Northern States Power Company. Final Environmental Assessment

    SciTech Connect

    Not Available

    1992-02-01

    Northern States Power Company, (NSP), a Minnesota investor owned utility has applied to the Office of Fossil Energy, United States Department of Energy, to amend Presidential Permit PP-63 to allow for alterations to the 500 kV transmission line and as sedated facilities currently regulated by this permit. The alterations proposed for the 500 kV line owned by NSP are part of a long term effort sponsored by NSP to upgrade the existing NSP transmission system to allow for increased exchange of electricity with the Manitoba Hydro-Electric Board. Presidential Permit PP-63 authorized NSP to construct, connect, operate and maintain a 500 kV line at the United States/Canadian border approximately seven-and-a-half miles west of Warroad in Roseau County, Minnesota. This line connects with a 500 kV line owned and operated by the Manitoba Hydro-Electric Board (MHEB), which extends from Dorsey, Manitoba, Canada to the United States/Canadian border. NSP proposes to increase the electricity transfer capability of this transmission facility by constructing a new 80-acre substation on the existing 500 kV line in Roseau County, Minnesota, and upgrading the existing substation at Forbes, Minnesota. The proposed Roseau substation would contain two 41.5 ohm series capacitor banks. In addition, static VAR compensators are to be installed at the existing Forbes Substation. Approximately 5 acres would be added to the 30-acre Forbes site to house the additional equipment. No new lines would enter or exit the facility. NSP proposes to place the new Roseau Substation in service in May 1993 and to complete the upgrading of the Forbes Substation in March 1994. The primary, initial purpose of these modifications is to enable NSP to import 400 megawatts of electric power from MHEB during the summer months to meet peak electrical demand in the Minneapolis-St. Paul area. It is expected that this power transfer would begin in 1993.

  10. 78 FR 60273 - Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild, Grand County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...Western Area Power Administration (Western), a power marketing administration in the U.S. Department of Energy (DOE), owns and operates the 69-kilovolt (kV) Granby Pumping Plant Switchyard-Windy Gap Substation (Project) transmission line in Grand County, Colorado. The transmission line is 13.6 miles long. Western proposes to rebuild the single-circuit line as a double-circuit line, increase......

  11. Microwave Power Transmission Technologies for SPS

    NASA Astrophysics Data System (ADS)

    Shinohara, Naoki; Hashimoto, Kozo

    This paper describes the wireless power transmission via microwave (MPT) system for the Space Solar Power Station/Satellite (SPS). The SPS will be hugest space system and we need high efficient, huge, high accurate, light weight and inexpensive phased array for the SPS. Now we do not have any commercial MPT system on ground. Therefore, we have to consider the roadmap of the MPT system from the ground application to the SPS. We propose three step application of the MPT as follows
    1st Step: Weak Power Wireless Power Transmission (Ubiquitous Power Source, RF-ID, Energy Harvesting) under Present Radio Wave Configuration or High Power Wireless Power Transmission in Closed Area
    2nd Step: High Power Wireless Power Transmission to/from Moving Target/Source with Phased Array under New Radio Wave Configuration (Special Frequency for WPT) on Ground
    3rd (Final) Step: Wireless Power Transmission in Space (SPS)

  12. Dispersion-free radial transmission lines

    DOEpatents

    Caporaso, George J.; Nelson, Scott D.

    2011-04-12

    A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.

  13. View facing north, Structure 162 in foreground, as Transmission Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing north, Structure 16-2 in foreground, as Transmission Line turns at intersection of Powerline Road and US 87 - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  14. 3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print no. S-C-01-00478, no date. Photographer unknown. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  15. View facing south, near Structure 515, of Transmission Line rising ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing south, near Structure 51-5, of Transmission Line rising out of Marias River Valley - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  16. Transmission line including support means with barriers

    DOEpatents

    Cookson, Alan H.

    1982-01-01

    A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

  17. Extragalactic Jets as Electrical Circuits and Transmission Lines

    NASA Astrophysics Data System (ADS)

    Kronberg, Philipp

    2014-10-01

    I describe the first attempt to measure a current in an extended radio galaxy jet: ~1018A at ~50 kpc from the elliptical galaxy's ultra-compact nucleus. This class of jet is known to transport its magnetic energy ``intact'', up to supragalactic scales. I discuss plasma parameters for 3C303 and recent attempts to measure its jet axial current. I discuss analogies with both electrical circuits, - and transmission lines. Power is delivered into a ``load'', whose impedance, Z, is close to that of free space, and the jet power flow I2 Z is ~1035 erg s-1 - broadly consistent with astronomically measured total power outputs, luminosities and lifetimes of AGN-powered radio lobes.The current and power levels are also consistent with SMBH accretion disk model predictions by Stirling Colgate, H. Li, V. Pariev, J. Finn, and others, beginning with Lovelace 1976 (Nature). A further analogy with transmission lines shows how the supragalactic power flows can be disrupted by a complex impedance in the ``circuit.'' Reactive components in space, i.e. a complex Z, can disrupt, reflect or deflect the power flow. This could explain the wide variety of magneto-plasma configurations seen in these systems. Funded by NSERC Discovery Grant A5713.

  18. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  19. 49 CFR 192.745 - Valve maintenance: Transmission lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Valve maintenance: Transmission lines. 192.745 Section 192.745 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... maintenance: Transmission lines. (a) Each transmission line valve that might be required during any...

  20. 49 CFR 192.179 - Transmission line valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission line valves. 192.179 Section 192.179... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.179 Transmission line valves. (a) Each transmission line, other than offshore segments, must have sectionalizing...

  1. 49 CFR 192.179 - Transmission line valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission line valves. 192.179 Section 192.179... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.179 Transmission line valves. (a) Each transmission line, other than offshore segments, must have sectionalizing...

  2. 49 CFR 192.179 - Transmission line valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission line valves. 192.179 Section 192.179... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.179 Transmission line valves. (a) Each transmission line, other than offshore segments, must have sectionalizing...

  3. 49 CFR 192.745 - Valve maintenance: Transmission lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Valve maintenance: Transmission lines. 192.745 Section 192.745 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... maintenance: Transmission lines. (a) Each transmission line valve that might be required during any...

  4. 49 CFR 192.179 - Transmission line valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission line valves. 192.179 Section 192.179... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.179 Transmission line valves. (a) Each transmission line, other than offshore segments, must have sectionalizing...

  5. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  6. 49 CFR 192.745 - Valve maintenance: Transmission lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Valve maintenance: Transmission lines. 192.745 Section 192.745 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... maintenance: Transmission lines. (a) Each transmission line valve that might be required during any...

  7. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  8. 49 CFR 192.485 - Remedial measures: Transmission lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Remedial measures: Transmission lines. 192.485... Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for...

  9. 49 CFR 192.745 - Valve maintenance: Transmission lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve maintenance: Transmission lines. 192.745 Section 192.745 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... maintenance: Transmission lines. (a) Each transmission line valve that might be required during any...

  10. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  11. 49 CFR 192.485 - Remedial measures: Transmission lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Transmission lines. 192.485... Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for...

  12. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  13. 49 CFR 192.485 - Remedial measures: Transmission lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Remedial measures: Transmission lines. 192.485... Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for...

  14. 49 CFR 192.719 - Transmission lines: Testing of repairs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Testing of repairs. 192.719 Section 192.719 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Testing of repairs. (a) Testing of replacement pipe. If a segment of transmission line...

  15. 49 CFR 192.485 - Remedial measures: Transmission lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Remedial measures: Transmission lines. 192.485... Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for...

  16. 49 CFR 192.745 - Valve maintenance: Transmission lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Valve maintenance: Transmission lines. 192.745 Section 192.745 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... maintenance: Transmission lines. (a) Each transmission line valve that might be required during any...

  17. 49 CFR 192.485 - Remedial measures: Transmission lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Remedial measures: Transmission lines. 192.485... Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for...

  18. 49 CFR 192.179 - Transmission line valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission line valves. 192.179 Section 192.179... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.179 Transmission line valves. (a) Each transmission line, other than offshore segments, must have sectionalizing...

  19. Transmission Of Power Via Combined Laser Beams

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1992-01-01

    Laser Diode Array (LDA) appears to be most efficient means of transferring power from Earth to satellites and between satellites, in terms of mass and size, of various laser configurations. To form large-scale-array amplifier (LSAA), element LDA's must generate well-defined diffraction-limited beams. Coherent matching of phases among LDA's enables system to generate good beam pattern in far field over thousands of kilometers. By passing beam from master laser through number of LDA amplifiers simultaneously, one realizes coherence among amplified output beams. LSAA used for transmission of power with efficiency of approximately 80 percent into receiver of moderate size at 5,000 km. Also transmits data at high rates by line-of-sight rather than fiber optics.

  20. Flow impedance in a uniform magnetically insulated transmission line

    NASA Astrophysics Data System (ADS)

    Mendel, C. W.; Seidel, D. B.

    1999-12-01

    In two recent publications [C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 2, 1332 (1995), C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 3, 4207 (1996)] relativistic electron flow in cylindrical magnetically insulated transmission lines was analyzed and modeled under the assumption of negligible electron pressure. The model allows power flow in these lines to be accurately calculated under most conditions. The model was developed for coaxial right circular cylindrical electrodes. It is shown here that the model applies equally well to arbitrary cylindrical systems, i.e., systems consisting of electrodes of arbitrary cross section.

  1. Flow impedance in a uniform magnetically insulated transmission line

    SciTech Connect

    Mendel, C.W. Jr.; Seidel, D.B.

    1999-12-01

    In two recent publications [C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas {bold 2}, 1332 (1995), C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas {bold 3}, 4207 (1996)] relativistic electron flow in cylindrical magnetically insulated transmission lines was analyzed and modeled under the assumption of negligible electron pressure. The model allows power flow in these lines to be accurately calculated under most conditions. The model was developed for coaxial right circular cylindrical electrodes. It is shown here that the model applies equally well to arbitrary cylindrical systems, i.e., systems consisting of electrodes of arbitrary cross section. {copyright} {ital 1999 American Institute of Physics.}

  2. A radial transmission line material measurement apparatus

    SciTech Connect

    Warne, L.K.; Moyer, R.D.; Koontz, T.E.; Morris, M.E.

    1993-05-01

    A radial transmission line material measurement sample apparatus (sample holder, offset short standards, measurement software, and instrumentation) is described which has been proposed, analyzed, designed, constructed, and tested. The purpose of the apparatus is to obtain accurate surface impedance measurements of lossy, possibly anisotropic, samples at low and intermediate frequencies (vhf and low uhf). The samples typically take the form of sections of the material coatings on conducting objects. Such measurements thus provide the key input data for predictive numerical scattering codes. Prediction of the sample surface impedance from the coaxial input impedance measurement is carried out by two techniques. The first is an analytical model for the coaxial-to-radial transmission line junction. The second is an empirical determination of the bilinear transformation model of the junction by the measurement of three full standards. The standards take the form of three offset shorts (and an additional lossy Salisbury load), which have also been constructed. The accuracy achievable with the device appears to be near one percent.

  3. Modeling Transmission Line Networks Using Quantum Graphs

    NASA Astrophysics Data System (ADS)

    Koch, Trystan; Antonsen, Thomas

    Quantum graphs--one dimensional edges, connecting nodes, that support propagating Schrödinger wavefunctions--have been studied extensively as tractable models of wave chaotic behavior (Smilansky and Gnutzmann 2006, Berkolaiko and Kuchment 2013). Here we consider the electrical analog, in which the graph represents an electrical network where the edges are transmission lines (Hul et. al. 2004) and the nodes contain either discrete circuit elements or intricate circuit elements best represented by arbitrary scattering matrices. Including these extra degrees of freedom at the nodes leads to phenomena that do not arise in simpler graph models. We investigate the properties of eigenfrequencies and eigenfunctions on these graphs, and relate these to the statistical description of voltages on the transmission lines when driving the network externally. The study of electromagnetic compatibility, the effect of external radiation on complicated systems with numerous interconnected cables, motivates our research into this extension of the graph model. Work supported by the Office of Naval Research (N0014130474) and the Air Force Office of Scientific Research.

  4. 49 CFR 192.707 - Line markers for mains and transmission lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Line markers for mains and transmission lines. 192... § 192.707 Line markers for mains and transmission lines. (a) Buried pipelines. Except as provided in... buried main and transmission line: (1) At each crossing of a public road and railroad; and (2)...

  5. 49 CFR 192.707 - Line markers for mains and transmission lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Line markers for mains and transmission lines. 192... § 192.707 Line markers for mains and transmission lines. (a) Buried pipelines. Except as provided in... buried main and transmission line: (1) At each crossing of a public road and railroad; and (2)...

  6. Method for bonding a transmission line to a downhole tool

    DOEpatents

    Hall, David R.; Fox, Joe

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  7. A study of electric transmission lines for use on the lunar surface

    NASA Astrophysics Data System (ADS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-09-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  8. A study of electric transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-01-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  9. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  10. Feasibility study of wireless power transmission systems

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  11. Solar Power Satellite Microwave Transmission and Reception

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.

    1980-01-01

    Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.

  12. 75 FR 56051 - Bemidji to Grand Rapids Minnesota 230 kV Transmission Line Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Bemidji to Grand Rapids Minnesota 230 kV Transmission Line... Rapids, Minnesota 230 kV Transmission Line Project (``Project'') in Minnesota. The Final EIS was prepared... application of Minnkota Power Cooperative, Inc. for RUS financing to construct a 230 kilovolt...

  13. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  14. Networks of nonlinear superconducting transmission line resonators

    NASA Astrophysics Data System (ADS)

    Leib, M.; Deppe, F.; Marx, A.; Gross, R.; Hartmann, M. J.

    2012-07-01

    We investigate a network of coupled superconducting transmission line resonators, each of them made nonlinear with a capacitively shunted Josephson junction coupling to the odd flux modes of the resonator. The resulting eigenmode spectrum shows anticrossings between the plasma mode of the shunted junction and the odd resonator modes. Notably, we find that the combined device can inherit the complete nonlinearity of the junction, allowing for a description as a harmonic oscillator with a Kerr nonlinearity. Using a dc SQUID instead of a single junction, the nonlinearity can be tuned between 10 kHz and 4 MHz while maintaining resonance frequencies of a few gigahertz for realistic device parameters. An array of such nonlinear resonators can be considered a scalable superconducting quantum simulator for a Bose-Hubbard Hamiltonian. The device would be capable of accessing the strongly correlated regime and be particularly well suited for investigating quantum many-body dynamics of interacting particles under the influence of drive and dissipation.

  15. Nonlinear transmission line based electron beam driver.

    PubMed

    French, David M; Hoff, Brad W; Tang, Wilkin; Heidger, Susan; Allen-Flowers, Jordan; Shiffler, Don

    2012-12-01

    Gated field emission cathodes can provide short electron pulses without the requirement of laser systems or cathode heating required by photoemission or thermionic cathodes. The large electric field requirement for field emission to take place can be achieved by using a high aspect ratio cathode with a large field enhancement factor which reduces the voltage requirement for emission. In this paper, a cathode gate driver based on the output pulse train from a nonlinear transmission line is experimentally demonstrated. The application of the pulse train to a tufted carbon fiber field emission cathode generates short electron pulses. The pulses are approximately 2 ns in duration with emission currents of several mA, and the train contains up to 6 pulses at a frequency of 100 MHz. Particle-in-cell simulation is used to predict the characteristic of the current pulse train generated from a single carbon fiber field emission cathode using the same technique. PMID:23277977

  16. Nonlinear transmission line based electron beam driver

    NASA Astrophysics Data System (ADS)

    French, David M.; Hoff, Brad W.; Tang, Wilkin; Heidger, Susan; Allen-Flowers, Jordan; Shiffler, Don

    2012-12-01

    Gated field emission cathodes can provide short electron pulses without the requirement of laser systems or cathode heating required by photoemission or thermionic cathodes. The large electric field requirement for field emission to take place can be achieved by using a high aspect ratio cathode with a large field enhancement factor which reduces the voltage requirement for emission. In this paper, a cathode gate driver based on the output pulse train from a nonlinear transmission line is experimentally demonstrated. The application of the pulse train to a tufted carbon fiber field emission cathode generates short electron pulses. The pulses are approximately 2 ns in duration with emission currents of several mA, and the train contains up to 6 pulses at a frequency of 100 MHz. Particle-in-cell simulation is used to predict the characteristic of the current pulse train generated from a single carbon fiber field emission cathode using the same technique.

  17. Nonlinear transmission line based electron beam driver

    SciTech Connect

    French, David M.; Hoff, Brad W.; Tang Wilkin; Heidger, Susan; Shiffler, Don; Allen-Flowers, Jordan

    2012-12-15

    Gated field emission cathodes can provide short electron pulses without the requirement of laser systems or cathode heating required by photoemission or thermionic cathodes. The large electric field requirement for field emission to take place can be achieved by using a high aspect ratio cathode with a large field enhancement factor which reduces the voltage requirement for emission. In this paper, a cathode gate driver based on the output pulse train from a nonlinear transmission line is experimentally demonstrated. The application of the pulse train to a tufted carbon fiber field emission cathode generates short electron pulses. The pulses are approximately 2 ns in duration with emission currents of several mA, and the train contains up to 6 pulses at a frequency of 100 MHz. Particle-in-cell simulation is used to predict the characteristic of the current pulse train generated from a single carbon fiber field emission cathode using the same technique.

  18. 49 CFR 192.705 - Transmission lines: Patrolling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Patrolling. 192.705 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.705 Transmission... adjacent to the transmission line right-of-way for indications of leaks, construction activity, and...

  19. 49 CFR 192.709 - Transmission lines: Record keeping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Record keeping. 192.709 Section 192.709 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Record keeping. Each operator shall maintain the following records for transmission...

  20. 49 CFR 192.705 - Transmission lines: Patrolling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Patrolling. 192.705 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.705 Transmission... adjacent to the transmission line right-of-way for indications of leaks, construction activity, and...

  1. 49 CFR 192.705 - Transmission lines: Patrolling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Patrolling. 192.705 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.705 Transmission... adjacent to the transmission line right-of-way for indications of leaks, construction activity, and...

  2. 49 CFR 192.709 - Transmission lines: Record keeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Record keeping. 192.709 Section 192.709 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Record keeping. Each operator shall maintain the following records for transmission...

  3. 49 CFR 192.709 - Transmission lines: Record keeping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Record keeping. 192.709 Section 192.709 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Record keeping. Each operator shall maintain the following records for transmission...

  4. 49 CFR 192.709 - Transmission lines: Record keeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Record keeping. 192.709 Section 192.709 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Record keeping. Each operator shall maintain the following records for transmission...

  5. 49 CFR 192.705 - Transmission lines: Patrolling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Patrolling. 192.705 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.705 Transmission... adjacent to the transmission line right-of-way for indications of leaks, construction activity, and...

  6. 49 CFR 192.705 - Transmission lines: Patrolling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Patrolling. 192.705 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.705 Transmission... adjacent to the transmission line right-of-way for indications of leaks, construction activity, and...

  7. 49 CFR 192.709 - Transmission lines: Record keeping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Record keeping. 192.709 Section 192.709 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Transmission lines: Record keeping. Each operator shall maintain the following records for transmission...

  8. a Theoretical Study of the Kinetic Processes in a High-Power Xenon Chloride Excimer Laser Oscillator Driven by a Long Transmission Line Pulse Forming Network.

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Shuh

    1982-03-01

    The avalanche/self-sustained discharge rare gas halide (RGH) excimer lasers driven by a transmission line type pulse forming network (PFN) belong to a novel class of discharge pumped gas lasers operating in the visible and ultraviolet wavelengths efficiently. The kinetics in this class of lasers, however, has not yet been fully understood. Therefore, it seems essential at this point to study the characteristics of the discharge plasma in such a device and determine the major energy flow paths in the active media before one attempts to optimize the operating conditions or deduce the scaling rules. The work presented here is the theoretical modeling of the discharge pumped XeCl laser driven by a long transmission line (two way transit time, 200 nsec). The mathematical formulation consisting of the rate equations, the temperature equation, the circuit equation, and the Boltzmann equation governing the velocity and energy distributions of the free electrons is developed under the assumptions that the applied electric field strength is spatially uniform and the number densities of all important chemical species are spatially homogeneous in the discharge volume. These coupled non-linear differential equations are solved numerically by using the GBS extrapolation method simultaneously with the time evolution of the electron mole fraction during the transient discharge. The time-dependent electron velocity and energy distribution functions are obtained from the numerical solutions of the Boltzmann equation, with all elastic (including electron-electron), inelastic, attachment, recombination, and ionization collisions included, by a self-consistent iteration technique. The kinetic reactions involved in the XeCl laser using Ne/Xe/HCl and He/Xe/HCl mixtures are comprehensively examined. The results of this study reveal that the new processes. e + XeCl('*) (--->) Xe('*) + Cl('-),. e + XeCl (--->) Xe + Cl('-) or Xe + Cl + e,. are important and have to be included in the model

  9. Space-to-earth power transmission system

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Schuh, R.

    1976-01-01

    A preliminary analysis was conducted to establish the requirements of a space-to-earth microwave power transmission system. The need for accurate phase control on the transmitter was established and methods for assessing the impact of power density and thermal constraints on system performance were demonstrated. Potential radio frequency interference was considered. The sensitivity of transmission system scale to variations in power source, transportation and orbital fabrication and assembly costs was also determined.

  10. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  11. Material selection of a ferrimagnetic loaded coaxial delay line for phasing gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Johnson, J. M.; Reale, D. V.; Cravey, W. H.; Garcia, R. S.; Barnett, D. H.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2015-08-01

    Implementing nonlinear transmission line (NLTL) technology in the design of a high power microwave source has the benefits of producing a comparatively small and lightweight solid-state system where the emission frequency is easily tuned. Usually, smaller in physical size, single NLTLs may produce significantly less power than its vacuum based counterparts. However, combining individual NLTL outputs electrically or in free-space is an attractive solution to achieve greater output power. This paper discusses a method for aligning a four element NLTL antenna array with coaxial geometry using easily adjustable temporal delay lines. These delay lines, sometimes referred to as pulse shock lines or pulse sharpening lines, are placed serially in front of the main NLTL line. The propagation velocity in each delay line is set by the voltage amplitude of an incident pulse as well as the magnetic field bias. Each is adjustable although for the system described in this paper, the voltage is held constant while the bias is changed through applying an external DC magnetic field of varying magnitude. Three different ferrimagnetic materials are placed in the temporal delay line to evaluate which yields the greatest range of electrical delay with the least amount of variability from consecutive shots.

  12. Material selection of a ferrimagnetic loaded coaxial delay line for phasing gyromagnetic nonlinear transmission lines.

    PubMed

    Johnson, J M; Reale, D V; Cravey, W H; Garcia, R S; Barnett, D H; Neuber, A A; Dickens, J C; Mankowski, J J

    2015-08-01

    Implementing nonlinear transmission line (NLTL) technology in the design of a high power microwave source has the benefits of producing a comparatively small and lightweight solid-state system where the emission frequency is easily tuned. Usually, smaller in physical size, single NLTLs may produce significantly less power than its vacuum based counterparts. However, combining individual NLTL outputs electrically or in free-space is an attractive solution to achieve greater output power. This paper discusses a method for aligning a four element NLTL antenna array with coaxial geometry using easily adjustable temporal delay lines. These delay lines, sometimes referred to as pulse shock lines or pulse sharpening lines, are placed serially in front of the main NLTL line. The propagation velocity in each delay line is set by the voltage amplitude of an incident pulse as well as the magnetic field bias. Each is adjustable although for the system described in this paper, the voltage is held constant while the bias is changed through applying an external DC magnetic field of varying magnitude. Three different ferrimagnetic materials are placed in the temporal delay line to evaluate which yields the greatest range of electrical delay with the least amount of variability from consecutive shots. PMID:26329216

  13. Radio frequency communication system utilizing radiating transmission lines

    DOEpatents

    Struven, Warren C.

    1984-01-01

    A radio communication system for use in tunnels, mines, buildings or other shielded locations in which a pair of radiating transmission lines (30), (31) extend through such location in spaced coextensive relation to each other. Each transmission line (30), (31) has at least one unidirectional amplifier (32), (33) interposed therein with the sense of the unidirectional amplifier (32) of one transmission line (30) being opposite to the sense of the unidirectional amplifier (33) of the other transmission line (31). Each of the amplifiers (32), (33) has a gain which is less than the coupling loss between the transmission lines (30), (31). Two or more mobile transceivers (35) in the location served by the system are coupled to the transmission lines (30), (31) by electromagnetic wave propagation in space in order to communicate directly with each other at a given radio frequency within the frequency range of the system.

  14. Collaboration across the Power Line.

    ERIC Educational Resources Information Center

    Romer, Karen T.; Whipple, William R.

    1991-01-01

    The college student who participates in genuine collaboration with a faculty member in an intellectual endeavor transcends the barrier of power. Once it has been breached, other power lines will be less constraining. The experience transforms the nature of learning and constructs a lasting authority in the student. (MSE)

  15. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  16. Living and Working Safely Around High-Voltage Power Lines.

    SciTech Connect

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  17. Dynamic modeling of magnetically insulated transmission line systems

    SciTech Connect

    Mendel, C.W. Jr.; Rosenthal, S.E.

    1996-11-01

    Negative conductors in vacuum transmission lines used in multiterrawatt applications emit electrons freely. These lines are efficient only because the self-magnetic field of the power flow forces the electrons to flow parallel to the electrodes. Excepting numerical simulations, dynamic modeling of systems of these transmission lines has generally either ignored electron flow, or has included only those electrons that cross immediately to the anode at the front of the forward wave. In this paper we describe an analytic model that includes flowing electrons and the effects of these flows on line voltage and on the reduction of magnetic flux. Axial electron currents are modeled using simple, measurable, and calculable parameters. Transverse electron currents are modeled using general patterns found empirically from simulation data. These currents are in turn related by an expanded set of Telegrapher equations. An example of the use of the model is compared to two-dimensional, time-dependent particle-in-cell simulations. {copyright} {ital 1996 American Institute of Physics.}

  18. Power transmission device for a tractor

    SciTech Connect

    Kato, Y.; Nishimura, S.; Kishizawa, Y

    1989-05-23

    A power transmission device is described for an engine-driven tractor having a transmission case mounted in a rear part thereof, a main shifting device and a secondary shifting device arranged in front-to-back longitudinally spaced relation within the transmission case, means for lifting agricultural machinery including a lower arm vertically swingably mounted to the transmission case and a differential shaft extending transversely of the transmission case for transmitting drive power from the engine to an axle, characterized by the differential shaft being disposed between the main shifting device and the secondary shifting device, and the lower arm being pivotably connected to the transmission case adjacent to the secondary shifting device and behind the differential shaft.

  19. Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500-kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada, Northern States Power Company. Addendum to the final Environmental Assessment

    SciTech Connect

    Not Available

    1992-10-01

    This Addendum to the Final Environmental Assessment for the Proposed Amendment to Presidential Permit PP-63 and Associated Modifications to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada (DOE/EA-587) addresses Northern States Power Company`s (NSP) proposed expansion of the Forbes Substation. The applicant has requested that the expansion take place on the west side of the substation, within the existing property line, instead of on the north side as originally proposed. All of the proposed construction would take place on property already owned by NSP. DOE has reviewed the environmental impacts associated with this minor modification and has determined that the conclusions reached in the environmental assessment and Finding of No Significant Impact prepared in connection with NSP`s original amendment request remain valid.

  20. Electric transmission line flashover prediction system

    NASA Astrophysics Data System (ADS)

    Amarh, Felix

    Near industrial, agricultural, or coastal areas, contamination is a frequent cause of insulator flashover, most cases of which result in lengthy service interruptions. Utilities spend significant amounts of money on insulator washing and cleaning before the restoration of the service. Laboratory studies and industrial experience have shown that both contamination and wetting of insulator surfaces, which initiate the flow of leakage current, are required for insulator flashover. The leakage current leading to flashover has distinctive stages of development. Flashover is preceded by dry-band arcing and extension of the arc to bridge the insulator. This combination significantly modifies both the magnitude and shape of the leakage current. A condition-based monitoring (CBM) system that monitors the easily measurable insulator leakage current as a means of assessing pollution severity and would possibly predict an approaching flashover could prove beneficial to utilities. The overall aim of this project is the development of a system that monitors pollution build-up through the signature changes in the leakage current and alerts an operator when there is a danger of flashover. The operator can, in turn, order maintenance personnel to wash the insulators. This will safeguard against unforeseen flashovers, since the system is constantly being monitored and diagnosed. Additionally, the washing cycles of insulators will be optimized, saving money and eventually rendering the power transmission system more reliable.

  1. LOSS ESTIMATE FOR ITER ECH TRANSMISSION LINE INCLUDING MULTIMODE PROPAGATION

    SciTech Connect

    Shapiro, Michael; Bigelow, Tim S; Caughman, John B; Rasmussen, David A

    2010-01-01

    The ITER electron cyclotron heating (ECH) transmission lines (TLs) are 63.5-mm-diam corrugated waveguides that will each carry 1 MW of power at 170 GHz. The TL is defined here as the corrugated wave guide system connecting the gyrotron mirror optics unit (MO U) to the entrance of the ECH launcher and includes miter bends and other corrugated wave guide components. The losses on the ITER TL have been calculated for four possible cases corresponding to having HE(11) mode purity at the input of the TL of 100, 97, 90, and 80%. The losses due to coupling, ohmic, and mode conversion loss are evaluated in detail using a numerical code and analytical approaches. Estimates of the calorimetric loss on the line show that the output power is reduced by about 5, +/- 1% because of ohmic loss in each of the four cases. Estimates of the mode conversion loss show that the fraction of output power in the HE(11) mode is similar to 3% smaller than the fraction of input power in the HE(11) mode. High output mode purity therefore can be achieved only with significantly higher input mode purity. Combining both ohmic and mode conversion loss, the efficiency of the TL from the gyrotron MOU to the ECH launcher can be roughly estimated in theory as 92% times the fraction of input power in the HE(11) mode.

  2. LineCast: line-based distributed coding and transmission for broadcasting satellite images.

    PubMed

    Wu, Feng; Peng, Xiulian; Xu, Jizheng

    2014-03-01

    In this paper, we propose a novel coding and transmission scheme, called LineCast, for broadcasting satellite images to a large number of receivers. The proposed LineCast matches perfectly with the line scanning cameras that are widely adopted in orbit satellites to capture high-resolution images. On the sender side, each captured line is immediately compressed by a transform-domain scalar modulo quantization. Without syndrome coding, the transmission power is directly allocated to quantized coefficients by scaling the coefficients according to their distributions. Finally, the scaled coefficients are transmitted over a dense constellation. This line-based distributed scheme features low delay, low memory cost, and low complexity. On the receiver side, our proposed line-based prediction is used to generate side information from previously decoded lines, which fully utilizes the correlation among lines. The quantized coefficients are decoded by the linear least square estimator from the received data. The image line is then reconstructed by the scalar modulo dequantization using the generated side information. Since there is neither syndrome coding nor channel coding, the proposed LineCast can make a large number of receivers reach the qualities matching their channel conditions. Our theoretical analysis shows that the proposed LineCast can achieve Shannon's optimum performance by using a high-dimensional modulo-lattice quantization. Experiments on satellite images demonstrate that it achieves up to 1.9-dB gain over the state-of-the-art 2D broadcasting scheme and a gain of more than 5 dB over JPEG 2000 with forward error correction. PMID:24474371

  3. A Poynting vector transducer for transmission line monitoring and protection

    SciTech Connect

    Fam, W.Z. )

    1994-01-01

    A new type of transducer is described which enables the continuous monitoring of transmission line current voltage, real and reactive power, and which can also be used to operate the relays necessary for the protection of the line. The new transducer is designed as an integrated unit containing both the current and voltage sensors, thus eliminating the need for conventional current transformers and voltage transformers. The signals from the two sensors are processed using a simple electronic circuit which brings them to a level suitable for metering and relaying purposes. An analogue to digital interface enables the transducer to be connected to a computer for continuous data acquisition storage and monitoring. Due to its geometry and its simple structure, the transducer is ideally suitable for integration into a gas-insulated busbar duct system.

  4. Recyclable Transmission Line (RTL) Concept for Z-Pinch IFE*

    NASA Astrophysics Data System (ADS)

    Olson, C. L.; Slutz, S. A.; Rochau, G. E.; Morrow, C. W.; Kammer, D. C.; Fatenejad, M.; El-Guebaly, L. A.; de Groot, J. S.; Peterson, P. F.

    2003-10-01

    The Recyclable Transmission Line (RTL) concept for IFE uses a recyclable material for the magnetically-insulated transmission line that connects the pulsed power accelerator to the z-pinch fusion target. The RTL may be made of frozen coolant (e.g., Flibe) or a material that is easily separable from the coolant (e.g., low activation ferritic steel). Initial experiments on Saturn at the 10 MA level have already shown excellent electrical turn-on for several candidate RTL materials, and demonstrated high electrical conductivities for thin low-mass RTLs. The present RTL baseline is a 50 kg ferritic steel RTL operating in a 10-20 Torr background chamber pressure. Initial results of investigations are presented on the RTL structural strength (buckling analysis); post-shot RTL formation of schrapnel/plasma; vacuum and electrical RTL connections to the power feed; post-shot effects up the RTL (EMP, schrapnel, etc.); activation and waste stream analysis; study of mechanical properties of foam Flibe; handling of sheer mass of RTLs (one-day storage supply, etc.); and RTL manufacturing and recycling system design.

  5. 49 CFR 192.707 - Line markers for mains and transmission lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Line markers for mains and transmission lines. 192... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.707 Line markers for mains and transmission lines. (a) Buried pipelines. Except as provided...

  6. 49 CFR 192.707 - Line markers for mains and transmission lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Line markers for mains and transmission lines. 192... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.707 Line markers for mains and transmission lines. (a) Buried pipelines. Except as provided...

  7. 49 CFR 192.707 - Line markers for mains and transmission lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Line markers for mains and transmission lines. 192... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Maintenance § 192.707 Line markers for mains and transmission lines. (a) Buried pipelines. Except as provided...

  8. Solar power satellite microwave power transmission system description executive summary

    NASA Astrophysics Data System (ADS)

    Woodcock, G. R.

    1980-12-01

    The history of the concept of microwave power beaming to Earth is reviewed with emphasis on transmission frequency selection. Constraints on the system power level results from (1) required rejection of waste heat resulting from inefficiencies in the cover conversion of dc electric power to microwave power; (2) the rf power intensity in the ionosphere; and (3) the effect of sidelobe level on aperture illumination factors. Transmitter arrangement, the power distribution system, attitude control, subarrays, waveguides, and alignment are discussed.

  9. Power line monitoring system using fiber optic power supply

    NASA Astrophysics Data System (ADS)

    Tanaka, Yosuke; Shioda, Tatsutoshi; Kurokawa, Takashi; Oka, Junji; Ueta, Kazuyuki; Fukuoka, Toshiharu

    2009-05-01

    We propose a novel power-line-monitoring system using optical fibers for transmitting power as well as signal. The principle is experimentally confirmed with a system composed of a monitoring side with a 1.5-μm laser diode, transmission line of a single mode fiber, and a sensing side having an efficient photovoltaic (PV) cell, electrical junction sensor, and low power liquid crystal optical modulator (LCOM). The PV cell generates the electrical power in the sensing side with a conversion efficiency of 20%. The LCOM is driven with low power of less than 50 μW, modulates the laser light with a signal indicating the power line condition, and transmits the optical signal. The developed sensing unit produces an optical signal having an extinction ratio of 15 dB with low optical power of 1.8 mW. Five systems were in operation for two years, faithfully monitoring the oil pressure in electrical cables every 20 min without incident.

  10. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.