Science.gov

Sample records for powerhouse debris pile

  1. Remaining Sites Verification Package for the 100-B-18, 184-B Powerhouse Debris Pile, Waste Site Reclassification Form 2007-020

    SciTech Connect

    L. M. Dittmer

    2007-11-30

    The 100-B-18 Powerhouse Debris Pile contained miscellaneous demolition waste from the decommissioning activities of the 184-B Powerhouse. The debris covered an area roughly 15 m by 30 m and included materials such as concrete blocks, mixed aggregate/concrete slabs, stone rubble, asphalt rubble, traces of tar/coal, broken fluorescent lights, brick chimney remnants, and rubber hoses. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  2. Do Polyethylene Plastic Covers Affect Smoke Emissions from Debris Piles?

    NASA Astrophysics Data System (ADS)

    Weise, D. R.; Jung, H.; Cocker, D.; Hosseini, E.; Li, Q.; Shrivastava, M.; McCorison, M.

    2010-12-01

    Shrubs and small diameter trees exist in the understories of many western forests. They are important from an ecological perspective; however, this vegetation also presents a potential hazard as “ladder fuels” or as a heat source to damage the overstory during prescribed burns. Cutting and piling of this material to burn under safe conditions is a common silvicultural practice. To improve ignition success of the piled debris, polyethylene plastic is often used to cover a portion of the pile. While burning of piled forest debris is an acceptable practice in southern California from an air quality perspective, inclusion of plastic in the piles changes these debris piles to rubbish piles which should not be burned. With support from the four National Forests in southern California, we conducted a laboratory experiment to determine if the presence of polyethylene plastic in a pile of burning wood changed the smoke emissions. Debris piles in southern California include wood and foliage from common forest trees such as sugar and ponderosa pines, white fir, incense cedar, and California black oak and shrubs such as ceanothus and manzanita in addition to forest floor material and dirt. Manzanita wood was used to represent the debris pile in order to control the effects of fuel bed composition. The mass of polyethylene plastic incorporated into the pile was 0, 0.25 and 2.5% of the wood mass—a range representative of field conditions. Measured emissions included NOx, CO, CO2, SO2, polycyclic and light hydrocarbons, carbonyls, particulate matter (5 to 560 nm), elemental and organic carbon. The presence of polyethylene did not alter the emissions composition from this experiment.

  3. Emergency assessment of post-fire debris-flow hazards for the 2013 Powerhouse fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.

  4. 4. POWERHOUSE, GROUND LEVEL, GENERATOR AND EXCITER LOCATED IN POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. POWERHOUSE, GROUND LEVEL, GENERATOR AND EXCITER LOCATED IN POWERHOUSE AT GROUND LEVEL LOOKING NORTHEAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 511: Waste Dumps (Piles and Debris) Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Pastor, Laura

    2005-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 511, Waste Dumps (Piles & Debris). The CAU is comprised of nine corrective action sites (CASs) located in Areas 3, 4, 6, 7, 18, and 19 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 511 is comprised of nine CASs: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 511 with no further corrective action. To achieve this, corrective action investigation (CAI) and closure activities were performed from January 2005 through August 2005, as set forth in the ''Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris)'' (NNSA/NSO, 2004) and Record of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 511 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs. Analytes detected during the CAI were evaluated against appropriate preliminary action levels to identify the COCs for each

  6. 16. EXTERIOR NORTH END OF TULE RIVER POWERHOUSE SHOWING POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EXTERIOR NORTH END OF TULE RIVER POWERHOUSE SHOWING POWERHOUSE AT PHOTO CENTER, SUBSTATION AT PHOTO RIGHT FOREGROUND, OFFICE BEHIND SUBSTATION AT RIGHT OF POWERHOUSE, AND MACHINE SHOP AT LEFT OF POWERHOUSE. THIS PHOTOGRAPH DUPLICATES HISTORIC VIEW SHOWN IN PHOTO CA-216-17. VIEW TO SOUTHEAST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  7. Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1

    SciTech Connect

    David A. Strand

    2004-08-01

    This Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select viable corrective actions. This Corrective Action Investigation Plan provides investigative details for CAU 511, whereas programmatic aspects of this project are discussed in the ''Project Management Plan'' (DOE/NV, 1994). General field and laboratory quality assurance and quality control issues are presented in the ''Industrial Sites Quality Assurance Project Plan'' (NNSA/NV, 2002). Health and safety aspects of the project are documented in the current version of the Environmental Engineering Services Contractor's Health and Safety Plan and will be supplemented with a site-specific safety basis document. Corrective Action Unit 511 is comprised of the following nine corrective action sites in Nevada Test Site Areas 3, 4, 6, 7, 18, and 19: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). Corrective Action Sites 18-99-10 and 19-19-03 were identified after a review of the ''1992 RCRA Part B Permit Application for Waste Management Activities at the Nevada Test Site, Volume IV, Section L Potential Solid Waste Management Unit'' (DOE/NV, 1992). The remaining seven sites were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada

  8. 38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal conveyor, blast stoves, "A" furnace, stoves, "B" furnace, stoves, "C" furnace, bottle cars. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  9. 2. OVERVIEW OF POWERHOUSE 8 COMPLEX. POWERHOUSE IS VISIBLE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERVIEW OF POWERHOUSE 8 COMPLEX. POWERHOUSE IS VISIBLE AT UPPER PHOTO CENTER. BUILDING 105 IS PROMINENT TRANSVERSE GABLE ROOF AT LOWER PHOTO CENTER. BIG CREEK CURVES AROUND BUILDINGS AT LOWER PHOTO. VIEW TO WEST. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  10. Float-in powerhouses

    SciTech Connect

    Makela, G.A.

    1983-06-01

    The nation's inland waterway system affords a means of transporting large objects limited only by channel depth, size of locks and bridge clearances. The concept of prefabricating standardized, hydroelectric powerhouses at shipyards, transporting them along the inland waterways and installing them at navigation dams without powerhouses was examined for the McClellan-Kerr Arkansas River Navigation system. It was found that construction costs for the float-in design was very close to those of conventional sitebuilt design. Experience at Greenup Dam on the Ohio River where a float-in powerhouse has been installed indicated that construction time could be reduced if the float-in design was used. This time saving, use of standardized designs and construction of the float-in module at a shipyard may offer advantages that should be examined in more detailed when the power potential of the nation's low navigation dams is assessed.

  11. 1. POWERHOUSE FOREMAN'S BUNGALOW. CONTEXT VIEW FROM FOREBAY AT POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. POWERHOUSE FOREMAN'S BUNGALOW. CONTEXT VIEW FROM FOREBAY AT POWERHOUSE SHOWING NORTHWEST AND SOUTHWEST FACADES AND FOREBAY CHANNEL. VIEW TO EAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  12. Big Pile or Small Pile?

    ERIC Educational Resources Information Center

    Branca, Mario; Quidacciolu, Rossana G.; Soletta, Isabella

    2013-01-01

    The construction of a voltaic pile (battery) is a simple laboratory activity that commemorates the invention of this important device and is of great help in teaching physics. The voltaic pile is often seen as a scientific toy, with the "pile" being constructed from fruit. These toys use some strips of copper and zinc inserted in a piece…

  13. 56. CROSS SECTION OF POWERHOUSE, PROJECT 1933, EXHIBIT F, SANTA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. CROSS SECTION OF POWERHOUSE, PROJECT 1933, EXHIBIT F, SANTA ANA POWERHOUSE NO. 1. SCE drawing no. 5206856 (no date; FERC no. 1933-46). - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  14. 54. PLAN OF POWERHOUSE, PROJECT 1933, EXHIBIT F, SANTA ANA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. PLAN OF POWERHOUSE, PROJECT 1933, EXHIBIT F, SANTA ANA POWERHOUSE NO. 1. SCE drawing no. 5206855 (no date; FERC no. 1933-45). - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  15. 19. ALTERNATE VIEW OF PENSTOCK SHED, NORTH ELEVATION OF POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. ALTERNATE VIEW OF PENSTOCK SHED, NORTH ELEVATION OF POWERHOUSE, TRANSFORMERS, AND HYDRAULIC PUMPHOUSE, INCLUDING HYDRAULIC OIL TANK - Folsom Powerhouse, Adjacent to American River, Folsom, Sacramento County, CA

  16. ALTERNATE VIEW OF PENSTOCK SHED, NORTH ELEVATION OF POWERHOUSE, TRANSFORMERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ALTERNATE VIEW OF PENSTOCK SHED, NORTH ELEVATION OF POWERHOUSE, TRANSFORMERS, AND HYDRAULIC PUMPHOUSE, INCLUDING HYDRAULIC OIL TANK - Folsom Powerhouse, Adjacent to American River, Folsom, Sacramento County, CA

  17. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  18. 9. POWERHOUSE, LOWER LEVEL, LOOKING NORTHWEST, PRESSURE CASE WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. POWERHOUSE, LOWER LEVEL, LOOKING NORTHWEST, PRESSURE CASE WHICH CONTAINS THE WATER TURBINE - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  19. 18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE DRAIN. TAG INDICATES THE SCROLL CASE DRAIN WAS OPEN, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  20. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  1. 8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, MOSAIC TILE FLOOR, AS SEEN FROM VISITORS GALLERY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  2. 20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE SCROLL CASE, 1987. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  3. 19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND OIL TANK, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  4. 6. VIEW FROM THE ROOF OF GORGE POWERHOUSE LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW FROM THE ROOF OF GORGE POWERHOUSE LOOKING EAST TO THE FORMER GRAVITY OIL STORAGE BUILDING, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  5. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  6. 14. POWERHOUSE INTERIOR, EXCITER No. 2 SHOWING GENERAL ELECTRIC INDUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. POWERHOUSE INTERIOR, EXCITER No. 2 SHOWING GENERAL ELECTRIC INDUCTION MOTOR IN SERIES BETWEEN PELTON-DOBLE IMPULSE WHEEL AND GENERAL ELECTRIC GENERATOR. VIEW TO EAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  7. 5. ROSS POWERHOUSE: SAME CAMERA STATION AS ABOVE PHOTO BUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROSS POWERHOUSE: SAME CAMERA STATION AS ABOVE PHOTO BUT LOOKING EAST. NOTE INFORMATION DISPLAY FOR TOURISTS AT FLOOR LEVEL, 1987. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  8. 13. WEST ELEVATION, POWERHOUSE, WITH FIGURES AND AUTOMOBILES Historic photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WEST ELEVATION, POWERHOUSE, WITH FIGURES AND AUTOMOBILES Historic photograph no. 1646, no date, held at Media Arts and Services Department, Pacific Gas & Electric Co., San Francisco, CA. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  9. View of powerhouse and dam from third floor of original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of powerhouse and dam from third floor of original section of Langdale Cotton Mill, looking northeast - Langdale Cotton Mill, Powerhouse & Dam, 5910 Nineteenth Avenue, Valley, Chambers County, AL

  10. Dam located to east of powerhouse, view from south. This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dam located to east of powerhouse, view from south. This dam holds back the waters of the Chattahoochee River to form the mill pond north of Riverdale Cotton Mill - Riverdale Cotton Mill, Powerhouse & Dam, Valley, Chambers County, AL

  11. 2. ROSS POWERHOUSE: TRANSFORMER DECK, TAILRACE, AND BOATHOUSE AS SEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ROSS POWERHOUSE: TRANSFORMER DECK, TAILRACE, AND BOATHOUSE AS SEEN FROM EAST END OF TRANSFORMER DECK, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  12. View of Childs Powerhouse electrical panel and operator station. In ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Childs Powerhouse electrical panel and operator station. In forground generator #2 and its exciter are visible. Looking north - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  13. View of north wall (electrical panel), interior of Childs Powerhouse. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north wall (electrical panel), interior of Childs Powerhouse. Looking east - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  14. View of west end of Childs Powerhouse, including transformer station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of west end of Childs Powerhouse, including transformer station and associated sheds. Looking downstream (east) - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  15. 12. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 SMALL PELTONDOBLE IMPULSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 SMALL PELTON-DOBLE IMPULSE WHEEL, HAND-CONTROLLED GATE VALVE, AND NOZZLE. VIEW TO SOUTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  16. 6. POWERHOUSE INTERIOR SHOWING EXCITER No. 1. HANDCONTROLLED GATE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. POWERHOUSE INTERIOR SHOWING EXCITER No. 1. HAND-CONTROLLED GATE VALVE SHOWN ON NOZZLE TO PELTON-DOBLE IMPULSE WHEEL. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  17. 33. DETAIL INTERIOR VIEW OF LEVEL +55 IN POWERHOUSE #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. DETAIL INTERIOR VIEW OF LEVEL +55 IN POWERHOUSE #1, SHOWING TURBINE/GENERATOR CONTROL PANEL FOR TURBINE/GENERATOR UNIT NO 1. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  18. 3. VIEW EAST, DETAIL WEST FRONT OF HYDROELECTRIC POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST, DETAIL WEST FRONT OF HYDROELECTRIC POWERHOUSE - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  19. 1. WEST FRONT OF HYDROELECTRIC POWERHOUSE WITH INTAKE STRUCTURE, CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WEST FRONT OF HYDROELECTRIC POWERHOUSE WITH INTAKE STRUCTURE, CANAL SPILLWAY AT LEFT CENTER, VIEW EAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  20. 6. POWERHOUSE, GENERATOR AND GOVERNOR LOCATED AT GROUND LEVEL LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. POWERHOUSE, GENERATOR AND GOVERNOR LOCATED AT GROUND LEVEL LOOKING NORTHWEST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  1. View of Irving Powerhouse. Looking across Fossil Creek (westsouthwest) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Irving Powerhouse. Looking across Fossil Creek (west-southwest) - Childs-Irving Hydroelectric Project, Irving System, Irving Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  2. 1. SOUTH END AND EAST SIDE, SHOWING BONNEVILLE DAM POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTH END AND EAST SIDE, SHOWING BONNEVILLE DAM POWERHOUSE IN BACKGROUND TO RIGHT - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR

  3. 4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT FOREGROUND RIGHT, GOVERNORS AND CONTROL VALVES AT LEFT, AND EXCITERS AT BACK LEFT. VIEW TO NORTH. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  4. 58. photographer unknown undated TWO POTHOLES LOCATED AT POWERHOUSE SITE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. photographer unknown undated TWO POTHOLES LOCATED AT POWERHOUSE SITE, TO BE FILLED WITH CONCRETE. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  5. 1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF GOVERNANCE EQUIPMENT IN FRONT OF GENERATORS AT UNIT 2 (FOREGROUND) AND UNIT 3 (BACKGROUND). VIEW TO SOUTH-SOUTHWEST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT

  6. 13. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING EXCITER No. 1 GENERATOR COMMUTATOR, CABLING, AND ARMATURE BETWEEN WATERWHEEL AND FLYWHEEL. VIEW TO SOUTH. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  7. Big Pile or Small Pile?

    NASA Astrophysics Data System (ADS)

    Branca, Mario; Quidacciolu, Rossana G.; Soletta, Isabella

    2013-10-01

    The construction of a voltaic pile (battery) is a simple laboratory activity that commemorates the invention of this important device and is of great help in teaching physics. The voltaic pile is often seen as a scientific toy, with the "pile" being constructed from fruit. These toys use some strips of copper and zinc inserted in a piece of fruit to produce a low-intensity electrical current to power a digital device. In a voltaic pile of this type, the zinc acts as an anode while the copper acts as a cathode. The reduction reaction [i.e.,2H+(aq)+2e⇋H2(g)] occurs on the copper (the cathode). The two electrons that are needed for the reduction are taken from the metal (copper), which remains positively charged, while the anode is the zinc, which is oxidized through the reaction Zn∘(m)⇋Zn+2(aq )+2e, and the two electrons remain on the metal, which is negatively charged. If the two pieces of metal are connected by an external conductor, electrons flow from the zinc to the copper. The electromotive force of this system is about 0.76 V, which is the reduction potential of zinc, as can be found in the table of standard reduction potentials.

  8. 21. DIABLO POWERHOUSE: LOOKING AT THE TRUNION FOR THE BUTTERFLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DIABLO POWERHOUSE: LOOKING AT THE TRUNION FOR THE BUTTERFLY VALVE AND DRAIN FOR SCROLL CASE FOR UNIT 32. THESE ARE LOCATED ON THE SAME LEVEL IN THE POWERHOUSE AS THE LOWER OIL ROOM, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  9. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  10. 2. OVERVIEW OF TRIPLEX COTTAGE IN POOLE POWERHOUSE SETTING. TRIPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERVIEW OF TRIPLEX COTTAGE IN POOLE POWERHOUSE SETTING. TRIPLEX COTTAGE IS VISIBLE AT PHOTO CENTER LEFT. POOLE POWERHOUSE IS ADJACENT TRIPLEX COTTAGE AT PHOTO CENTER RIGHT. SWITCHRACKS ARE VISIBLE ADJACENT TO POWERHOUSE BUILDING. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  11. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  12. 7. POWERHOUSE, FOREGROUND ON CEILING EXCITER FLATBELT PULLEYS, BACK RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. POWERHOUSE, FOREGROUND ON CEILING EXCITER FLATBELT PULLEYS, BACK RIGHT, WOODEN PERSONAL FACILITY LOCATED IN POWERHOUSE LOWER LEVEL LOOKING SOUTH - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  13. 5. POWERHOUSE, GROUND LEVEL, LOOKING SOUTHEAST GENERATOR, GOVERNOR, EXCITER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. POWERHOUSE, GROUND LEVEL, LOOKING SOUTHEAST GENERATOR, GOVERNOR, EXCITER AND KILOWATT-HOUR RECORDER LOCATED IN POWERHOUSE AT GROUND LEVEL LOOKING SOUTHEAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  14. 57. DETAIL INTERIOR VIEW OF LEVEL 63 IN POWERHOUSE #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. DETAIL INTERIOR VIEW OF LEVEL -63 IN POWERHOUSE #1, SHOWING UNWATERING SUMPS AT SOUTH END OF BUILDING Photograph Nos OR-11-E-58 through OR-11-E-102 are photocopies of photographs Original historic photographs are located at the Bonneville Powerhouse, Bonneville, Oregon. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  15. 4. NORTH EXTERIOR SIDE OF KERN RIVER No. 1 POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH EXTERIOR SIDE OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING TAILRACES FOR (LEFT TO RIGHT IN PHOTO) GENERATOR UNITS Nos. 4 AND 3, EXCITER No. 1, AND GENERATOR UNITS Nos. 2 AND 1. POWERHOUSE BUILDING NORTH EXIT DOOR IS IN CENTER OF WALL. VIEW TO SOUTHWEST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  16. 2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN FROM SAME ANGLE AS CA-167-X-1. THREE ORIGINAL PENSTOCKS PLUS FOURTH AND FIFTH PENSTOCKS (VISIBLE TO LEFT OF ORIGINAL THREE), AND THREE ORIGINAL STANDPIPES COUPLED TO FOURTH STANDPIPE SHOWN BEHIND AND ABOVE POWERHOUSE BUILDING. VIEW TO NORTHEAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  17. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    SciTech Connect

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  18. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  19. 15. OVERVIEW OF TULE RIVER POWERHOUSE FROM FLUME SECTION JUST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OVERVIEW OF TULE RIVER POWERHOUSE FROM FLUME SECTION JUST SOUTHEAST OF FOREBAY SHOWING BYPASSED SEGMENT OF OLD HIGHWAY 190 IN FRONT OF POWERHOUSE A PHOTO RIGHT CENTER. TAILRACE FROM POWERHOUSE DISCHARGES PROJECT WATER BACK INTO TULE RIVER MIDDLE FORK JUST OUT OF VIEW AT EXTREME LEFT OF PHOTO. VIEW TO SOUTHWEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  20. 9. North Plant, View of Canopied Loading Dock with Powerhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. North Plant, View of Canopied Loading Dock with Powerhouse to Left, Looking Northwest - Atwater Kent Manufacturing Company, North Plant, 5000 Wissahickon Avenue, Philadelphia, Philadelphia County, PA

  1. 9. WEST FACADE OF ORIGINAL (1903) POWERHOUSE, GENERATING ROOM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. WEST FACADE OF ORIGINAL (1903) POWERHOUSE, GENERATING ROOM, LOOKING SOUTHEAST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  2. 83. OVERVIEW OF PARTIALLY COMPLETED POWERHOUSE WITH TWO UNITS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. OVERVIEW OF PARTIALLY COMPLETED POWERHOUSE WITH TWO UNITS IN OPERATION, LOOKING UPSTREAM, Print No. 274, June 1904 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  3. 28. PLANS AND SECTIONS OF POWERHOUSE. SANTA ANA NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. PLANS AND SECTIONS OF POWERHOUSE. SANTA ANA NO. 3, EXHIBIT L, JAN. 25, 1956 (SHEET 8; FOR FILING WITH FEDERAL POWER COMMISSION). SCE drawing no. 541729. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA

  4. 85. General view of powerhouse from tailrace; this photograph was ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. General view of powerhouse from tailrace; this photograph was taken while operations at the powerhouse were temporarily halted; looking east. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  5. 18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ON THE TURBINE ARE EACH EQUIPPED WITH A SHEAR PIN AND OIL PRESSURE GAUGE. IF A GATE JAMS, THE PIN SMEARS AND THE CHANGE IN OIL PRESSURE TRIGGERS AN ALARM, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  6. 17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE BUTTERFLY VALVE LOCK INDICATES THE BUTTERFLY VALVE IS CLOSED AS UNIT 43 WAS SHUT DOWN FOR REPAIRS, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  7. 2. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE, WITH THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE, WITH THE MODERN SUBSTATION AND OLD SWITCHING BUILDING IN THE LEFT FOREGROUND AND THE POWER PLANT IN THE RIGHT FOREGROUND, LOOKING SOUTH. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  8. 1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. POWER PLANT AND INTAKE GATES ARE IN THE LEFT FOREGROUND, AND THE ATTACHED 'OLD SWITCHING BUILDING' (NOW ABANDONED) IS IN THE RIGHT BACKGROUND, LOOKING NORTHWEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  9. 27. DIABLO POWERHOUSE UPPER OIL ROOM: OBSOLETE WESTINGHOUSE DIELECTRIC OIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DIABLO POWERHOUSE UPPER OIL ROOM: OBSOLETE WESTINGHOUSE DIELECTRIC OIL TESTING SET. OIL IS USED AS AN INSULATOR IN TRANSFORMERS AND ITS CONDUCTIVITY USED TO BE TESTED USING EQUIPMENT SUCH AS THIS, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  10. 18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED BY LINCOLN AC MOTORS ON THE RIGHT AND TURBINE AIR DRY APPARATUS ON THE LEFT, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  11. 37. WEST REAR OF POWERHOUSE AND CAR BARN: West rear ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. WEST REAR OF POWERHOUSE AND CAR BARN: West rear of powerhouse and car barn, showing the turntable and tracks used to move cars in and out of the building's repair and storage area. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  12. 9. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING EXCITER No 2. Ca. 1930 GENERAL ELECTRIC ALTERNATING CURRENT MOTOR REPLACEMENT FOR ALLIS-CHALMERS IMPULSE WHEEL IS VISIBLE ON RIGHT ALONG WITH COUPLING TO EXCITER SHAFT. VIEW TO NORTHWEST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  13. 28. SOUTHEAST CORNER OF POWERHOUSE DURING RECONSTRUCTION: Photocopy of July ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SOUTHEAST CORNER OF POWERHOUSE DURING RECONSTRUCTION: Photocopy of July 1907 photograph taken during reconstruction of the powerhouse and car barn. View of the southeast corner of the building. The steam indicates that some of the building's cable lines are in operation. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  14. 8. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING EXCITER No 1. SIDE VIEW OF LOMBARD GOVERNOR SHOWING BELT ATTACHMENT TO EXCITER SHAFT. GENERATOR UNIT No. 2 IN BACKGROUND. VIEW TO NORTHWEST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  15. 90. View of east facade of powerhouse, and abandoned lightning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. View of east facade of powerhouse, and abandoned lightning arrester houses on hillside above powerhouse; looking west. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  16. 89. View of west and south facades of powerhouse, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. View of west and south facades of powerhouse, and abandoned lightning arrester houses on hillside above powerhouse; looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  17. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND SWITCHRACKS AND TREE. POWERHOUSE IS AT EXTREME PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  18. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  19. 17. SECTION DRAWING OF SURGE TANK, PENSTOCK, AND POWERHOUSE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SECTION DRAWING OF SURGE TANK, PENSTOCK, AND POWERHOUSE, SHOWING TURBINE, GENERATOR, AND TRANSFORMERS INSTALLED IN POWERHOUSE, INTERIOR Part Sectional and Elevation of Power House and Penstock, drawing E-966. Drawn by F. J. Rotter, December 27, 1922 - Enloe Dam, Power House, On Similkameen River, Oroville, Okanogan County, WA

  20. View looking out of the Irving Powerhouse showing the exiting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking out of the Irving Powerhouse showing the exiting water flowing south into the inlet of the Childs System. Looking south - Childs-Irving Hydroelectric Project, Irving System, Irving Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  1. 33. DIABLO POWERHOUSE: VOLTAGE REGULATOR FOR SPARE EXCITER. ORIGINAL EQUIPMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. DIABLO POWERHOUSE: VOLTAGE REGULATOR FOR SPARE EXCITER. ORIGINAL EQUIPMENT, BALANCE BEAM TYPE REGULATOR WHICH IS POSSIBLY ONE OF THE LAST OF ITS TYPE IN WORKING SERVICE IN THE COUNTRY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  2. 24. MITSUBISHI BIPLANE VALVE GORGE POWERHOUSE SEEN FROM THE SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. MITSUBISHI BIPLANE VALVE GORGE POWERHOUSE SEEN FROM THE SOUTH. THE MITSUBISHI BIPLANE VALVES WERE INSTALLED IN 1980 AND REPLACED LARNER-JOHNSON NEEDLE VALVES ON UNITS 21, 22, AND 23, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  3. Context view of Powerhouse from west slope of canyon showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view of Powerhouse from west slope of canyon showing west facade and inclined railroad tracks. View to east-southeast - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  4. 8. POWERHOUSE, LOWER LEVEL, LEFT, GOVERNOR DRIVE MOTOR WITH BELT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE, LOWER LEVEL, LEFT, GOVERNOR DRIVE MOTOR WITH BELT ON RIGHT, HYDRAULIC PUMP WITH RESERVOIR TANK, STEAM HEAT PIPES ON BACK WALL LOOKING NORTHEAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  5. 2. VIEW SOUTH, NORTH SIDE OF HYDROELECTRIC POWERHOUSE AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, NORTH SIDE OF HYDROELECTRIC POWERHOUSE AT LEFT WITH BRIDGE OVER CANAL SPILLWAY IN FOREGROUND AND MILL COMPLEX IN BACKGROUND - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  6. 8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  7. 12. INTERIOR DIABLO POWERHOUSE AS SEEN FROM NORTHEAST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR DIABLO POWERHOUSE AS SEEN FROM NORTHEAST CORNER OF GENERATOR FLOOR LOOKING AT UNIT 31. CONTROL CABINETS FOR ASEA GOVERNOR SYSTEM ARE IN FRONT OF GENERATOR, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  8. 32. DETAIL INTERIOR VIEW OF LEVEL +55 IN POWERHOUSE #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL INTERIOR VIEW OF LEVEL +55 IN POWERHOUSE #1, SHOWING GOVERNOR CONTROL CABINET BETWEEN TURBINE/GENERATOR UNIT NO 1 (ON FAR LEFT) AND NO 2 (OUT OF VIEW ON RIGHT). - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  9. 1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF GOVERNANCE EQUIPMENT IN FRONT OF GENERATORS WITH UNIT 1 IN FOREGROUND AND UNITS 2-6 IN BACKGROUND. VIEW TO THE SOUTH-SOUTHWEST. - Ryan Hydroelectric Facility, Powerhouse, On Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  10. 11. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING EXCITER No. 1. LOMBARD GOVERNOR NOZZLE-DEFLECTOR CONNECTION IS VISIBLE IN FRONT OF ALLIS-CHALMERS WATERWHEEL COVER. VIEW TO NORTHEAST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  11. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    SciTech Connect

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  12. Coal fired powerhouse wastewater pressure filtration

    SciTech Connect

    Martin, H.L.; Diener, G.A.

    1994-05-01

    The Savannah River Site`s permit for construction of an industrial wastewater treatment facility to remove solids from the boiler blow-down and wet ash scrubber effluent of the A-Area coal fired powerhouse was rejected. Conventional clarification technology would not remove arsenic from the combined effluent sufficient to achieve human health criteria in the small receiving surface stream. Treatability studies demonstrated that an existing facility, which will no longer be needed for metal finishing wastewater, can very efficiently process the powerhouse wastewater to less than 35 {mu}g/L arsenic. Use of cationic and anionic polymers to flocculate both the wastewater and filter aid solids formed a ``bridged cake`` with exceptionally low resistance to flow. This will double the capacity of the Oberlin pressure filters with the Tyvek T-980 sub micron filter media. The affects of high sheer agitation and high temperature in the raw wastewater on the filtration process were also studied and adequate controls were demonstrated.

  13. 16. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF COLONNADE BETWEEN LIVING ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF COLONNADE BETWEEN LIVING ROOM AND DINING ROOM. VIEW TO NORTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  14. 10. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF SOUTHWEST ENTRY AND DORMER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF SOUTHWEST ENTRY AND DORMER. VIEW TO NORTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  15. 12. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF SOUTHWEST PORCH. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF SOUTHWEST PORCH. VIEW TO SOUTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  16. 14. POWERHOUSE FOREMAN'S BUNGALOW. VIEW OF ENTRY HALL SHOWING STAIRWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. POWERHOUSE FOREMAN'S BUNGALOW. VIEW OF ENTRY HALL SHOWING STAIRWAY. VIEW TO SOUTH-SOUTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  17. 8. POWERHOUSE FOREMAN'S BUNGALOW. NORTHEAST FACADE. VIEW TO SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE FOREMAN'S BUNGALOW. NORTHEAST FACADE. VIEW TO SOUTHWEST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  18. 15. POWERHOUSE FOREMAN'S BUNGALOW. VIEW FROM LIVING ROOM TO DINING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. POWERHOUSE FOREMAN'S BUNGALOW. VIEW FROM LIVING ROOM TO DINING ROOM SHOWING WINDOWS, DOOR, AND COLONNADE. VIEW TO NORTH. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  19. 7. POWERHOUSE FOREMAN'S BUNGALOW. SOUTHWEST FACADE. VIEW TO NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. POWERHOUSE FOREMAN'S BUNGALOW. SOUTHWEST FACADE. VIEW TO NORTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  20. 9. POWERHOUSE FOREMAN'S BUNGALOW. SOUTHEAST FACADE. VIEW TO WESTSOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. POWERHOUSE FOREMAN'S BUNGALOW. SOUTHEAST FACADE. VIEW TO WEST-SOUTHWEST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  1. 11. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF SOUTHWEST ENTRY SYSTEM. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF SOUTHWEST ENTRY SYSTEM. VIEW TO NORTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  2. 18. POWERHOUSE FOREMAN'S BUNGALOW. VIEW FROM REAR OF ENTRANCE HALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. POWERHOUSE FOREMAN'S BUNGALOW. VIEW FROM REAR OF ENTRANCE HALL TO BEDROOMS. VIEW TO SOUTH-SOUTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  3. 5. POWERHOUSE FOREMAN'S BUNGALOW. NORTHWEST FACADE. VIEW TO SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. POWERHOUSE FOREMAN'S BUNGALOW. NORTHWEST FACADE. VIEW TO SOUTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  4. 6. POWERHOUSE FOREMAN'S BUNGALOW. SOUTHWEST AND NORTHWEST FACADES. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. POWERHOUSE FOREMAN'S BUNGALOW. SOUTHWEST AND NORTHWEST FACADES. VIEW TO EAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  5. 13. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF PORCH PIER. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF PORCH PIER. VIEW TO NORTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  6. 8. Credit SHS. View of east elevation of powerhouse and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Credit SHS. View of east elevation of powerhouse and water discharging from tailrace Note the absence of upper level windows on facade. Photo e. October 1901. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  7. 72. Credit FM. Overview of powerhouse from gallery. Notice cooling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. Credit FM. Overview of powerhouse from gallery. Notice cooling duct on generator (now removed) and spare gate valve in far corner. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  8. 100. View of generator room in powerhouse; turbine unit no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. View of generator room in powerhouse; turbine unit no. 2 is to the right, looking southeast. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  9. 16. DETAIL OF NORTH ELEVATION OF POWERHOUSE, ALSO SHOWING PORTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF NORTH ELEVATION OF POWERHOUSE, ALSO SHOWING PORTION OF DAM TO LEFT - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  10. VIEW WEST, SOUTH PENN POWERHOUSE, (FROM LEFT) BLEEDER SHED, ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST, SOUTH PENN POWERHOUSE, (FROM LEFT) BLEEDER SHED, ENGINE HOUSE, BELT SHED, ECCENTRIC HOUSE. - South Penn Oil Company, G. M. Mead Lot 492 Lease, Morrison Run Field, Clarendon, Warren County, PA

  11. 6. PLANT 2 POWERHOUSE AND TRANSFORMER BUILDING. NOTE ABSENCE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PLANT 2 POWERHOUSE AND TRANSFORMER BUILDING. NOTE ABSENCE OF DIAMOND-SHAPED WINDOWS VISIBLE ON TRANSFORMER BUILDING IN PRE-1970 PHOTOGRAPHS. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 2, Bishop Creek, Bishop, Inyo County, CA

  12. 156. Detail of lightning arrester on hillside above powerhouse; looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    156. Detail of lightning arrester on hillside above powerhouse; looking west. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  13. 155. Detail of lightning arrester on hillside above powerhouse; looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. Detail of lightning arrester on hillside above powerhouse; looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  14. 154. Detail of lightning arrester on hillside above powerhouse; looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    154. Detail of lightning arrester on hillside above powerhouse; looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  15. INTERIOR VIEW OF GLINES CANYON POWERHOUSE FROM TOP OF ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF GLINES CANYON POWERHOUSE FROM TOP OF ENTRANCE STAIRS. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  16. POWERHOUSE MAIN FLOOR INCLUDING WORKBENCH AND ARC WELDER IN RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POWERHOUSE MAIN FLOOR INCLUDING WORKBENCH AND ARC WELDER IN RIGHT FOREGROUND. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  17. VIEW TO NORTH OF ELWHA RIVER, POWERHOUSE, SURGE TANK, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO NORTH OF ELWHA RIVER, POWERHOUSE, SURGE TANK, AND PENSTOCK. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  18. GLINES POWERHOUSE, TAILRACE, AND SURGE TANK WITH TRANSFORMER YARD IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GLINES POWERHOUSE, TAILRACE, AND SURGE TANK WITH TRANSFORMER YARD IN FOREGROUND; DAM AND RESERVOIR TO SOUTH. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  19. AERIAL PHOTO OF ELWHA RIVER, SPILLWAYS AT GLINES DAM, POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL PHOTO OF ELWHA RIVER, SPILLWAYS AT GLINES DAM, POWERHOUSE, SURGE TANK AND TRANSFORMER YARD WITH HISTORIC SHED (WAREHOUSE). PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  20. VIEW TO WEST OF GLINES POWERHOUSE AND TAILRACE ON ELWHA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO WEST OF GLINES POWERHOUSE AND TAILRACE ON ELWHA RIVER, WITH SURGE TANK IN FOREGROUND. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  1. GENERAL AERIAL VIEW, LOOKING SOUTH, AT GLINES DAM AND POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL AERIAL VIEW, LOOKING SOUTH, AT GLINES DAM AND POWERHOUSE, LAKE MILLS RESERVOIR, AND THE ELWHA RIVER. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  2. AERIAL PHOTO, LOOKING SOUTH, SHOWING POWERHOUSE, SURGE TANK, TRANSFORMER YARD, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL PHOTO, LOOKING SOUTH, SHOWING POWERHOUSE, SURGE TANK, TRANSFORMER YARD, GLINES DAM, AND LAKE MILLS RESERVOIR. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  3. GENERAL AERIAL VIEW TO SOUTH OF ELWHA DAM AND POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL AERIAL VIEW TO SOUTH OF ELWHA DAM AND POWERHOUSE WITH NORTH END OF RESERVOIR. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  4. HISTORIC SHED (NOW WAREHOUSE) AT TRANSFORMER YARD ABOVE GLINES POWERHOUSE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC SHED (NOW WAREHOUSE) AT TRANSFORMER YARD ABOVE GLINES POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  5. 158. General view of transformer yard above White River powerhouse, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    158. General view of transformer yard above White River powerhouse, looking northwest. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  6. 160. View of transformer yard above White River powerhouse, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    160. View of transformer yard above White River powerhouse, looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  7. 159. View of transformer yard above White River powerhouse, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    159. View of transformer yard above White River powerhouse, looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  8. 7. CHIEF JOSEPH DAM AND POWERHOUSE TO LEFT OF PICTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CHIEF JOSEPH DAM AND POWERHOUSE TO LEFT OF PICTURE COLUMBIA RIVER BRIDGE AT BRIDGEPORT TO RIGHT OF DOWNSTREAM - Columbia River Bridge at Bridgeport, State Route 17 spanning Columbia River, Bridgeport, Douglas County, WA

  9. Interior of Left Powerhouse showing generator Nos. 14. This view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Left Powerhouse showing generator Nos. 1-4. This view is from the catwalk at the level of the overhead crane, looking west. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  10. Interior of visitor's room at Left Powerhouse, containing terrazzo floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of visitor's room at Left Powerhouse, containing terrazzo floor depicting a turbine-generator unit. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  11. Interior of Third Powerhouse, looking south, showing the work on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Third Powerhouse, looking south, showing the work on the new stator which is being fabricated by Siemens. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  12. View of Left Powerhouse, looking east. The multistory building to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Left Powerhouse, looking east. The multi-story building to the right contains the main control room for the powerplant complex. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  13. Interior of Right Powerhouse, looking northeast, showing shaft from Francis ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, looking northeast, showing shaft from Francis turbine (below) extending to the generator (above). This is unit G-10. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  14. 8. NORTH (MAIN) ENTRANCE TO ORIGINAL (1903) FISK STREET POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. NORTH (MAIN) ENTRANCE TO ORIGINAL (1903) FISK STREET POWERHOUSE, THE GENERATING ROOM, LOOKING SOUTH. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  15. VIEW INSIDE ELWHA POWERHOUSE LOOKING WEST TO EAST TOWARD GENERATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW INSIDE ELWHA POWERHOUSE LOOKING WEST TO EAST TOWARD GENERATORS #3 AND #4, WITH OIL PUMPS FOR GOVERNORS TO THE RIGHT. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  16. 1. OVERVIEW OF SYSTEM, SHOWING POWERHOUSE, SWITCH HOUSE, PENSTOCK CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF SYSTEM, SHOWING POWERHOUSE, SWITCH HOUSE, PENSTOCK CONSTRUCTION SCAR, AND HOUSING AREA, LOOKING EAST, SOMETIME AFTER 1910 Historic photograph no. SC8715, no date - Centerville Hydroelectric System, Butte Creek, Centerville, Butte County, CA

  17. Interior of Left Powerhouse showing the Whiting (Company's) "Tiger" crane ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Left Powerhouse showing the Whiting (Company's) "Tiger" crane with a capacity of 350 tons, looking west. Note the terrazzo floor below depicting a Francis turbine. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  18. Interior of Right Powerhouse, generator room, looking east. The unit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, generator room, looking east. The unit in the foreground is turbine-generator No. 11. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  19. VIEW LOOKING NORTHEAST SHOWING A CORNER DETAIL OF THE POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST SHOWING A CORNER DETAIL OF THE POWERHOUSE AND THE SOUTHERN SECTION OF THE DAM. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  20. 2. FOREMAN'S HOUSE, SURGE TANK AND TOP OF POWERHOUSE. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FOREMAN'S HOUSE, SURGE TANK AND TOP OF POWERHOUSE. VIEW TO EAST-NORTHEAST. - Rainbow Hydroelectric Facility, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  1. 5. HOUSE No. 16 AND SURGE TANK. ROOF OF POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HOUSE No. 16 AND SURGE TANK. ROOF OF POWERHOUSE IN BACKGROUND. VIEW TO NORTHEAST. - Rainbow Hydroelectric Facility, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  2. 64. ELECTRIC MOTOR HAYES STREET POWERHOUSE 1905: Photocopy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. ELECTRIC MOTOR - HAYES STREET POWERHOUSE - 1905: Photocopy of April 1905 photograph showing an early electric motor installation used to drive the winding machinery at the Hayes Street powerhouse of the United Railroads of San Francsico. A portion of the steam engine originally used to power the machinery is visible behind the winding sheave in the left background of the photograph. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  3. Interior of Right Powerhouse, looking northeast, showing shaft from Francis ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, looking northeast, showing shaft from Francis turbine (below) extending to the generator (above). This is unit G-11, a Francis turbine that is identical to the others in the Right Powerhouse: manufactured in 1950 by the Newport News Shipbuilding and Drydock Company, Newport News, Virginia; 165,000 horsepower, 330 ft. head, 120 rpm. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  4. Interior of Right Powerhouse, looking east, showing turbinegenerator unit No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, looking east, showing turbine-generator unit No. 11, which is undergoing repair. This is generator is identical to the other eight units located in the Right Powerhouse: Westinghouse AC generator, 108,000 kva, 13,800 volts, 4,200 amps, 3 phase, 60 cycle, 1220 exciter amps, 250 exciter volts. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  5. 10. VIEW SOUTHWEST OF EAST SIDE OF OLD POWERHOUSE BASEMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW SOUTHWEST OF EAST SIDE OF OLD POWERHOUSE BASEMENT, WITH TRIFLEX PISTON PURE FOR TURBINE BEARING LUBRICATION SYSTEM (LEFT), AND PIPE FOR LUBRICATING OIL PLUS CONSULTS FOR ELECTRICAL LEADS FROM GENERATORS (RIGHT) - Trenton Falls Hydroelectric Station, Powerhouse & Substation, On west bank of West Canada Creek, along Trenton Falls Road, 1.25 miles north of New York Route 28, Trenton Falls, Oneida County, NY

  6. 27. VIEW TO SOUTHWEST AT START OF POWERHOUSE RECONSTRUCTION: Photocopy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW TO SOUTHWEST AT START OF POWERHOUSE RECONSTRUCTION: Photocopy of December 1906 photograph showing the start of reconstruction work on the powerhouse and car barn. View towards the southwest corner of the building. Note the winding sheaves under a partially completed protective shed on the left of the photograph. Also visible are the tension sheaves, and behind them the batteries of elephant boilers arrayed along the west wall of the building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  7. A Pile of Legos.

    ERIC Educational Resources Information Center

    DePino, Andrew, Jr.

    1994-01-01

    Describes the relationships a high school built with neighborhood industry, a national laboratory, a national museum, and a large university while trying to build a scale model of the original atomic pile. Provides suggestions for teachers. (MVL)

  8. 2. POWERHOUSE FOREMAN'S BUNGALOW. CONTEXT VIEW FROM HILL ABOVE GARAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. POWERHOUSE FOREMAN'S BUNGALOW. CONTEXT VIEW FROM HILL ABOVE GARAGE SHOWING NORTHEAST AND NORTHWEST FACADES. VIEW TO SOUTH-SOUTHEAST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  9. 11. Credit JTL. North elevation of powerhouse showing sliding wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Credit JTL. North elevation of powerhouse showing sliding wood doors used for easy installation and removal of equipment. Note painted surface indicating location of transformer annex (now removed). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  10. 17. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF BUILTIN BUFFET IN DINING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF BUILT-IN BUFFET IN DINING ROOM AND END OF COLONNADE. VIEW TO SOUTH-SOUTHWEST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  11. 101. View of generator room in powerhouse; turbinegenerator unit no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. View of generator room in powerhouse; turbine-generator unit no. 2 is to the right, looking southeast. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  12. 14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINEGENERATOR UNIT NO. 18, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINE-GENERATOR UNIT NO. 18, MANUFACTURED BY GENERAL ELECTRIC IN 1949 AND RATED AT 150 MEGAWATTS. IT WAS RETIRED FROM SERVICE SEVERAL YEARS AGO. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  13. VIEW INSIDE ELWHA POWERHOUSE LOOKING EAST TO WEST TOWARD #4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW INSIDE ELWHA POWERHOUSE LOOKING EAST TO WEST TOWARD #4 AND #3: 3333 KVA, 6600 V GENERATORS, WITH 300 RPM, 5000 HP TURBINES. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  14. VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND TRANSFORMER FRAMEWORK AT LEFT, BELOW POWER LINES AND THE MAINTENANCE AND RESIDENTIAL COMPOUND UPSTREAM TO RIGHT) ALONG VERDE RIVER FROM FS ROAD #502. LOOKING UPSTREAM (WEST-SOUTHWEST) - Childs-Irving Hydroelectric Project, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  15. View of Dry Falls Dam Powerhouse (right) and headgates to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Dry Falls Dam Powerhouse (right) and headgates to Main Canal (left) leading to Bacon Siphon and on to Billy Clapp Lake, looking northeast - Columbia Basin Project, Banks Lake Dry Falls Dam & Main Canal Headworks, South end of Banks Lake, Northwest of Coulee City, Grand Coulee, Grant County, WA

  16. 63. VIEW OF TYPICAL TURBINE IN TURBINE WELL IN POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW OF TYPICAL TURBINE IN TURBINE WELL IN POWERHOUSE, LOOKING DOWN THE SHAFT FROM JUST ABOVE NORMAL WATER LEVEL. LADDER IS ON DOWNSTREAM WALL. PHOTOGRAPHER STOOD ON DECK SHOWN IN LOWER LEFT CORNER - Swan Falls Dam, Snake River, Kuna, Ada County, ID

  17. 29. Coke oven byproduct building "XX" with ammonia stills; powerhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Coke oven by-product building "XX" with ammonia stills; powerhouse with 8 sisters (stacks) in background; conveyor #20 (with break) on right, pulevrized coal storage bunker on left. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  18. Historic view of interior of powerhouse looking east; showing operator's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic view of interior of powerhouse looking east; showing operator's platform containing control panel (center), and telephone booth (left) this booth was needed to reduce plant noise while using telephone. (photographer unknown, ca. 1920.) - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  19. A LINE POLE 1 IN FOREGROUND AND MYSTIC LAKE POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 1 IN FOREGROUND AND MYSTIC LAKE POWERHOUSE IN BACKGROUND. A LINE POLE 1 IS A MODERN REPLACEMENT STRUCTURE WITH BROWN PORCELAIN SUSPENSION-TYPE INSULATORS. VIEW TO EAST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  20. 19. DETAIL OF INTERIOR OF POWERHOUSE SHOWING (LEFT TO RIGHT): ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF INTERIOR OF POWERHOUSE SHOWING (LEFT TO RIGHT): SUBMERSIBLE TURBINE-GENERATOR (REMOVED FROM PENSTOCK AND PLACED HERE TEMPORARILY); GENERATOR; AND GOVERNOR - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  1. Interior of powerhouse looking northeast; view of the housing for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of powerhouse looking northeast; view of the housing for one of the two pelton wheels (both of which were manufactured by the Pelton Water Wheel Company of San Francisco, California, 1910) with type "Q" Lombard Governor and backshot needle valves on operator's platform. - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  2. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  3. Pile Structure Program, Projected Start Date : January 1, 2010 (Implementation).

    SciTech Connect

    Collins, Chris; Corbett, Catherine; Ebberts, Blaine

    2009-07-27

    The 2008 Federal Columbia River Power System Biological Opinion includes Reasonable and Prudent Alternative 38-Piling and Piling Dike Removal Program. This RPA directs the Action Agencies to work with the Estuary Partnership to develop and implement a piling and pile dike removal program. The program has since evolved to include modifying pile structures to enhance their habitat value and complexity by adding large woody debris. The geographic extent of the Pile Structure Program (PSP) includes all tidally-influenced portions of the lower Columbia River below Bonneville Dam; however, it will focus on the mainstem. The overarching goal of the PSP is to enhance and restore ecosystem structure and function for the recovery of federally listed salmonids through the active management of pile structures. To attain this goal, the program team developed the following objectives: (1) Develop a plan to remove or modify pile structures that have lower value to navigation channel maintenance, and in which removal or modification will present low-risk to adjacent land use, is cost-effective, and would result in increased ecosystem function. (2) Determine program benefits for juvenile salmonids and the ecosystem through a series of intensively monitored pilot projects. (3) Incorporate best available science and pilot project results into an adaptive management framework that will guide future management by prioritizing projects with the highest benefits. The PSP's hypotheses, which form the basis of the pilot project experiments, are organized into five categories: Sediment and Habitat-forming Processes, Habitat Conditions and Food Web, Piscivorous Fish, Piscivorous Birds, and Toxic Contaminant Reduction. These hypotheses are based on the effects listed in the Estuary Module (NOAA Fisheries in press) and others that emerged during literature reviews, discussions with scientists, and field visits. Using pilot project findings, future implementation will be adaptively managed to

  4. Comets, Asteroids and Rubble Piles: not just debris

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Dusenbery, P.

    2010-12-01

    The National Center for Interactive Learning at the Space Science Institute (NCIL @ SSI) is developing a variety of asteroids related education activities as part of several E/PO projects, including Finding NEO (funded through NSF and NASA SMD); Great Balls of Fire! (funded through NSF); and a partnership with the WISE (Wide-field Infrared Survey Explorer) mission. These activities range from a web site to traveling exhibits in three different sizes. The Killer Asteroids web site (www.killerasteroids.org) includes background information on comets and asteroids as well as a number of interactive activities and games. These include a game that compares the risk of death from an asteroid impact to other hazards; a game and video vignettes on the role of backyard astronomers in light curve research; a physics-based asteroid deflection game; and a Google Earth -based "drop a rock on your house" activity. In addition, the project is developing a small, portable exhibit suitable for use in libraries or visitors centers. Great Balls of Fire! includes two separate traveling exhibitions: a 3000 square foot exhibition for science centers, and a 500 square foot version for smaller venues. Both will begin national tours in the summer of 2011. The Great Balls of Fire! exhibit program includes a free Education Program for docents and educators, and an Outreach Program to amateur astronomers around the country through the Astronomical Society of the Pacific’s (ASP) Astronomy from the Ground Up program. The project will facilitate partnerships between host venues and local astronomy clubs that can interact with the public using a toolkit of activities developed by ASP. Great Balls of Fire! Represents a collaboration between scientists, educators, exhibit designers, graphic artists, evaluators, education researchers, and three teams of middle school students who acted as advisors. The project’s exhibit design firm is Jeff Kennedy Associates Inc. We will present a summary of the different components of these projects and how different audiences can take advantage of them, from science centers and libraries that can host the exhibits, to home and classroom use through the web site.

  5. Piled Embankment Design Comparison

    NASA Astrophysics Data System (ADS)

    Drusa, Marián; Kais, Ladislav; Vlček, Jozef; Mečár, Martin

    2015-05-01

    There are currently several national standards or regulations for the design of the piled embankment, providing suitable solutions for foundation of transport structure on soft, high compressible subsoil, [1]. The most widely used and the best-known standard is British Standard BS8006 [2], which was confronted with another analytical design methodologies (Ebgeo, CUR). Today's popularity and versatility of FEM numerical models brings many advantages, which analytical methods cannot achieved, but must be verified by proposed scaled physical model, which was currently being developed by Department of Geotechnics, University of Žilina.

  6. The Grizzly Powerhouse: A modern high-head hydrogenerating facility

    SciTech Connect

    Siebensohn, F.B.

    1995-12-31

    With the emphasis on the modernization of existing plants, there are not all that many new hydropower stations being built nowadays. A noteworthy exception from this trend is the Grizzly Powerhouse, located in the High Sierra near Quincy in northern California. This new $75 million facility is an addition to the existing 65 MW Bucks Creek hydroelectric project on the North Fork Feather River watershed in Plumas County, that is owned and operated by Pacific Gas and Electric Company. The Grizzly project is a cooperative development between Pacific Gas and Electric and the City of Santa Clara. The City paid for the powerhouse and will receive its electricity for at least 30 years. Pacific Gas and Electric has an option to buy the Grizzly project thereafter. The energy generated serves about 15,000 homes in Santa Clara and meets approximately seven percent of the City`s current peak power needs. AMERICAN HYDRO CORPORATION of York, Pennsylvania was the Prime Contractor for the supply of the power generation equipment, and as such was responsible for the performance of the system components. These included the turbine with the inlet/shut-off valve, the pressure relief valve, the governor and the generator with its excitation system.

  7. Test Pile Reactivity Loss Due to Trichloroethylene

    SciTech Connect

    Plumlee, K.E.

    2001-03-09

    The presence of trichloroethylene in the test pile caused a continual decrease in pile reactivity. A system which removed, purified, and returned 12,000 cfh helium to the pile has held contamination to a negligible level and has permitted normal pile operation.

  8. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... existing permit (for example, RAP), closure plan, or order be modified to allow me to use a staging pile? (1) To modify a permit, other than a RAP, to incorporate a staging pile or staging pile operating... under § 270.42 of this chapter. (2) To modify a RAP to incorporate a staging pile or staging...

  9. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... existing permit (for example, RAP), closure plan, or order be modified to allow me to use a staging pile? (1) To modify a permit, other than a RAP, to incorporate a staging pile or staging pile operating... under § 270.42 of this chapter. (2) To modify a RAP to incorporate a staging pile or staging...

  10. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing permit (for example, RAP), closure plan, or order be modified to allow me to use a staging pile? (1) To modify a permit, other than a RAP, to incorporate a staging pile or staging pile operating... under § 270.42 of this chapter. (2) To modify a RAP to incorporate a staging pile or staging...

  11. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... existing permit (for example, RAP), closure plan, or order be modified to allow me to use a staging pile? (1) To modify a permit, other than a RAP, to incorporate a staging pile or staging pile operating... under § 270.42 of this chapter. (2) To modify a RAP to incorporate a staging pile or staging...

  12. 67. Credit PG&E. Shot along length of powerhouse; exciters in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Credit PG&E. Shot along length of powerhouse; exciters in the left foreground, 2000 kVA generator on right. Photo taken 10 November 1927. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  13. 8. Pennsylvania Railroad: 30th Street Station Powerhouse. Philadelphia, Philadelphia Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Pennsylvania Railroad: 30th Street Station Powerhouse. Philadelphia, Philadelphia Co., PA. Sec. 1101, MP 88.11. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  14. G.E. SLATE SWITCHBOARD WITH RELAYS IN GLINES POWERHOUSE. ALSO NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    G.E. SLATE SWITCHBOARD WITH RELAYS IN GLINES POWERHOUSE. ALSO NOTE 1926 PHONE BOOTH (STILL IN OPERATION). PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  15. 36. SAR1, OVERVIEW OF POWERHOUSE AND HOUSING AREA FROM ACROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SAR-1, OVERVIEW OF POWERHOUSE AND HOUSING AREA FROM ACROSS CANYON. EEC print no. G-C-01-00088, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  16. 44. SAR3, GENERAL VIEW OF POWERHOUSE AND HOUSING AREA FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SAR-3, GENERAL VIEW OF POWERHOUSE AND HOUSING AREA FROM THE NEW TRAIL ACROSS THE CANYON. SCE negative no. 4321, March 15, 1918. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  17. 42. SAR2, OVERVIEW OF POWERHOUSE AND HOUSING AREA, LOOKING NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SAR-2, OVERVIEW OF POWERHOUSE AND HOUSING AREA, LOOKING NORTH, SHOWING HORSE-DRAWN BUGGY. SCE negative no. 3, no date. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  18. GENERAL VIEW OF POWERHOUSE (MI100B) OPERATING FLOOR, SHOWING THE OVERHEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF POWERHOUSE (MI-100-B) OPERATING FLOOR, SHOWING THE OVERHEAD THRUST BEARINGS AND EXCITERS OF THE PLANT'S THREE GENERATING UNITS. VIEW TO NORTHWEST - Hardy Hydroelectric Plant, 6928 East Thirty-sixth Street, Newaygo, Newaygo County, MI

  19. 26. EAST FRONT AND SOUTH SIDE OF F&CH RWY POWERHOUSE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. EAST FRONT AND SOUTH SIDE OF F&CH RWY POWERHOUSE: Photocopy of a recently discovered c. 1904 photograph showing south side and east front of powerhouse and car barn. View is looking north along Mason Street. Cars exited the building and passed onto the mainline through the large doorway just to the right of the smokestack. Note the cable car descending Washington Street past the building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  20. Orbital debris-debris collision avoidance

    NASA Astrophysics Data System (ADS)

    Mason, James; Stupl, Jan; Marshall, William; Levit, Creon

    2011-11-01

    We focus on preventing collisions between debris and debris, for which there is no current, effective mitigation strategy. We investigate the feasibility of using a medium-powered (5 kW) ground-based laser combined with a ground-based telescope to prevent collisions between debris objects in low-Earth orbit (LEO). The scheme utilizes photon pressure alone as a means to perturb the orbit of a debris object. Applied over multiple engagements, this alters the debris orbit sufficiently to reduce the risk of an upcoming conjunction. We employ standard assumptions for atmospheric conditions and the resulting beam propagation. Using case studies designed to represent the properties (e.g. area and mass) of the current debris population, we show that one could significantly reduce the risk of nearly half of all catastrophic collisions involving debris using only one such laser/telescope facility. We speculate on whether this could mitigate the debris fragmentation rate such that it falls below the natural debris re-entry rate due to atmospheric drag, and thus whether continuous long-term operation could entirely mitigate the Kessler syndrome in LEO, without need for relatively expensive active debris removal.

  1. Threat from Rubble-Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    2015-12-01

    While chondrites are the most common meteoroids to enter our atmosphere, they represent a small fraction of recovered falls. Most stony meteorites disrupt during entry, consumed by ablation or lost by weathering; in contrast, small iron meteorites (<10 m) disrupt and disperse to create strewnfields due to interacting atmospheric bow shocks [e.g., Passey and Melosh, 1980]. The Carancas impact crater in 2007, however, challenged our understanding [Tancredi et al., 2008]: (a) first eyewitness of a crater formed by a stony meteorite; (b) undetected thermal entry at altitude; (c) no accessory meteorite falls; (d) "explosion" (not low-speed compression) crater; (e) infrasound/seismic data indicating a high-speed entry/collision; and (f) petrologic evidence for shock deformation/melting in breccias indicative of speeds >4 km/s. Although a monolithic chondrite (~ 10 m across) might allow surviving entry, most objects of this size contain multiple flaws, ensuring atmospheric disruption. Hence, an alternative "needle model" was proposed wherein a small rubble-pile object gradually re-shaped itself during entry [Schultz, 2008], a process that minimizes drag, thermal signatures of entry, and catastrophic disruption. First proposed to account for smaller than expected craters on Venus [Schultz, 1992], such a process resembles subsequent Shoemaker-Levy entry models [Boslough and Crawford, 1997] that predicted much deeper entry than standard models. Laboratory experiments at the NASA Ames Vertical Gun Range simulated this process by breaking-up hypervelocity projectiles into a cloud of debris and tracking its path at near-full atmospheric pressure. The resulting cloud of fragments exhibited less deceleration than a solid sphere at the same speed. Moreover, shadowgraphs revealed constituent fragments "surfing" the pressure jump within the mach cone/column. Previous models proposed that crater-forming impacts must be >50-100 m in diameter in order to survive entry [Bland and

  2. Axially Loaded Behavior of Driven PC Piles

    NASA Astrophysics Data System (ADS)

    Hsu, Shih-Tsung

    2010-05-01

    To obtain a fair load-settlement curve of a driven pile, and to evaluate the ultimate pile capacity more accurately, a numerical model was created to simulate the ground movements during a pile being driven. After the procedure, the axially loaded behaviors of the piles in silty sand were analyzed. The numerical results are compared with those results by full scale pile load tests. It was found, although the loads added on the tested piles are different from those by the numerical analyses which applied displacement increments on piles, the load-settlement behaviors of piles calculated from the numerical model were close to those measured from field tests before the piles stressed to peak. Total load, shaft friction, and point bearing do not reach peak values at the same pile settlement; furthermore, the point bearing slowly increases all the while, with no peak. However, the point bearing only contributes 10˜20% of ultimate pile capacity. No matter which relative density of silty sand, pile diameter, and pile length increased, ultimate pile capacity increased as well.

  3. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  4. The infrabuccal pellet piles of fungus-growing ants.

    PubMed

    Little, Ainslie E F; Murakami, Takahiro; Mueller, Ulrich G; Currie, Cameron R

    2003-12-01

    Fungus-growing ants (Attini) live in an obligate mutualism with the fungi they cultivate for food. Because of the obligate nature of this relationship, the success of the ants is directly dependent on their ability to grow healthy fungus gardens. Attine ants have evolved complex disease management strategies to reduce their garden's exposure to potential parasitic microbes, to prevent the establishment of infection in their gardens, and to remove infected garden sections. The infrabuccal pocket, a filtering device located in the oral cavity of all ants, is an integral part of the mechanisms that leaf-cutter ants use to prevent the invasion and spread of general microbial parasites and the specific fungal-garden parasite Escovopsis. Fungus-growing ants carefully groom their garden, collecting general debris and pathogenic spores of Escovopsis in their infrabuccal pocket, the contents of which are later expelled in dump chambers inside the nest or externally. In this study we examined how a phylogenetically diverse collection of attine ants treat their infrabuccal pellets. Unlike leaf-cutters that deposit their infrabuccal pellets directly in refuse piles, ants of the more basal attine lineages stack their infrabuccal pellets in piles located close to their gardens, and a separate caste of workers is devoted to the construction, management, and eventual disposal of these piles. PMID:14676952

  5. TBM tunnel friction values for the Grizzly Powerhouse Project

    SciTech Connect

    Stutsman, R.D.; Rothfuss, B.D.

    1995-12-31

    Tunnel boring machine (TBM) driven water conveyance tunnels are becoming increasingly more common. Despite advances in tunnel engineering and construction technology, hydraulic performance data for TBM driven tunnels remains relatively unavailable. At the Grizzly Powerhouse Project, the TBM driven water conveyance tunnel was designed using friction coefficients developed from a previous PG&E project. A range of coefficients were selected to bound the possible hydraulic performance variations of the water conveyance system. These friction coefficients, along with the water conveyance systems characteristics, and expected turbine characteristics, were used in a hydraulic transient analysis to determine the expected system pressure fluctuations, and surge chamber performance. During startup test data, these performance characteristics were measured to allow comparison to the original design assumptions. During construction of the tunnel, plaster casts were made of the actual excavated tunnel unlined and fiber reinforced shotcrete lined surfaces. These castings were used to measure absolute roughness of the surfaces so that a friction coefficient could be developed using the Moody diagram and compare them against the design values. This paper compares the assumed frictional coefficient with computed coefficients from headlosses measured during startup testing, and plaster cast measurement calculations. In addition, a comparison of coefficients will be presented for an other TBM driven water conveyance tunnel constructed in the 1980`s.

  6. Evaluation of Fish Losses through Screen Gaps at Modified and Unmodified Intakes of Bonneville Dam Second Powerhouse in 2003

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Schilt, Carl R.

    2004-06-14

    This report was prepared by the Pacific Northwest National Lab., Richland, Washington, BAE Systems, Inc., a subcontractor to the U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, Mississippi. This study examined the effect of gatewell modifications on the proportion of fish lost through the gap between the top of submerged traveling screens (STSs) and the ceilings of intakes in one un-modified and two modified turbine units at Bonneville Dam Second Powerhouse (B2). Combined modifications reduced the proportion of flow through the gap from 44% to 16% and increased the proportion moving up the gatewell from 56% to 84%. We used a Dual-Frequency Identification Sonar (DIDSON) acoustic camera to record proportions of juvenile salmonids moving up into the gatewell and through the gap. The acoustic camera was used to record images of fish passing up into the gatewell and through the gap for 8-h on three successive nights in every intake of units 13, 15, and 17 (i.e., 9 intakes x 3 nights = 27 nights each season). Only 28.6% of the objects detected in spring and 12.9% in summer were determined to be fish. Other objects included sticks and debris. Although the true magnitude of STS gap-loss is unknown, both acoustic camera and netting estimates indicate that gatewell modifications reduce relative gap loss by about 67%.

  7. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  8. Debris exhaust system

    DOEpatents

    McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.

    1998-06-23

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.

  9. Debris exhaust system

    DOEpatents

    McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman

    1998-01-01

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.

  10. RECLAMATION OF ALKALINE ASH PILES

    EPA Science Inventory

    The objective of the study was to develop methods for reclaiming ash disposal piles for the ultimate use as agricultural or forest lands. The ashes studied were strongly alkaline and contained considerable amounts of salts and toxic boron. The ashes were produced from burning bit...

  11. Pulse pile-up effects

    SciTech Connect

    Tenney, F.H.

    1983-05-01

    The energy spectrum containing the effects of all orders of pulse pileup is predicted for an idealized x-ray pulse-height-analysis system measuring randomly occurring events. Two simplifying assumptions used are first a fixed pulse resolution time and second that the measured energy of piled-up pulses is the algebraic sum of the energy associated with each pulse.

  12. Eros is a Rubble Pile

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik

    2008-09-01

    Asteroid 433 Eros is regarded as "fractured monolith" or "shatter pile". But models of fragmentation and disruption (e.g. Benz and Asphaug 1999) predict that any large rocky asteroid should be transformed into a jumble of dust, gravel, talus and boulders, simply because it is much easier to comminute an asteroid than to catastrophically disrupt it. Sometimes the relatively high density of Eros is taken as evidence for a fractured monolithic structure, although the inferred bulk porosity of Eros ( 20-30%) is what one expects for a rubble pile, and is about the porosity of sand and talus. The focus here is that a rubble pile structure is contraindicated by the pronounced network of linear fault-like structures (Buczkowski et al. 2008), some of which radiate from recent large impacts such as Psyche, and which form rectangular boundaries around some of the medium-sized craters. This needs an explanation. Here it is proposed, and quantitatively addressed, that the majority of these faults occur just in the upper tens of meters, where cohesion exceeds gravitational stress even for loose piles of lunar-like regolith. Assuming Eros regolith has the cohesion ( 1 kPa) measured for lunar regolith, then faulting is expected to a depth of 10 m, directly analogous to how faults occur in the upper layers of beach sand. The fact that Eros has few steep slopes anywhere, except for the angles of repose within its craters, at a baseline of 100 m (Zuber et al. 2002), is satisfied by the hypothesis that Eros is a rubble pile rather than a shattered monolith. The low fault stress implied by the above, supports the findings of dense networks of linear structures, ubiquitous features which are otherwise difficult to explain as fractures in a rocky target which has not been disrupted or jumbled against its very low gravity.

  13. Bonneville Powerhouse 2 3D CFD for the Behavioral Guidance System

    SciTech Connect

    Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.

    2010-02-01

    In 2008 and 2009, a 700 ft long, 10-ft deep floating forebay guidance wall called a behavioral guidance structure (BGS) was deployed in the Bonneville Powerhouse 2 forebay. The US Army Corps of Engineers, Portland District (CENWP) contracted with the Pacific Northwest National Laboratory (PNNL) to develop computational tools to assess the impact of the BGS on forebay hydraulics (this study). The tools developed here to provide a characterization of forebay hydraulics to be integrated with acoustic telemetry studies designed to measure the impact on juvenile salmon guidance and survival through Bonneville Powerhouse 2. In previous work, PNNL performed computational fluid dynamics (CFD) studies for the Bonneville forebay for CENWP. In this study, the existing model was modified to include the BGS. The model included a bay-by-bay spillway, a truncated Powerhouse 1 forebay, Powerhouse 2 turbine intakes and corner collector, and the forebay bathymetry extending approximately 1.5km upstream from the tip of Cascade Island. Model validation outcomes were similar to that of past studies. Additional checks were included on the impact of the differencing scheme to flow solution. It was found that using upwind differencing was adequate and it was possible to use a truncated computational mesh of this model that included a BGS upstream of Powerhouse 2 and increased spatial resolution in the vicinity of the BGS. This model has been validated, run, and provided to CENWP to use for additional analysis of the Powerhouse 2 forebay hydraulics. The PNNL particle tracking software (PT6) was used to assess the impacts of mass and relative buoyancy on particle fate. The particle tracker was run for the Half Load case for the clean forebay and for the forebay with the BGS in place and the Corner Collector on. All tracker cases showed that the BGS moved the particles across the forebay increasing the number of particles exiting the model through the Corner Collector and (for streamlines

  14. Are some meteoroids rubble piles?

    NASA Astrophysics Data System (ADS)

    Borovička, Jiri

    2015-08-01

    It is generally accepted that some asteroids are rubble piles, i.e. strengthless aggregates of boulders of various sizes held together only by mutual gravity. This is particularly true for asteroids in the size range from ~ 200 m to 10 km, whose rotations are in almost all cases slower that the surface disruption barrier, at which the centrifugal force would exceed the gravitational force. On the other hand, smaller asteroids often rotate rapidly.Recently, Sánchez and Scheeres (2014, Meteorit. Planet. Sci. 49, 788) proposed that rubble piles may have some cohesive strength provided by van der Waals forces between small grains. They estimate the strength to be about 25 Pa. Such a low strength would be sufficient to hold some rapidly rotating small asteroids together against centrifugal force, even if they were rubble piles. In particular, Sánchez and Scheeres (2014) argued that asteroid 2008 TC3 was a rubble pile. That asteroid entered the Earth’s atmosphere and produced meteorites Almahata Sitta.Asteroids and meteoroids entering the atmosphere are subject to dynamic pressure p = ρv2, where ρ is atmospheric density and v is velocity. It can be expected that they break-up when the dynamic pressure exceeds their strength. Fragmentation of meteoroids is indeed common. For asteroidal bodies it usually occurs at pressures 0.1 - 10 MPa (Popova et al. 2011, Meteorit. Planet. Sci. 46, 1525). For example, the main break-up of 2008 TC3 occurred at 0.9 MPa. These pressures are lower than the strength of solid meteoric rocks but dramatically exceed the expected strength for rubble piles. They best correspond to fractured stones. Nevertheless, the first break-up of rubble piles can be expected at heights above 100 km, earlier than the intensive evaporation starts and the fireball begins to be visible. Is it possible that some meteoroids were broken-up already at the beginning of observation? I will discuss this question generally and also for several specific cases of

  15. Are some meteoroids rubble piles?

    NASA Astrophysics Data System (ADS)

    Borovička, Jiří

    2016-01-01

    The possibility that some meteoroids in the size range 1 - 20 meters are rubble piles i.e. assembles of boulders of various sizes held together only by small van der Waals forces, is investigated. Such meteoroids are expected to start disrupting into individual pieces during the atmospheric entry at very low dynamic pressures of ~ 25 Pa, even before the onset of ablation. The heterogeneous bodies as Almahata Sitta (asteroid 2008 TC3) and Benešov are primary candidates for rubble piles. Nevertheless, by analyzing the deceleration, wake, and light curve of the Benešov bolide, we found that the meteoroid disruption started only at a height of 70 km under dynamic pressure of 50 kPa. No evidence for a very early fragmentation was found also for the Chelyabinsk event.

  16. Space debris detection and mitigation

    SciTech Connect

    Allahdadi, F.

    1993-01-01

    Space debris is defined as all useless man-made objects in space. This conference covers the following areas: debris detection, tracking, and surveillance; orbital debris analytical modeling; debris environment and safety issues; and orbital debris mitigation. Separate abstracts were prepared for 26 papers in this conference.

  17. Interior of powerhouse looking northeast; detail of westinghouse 1,500KW, threephase, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of powerhouse looking northeast; detail of westinghouse 1,500KW, three-phase, AC generator (right), and the housing for the pelton wheels (beyond); to the right is the belt-driven dc exciter. - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  18. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect

    S. W. Clark and H. M. Sulloway

    2007-09-26

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  19. NORTH EMBANKMENT IN FOREGROUND, WITH (LR) SUBSTATION (MI98D), POWERHOUSE (MI98C), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH EMBANKMENT IN FOREGROUND, WITH (L-R) SUBSTATION (MI-98-D), POWERHOUSE (MI-98-C), AND COOKE DAM POND IN BACKGROUND. VIEW TO SOUTH - Cooke Hydroelectric Plant, North Embankment, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  20. 41. SAR2, GENERAL VIEW OF POWERHOUSE AND HOUSING AREA FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. SAR-2, GENERAL VIEW OF POWERHOUSE AND HOUSING AREA FROM THE NEW TRAIL ACROSS THE CANYON. SCE negative no. 4320, no date (but probably March 15, 1918: see HAER no. CA-130-44, no. 4321). Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  1. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect

    S. W. Clark and H. M Sulloway

    2007-10-31

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  2. Pile Model Tests Using Strain Gauge Technology

    NASA Astrophysics Data System (ADS)

    Krasiński, Adam; Kusio, Tomasz

    2015-09-01

    Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.

  3. Pile Spacing Optimization of Short Piled Raft Foundation System for Obtaining Minimum Settlement on Peat

    NASA Astrophysics Data System (ADS)

    Suro, S. M.; Bakar, I.; Sulaeman, A.

    2016-07-01

    Short Piled Raft is a modified piled raft foundation system, which represents combination between raft foundation and pile foundation, but the length of pile is relatively shorter. The basic concept of the Short Piled Raft foundation system considers the passive soil pressure creating a stiff condition of slab-pile system. This means that the thin concrete slab floats on the supporting soil, while the piles serve as stiffeners concrete slab and also to reduce settlement of the foundation. Slab to pile ratio of such system has been mentioned by several researchers, however the optimum pile spacing of stability performance for obtaining minimum settlement on peat haven't been clearly discussed. In this study, finite element method to simulate the stability performance related to settlement of Short Piled Raft foundation system was used. Short Piled Raft foundation system with concrete slab of 7.0 m x 7.0 m square was assumed to be built on peat with the thickness of 3.5 m. The material properties of pile and raft were constant. The outer diameter of galvanized steel pipe as pile was 0.30 m; raft thickness was considered to be constant of 0.15 m and the length of pile was 3.0 m, while the pile spacing varied from 0.50 to 3.00 m. Point load varied from 0 to 100 kN with increment of 20 kN was also considered as a static load, acted on the centre of the concrete slab. Optimization was done by comparing each numerical result of simulations, thus conclusion can easily be drawn. The optimum pile spacing was 1.00 m which produced minimum settlement of 30.11 mm under the load of 100 kN.

  4. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  5. Thermal Conductivity of Rubble Piles

    NASA Astrophysics Data System (ADS)

    Luan, Jing; Goldreich, Peter

    2015-11-01

    Rubble piles are a common feature of solar system bodies. They are composed of monolithic elements of ice or rock bound by gravity. Voids occupy a significant fraction of the volume of a rubble pile. They can exist up to pressure P≈ {ε }Yμ , where {ε }Y is the monolithic material's yield strain and μ its rigidity. At low P, contacts between neighboring elements are confined to a small fraction of their surface areas. As a result, the effective thermal conductivity of a rubble pile, {k}{con}≈ k{(P/({ε }Yμ ))}1/2, can be orders of magnitude smaller than the thermal conductivity of its monolithic elements, k. In a fluid-free environment, only radiation can transfer energy across voids. It contributes an additional component, {k}{rad}=16{\\ell }σ {T}3/3, to the total effective conductivity, {k}{eff}={k}{con}+{k}{rad}. Here ℓ, the inverse of the opacity per unit volume, is of the order of the size of the elements, and voids. An important distinction between {k}{con} and {k}{rad} is that the former is independent of the size of the elements, whereas the latter is proportional to it. Our expression for {k}{eff} provides a good fit to the depth dependence of thermal conductivity in the top 140 cm of the lunar regolith. It also offers a good starting point for detailed modeling of thermal inertias for asteroids and satellites. Measurement of the response of surface temperature to variable insolation is a valuable diagnostic of a regolith. There is an opportunity for careful experiments under controlled laboratory conditions to test models of thermal conductivity such as the one we outline.

  6. Environmental Management Waste Management Facility Waste Lot Profile for the K-770 Scrap Yard Soils and Miscellaneous Debris, East Tennessee Technology Park, Oak Ridge, Tennessee - EMWMF Waste Lot 4.12

    SciTech Connect

    Davenport M.

    2009-04-15

    Waste Lot 4.12 consists of approximately 17,500 yd{sup 3} of low-level, radioactively contaminated soil, concrete, and incidental metal and debris generated from remedial actions at the K-770 Scrap Metal Yard and Contaminated Debris Site (the K-770 Scrap Yard) at the East Tennessee Technology Park (ETTP). The excavated soil will be transported by dump truck to the Environmental Management Waste Management Facility (EMWMF). This profile provides project-specific information to demonstrate compliance with Attainment Plan for Risk/Toxicity-based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2001). The K-770 Scrap Yard is an approximately 36-acre storage area located southwest of the main portion of ETTP, outside the security perimeter fence in the Powerhouse Area adjacent to the Clinch River. The K-770 area was used to store radioactively contaminated or suspected contaminated materials during and previous to the K-25 Site cascade upgrading program. The waste storage facility began operation in the 1960s and is estimated to at one time contain in excess of 40,000 tons of low-level, radioactively contaminated scrap metal. Scrap metal was taken to the site when it was found to contain alpha or beta/gamma activity on the surface or if the scrap metal originated from a process building. The segregated metal debris was removed from the site as part of the K-770 Scrap Removal Action (RA) Project that was completed in fiscal year (FY) 2007 by Bechtel Jacobs Company LLC (BJC). An area of approximately 10 acres is located in EUs 29 and 31 where the scrap was originally located in the 100-year floodplain. In the process of moving the materials around and establishing segregated waste piles above the 100-year floodplain, the footprint of the site was expanded by 10-15 acres in EUs 30 and 32. The area in EUs 29 and 31 that was cleared of metallic debris in the floodplain was sown with grass. The areas in EUs 30 and 32 have some scattered

  7. Modeling debris-covered glaciers: response to steady debris deposition

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  8. Piling-jacket system and method

    SciTech Connect

    Sutton, J.S.

    1988-08-16

    A piling-jacket system is described including an elongated, hollow, piling jacket of flexible material having a top end and a bottom end for receiving grout therein and retaining the grout during the curing thereof for forming a concrete column therewith, the piling-jacket system comprising: a filling-port means located on the side of the piling jacket intermediate the top and bottom ends thereof, the filling-port means including an open port in the flexible-material jacket, a flap of flexible material mounted adjacent the open port on an interior surface of the piling jacket, and a flexible flap cord attached to the flap at an outer end portion thereof and extending through a cord hole defined by the flexible piling jacket to the exterior thereof; whereby a concrete-supply hose can be inserted through the open port thereby holding the flap away from the open port through which wet concrete can be pumped into the interior of the piling jacket and thereafter, once a top surface of the wet concrete is above the open port, the flexible concrete-supply hose can be pulled out of the open port so as to allow the flap to close the open port, and the flap cord can be pulled outwardly to positively pull the flap over the open port and thereby preventing wet concrete on the interior of the piling jacket from passing through the open port to the exterior thereof.

  9. Bonneville Powerhouse 2 Fish Guidance Efficiency Studies: CFD Model of the Forebay

    SciTech Connect

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2012-07-01

    In ongoing work, U.S. Army Corps of Engineers, Portland District (CENWP) is seeking to better understand and improve the conditions within the Bonneville Powerhouse 2 (B2) turbine intakes to improve survival of downstream migrant salmonid smolt. In this study, the existing B2 forebay computational fluid dynamics (CFD) model was modified to include a more detailed representation of all B2 turbine intakes. The modified model was validated to existing field-measured forebay ADCP velocities. The initial CFD model scenarios tested a single project operation and the impact of adding the Behavior Guidance System (BGS) or Corner Collector. These structures had impacts on forebay flows. Most notable was that the addition of the BGS and Corner Collector reduced the lateral extent of the recirculation areas on the Washington shore and Cascade Island and reduced the flow velocity parallel to the powerhouse in front of Units 11 and 12. For these same cases, at the turbine intakes across the powerhouse, there was very little difference in the flow volume into the gatewell for the clean forebay, and the forebay with the BGS in place and/or the Corner Collector operating. The largest differences were at Units 11 to 13. The CFD model cases testing the impact of the gatewell slot fillers showed no impact to the forebay flows, but large differences within the gatewells. With the slot fillers, the flow above the standard traveling screen and into the gatewell increased (about 100 cfs at each turbine intake) and the gap flow decreased across the powerhouse for all cases. The increased flow up the gatewell was further enhanced with only half the units operating. The flow into the gatewell slot was increased about 35 cfs for each bay of each intake across the powerhouse; this change was uniform across the powerhouse. The flows in the gatewell of Unit 12, the most impacted unit for the scenarios, was evaluated. In front of the vertical barrier screen, the CFD model with slot fillers

  10. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  11. Transport, retention, and ecological significance of woody debris within a large ephemeral river

    USGS Publications Warehouse

    Jacobson, P.J.; Jacobson, K.M.; Angermeier, P.L.; Cherry, D.S.

    1999-01-01

    The spatiotemporal patterns and ecological significance of the retention of coarse particulate organic matter and large woody debris have been intensively studied in perennial rivers and streams but are virtually unknown in ephemeral systems. We examined the influence of 2 features characteristic of ephemeral systems, downstream hydrologic decay and in-channel tree growth, on the distribution, transport, and retention of woody debris following a flood having a ~2.6-y recurrence interval in the ephemeral Kuiseb River in southwestern Africa. A total of 2105 pieces of wood were painted at 8 sites along the river channel to measure retention patterns. The flood had a peak discharge of 159 m3/s at the upper end of the study area, decaying to <1 m3/s by 200 km downstream. Downstream export of wood from marking sites totaled 59.5% (n = 1253). Transport distances ranged from 1 to 124 km, and 34.8% (n = 436) of the exported wood was recovered. Marked wood retained within marking sites was significantly longer than exported wood (p < 0.001, t-test). Once in transport, there was little correlation between wood length and distance traveled (r = 0.11, correlation analysis, n = 369). Length influenced the site of retention; material retained on debris piles was significantly longer than that stranded on channel sediments (p < 0.001, t-test). In-channel growth of Faidherbia trees significantly influenced wood retention; 83.7% of marked wood not moved by the flood was associated with debris piles on Faidherbia trees. Similarly, 65% of the exported wood retained within downstream debris piles was associated with Faidherbia trees. In contrast to many perennial systems, we observed a general increase in wood retention downstream, peaking in the river's lower reaches in response to hydrologic decay. Debris piles induced sediment deposition and the formation of in-channel islands. Following flood recession, debris piles and their associated sediments provided moist, organic

  12. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  13. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  14. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  15. Nonlinear Seismic Response Of Single Piles

    SciTech Connect

    Cairo, R.; Conte, E.; Dente, G.

    2008-07-08

    In this paper, a method is proposed to analyse the seismic response of single piles under nonlinear soil condition. It is based on the Winkler foundation model formulated in the time domain, which makes use of p-y curves described by the Ramberg-Osgood relationship. The analyses are performed referring to a pile embedded in two-layer soil profiles with different sharp stiffness contrast. Italian seismic records are used as input motion. The calculated bending moments in the pile are compared to those obtained using other theoretical solutions.

  16. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  17. Benefits of Active Debris Removal on the LEO Debris Population

    NASA Astrophysics Data System (ADS)

    Maniwa, Kazuaki; Hanada, Toshiya; Kawamoto, Satomi

    Since the launch of Sputnik, orbital debris population continues to increase due to ongoing space activities, on-orbit explosions, and accidental collisions. In the future, a great deal of fragments can be expected to be created by explosions and collisions. In spite of prevention of satellite and rocket upper stage explosions and other mitigation measures, debris population in low Earth orbit may not be stabilized. To better limit the growth of the future debris population, it is necessary to remove the existing debris actively. This paper studies about the effectiveness of active debris removal in low Earth orbit where the collision rate with and between space debris is high. This study does not consider economic problems, but investigates removing debris which may stabilize well the current debris population based on the concept of Japan Aerospace Exploration Agency.

  18. 116. Photocopied August 1978. NEW INTERLOCKING STEEL SHEET PILING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Photocopied August 1978. NEW INTERLOCKING STEEL SHEET PILING AT PENSTOCK 52 IN THE FALL OF 1926. THE PILES FOR SUPPORTING THE HORIZONTAL ELEMENTS OF THE NEW FOREBAY APRON ARE IN PLACE BETWEEN THE NEW SHEET PILING AND THE FOREBAY WALL. VISIBLE BEYOND THE NEW SHEET PILING IS THE TIMBER SHEET PILING DRIVEN IN 1903 BY VON SCHON TO PREVENT WASHOUTS. (1006) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  19. Space debris detection

    NASA Astrophysics Data System (ADS)

    Eather, Robert H.

    1992-12-01

    A feasibility study on the possibility of detecting less than or = 10 cm space debris using a large-aperture ground-based telescope (with an intensified CCD detector) was completed, showing that detection should be possible. A detector system was designed and built, and installed on the 2.54 m WRDC telescope at Wright Patterson AFB. Bad seeing conditions in the Dayton area prevented the expected debris detection. Subsequently, a small 40 cm telescope was built and operated from the Haystack Observatory (Groton, MA). Known objects were used to test pointing and acquisition procedures, and the system was then shipped to Rattlesnake Observatory (Richland, WA) for participation in the ODERAC's debris calibration experiment from the Space Shuttle. This experiment failed, and our instrument has been stored at Rattlesnake in anticipation of a new ODERAC's flight in late 1993.

  20. Grouting of uranium mill tailings piles

    SciTech Connect

    Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.

    1984-03-01

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10/sup -3/ cm/s to values approaching 10/sup -7/ cm/s using silicate grouts and to 10/sup -8/ cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table.

  1. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  2. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  3. Space Debris Mitigation Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  4. Lateral load tests on large pipe piles in coral

    SciTech Connect

    Vines, W.R.; Hong, I.S.

    1984-05-01

    Results are presented for lateral load tests on 36-, 48-, 80-, and 132-in. diameter pipe piles in 26- to 67-ft water depths at a port site in Saudi Arabia. Primary soil types at the site are crushed coral and sand, with layers of intact weak coral. Pile loads were measured with load cells, deflections were measured with potentiometers, and pile slopes were measured with a slope indicator. Pile top deflections and pile deflected shapes are reported at several load levels. Maximum test loads ranged from 72 to 559 kips, and maximum pile top deflections were from 3.6 to 55 inches. Comparison of test results to expectations of behavior based on state-of-the-practice analytical methods shows that the character of pile deflected shapes were predicted well, but that deflections were generally over-predicted in the analyses. Comparison of test pile and reaction pile deflected shapes shows secondary but significant differences.

  5. GEO Debris Observation of PMO

    NASA Astrophysics Data System (ADS)

    Ping, Yiding; Zhao, Changyin; Zhao, Haibin

    2009-03-01

    This paper summarizes observations and results obtained by Purple Mountain Observatory in March 2007 of space debris at geosynchronous orbit (GEO) in support of WG1 Action Item 23.4, International 2007 Optical Debris Campaign in Higher Earth Orbit, organized by the Inter-Agency Space Debris Coordination Committee (IADC). The main goal of Pmo's work is to develop the observational techniques of Higher Earth Orbit Space debris for the future work. A new telescope designed for debris observation is also described here.

  6. Observations of Debris Impact on Buildings and Infrastructure after the 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Cox, D.; Naito, C.; Yu, K.; Mizutani, N.; Tsujio, D.

    2011-12-01

    We present observations of the performance of structural systems (buildings, bridges, port infrastructure) after the 2011 Tohoku Tsunami. In particular, our observations focused on the hydraulic, hydrodynamic and impact demands. While it is likely that hydraulic and hydrodynamic demands resulted in considerable destruction, debris impact events provided significant contribution to some of the losses observed. Current knowledge on how to quantify the effects of impact demands from tsunami generated debris is limited. Methods provided by code sources including ASCE 7, AASHTO LRFD, and the Coastal Construction Manual result in order of magnitude differences in expected demands. This RAPID investigation examined the demands generated by debris in different coastal communities including the Sendai plain (Natori, Sendai Port) and the ria coast (Onagawa, Rikuzentakata, Kesennuma, Minamisanriku). Our investigation quantifies debris type, damage type, and debris flow characteristics. Observations indicate that the Tohoku event generated a spectrum of debris ranging from wood, vehicles, and shipping containers, to entire houses and ships. The structural system types observed included reinforced concrete buildings, steel moment frame buildings, wood frame houses. Damages to fuel storage containers were also a focus of this investigation. In general, our observations show that debris loads can add significantly to the overall loads, particularly when the debris size is large relative to the impacted structure. In addition. the occurrence of impact events was not necessarily associated with all types of debris, and some structural systems were more sensitive to a type of impact demand. For example, open systems such as pile supported buildings which offered little flow resistance were more susceptible to debris strikes than bluff sided buildings. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1138668. Any opinions, findings

  7. Monitoring and Evaluation of the Prototype Surface Collector at Bonneville First Powerhouse in 2000: Synthesis of Results

    SciTech Connect

    Johnson, Gary E.; Carlson, Thomas J.

    2001-06-01

    This report describes research done to evaluate the Prototype Surface Collector at Bonneville Dam, Powerhouse I, on the Columbia River. The surface collector is being evaluated as a means for bringing downstream migrating salmon and steelhead through the powerhouse while avoiding the turbines. The report describes evaluations conducted by PNNL, National Marine Fisheries Service, and various contractors using radio telemetry, hydroacoustics, and computational fluid dynamics models. The evaluation will provide information to the U.S. Army Corps of Engineers for their 2001 decision on whether to use surface flow bypass or extended-length submersible bar screens for long-term smolt passage at Bonneville Dam.

  8. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  9. WINDROW AND STATIC PILE COMPOSTING OF MUNICIPAL SEWAGE SLUDGES

    EPA Science Inventory

    Research was conducted on composting anaerobically digested and centrifuge dewatered sewage sludge from 1975 through 1980. Windrow and static pile composting processes were evaluated; new methods were employed using deeper windrows and aerated static piles were constructed withou...

  10. 6. CANNERY PILINGS Foundation of a portion of the cannery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CANNERY PILINGS Foundation of a portion of the cannery over water. Crumbling cement footings and decomposing pilings make portions of this area unsafe. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  11. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... constructed in compacted layers not exceeding 2 feet in thickness and shall not have any slope exceeding 2... stability of the refuse pile. (j) All fires in refuse piles shall be extinguished, and the method used...

  12. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... constructed in compacted layers not exceeding 2 feet in thickness and shall not have any slope exceeding 2... stability of the refuse pile. (j) All fires in refuse piles shall be extinguished, and the method used...

  13. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... constructed in compacted layers not exceeding 2 feet in thickness and shall not have any slope exceeding 2... stability of the refuse pile. (j) All fires in refuse piles shall be extinguished, and the method used...

  14. Space Debris Modeling at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the

  15. Portable Powerhouses.

    ERIC Educational Resources Information Center

    Myslewski, Rik; Garcia, Nathan

    1998-01-01

    Reviews and compares the following nine laptop computers, focusing on their capabilities for multimedia presentations: Apple Macintosh PowerBook G3, Chem USA ChemBook 9780, Compaq Armada 7792DMT, Dell Inspiron 3000 mZ66xT, Hewlett-Packard OmniBook 3000CTX, IBM ThinkPad 770, Micro Express NP8233MMX, NEC Versa 6260, and Panasonic CF-63. Evaluation…

  16. 46. Photocopied August 1978. PILE DRIVERS #1 and #2, HOUSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Photocopied August 1978. PILE DRIVERS #1 and #2, HOUSED FOR WINTER WORK, AT COMPLETION OF PILE DRIVING FOR COFFER DAM OF POWER HOUSE, APRIL 1, 1899. SOME OF THE TRIPLE -LAP SHEET PILES USED IN THE DAM ARE SHOWN IN THE FOREGROUND. (29) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  17. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  18. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  19. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  20. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  1. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  2. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the...) Drainage control. (1) If the disposal area contains springs, natural or manmade water courses, or...

  3. Argonne nuclear pioneers: Chicago Pile 1

    SciTech Connect

    Agnew, Harold; Nyer, Warren

    2012-01-01

    On December 2, 1942, 49 scientists, led by Enrico Fermi, made history when Chicago Pile 1 (CP-1) went critical and produced the world's first self-sustaining, controlled nuclear chain reaction. Seventy years later, two of the last surviving CP-1 pioneers, Harold Agnew and Warren Nyer, recall that historic day.

  4. Argonne nuclear pioneers: Chicago Pile 1

    ScienceCinema

    Agnew, Harold; Nyer, Warren

    2013-04-19

    On December 2, 1942, 49 scientists, led by Enrico Fermi, made history when Chicago Pile 1 (CP-1) went critical and produced the world's first self-sustaining, controlled nuclear chain reaction. Seventy years later, two of the last surviving CP-1 pioneers, Harold Agnew and Warren Nyer, recall that historic day.

  5. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Professional Engineer for technical data, such as design drawings and specifications, and engineering studies... operation; (ii) Volumes of wastes you intend to store in the pile; (iii) Physical and chemical characteristics of the wastes to be stored in the unit; (iv) Potential for releases from the unit;...

  6. Flexible Shields for Protecting Spacecraft Against Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Crews, Jeanne Lee

    2004-01-01

    A report presents the concept of Flexshield a class of versatile, lightweight, flexible shields for protecting spacecraft against impacts by small meteors and orbiting debris. The Flexshield concept incorporates elements of, but goes beyond, prior spacecraft-shielding concepts, including those of Whipple shields and, more recently, multi-shock shields and multi-shock blankets. A shield of the Flexshield type includes multiple outer layers (called bumpers in the art) made, variously, of advanced ceramic and/or polymeric fibers spaced apart from each other by a lightweight foam. As in prior such shields, the bumpers serve to shock an impinging hypervelocity particle, causing it to disintegrate vaporize, and spread out over a larger area so that it can be stopped by an innermost layer (back sheet). The flexibility of the fabric layers and compressibility of the foam make it possible to compress and fold the shield for transport, then deploy the shield for use. The shield can be attached to a spacecraft by use of snaps, hook-and-pile patches, or other devices. The shield can also contain multilayer insulation material, so that it provides some thermal protection in addition to mechanical protection.

  7. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis

    1986-07-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  8. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  9. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  10. MEO Debris Environment Projection Study

    NASA Astrophysics Data System (ADS)

    Jenkin, Alan B.; Sorge, Marlon E.; McVey, John P.; Peterson, Glenn E.; Yoo, Bernard Y.

    2013-08-01

    The recently developed Aerospace Debris Environment Projection Tool was used to project the future debris environment in medium Earth orbit (MEO) over the next 200 years. The entire Earth orbital population was modeled to account for the possibility of cross-coupling between the MEO population and the low Earth orbit (LEO) and geosynchronous populations via objects on highly eccentric orbits that transit through MEO. It was found that a large fraction of the MEO debris originated from collisions in LEO involving satellites and rocket bodies that transit through LEO and MEO. Results showed that world-wide compliance with orbit lifetime reduction will significantly reduce the amount of debris in MEO.

  11. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  12. Removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Talent, David L.

    1989-01-01

    The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.

  13. Microplastic debris in sandhoppers

    NASA Astrophysics Data System (ADS)

    Ugolini, A.; Ungherese, G.; Ciofini, M.; Lapucci, A.; Camaiti, M.

    2013-09-01

    Adults of the sandhopper Talitrus saltator were fed with dry fish food mixed with polyethylene microspheres (diameter 10-45 μm). Observations of homogenized guts revealed the presence of microspheres independently of their dimensions. The gut resident time (GRT) was recorded and most of the microspheres are expelled in 24 h. Microspheres are totally expelled in one week. Preliminary investigations did not show any consequence of microsphere ingestion on the survival capacity in the laboratory. FT-IR analyses carried out on faeces of freshly collected individuals revealed the presence of polyethylene and polypropylene. This confirms that microplastic debris could be swallowed by T. saltator in natural conditions.

  14. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  15. Improve large-engine foundations by good piling design, installation

    SciTech Connect

    Kauffmann, W.M.

    1982-07-01

    Specifies types of underpinning for sites holding generator sets upward of 3000 kW which may need more support than the foundation block alone can give. Four basic types of piling are in use today: concrete-filled steel pipe, steel H beams, prestressed concrete, and wood. Design of a piling foundation calls for combined skill of soil engineers, consultant, contractor, and engine builder. Attention is given to springmounted floating blocks, freestanding blocks, and structuralsteel pilings. Suggests that owners avoid sites where friction piling is required because such piling under a vibratory load is not yet an exact science.

  16. Mitochondria in lung biology and pathology: more than just a powerhouse.

    PubMed

    Schumacker, Paul T; Gillespie, Mark N; Nakahira, Kiichi; Choi, Augustine M K; Crouser, Elliott D; Piantadosi, Claude A; Bhattacharya, Jahar

    2014-06-01

    An explosion of new information about mitochondria reveals that their importance extends well beyond their time-honored function as the "powerhouse of the cell." In this Perspectives article, we summarize new evidence showing that mitochondria are at the center of a reactive oxygen species (ROS)-dependent pathway governing the response to hypoxia and to mitochondrial quality control. The potential role of the mitochondrial genome as a sentinel molecule governing cytotoxic responses of lung cells to ROS stress also is highlighted. Additional attention is devoted to the fate of damaged mitochondrial DNA relative to its involvement as a damage-associated molecular pattern driving adverse lung and systemic cell responses in severe illness or trauma. Finally, emerging strategies for replenishing normal populations of mitochondria after damage, either through promotion of mitochondrial biogenesis or via mitochondrial transfer, are discussed. PMID:24748601

  17. The Strength of Rubble Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sanchez, P.

    2012-12-01

    The rubble pile hypothesis for small asteroids in the Near Earth and Main Belt populations have been driven by several factors, including the observed high porosity of those bodies whose mass have been measured, the evident limitation on spin rate of asteroids larger than ~500 meters, and direct observation of the surface morphology of these bodies. Given these observations, it has been presumed that small asteroids should evolve as if they were cohesionless collections of grains. Detailed geophysical analysis of these bodies by Holsapple (Icarus 2010) show that cohesionless bodies will evolve under the addition of angular momentum by the YORP effect into more distended and, paradoxically, more slowly rotating bodies. Additional analysis in Holsapple (Icarus 2007) has shown that cohesional strength within a rubble pile could strengthen a collection of grains to the point where they could sustain rapid rotation. In our current talk we use the above as a starting point and incorporate new observations of the asteroid morphology driven by recent analysis of asteroid Itokawa by the Hayabusa science team and research on the mechanics of grains in the space environment (Scheeres et al. 2010). Analysis of images of Itokawa determined a measured size distribution of 1/d^3 for larger grains on asteroid Itokawa (Michikami et al., Earth Planets Space, 60, 13-20, 2008). Analysis of the sample shows the presence of micron sized dust on that asteroid's surface (Tsuchiyama et al., Science 333, 1125, 2011). Combining these observations provides a global indication of grain distribution within rubble piles. Even assuming a less steep distribution of 1/d^2 for dust grains smaller than 1 mm in size, the interior of Itokawa should still be dominated by the finest dust grains, with the mean grain size equal to ~ twice the smallest grain in the distribution. One implication of this result is that fines are present on the surface of the rubble pile Itokawa and thus should be distributed

  18. Numerical analysis of kinematic soil-pile interaction

    SciTech Connect

    Castelli, Francesco; Maugeri, Michele; Mylonakis, George

    2008-07-08

    In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.

  19. Numerical analysis of kinematic soil—pile interaction

    NASA Astrophysics Data System (ADS)

    Castelli, Francesco; Maugeri, Michele; Mylonakis, George

    2008-07-01

    In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000@. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.

  20. Space debris executive summary

    SciTech Connect

    Canavan, G.H.; Judd, O.; Naka, R.F.

    1996-09-01

    Spacecraft, boosters, and fragments are potential hazards to space vehicles, and it is argued that collisions between them could produce a cascade that could preclude activity in LEO in 25 to 50 years. That has generated pressure for constraints on military space operations, so the AF SAB performed a study of technical aspects of the debris problem. The Study was independent of the efforts of the Air Force Space Command (AFSPC) as well as those of and NASA Johnson Space Center (JSC), which is the principal advocate for cascades and constraints. Most work on space debris has been performed by AFSPC and JSC, so the Study was in part an assessment of their efforts, in which both have been cooperative. The Study identified the main disagreements and quantified their impacts. It resolved some issues and provided bounds for the rest. It treated radar and optical observations; launch, explosion, and decay rates; and the number and distribution of fragments from explosions and collisions. That made it possible to address hazard to manned spacecraft at low altitudes and the possibility of cascading at higher altitudes, both of which now appear less likely.

  1. Picking up Clues from the Discard Pile

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

    On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through red, green and blue filters that have been combined into this approximately true-color image.

    This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

    Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

    For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

    The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif

  2. Space debris modeling at NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOVLE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard (NSS) 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been completed with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NSS 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the application of

  3. A computational model of pile vertical vibration in saturated soil based on the radial disturbed zone of pile driving

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Shi, Qian; Wang, Kuihua

    2010-06-01

    In this study, a simplified computational model of pile vertical vibration was developed. The model was based on the inhomogeneous radial disturbed zone of soil in the vicinity of a pile disturbed by pile driving. The model contained two regions: the disturbed zone, which was located in the immediate vicinity of the pile, and the undisturbed region, external to the disturbed zone. In the model, excess pore pressure in the disturbed zone caused by pile driving was assumed to follow a logarithmic distribution. The relationships of stress and strain in the disturbed zone were based on the principle of effective stress under plain strain conditions. The external zone was governed by the poroelastic theory proposed by Biot. With the use of a variable separation method, an analytical solution in the frequency domain was obtained. Furthermore, a semi-analytical solution was attained by employing a numerical convolution method. Numerical results from the frequency and time domain indicated that the equivalent radius of the disturbed zone and the ratio of excess pore pressure had a significant effect on pile dynamic response. However, actual interactions between pile and soil will be weaker due to the presence of the radial disturbed zone, which is caused by pile driving. Consequently, the ideal undisturbed model overestimates the interaction between pile and soil; however, the proposed model reflects the interaction of pile and soil better than the perfect contact model. Numerical results indicate that the model can account for the time effect of pile dynamic tests.

  4. The Challenge of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2012-01-01

    Since the dawn of the Space Age more than 50 years ago, humans have been launching objects into the space environment faster than they have been removed by active means or natural decay. This has led to a proliferation of debris -- derelict satellites, discarded rocket upper stages, and pieces from satellite breakups -- in Earth orbit, especially in well-used orbital regimes. This talk will summarize the current knowledge of the debris environment and describe plans to address the challenges orbital debris raises for the future usability of near-Earth space. The talk will be structured around 4 categories: Measurements, Modeling, Shielding, and Mitigation. This will include discussions of the long-term prognosis of debris growth (i.e., the "Kessler Syndrome") as well as plans for active debris removal.

  5. An Introduction to Space Debris

    NASA Astrophysics Data System (ADS)

    Wright, David

    2008-04-01

    Space debris is any human-made object in orbit that no longer serves a useful purpose, including defunct satellites, discarded equipment and rocket stages, and fragments from the breakup of satellites and rocket stages. It is a concern because--due to its very high speed in orbit--even relatively small pieces can damage or destroy satellites in a collision. Since debris at high altitudes can stay in orbit for decades or longer, it accumulates as more is produced and the risk of collisions with satellites grows. Since there is currently no effective way to remove large amounts of debris from orbit, controlling the production of debris is essential for preserving the long-term use of space. Today there are 860 active satellites in orbit, supporting a wide range of civil and military uses. The 50 years of space activity since the launch of Sputnik 1 has also resulted in well over half a million pieces of orbiting debris larger than 1 cm in size. There are two main sources of space debris: (1) routine space activity and the accidental breakup of satellites and stages placed in orbit by such activity, and (2) the testing or use of destructive anti-satellite (ASAT) weapons that physically collide with satellites at high speed. The international community is attempting to reduce the first category by developing strict guidelines to limit the debris created as a result of routine space activities. However, the destruction of a single large spy satellite by an ASAT weapon could double the total amount of large debris in low earth orbit, and there are currently no international restrictions on these systems. This talk will give an introduction to what's in space, the origins of space debris, efforts to stem its growth, the threat it poses to satellites in orbit, and the long-term evolution of the debris population.

  6. Orbital Debris Research at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2009-01-01

    The United States has one of the most active programs of research of the orbital debris environment in the world. Much of the research is conducted by NASA s Orbital Debris Program Office at the Johnson Space Center. Past work by NASA has led to the development of national space policy which seeks to limit the growth of the debris population and limit the risk to spacecraft and humans in space and on the Earth from debris. NASA has also been instrumental in developing consistent international policies and standards. Much of NASA's efforts have been to measure and characterize the orbital debris population. The U.S. Department of Defense tracks and catalogs spacecraft and large debris with it's Space Surveillance Network while NASA concentrates on research on smaller debris. In low Earth orbit, NASA has utilized short wavelength radars such as Haystack, HAX, and Goldstone to statistically characterize the population in number, size, altitude, and inclination. For higher orbits, optical telescopes have been used. Much effort has gone into the understanding and removal of observational biases from both types of measurements. NASA is also striving to understand the material composition and shape characteristics of debris to assess these effects on the risk to operational spacecraft. All of these measurements along with data from ground tests provide the basis for near- and long-term modeling of the environment. NASA also develops tools used by spacecraft builders and operators to evaluate spacecraft and mission designs to assess compliance with debris standards and policies which limit the growth of the debris environment.

  7. Tethers and debris mitigation

    NASA Astrophysics Data System (ADS)

    van der Heide, Erik Jan; Kruijff, Michiel

    2001-03-01

    In recent years, the use of tethers has been proposed for reduction of space debris either through momentum transfer or use of electrodynamic effects. Tethers have been shown to at least theoretically allow for quick, elegant and cost-effective deorbit of defunct satellites or spent stages. On the other hand, the large risk that tethers themselves may pose to other satellites in orbit has been recognized as well. The large collision area of tethers, combined with operational hazards and meteoroid risk may result in a large orbital exposure. For example, in 1997, the ESA/Dutch 35-km tether deployment of YES from TEAMSAT was inhibited after an analysis of the collision risk for the case the tether operation would fail. The question rises how these two points of view compare to eachother. This paper intends to highlight a representative selection of the proposed tether applications while taking into account the added risks caused by the tethers themselves. Typical applications from recent literature will be briefly described, such as an Ariane 502 spent stage re-entry from GTO and the concept of deboost of defunct satellites by interaction of a conductive tether with the Earth magnetic field. Mass savings of the tethered sytems versus conventional equivalents will be evaluated. Based on a crude risk analysis, involving elements such as mission complexity, dynamic stability, meteoroid risk and orbital life time, a general outline of limiting factors can be given for the various applications. Special attention is reserved for implementation of mechanisms that help reduce this tether risk, such as the DUtether (Tether Degradable by Ultraviolet), utilization of airdrag and solar pressure, the effect of residual current in bare tethers, tether retrieval etc. It is proposed how a net tether-induced mitigation can be compared to that of conventional alternatives, i.e. deboost by rocket engine or a completely passive approach. This comparison is put in the perspective of an

  8. Polyhedron Modeling of Rubble-Pile Asteroids

    NASA Technical Reports Server (NTRS)

    Korycansky, D. G.; Asphaug, E.

    2005-01-01

    We report on progress in modeling of asteroids as collections of rigid polyhedra ("rubble piles"). Such models are (idealized) candidates for asteroid structures: aggregates of irregular rocky subunits that are held together by self-gravity and friction. We have taken several steps toward greater realism and physical interest in construction of the models (although the gravitational fields are being treated in a simplified manner). -

  9. CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION

    NASA Astrophysics Data System (ADS)

    Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji

    It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.

  10. Implementation of the hazardous debris rule

    SciTech Connect

    Sailer, J.E.

    1993-01-05

    Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

  11. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  12. Response of shallow geothermal energy pile from laboratory model tests

    NASA Astrophysics Data System (ADS)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement

  13. Recognizing Patterns in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. I will describe the latest 3-D models of debris dish dynamics / models that include planets, grain-grain collisions and even ISM-disk interactions. I will show why all these ingredients are needed to explain disk images--and what the images are telling us about planet formation.

  14. Uncertainties in debris growth predictions

    SciTech Connect

    McKnight, D.S. )

    1991-01-10

    The growth of artificial space debris in Earth orbit may pose a significant hazard to satellites in the future though the collision hazard to operational spacecraft is presently manageable. The stability of the environment is dependent on the growth of debris from satellite deployment, mission operations and fragmentation events. Growth trends of the trackable on-orbit population are investigated highlighting the complexities and limitations of using the data that supports this modeling. The debris produced by breakup events may be a critical aspect of the present and future environment. As a result, growth predictions produced using existing empirically-based models may have large, possibly even unacceptable, uncertainties.

  15. Effect of Woody Debris abundance on daytime refuge use by cotton mice.

    SciTech Connect

    Hinkelman, Travis, M.; Loeb, Susan, C.

    2007-07-01

    Abstract - Daytime refuges are important to nocturnal rodents for protection from predators and environmental extremes. Because refuges of forest-dwelling rodents are often associated with woody debris, we examined refuge use by 37 radio-collared Peromyscus gossypinus (cotton mice) in experimental plots with different levels of woody debris. Treatment plots had six times (≈ 60 m3/ha) the volume of woody debris as control plots (≈ 10 m3/ha). Of 247 refuges, 159 were in rotting stumps (64%), 32 were in root boles (13%), 19 were in brush piles (8%), and 16 were in logs (6%); 10 refuges could not be identified. Stumps were the most common refuge type in both treatments, but the distribution of refuge types was significantly different between treatment and control plots. Root boles and brush piles were used more on treatment plots than on control plots, and logs were used more on control plots than on treatment plots. Refuge type and vegetation cover were the best predictors of refuge use by cotton mice; root bole refuges and refuges with less vegetation cover received greater-than-expected use by mice. Abundant refuges, particularly root boles, may improve habitat quality for cotton mice in southeastern pine forests.

  16. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  17. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  18. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Debris removal. 206.224... Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest, the Regional Administrator may provide assistance for the removal of debris and wreckage from...

  19. Random Blocks in the Rock Mass Around the Underground Powerhouse on the Right Bank of Wudongde Hydropower Station

    NASA Astrophysics Data System (ADS)

    Lu, X.; Wang, X.; Yu, Q.

    2014-12-01

    The geometry and stability of random blocks are fundamental to support design of underground powerhouse of Wudongde hydropower station. This paper systematically analyses the characteristics of random blocks in the underground powerhouse on the right bank of Wudongde hydropower station. Based on the theory of the general block method and data of fractures obtained from the field survey, the discrete fracture network model is established by an inverse method for identifying and analyzing random blocks. The calculation is realized for 10 times at random by GeneralBlock to reduce the influence of randomness. The results show that most of random blocks formed by discontinuities and excavations can be found in the vault of the powerhouse; for the 10 realizations, the average number of the random blocks is 414; the average volume of the blocks is 2.9m3 and the maximum volume of the blocks is 152.0 m3; the average depth of the blocks is 1.2m and the maximum depth is 8.8m. Most of the blocks are stable. Most of the unstable blocks present a failure of falling. Most removable blocks have 3 or 4 discontinuities and the maximum value is 12; fractures with west dip-direction and medium dip are the most dangerous for forming unstable blocks. Therefore, it is suggested that the anchor bolts should pierce through the fractures of west dip-direction and medium dip.

  20. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  1. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  2. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  3. Reducing Local Scouring at Bridge Piles Using Collars and Geobags

    PubMed Central

    Akib, Shatirah; Liana Mamat, Noor; Basser, Hossein; Jahangirzadeh, Afshin

    2014-01-01

    The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles. PMID:25247201

  4. 48. Photocopied August 1978. DRIVING PILES FOR THE POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photocopied August 1978. DRIVING PILES FOR THE POWER HOUSE FOUNDATION, WEST END, AROUND SEPTEMBER 1, 1900. THE COFFER DAM HOLDING BACK THE ST. MARY'S IS AT THE LEFT. PILES SAWED TO LEVEL ARE ON THE LOWER RIGHT-HAND SIDE OF THE PHOTO. UNCUT PILES ARE AT THE CENTER. A SECOND PILE DRIVER WORKING FROM THE EAST END CAN BE SEEN IN THE BACKGROUND, ALONG WITH THE PUMPING PLANT AND THE STONE CRUSHING MACHINE. (71) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  5. Damage Identification of Piles Based on Vibration Characteristics

    PubMed Central

    Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen

    2014-01-01

    A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062

  6. Debris flows: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Turnbull, Barbara; Bowman, Elisabeth T.; McElwaine, Jim N.

    2015-01-01

    Debris flows and debris avalanches are complex, gravity-driven currents of rock, water and sediments that can be highly mobile. This combination of component materials leads to a rich morphology and unusual dynamics, exhibiting features of both granular materials and viscous gravity currents. Although extreme events such as those at Kolka Karmadon in North Ossetia (2002) [1] and Huascarán (1970) [2] strongly motivate us to understand how such high levels of mobility can occur, smaller events are ubiquitous and capable of endangering infrastructure and life, requiring mitigation. Recent progress in modelling debris flows has seen the development of multiphase models that can start to provide clues of the origins of the unique phenomenology of debris flows. However, the spatial and temporal variations that debris flows exhibit make this task challenging and laboratory experiments, where boundary and initial conditions can be controlled and reproduced, are crucial both to validate models and to inspire new modelling approaches. This paper discusses recent laboratory experiments on debris flows and the state of the art in numerical models.

  7. A theoretical analysis of the bearing performance of vertically loaded large-diameter pipe pile groups

    NASA Astrophysics Data System (ADS)

    Ding, Xuanming; Zhang, Ting; Li, Ping; Cheng, Ke

    2016-02-01

    This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups. The interactions between group piles result in different bearing performance of both a single pile and pile groups. Considering the pile group effect and the skin friction from both outer and inner soils, an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups. The analytical solution was verified by centrifuge and field testing results. An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups. The results reveal that the axial forces in group piles are not the same. The larger the distance from central pile, the larger the axial force. The axial force in the central pile is the smallest, while that in corner piles is the largest. The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length. The axial force in side piles varies little with the variations of pile spacing, pile length, and shear modulus of the soil and is approximately equal to the average load shared by one pile. For a pile group, the larger the pile length is, the larger the influence radius is. As a result, the pile group effect is more apparent for a larger pile length. The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.

  8. Intelligent displacement back analysis for excavation of an underground powerhouse in China

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Li, S. C.; Li, M. T.; Li, X. J.; Liu, N.

    2008-11-01

    Back analysis is an effective method to obtain the rock mass mechanical parameters with measured displacements. But the traditional back analysis methods have some shortcomings, such as narrow scope of application and instability. The intelligent back analysis method which incorporates a neural network and a genetic algorithm can overcome the drawbacks mentioned above and give satisfactory results. In this paper, based on orthogonal design, neural network and genetic algorithms, the intelligent displacement back analysis was carried out for the excavation of an underground powerhouse of a pumped storage power station in China. First, a series of samples were selected to train the neural network so that the relations between displacement of rock mass and parameters were erected. Then the optimum values of parameters were gotten taking advantage of optimization of genetic algorithms. Substituting the obtained parameters into FDM software for forward computation, it was found that the calculated displacements agreed the measured data well. The intelligent back analysis method can be used as a powerful tool to find out the optimum mechanical parameters of rock mass.

  9. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    SciTech Connect

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  10. Bonneville Second Powerhouse Tailrace and High Flow Outfall: ADCP and drogue release field study

    SciTech Connect

    Cook, Christopher B.; Richmond, Marshall C.; Guensch, Gregory R.

    2001-03-20

    The Bonneville Project is one of four US Army Corps of Engineers operated dams along the Lower Columbia River. Each year thousands of smelt pass through this Project on their way to the Pacific Ocean. High flow outfalls, if specifically designed for fish passage, are thought to have as good or better smelt survival rates as spillways. To better understand the hydrodynamic flow field around an operating outfall, the Corps of Engineers commissioned measurement of water velocities in the tailrace of the Second Powerhouse. These data also are necessary for proper calibration and verification of three-dimensional numerical models currently under development at PNNL. Hydrodynamic characterization of the tailrace with and without the outfall operating was accomplished through use of a surface drogue and acoustic Doppler current profiler (ADCP). Both the ADCP and drogue were linked to a GPS (global positioning system); locating the data in both space and time. Measurements focused on the area nearest to the high flow outfall, however several ADCP transects and drogue releases were performed away from the outfall to document ambient flow field conditions when the outfall was not operating.

  11. Changes in aspen bark stored in outdoor piles

    SciTech Connect

    Zoch, E.L.; Rusch, J.J.; Springer, E.L.

    1982-06-01

    Increasing use of bark for fuel has led to questions as to the losses and other changes that occur during outdoor pile storage. The possibility of spontaneous ignition in bark piles is of special concern. This study examined the storage characteristics of aspen bark. Two aspen bark piles, 40 feet by 40 feet by 20 feet high, were built in October of 1974 and 1975 at a northern Wisconsin mill site. The 1974 pile contained bark which came directly from a ring debarker; the 1975 pile was built using bark that had been put through a hammermill after it came from the ring debarker. Temperatures were observed at the centers of the piles using thermistors placed at 5, 10 and 15 feet above the base. Bark substance losses (ovendry material) were determined by placing bark samples contained in nylon mesh bags at each of these locations in each pile and retrieving them after 1 year of storage. Maximum pile tempreatures were attained in about 3 weeks and were about 160 degrees F for both piles. Bark substance losses varied with height above the base of the pile, being greatest at the 15-foot level (about 25%) and least at the 5-foot level (about 5%). Moisture content also varied with the height and was greatest at the 15-foot level. The pH of the bark decreased during storage from an initial value of 4.6 to final values ranging between 2.6 and 3.3. Bark particle size did not significantly affect pile temperatures, weight losses or changes in pH and moisture content. (Refs. 8).

  12. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... marking pile fabric as to fiber content provided for in this section are as follows: 100% Nylon Pile 100% Cotton Back (Back constitutes 60% of fabric and pile 40%). Face—60% Rayon, 40% Nylon Back—70% Cotton,...

  13. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... marking pile fabric as to fiber content provided for in this section are as follows: 100% Nylon Pile 100% Cotton Back (Back constitutes 60% of fabric and pile 40%). Face—60% Rayon, 40% Nylon Back—70% Cotton,...

  14. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... marking pile fabric as to fiber content provided for in this section are as follows: 100% Nylon Pile 100% Cotton Back (Back constitutes 60% of fabric and pile 40%). Face—60% Rayon, 40% Nylon Back—70% Cotton,...

  15. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... marking pile fabric as to fiber content provided for in this section are as follows: 100% Nylon Pile 100% Cotton Back (Back constitutes 60% of fabric and pile 40%). Face—60% Rayon, 40% Nylon Back—70% Cotton,...

  16. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... marking pile fabric as to fiber content provided for in this section are as follows: 100% Nylon Pile 100% Cotton Back (Back constitutes 60% of fabric and pile 40%). Face—60% Rayon, 40% Nylon Back—70% Cotton,...

  17. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  18. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  19. Optical Observations of Space Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira; Rodriquez, Heather; Barker, Edwin S.; Kelecy, Thomas

    2008-01-01

    This viewgraph presentation reviews the use of optical telescopes to observe space debris. .It will present a brief review of how the survey is conducted, and what some of the significant results encompass. The goal is to characterize the population of debris objects at GEO, with emphasis on the faint object population. Because the survey observations extend over a very short arc (5 minutes), a full six parameter orbit can not be determined. Recently we have begun to use a second telescope, the 0.9-m at CTIO, as a chase telescope to do follow-up observations of potential GEO debris candidates found by MODEST. With a long enough sequence of observations, a full six-parameter orbit including eccentricity can be determined. The project has used STK since inception for planning observing sessions based on the distribution of bright cataloged objects and the anti-solar point (to avoid eclipse). Recently, AGI's Orbit Determination Tool Kit (ODTK) has been used to determine orbits, including the effects of solar radiation pressure. Since an unknown fraction of the faint debris at GEO has a high area-to-mass ratio (A/M), the orbits are perturbed significantly by solar radiation. The ODTK analysis results indicate that temporal variations in the solar perturbations, possibly due to debris orientation dynamics, can be estimated in the OD process. Additionally, the best results appear to be achieved when solar forces orthogonal to the object-Sun line are considered. Determining the A/M of individual objects and the distribution of A/M values of a large sample of debris is important to understanding the total population of debris at GEO

  20. 6. UPPER NOTTINGHAM TAILING PILE LOOKING DOWN STREAM BED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UPPER NOTTINGHAM TAILING PILE LOOKING DOWN STREAM BED TO LOWER NOTTINGHAM. COLLAPSED BUILDINGS, 'B' AND 'C' AND TOP EDGE OF TAILING PILES ARE VISIBLE IN CENTRAL ARE OF PRINT. CAMERA POINTED SOUTHWEST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  1. Navy-ship plastic waste recycled into marine pilings

    SciTech Connect

    March, F.A.

    1996-02-01

    Seaward International Inc., developed a new, composite, structurally reinforced, plastic-composite marine piling fabricated from 100 percent recycled plastic. A cooperative research program was begun in 1995 between the Navy and Seaward to develop a use for Navy ships waste plastic as a core in the construction of the marine piling.

  2. Packing bunkers and piles to maximize forage preservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage is a valuable commodity stored on dairy farms. Bunker and pile silos have increased in use due to increasing herd size. Losses in feed value in bunker and pile silos are frequently higher than they should be because producers are not packing them sufficiently to exclude oxygen during the stor...

  3. 30 CFR 77.214 - Refuse piles; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Refuse piles; general. 77.214 Section 77.214 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... covered with clay or other inert material as the piles are constructed. (c) A fireproof barrier of clay...

  4. 30 CFR 77.214 - Refuse piles; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Refuse piles; general. 77.214 Section 77.214 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... covered with clay or other inert material as the piles are constructed. (c) A fireproof barrier of clay...

  5. 30 CFR 77.214 - Refuse piles; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Refuse piles; general. 77.214 Section 77.214 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... covered with clay or other inert material as the piles are constructed. (c) A fireproof barrier of clay...

  6. 30 CFR 77.214 - Refuse piles; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Refuse piles; general. 77.214 Section 77.214 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... covered with clay or other inert material as the piles are constructed. (c) A fireproof barrier of clay...

  7. 30 CFR 77.214 - Refuse piles; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; general. 77.214 Section 77.214 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... covered with clay or other inert material as the piles are constructed. (c) A fireproof barrier of clay...

  8. Modeling the damming effect of pile foundations (Tomsk city)

    NASA Astrophysics Data System (ADS)

    Kuzevanov, K. I.; Pokrovsky, D. S.; Pokrovsky, V. D.; Kuzevanov, K. K.

    2016-03-01

    The authors have considered the impact of pile foundations on the structure of filtration flows in the conditions of urban development. Hydrodynamic simulation methods have shown that a groundwater level rise might occur due to the damming effect that can be created by pile fields in semipermeable rocks. This phenomenon can intensify anthropogenic waterlogging processes in urbanized territories.

  9. 45. Photocopied August 1978. PILE DRIVER, NOVEMBER 2, 1898. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Photocopied August 1978. PILE DRIVER, NOVEMBER 2, 1898. THIS MACHINE WAS USED TO DRIVE PILES FOR THE POWER HOUSE COFFER DAM. AT THIS POINT IT IS JUST BEGINNING WORK. (12) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  10. View south along subtle ridgeline across a pile of removed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south along subtle ridgeline across a pile of removed gravestones to Doughty-Beck monument, another gravestone pile, and Mill Street houses. - Mount Zion Cemetery/ Female Union Band Cemetery, Bounded by 27th Street right-of-way N.W. (formerly Lyons Mill Road), Q Street N.W., & Mill Road N.W., Washington, District of Columbia, DC

  11. Some problems of sensitivity analysis of axially loaded piles

    SciTech Connect

    Budkowska, B.B.; Szymczak, C.

    1994-12-31

    The first variations of an axial displacement and an axial force at a specified cross-section of an axially loaded pile due to the changes of the design variables are derived. The parameters describing the pile material and the soil behavior as well as the pile cross-section dimensions are assumed to be the design variables. A simple one-dimensional idealization of the pile in conjunction with a nonlinear Winkler-type model of the soil is adopted. The considerations based on the virtual work theorems are valid for both linear and nonlinear ranges of the pile material and the soil behavior. Some presented numerical examples allow one to investigate the accuracy of approximation of changes of internal forces and displacements due to the increments of the design variables by means of their first order variations.

  12. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  13. Distributed fibre optic strain measurements on a driven pile

    NASA Astrophysics Data System (ADS)

    Woschitz, Helmut; Monsberger, Christoph; Hayden, Martin

    2016-05-01

    In civil engineering pile systems are used in unstable areas as a foundation of buildings or other structures. Among other parameters, the load capacity of the piles depends on their length. A better understanding of the mechanism of load-transfer to the soil would allow selective optimisation of the system. Thereby, the strain variations along the loaded pile are of major interest. In this paper, we report about a field trial using an optical backscatter reflectometer for distributed fibre-optic strain measurements along a driven pile. The most significant results gathered in a field trial with artificial pile loadings are presented. Calibration results show the performance of the fibre-optic system with variations in the strain-optic coefficient.

  14. Optimal Design of Sheet Pile Wall Embedded in Clay

    NASA Astrophysics Data System (ADS)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  15. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    NASA Astrophysics Data System (ADS)

    Krasinski, Adam

    2015-02-01

    The application of screw displacement piles (SDP) is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  16. SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER

    NASA Astrophysics Data System (ADS)

    Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi

    The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.

  17. Vertical vibration of a pile in transversely isotropic multilayered soils

    NASA Astrophysics Data System (ADS)

    Ai, Zhi Yong; Liu, Chun Lin

    2015-11-01

    A new method for the dynamic response of a vertically loaded single pile embedded in transversely isotropic multilayered soils is proposed in this paper. The dynamic response of the pile is governed by the one-dimensional (1D) vibration theory, and that of transversely isotropic multilayered soils is achieved by using an analytical layer-element method. Then, with the aid of the displacement compatibility and the contact forces equilibrium along the pile-soil contact surface, the dynamic pile-soil interaction problem is solved efficiently. The presented solution method is proved to be correct and efficient by comparing the obtained results with other existing solutions. Selected numerical results are presented to study the influence of mass density ratio, length-radius ratio, frequency of excitation, soil anisotropy and hard soil stratum on the pile vertical impedance.

  18. Biological response to prosthetic debris

    PubMed Central

    Bitar, Diana; Parvizi, Javad

    2015-01-01

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  19. Biological response to prosthetic debris.

    PubMed

    Bitar, Diana; Parvizi, Javad

    2015-03-18

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  20. Small asteroids - rubble piles or boulders?

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.

    2013-10-01

    The asteroid rotation spin barrier at ~2.2 h period among asteroids 10 km > D > 200 m doesn’t prove all such asteroids are rubble piles, and the faster rotations among smaller asteroids doesn’t require monolithic strength, either. Only a very modest strength, perhaps no more than van der Waals force, might suffice to hold regolith together on a small super-fast rotator (Sanchez & Scheeres, 2013, arXif:1306.1622v1). The problem is that for a constant or only slowly varying strength with respect to diameter, the spin barrier becomes proportional to 1/D below the size where material strength is dominant, or perhaps a bit steeper if strength increases with decreasing D. What we observe in the distribution of asteroid spins versus diameter is that below D ~ 200 m, the spin barrier goes up at least ~D-3.5, if not abruptly. Models with constant or slowly varying strength fail to fit this observation, and the abrupt transition cannot be an observational selection effect: the void in the phase space of rotations would be among the easiest rotations to observe, e.g. the one conspicuous exception, 2001 OE84 (D ~ 0.7 km, P = 0.5 h) was easily and unambiguously measured (Pravec, et al. 2002, Proc. ACM 2002, ESA SP-500, 743-745). This abrupt transition is most easily explained as a real transition in material properties of asteroids in the size range ~200 m diameter, from “rubble pile” to “boulder”, although neither term may be fully descriptive of the actual structure. Two other lines of evidence suggest that this transition in properties is real: the dip in the size-frequency distribution of NEAs is maximum at ~150 m, suggesting that a transition to stronger material structure occurs about there, and we observe, e.g., Tunguska and the recent Chelyabinsk bolide, that bodies in the tens of meters size range entering the atmosphere behave more like solid rocks than rock piles (Boslough & Crawford 2008, Int. J. Imp. Eng. 35, 1441-1448). I encourage those doing computer

  1. Space Debris Environent Remediation Concepts

    NASA Astrophysics Data System (ADS)

    Klinkrad, H.; Johnson, N. L.

    2009-03-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also at sizes which may cause further catastrophic collisions. A collisional cascading may ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention.The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities, and then investigating means of mitigating the creation of space debris. In an on-going activity, an IAA study group looks into methods of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial castastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electro-dynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be discussed.

  2. An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method

    NASA Astrophysics Data System (ADS)

    Chang, Ping-Yu; Chen, Chien-Chih; Chang, Shu-Kai; Wang, Tzu-Bin; Wang, Chien-Ying; Hsu, Shu-Kun

    2012-03-01

    A massive debris flow induced by Typhoon Morakot buried the southern Taiwan village of Siaolin in Jiaxian township and caused the deaths of an estimated 474 people. To reconstruct the mechanisms triggering the tragic debris flow, researchers must identify the subsurface structures of the debris-flow sediments. For this purpose, we conducted 2-D, electrical resistivity imaging (ERI) surveys along networked lines where the village once stood. With the imaging results, we identified three layers, including the basement of Yenshuikeng Shale, the newly accumulated debris-flow deposits; and the old fluvial deposits amid the basement and the debris-flow sediments. According to the resistivity results, the bottom of the debris-flow deposits is under the old ground surface in three eroded areas, C1, C2 and C3. Resistivity anomalies in the debris-flow sediment layer are well correlated with the locations of houses and the major roads in the piling area (P1) and the eroded area (C2). Hence these findings indicate that the basal erosion of the debris flow may have occurred in areas C1, C2 and C3 since a specific mass movement may undercut into the basal sediments or rocks and forms a filled trench in its basement. These eroded areas may be related to different events of mass movements due to their different orientations of basal erosion. From the resistivity image we estimated the volume of debris flow is underestimated for about 24.5 per cent to the estimated volume of the debris flow from digital terrain models (DTMs) in the study area. We conclude that the volume of a debris flow may be underestimated because of the basal erosion if only data from DTMs are used for its calculations and present new means for its correction by combining DTM and ERI results.

  3. Debris Flows and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  4. Formation of pebble-pile planetesimals

    NASA Astrophysics Data System (ADS)

    Wahlberg Jansson, Karl; Johansen, Anders

    2014-10-01

    Asteroids and Kuiper belt objects are remnant planetesimals from the epoch of planet formation. The first stage of planet formation is the accumulation of dust and ice grains into mm- and cm-sized pebbles. These pebbles can clump together through the streaming instability and form gravitationally bound pebble clouds. Pebbles inside such a cloud will undergo mutual collisions, dissipating energy into heat. As the cloud loses energy, it gradually contracts towards solid density. We model this process and investigate two important properties of the collapse: (i) the collapse timescale and (ii) the temporal evolution of the pebble size distribution. Our numerical model of the pebble cloud is zero-dimensional and treats collisions with a statistical method. We find that planetesimals with radii larger than ~100 km collapse on the free-fall timescale of ~25 years. Lower-mass clouds have longer pebble collision timescales and collapse much more slowly, with collapse times of a few hundred years for 10 km scale planetesimals and a few thousand years for 1 km scale planetesimals. The mass of the pebble cloud also determines the interior structure of the resulting planetesimal. The pebble collision speeds in low-mass clouds are below the threshold for fragmentation, forming pebble-pile planetesimals consisting of the primordial pebbles from the protoplanetary disk. Planetesimals above 100 km in radius, on the other hand, consist of mixtures of dust (pebble fragments) and pebbles which have undergone substantial collisions with dust and other pebbles. The Rosetta mission to the comet 67P/Churyumov-Gerasimenko and the New Horizons mission to Pluto will provide valuable information about the structure of planetesimals in the solar system. Our model predicts that 67P is a pebble-pile planetesimal consisting of primordial pebbles from the solar nebula, while the pebbles in the cloud which contracted to form Pluto must have been ground down substantially during the collapse.

  5. Performance of a prototype surface collector for juvenile salmonids at Bonneville dam's first powerhouse on the Columbia River, Oregon

    USGS Publications Warehouse

    Evans, S.D.; Adams, N.S.; Rondorf, D.W.; Plumb, J.M.; Ebberts, B.D.

    2008-01-01

    During April-July 2000, we radio-tagged and released juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) to evaluate a prototype surface flow bypass at Bonneville Dam on the Columbia River. The mock bypass, called a prototype surface collector (PSC), had six vertical slot entrances that were each 6 m wide and 12 m deep. The PSC was retrofitted to the upstream face of Bonneville Dam's First Powerhouse. Our objectives were to: (1) assess species-specific differences in movement patterns and behaviour of fish within 6 m of the face of the PSC, (2) estimate the efficiency and effectiveness of the PSC and (3) evaluate factors affecting the performance of the PSC. We found that 60-72% of the fish, depending on species, detected within 6 m of the PSC entered it. Of the fish that passed the First Powerhouse at turbines 1-6, 79-83% entered the PSC. Diel period was a significant contributor to PSC performance for all species, and day of year was a significant contributor to PSC performance for subyearling Chinook salmon. The PSC was twice as effective (%fish/%flow) as the spillway, passing 2.5:1 steelhead and subyearling Chinook salmon and 2.4:1 yearling Chinook salmon per unit of water. If fully implemented, the PSC would increase the percentage of fish that pass the First Powerhouse through non-turbine routes from 65-77% (without the PSC) to 76-85% (with the PSC), depending on species. Published in 2008 by John Wiley & Sons, Ltd.

  6. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activation; (2) Launch vehicle explosion; (3) Aerodynamic loads; (4) Inertial loads; (5) Atmospheric reentry heating; and (6) Impact of intact vehicle. (c) Debris fragment lists. A debris analysis must produce...

  7. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activation; (2) Launch vehicle explosion; (3) Aerodynamic loads; (4) Inertial loads; (5) Atmospheric reentry heating; and (6) Impact of intact vehicle. (c) Debris fragment lists. A debris analysis must produce...

  8. DebriSat Project Update and Planning

    NASA Technical Reports Server (NTRS)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  9. NASA Orbital Debris Requirements and Best Practices

    NASA Technical Reports Server (NTRS)

    Hull, Scott

    2014-01-01

    Limitation of orbital debris accumulation is an international and national concern, reflectedin NASA debris limitation requirements. These requirements will be reviewed, along with some practices that can be employed to achieve the requirements.

  10. Load tests on tubular piles in Coralline Strata

    SciTech Connect

    Gilchrist, J.M.

    1985-05-01

    At a coral reef site on the Red Sea coast of Saudi Arabia, load tests were performed on 1,422 mm diam tubular steel piles to verify pile design compression and tension capacities predicted by calculations. Although two tests were planned at separate site locations, five were performed (two on test pile A, and three on test pile B) due to the test results disproving some of the calculation assumptions. Test pile A was installed open-ended and the test results concluded: For a coring pile, the measured compression capacitites had reasonable agreement with those calculated (calculated overestimates = 5.2% and 16.3%); and the design assumption that a soil plug would form was disproved. Test pile B was installed with a structural plug fitted to the leading end and the test results concluded that the measured skin friction at 11 m penetration = zero; and the unit end bearing capacity assumed in the calculations was considerably larger than that measured in the tests at 11 m and 30 m penetration (calculated overestimates = 181% and 164%).

  11. Analysis of Wave Fields induced by Offshore Pile Driving

    NASA Astrophysics Data System (ADS)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  12. Debris shield survivability and lifetimes for NIF

    SciTech Connect

    Davis, S; Duewer, T; Eder, D; Ertel, J; Horton, R; Latkowski, Brereton, S; MacGowan, B; Thomas, I; Tobin, M; Zaka, F

    1999-09-01

    The survivability and performance of the NIF debris shields on the National Ignition Facility are a key factor for the successful conduct and affordable operation of the facility. Estimates of debris shield lifetime in the presence of target emissions indicate severely shortened lifetimes. We have tested a new coating design that improves debris shield cleaning. A combination of modeling and continuous data collection on NIF is described/recommended to allow cost effective debris shield operation.

  13. Space Debris: Its Causes and Management

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2002-01-01

    Orbital debris is internationally recognized as an environmental issue which needs to be addressed today to preserve near-Earth space for future generations. All major space agencies are committed to mitigating the growth of the debris environment. Many commercial space system operators have responded positively to orbital debris mitigation principles and recommendations. Orbital debris mitigation measures are most cost-effective if included in the design development phase.

  14. Unsaturated flow modeling of a retorted oil shale pile.

    SciTech Connect

    Bond, F.W.; Freshley, M.D.; Gee, G.W.

    1982-10-01

    The objective of this study was to demonstrate the capabilities of the UNSAT1D model for assessing this potential threat to the environment by understanding water movement through spent shale piles. Infiltration, redistribution, and drainage of water in a spent shale pile were simulated with the UNSAT1D model for two test cases: (1) an existing 35 m pile; and (2) a transient pile growing at a rate of 10 m/year for 5 years. The first test case simulated three different layering scenarios with each one being run for 1 year. The second test case simulated two different initial moisture contents in the pile with each simulation being run for 30 years. Grand Junction and Rifle, Colorado climatological data were used to provide precipitation and potential evapotranspiration for a wet (1979) and dry (1976) year, respectively. Hydraulic properties obtained from the literature on Paraho process spent shale soil, and clay were used as model input parameters to describe water retention and hydraulic conductivity characteristics. Plant water uptake was not simulated in either test case. The two test cases only consider the evaporation component of evapotranspiration, thereby maximizing the amount of water infiltrating into the pile. The results of the two test cases demonstrated that the UNSAT1D model can adequately simulate flow in a spent shale pile for a variety of initial and boundary conditions, hydraulic properties, and pile configurations. The test cases provided a preliminary sensitivity analysis in which it was shown that the material hydraulic properties, material layering, and initial moisture content are the principal parameters influencing drainage from the base of a pile. 34 figures, 4 tables.

  15. Orbital Debris and Future Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    This slide presentation is an overview of the historical and current orbital debris environment. Included is information about: Projected growth of the future debris population, The need for active debris removal (ADR), A grand challenge for the 21st century and The forward path

  16. Simulations of SSLV Ascent and Debris Transport

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil

    2006-01-01

    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.

  17. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  18. Orbital debris sweeper and method

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1991-01-01

    An orbital debris sweeper is provided for removing particles from orbit which otherwise may impact and damage an orbiting spacecraft. The debris sweeper includes a central sweeper core which carries a debris monitoring unit, and a plurality of large area impact panels rotatable about a central sweeper rotational axis. In response to information from the debris monitoring unit, a computer determines whether individual monitored particles preferably impact one of the rotating panels or pass between the rotating panels. A control unit extends or retracts one or more booms which interconnect the sweeper core and the panels to change the moment of inertia of the sweeper and thereby the rotational velocity of the rotating panels. According to the method of the present invention, the change in panel rotational velocity increases the frequency of particles which desirably impact one of the panels and are thereby removed from orbit, while large particles which may damage the impact panels pass between the trailing edge of one panel and the leading edge of the rotationally succeeding panel.

  19. A Passive Nuclear Debris Collector.

    ERIC Educational Resources Information Center

    Griffin, John J.; And Others

    1979-01-01

    Describes a nuclear debris collector which removes trace substances from the lower atmosphere during rainfall. Suggests that the collector could be implemented into courses at various educational levels and could result in developing a network for monitoring the geographical extent of nuclear contamination. (Author/SA)

  20. Piled tool will level subsea well template for Heidrun TLP

    SciTech Connect

    Not Available

    1992-01-13

    This paper reports on piled leveling tools that were contracted for use during the installation of the subsea well template for Conoco Norway Inc.'s Heidrun tension leg platform (TLP) in the Norwegian sector of the North Sea. The leveling tools are employed after a template has been positioned on the seafloor and anchor pilings have been driven through the template sleeves. One or more tools are lowered and landed on anchor pilings at the low side of the template. No diver support or guidelines are required.

  1. Photometric Studies of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  2. Segregation dynamics in debris flows

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Fei, M.

    2014-12-01

    Debris flows are massive flows consisting of mixtures of particles of different sizes and interstitial fluids such as water and mud. In sheared mixtures of different-sized (same density) particles, it is well known that larger particles tend to go up (toward the free surface), and the smaller particles, down, commonly referred to as the "Brazil-nut problem" or "kinetic sieving". When kinetic sieving fluxes are combined with advection in flows, they can give rise to a spectacular range of segregation patterns. These segregation / advection dynamics are recognized as playing a role in the coarsening of a debris flow front (its "snout") and the coarsening of the self-formed channel sides or levees. Since particle size distribution influences the flow dynamics including entrainment of bed materials, modeling segregation dynamics in debris flows is important for modeling the debris flows themselves. In sparser systems, the Brazil-nut segregation is well-modeled using kinetic theory applied to dissipative systems, where an underlying assumption involves random, uncorrelated collisions. In denser systems, where kinetic theory breaks down we have recently developed a new mixture model that demonstrates the segregation fluxes are driven by two effects associated with the kinetic stress or granular temperature (the kinetic energy associated with velocity fluctuations): (1) the difference between the partitioning of kinetic and contact stresses among the species in the mixture and (2) a kinetic stress gradient. Both model frameworks involve the temperature gradient as a driving force for segregation, but kinetic theory sends larger particles toward lower temperatures, and our mixture model sends larger particles away from lower temperatures. Which framework works under what conditions appears to depend on correlations in the flow such as those manifested in clusters and force chains. We discuss the application of each theoretical framework to representing segregation dynamics

  3. Pile mixing increases greenhouse gas emissions during composting of dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of pile mixing on greenhouse gas (GHG) emissions from stored dairy manure was determined using large flux chambers designed to completely cover pilot-scale manure piles. GHG emissions from piles that were mixed four times during the 80 day trial were about 20% higher than unmixed piles. ...

  4. Detecting debris flows using ground vibrations

    USGS Publications Warehouse

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  5. An optimal trajectory design for debris deorbiting

    NASA Astrophysics Data System (ADS)

    Ouyang, Gaoxiang; Dong, Xin; Li, Xin; Zhang, Yang

    2016-01-01

    The problem of deorbiting debris is studied in this paper. As a feasible measure, a disposable satellite would be launched, attach to debris, and deorbit the space debris using a technology named electrodynamic tether (EDT). In order to deorbit multiple debris as many as possible, a suboptimal but feasible and efficient trajectory set has been designed to allow a deorbiter satellite tour the LEO small bodies per one mission. Finally a simulation given by this paper showed that a 600 kg satellite is capable of deorbiting 6 debris objects in about 230 days.

  6. Orbital Debris Research in the United States

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene

    2009-01-01

    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.

  7. Three-dimensional finite element analysis of the interaction between tunneling and pile foundations

    NASA Astrophysics Data System (ADS)

    Mroueh, H.; Shahrour, I.

    2002-03-01

    This paper concerns analysis of the impact of construction of urban tunnels on adjacent pile foundations. It is carried out using an elastoplastic three-dimensional finite element modelling. Numerical simulations are performed in two stages, which concern, respectively, the application of the pile axial loading and the construction of the tunnel in presence of the pile foundations. Analysis is carried out for both single piles and groups of piles. Results of numerical simulations show that tunneling induces significant internal forces in adjacent piles. The distribution of internal forces depends mainly on the position of the pile tip regarding the tunnel horizontal axis and the distance of the pile axis from the centre of the tunnel. Analysis of the interaction between tunneling and a group of piles reveals a positive group effect with a high reduction of the internal forces in rear piles.

  8. 4. SULLIVAN TAILING PILE. CAMERA POINTED WEST. MINE ENTRANCE IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SULLIVAN TAILING PILE. CAMERA POINTED WEST. MINE ENTRANCE IS APPROXIMATELY 30 YARDS BEHIND CAMERA POSITION. - Florida Mountain Mining Sites, Sullivan Mine, East side of Florida Mountain, Silver City, Owyhee County, ID

  9. 96. DAM PILE SPACING PIER 4 TO PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. DAM - PILE SPACING - PIER 4 TO PIER 9 INCLUSIVE (ML-8-40/6-FS) June 1935 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  10. VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK TOP, WITH VERTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK TOP, WITH VERTICAL ELEMENTS IN BACKGROUND, LEVEL 0’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  11. 52. VIEW SHOWING RAILROAD CRANEMOUNTED PILE DRIVER WORKING ON PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING RAILROAD CRANE-MOUNTED PILE DRIVER WORKING ON PIER 2 OF SHOOFLY BRIDGE, LOOKING NORTHWEST FROM M STREET BRIDGE, December 28, 1934 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  12. 48. EXCAVATING AND DRIVING PILES FOR SHOOFLY BRIDGE, YOLO COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. EXCAVATING AND DRIVING PILES FOR SHOOFLY BRIDGE, YOLO COUNTY SIDE OF RIVER, November 7, 1934 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  13. 12. Underneath view of pilings and chain supports on sw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Underneath view of pilings and chain supports on sw side near midsection; looking SE at low tide. - Pacific Creosoting Plant, West Dock, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  14. 2. Pilings at end of Pier 11, low tide, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Pilings at end of Pier 11, low tide, view to north. - Charlestown Navy Yard, Pier 11, Charlestown Waterfront at confluence of Little Mystic Channel & Mystic River at northernmost ent of Navy Yard, Boston, Suffolk County, MA

  15. 5. VIEW OF TIMBER PILES SUPPORTING GEORGIA DOT BRIDGE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF TIMBER PILES SUPPORTING GEORGIA DOT BRIDGE NO. 111-00060P-00020N - Georgia DOT Bridge No. 111-00060P-00020N, Georgia State Route 60 spur spanning Hempton Creek, Mineral Bluff, Fannin County, GA

  16. 8. Roaring Fork Motor Nature Trail, handbuilt rock pile. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Roaring Fork Motor Nature Trail, hand-built rock pile. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  17. 69. VIEW OF DECK AND PILINGS FROM LIFEGUARD TOWER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. VIEW OF DECK AND PILINGS FROM LIFEGUARD TOWER AT 2ND TEE, LOOKING NORTH, SHOWING NEPTUNE'S LOCKER AND CAPTAIN'S GALLEY IN BACKGROUND AT RIGHT - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  18. As Traffic Piles Up, So Does Air Pollution

    MedlinePlus

    ... 160914.html As Traffic Piles Up, So Does Air Pollution To minimize exposure, researchers recommend shutting windows and ... Doing so can reduce your exposure to toxic air pollution from a traffic jam by up to 76 ...

  19. 1. GENERAL VIEW OF ENGINE PILE OF AGGREGATE AND MEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF ENGINE PILE OF AGGREGATE AND MEN WAITING WITH WHEELBARROWS FILLED WITH AGGREGATE. TAKE DEC. 7, 1927. - Marsh Rainbow Arch Bridge, West Eighth Street North, Newton, Jasper County, IA

  20. Airborne thermography of temperature patterns in sugar beet piles

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  1. 33. Steampowered pile driver working on footings for Pier 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Steam-powered pile driver working on footings for Pier 3, with south abutment visible at right; view to south. - Parks Bar Bridge, Spanning Yuba River at State Highway 20, Smartville, Yuba County, CA

  2. Biodeterioration of concrete piling in the Arabian Gulf

    SciTech Connect

    Jadkowski, T.K.; Wiltsie, E.A.

    1985-03-01

    Concrete is one of the most widely used materials in marine construction because of its characteristic durability in sea environments. Recent inspection of concrete piles installed in the Arabian Gulf has revealed that concrete with high content of calcareous aggregate is susceptible to biodeterioration. Marine rock borers and sponges, which are common in areas where the seabed is composed of limestone rock, have been identified as the marine species responsible for the biodeterioration. Boring organisms pose a significant threat to concrete pile structural integrity. Boreholes deteriorate concrete and expose outer pile reinforcement to seawater. This paper describes the causes and magnitude of biodeterioration of piles installed in the Arabian Gulf and presents design parameters and material specifications for the selected preventive repair system.

  3. 4. West side of pier showing distinct piling configuration. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. West side of pier showing distinct piling configuration. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  4. VIEW OF SOUTHERN QUARRY, FACING SOUTH, WITH ROCK PILES IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTHERN QUARRY, FACING SOUTH, WITH ROCK PILES IN FOREGROUND - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  5. 93. VIEW OF PILINGS ON SOUTHEAST SIDE, FACING NORTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. VIEW OF PILINGS ON SOUTHEAST SIDE, FACING NORTH FROM SOUTHEAST SIDE OF 4TH TEE, SHOWING RESTROOMS, PUMPHOUSE, AND THE TACKLE BOX IN BACKGROUND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  6. Processing Satellite Imagery To Detect Waste Tire Piles

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  7. Near-infrared Emission from Sublimating Dust in Collisionally Active Debris Disks

    NASA Astrophysics Data System (ADS)

    van Lieshout, Rik; Dominik, Carsten; Kama, Mihkel; Michiel, Min

    2013-07-01

    Hot exozodiacal dust is thought to be responsible for excess near-infrared (NIR) emission emanating from the innermost parts of some debris disks. The origin of this dust, however, is still a matter of debate. We test whether hot exozodiacal dust can be supplied from an exterior parent belt by Poynting-Robertson (P-R) drag, paying special attention to the pile-up of dust that occurs due to the interplay of P-R drag and dust sublimation. Specifically, we investigate whether pile-ups still occur when collisions are taken into account, and if they can explain the observed NIR excess. We compute the steady-state distribution of dust in the inner disk by solving the continuity equation. First, we derive an analytic solution under a number of simplifying assumptions. Second, we develop a numerical debris disk model that for the first time treats the complex interaction of collisions, P-R drag, and sublimation in a self-consistent way. From the resulting dust distributions we generate simple emission spectra and compare these to observed excess NIR fluxes. We confirm that P-R drag always supplies a small amount of dust to the sublimation zone, but find that a fully consistent treatment yields a maximum amount of dust that is about 7 times lower than that given by analytical estimates. The NIR excess due this material is much smaller (<10^-3 for A-type stars with parent belts at >1 AU) than the values derived from interferometric observations (~10^-2). Furthermore, the pile-up of dust still occurs when collisions are considered, but its effect on the NIR flux is insignificant. Finally, the cross-section in the innermost regions is clearly dominated by barely bound grains.

  8. Near-infrared emission from sublimating dust in collisionally active debris disks

    NASA Astrophysics Data System (ADS)

    van Lieshout, R.; Dominik, C.; Kama, M.; Min, M.

    2014-11-01

    Context. Hot exozodiacal dust is thought to be responsible for excess near-infrared (NIR) emission emanating from the innermost parts of some debris disks. The origin of this dust, however, is still a matter of debate. Aims: We test whether hot exozodiacal dust can be supplied from an exterior parent belt by Poynting-Robertson (P-R) drag, paying special attention to the pile-up of dust that occurs owing to the interplay of P-R drag and dust sublimation. Specifically, we investigate whether pile-ups still occur when collisions are taken into account, and if they can explain the observed NIR excess. Methods: We computed the steady-state distribution of dust in the inner disk by solving the continuity equation. First, we derived an analytical solution under a number of simplifying assumptions. Second, we developed a numerical debris disk model that for the first time treats the complex interaction of collisions, P-R drag, and sublimation in a self-consistent way. From the resulting dust distributions, we generated thermal emission spectra and compare these to observed excess NIR fluxes. Results: We confirm that P-R drag always supplies a small amount of dust to the sublimation zone, but find that a fully consistent treatment yields a maximum amount of dust that is about 7 times lower than that given by analytical estimates. The NIR excess due to this material is much less (≲10-3 for A-type stars with parent belts at ≳1 AU) than the values derived from interferometric observations (~10-2). Pile-up of dust still occurs when collisions are considered, but its effect on the NIR flux is insignificant. Finally, the cross-section in the innermost regions is clearly dominated by barely bound grains. Appendices are available in electronic form at http://www.aanda.org

  9. The equivalence between dislocation pile-ups and cracks

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Gao, Q.

    1990-01-01

    Cracks and dislocation pile-ups are equivalent to each other. In this paper, the physical equivalence between cracks and pile-ups is delineated, and the relationshps between crack-extension force, force on the leading dislocation, stress-intensity factor, and dislocation density are reviewed and summarized. These relations make it possible to extend quantitatively the recent advances in the concepts and practices of fracture mechanics to the studies of microfractures and microplastic deformations.

  10. Zinc mesh anodes cast into concrete pile jackets

    SciTech Connect

    Kessler, R.J.; Powers, R.G.; Lasa, I.R.

    1996-12-01

    A sacrificial cathodic protection system has been designed to provide corrosion control to the splash area and the submerged portion of reinforced concrete bridge pilings. The system consists of a two-piece stay-in-place fiberglass form with an internal expanded zinc mesh anode. It is filled with a portland cement-sand mortar to protect the splash area. The submerged portion of the pile is protected using a standard zinc bulk anode.

  11. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  12. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  13. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  14. Conoco installs eight-pile rig on four-pile platform

    SciTech Connect

    Albaugh, E.K.

    1983-11-01

    Rig 122 recently became the largest standard self-contained drilling rig ever to be mounted on a four-pile, tender-style platform. The conversion sacrificed none of the rig's deep drilling capability, and enabled Conoco to utilize a self-contained platform drilling rig on a satellite platform in the same field. Two cantilever beams, extending some 42 ft beyond platform columns on two sides, support rig weight. Modifications to the rig include separation of pump and engine packages, a pipe-rack extension and a novel skidding system.

  15. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  16. Improving detection of avalanches on a conical bead pile

    NASA Astrophysics Data System (ADS)

    Vajpeyi, Avi; Lehman, Susan; Dahmen, Karin; Leblanc, Michael; Uhl, Jonathan

    A conical bead pile subject to slow driving and an external magnetic field is used as a simple system to investigate the variations in the avalanche size probability distribution function. Steel beads are dropped onto the pile from different heights and at different strengths of applied magnetic field. Avalanches are recorded by the change in mass as beads fall off the pile. Experimentally we observe an increasing deviation from power law behavior as the field and thus cohesion between the beads increases. We compare our experimental results for the probability distribution function to the results of an analytic theory from a mean-field model of slip avalanches [Dahmen, Nat Phys 7, 554 (2011)]. The model also makes predictions for avalanche duration, which is not measurable with the existing system. To more fully characterize the avalanching behavior of the pile over time, a high-speed camera has been added to the system to record the largest avalanches and allow more detailed analysis. The conical pile geometry presents a challenge for observation and particle tracking over the full pile. Our implementation scheme and preliminary results from the video analysis are presented. Research supported by NSF CBET 1336116 and 1336634.

  17. The Supercritical Pile Model for GRBs

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2005-01-01

    We present the spectral and temporal radiative signatures expected within the "Supercritical Pile" model of Gamma Ray Bursts (GRB). This model is motivated by the need for a process that provides the dissipation necessary in GRB and presents a well defined scheme for converting the energy stored in the relativistic protons of the Relativistic Blast Waves (RBW) associated with GRB into radiation; at the same time it leads to spectra which exhibit a peak in the burst nuF(sub nu) distribution at an energy E(sub p) approx. equal to 1 MeV in the observer s frame, in agreement with observation and largely independent of the Lorentz factor r of the associated relativistic outflow. Futhermore, this scheme does not require (but does not preclude) acceleration of particles at the shock other than that provided by the isotropization of the flow bulk kinetic energy on the RBW frame. In the present paper we model in detail the evolution of protons, electrons and photons from a RBW to produce detailed spectra of the prompt GRB phase as a function of time from across a very broad range spanning roughly 4 log10Gamma decades in frequency. The model spectra are in general agreement with observations and provide a means for the delineating of the model parameters through direct comparison with trends observed in GRB properties.

  18. Structural stability of rubble-pile asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2013-03-01

    Granular aggregates, like fluids, do not admit all manners of shapes and rotation rates. It is hoped that an analysis of a suspected granular asteroid’s equilibrium shape and its structural stability will help confirm its rubble-pile nature, and, perhaps, even constrain the asteroid’s material parameters. Equilibrium shapes have been analyzed in the past by several investigators (Holsapple, K.A. [2001]. Icarus 154, 432-448; Harris, A.W., Fahnestock, E.G., Pravec, P. [2009]. Icarus 199, 310-318; Sharma, I., Jenkins, J.T., Burns, J.A. [2009]. Icarus 200, 304-322). Here, we extend the classical Lagrange-Dirichlet stability theorem to the case of self-gravitating granular aggregates. This stability test is then applied to probe the stability of several near-Earth asteroids, and explore the influence of material parameters such as internal friction angle and plastic bulk modulus. Finally, we consider their structural stability to close planetary encounters. We find that it is possible for asteroids to be stable to small perturbations, but unstable to strong and/or extended perturbations as experienced during close flybys. Conversely, assuming stability in certain situations, it is possible to estimate material properties of some asteroids like, for example, 1943 Anteros.

  19. The Supercritical Pile Model for GRBs

    NASA Astrophysics Data System (ADS)

    Mastichiadis; Kazanas

    2006-02-01

    We present the spectral and temporal radiative signatures expected withinthe quot;Supercritical Pile\\" model of Gamma Ray Bursts (GRB). This modelis motivated by the need for a process that provides the dissipationnecessary in GRB and presents a well defined scheme for converting theenergy stored in the relativistic protons of theRelativistic Blast Waves (RBW) associated with GRB into radiation; at thesame time it leads to spectra which exhibit a peak in the burst nuF_{nu} distribution at an energy E_p simeq 1 MeV in theobserverapos;s frame, in agreement with observation and largelyindependent of the Lorentz factor Gamma of the associated relativisticoutflow. Futhermore, this scheme does not require (but does notpreclude) acceleration of particles at the shock other than that providedby the isotropization of the flow bulk kinetic energy on the RBW frame. Inthe present paper we model in detail the evolution of protons, electronsand photons from a RBW within the framework of this model to producedetailed spectra of the prompt GRB phase as a function of time from acrossa very broad range spanning roughly 4 log_{10} Gamma decades$ in frequency. The model spectra are in generalagreement with observations and provide a means for the delineating of themodel parameters through direct comparison with trends observed in GRBproperties.

  20. Comparison of debris flux models

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.

    The availability of models to estimate the impact risk from the man-made space debris and the natural meteoroid environment is essential for both, manned and unmanned satellite missions. Various independent tools based on different approaches have been developed in the past years. Due to an increased knowledge of the debris environment and its sources e.g. from improved measurement capabilities, these models could be updated regularly, providing more detailed and more reliable simulations. This paper addresses an in-depth, quantitative comparison of widely distributed debris flux models which were recently updated, namely ESA's MASTER 2001 model, NASA's ORDEM 2000 and the Russian SDPA 2000 model. The comparison was performed in the frame of the work of the 20t h Interagency Debris Coordination (IADC) meeting held in Surrey, UK. ORDEM 2000ORDEM 2000 uses careful empirical estimates of the orbit populations based onthree primary data sources - the US Space Command Catalog, the H ystackaRadar, and the Long Duration Exposure Facility spacecraft returned surfaces.Further data (e.g. HAX and Goldstone radars, impacts on Shuttle windows andradiators, and others) were used to adjust these populations for regions in time,size, and space not covered by the primary data sets. Some interpolation andextrapolation to regions with no data (such as projections into the future) wasprovided by the EVOLVE model. MASTER 2001The ESA MASTER model offers a full three dimensional description of theterrestrial debris distribution reaching from LEO up to the GEO region. Fluxresults relative to an orbiting target or to an inertial volume can be resolved intosource terms, impactor characteristics and orbit, as well as impact velocity anddirection. All relevant debris source terms are considered by the MASTERmodel. For each simulated source, a corresponding debris generation model interms of mass/diameter distribution, additional velocities, and directionalspreading has been developed. A

  1. Warm Debris Disks from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  2. Comparison of space debris estimates

    SciTech Connect

    Canavan, G.H.; Judd, O.P.; Naka, R.F.

    1996-10-01

    Debris is thought to be a hazard to space systems through impact and cascading. The current environment is assessed as not threatening to defense systems. Projected reductions in launch rates to LEO should delay concerns for centuries. There is agreement between AFSPC and NASA analyses on catalogs and collision rates, but not on fragmentation rates. Experiments in the laboratory, field, and space are consistent with AFSPC estimates of the number of fragments per collision. A more careful treatment of growth rates greatly reduces long-term stability issues. Space debris has not been shown to be an issue in coming centuries; thus, it does not appear necessary for the Air Force to take additional steps to mitigate it.

  3. Debris flow study in Malaysia

    NASA Astrophysics Data System (ADS)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  4. Debris Disks and Hidden Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2008-01-01

    When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

  5. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    SciTech Connect

    Palmer, E.

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  6. Modeling debris-covered glaciers: extension due to steady debris input

    NASA Astrophysics Data System (ADS)

    Anderson, L. S.; Anderson, R. S.

    2015-11-01

    Debris-covered glaciers are common in rapidly-eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, mass balance gradients can be reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial advection. We ran 120 simulations in which a steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier. Our model and parameter selections produce two-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris related variables are held constant. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities from glaciers in High Asia. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  7. Workers Search for Columbia's Debris

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Members of a US Forest Service search team walk a grid during a Columbia recovery search near the Hemphill, Texas site. The group is accompanied by a space program worker able to identify potential hazards of Shuttle parts. Workers from every NASA Center and numerous federal, state, and local agencies searched for Columbia's debris in the recovery effort. For more information on STS-107, please see GRIN Columbia General Explanation

  8. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  9. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  10. BINARIES AMONG DEBRIS DISK STARS

    SciTech Connect

    Rodriguez, David R.; Zuckerman, B.

    2012-02-01

    We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.

  11. Parametric study on the effects of pile inclination angle on the response of batter piles in offshore jacket platforms

    NASA Astrophysics Data System (ADS)

    Aminfar, Ali; Ahmadi, Hamid; Aminfar, Mohammad Hossein

    2016-06-01

    Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. The pile seems to have an operationally optimal degree of inclination of approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.

  12. Parametric study on the effects of pile inclination angle on the response of batter piles in offshore jacket platforms

    NASA Astrophysics Data System (ADS)

    Aminfar, Ali; Ahmadi, Hamid; Aminfar, Mohammad Hossein

    2016-04-01

    Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. The pile seems to have an operationally optimal degree of inclination of approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.

  13. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting.

    PubMed

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-04-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems. PMID:26949962

  14. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

    PubMed Central

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-01-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems. PMID:26949962

  15. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  16. Behavior of tethered debris with flexible appendages

    NASA Astrophysics Data System (ADS)

    Aslanov, Vladimir S.; Yudintsev, Vadim V.

    2014-11-01

    Active exploration of the space leads to growth of a near-Earth space pollution. The frequency of the registered collisions of space debris with functional satellites highly increased during last 10 years. As a rule a large space debris can be observed from the Earth and catalogued, then it is possible to avoid collision with the active spacecraft. However every large debris is a potential source of a numerous small debris particles. To reduce debris population in the near Earth space the large debris should be removed from working orbits. The active debris removal technique is considered that intend to use a tethered orbital transfer vehicle, or a space tug attached by a tether to the space debris. This paper focuses on the dynamics of the space debris with flexible appendages. Mathematical model of the system is derived using the Lagrange formalism. Several numerical examples are presented to illustrate the mutual influence of the oscillations of flexible appendages and the oscillations of a tether. It is shown that flexible appendages can have a significant influence on the attitude motion of the space debris and the safety of the transportation process.

  17. Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground

    NASA Astrophysics Data System (ADS)

    Yu, Chuang; Liu, Songyu

    2008-11-01

    Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.

  18. Seismic response of tall building considering soil-pile-structure interaction

    NASA Astrophysics Data System (ADS)

    Han, Yingcai

    2002-06-01

    The seismic behavior of tall buildings can be greatly affected by non-linear soil-pile interaction during strong earthquakes. In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions: (1) rigid base, i.e. no deformation in the foundation: (2) linear soil-pile system; and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated, and compared with the behavior of buildings supported on shallow foundation. With a model of non-reflective boundary between the near field and far field, Novak’s method of soil-pile interaction is improved. The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively. A series of dynamic experiments have been done on full-scale piles, including single pile and group, linear vibration and nonlinear vibration, to verify the validity of boundary zone model.

  19. Evaluating tsunami hazards from debris flows

    USGS Publications Warehouse

    Watts, P.; Walder, J.S.

    2003-01-01

    Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.

  20. The impact of debris on marine life.

    PubMed

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. PMID:25680883

  1. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  2. Debris Removal: An Opportunity for Cooperative Research?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.

  3. Characterisation Progress at the Windscale Pile Reactors. Challenges and Results

    SciTech Connect

    Ervin, P.F.

    2008-07-01

    The decommissioning of the Windscale Pile 1 reactor, fifty years after the 1957 fire, is one of the most technically challenging decommissioning projects in the United Kingdom, if not the world. The decommissioning is being performed by an Alliance of the United Kingdom Atomic Energy Authority (UKAEA), CH2M HILL International Nuclear Services (CHNS) Ltd. and AMEC, NNC. The 1957 Windscale Pile 1 accident is summarized. The resulting fire caused significant characterisation challenges. Challenges to intrusive characterization included hypothesized uranium hydride causing re-ignition of the core fire, unknown fuel configurations leading to a reactor criticality and graphite dust explosions. As a result, the Pile 1 facilities were sealed, isolated and managed in a monitoring and surveillance regime while plans for dismantling were developed. For years the intrusive inspection of the fire damaged region of Pile 1, estimated to contain 15 tonnes of fuel, was precluded based on safety grounds. In June of 2006 the United Kingdom Health and Safety Directorate approved a new Pile 1 safety case that successfully demonstrated that Pile 1 presents a minimal safety risk with no credible risk of a core fire, criticality or graphite dust explosion. Adoption of the new safety case enabled the intrusive inspections of the fire damaged region. Characterisation activities planned and performed since the safety case approval, were prioritised relative to the results potential to mitigate decommissioning project risks. D-Void examinations, irradiation foil hole intrusive inspections, bio-shield and thermal shield plate characterizations were performed. Results obtained allow determination of waste stream composition and confirmation of assumed design conditions. Changes to the strategic approach to safely and efficiently decommission the two Windscale Pile Reactors include waste packaging and storage facilities and confirmation of design assumptions. Fuel channel endoscope inspections

  4. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1

  5. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  6. Numerical experiments with rubble piles: equilibrium shapes and spins

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Elankumaran, Pradeep; Sanderson, Robyn E.

    2005-02-01

    We present numerical experiments investigating the shape and spin limits of self-gravitating "perfect" rubble piles that consist of identical, smooth, rigid, spherical particles with configurable normal coefficient of restitution and no sliding friction. Such constructs are currently employed in a variety of investigations, ranging from the formation of asteroid satellites to the dynamical properties of Saturn's densest rings. We find that, owing to cannonball stacking behavior, rubble piles can maintain non-spherical shapes without bulk spin, unlike a fluid, and can spin faster than a perfect fluid before shedding mass, consistent with the theory for the more general continuum rubble pile model (Holsapple, 2004, Icarus 172, 272-303). Rubble piles that reassemble following a catastrophic disruption reconfigure themselves to lie within stability limits predicted by the continuum theory. We also find that coarse configurations consisting of a small number of particles are more resistant to tidal disruption than fine configurations with many particles. Overall this study shows that idealized rubble piles behave qualitatively in a manner similar to certain granular materials, at least in the limit where global shape readjustments and/or mass shedding begins. The limits obtained here may provide constraints on the possible internal structure of some small Solar System bodies that have extreme shapes or are under high stress. Amalthea is presented as a case study.

  7. Space debris measurement program at Phillips Laboratory

    NASA Technical Reports Server (NTRS)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  8. Orbital debris from upper-stage breakup

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr. (Editor)

    1989-01-01

    The present conference on the effects of launch vehicle upper-stage breakup on the orbital debris scenario discusses an analysis of the SPOT 1 Ariane third stage, the explosive fragmentation of orbiting propellant tanks, albedo estimates for debris, Ariane-related debris in deep-space orbit, and the relationship of hypervelocity impacts to upper-stage breakups. Also discussed are the prospects for and the economics of the future removal of orbital debris, collision probabilities in GEO, current operational practices for Delta second stage breakup prevention, breakup-precluding modifications to the Ariane third stage, and the safing of the H-1 second stage after spacecraft separation.

  9. Space debris mitigation measures in India

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Ganeshan, A. S.

    2006-02-01

    The Indian Space Research Organization (ISRO) recognizes the importance of the current space debris scenario, and the impact it has on the effective utilization of space technology for the improvement in the quality of life on the Earth. ISRO is committed to effective management of the threats due to space debris. Towards this commitment ISRO works on different aspects of space debris, including the debris mitigation measures. This paper highlights the activities and achievements in the implementation of the mitigation measures. ISRO successfully designed and developed a propellant venting system for implementation in the existing upper stage of India's Polar Satellite Launch Vehicle (PSLV), which uses Earth-storable liquid propellants. GSLV also employs passivation of the Cryogenic Upper Stage at the end of its useful mission. ISRO's communication satellites in GSO are designed with adequate propellant margins for re-orbiting at the end of their useful life to a higher graveyard orbit. A typical successful operation in connection with INSAT-2C is described. ISRO developed its debris environmental models and software to predict the close approach of any of the debris to the functional satellites. The software are regularly used for the debris risk management of the orbiting spacecraft and launch vehicles. ISRO recognizes the role of international cooperation in the debris mitigation measures and actively contributes to the efforts of the Inter-Agency Space Debris Coordination Committee (IADC) and United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).

  10. Primary dispersal of supraglacial debris and debris cover formation on alpine glaciers

    NASA Astrophysics Data System (ADS)

    Kirkbride, M. P.; Deline, P.

    2009-04-01

    Debris-covered glaciers are receiving increased attention due to the modulation of runoff by supraglacial covers, and to the lake outburst flood hazard at many covered glacier termini. Observed increases in debris cover extents cannot presently be explained in terms of glaciological influences. The supply of englacial debris to the supraglacial zone has previously been understood only in terms of local dispersal due to differential ablation between covered and uncovered ice, for example on medial moraines. Here, we introduce the term primary dispersal to describe the process of migration of the outcrops of angled debris septa across melting, thinning ablation zones. Understanding primary debris dispersal is an essential step to understanding how supraglacial debris cover is controlled by glaciological variables, and hence is sensitive to climatically-induced fluctuation. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focussing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a septum outcrop and the ice surface. (1) and (2) are inversely related, while (3) increases downglacier to explain why slow-moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) illustrate primary dispersal processes at a site where debris cover is increasing in common with many other shrinking alpine glaciers. We develop a model of the potential for debris cover formation and growth in different glaciological environments. This explains why glaciers whose termini are obstructed often have steep debris septa feeding debris covers which vary slowly in response to mass balance change. In contrast, at glaciers with gently-dipping debris-bearing foliation, the debris cover extent is sensitive to glaciological change. These findings

  11. Debris Selection and Optimal Path Planning for Debris Removal on the SSO: Impulsive-Thrust Option

    NASA Astrophysics Data System (ADS)

    Olympio, J. T.; Frouvelle, N.

    2013-08-01

    The current paper deals with the mission design of a generic active space debris removal spacecraft. Considered debris are all on a sun-synchronous orbit. A perturbed Lambert's problem, modelling the transfer between two debris, is devised to take into account J2 perturbation, and to quickly evaluate mission scenarios. A robust approach, using techniques of global optimisation, is followed to find optimal debris sequence and mission strategy. Manoeuvres optimization is then performed to refine the selected trajectory scenarii.

  12. Rubble-Pile Minor Planet Sylvia and Her Twins

    NASA Astrophysics Data System (ADS)

    2005-08-01

    from a primordial asteroid. "It could be up to 60 percent empty space," said co-discoverer Daniel Hestroffer (Observatoire de Paris, France). "It is most probably a "rubble-pile" asteroid", Marchis added. These asteroids are loose aggregations of rock, presumably the result of a collision. Two asteroids smacked into each other and got disrupted. The new rubble-pile asteroid formed later by accumulation of large fragments while the moonlets are probably debris left over from the collision that were captured by the newly formed asteroid and eventually settled into orbits around it. "Because of the way they form, we expect to see more multiple asteroid systems like this." Marchis and his colleagues will report their discovery in the August 11 issue of the journal Nature, simultaneously with an announcement that day at the Asteroid Comet Meteor conference in Armação dos Búzios, Rio de Janeiro state, Brazil.

  13. Experimental Modelling of Debris Flows

    NASA Astrophysics Data System (ADS)

    Paleo Cageao, P.; Turnbull, B.; Bartelt, P.

    2012-04-01

    Debris flows are gravity-driven mass movements typically containing water, sediments, soil and rocks. These elements combine to give a flow complex phenomenology that exhibits characteristics common to diverse geophysical flows from dry granular media (e.g. levee formation) to viscous gravity currents (viscous fingering and surge instabilities). The exceptional speeds and range debris flows can achieve motivate the need for a co-ordinated modelling approach that can provide insight into the key physical processes that dictate the hazard associated with the flows. There has been recent progress in theoretical modelling approaches that capture the details of the multi-component nature of debris flows. The promise of such models is underlined by their qualitatively successful comparison with field-scale experimental data. The aim of the present work is to address the technical difficulties in achieving a controlled and repeatable laboratory-scale experiment for robust testing of these multi-component models. A laboratory experiment has been designed and tested that can provide detailed information of the internal structure of debris flows. This constitutes a narrow Perspex chute that can be tilted to any angle between 0° and ≈ 60°. A mixture of glycerine and glass balls was initially held behind a lock-gate, before being released down the chute. The evolving flow was captured through high speed video, analysed with a Particle Image Velocimetry algorithm to provide the changing velocity field. A wide parameter space has been tested, allowing variations in particle size, dispersity, surface roughness, fluid viscosity, slope angle and solid volume fraction. While matching key similarity criteria, such as Froude number, with a typical field event, these experiments allow close examination of a wide range of physical scenarios for the robust testing of new multi-component flow models. Further diagnostics include force plate and pore pressure measurements, with a view

  14. The Fast Debris Evolution Model

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun

    The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly

  15. Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles

    NASA Technical Reports Server (NTRS)

    Housen, Kevin

    2009-01-01

    Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.

  16. 33 CFR 151.3000 - Definition of marine debris for the purposes of the Marine Debris Research, Prevention, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the purposes of the Marine Debris Research, Prevention, and Reduction Act. 151.3000 Section 151.3000... Definition of Marine Debris for the Purposes of the Marine Debris Research, Prevention, and Reduction Act § 151.3000 Definition of marine debris for the purposes of the Marine Debris Research, Prevention,...

  17. Debris avalanche triggered by sill intrusions in basaltic volcanoes (Piton des Neiges, La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Berthod, C.; Famin, V.; Bascou, J.; Michon, L.; Ildefonse, B.

    2014-12-01

    Debris avalanches derived from the flanks of volcanic islands are among the largest on Earth. Debris avalanches are rare, catastrophic destabilizations that still keep geologists debating about the mechanisms that initiate them and make them travel huge runout distances. To shed light on the trigger of such destabilizations, we studied the inland scar of a debris avalanche deposit cropping out at Piton des Neiges, a dormant and eroded basaltic volcano of La Réunion Island. The avalanche deposit rests on a pile of 50-70 sill intrusions with a shallow northward dip, i.e. toward the sea. We measured the anisotropy of magnetic susceptibility in a transect across the uppermost sill of the pile in contact with the avalanche deposit. This transect reveals a strongly asymmetric magnetic fabric, consistent with a north-directed shear movement of the upper intrusion wall. This suggests that the upper sill induced a co-intrusive shear displacement of the volcano flank toward the sea. The upper sill margin in contact with the avalanche is striated, showing that this intrusion is older than the avalanche. Striae indicate a northward direction of avalanche runout. The upper sill margin also displays a magmatic lineation consistent with a magma flow in the intrusion toward the north. There is thus a striking kinematic consistency between the directions of intrusion propagation and avalanche runout, both oriented toward the sea. From the above results, we propose that repeated sill intrusions, such as observed on Piton des Neiges, increase the instability of a volcanic edifice. Each injection induces an incremental slip of the overlying rock mass, which may eventually end up into a landslide. Sill intrusions associated with seaward displacements of volcano flank, such as inferred for the April 2007 eruption of Piton de la Fournaise (also in La Réunion), should therefore be considered as a potential trigger of debris avalanches.

  18. A simple approach for calculating pile skin friction in clays

    SciTech Connect

    Mirza, U.A.A.

    1995-12-31

    A simple method is presented for calculating static shaft resistance of a pile driven into clay. The method is based on correlations established for North Sea clays between index properties and strengths. Application of the method to half a dozen full scale pile load tests which are part of the API RP2A`s data base and include a wide range of plasticity properties, overconsolidation ratios and strengths, is described. Except for short piles in very stiff to hard clays, the predictions agree very well with the measurements. The correlations presented allows an assessment of residual skin friction and indicate the importance of the liquidity index of the clay in static capacity calculations.

  19. Design of Jetty Piles Using Artificial Neural Networks

    PubMed Central

    2014-01-01

    To overcome the complication of jetty pile design process, artificial neural networks (ANN) are adopted. To generate the training samples for training ANN, finite element (FE) analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN) with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost. PMID:25177724

  20. Localized cathodic protection of simulated prestressed concrete pilings in seawater

    SciTech Connect

    Chaix, O.; Hartt, W.H.; Kessler, R.; Powers, R.

    1995-05-01

    Corrosion-induced deterioration of prestressed concrete pilings in seawater has been established as the predominant failure mode. A technology involving localized impressed-current cathodic protection (CP) of the splash-zone region in association with conductive rubber anodes was developed to mitigate this deterioration. A series of experiments involving cathodic polarization of simulated prestressed concrete piling specimens partially immersed in seawater was performed. Variables included the concrete mix design, specimen cross section, anode dimensions, and water level. An interactive aspect of CP-operating parameters in association with water level was identified as important if excessively negative potentials and possible tendon embrittlement were to be avoided. The data were evaluated with regard to the interdependence between depolarization magnitude, potential, and concrete relative humidity. Results were reviewed within the context of CP utility for prestressed concrete bridge piling.

  1. Very Fine Aerosols from the World Trade Center Collapse Piles: Anaerobic Incineration

    SciTech Connect

    Cahill, T A; Cliff, S S; Shackelford, J; Meier, M; Dunlap, M; Perry, K D; Bench, G; Leifer, R

    2004-02-27

    By September 14, three days after the initial World Trade Center collapse, efforts at fire suppression and heavy rainfall had extinguished the immediate surface fires. From then until roughly mid-December, the collapse piles continuously emitted an acrid smoke and fume in the smoldering phase of the event. Knowledge of the sources, nature, and concentration of these aerosols is important for evaluation and alleviation of the health effects on workers and nearby residents. In this paper, we build on our earlier work to ascribe these aerosols to similar processes that occur in urban incinerators. The simultaneous presence of finely powdered (circa 5 {micro}m) and highly basic (pH 11 to 12) cement dust and high levels of very fine (< 0.25 {micro}m) sulfuric acid fumes helps explain observed health impacts. The unprecedented levels of several metals in the very fine mode can be tied to liberation of those metals that are both present in elevated concentrations in the debris and have depressed volatility temperatures caused by the presence of organic materials and chlorine.

  2. Small Orbital Debris Mitigation Mission Architecture

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2011-01-01

    Small orbital debris in LEO (1-10 cm in size) presents a clear and present danger to operational LEO spacecraft. This debris field has dramatically increased (nearly doubled) in recent years following the Chinese ASAT Test in 2007 and the Iridium/Cosmos collision in 2009. Estimates of the number of small debris have grown to 500,000 objects after these two events; previously the population was 300,000 objects. These small, untracked debris objects (appproximately 500,000) outnumber the larger and tracked objects (appproximately 20,000) by a factor 25 to 1. Therefore, the risk of the small untracked debris objects to operational spacecraft is much greater than the risk posed by the larger and tracked LEO debris objects. A recent study by The Aerospace Corporation found that the debris environment will increase the costs of maintaining a constellation of government satellites by 5%, a constellation of large commercial satellites by 11%, and a constellation of factory built satellites by 26% from $7.6 billion to $9.57 billion. Based upon these facts, the NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office (ACO) performed an architecture study on Small Orbital Debris Active Removal (SODAR) using a space-based nonweapons- class laser satellite for LEO debris removal. The goal of the SODAR study was to determine the ability of a space-based laser system to remove the most pieces of debris (1 cm to 10 cm, locations unknown), in the shortest amount of time, with the fewest number of spacecraft. The ESA developed MASTER2005 orbital debris model was used to probabilistically classify the future debris environment including impact velocity, magnitude, and directionality. The study ground rules and assumptions placed the spacecraft into a high inclination Low Earth Orbit at 800 km as an initial reference point. The architecture study results found that a spacecraft with an integrated forward-firing laser is capable of reducing the small orbital debris flux within

  3. Orbital Debris Observations with WFCAM

    NASA Technical Reports Server (NTRS)

    Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard

    2014-01-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.

  4. Riding a Trail of Debris

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    This image taken by NASA's Spitzer Space Telescope shows the comet Encke riding along its pebbly trail of debris (long diagonal line) between the orbits of Mars and Jupiter. This material actually encircles the solar system, following the path of Encke's orbit. Twin jets of material can also be seen shooting away from the comet in the short, fan-shaped emission, spreading horizontally from the comet.

    Encke, which orbits the Sun every 3.3 years, is well traveled. Having exhausted its supply of fine particles, it now leaves a long trail of larger more gravel-like debris, about one millimeter in size or greater. Every October, Earth passes through Encke's wake, resulting in the well-known Taurid meteor shower.

    This image was captured by Spitzer's multiband imaging photometer when Encke was 2.6 times farther away than Earth is from the Sun. It is the best yet mid-infrared view of the comet at this great distance. The data are helping astronomers understand how rotating comets eject particles as they circle the Sun.

  5. Assessment and prediction of debris-flow hazards

    USGS Publications Warehouse

    Wieczorek, Gerald F.

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  6. Effects of Impulsive Pile-Driving Exposure on Fishes.

    PubMed

    Casper, Brandon M; Carlson, Thomas J; Halvorsen, Michele B; Popper, Arthur N

    2016-01-01

    Six species of fishes were tested under aquatic far-field, plane-wave acoustic conditions to answer several key questions regarding the effects of exposure to impulsive pile driving. The issues addressed included which sound levels lead to the onset of barotrauma injuries, how these levels differ between fishes with different types of swim bladders, the recovery from barotrauma injuries, and the potential effects exposure might have on the auditory system. The results demonstrate that the current interim criteria for pile-driving sound exposures are 20 dB or more below the actual sound levels that result in the onset of physiological effects on fishes. PMID:26610952

  7. Controlling Cost Growth in PI-led Missions

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona

    2014-08-01

    While the cost and schedule performance of PI-led competed missions is better than that of strategic missions, the majority of PI-led missions have experienced increases relative to their initial proposed cost. I will review the performance of competed missions, comparing them to flagship observatories. I will describe in general reasons for cost growth starting from assumptions made at the proposal stage to challenges with technology development, technical implementation and management. I will also describe strategies for effective implementation that can be used to manage cost growth.

  8. Thermocouples For High Temperature In-Pile Testing

    SciTech Connect

    J. L. Rempe

    2005-11-01

    Many advanced nuclear reactor designs require new fuel, cladding and structural materials. Data are needed to characeterize the performance of these new materials in high temperature, oxidizing and radiation conditions. To obtain this data, robust instrumentation is needed htat can survive proposed test conditions. Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project was intiated to develop specialized thermocouples for high temperature in-pile applications (see Rempe and Wilkins, 2005). This paper summarizes efforts to develop, fabricate and evaluate these specialized thermocouples.

  9. 27. The top of a typical pile, F Reactor in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. The top of a typical pile, F Reactor in February 1945 in this case, showing the vertical safety rods (VSRs) and the cables that support them. The rods could be dropped into the pile to effect a rapid shutdown. The four silvered-colored drums on the left contained boron solution and are part of the last ditch safety system. Should the VSRs channels become blocked by an occurrence such as an earthquake, the solution could be dumped into the VSR channels to help shut down the reactor. D-8334 - B Reactor, Richland, Benton County, WA

  10. Estimates of current debris from flux models

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Flux models that balance accuracy and simplicity are used to predict the growth of space debris to the present. Known and projected launch rates, decay models, and numerical integrations are used to predict distributions that closely resemble the current catalog-particularly in the regions containing most of the debris.

  11. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Debris analysis. 417.211 Section 417.211 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a...

  12. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Public Assistance Eligibility § 206.224 Debris removal. (a) Public interest. Upon determination that debris removal is in the public interest... and privately owned lands and waters. Such removal is in the public interest when it is necessary...

  13. The dust debris around HR 4796

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1991-01-01

    The IRAS data strongly suggest that there is dust debris around the main-sequence A star HR 4796. The optical depth of the dust cloud around HR 4796 is probably twice that around Beta Pic, the main-sequence star in the Bright Star Catalog which was previously thought to have the most opaque dust debris cloud.

  14. Debris disc formation induced by planetary growth

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Löhne, T.

    2014-08-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that can explain the trend of observed infrared excesses of debris discsvvv around G-type stars, for which planet formation occurs only before 100 million years. Early debris disc formation is induced by planet formation, while the later evolution is explained by the collisional decay of leftover planetesimals around planets that have already formed. Planetesimal discs with underlying planetesimals of radii ˜100 km at ≈30 au most readily explain the Spitzer Space Telescope 24 and 70 μm fluxes from debris discs around G-type stars.

  15. Interagency Report on Orbital Debris, 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1995 report updates the findings and recommendations of the 1989 report and reflects the authors' progress in understanding and managing the orbital debris environment. It provides an up-to-date portrait of their measurement, modeling, and mitigation efforts; and a set of recommendations outlining specific steps they should pursue, both domestically and internationally, to minimize the potential hazard posed by orbital debris.

  16. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  17. The debris-flow rheology myth

    USGS Publications Warehouse

    Iverson, R.M.

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  18. Aquatic Debris Detection Using Embedded Camera Sensors

    PubMed Central

    Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu

    2015-01-01

    Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741

  19. Critical load and buckling of the single pile foundation subjected to the vertical load

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Peng, Jian; Wang, Lianhua; Zhao, Yueyu

    2013-07-01

    In this study, the critical load and buckling of the single pile foundation subjected to the vertical load are investigated. Considering the second-order moment of the soil-structure interaction, the refined model of the single pile foundation is derived. Then, the critical load and buckling phenomenon of the single pile foundation is examined. Moreover, the effects of the vertical load and the foundation parameters on the critical load and buckling of the single pile foundation are systematically investigated.

  20. Geosynchronous Large Debris Reorbiter: Challenges and Prospects

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Moorer, Daniel F.

    2012-06-01

    An elegant solution is proposed to an old problem of how to remove expired or malfunctioning satellites from the geosynchronous belt. Previous "space-tug" concepts describe a scenario where one craft (the tug) docks with another (debris) and then boosts that object to a super-synchronous orbit. The most challenging aspect of these concepts is the very complex proximity operations to an aging, possibly rotating and, probably, non-cooperative satellite. Instead, the proposed method uses an elegant blend of electrostatic charge control and low-thrust propulsion to avoid any contact requirement. The Geosynchronous Large Debris Reorbiter (GLiDeR) uses active charge emission to raise its own absolute potential to 10's of kilovolts and, in addition, directs a stream of charged particles at the debris to increase its absolute potential. In a puller configuration the opposite polarity of the debris creates an attractive force between the GLiDeR and the debris. Pusher configurations are feasible as well. Next, fuel-efficient micro-thrusters are employed to gently move the reorbiter relative to the debris, and then accelerate the debris out of its geosynchronous slot and deposit it in a disposal orbit. Preliminary analysis shows that a 1000 kg debris object can be re-orbited over two-four months. During the reorbit phase the separation distance is held nominally fixed without physical contact, even if the debris is tumbling, by actively controlling the charge transfer between the reorbiter and the debris. Numerical simulations are presented illustrating the expected performance, taking into account also the solar radiation pressure.

  1. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  2. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  3. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  4. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  5. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  6. Greenhouse gas emissions during composting of dairy manure: Delaying pile mixing does not reduce overall emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...

  7. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall...

  8. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall...

  9. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall...

  10. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outslope of the refuse pile if required for stability, control or erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  11. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 816.83 Section 816.83 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.83 Coal mine waste: Refuse...

  12. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 817.83 Section 817.83 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.83 Coal mine waste:...

  13. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outslope of the refuse pile if required for stability, control of erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  14. 61. Picking Floor, Large Pile of Waste Rock and Wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. Picking Floor, Large Pile of Waste Rock and Wood date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre, PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  15. 5. VIEW OF UPPER NOTTINGHAM TAILING PILES LOOKING TOWARDS ROCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF UPPER NOTTINGHAM TAILING PILES LOOKING TOWARDS ROCK WALL VISIBLE ON SLOPE JUST RIGHT OF CENTER. CAMERA POINTED SOUTHEAST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  16. OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND MINE MANAGER'S HOME, LOOKING SOUTH SOUTHEAST. RIGHT, TAILINGS PILES ARE AT CENTER WITH CYANIDE PLANT FOUNDATIONS TO THE LEFT OF THE PILES. PARKING LOT IS AT UPPER LEFT. THE AREA BETWEEN THE COLLAPSED TANK AT CENTER LEFT AND THE REMAINS OF THE MANAGER'S HOUSE AT LOWER RIGHT IS A TAILINGS HOLDING AREA. TAILINGS FROM THE MILL WERE HELD HERE. THE LARGE SETTLING TANKS WERE CHARGED FROM THIS HOLDING AREA BY A TRAM ON RAILS AND BY A SLUICEWAY SEEN AS THE DARK SPOT ON THE CENTER LEFT EDGE OF THE FRAME. AFTER THE TAILINGS WERE LEACHED, THEY WERE DEPOSITED ON THE LARGE WASTE PILE AT CENTER RIGHT. THE TANK AT CENTER RIGHT EDGE IS WHERE THE WATER PIPELINE ENTERED THE WORKS. A STRAIGHT LINE OF POSTS IN THE GROUND GO ACROSS THE CENTER FROM LEFT TO RIGHT, WHICH ORIGINALLY SUSPENDED THE WATER PIPELINE GOING FROM THE WATER HOLDING TANK AT RIGHT UP TO THE SECONDARY WATER TANKS ABOVE THE MILL. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  17. Corrosion in prestressed concrete: Pipes, piles, and decks

    SciTech Connect

    Szeliga, M.

    1995-12-31

    This is the first compilation or book focusing on prestressed concrete. It features 21 classic NACE papers on prestressed concrete piping, piles, bridge decks, and cathodic protection. It includes basic corrosion mechanisms of prestressed concrete structures with detailed case histories of corrosion failures and corrective measures.

  18. VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WESTSOUTHWEST, BASEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WEST-SOUTHWEST, BASEMENT LEVEL -15’. EDGE O FRESONANCE TEST REACTOR (RTR), LATER KNOWN AS LATTICE TEST REACTOR (LTR), VISIBLE TO RIGHT OF PDP TANK - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  19. Detail section extending from shore. Note the paired support pilings, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail section extending from shore. Note the paired support pilings, concrete curbs with rectangular openings for drainage, and large-diameter metal pipe suspended under the deck. USS MISSOURI in background - U.S. Naval Base, Pearl Harbor, Gasoline Wharf, Offshore, near the intersection of Hornet Avenue & Curtis Street, Ford Island, Pearl City, Honolulu County, HI

  20. Enhanced In-pile Instrumentation for Material Testing Reactors

    SciTech Connect

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley

    2012-07-01

    An increasing number of U.S. nuclear research programs are requesting enhanced in-pile instrumentation capable of providing real-time measurements of key parameters during irradiations. For example, fuel research and development funded by the U.S. Department of Energy now emphasize approaches that rely on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time data are essential for characterizing the performance of new fuels during irradiation testing. Furthermore, sensors that obtain such data must be miniature, reliable and able to withstand high flux/high temperature conditions. Depending on user requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these user needs, in-pile instrumentation development efforts have been initiated as part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF), the Fuel Cycle Research & Development (FCR&D), and the Nuclear Energy Enabling Technology (NEET) programs. This paper reports on recent INL achievements to support these programs. Specifically, an overview of the types of sensors currently available to support in-pile irradiations and those sensors currently available to MTR users are identified. In addition, recent results and products available from sensor research and development are detailed. Specifically, progress in deploying enhanced in-pile sensors for detecting elongation and thermal conductivity are reported. Results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are also summarized.

  1. 8. Historic view, Pier 9. Plan of deck and pilings, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic view, Pier 9. Plan of deck and pilings, 1932. Photographic copy of original. Boston National Historical Park Archives, Charlestown Navy Yard. - Charlestown Navy Yard, Pier 9, Between Piers 8 & 10, along Mystic River on Charlestown Waterfront at eastern edge of Navy Yard, Boston, Suffolk County, MA

  2. 11. Historic drawing, Pier 10. Plan of deck and pilings, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic drawing, Pier 10. Plan of deck and pilings, 1932. Photographic copy of original. Boston National Historical Park Archives, Charlestown Navy Yard. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  3. Windscale pile reactors - Decommissioning progress on a fifty year legacy

    SciTech Connect

    Sexton, Richard J.

    2007-07-01

    The decommissioning of the Windscale Pile 1 reactor, fifty years after the 1957 fire, is one of the most technically challenging decommissioning projects in the UK, if not the world. This paper presents a summary of the 1957 Windscale Pile 1 accident, its unique challenges and a new technical approach developed to safely and efficiently decommission the two Windscale Pile Reactors. The reactors will be decommissioned using a top down approach that employs an array of light weight, carbon fiber, high payload robotic arms to remove the damaged fuel, the graphite core, activated metals and concrete. This relatively conventional decommissioning approach has been made possible by a recently completed technical assessment of reactor core fire and criticality risk which concluded that these types of events are not credible if relatively simple controls are applied. This paper presents an overview of the design, manufacture and testing of equipment to remove the estimated 15 tons of fire damaged fuel and isotopes from the Pile 1 reactor. The paper also discusses recently conducted characterization activities which have allowed for a refined waste estimate and conditioning strategy. These data and an innovative approach have resulted in a significant reduction in the estimated project cost and schedule. (authors)

  4. 3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN BOTTOM LEFT AND COLLAPSED ADIT LOCATED BELOW DARK SHADOWS IN FAR RIGHT/LOWER THIRD. COLLAPSED BUILDING AND PARTIAL VIEW OF ORE CHUTE/BIN IS VISIBLE ON HILLSIDE ABOVE TAILINGS. CAMERA POINTED NORTH/NORTHWEST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  5. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Refuse piles; construction requirements. 77.215 Section 77.215 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... controlling or extinguishing a fire. (c) Clay or other sealants shall be used to seal the surface of...

  6. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; construction requirements. 77.215 Section 77.215 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... controlling or extinguishing a fire. (c) Clay or other sealants shall be used to seal the surface of...

  7. 1. GENERAL VIEW FROM BONY PILE LOOKING SOUTH. WASH HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW FROM BONY PILE LOOKING SOUTH. WASH HOUSE IN LEFT BACKGROUND. TIPPLE AND CLEANING PLANT TO RIGHT. IN CENTER IS A TANK USED FOR TREATING MINE REFUSE AND ACID RUNOFF. - Eureka No. 40, Tipple & Cleaning Plant, East of State Route 56, north of Little Paint Creek, Scalp Level, Cambria County, PA

  8. Airborne sound propagation over sea during offshore wind farm piling.

    PubMed

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario. PMID:25234870

  9. The impact of wind energy turbine piles on ocean dynamics

    NASA Astrophysics Data System (ADS)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  10. 11. DETAILS: CONCRETE SHEET PILING, CORNERS #4 & #6, DWG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAILS: CONCRETE SHEET PILING, CORNERS #4 & #6, DWG. NO. 11, 1-1/2" = 1 FT., FEB. 12, 1908, MADE BY E.C.L., APPROVED BY O.F. LACKEY - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  11. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  12. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  13. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  14. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  15. 76. VIEW OF PILINGS ON SOUTHEAST SIDE, FACING NORTH AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. VIEW OF PILINGS ON SOUTHEAST SIDE, FACING NORTH AND TAKEN FROM THE TACKLE BOX ON THE 3RD TEE, SHOWING REFUGE BAY AND 2ND TEE (RIGHT) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  16. 30 CFR 77.215-2 - Refuse piles; reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; reporting requirements. 77.215-2 Section 77.215-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Installations §...

  17. LDEF meteoroid and debris database

    NASA Technical Reports Server (NTRS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  18. Tidal Debris Around Merger Remnants.

    NASA Astrophysics Data System (ADS)

    McQullan, Maria

    2015-01-01

    We present images of the interacting pair NGC 3310. These images were taken using the HDI camera on the 0.9m at Kitt Peak in Arizona. NGC 3310 is a starburst galaxy which recently underwent a collision with a much smaller mass galaxy. It has been postulated that this galaxy was then scattered in the orbit of NGC 3310 creating multiple tidal loops around the galaxy. In order to observe and study these loops, the data must be clear of noise within 1% error. We present our method of correcting to this precision level and an analysis of the tidal loop system. We will also discuss the implications of this stellar debris on the evolutionary history of this galaxy.

  19. Characterizing Secondary Debris Impact Ejecta

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.

    1999-01-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  20. Characterizing Secondary Debris Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Schonberg, W. P.

    1999-08-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  1. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  2. Passage probabilities of juvenile Chinook salmon through the powerhouse and regulating outlet at Cougar Dam, Oregon, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Smith, Collin D.

    2012-01-01

    Cougar Dam near Springfield, Oregon, is one of several federally owned and operated flood-control projects within the Willamette Valley of western Oregon that were determined by the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service in 2008 to impact the long-term viability of several salmonid stocks. In response to this ruling, the U.S. Army Corps of Engineers is looking for means to reduce impacts to salmonids, including improving downstream passage of juvenile salmonids at Cougar Dam. This study of juvenile Chinook salmon (Oncorhynchus tshawytscha) passage at Cougar Dam was conducted to inform decisions about potential improvements for downstream fish passage. The primary objective of the study was to estimate route-specific passage probabilities of yearling Chinook salmon at Cougar Dam. The study was conducted using fish from a nearby hatchery surgically implanted with radio transmitters and passive integrated transponder (PIT) tags and released near the entrance of a temperature control tower through which all water going through the dam must pass. Water passing through the temperature control tower may be routed through a penstock to a powerhouse with two Francis turbines, or to a spillway-like structure called the regulating outlet. Secondary objectives of the study were to estimate the probability that fish enter a bypass at a non-federal facility downstream, and to estimate dam-passage and in-river fish survival. Dam operating conditions during the study included an average forebay elevation of 1,580 feet (National Geodetic Vertical Datum of 1929) and an average of 48.2 percent of the total dam discharge of 1,106 cubic feet per second passing through a regulating outlet opening of 1.25 feet. Dam passage probability was greatest at night (0.8741 standard error [SE] 0.0265) and primarily through the regulating outlet (0.8896 SE 0.0617 day; 0.9417 SE 0.0175 night). The joint probability of entering the bypass at Leaburg Dam

  3. The Technology of Modeling Debris Cloud Produced by Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Ma, Zhaoxia; Huang, Jie; Liang, Shichang; Zhou, Zhixuan; Ren, Leisheng; Liu, Sen

    2013-08-01

    Because of the large amount of debris in a debris cloud, it is hard to achieve a complete description of all the debris by a simple function. One workable approach is to use a group of complete distribution functions and MonteCarlo method to simplify the debris cloud simulation. Enough debris samples are produced by SPH simulation and debris identification program firstly. According to the distribution functions of debris mass, velocity and space angles determined by statistical analysis, the engineering model of debris cloud is set up. Combining the engineering model and MonteCarlo method, the fast simulation of debris cloud produced by an aluminum projectile impacting an aluminum plate is realized. An application example of the debris cloud engineering model to predict satellite damage caused by space debris impact is given at the end.

  4. Final Design for a Comprehensive Orbital Debris Management Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.

  5. Analysis of the Eglin Radar Debris Fence

    NASA Astrophysics Data System (ADS)

    Settecerri, Thomas J.; Skillicorn, Alan D.; Spikes, Paul C.

    2004-02-01

    The Eglin FPS-85 space surveillance radar is a bi-static phased array radar system located in Northern Florida. The FPS-85 recently re-established the capability to create a radar search fence to collect orbital debris data. The new debris fence extends from 155° to 205° in azimuth and is scanned at 35° elevation. In this configuration, it has a 0.99 probability of detection for all objects at 3000 km range or less that have a radar cross section greater than -35 dBsm. This paper will concentrate on the objects detected by the new debris fence. Debris populations that are shown will be characterized in terms of altitude, inclination, and estimated size. The results will be compared with data extracted from the United States Air Force Space Command (AFSPC) Space Surveillance Network (SSN) catalog. The initial assessment will consider the ability of the debris fence to retrack debris objects on subsequent orbits based on the size and orbital parameters of the debris.

  6. Nuclear-powered space debris sweeper

    NASA Technical Reports Server (NTRS)

    Metzger, John D.; Leclaire, Rene J., Jr.; Howe, Steven D.; Burgin, Karen C.

    1989-01-01

    Future spacecraft design will be affected by collisions with man-made debris orbiting the earth. Most of this orbital space debris comes from spent rocket stages. It is projected that the source of future debris will be the result of fragmentation of large objects through hypervelocity collisions. Orbiting spacecraft will have to be protected from hypervelocity debris in orbit. The options are to armor the spacecraft, resulting in increased mass, or actively removing the debris from orbit. An active space debris sweeper is described which will utilize momentum transfer to the debris through laser-induced ablation to alter its orbital parameters to reduce orbital lifetime with eventual entry into the earth's atmosphere where it will burn. The paper describes the concept, estimates the amount of velocity change (Delta V) that can be imparted to an object through laser-induced ablation, and investigates the use of a neutral particle beam for the momentum transfer. The space sweeper concept could also be extended to provide a collision avoidance system for the space station and satellites, or could be used for collision protection during interplanetary travel.

  7. Orbital debris removal and meteoroid deflection

    NASA Astrophysics Data System (ADS)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas

    1998-11-01

    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1 - 10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts of asteroids with the Earth, it shown that it is possible to scale up the systems to prevent these catastrophic collisions providing sufficient early warning is available from new generation space telescopes plus deep space radar tracking.

  8. Behavior of pile group with elevated cap subjected to cyclic lateral loads

    NASA Astrophysics Data System (ADS)

    Chen, Yun-min; Gu, Ming; Chen, Ren-peng; Kong, Ling-gang; Zhang, Zhe-hang; Bian, Xue-cheng

    2015-06-01

    The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.

  9. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  10. Orbital Debris and NASA's Measurement Program

    NASA Astrophysics Data System (ADS)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  11. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  12. Collector/Compactor for Waste or Debris

    NASA Technical Reports Server (NTRS)

    Mangialiardi, John K.

    1987-01-01

    Device collects and compacts debris by sweeping through volume with net. Consists of movable vane, fixed vane, and elastic net connected to both vanes. Movable vane is metal strip curved to follow general contour of container with clearance to prevent interference with other parts on inside wall of container. One end of movable vane mounted in bearing and other end connected to driveshaft equipped with handle. User rotates movable vane, net stretched and swept through container. Captures most of debris coarser than mesh as it moves, compressing debris as it arrives at fixed vane. Applications include cleaning swimming pools and tanks.

  13. Behavioral responses of cotton mice (Peromyscus gossypinus) to large amounts of coarse woody debris.

    SciTech Connect

    Hinkleman, Travis M.

    2004-08-01

    stumps (65%), root boles (13%), brush piles (8%), and logs (7%). Mice used different frequencies of refuge types between treatments; root bole and brush pile refuges were used more on treatment plots whereas stump and log refuges were used more on control plots. Refuge type, log volume, and tree basal area were significant predictors of refuge selection on control plots whereas refuge type and size were significant predictors of refuge selection on treatment plots. Refuges were significantly more dispersed on treatment plots. Mice used refuges more intensely and switched refuges less in the winter than the summer, regardless of woody debris abundance. The extensive and selective use of logs by cotton mice suggests that logs may be an important resource. However, logs are not a critical habitat component. Over half of the paths on control plots were not associated with logs, and logs were used infrequently as refuges. Nonetheless, refuges were highly associated with woody debris (e.g., stumps, root boles), which suggests that woody debris may be a critical habitat component.

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2002-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

  15. An Experimental Study on Pile Spacing Effects under Lateral Loading in Sand

    PubMed Central

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  16. An experimental study on pile spacing effects under lateral loading in sand.

    PubMed

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  17. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    NASA Astrophysics Data System (ADS)

    Silva, I. Matías; Combe, Gaël; Foray, Pierre; Flin, Frédéric; Lesaffre, Bernard

    2013-06-01

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 μm were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  18. Acoustic emission characteristics of subsoil subjected to vertical pile loading in sand

    NASA Astrophysics Data System (ADS)

    Mao, Wuwei; Aoyama, Shogo; Goto, Shigeru; Towhata, Ikuo

    2015-08-01

    The response of the subsoil subjected to pile loading is crucial to clarify the bearing mechanism of pile foundations. This study presents a novel acoustic emission (AE) method to monitor the subsoil behavior in a model pile testing system. The AE testing aims to capture the "micro-noises" released from sand grain dislocation and crushing around the pile shaft during penetration. The correlations between the pile settlement and the AE characteristics including count, amplitude and energy are revealed and discussed, highlighting that the ground density and the shear zone formed during pile penetration mainly affect the AE behavior. The results also suggest that the yielding of ground can be determined based on the development of the AE activity. The technique shows promise as an in-situ methodology for monitoring of subsoil behavior during the process of pile loading.

  19. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    SciTech Connect

    Silva, I. Matias; Combe, Gaeel; Foray, Pierre; Flin, Frederic; Lesaffre, Bernard

    2013-06-18

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 {mu}m were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  20. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the