Sample records for practical asymmetric synthesis

  1. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    ERIC Educational Resources Information Center

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  2. Practical synthesis of Shi's diester fructose derivative for catalytic asymmetric epoxidation of alkenes.

    PubMed

    Nieto, N; Molas, P; Benet-Buchholz, J; Vidal-Ferran, A

    2005-11-25

    [reaction: see text] A practical synthesis of Shi's diester 3 for catalytic asymmetric epoxidations has been developed. The catalyst has been prepared in multigram quantities from D-fructose in four steps with a 66% overall yield. Efficiency, cost, and selectivity aspects of the reagents involved for its preparation have been taken care of during its preparation. The workup procedures have been simplified to the bare minimum, rendering a very practical preparation method. The well-known high efficiency of this catalyst 3 in the epoxidation of alpha,beta-unsaturated carbonyl compounds has also proved to be high in unfunctionalized alkenes.

  3. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  4. Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones

    PubMed Central

    2017-01-01

    γ-Butenolides, γ-butyrolactones, and derivatives, especially in enantiomerically pure form, constitute the structural core of numerous natural products which display an impressive range of biological activities which are important for the development of novel physiological and therapeutic agents. Furthermore, optically active γ-butenolides and γ-butyrolactones serve also as a prominent class of chiral building blocks for the synthesis of diverse biological active compounds and complex molecules. Taking into account the varying biological activity profiles and wide-ranging structural diversity of the optically active γ-butenolide or γ-butyrolactone structure, the development of asymmetric synthetic strategies for assembling such challenging scaffolds has attracted major attention from synthetic chemists in the past decade. This review offers an overview of the different enantioselective synthesis of γ-butenolides and γ-butyrolactones which employ catalytic amounts of metal complexes or organocatalysts, with emphasis focused on the mechanistic issues that account for the observed stereocontrol of the representative reactions, as well as practical applications and synthetic potentials. PMID:28640622

  5. Asymmetric Formal Synthesis of Azadirachtin.

    PubMed

    Mori, Naoki; Kitahara, Takeshi; Mori, Kenji; Watanabe, Hidenori

    2015-12-01

    An asymmetric formal synthesis of azadirachtin, a potent insect antifeedant, was accomplished in 30 steps to Ley's synthetic intermediate (longest linear sequence). The synthesis features: 1) rapid access to the optically active right-hand segment starting from the known 5-hydroxymethyl-2-cyclopentenone scaffold; 2) construction of the B and E rings by a key intramolecular tandem radical cyclization; 3) formation of the hemiacetal moiety in the C ring through the α-oxidation of the six-membered lactone followed by methanolysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Asymmetric total synthesis of cladosporin and isocladosporin.

    PubMed

    Zheng, Huaiji; Zhao, Changgui; Fang, Bowen; Jing, Peng; Yang, Juan; Xie, Xingang; She, Xuegong

    2012-07-06

    The first asymmetric total syntheses of cladosporin and isocladosporin were accomplished in 8 steps with 8% overall yield and 10 steps with 26% overall yield, respectively. The relative configuration of isocladosporin was determined via this total synthesis.

  7. Asymmetric Synthesis of Apratoxin E.

    PubMed

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  8. Enantioselective total synthesis of (-)-strychnine using the catalytic asymmetric Michael reaction and tandem cyclization.

    PubMed

    Ohshima, Takashi; Xu, Youjun; Takita, Ryo; Shimizu, Satoshi; Zhong, Dafang; Shibasaki, Masakatsu

    2002-12-11

    The enantioselective total synthesis of (-)-strychnine was accomplished through the use of the highly practical catalytic asymmetric Michael reaction (0.1 mol % of (R)-ALB, more than kilogram scale, without chromatography, 91% yield and >99% ee) as well as a tandem cyclization that simultaneously constructed B- and D-rings (>77% yield). Moreover, newly developed reaction conditions for thionium ion cyclization, NaBH3CN reduction of the imine moiety in the presence of Lewis acid to prevent ring opening reaction, and chemoselective reduction of the thioether (desulfurization) in the presence of exocyclic olefin were pivotal to complete the synthesis. The described chemistry paves the way for the synthesis of more advanced Strychnos alkaloids.

  9. Early Universe synthesis of asymmetric dark matter nuggets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  10. Early Universe synthesis of asymmetric dark matter nuggets

    NASA Astrophysics Data System (ADS)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-01

    We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  11. Early Universe synthesis of asymmetric dark matter nuggets

    DOE PAGES

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-12

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  12. The ever-expanding role of asymmetric covalent organocatalysis in scalable, natural product synthesis.

    PubMed

    Abbasov, Mikail E; Romo, Daniel

    2014-10-01

    Following the turn of the millennium, the role of asymmetric covalent organocatalysis has developed into a scalable, synthetic paradigm galvanizing the synthetic community toward utilization of these methods toward more practical, metal-free syntheses of natural products. A myriad of reports on asymmetric organocatalytic modes of substrate activation relying on small, exclusively organic molecules are delineating what has now become the multifaceted field of organocatalysis. In covalent catalysis, the catalyst and substrate combine to first form a covalent, activated intermediate that enters the catalytic cycle. Following asymmetric bond formation, the chiral catalyst is recycled through hydrolysis or displacement by a pendant group on the newly formed product. Amine- and phosphine-based organocatalysts are the most common examples that have led to a vast array of reaction types. This Highlight provides a brief overview of covalent modes of organocatalysis and applications of scalable versions of these methods applied to the total synthesis of natural products including examples from our own laboratory.

  13. Practical, Asymmetric Route to Sitagliptin and Derivatives: Development and Origin of Diastereoselectivity

    PubMed Central

    2016-01-01

    The development of a practical and scalable process for the asymmetric synthesis of sitagliptin is reported. Density functional theory calculations reveal that two noncovalent interactions are responsible for the high diastereoselection. The first is an intramolecular hydrogen bond between the enamide NH and the boryl mesylate S=O, consistent with MsOH being crucial for high selectivity. The second is a novel C–H···F interaction between the aryl C5-fluoride and the methyl of the mesylate ligand. PMID:25799267

  14. Epoxidation of Geraniol: An Advanced Organic Experiment that Illustrates Asymmetric Synthesis

    NASA Astrophysics Data System (ADS)

    Bradley, Lynn M.; Springer, Joseph W.; Delate, Gregory M.; Goodman, Andrew

    1997-11-01

    The Sharpless epoxidation reaction is considered one of the most powerful advances in asymmetric organic synthesis (1). It is a classic example of the use of an asymmetric catalyst to provide an enantiomerically enriched mixture of epoxy alcohols. The procedure typically uses titanium(IV) tetraisopropoxide (Ti(OiPr)4) as a catalyst, a peroxide, and dialkyl tartrates to induce asymmetry in the epoxidation reaction of allylic alcohols. The experiment described in this paper illustrates the principle of asymmetric epoxidation and enables students to determine enantiomeric product ratios using chiral shift reagents and NMR spectroscopy.

  15. Catalytic asymmetric formal synthesis of beraprost

    PubMed Central

    Kobayashi, Yusuke; Kuramoto, Ryuta

    2015-01-01

    Summary The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C–C bond formations to construct the scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C–H insertion and the subsequent reduction from the convex face. PMID:26734111

  16. A versatile platform for precise synthesis of asymmetric molecular brush in one shot.

    PubMed

    Xu, Binbin; Feng, Chun; Huang, Xiaoyu

    2017-08-24

    Asymmetric molecular brushes emerge as a unique class of nanostructured polymers, while their versatile synthesis keeps a challenge for chemists. Here we show the synthesis of well-defined asymmetric molecular double-brushes comprising two different side chains linked to the same repeat unit along the backbone by one-pot concurrent atom transfer radical polymerization (ATRP) and Cu-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The double-brushes are based on a poly(Br-acrylate-alkyne) homopolymer possessing an alkynyl for CuAAC reaction and a 2-bromopropionate initiating group for ATRP in each repeat unit. The versatility of this one-shot approach is demonstrated by CuAAC reaction of alkynyl/poly(ethylene oxide)-N 3 and ATRP of various monomers. We also show the quantitative conversion of pentafluorophenyl ester groups to amide groups in side chains, allowing for the further fabrication of diverse building blocks. This work provides a versatile platform for facile synthesis of Janus-type double-brushes with structural and functional control, in a minimum number of reactions.Producing well-defined polymer compositions and structures facilitates their use in many different applications. Here the authors show the synthesis of well-defined asymmetric double-brushes by a one-pot concurrent atom transfer radical polymerization and Cu-catalyzed Click reaction.

  17. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    NASA Astrophysics Data System (ADS)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.

  18. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis

    PubMed Central

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-01

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. PMID:26676875

  19. Asymmetric Total Synthesis of (-)-(3 R)-Inthomycin C.

    PubMed

    Balcells, Sandra; Haughey, Maxwell B; Walker, Johannes C L; Josa-Culleré, Laia; Towers, Christopher; Donohoe, Timothy J

    2018-06-04

    A short (10 step) and efficient (15% overall yield) synthesis of the natural product (-)-(3 R)-inthomycin C is reported. The key steps comprise three C-C bond-forming reactions: (i) a vinylogous Mukaiyama aldol, (ii) an olefin cross-metathesis reaction, and (iii) an asymmetric Mukaiyama-Kiyooka aldol. This route is notable for its brevity and has the advantage of lacking stoichiometric tin-promoted cross-coupling reactions present in previous approaches. Initial investigations on the biological activity of (-)-(3 R)-inthomycin C and structural analogues on human cancer cell lines are also described for the first time.

  20. Chiral alkynylcarbinols from marine sponges: asymmetric synthesis and biological relevance.

    PubMed

    Listunov, Dymytrii; Maraval, Valérie; Chauvin, Remi; Génisson, Yves

    2015-01-01

    Covering: up to March 2014. Previous review on the topic: B. W. Gung, C. R. Chim., 2009, 12, 489-505. Chiral α-functional lipidic propargylic alcohols extracted from marine sponges, in particular of the pacific genus Petrosia, constitute a class of acetylenic natural products exhibiting remarkable in vitro biological activities, especially anti-tumoral cytotoxicity. These properties, associated to functionalities that are uncommon among natural products, have prompted recent projects on asymmetric total synthesis. On the basis of a three-sector structural typology, three main sub-types of secondary alkynylcarbinols (with either alkyl, alkenyl, or alkynyl as the second substituent) can be identified as the minimal pharmacophoric units. Selected natural products containing these functionalities have been targeted using previously known or on purpose-designed procedures, where the stereo-determining step can be: (i) a C-C bond forming reaction (e.g. the Zn-mediated addition of alkynyl nucleophiles to aldehydes in the presence of chiral aminoalcohols), (ii) a functional layout (e.g. the asymmetric organo- or metallo-catalytic reduction of ynones), or (iii) an enantiomeric resolution (e.g. a lipase-mediated kinetic resolution via acetylation). The promising medicinal importance of these targets is finally surveyed, and future investigation prospects are proposed, such as: (i) further total synthesis of known or future extraction products; (ii) the synthesis of non-natural analogues, with simpler lipophilic environments of the alkynylcarbinol-based pharmacophoric units; (iii) the variation and optimization of both the pharmacophoric units and their lipophilic environment; and (iv) investigations into the biological mode of action of these unique structures.

  1. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis.

    PubMed

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-26

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Asymmetric Synthesis of All the Known Phlegmarine Alkaloids

    PubMed Central

    Wolfe, Bradley H.; Libby, Adam H.; Al-awar, Rima S.; Foti, Christopher J.; Comins, Daniel L.

    2010-01-01

    The asymmetric synthesis of all four of the known natural phlegmarines and one synthetic derivative has been accomplished in 19 to 22 steps from 4-methoxy-3-(triisopropylsilyl)pyridine. Chiral N-acylpyridinium salt chemistry was used twice to set the stereocenters at the C-9 and C-2′ positions of the phlegmarine skeleton. Key reactions include the use of a mixed Grignard reagent for the second N-acylpyridinium salt addition, zinc/acetic acid reduction of a complex dihydropyridone, and a von Braun cyanogen bromide N-demethylation of a late intermediate. These syntheses confirmed the absolute stereochemistry of all the known phlegmarines. PMID:21077636

  3. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids

    PubMed Central

    Zuend, Stephan J.; Coughlin, Matthew P.; Lalonde, Mathieu P.; Jacobsen, Eric N.

    2009-01-01

    α-Amino acids are essential building blocks for protein synthesis, and are also widely useful as components of medicinally active molecules and chiral catalysts.1,2,3,4,5 Efficient chemo-enzymatic methods for the synthesis of enantioenriched α-amino acids have been devised, but the scope of these methods for the synthesis of unnatural amino acids is limited.6,7 Alkene hydrogenation is broadly useful for enantioselective catalytic synthesis of many classes of amino acids,8,9 but this approach is not applicable to the synthesis of α-amino acids bearing aryl or quaternary alkyl α-substituents. The Strecker synthesis—the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis—is an especially versatile chemical method for the synthesis of racemic α-amino acids (Fig. 1).10,11 Asymmetric Strecker syntheses using stoichiometric chiral reagents have been applied successfully on gram-to-multi-kilogram scales to the preparation of enantiomerically enriched α-amino acids.12,13,14 In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen only limited use on preparative scales (e.g., > 1 gram).15,16 The limited use of existing catalytic methodologies may be ascribed to several important practical drawbacks, including the relatively complex and precious nature of the catalysts, and the requisite use of hazardous cyanide sources. Herein we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-proteinogenic amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. Because this catalyst is robust and lacks sensitive functional groups, it is compatible with safely handled aqueous cyanide salts, and is thus adaptable to large-scale synthesis. This new methodology can be applied to the efficient syntheses of

  4. Asymmetric synthesis of a potent, aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV inhibitor.

    PubMed

    Xu, Feng; Corley, Edward; Zacuto, Michael; Conlon, David A; Pipik, Brenda; Humphrey, Guy; Murry, Jerry; Tschaen, David

    2010-03-05

    A practical asymmetric synthesis of a novel aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV (DPP-4) inhibitor 1 has been developed. Application of a unique three-component cascade coupling with chiral nitro diester 7, which is easily accessed via a highly enantioselective Michael addition of dimethyl malonate to a nitrostyrene, allows for the assembly of the functionalized piperidinone skeleton in one pot. Through a base-catalyzed, dynamic crystallization-driven process, the cis-piperidionone 16a is epimerized to the desired trans isomer 16b, which is directly crystallized from the crude reaction stream in high yield and purity. Isomerization of the allylamide 16b in the presence of RhCl(3) is achieved without any epimerization of the acid/base labile stereogenic center adjacent to the nitro group on the piperidinone ring, while the undesired enamine intermediate is consumed to <0.5% by utilizing a trace amount of HCl generated from RhCl(3). The amino lactam 4, obtained through hydrogenation and hydrolysis, is isolated as its crystalline pTSA salt from the reaction solution directly, as such intramolecular transamidation has been dramatically suppressed via kinetic control. Finally, a Cu(I) catalyzed coupling-cyclization allows for the formation of the tricyclic structure of the potent DPP-4 inhibitor 1. The synthesis, which is suitable for large scale preparation, is accomplished in 23% overall yield.

  5. Asymmetric synthesis of isoindolones by chiral cyclopentadienyl-rhodium(III)-catalyzed C-H functionalizations.

    PubMed

    Ye, Baihua; Cramer, Nicolai

    2014-07-21

    Directed Cp*Rh(III)-catalyzed carbon-hydrogen (C-H) bond functionalizations have evolved as a powerful strategy for the construction of heterocycles. Despite their high value, the development of related asymmetric reactions is largely lagging behind due to a limited availability of robust and tunable chiral cyclopentadienyl ligands. Rhodium complexes comprising a chiral Cp ligand with an atropchiral biaryl backbone enables an asymmetric synthesis of isoindolones from arylhydroxamates and weakly alkyl donor/acceptor diazo derivatives as one-carbon component under mild conditions. The complex guides the substrates with a high double facial selectivity yielding the chiral isoindolones in good yields and excellent enantioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    PubMed

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base.

    PubMed

    Kawashima, Aki; Shu, Shuangjie; Takeda, Ryosuke; Kawamura, Akie; Sato, Tatsunori; Moriwaki, Hiroki; Wang, Jiang; Izawa, Kunisuke; Aceña, José Luis; Soloshonok, Vadim A; Liu, Hong

    2016-04-01

    Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2' alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA.

  8. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  9. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes.

    PubMed

    Haydl, Alexander M; Xu, Kun; Breit, Bernhard

    2015-06-08

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)-ruxolitinib. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stereoselective Synthesis of trans-Olefins by the Copper-Mediated SN2′ Reaction of Vinyl Oxazines with Grignard Reagents. Asymmetric Synthesis of D-threo-Sphingosines

    PubMed Central

    Singh, Om V.; Han, Hyunsoo

    2007-01-01

    The SN2′ reaction of 6-vinyl-5,6-dihydro-4H-[1,3]oxazines with Grignard reagents in the presence of CuCN was studied, and high trans selectivity for the formation of double bond was observed with a variety of RMgX. The SN2′ reaction, coupled with regioselective asymmetric aminohydroxylation reaction, provided a highly efficient route for the asymmetric synthesis of D-threo-N-acetylsphingosine. PMID:18958293

  11. Enantioselective Total Synthesis of Natural Isoflavans: Asymmetric Transfer Hydrogenation/Deoxygenation of Isoflavanones with Dynamic Kinetic Resolution.

    PubMed

    Keßberg, Anton; Lübken, Tilo; Metz, Peter

    2018-05-02

    A concise and highly enantioselective synthesis of structurally diverse isoflavans from a single chromone is described. The key transformation is a single-step conversion of racemic isoflavanones into virtually enantiopure isoflavans by domino asymmetric transfer hydrogenation/deoxygenation with dynamic kinetic resolution.

  12. Multicatalytic asymmetric synthesis of complex tetrahydrocarbazoles via a Diels-Alder/benzoin reaction sequence.

    PubMed

    Liu, Yankai; Nappi, Manuel; Escudero-Adán, Eduardo C; Melchiorre, Paolo

    2012-03-02

    Expanding upon the recently developed aminocatalytic asymmetric indole-2,3-quinodimethane strategy, a straightforward synthesis of structurally and stereochemically complex tetrahydrocarbazoles has been devised. The chemistry's complexity-generating power was further harnessed by designing a multicatalytic, one-pot Diels-Alder/benzoin reaction sequence to stereoselectively access trans-fused tetracyclic indole-based compounds having four stereogenic centers with very high fidelity. © 2012 American Chemical Society

  13. Synthesis of Enantioenriched Indolines by a Conjugate Addition/Asymmetric Protonation/Aza-Prins Cascade Reaction

    PubMed Central

    Daniels, Blake E.; Ni, Jane; Reisman, Sarah E.

    2016-01-01

    A conjugate addition/asymmetric protonation/aza-Prins cascade reaction has been developed for the enantioselective synthesis of fused polycyclic indolines. A catalyst system generated from ZrCl4 and 3,3’-dibromo-BINOL enables the synthesis of a range of polycyclic indolines in good yields and high enantioselectivity. A key finding is the use of TMSCl and 2,6-dibromophenol as a stoichiometric source of HCl to facilitate catalyst turnover. This transformation is the first in which a ZrCl4•BINOL complex serves as a chiral Lewis acid-assisted Brønsted acid. PMID:26844668

  14. The total synthesis of calcium atorvastatin.

    PubMed

    Dias, Luiz C; Vieira, Adriano S; Barreiro, Eliezer J

    2016-02-21

    A practical and convergent asymmetric route to calcium atorvastatin (1) is reported. The synthesis of calcium atorvastatin (1) was performed using the remote 1,5-anti asymmetric induction in the boron-mediated aldol reaction of β-alkoxy methylketone (4) with pyrrolic aldehyde (3) as a key step. Calcium atorvastatin was obtained from aldehyde (3) after 6 steps, with a 41% overall yield.

  15. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes.

    PubMed

    Šámal, Michal; Chercheja, Serghei; Rybáček, Jiří; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Bednárová, Lucie; Šaman, David; Stará, Irena G; Starý, Ivo

    2015-07-08

    The role of the helicity of small molecules in enantioselective catalysis, molecular recognition, self-assembly, material science, biology, and nanoscience is much less understood than that of point-, axial-, or planar-chiral molecules. To uncover the envisaged potential of helically chiral polyaromatics represented by iconic helicenes, their availability in an optically pure form through asymmetric synthesis is urgently needed. We provide a solution to this problem present since the birth of helicene chemistry in 1956 by developing a general synthetic methodology for the preparation of uniformly enantiopure fully aromatic [5]-, [6]-, and [7]helicenes and their functionalized derivatives. [2 + 2 + 2] Cycloisomerization of chiral triynes combined with asymmetric transformation of the first kind (ultimately controlled by the 1,3-allylic-type strain) is central to this endeavor. The point-to-helical chirality transfer utilizing a traceless chiral auxiliary features a remarkable resistance to diverse structural perturbations.

  16. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    NASA Astrophysics Data System (ADS)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  17. Synthesis of asymmetric tetracarboxylic acids and corresponding dianhydrides

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2008-01-01

    This invention relates to processes for preparing asymmetrical biphenyl tetracarboxylic acids and the corresponding asymmetrical dianhydrides, namely 2,3,3',4'-biphenyl dianhydride (a-BPDA), 2,3,3',4'-benzophenone dianhydride (a-BTDA) and 3,4'-methylenediphthalic anhydride (-MDPA). By cross-coupling reactions of reactive metal substituted o-xylenes or by cross-coupling o-xylene derivatives in the presence of catalysts, this invention specifically produces asymmetrical biphenyl intermediates that are subsequently oxidized or hydrolyzed and oxidized to provide asymmetric biphenyl tetracarboxylic acids in comparatively high yields. These asymmetrical biphenyl tetracarboxylic acids are subsequently converted to the corresponding asymmetrical dianhydrides without contamination by symmetrical biphenyl dianhydrides.

  18. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.

  19. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.

    PubMed

    Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya

    2009-08-18

    The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the

  20. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    PubMed

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  1. Scaleable catalytic asymmetric Strecker syntheses of unnatural alpha-amino acids.

    PubMed

    Zuend, Stephan J; Coughlin, Matthew P; Lalonde, Mathieu P; Jacobsen, Eric N

    2009-10-15

    Alpha-amino acids are the building blocks of proteins and are widely used as components of medicinally active molecules and chiral catalysts. Efficient chemo-enzymatic methods for the synthesis of enantioenriched alpha-amino acids have been developed, but it is still a challenge to obtain non-natural amino acids. Alkene hydrogenation is broadly useful for the enantioselective catalytic synthesis of many classes of amino acids, but it is not possible to obtain alpha-amino acids bearing aryl or quaternary alkyl alpha-substituents using this method. The Strecker synthesis-the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis-is an especially versatile chemical method for the synthesis of racemic alpha-amino acids. Asymmetric Strecker syntheses using stoichiometric amounts of a chiral reagent have been applied successfully on gram-to-kilogram scales, yielding enantiomerically enriched alpha-amino acids. In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent could provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen limited use on preparative scales (more than a gram). The limited utility of existing catalytic methods may be due to several important factors, including the relatively complex and precious nature of the catalysts and the requisite use of hazardous cyanide sources. Here we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-natural amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. This catalyst is robust, without sensitive functional groups, so it is compatible with aqueous cyanide salts, which are safer and easier to handle than other cyanide sources; this makes the method adaptable to large-scale synthesis. We have used this new method to obtain enantiopure amino acids that are not readily prepared by enzymatic methods or by

  2. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  3. Rhodium-catalyzed asymmetric hydrogenation of tetrasubstituted β-acetoxy-α-enamido esters and efficient synthesis of droxidopa.

    PubMed

    Guan, Yu-Qing; Gao, Min; Deng, Xu; Lv, Hui; Zhang, Xumu

    2017-07-18

    A rhodium-catalyzed asymmetric hydrogenation of challenging tetrasubstituted β-acetoxy-α-enamido esters was developed, giving chiral β-acetoxy-α-amido esters in high yields with excellent enantioselectivities (up to >99% ee). The products could be easily transformed to β-hydroxy-α-amino acid derivatives which are valuable chiral building blocks and a novel route for the synthesis of droxidopa was also developed.

  4. Diastereoselective synthesis of furanose and pyranose substituted glycine and alanine derivatives via proline-catalyzed asymmetric α-amination of aldehydes.

    PubMed

    Petakamsetty, Ramu; Ansari, Anas; Ramapanicker, Ramesh

    2016-11-29

    A concise organocatalytic route toward the synthesis of furanose and pyranose substituted glycine and alanine derivatives is reported. These compounds are core structural units of some of the naturally available antibiotics and antifungal agents. Proline-catalyzed asymmetric α-amination of aldehydes derived from sugars is used as the key reaction to synthesize twelve sugar amino acid derivatives. The asymmetric transformations proceeded in good yields and with good to excellent diastereoselectivity. The application of the synthesized amino acids is demonstrated by synthesizing a tripeptide containing one of them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enantioselective synthesis of chiral 3-aryl-1-indanones through rhodium-catalyzed asymmetric intramolecular 1,4-addition.

    PubMed

    Yu, Yue-Na; Xu, Ming-Hua

    2013-03-15

    Enantioselective synthesis of potentially useful chiral 3-aryl-1-indanones was achieved through a rhodium-catalyzed asymmetric intramolecular 1,4-addition of pinacolborane chalcone derivatives using extraordinary simple MonoPhos as chiral ligand under relatively mild conditions. This novel protocol offers an easy access to a wide variety of enantioenriched 3-aryl-1-indanone derivatives in high yields (up to 95%) with excellent enantioselectivities (up to 95% ee).

  6. Asymmetric allylation/Pauson-Khand reaction: a simple entry to polycyclic amines. Application to the synthesis of aminosteroid analogues.

    PubMed

    Fustero, Santos; Lázaro, Rubén; Aiguabella, Nuria; Riera, Antoni; Simón-Fuentes, Antonio; Barrio, Pablo

    2014-02-21

    Asymmetric allylation of o-iodoarylsulfinylimines has been achieved in high diastereoselectivities. The thus-obtained o-iodoarylhomoallylic sulfinamides participate in a subsequent Sonogashira coupling followed by a diastereoselective intramolecular Pauson-Khand reaction. In this way, tricyclic amines showing a unique benzo-fused indenyl backbone were obtained. The methodology has been applied to the synthesis of amino steroid analogues.

  7. Studies towards asymmetric synthesis of 4(S)-11-dihydroxydocosahexaenoic acid (diHDHA) featuring cross-coupling of chiral stannane under mild conditions.

    PubMed

    Wang, Rui; He, Anyu; Ramu, Errabelli; Falck, John R

    2015-02-14

    An efficient and asymmetric synthetic approach towards one of the biologically interesting 4(S)-11-diHDHA derivatives was developed. This process mainly relied on two reactions, one is the copper-catalyzed mild cross-coupling that allows for the efficient construction of a chiral α-alkynyl α-hydroxy motif and another is the synthesis of chiral α-hydroxy α-stannanes that has previously been developed by our group featuring the asymmetric stannylation using the well-established tributyltin hydride/diethyl zinc system from an aldehyde.

  8. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  9. Magnetically Retrievable Catalysts for Asymmetric Synthesis

    EPA Science Inventory

    Surface modification of magnetic nanoparticles with chiral scaffolds for asymmetric catalytic applications is an elegant way of providing a special pseudo homogenous phase which could be separated using an external magnet. In this review, we summarize the use of magnetic nanopart...

  10. Allenes in Asymmetric Catalysis. Asymmetric Ring-Opening of Meso-Epoxides Catalyzed by Allene-Containing Phosphine Oxides

    PubMed Central

    Pu, Xiaotao; Qi, Xiangbing; Ready, Joseph M.

    2009-01-01

    Unsymmetrically substituted allenes (1,2 dienes) are inherently chiral and can be prepared in optically pure form. Nonetheless, to date the allene framework has not been incorporated into ligands for asymmetric catalysis. Since allenes project functionality differently than either tetrahedral carbon or chiral biaryls, they may create complementary chiral environments. This study demonstrates that optically active C2 symmetric allene-containing bisphosphine oxides can catalyze the addition of SiCl4 to meso epoxides with high enantioselectivity. The epoxide-opening likely involves generation of a Lewis acidic, cationic (bisphosphine oxide)SiCl3 complex. The fact that high asymmetric induction is observed suggests that allenes may represent a new platform for the development of ligands and catalysts for asymmetric synthesis. PMID:19722613

  11. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  12. Unsymmetrical hybrid ferrocene-based phosphine-phosphoramidites: a new class of practical ligands for Rh-catalyzed asymmetric hydrogenation.

    PubMed

    Hu, Xiang-Ping; Zheng, Zhuo

    2004-09-30

    [reaction: see text] The synthesis and application of a new family of air-stable, highly unsymmetrical ferrocene-based phosphine-phosphoramidites is described. The new ligands exhibit excellent enantioselectivities (over 99% ee) in the Rh-catalyzed asymmetric hydrogenation of enamides, dimethyl itaconate, and methyl (Z)-acetamidocinnamate even with high catalyst turnovers (S/C=10,000). The binaphthyl moiety is crucial for reactivity and enantioselectivity, and its absolute configuration plays a dominant role in determining the chirality of the hydrogenation products.

  13. Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies

    DOEpatents

    Sun, Yugang; Hu, Yongxing

    2015-05-26

    A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.

  14. Current progress in asymmetric Biginelli reaction: an update.

    PubMed

    Heravi, Majid M; Moradi, Razieh; Mohammadkhani, Leyla; Moradi, Borzou

    2018-06-23

    The Biginelli reaction, involving a three-component reaction of an aromatic aldehyde, urea and ethyl acetoacetate, has emerged as an extremely useful synthetic tool to organic chemists for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones and related heterocyclic compounds. In the past decades, the asymmetric variants of this reaction have been at the forefront of investigations in several research groups. In 2013, we highlighted the developments occurred in the asymmetric version of the Biginelli reaction. This review article focuses on the recent developments of asymmetric Biginelli reaction covers the literature going back to 2012.

  15. Asymmetric synthesis of the HMG-CoA reductase inhibitor atorvastatin calcium: an organocatalytic anhydride desymmetrization and cyanide-free side chain elongation approach.

    PubMed

    Chen, Xiaofei; Xiong, Fangjun; Chen, Wenxue; He, Qiuqin; Chen, Fener

    2014-03-21

    An efficient asymmetric synthesis of atorvastatin calcium has been achieved from commercially available diethyl 3-hydroxyglutarate through a novel approach that involves an organocatalytic enantioselective cyclic anhydride desymmetrization to establish C(3) stereogenicity and cyanide-free assembly of C7 amino type side chain via C5+C2 strategy as the key transformations.

  16. Biocatalytic Asymmetric Synthesis of (1R, 2S)-N-Boc-vinyl-ACCA Ethyl Ester with a Newly Isolated Sphingomonas aquatilis.

    PubMed

    Zhu, Shaozhou; Shi, Ying; Zhang, Xinyu; Zheng, Guojun

    2018-02-01

    1-amino cyclopropane-1-carboxylic acid (ACCA) and its derivatives are essential pharmacophoric unit that widely used in drug research and development. Specifically, (1R, 2S)-N-Boc-vinyl-ACCA ethyl ester (vinyl-ACCA) is a key chiral intermediate in the synthesis of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors such as asunaprevir and simeprevir. Developing strategies for the asymmetric synthesis of vinyl-ACCA is thus extremely high demand. In this study, 378 bacterial strains were isolated from soil samples using N-Boc-vinyl-ACCA ethyl ester as the sole carbon source and were screened for esterase activity. Fourteen of which worked effectively for the asymmetric synthesis of (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester. The strain CY-2, identified as Sphingomonas aquatilis, which showed the highest stability and enantioselectivity was selected as whole cell biocatalyst for further study. A systematic study of all factors influencing the enzymatic hydrolysis was performed. Under optimized conditions, resolution of rac-vinyl-ACCA to (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester with 88.2% ee and 62.4% conversion (E = 9) was achieved. Besides, S. aquatilis was also used to transform other 10 different substrates. Notably, it was found that 7 of them could be stereoselectively hydrolyzed, especially for (1R,2S)-1-amino-vinyl-ACCA ethyl ester hydrochloride (99.6% ee, E>200). Our investigations provide a new efficient whole cell biocatalyst for resolution of ACCA and might be developed for industry application.

  17. Asymmetric Synthesis of Secondary and Tertiary Propargylic Alcohols by Umpolung of Acetylenic Sulfones and ortho-Sulfinyl Carbanions.

    PubMed

    Rodríguez, Ricardo I; Ramírez, Elsie; Yuste, Francisco; Sánchez-Obregón, Rubén; Alemán, José

    2018-02-16

    The generation of diastereomerically enriched secondary benzyl propargyl alcohols by the asymmetric addition of ortho-sulfinylbenzyl carbanions to sulfonylacetylene derivatives via formation of a Csp-Csp 3 bond is described. This reaction proceeds through an unusual α-attack (anti-Michael addition) of the ortho-sulfinylbenzyl carbanions, followed by elimination of the arylsulfonyl moiety. The scope of this alkynylation reaction is also discussed. Moreover, the development of a new approach for the synthesis of optically active tertiary benzylpropargyl alcohols is described, discussing the possible stereocourse of the reaction so as the influence of the ether 18-crown-6 and steric importance of acetylenic substituent.

  18. N-silyl oxyketene imines are underused yet highly versatile reagents for catalytic asymmetric synthesis

    NASA Astrophysics Data System (ADS)

    Denmark, Scott E.; Wilson, Tyler W.

    2010-11-01

    The reactions of acyl anion equivalents (d1 synthons) with carbonyl electrophiles allow for the construction of a wide range of molecules useful for the synthesis of biologically active compounds, natural products and chiral ligands. Despite their utility, significant challenges still exist for developing catalytic, enantioselective variants of these reactions. For example, the asymmetric benzoin process, arguably the most characteristic reaction of d synthetic equivalents, finds no general solution for reactions involving aliphatic acyl anions. In this Article, we introduce a new class of stable, isolable silyl ketene imines derived from protected cyanohydrins. These nucleophiles serve as acyl anion equivalents in Lewis base catalysed aldol addition reactions and allow for the preparation of cross-benzoin and glycolate-aldol products in high yield and with exceptional diastereo- and enantioselectivities.

  19. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    PubMed

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors.

    PubMed

    Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong

    2013-08-28

    This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.

  1. Activation of olefins via asymmetric Bronsted acid catalysis

    DOE PAGES

    Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas; ...

    2018-03-30

    The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less

  2. Activation of olefins via asymmetric Bronsted acid catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas

    The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less

  3. Tandem Reactions for Streamlining Synthesis

    PubMed Central

    HUSSAIN, MAHMUD M.; WALSH, PATRICK J.

    2009-01-01

    CONSPECTUS In 1980 Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki Asymmetric Epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981 Sharpless and coworkers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the

  4. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.

    PubMed

    Zhang, Lilu; Meggers, Eric

    2017-02-21

    Catalysts for asymmetric synthesis must be chiral. Metal-based asymmetric catalysts are typically constructed by assembling chiral ligands around a central metal. In this Account, a new class of effective chiral Lewis acid catalysts is introduced in which the octahedral metal center constitutes the exclusive source of chirality. Specifically, the here discussed class of catalysts are composed of configurationally stable, chiral-at-metal Λ-configured (left-handed propeller) or Δ-configured (right-handed propeller) iridium(III) or rhodium(III) complexes containing two bidentate cyclometalating 5-tert-butyl-2-phenylbenzoxazole (dubbed IrO and RhO) or 5-tert-butyl-2-phenylbenzothiazole (dubbed IrS and RhS) ligands in addition to two exchange-labile acetonitriles. They are synthetically accessible in an enantiomerically pure fashion through a convenient auxiliary-mediated synthesis. Such catalysts are of interest due to their intrinsic structural simplicity (only achiral ligands) and the prospect of an especially effective asymmetric induction due to the intimate contact between the chiral metal center and the metal-coordinated substrates or reagents. With respect to chiral Lewis acid catalysis, the bis-cyclometalated iridium and rhodium complexes provide excellent catalytic activities and asymmetric inductions for a variety of reactions including Michael additions, Friedel-Crafts reactions, cycloadditions, α-aminations, α-fluorinations, Mannich reactions, and a cross-dehydrogenative coupling. Mechanistically, substrates such as 2-acyl imidazoles are usually activated by two-point binding. Exceptions exist as for example for an efficient iridium-catalyzed enantioselective transfer hydrogenation of arylketones with ammonium formate, which putatively proceeds through an iridium-hydride intermediate. The bis-cyclometalated iridium complexes catalyze visible-light-induced asymmetric reactions by intertwining asymmetric catalysis and photoredox catalysis in a unique

  5. Best practices for achieving and measuring pavement smoothness, a synthesis of state-of-practice : research project capsule.

    DOT National Transportation Integrated Search

    2014-01-01

    The objective of this research is to provide a synthesis of state-of-practice : that will summarize existing practices for achieving the desired ride quality : for asphalt and concrete paving. The specic goals of this synthesis will : be to docume...

  6. Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules.

    PubMed

    Wang, Yao; Lu, Hong; Xu, Peng-Fei

    2015-07-21

    With the increasing concerns about chemical pollution and sustainability of resources, among the significant challenges facing synthetic chemists are the development and application of elegant and efficient methods that enable the concise synthesis of natural products, drugs, and related compounds in a step-, atom- and redox-economic manner. One of the most effective ways to reach this goal is to implement reaction cascades that allow multiple bond-forming events to occur in a single vessel. This Account documents our progress on the rational design and strategic application of asymmetric catalytic cascade reactions in constructing diverse scaffolds and synthesizing complex chiral molecules. Our research is aimed at developing robust cascade reactions for the systematic synthesis of a range of interesting molecules that contain structural motifs prevalent in natural products, pharmaceuticals, and biological probes. The strategies employed to achieve this goal can be classified into three categories: bifunctional base/Brønsted acid catalysis, covalent aminocatalysis/N-heterocyclic carbene catalysis, and asymmetric organocatalytic relay cascades. By the use of rationally designed substrates with properly reactive sites, chiral oxindole, chroman, tetrahydroquinoline, tetrahydrothiophene, and cyclohexane scaffolds were successfully assembled under bifunctional base/Brønsted acid catalysis from simple and readily available substances such as imines and nitroolefins. We found that some of these reactions are highly efficient since catalyst loadings as low as 1 mol % can promote the multistep sequences affording complex architectures with high stereoselectivities and yields. Furthermore, one of the bifunctional base/Brønsted acid-catalyzed cascade reactions for the synthesis of chiral cyclohexanes has been used as a key step in the construction of the tetracyclic core of lycorine-type alkaloids and the formal synthesis of α-lycorane. Guided by the principles of

  7. Synthesis of novel chiral phosphinocyrhetrenyloxazoline ligands and their application in asymmetric catalysis.

    PubMed

    Bolm, Carsten; Xiao, Li; Kesselgruber, Martin

    2003-01-07

    Several novel planar chiral phosphinocyrhetrenyloxazolines have been synthesized, and their catalytic activities have been evaluated in a variety of asymmetric catalytic reactions. Preferable effects as compared to their ferrocenyl analogues have been observed in asymmetric allylic amination and asymmetric hydrosilylation, and up to 97% ee and 72% ee were reached, respectively. The Lewis basicity of the phosphorus on the ferrocene and the cyrhetrene, which contributes to their different behavior in catalysis, has been deduced by 31P NMR spectroscopy analysis, as indicated by 1J(77Se-31P) in the corresponding phosphine selenides.

  8. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

    PubMed Central

    Wünsch, Matthias; Schröder, David; Fröhr, Tanja; Teichmann, Lisa; Hedwig, Sebastian; Janson, Nils; Belu, Clara; Simon, Jasmin; Heidemeyer, Shari; Holtkamp, Philipp; Rudlof, Jens; Klemme, Lennard; Hinzmann, Alessa; Neumann, Beate; Stammler, Hans-Georg

    2017-01-01

    The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman’s chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl)ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cyclo)alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics. PMID:29234470

  9. Asymmetric synthesis of 2-aryl-2,3-dihydro-4-quinolones by rhodium-catalyzed 1,4-addition of arylzinc reagents in the presence of chlorotrimethylsilane.

    PubMed

    Shintani, Ryo; Yamagami, Takafumi; Kimura, Takahiro; Hayashi, Tamio

    2005-11-10

    [reaction: see text] The first catalytic asymmetric synthesis of 2-aryl-2,3-dihydro-4-quinolones has been developed by way of a rhodium-catalyzed 1,4-addition of arylzinc reagents to 4-quinolones. These 1,4-adducts can be obtained with high enantioselectivity by the use of (R)-binap as a ligand, and high yields are realized by conducting the reactions in the presence of chlorotrimethylsilane.

  10. Organocatalytic atroposelective synthesis of axially chiral styrenes

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng-Cai; Wu, San; Zhou, Qinghai; Chung, Lung Wa; Ye, Liu; Tan, Bin

    2017-05-01

    Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.

  11. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

    PubMed

    Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J

    2018-07-01

    Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Nucleophilic Chiral Phosphines: Powerful and Versatile Catalysts for Asymmetric Annulations

    PubMed Central

    Xiao, Yumei; Guo, Hongchao; Kwon, Ohyun

    2016-01-01

    Recent advances in chiral-phosphine-catalyzed asymmetric annulation reactions; including annulations of allenes, alkynes, Morita–Baylis–Hillman (MBH) carbonates, and ketenes; and their applications in the synthesis of bioactive molecules and natural products are reviewed. PMID:28077882

  13. Young people's food practices and social relationships. A thematic synthesis.

    PubMed

    Neely, Eva; Walton, Mat; Stephens, Christine

    2014-11-01

    Food practices are embedded in everyday life and social relationships. In youth nutrition promotion little attention is awarded to this centrality of food practices, yet it may play a pivotal role for young people's overall health and wellbeing beyond the calories food provides. Limited research is available explicitly investigating how food practices affect social relationships. The aim of this synthesis was therefore to find out how young people use everyday food practices to build, strengthen, and negotiate their social relationships. Using a thematic synthesis approach, we analysed 26 qualitative studies exploring young people's food practices. Eight themes provided insight into the ways food practices affected social relationships: caring, talking, sharing, integrating, trusting, reciprocating, negotiating, and belonging. The results showed that young people use food actively to foster connections, show their agency, and manage relationships. This synthesis provides insight into the settings of significance for young people where more research could explore the use of food in everyday life as important for their social relationships. A focus on social relationships could broaden the scope of nutrition interventions to promote health in physical and psychosocial dimensions. Areas for future research are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Asymmetric intermolecular Pauson-Khand reactions of unstrained olefins: the (o-dimethylamino)phenylsulfinyl group as an efficient chiral auxiliary.

    PubMed

    Rodríguez Rivero, Marta; De La Rosa, Juan Carlos; Carretero, Juan Carlos

    2003-12-10

    The first asymmetric version of intermolecular Pauson-Khand reactions of unstrained alkenes is described. Generally simple acyclic alkenes exhibit low reactivity and regioselectivity in intermolecular Pauson-Khand reactions; however, o-(dimethylamino)phenyl vinyl sulfoxide reacts under very mild conditions with a wide variety of terminal alkynes in a completely regioselective and highly stereoselective manner. The utility of the resulting 5-sulfinyl-2-cyclopentenones in asymmetric synthesis is illustrated by a very short enantioselective synthesis of the antibiotic (-)-pentenomycin I.

  15. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    PubMed

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  16. Pd-Catalyzed Asymmetric β-Hydride Elimination En Route to Chiral Allenes

    PubMed Central

    Crouch, Ian T.; Neff, Robynne K.; Frantz, Doug E.

    2013-01-01

    We wish to report our preliminary results on the discovery and development of a catalytic, asymmetric β-hydride elimination from vinyl Pd(II)-complexes derived from enol triflates to access chiral allenes. To achieve this, we developed a class of chiral phosphite ligands that demonstrate high enantioselectivity, allow access of either allene enantiomer, and are readily synthesized. The methodology is demonstrated on over 20 substrates and application to the formal asymmetric total synthesis of the natural product, (+)-epibatidine, is also provided. PMID:23488914

  17. Asymmetric total synthesis of onoseriolide, bolivianine, and isobolivianine.

    PubMed

    Du, Biao; Yuan, Changchun; Yu, Tianzi; Yang, Li; Yang, Yang; Liu, Bo; Qin, Song

    2014-02-24

    In this article, we describe our efforts on the total synthesis of bolivianine (1) and isobolivianine (2), involving the synthesis of onoseriolide (3). The first generation synthesis of bolivianine was completed in 21 steps by following a chiral resolution strategy. Based on the potential biogenetic relationship between bolivianine (1), onoseriolide (3), and β-(E)-ocimene (8), the second generation synthesis of bolivianine was biomimetically achieved from commercially available (+)-verbenone in 14 steps. The improved total synthesis features an unprecedented palladium-catalyzed intramolecular cyclopropanation through an allylic metal carbene, for the construction of the ABC tricyclic system, and a Diels-Alder/intramolecular hetero-Diels-Alder (DA/IMHDA) cascade for installation of the EFG tricyclic skeleton with the correct stereochemistry. Transformation from bolivianine to isobolivianine was facilitated in the presence of acid. The biosynthetic mechanism and the excellent regio- and endo selectivities in the cascade are well supported by theoretical chemistry based on the DFT calculations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pyrrolidinyl-camphor derivatives as a new class of organocatalyst for direct asymmetric Michael addition of aldehydes and ketones to beta-nitroalkenes.

    PubMed

    Ting, Ying-Fang; Chang, Chihliang; Reddy, Raju Jannapu; Magar, Dhananjay R; Chen, Kwunmin

    2010-06-18

    Practical and convenient synthetic routes have been developed for the synthesis of a new class of pyrrolidinyl-camphor derivatives (7 a-h). These novel compounds were screened as catalysts for the direct Michael addition of symmetrical alpha,alpha-disubstituted aldehydes to beta-nitroalkenes. When this asymmetric transformation was catalyzed by organocatalyst 7 f, the desired Michael adducts were obtained in high chemical yields, with high to excellent stereoselectivities (up to 98:2 diastereomeric ratio (d.r.) and 99 % enantiomeric excess (ee)). The scope of the catalytic system was expanded to encompass various aldehydes and ketones as the donor sources. The synthetic application was demonstrated by the synthesis of a tetrasubstituted-cyclohexane derivative from (S)-citronellal, with high stereoselectivity.

  19. Synthesis of Phosphorescent Asymmetrically π-Extended Porphyrins for Two-Photon Applications

    PubMed Central

    2015-01-01

    Significant effort has been directed in recent years toward porphyrins with enhanced two-photon absorption (2PA). However, the properties of their triplet states, which are central to many applications, have rarely been examined in parallel. Here we report the synthesis of asymmetrically π-extended platinum(II) and palladium(II) porphyrins, whose 2PA into single-photon-absorbing states is enhanced as a result of the broken center-of-inversion symmetry and whose triplet states can be monitored by room-temperature phosphorescence. 5,15-Diaryl-syn-dibenzoporphyrins (DBPs) and syn-dinaphthoporphyrins (DNPs) were synthesized by [2 + 2] condensation of the corresponding dipyrromethanes and subsequent oxidative aromatization. Butoxycarbonyl groups on the meso-aryl rings render these porphyrins well-soluble in a range of organic solvents, while 5,15-meso-aryl substitution causes minimal nonplanar distortion of the macrocycle, ensuring high triplet emissivity. A syn-DBP bearing four alkoxycarbonyl groups in the benzo rings and possessing a large static dipole moment was also synthesized. Photophysical properties (2PA brightness and phosphorescence quantum yields and lifetimes) of the new porphyrins were measured, and their ground-state structures were determined by DFT calculations and/or X-ray analysis. The developed synthetic methods should facilitate the construction of π-extended porphyrins for applications requiring high two-photon triplet action cross sections. PMID:25157580

  20. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids.

    PubMed

    Fillion, Eric; Wilsily, Ashraf

    2006-03-08

    The asymmetric synthesis of all-carbon benzylic quaternary stereocenters has been successfully achieved through copper-catalyzed addition of dialkylzinc reagents to 5-(1-arylalkylidene) and 5-(dihydroindenylidene) Meldrum's acids in the presence of phosphoramidite ligand. The resulting benzyl-substituted Meldrum's acids and 1,1-disubstituted indanes were obtained in good yields and up to 99% ee. The significance of substituting the position para, meta, and ortho to the electrophilic benzylic center was highlighted. A benzyl Meldrum's acid product was further transformed to a 3,3-disubstituted 1-indanone and a beta,beta-disubstituted pentanoic acid.

  1. Palladium-Catalyzed Asymmetric Alkylation in the Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures Bearing All-Carbon Quaternary Stereocenters

    PubMed Central

    Hong, Allen Y.; Bennett, Nathan B.; Krout, Michael R.; Jensen, Thomas; Harned, Andrew. M.

    2011-01-01

    General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems. PMID:22347731

  2. A high-performance liquid chromatography-electronic circular dichroism online method for assessing the absolute enantiomeric excess and conversion ratio of asymmetric reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Wang, Mingchao; Li, Li; Yin, Dali

    2017-03-01

    Asymmetric reactions often need to be evaluated during the synthesis of chiral compounds. However, traditional evaluation methods require the isolation of the individual enantiomer, which is tedious and time-consuming. Thus, it is desirable to develop simple, practical online detection methods. We developed a method based on high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) that simultaneously analyzes the material conversion ratio and absolute optical purity of each enantiomer. In particular, only a reverse-phase C18 column instead of a chiral column is required in our method because the ECD measurement provides a g-factor that describes the ratio of each enantiomer in the mixtures. We used our method to analyze the asymmetric hydrosilylation of β-enamino esters, and we discussed the advantage, feasibility, and effectiveness of this new methodology.

  3. A Synthesis of Sloan-C Effective Practices, November 2010

    ERIC Educational Resources Information Center

    Moore, Janet C.

    2010-01-01

    Encouraging continuous improvement in the quality, scale and breadth of online education, the Sloan Consortium invites practitioners to share effective practices. This report synthesizes effective practices submitted by Sloan-C members to the online collection at http://www.sloanconsortium.org/effective as of November 2010. The synthesis includes…

  4. A Synthesis of Sloan-C Effective Practices, December 2011

    ERIC Educational Resources Information Center

    Moore, Janet C.

    2012-01-01

    Encouraging continuous improvement in the quality, scale and breadth of online education, the Sloan Consortium invites practitioners to share effective practices. This report synthesizes effective practices submitted by Sloan-C members to the online collection at http://www.sloanconsortium.org/effective as of December 2011. The synthesis includes…

  5. Advances in Stereoconvergent Catalysis from 2005–2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations

    PubMed Central

    Bhat, Vikram; Welin, Eric R.; Guo, Xuelei; Stoltz, Brian M.

    2017-01-01

    An important subset of asymmetric synthesis is dynamic kinetic resolution, dynamic kinetic asymmetric processes and stereoablative transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes but recently various synthetic catalysts have been developed. This review summarizes major advances in non-enzymatic, transition metal promoted dynamic asymmetric transformations reported between 2005 and 2015. PMID:28164696

  6. Asymmetric synthesis using chiral-encoded metal

    NASA Astrophysics Data System (ADS)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  7. Asymmetric synthesis of diacceptor cyclopropylphosphonates catalyzed by chiral Ru(II)-Pheox complexes

    NASA Astrophysics Data System (ADS)

    Chi, Le Thi Loan; Chanthamath, Soda; Shibatomi, Kazutaka; Iwasa, Seiji

    2018-04-01

    The first Ru(II)-catalyzed asymmetric cyclopropanation of diacceptor diazophosphonates with olefins is reported. The Ru(II)-Pheox complex 7e was found to be an efficient catalyst for the asymmetric cyclopropanation of α-cyano diazophosp honate with styrene under mild conditions to give the corresponding chiral diacceptor cyclopropylphosphonate products in high yields (up to 99%) with excellent diastereoselectivities (up to 99/1 dr). However, the enantioselectivity was difficult to control by the C1-symmetric catalyst (up to 68% ee).

  8. Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate

    PubMed Central

    Omedes-Pujol, Marta

    2010-01-01

    Summary Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from 51V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane. PMID:21085513

  9. Asymmetric Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI)

    PubMed Central

    Lajiness, James P.; Boger, Dale L.

    2011-01-01

    A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin DNA alkylation subunits is described. Treatment of iodo-epoxide 5, prepared by late-stage alkylation of 4 with (S)-glycidal-3-nosylate, with EtMgBr at room temperature directly provides the optically pure alcohol 6 in 87% yield (99% ee) derived from selective metal–halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. The use of MeMgBr or i-PrMgBr also provides the product in high yields (82–87%), but requires larger amounts of the Grignard reagent to effect metal–halogen exchange and cyclization. Direct transannular spirocyclization of 7 following O-debenzylation of 6 provides N-Boc-CBI. This approach represents the most efficient (9-steps, 31% overall) and effective (99% ee) route to the optically pure CBI alkylation subunit yet described. PMID:21192653

  10. Catalytic asymmetric total synthesis of (+)-yohimbine.

    PubMed

    Mergott, Dustin J; Zuend, Stephan J; Jacobsen, Eric N

    2008-03-06

    The total synthesis of (+)-yohimbine was achieved in 11 steps and 14% overall yield. The absolute configuration was established through a highly enantioselective thiourea-catalyzed acyl-Pictet-Spengler reaction, and the remaining 4 stereocenters were set simultaneously in a substrate-controlled intramolecular Diels-Alder reaction.

  11. Shape and color naming are inherently asymmetrical: Evidence from practice-based interference.

    PubMed

    Protopapas, Athanassios; Markatou, Artemis; Samaras, Evangelos; Piokos, Andreas

    2017-01-01

    Stroop interference is characterized by strong asymmetry between word and color naming such that the former is faster and interferes with the latter but not vice versa. This asymmetry is attributed to differential experience with naming in the two dimensions, i.e., words and colors. Here we show that training on visual-verbal paired associate tasks equivalent to color and shape naming, not involving word reading, leads to strongly asymmetric interference patterns. In two experiments adults practiced naming colors and shapes, one dimension more extensively (10days) than the other (2days), depending on group assignment. One experiment used novel shapes (ideograms) and the other familiar geometric shapes, associated with nonsense syllables. In a third experiment participants practiced naming either colors or shapes using cross-category shape and color names, respectively, for 12days. Across experiments, despite equal training of the two groups in naming the two different dimensions, color naming was strongly affected by shape even after extensive practice, whereas shape naming was resistant to interference. To reconcile these findings with theoretical accounts of interference, reading may be conceptualized as involving visual-verbal associations akin to shape naming. An inherent or early-developing advantage for naming shapes may provide an evolutionary substrate for the invention and development of reading. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Asymmetric photoredox transition-metal catalysis activated by visible light.

    PubMed

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-06

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the 'green' synthesis of non-racemic chiral molecules.

  13. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  14. Asymmetric conjugate addition of Grignard reagents to pyranones.

    PubMed

    Mao, Bin; Fañanás-Mastral, Martín; Feringa, Ben L

    2013-01-18

    An efficient enantioselective synthesis of lactones was developed based on the catalytic asymmetric conjugate addition (ACA) of alkyl Grignard reagents to pyranones. The use of 2H-pyran-2-one for the first time in the ACA with Grignard reagents allows for a variety of further transformations to access highly versatile building blocks such as β-alkyl substituted aldehydes or β-bromo-γ-alkyl substituted alcohols with excellent regio- and stereoselectivity.

  15. Highly enantioselective synthesis of γ-, δ-, and ε-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling

    PubMed Central

    Xu, Shiqing; Oda, Akimichi; Kamada, Hirofumi; Negishi, Ei-ichi

    2014-01-01

    Despite recent advances of asymmetric synthesis, the preparation of enantiomerically pure (≥99% ee) compounds remains a challenge in modern organic chemistry. We report here a strategy for a highly enantioselective (≥99% ee) and catalytic synthesis of various γ- and more-remotely chiral alcohols from terminal alkenes via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction)–Cu- or Pd-catalyzed cross-coupling. ZACA–in situ oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols produced both (R)- and (S)-α,ω-dioxyfunctional intermediates (3) in 80–88% ee, which were readily purified to the ≥99% ee level by lipase-catalyzed acetylation through exploitation of their high selectivity factors. These α,ω-dioxyfunctional intermediates serve as versatile synthons for the construction of various chiral compounds. Their subsequent Cu-catalyzed cross-coupling with various alkyl (primary, secondary, tertiary, cyclic) Grignard reagents and Pd-catalyzed cross-coupling with aryl and alkenyl halides proceeded smoothly with essentially complete retention of stereochemical configuration to produce a wide variety of γ-, δ-, and ε-chiral 1-alkanols of ≥99% ee. The MαNP ester analysis has been applied to the determination of the enantiomeric purities of δ- and ε-chiral primary alkanols, which sheds light on the relatively undeveloped area of determination of enantiomeric purity and/or absolute configuration of remotely chiral primary alcohols. PMID:24912191

  16. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase Transfer Catalysts. Synthesis of Catalyst Libraries and Evaluation of Catalyst Activity

    PubMed Central

    Denmark, Scott E.; Gould, Nathan D.; Wolf, Larry M.

    2011-01-01

    Despite over three decades of research into asymmetric phase transfer catalysis (APTC), a fundamental understanding of the factors that affect the rate and stereoselectivity of this important process are still obscure. This paper describes the initial stages of a long-term program aimed at elucidating the physical organic foundations of APTC employing a chemoinformatic analysis of the alkylation of a protected glycine imine with a libraries of enantiomerically enriched quaternary ammonium ions. The synthesis of the quaternary ammonium ions follows a diversity oriented approach wherein the tandem inter[4+2]/intra[3+2] cycloaddition of nitroalkenes serves as the key transformation. A two part synthetic strategy comprised of: (1) preparation of enantioenriched scaffolds and (2) development of parallel synthesis procedures is described. The strategy allows for the facile introduction of four variable groups in the vicinity of a stereogenic quaternary ammonium ion. The quaternary ammonium ions exhibited a wide range of activity and to a lesser degree enantioselectivity. Catalyst activity and selectivity are rationalized in a qualitative way based on the effective positive potential of the ammonium ion. PMID:21446721

  17. A modified preparation procedure for carbon nanotube-confined Nd/Na heterobimetallic catalyst for anti-selective catalytic asymmetric nitroaldol reactions.

    PubMed

    Sureshkumar, Devarajulu; Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu

    2013-11-15

    A recyclable asymmetric metal-based catalyst is a rare entity among the vast collection of asymmetric catalysts developed so far. Recently we found that the combination of a self-assembling metal-based asymmetric catalyst and multiwalled carbon nanotubes (MWNTs) produced a highly active and recyclable catalyst in which the catalytically active metal complex was dispersed in the MWNT network. Herein we describe an improved preparation procedure and full details of a Nd/Na heterobimetallic complex confined in MWNTs. Facilitated self-assembly of the catalyst with MWNTs avoided the sacrificial use of excess chiral ligand for the formation of the heterobimetallic complex, improving the loading ratio of the catalyst components. Eighty-five percent of the catalyst components were incorporated onto MWNTs to produce the confined catalyst, which was a highly efficient and recyclable catalyst for the anti-selective asymmetric nitroaldol reaction. The requisite precautions for the catalyst preparation to elicit reproducible catalytic performance are summarized. Superior catalytic profiles over the prototype catalyst without MWNTs were revealed in the synthesis of optically active 1,2-nitroalkanols, which are key intermediates for the synthesis of therapeutics.

  18. The mechanism by which an asymmetric distribution of plant growth hormone is attained

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Epel, Bernard; Kowalczyk, Stanley

    Zea mays (sweet corn) seedlings attain an asymmetric distribution of the growth hormone indole-3-acetic acid (IAA) within 3 minutes following a gravity stimulus. Both free and esterified IAA (that is total IAA) accumulate to a greater extent in the lower half of the mesocotyl cortex of a horizontally placed seedling than in the upper half. Thus, changes in the ratio of free IAA to ester IAA cannot account for the asymmetric distribution. Our studies demonstrate there is no de novo synthesis of IAA in young seedlings. We conclude that asymmetric IAA distribution is attained by a gravity-induced, potential-regulated gating of the movement of IAA from kernel to shoot and from stele to cortex. As a working theory, which we call the Potential Gating Theory, we propose that perturbation of the plant's bioelectric field, induced by gravity, causes opening and closing of transport channels in the plasmodesmata connecting the vascular stele to the surrounding cortical tissues. This results in asymmetric growth hormone distribution which results in the asymmetric growth characteristic of the gravitropic response.

  19. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  20. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    PubMed

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Studies of asymmetric styrene cyclopropanation with a rhodium(II) metallopeptide catalyst developed with a high-throughput screen.

    PubMed

    Sambasivan, Ramya; Ball, Zachary T

    2013-09-01

    Dirhodium metallopeptides have been developed as selective catalysts for asymmetric cyclopropanation reactions. A selective ligand sequence has been identified by screening on-bead metallopeptide libraries in a 96-well plate format. Efficient ligand synthesis and screening allows a 200-member library to be created and assayed in less than three weeks. These metallopeptides catalyze efficient cyclopropanation of aryldiazoacetates, providing asymmetric access to cyclopropane products in high diastereoselectivity. © 2013 Wiley Periodicals, Inc.

  2. Process of infection with bacteriophage phi chi 174. XL. Viral DNA replication of phi chi 174 mutants blocked in progeny single-stranded DNA synthesis.

    PubMed Central

    Fukuda, A; Sinsheimer, R L

    1976-01-01

    Mutation in several different cistrons of bacteriophage phi chi 174 blocks net progeny single-stranded DNA synthesis at the late period of infection (15). For the study of the functions of these cistrons in single-stranded DNA synthesis, asymmetric replication of replicative form DNA was examined at the late period of infection with amber mutants of these cistrons. While the normal, rapid process of asymmetric single-stranded viral DNA synthesis is blocked at the late period of these mutant infections, an asymmetric synthesis of the viral strand of replicative-form DNA is observed in this period, though at a reduced level, together with degradation of prelabeled viral strand. Some intermediate replicative-form molecules were also detected. Asymmetric synthesis of the viral strand of replicative-form DNA at the late period of phi chi infection is completely inhibited in the presence of a low concentration (35mug/ml) of chloramphenicol (which also blocks net single-stranded viral DNA synthesis). These results are discussed in terms of the possible role of the specific viral proteins for normal single-stranded DNA synthesis. PMID:1255871

  3. Synthetic versatility of 2-substituted-6-methyl 2,3-dihydropyridinones in the synthesis of polyfunctional piperidine-based compounds and related β amino acid derivatives.

    PubMed

    Yang, Yang; Hardman, Clayton

    2017-10-18

    Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.

  4. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors.

    PubMed

    Xu, Kaibing; Yang, Jianmao; Hu, Junqing

    2018-02-01

    Hollow micro-/nanostructured electrode materials with high active surface area are highly desirable for achieving outstanding electrochemical properties. Herein, we report the successful synthesis of hierarchical hollow NiCo 2 O 4 nanospheres with high surface area as electrode materials for supercapacitors. Electrochemical measurements prove that such electrode materials exhibit excellent electrochemical behavior with a specific capacitance reaching 1229 F/g at 1 A/g, remarkable rate performance (∼83.6% retention from 1 to 25 A/g) and good cycling performance (86.3% after 3000 cycles). Furthermore, the asymmetric supercapacitor is fabricated with hollow NiCo 2 O 4 nanospheres electrode and activated carbon (AC) electrode as the positive and negative, respectively. This device exhibits a maximum energy density of 21.5 W h/kg, excellent cycling performance and coulombic efficiency. The results show that hollow NiCo 2 O 4 nanosphere electrode is a promising electrode material for the future application in high performance supercapacitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Emergency preparedness for transit terrorism : a synthesis of transit practice

    DOT National Transportation Integrated Search

    1997-01-01

    This synthesis provides information on the current practices of transit agencies to prevent and respond to terrorism and acts of extreme violence. It integrates information gathered from a review of the literature, and from surveys, site visits, and ...

  6. Total synthesis and stereochemical assignment of the spiroisoxazoline natural product (+)-calafianin.

    PubMed

    Bardhan, Sujata; Schmitt, Daniel C; Porco, John A

    2006-03-02

    Synthesis of the spiroisoxazoline natural product (+)-calafianin is reported using asymmetric nucleophilic epoxidation and nitrile oxide cycloaddition as key steps. Synthesis and spectral analysis of all calafianin stereoisomers led to unambiguous assignment of relative and absolute stereochemistry.

  7. Progress in aminosugar derived asymmetric organocatalysis.

    PubMed

    Agarwal, Jyoti

    2016-11-22

    In the last decade aminosugars, especially d-glucoamine based organocatalysts, have been applied to catalyze various asymmetric reactions such as aldol reactions, Michael addition, Strecker reactions, Biginelli reactions, epoxidation, fluorination, and imine reduction, and for the synthesis of various biologically important molecules such as 3-alkylnitro-2-hydroxynaphthoquinones, trans-dihydrobenzofurans etc. Immense growth has been also observed in the structural modification of aminosugar based organocatalysts to obtain the best results from them. This review sheds light on such organocatalytic transformations reported in last the decade including the effect of the structural modification of sugar amines on their catalytic efficiency and the stereoselectivity of the reaction.

  8. Enantio-Relay Catalysis Constructs Chiral Biaryl Alcohols over Cascade Suzuki Cross-Coupling-Asymmetric Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua

    2014-05-01

    The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.

  9. Bioinspired enantioselective synthesis of crinine-type alkaloids via iridium-catalyzed asymmetric hydrogenation of enones† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02112g Click here for additional data file.

    PubMed Central

    Zuo, Xiao-Dong; Guo, Shu-Min; Yang, Rui

    2017-01-01

    A bioinspired enantioselective synthesis of crinine-type alkaloids has been developed by iridium-catalyzed asymmetric hydrogenation of racemic cycloenones. The method features a biomimetic stereodivergent resolution of the substrates bearing a remote arylated quaternary stereocenter. Using this protocol, 24 crinine-type alkaloids and 8 analogues were synthesized in a concise and rapid way with high yield and high enantioselectivity. PMID:28989653

  10. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters.

    PubMed

    Monnereau, Laure; Cartigny, Damien; Scalone, Michelangelo; Ayad, Tahar; Ratovelomanana-Vidal, Virginie

    2015-08-10

    Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α-alkoxy-β-ketoesters in the presence of well-defined, commercially available, chiral catalyst Ru(II) -(N-p-toluenesulfonyl-1,2-diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α-alkoxy-β-hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of Ru(II) - and Rh(III) -tethered precatalysts extended this process to more-challenging substrates that bore alkenyl-, alkynyl-, and alkyl substituents to provide the corresponding syn α-alkoxy-β-hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)-2-ethoxy-3-(4-hydroxyphenyl)-propanoate, which is an important pharmacophore in a number of peroxisome proliferator-activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type-II diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Applications of organocatalytic asymmetric synthesis to drug prototypes--dual action and selective inhibitors of n-nitric oxide synthase with activity against the 5-HT1D/1B subreceptors.

    PubMed

    Hanessian, Stephen; Stoffman, Eli; Mi, Xueling; Renton, Paul

    2011-03-04

    The scope of MacMillan's organocatalytic asymmetric conjugate addition reaction of indoles and electron-rich aromatics to α,β-unsaturated aldehydes has been extended to the use of 3-amino crotonaldehydes as substrates. The aromatics used include indoles as well as an aniline and a furan. The scope and effect of the groups on nitrogen (R, R') has also been studied. The method has been applied to the concise synthesis of an advanced precursor to S-(+)-1, a drug prototype for the treatment of migraine headaches.

  12. Experiences of self-practice/self-reflection in cognitive behavioural therapy: a meta-synthesis of qualitative studies.

    PubMed

    Gale, Corinne; Schröder, Thomas

    2014-12-01

    Self-practice/self-reflection is a valuable training strategy which involves therapists applying therapeutic techniques to themselves, and reflecting on the process. To undertake a meta-synthesis of qualitative studies exploring therapists' experiences of self-practice/self-reflection in cognitive behavioural therapy (CBT). This would integrate, and interpret, the current literature in order to develop a new understanding, and contribute to the development of CBT training programmes. The meta-synthesis encompassed three distinct phases: undertaking a comprehensive and systematic literature search; critically appraising the papers; and synthesising the data using the meta-ethnographic method. The literature search identified 378 papers, ten met the criteria for inclusion. After critical appraisal, all were included in the synthesis. The synthesis identified 14 constructs, which fell into three broad categories: 'experience of self-practice/self-reflection'; 'outcomes of self-practice/self-reflection'; and 'implications for training'. This synthesis found that self-practice allows therapists to put themselves into their clients' shoes, experiencing the benefits that therapy can bring but also the problems that clients can run in to. This experience increases therapists' empathy for their clients, allowing them to draw on their own experiences in therapy. As a result, therapists tend to feel both more confident in themselves and more competent as a therapist. The self-practice/self-reflection process was facilitated by reflective writing and working with others, particularly peers. Self-practice/self-reflection is a valuable training strategy in CBT, which has a range of beneficial outcomes. It can also be used as a means of continuing personal and professional development. Self-practice of CBT techniques, and reflecting on the process, can be a useful training strategy and helpful for ongoing development Therapists could consider developing a 'self-case' study

  13. Conceptualizing clinical nurse leader practice: an interpretive synthesis.

    PubMed

    Bender, Miriam

    2016-01-01

    The Institute of Medicine's Future of Nursing report identifies the clinical nurse leader as an innovative new role for meeting higher health-care quality standards. However, specific clinical nurse leader practices influencing documented quality outcomes remain unclear. Lack of practice clarity limits the ability to articulate, implement and measure clinical nurse leader-specific practice and quality outcomes. Interpretive synthesis design and grounded theory analysis were used to develop a theoretical understanding of clinical nurse leader practice that can facilitate systematic and replicable implementation across health-care settings. The core phenomenon of clinical nurse leader practice is continuous clinical leadership, which involves four fundamental activities: facilitating effective ongoing communication; strengthening intra and interprofessional relationships; building and sustaining teams; and supporting staff engagement. Clinical nurse leaders continuously communicate and develop relationships within and across professions to promote and sustain information exchange, engagement, teamwork and effective care processes at the microsystem level. Clinical nurse leader-integrated care delivery systems highlight the benefits of nurse-led models of care for transforming health-care quality. Managers can use this study's findings to frame an implementation strategy that addresses theoretical domains of clinical nurse leader practice to help ensure practice success. © 2015 John Wiley & Sons Ltd.

  14. Enantioselective Synthesis of SNAP-7941

    PubMed Central

    Goss, Jennifer M.; Schaus, Scott E.

    2009-01-01

    An enantioselective synthesis of SNAP-7941, a potent melanin concentrating hormone receptor antagonist, was achieved using two organocatalytic methods. The first method utilized to synthesize the enantioenriched dihydropyrimidone core was the Cinchona alkaloid-catalyzed Mannich reaction of β-keto esters to acyl imines and the second was chiral phosphoric acid-catalyzed Biginelli reaction. Completion of the synthesis was accomplished via selective urea formation at the N3 position of the dihydropyrimidone with the 3-(4-phenylpiperidin-1-yl)propyl amine side chain fragment. The synthesis of SNAP-7921 highlights the utility of asymmetric organocatalytic methods in the construction of an important class of chiral heterocycles. PMID:18767801

  15. Synthesis of Enantiomerically Pure Anthracyclinones

    NASA Astrophysics Data System (ADS)

    Achmatowicz, Osman; Szechner, Barbara

    The anthracycline antibiotics are among the most important clinical drugs used in the treatment of human cancer. The search for new agents with improved therapeutic efficacy and reduced cardiotoxicity stimulated considerable efforts in the synthesis of new analogues. Since the biological activity of anthracyclines depends on their natural absolute configuration, various strategies for the synthesis of enantiomerically pure anthracyclinones (aglycones) have been developed. They comprise: resolution of racemic intermediate, incorporation of a chiral fragment derived from natural and non-natural chiral pools, asymmetric synthesis with the use of a chiral auxiliary or a chiral reagent, and enantioselective catalysis. Synthetic advances towards enantiopure anthracyclinones reported over the last 17 years are reviewed.

  16. A new asymmetric diamide from the seed cake of Jatropha curcas L.

    PubMed

    Yao, Licheng; Han, Changri; Chen, Guangying; Song, Xiaoping; Chang, Yonghui; Zang, Wenxia

    2012-12-01

    A new asymmetric diamide (E)-N-(3-acetamidopropyl)-cinnamamide named curcamide (1) has been isolated from the ethanol extract of the seed cake of Jatropha curcas L. along with 7 known compounds identified as isoamericanin (2), isoprincepin (3), caffeoylaldehyde (4), isoferulaldehyde (5), glycerol monooleate (6), syringaldehyde (7), and β-ethyl-d-glucopyranoside (8). The synthesis and antibacterial activity of the new compound have been also studied. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Total Synthesis of Strychnine.

    PubMed

    Lee, Geun Seok; Namkoong, Gil; Park, Jisook; Chen, David Y-K

    2017-11-16

    The total synthesis of the flagship Strychnos indole alkaloid, strychnine, has been accomplished. The developed synthetic sequence features a novel vinylogous 1,4-addition, a challenging iodinium salt mediated silyl enol ether arylation, a palladium-catalyzed Heck reaction, and a streamlined late-stage conversion to strychnine. Furthermore, an application of asymmetric counterion-directed catalysis (ACDC) in the context of target-oriented organic synthesis has been rendered access to an optically active material. The synthetic sequence described herein represents the most concise entry to optically active strychnine to date. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Yanxia; Zhou, Zhaoxiao; Zhang, Shengping; Luo, Wenhao; Zhang, Guofeng

    2018-06-01

    One of the major challenges of high-performance asymmetric supercapacitors is engineering electrode materials with high capacitance and good cycling stability. Hence, we have successfully prepared different CuS hierarchical structures including CuS tubular structures (T-CuS), CuS hollow microspheres (S-CuS) and CuS hollow microflowers (H-CuS) by adjusting the solvents, all of which are investigated as electrode materials for supercapacitors. Among them, the H-CuS electrode exhibits the best electrochemical performance involving a high capacitance of 536.7 F g-1 at a current density of 8 A g-1 and excellent cycling stability with 83.6% capacitance retention for 20,000 continuous cycles at a current density of 5 A g-1. In addition, an asymmetric supercapacitor has assembled with H-CuS as positive electrode and activated carbon (AC) as negative electrode, which exhibits a desirable energy density of 15.97 W h kg-1 when the power density is 185.4 W kg-1. These desirable electrochemical performances powerfully demonstrate that the H-CuS electrode has promising potential for applications in energy storage fields.

  19. Spectral behavior of integrated optics asymmetric y-junction used for optimizing a planar optics telescope beam combiner

    NASA Astrophysics Data System (ADS)

    Schanen-Duport, Isabelle; Persegol, Dominique; Collomb, Virginie; Minier, Vincent; Haguenauer, Pierre

    2017-11-01

    Astronomical aperture synthesis requires to combine beams coming from telescopes, with constraints on mechanical and thermal stability, accuracy on the measurement of the interferences visibility. One adapted way for solving the problem is integrated planar optics. A first two telescope beam combiner made by ion exchange technique on glass substrate and build with symmetric Y-junction provides laboratory white light interferograms simultaneously with photometric calibration. In order to increase the interferometric signal without loss of photometric output, we propose to replace symmetric Y-junctions by asymmetric ones. In this paper, we report the conception, the manufacturing and the characterization of asymmetric Y-junction realized by ion exchange on glass substrate. The specific application of astronomical interferometry required the characterization of such component in term of spectral behavior, so we report the simulation and the measurement of asymmetric Y-junction response versus wavelength.

  20. Assessment of the removal of side nanoparticulated populations generated during one-pot synthesis by asymmetric flow field-flow fractionation coupled to elemental mass spectrometry.

    PubMed

    Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M

    2017-10-13

    Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Asymmetric Baylis-Hillman reactions promoted by chiral imidazolines.

    PubMed

    Xu, Junye; Guan, Yanyi; Yang, Shihui; Ng, Yurui; Peh, Guangrong; Tan, Choon-Hong

    2006-11-20

    The coupling of electrophiles with activated alkenes by using tertiary amines or phosphines is generally known as the Baylis-Hillman reaction. It is a useful and atom-economical carbon-carbon bond-forming reaction that generates multifunctionalized products. This reaction is notoriously slow; yields are often low and substrate-dependent. The asymmetric reaction is still limited especially for unactivated olefins such as acrylates. Imidazolines have been developed as ligands in metal-catalyzed reactions and have also been used as privileged structures in diversity-oriented synthesis. A series of novel chiral imidazolines were prepared and used to develop asymmetric Baylis-Hillman reactions. These imidazolines promote the reactions of various aromatic aldehydes with unactivated acrylates. Enantiomeric excesses of up to 60% and high yields were obtained by using stoichiometric amounts of the promoter. Furthermore, the imidazolines are also suitable promoters for the reactions between aromatic aldehydes and alkyl vinyl ketones. Enantiomeric excesses of up to 78% and high yields were obtained with 50 mol % of an imidazoline with a chiral methylnaphthyl group. These chiral imidazolines are easily prepared from commercially available amino alcohols and can be easily recovered for reuse without loss of product enantioselectivity.

  2. Proportion congruency and practice: A contingency learning account of asymmetric list shifting effects.

    PubMed

    Schmidt, James R

    2016-09-01

    Performance is impaired when a distracting stimulus is incongruent with the target stimulus (e.g., "green" printed in red). This congruency effect is decreased when the proportion of incongruent trials is increased, termed the proportion congruent effect. This effect is typically interpreted in terms of the adaptation of attention in response to conflict. In contrast, the contingency account argues that the effect is driven by the learning of predictive relationships between words and responses. In a recent report, Abrahamse, Duthoo, Notebaert, and Risko (2013) demonstrated larger changes in the magnitude of the proportion congruent effect when switching from a mostly congruent list to a mostly incongruent list, relative to the reverse order. They argued that this asymmetric list shifting effect fits only with the conflict adaptation perspective. However, the current paper presents reanalyses of this data and an adaptation of the Parallel Episodic Processing model that together demonstrate how the contingency account can explain these findings equally well when considering the generally accepted notion that performance improves with practice. The contingency account may still be the most parsimonious view. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Catalytic asymmetric synthesis of chiral propargylic alcohols for the intramolecular Pauson-Khand cycloaddition.

    PubMed

    Turlington, Mark; Yue, Yang; Yu, Xiao-Qi; Pu, Lin

    2010-10-15

    Several methods for the catalytic asymmetric alkyne addition to aldehydes are used to prepare the propargylic alcohol-based chiral en-ynes. Protection of the propargylic alcohols with either an acetyl or a methyl group allows the resulting en-ynes to undergo the intramolecular Pauson-Khand reaction to form the corresponding optically active 5,5- and 5,6-fused bicyclic products with high diastereoselectivity and high enantiomeric purity. In the major product, the propargylic substituent and the bridgehead hydrogen are cis with respect to each other on the fused bicyclic rings. The enantiomeric purity of the propargylic alcohols generated from the asymmetric alkyne addition is maintained in the cycloaddition products. The allylic ethers of the chiral propargylic alcohols are prepared which can also undergo the highly diastereoselective Pauson-Khand cycloaddition with retention of the high enantiomeric purity. This study has shown that the size of the substituents at the propargylic position as well as on the alkyne is important for the diastereoselectivity with the greater bulkiness of the substituents giving higher diastereoselectivity.

  4. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

    NASA Astrophysics Data System (ADS)

    Sidera, Mireia; Fletcher, Stephen P.

    2015-11-01

    Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

  5. Asymmetric disappearance and periodic asymmetric phenomena of rocking dynamics in micro dual-capacitive energy harvester

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Guo, Xiaoyu; Huang, Run

    2018-06-01

    We study asymmetric disappearance and period asymmetric phenomena starting with a rocking dynamic in micro dual-capacitive energy harvester. The mathematical model includes nonlinear electrostatic forces from the variable dual capacitor, the numerical functioned forces provided by suspending springs, linear damping forces and an external vibration force. The suspending plate and its elastic supports were designed in a symmetric structure in the micro capacitor, however, the reported energy harvester was unavoidable starting with a asymmetric motion in the real vibration environment. We found that the designed dual energy capacitive harvester can harvest ˜6 µW with 10V input voltage, and under 0.8 time's resonant frequency vibration. We also discovered that the rocking dynamics of the suspended plate can be showed with an asymmetric disappearance or periodic asymmetric phenomena starting with an asymmetric motion. The study of these asymmetric disappearance and period asymmetric phenomena were not only important for the design of the stability of the micro capacitor for sensor or the energy harvesting, but also gave a deep understanding of the rocking nonlinear dynamics of the complex micro structures and beams.

  6. Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols.

    PubMed

    Ye, Chen-Xi; Melcamu, Yared Yohannes; Li, Heng-Hui; Cheng, Jiang-Tao; Zhang, Tian-Tian; Ruan, Yuan-Ping; Zheng, Xiao; Lu, Xin; Huang, Pei-Qiang

    2018-01-29

    Enantiopure vicinal amino alcohols and derivatives are essential structural motifs in natural products and pharmaceutically active molecules, and serve as main chiral sources in asymmetric synthesis. Currently known asymmetric catalytic protocols for this class of compounds are still rare and often suffer from limited scope of substrates, relatively low regio- or stereoselectivities, thus prompting the development of more effective methodologies. Herein we report a dual catalytic strategy for the convergent enantioselective synthesis of vicinal amino alcohols. The method features a radical-type Zimmerman-Traxler transition state formed from a rare earth metal with a nitrone and an aromatic ketyl radical in the presence of chiral N,N'-dioxide ligands. In addition to high level of enantio- and diastereoselectivities, our synthetic protocol affords advantages of simple operation, mild conditions, high-yielding, and a broad scope of substrates. Furthermore, this protocol has been successfully applied to the concise synthesis of pharmaceutically valuable compounds (e.g., ephedrine and selegiline).

  7. Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.

    PubMed

    Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich

    2013-01-01

    A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.

  8. Symmetric Decomposition of Asymmetric Games.

    PubMed

    Tuyls, Karl; Pérolat, Julien; Lanctot, Marc; Ostrovski, Georg; Savani, Rahul; Leibo, Joel Z; Ord, Toby; Graepel, Thore; Legg, Shane

    2018-01-17

    We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.

  9. Guiding properties of asymmetric hybrid plasmonic waveguides on dielectric substrates

    PubMed Central

    2014-01-01

    We proposed an asymmetric hybrid plasmonic waveguide which is placed on a substrate for practical applications by introducing an asymmetry into a symmetric hybrid plasmonic waveguide. The guiding properties of the asymmetric hybrid plasmonic waveguide are investigated using finite element method. The results show that, with proper waveguide sizes, the proposed waveguide can eliminate the influence of the substrate on its guiding properties and restore its broken symmetric mode. We obtained the maximum propagation length of 2.49 × 103 μm. It is approximately equal to that of the symmetric hybrid plasmonic waveguide embedded in air cladding with comparable nanoscale confinement. PMID:24406096

  10. Does asymmetric correlation affect portfolio optimization?

    NASA Astrophysics Data System (ADS)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  11. Empowering African American Women Informal Caregivers: A Literature Synthesis and Practice Strategies

    ERIC Educational Resources Information Center

    Chadiha, Letha A.; Adams, Portia; Biegel, David E.; Auslander, Wendy; Gutierrez, Lorraine

    2004-01-01

    Through a synthesis of literature on caregiving, empowerment, social inequalities, and racial disparities in health and income, the authors built an argument for African American women caregivers' vulnerability to powerlessness and the applicability of an empowerment approach to social work practice with these caregivers. The article discusses two…

  12. Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation.

    PubMed

    Boll, Björn; Josse, Lena; Heubach, Anja; Hochenauer, Sophie; Finkler, Christof; Huwyler, Jörg; Koulov, Atanas V

    2018-04-25

    Asymmetric flow field-flow fractionation is a valuable tool for the characterization of protein aggregates in biotechnology owing to its broad size range and unique separation principle. However, in practice asymmetric flow field-flow fractionation is non-trivial to use due to the major deviations from theory and the influence on separation by various factors that are not fully understood. Here we report methods to assess the non-ideal effects that influence asymmetric flow field-flow fractionation separation and for the first time identify experimentally the main factors that impact it. Furthermore, we propose new approaches to minimize such non-ideal behavior, showing that by adjusting the mobile phase composition (pH and ionic strength) the resolution of asymmetric flow field-flow fractionation separation can be drastically improved. Additionally, we propose a best practice method for new proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds

    PubMed Central

    Winkler, Christoph K.; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-01-01

    Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues. PMID:22498437

  14. The asymmetric synthesis of terminal aziridines by methylene transfer from sulfonium ylides to imines.

    PubMed

    Kavanagh, Sarah A; Piccinini, Alessandro; Connon, Stephen J

    2013-06-07

    A new ylide-based protocol for the asymmetric aziridination of imines via methylene transfer has been developed involving the use of a simple chiral sulfonium salt and an organic strong base. A systematic study identified triisopropylphenyl sulfonylimines as optimal substrates for the process. Unexpectedly, hindered C2-symmetric sulfonyl salts incorporating bulky ethers at C-2 and C-5--which had previously been useful in the corresponding epoxidation chemistry--decomposed in these aziridination reactions via competing elimination pathways. Under optimised conditions it was found that a simple salt derived from (2R,5R)-2,5-diisopropyl thiolane could mediate asymmetric methylene transfer to a range of imines with uniformly excellent yields with 19-30% ee. Since this is a similar level of enantiomeric excess to that obtained using these same salts in epoxidation chemistry, it was concluded that if more bulky sulfonium salts could be devised which were resistant to decomposition under the reaction conditions, that highly enantioselective aziridine formation by methylene transfer would be possible.

  15. Giant asymmetric self-phase modulation in superconductor thin films

    NASA Astrophysics Data System (ADS)

    Robson, Charles W.; Biancalana, Fabio

    2018-04-01

    Self-phase modulation (SPM) of light pulses is found to occur strongly, at low incident intensities, in the coupling of light with superconductors. We develop a theory from a synthesis of the time-dependent Ginzburg-Landau (TDGL) equation and basic electrodynamics which shows the strongly non-linear phase accumulated in the interaction. Unusually, the SPM of the pulse in this system is found to be highly asymmetric, producing a strongly redshifted spectrum when interacting with a superconducting thin film, and it develops in just a few nanometers of propagation. In this paper we present theoretical results and simulations in the THz regime, for both hyperbolic secant and supergaussian-shaped pulses.

  16. A new route to methyl (R,E)-(-)-tetradeca-2,4,5-trienoate (pheromone of Acanthoscelides obtectus) utilizing a palladium-catalyzed asymmetric allene formation reaction.

    PubMed

    Ogasawara, Masamichi; Nagano, Takashi; Hayashi, Tamio

    2005-07-08

    [reaction: see text] A formal total synthesis of the sex attractant of male dried bean beetle, methyl (R,E)-(-)-tetradeca-2,4,5-trienoate, was achieved by a new efficient route utilizing the Pd-catalyzed asymmetric allene synthesis reaction. It was found that the atropisomeric biaryl bisphosphine (R)-segphos showed better enantioselectivity than (R)-binap in the Pd-catalyzed reaction for preparing alkyl-substituted axially chiral allenes.

  17. Easy To Synthesize, Robust Organo‐osmium Asymmetric Transfer Hydrogenation Catalysts

    PubMed Central

    Coverdale, James P. C.; Sanchez‐Cano, Carlos; Clarkson, Guy J.; Soni, Rina

    2015-01-01

    Abstract Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori‐type RuII catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X‐ray crystal structures of the 16‐electron OsII catalysts are almost identical to those of RuII. Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The OsII catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones. PMID:25853228

  18. Electrochemically Synthesis of Nickel Cobalt Sulfide for High‐Performance Flexible Asymmetric Supercapacitors

    PubMed Central

    Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Shen, Zexiang; Huang, Wei

    2017-01-01

    Abstract A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni–Co–S nanosheet array is successfully deposited on graphene foam (Ni–Co–S/GF) by a one‐step electrochemical method. The Ni–Co–S/GF composed of Ni–Co–S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni–Co–S/GF electrodes have high specific capacitance values of 2918 and 2364 F g−1 at current densities of 1 and 20 A g−1, respectively. Using such hierarchical Ni–Co–S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg−1 when the power densities are 825.0 and 16100 W kg−1, respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni–Co–S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices. PMID:29610721

  19. Electrochemically Synthesis of Nickel Cobalt Sulfide for High-Performance Flexible Asymmetric Supercapacitors.

    PubMed

    Zhang, Chunyan; Cai, Xiaoyi; Qian, Yao; Jiang, Haifeng; Zhou, Lijun; Li, Baosheng; Lai, Linfei; Shen, Zexiang; Huang, Wei

    2018-02-01

    A lightweight, flexible, and highly efficient energy management strategy is highly desirable for flexible electronic devices to meet a rapidly growing demand. Herein, Ni-Co-S nanosheet array is successfully deposited on graphene foam (Ni-Co-S/GF) by a one-step electrochemical method. The Ni-Co-S/GF composed of Ni-Co-S nanosheet array which is vertically aligned to GF and provides a large interfacial area for redox reactions with optimum interstitials facilitates the ions diffusion. The Ni-Co-S/GF electrodes have high specific capacitance values of 2918 and 2364 F g -1 at current densities of 1 and 20 A g -1 , respectively. Using such hierarchical Ni-Co-S/GF as the cathode, a flexible asymmetric supercapacitor (ASC) is further fabricated with polypyrrple(PPy)/GF as the anode. The flexible asymmetric supercapacitors have maximum operation potential window of 1.65 V, and energy densities of 79.3 and 37.7 Wh kg -1 when the power densities are 825.0 and 16100 W kg -1 , respectively. It's worth nothing that the ASC cells have robust flexibility with performance well maintained when the devices were bent to different angles from 180° to 15° at a duration of 5 min. The efficient electrochemical deposition method of Ni-Co-S with a preferred orientation of nanosheet arrays is applicable for the flexible energy storage devices.

  20. A concise and practical stereoselective synthesis of ipragliflozin L-proline

    PubMed Central

    Ma, Shuai; Liu, Zhenren; Pan, Jing; Zhang, Shunli

    2017-01-01

    A concise and practical stereoselective synthesis of ipragliflozin L-proline was presented starting from 2-[(5-iodo-2-fluorophenyl)methyl]-1-benzothiophene and 2,3,4,6-tetra-O-pivaloyl-α-D-glucopyranosyl bromide without catalyst via iodine–lithium–zinc exchange. The overall yield was 52% in three steps and the product purity was excellent. Two key diastereomers were prepared with efficient and direct access to the α-C-arylglucoside. PMID:28684985

  1. First enantiocontrolled formal synthesis of (+)-neovibsanin B, a neurotrophic diterpenoid.

    PubMed

    Esumi, Tomoyuki; Mori, Takehiro; Zhao, Ming; Toyota, Masao; Fukuyama, Yoshiyasu

    2010-02-19

    An enantiocontrolled formal synthesis of (+)-neovibsanin B has been achieved by a sequence that applies an asymmetric 1,4-addition of (H(2)C=CH)(2)Cu(CN)Li(2) to trisubstituted alpha,beta-carboxylic acid derivative 1 to induce the chirality at the C-11 all-carbon quaternary center. Together with a modified Negishi cyclic carbopalladation-carbonylative esterification tandem reaction for constructing the A-ring, the synthesis was completed.

  2. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp(3) Central Chirality for Catalytic Asymmetric Transformations.

    PubMed

    Xu, Zheng; Xu, Li-Wen

    2015-10-01

    Recently, academic chemists have renewed their interest in the development of 1,1'-binaphthalene-2,2'-diol (BINOL)-derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL-derived atropisomers bearing both axial and sp(3) central chirality, the so-called Ar-BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar-BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL-derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Asymmetric Synthesis of β-Amino Amides by Catalytic Enantioconvergent 2-Aza-Cope Rearrangement

    PubMed Central

    Goodman, C. Guy; Johnson, Jeffrey S.

    2015-01-01

    Dynamic kinetic resolutions of α-stereogenic-β-formyl amides in asymmetric 2-aza-Cope rearrangements are described. Chiral phosphoric acids catalyze this rare example of a non-hydrogenative DKR of a β-oxo acid derivative. The [3,3]-rearrangement occurs with high diastereo- and enantiocontrol, forming β-imino amides that can be deprotected to the primary β-amino amide or reduced to the corresponding diamine. PMID:26561873

  4. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  5. [Family practices related to breast-feeding maintenance: literature review and meta-synthesis].

    PubMed

    de Sousa, Alder Mourão; Fracolli, Lislaine Aparecida; Zoboli, Elma Lourdes Campos Pavone

    2013-08-01

    To identify and summarize family practices related to the maintenance of breast-feeding. We conducted a literature review and meta-synthesis of the findings of selected articles. Fourteen articles published in English, Portuguese, and Spanish between 1989 and 2009 were selected. The synthesis revealed five categories concerning family practices related to the maintenance of breast-feeding: 1) emotional support, which involves welcoming the mother and the baby, valuing and encouraging breast-feeding, and emphasizing the value of breast-feeding; 2) instrumental support, which covers attending prenatal consultations and home visits, participating in baby care, and providing help in everyday tasks beyond the first few weeks postpartum; 3) informational support, which involves stating the wish to be involved in breast-feeding and encouraging the mother, but not forcing her to share experiences; 4) presence support, which involves being close to the mother and taking the time to listen to her; and 5) self-support, which involves maintaining positive expectations about breast-feeding. The results show that practices defined as support contribute to the maintenance of breast-feeding for longer periods. These findings underscore the need for expansion of the care provided to women, children, and families to include issues related to interpersonal interactions.

  6. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface

    PubMed Central

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Liu, Jieying; Chen, Shuqi; Tian, Jianguo

    2016-01-01

    Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfaces hinder their practical applications. Here, a few-layer anisotropic metasurface is presented for simultaneously generating high-efficiency broadband asymmetric anomalous refraction and reflection waves. Moreover, the normal transmission and reflection waves are low and the anomalous waves are the predominant ones, which is quite beneficial for practical applications such as beam deflectors. Our work provides an effective method of enhancing the performance of anomalous wave generation, and the asymmetric performance of the proposed metasurface shows endless possibilities in wavefront control for nanophotonics device design and optical communication applications. PMID:27762286

  7. Beyond Synthesis: Augmenting Systematic Review Procedures with Practical Principles to Optimise Impact and Uptake in Educational Policy and Practice

    ERIC Educational Resources Information Center

    Green, Chris; Taylor, Celia; Buckley, Sharon; Hean, Sarah

    2016-01-01

    Whilst systematic reviews, meta-analyses and other forms of synthesis are considered amongst the most valuable forms of research evidence, their limited impact on educational policy and practice has been criticised. In this article, we analyse why systematic reviews do not benefit users of evidence more consistently and suggest how review teams…

  8. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Yu, Neng; Yan, Peng; Li, Yuguang; Zhou, Xuemei; Chen, Shuangling; Wang, Guiling; Wei, Tong; Fan, Zhuangjun

    2015-12-01

    In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg-1 at a power density of 188.8 W kg-1 within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g-1. These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance.

  9. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors.

    PubMed

    Ren, Xiaochuan; Guo, Chunli; Xu, Liqiang; Li, Taotao; Hou, Lifeng; Wei, Yinghui

    2015-09-16

    Three-dimensional (3D) hierarchical nanostructures have been demonstrated as one of the most ideal electrode materials in energy storage systems due to the synergistic combination of the advantages of both nanostructures and microstructures. In this study, the honeycomb-like mesoporous NiO microspheres as promising cathode materials for supercapacitors have been achieved using a hydrothermal reaction, followed by an annealing process. The electrochemical tests demonstrate the highest specific capacitance of 1250 F g(-1) at 1 A g(-1). Even at 5 A g(-1), a specific capacitance of 945 F g(-1) with 88.4% retention after 3500 cycles was obtained. In addition, the 3D porous graphene (reduced graphene oxide, rGO) has been prepared as an anode material for supercapacitors, which displays a good capacitance performance of 302 F g(-1) at 1 A g(-1). An asymmetric supercapacitor has been successfully fabricated based on the honeycomb-like NiO and rGO. The asymmetric supercapacitor achieves a remarkable performance with a specific capacitance of 74.4 F g(-1), an energy density of 23.25 Wh kg(-1), and a power density of 9.3 kW kg(-1), which is able to light up a light-emitting diode.

  10. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.

    PubMed

    Fu, Wenbin; Han, Weihua; Zha, Heming; Mei, Junfeng; Li, Yunxia; Zhang, Zemin; Xie, Erqing

    2016-09-21

    Nanostructured metal sulfides with excellent electrochemical activity and electrical conductivity are particularly promising for applications in high-performance energy storage devices. Here, we report on the facile synthesis of nanostructured CuS networks composed of interconnected nanoparticles as novel battery-type materials for asymmetric supercapacitors. We find that the CuS networks exhibit a high specific capacity of 49.8 mA g(-1) at a current density of 1 A g(-1), good rate capability and cycle stability. The superior performance could be attributed to the interconnected nanoparticles of CuS networks, which can facilitate electrolyte diffusion and provide fast electron pathways. Furthermore, an aqueous asymmetric supercapacitor has been assembled by using the CuS networks as the positive electrode and activated carbon as the negative electrode. The assembled device can work at a high operating voltage of 1.6 V and show a maximum energy density of 17.7 W h kg(-1) at a power density of 504 W kg(-1). This study indicates that the CuS networks have great potential for supercapacitor applications.

  11. Biocatalytic organic synthesis of optically pure (S)-scoulerine and berbine and benzylisoquinoline alkaloids.

    PubMed

    Schrittwieser, Joerg H; Resch, Verena; Wallner, Silvia; Lienhart, Wolf-Dieter; Sattler, Johann H; Resch, Jasmin; Macheroux, Peter; Kroutil, Wolfgang

    2011-08-19

    A chemoenzymatic approach for the asymmetric total synthesis of the title compounds is described that employs an enantioselective oxidative C-C bond formation catalyzed by berberine bridge enzyme (BBE) in the asymmetric key step. This unique reaction yielded enantiomerically pure (R)-benzylisoquinoline derivatives and (S)-berbines such as the natural product (S)-scoulerine, a sedative and muscle relaxing agent. The racemic substrates rac-1 required for the biotransformation were prepared in 4-8 linear steps using either a Bischler-Napieralski cyclization or a C1-Cα alkylation approach. The chemoenzymatic synthesis was applied to the preparation of fourteen enantiomerically pure alkaloids, including the natural products (S)-scoulerine and (R)-reticuline, and gave overall yields of up to 20% over 5-9 linear steps.

  12. Synthesis and preliminary pharmacological evaluation of asymmetric chloroquine analogues.

    PubMed

    Witiak, D T; Grattan, D A; Heaslip, R J; Rahwan, R G

    1981-06-01

    Asymmetric chloroquine analogues (1-4) were prepared of known absolute configuration in order to assess stereochemical influences on selected biological activities. Since chloroquine has been shown to possess spasmolytic properties, analogues 1-4 were tested for similar pharmacological effects on smooth-muscle contraction. The (S)- and (R)-chlorochloroquine enantiomers (1 and 2, respectively) were more potent antispasmodics than the less lipophilic (S)- and (R)-hydroxychloroquines (3 and 4, respectively) when tested against KCl- or acetylcholine-induced contractions of the isolated mouse ileum. A membrane stabilizing mechanism of action for the chloroquine analogues is proposed since neither cellular toxicity nor calcium antagonism plays a role in the spasmolytic action of these compounds. Although compounds 1-4 also inhibited PGF2 alpha-induced contractions of the ileum, 1 was significantly more potent than 2; the latter in turn was equipotent to 3 and 4. It is tentatively proposed that 1 may possess stereoselective affinity for the PGF2 alpha receptor in the ileum. This observation may be further exploited to obtain more selective profiles of biological activity through molecular manipulation.

  13. Asymmetric total synthesis of (+)-fusarisetin A via the intramolecular Pauson-Khand reaction.

    PubMed

    Huang, Jun; Fang, Lichao; Long, Rong; Shi, Li-Li; Shen, Hong-Juan; Li, Chuang-chuang; Yang, Zhen

    2013-08-02

    An asymmetic total synthesis of (+)-fusarisetin A has been achieved. The essential to our strategy was the application of the intramolecular Pauson-Khand reaction for the stereoselective construction of the trans-decalin subunit of (+)-fusarisetin A with a unique C16 quarternary chiral center. The developed chemistry offers an alternative to the IMDA reaction that has been used for fusarisetin A, and is applicable to analogue synthesis for biological evaluation.

  14. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.

    PubMed

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-04-21

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO₂) of graphene nanoribbons (GNR) and MnO₂ nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO₂ nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO₂ hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO₂ hybrid, the optimized GNR//GNR-MnO₂ asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO₂ asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg(-1) (at a power density of 12.1 kW kg(-1)), compared with that of the symmetric cells based on GNR-MnO₂ hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO₂ nanoparticles and the high electrical conductivity of the GNRs.

  15. Phellilane L, Sesquiterpene Metabolite of Phellinus linteus: Isolation, Structure Elucidation, and Asymmetric Total Synthesis.

    PubMed

    Ota, Koichiro; Yamazaki, Ikuma; Saigoku, Takahiro; Fukui, Mei; Miyata, Tomoki; Kamaike, Kazuo; Shirahata, Tatsuya; Mizuno, Fumi; Asada, Yoshihisa; Hirotani, Masao; Ino, Chieko; Yoshikawa, Takafumi; Kobayashi, Yoshinori; Miyaoka, Hiroaki

    2017-12-01

    A new cyclopropane-containing sesquiterpenoid, phellilane L (1), was isolated from the medicinal mushroom Phellinus linteus ("Meshimakobu" in Japanese), a member of the Hymenochaetaceae family and a well-known fungus that is widely used in East Asia. The planar structure of 1 was determined on the basis of spectroscopic analysis. The authors achieved the first total synthesis of 1. Our protecting group-free synthesis features a highly stereoselective one-pot synthesis involving an intermolecular alkylation/cyclization/lactonization strategy for construction of the key cyclopropane-γ-lactone intermediate. Additionally, our synthesis determined the absolute configuration of phellilane L (1).

  16. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-09-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  17. Novel stereocontrolled approach to syn- and anti-oxepene-cyclogeranyl trans-fused polycyclic systems: asymmetric total synthesis of (-)-Aplysistatin, (+)-Palisadin A, (+)-Palisadin B, (+)-12-hydroxy-palisadin B, and the AB ring system of adociasulfate-2 and toxicol A.

    PubMed

    Couladouros, Elias A; Vidali, Veroniki P

    2004-08-06

    A new stereocontrolled method for the formation of trans-anti cyclogeranyl-oxepene systems is described. The demanding stereochemistry is secured by stereoselective coupling of a cyclogeranyl tertiary alcohol with a 1,2-unsymmetrically substituted epoxide, while the formation of the highly strained oxepene is achieved employing ring-closing metathesis. Since the stereochemistry of the trans-fused 6,7-ring system is determined by the epoxide, the method also allows the construction of trans-syn 6,7-ring systems. This approach leads to the synthesis of the AB fragment of Adociasulfate-2 and Toxicol A, for the first time. The flexibility and efficiency of the presented strategy is demonstrated by the total asymmetric synthesis of (-)-Aplysistatin, (+)-Palisadin A, (+)-12-hydroxy-Palisadin B, and (+)-Palisadin B, employing two similar key intermediates.

  18. Enhanced Stereoselectivity of a Cu(II) Complex Chiral Auxiliary in the Synthesis of Fmoc-L-γ-carboxyglutamic Acid | Center for Cancer Research

    Cancer.gov

    Bridging bioinorganic chemistry with asymmetric synthesis: a naturally occurring metalloprotein is used for the structure-based evolution of chiral auxiliaries that prove to be effective in the synthesis of Fmoc-L-γ-carboxyglutamic acid.

  19. Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates

    PubMed Central

    Schäfer, Philipp; Palacin, Thomas; Sidera, Mireia; Fletcher, Stephen P.

    2017-01-01

    Using asymmetric catalysis to simultaneously form carbon–carbon bonds and generate single isomer products is strategically important. Suzuki-Miyaura cross-coupling is widely used in the academic and industrial sectors to synthesize drugs, agrochemicals and biologically active and advanced materials. However, widely applicable enantioselective Suzuki-Miyaura variations to provide 3D molecules remain elusive. Here we report a rhodium-catalysed asymmetric Suzuki-Miyaura reaction with important partners including aryls, vinyls, heteroaromatics and heterocycles. The method can be used to couple two heterocyclic species so the highly enantioenriched products have a wide array of cores. We show that pyridine boronic acids are unsuitable, but they can be halogen-modified at the 2-position to undergo reaction, and this halogen can then be removed or used to facilitate further reactions. The method is used to synthesize isoanabasine, preclamol, and niraparib—an anticancer agent in several clinical trials. We anticipate this method will be a useful tool in drug synthesis and discovery. PMID:28607510

  20. Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates

    NASA Astrophysics Data System (ADS)

    Schäfer, Philipp; Palacin, Thomas; Sidera, Mireia; Fletcher, Stephen P.

    2017-06-01

    Using asymmetric catalysis to simultaneously form carbon-carbon bonds and generate single isomer products is strategically important. Suzuki-Miyaura cross-coupling is widely used in the academic and industrial sectors to synthesize drugs, agrochemicals and biologically active and advanced materials. However, widely applicable enantioselective Suzuki-Miyaura variations to provide 3D molecules remain elusive. Here we report a rhodium-catalysed asymmetric Suzuki-Miyaura reaction with important partners including aryls, vinyls, heteroaromatics and heterocycles. The method can be used to couple two heterocyclic species so the highly enantioenriched products have a wide array of cores. We show that pyridine boronic acids are unsuitable, but they can be halogen-modified at the 2-position to undergo reaction, and this halogen can then be removed or used to facilitate further reactions. The method is used to synthesize isoanabasine, preclamol, and niraparib--an anticancer agent in several clinical trials. We anticipate this method will be a useful tool in drug synthesis and discovery.

  1. Asymmetric or symmetric bilayer formation during oblique drop impact depends on rheological properties of saturated and unsaturated lipid monolayers.

    PubMed

    Vranceanu, Marcel; Terinte, Nicoleta; Nirschl, Hermann; Leneweit, Gero

    2011-02-01

    Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Enantioselective synthesis of pactamycin, a complex antitumor antibiotic.

    PubMed

    Malinowski, Justin T; Sharpe, Robert J; Johnson, Jeffrey S

    2013-04-12

    Medicinal application of many complex natural products is precluded by the impracticality of their chemical synthesis. Pactamycin, the most structurally intricate aminocyclopentitol antibiotic, displays potent antiproliferative properties across multiple phylogenetic domains, but it is highly cytotoxic. A limited number of analogs produced by genetic engineering technologies show reduced cytotoxicity against mammalian cells, renewing promise for therapeutic applications. For decades, an efficient synthesis of pactamycin amenable to analog derivatizations has eluded researchers. Here, we present a short asymmetric total synthesis of pactamycin. An enantioselective Mannich reaction and symmetry-breaking reduction sequence was designed to enable assembly of the entire carbon core skeleton in under five steps and control critical three-dimensional (stereochemical) functional group relationships. This modular route totals 15 steps and is immediately amenable for structural analog synthesis.

  3. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  4. Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer.

    PubMed

    Krishnan, Chandramouli; Ranganathan, Rajiv; Tetarbe, Manik

    2017-07-01

    Several studies have shown that learning a motor skill in one limb can transfer to the opposite limb-a phenomenon called as interlimb transfer. The transfer of motor skills between limbs, however, has shown to be asymmetric, where one side benefits to a greater extent than the other. While this phenomenon has been well-documented in the upper-extremity, evidence for interlimb transfer in the lower-extremity is limited and mixed. This study investigated the extent of interlimb transfer during walking, and tested whether this transfer was asymmetric using a foot trajectory-tracking paradigm that has been specifically used for gait rehabilitation. The paradigm involved learning a new gait pattern which required greater hip and knee flexion during the swing phase of the gait while walking on a treadmill. Twenty young adults were randomized into two equal groups, where one group (right-to-left: RL) practiced the task initially with the dominant right leg and the other group (left-to-right: LR) practiced the task initially with their non-dominant left leg. After training, both groups practiced the task with their opposite leg to test the transfer effects. The changes in tracking error on each leg were computed to quantify learning and transfer effects. The results indicated that practice with one leg improved the motor performance of the other leg; however, the amount of transfer was similar across groups, indicating that there was no asymmetry in transfer. This finding is contradictory to most upper-extremity studies (where asymmetric transfer has been reported) and points out that both differences in neural processes and types of tasks may mediate interlimb transfer. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Diversity-oriented asymmetric catalysis (DOAC): stereochemically divergent synthesis of thiochromanes using an imidazoline-aminophenol-nickel-catalyzed Michael/Henry reaction.

    PubMed

    Arai, Takayoshi; Yamamoto, Yushi

    2014-03-21

    The (S,S)-diphenylethylenediamine-derived imidazoline-aminophenol-Ni complex catalyzed tandem asymmetric Michael/Henry reaction of 2-mercaptobenzaldehydes with β-nitrostyrenes to give the corresponding (2S,3R,4R)-2-aryl-3-nitrothiochroman-4-ols in up to 99% diastereoselectivity with 95% ee was demonstrated in diversity-oriented asymmetric catalysis. Reduction of the nitro group of the chiral thiochromanes gave a new series of (2S,3R,4R)-3-amino-2-arylthiochroman-4-ols with retention of the strereoselectivity.

  6. Workplace culture and the practice experience of midwifery students: A meta-synthesis.

    PubMed

    Arundell, Fiona; Mannix, Judy; Sheehan, Athena; Peters, Kath

    2018-04-01

    To describe midwifery students' practice experience and to explore facilitators and barriers to positive clinical learning experiences. Practice experience is a vital component of every midwifery course. Course dissatisfaction and attrition of midwifery students has been attributed to sub-optimal practice experiences. Events or actions experienced by midwifery students that trigger dissatisfaction and attrition need to be identified. A meta-synthesis was based on that developed by Noblit and Hare. Students perceive workplaces as poorly prepared for their arrival and subsequent support. Students' experience in the practice setting is influenced by the existing workplace culture. Workplace culture influences institutional functioning and individuals within the culture. Enculturation of students into the midwifery culture and subsequent learning is affected by the support received. The practice experience of midwifery students was profoundly influenced by workplace culture. Students tended to have polarized accounts of their experience that were predominantly negative. To provide an optimal environment for midwifery students; midwifery managers and individual midwives need to be aware of the facilitators and barriers to midwifery student development in the practice setting. © 2017 John Wiley & Sons Ltd.

  7. One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-03-01

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO2 hybrid, the optimized GNR//GNR-MnO2 asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO2 asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg-1 (at a power density of 12.1 kW kg-1), compared with that of the symmetric cells based on GNR-MnO2 hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO2 nanoparticles and the high electrical conductivity of the GNRs.Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the

  8. The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Chu, Fulei

    2012-12-01

    It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.

  9. A Rhodium(I)-Xylyl-BINAP Catalyzed Asymmetric Ynamide-[2 + 2 + 2] Cycloaddition in the Synthesis of Optically Enriched N,O-Biaryls

    PubMed Central

    Oppenheimer, Jossian; Johnson, Whitney L.; Figueroa, Ruth; Hayashi, Ryuji; Hsung, Richard P.

    2009-01-01

    A rhodium(I)-xylyl-BINAP catalyzed asymmetric [2 + 2 + 2] cycloaddition of achiral conjugated aryl ynamides with various diynes is described here. This asymmetric cycloaddition provides a series of structurally interesting chiral N,O-biaryls with excellent enantioselectivity along with a modest diastereoselectivity with respect to both C-C and C-N axial chirality. PMID:20161177

  10. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    PubMed Central

    Focken, Thilo

    2014-01-01

    Summary A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents. PMID:25246946

  11. Diastereoselective Allylation of "N"-"Tert"-Butanesulfinyl Imines: An Asymmetric Synthesis Experiment for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Chen, Xiao-Yang; Sun, Li-Sen; Gao, Xiang; Sun, Xing-Wen

    2015-01-01

    An asymmetric synthetic experiment that encompasses both diastereoselectivity and enantioselectivity is described. In this experiment, Zn-mediated allylation of an ("R")-"N"-"tert"-butanesulfinyl imine is first performed to obtain either diastereomer using two different solvent systems, followed by oxidation of the…

  12. Providing Guided Practice in Discourse Synthesis

    ERIC Educational Resources Information Center

    Numrich, Carol; Kennedy, Alan S.

    2017-01-01

    In this article, the authors discuss the importance of the skill of synthesis in university-level writing. They outline specific challenges faced by students of English as a second language with synthesis as a writing skill. They then describe a lesson that they created for an English for academic purposes class for graduate students in the field…

  13. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-01

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage.This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny Zn

  14. Asymmetric Evolutionary Games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  15. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  16. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  17. Asymmetric Protonation of Cumulenolates: Synthesis of Allenyl Aldehydes Facilitated by an Organomanganese Auxiliary.

    PubMed

    Roy, Animesh; Bhat, Bilal A; Lepore, Salvatore D

    2016-03-18

    Chiral ammonium salts were used to catalyze the isomerization of organomanganese-complexed alkynyl aldehydes to chiral allenal building blocks in moderate to good enantiomeric excesses. Normally, conjugated alkynyl aldehydes do not isomerize to their thermodynamically less stable allene isomers. However, with a manganese auxiliary in place to promote allene formation, asymmetric protonation of cumulenolate intermediates was realized using a variety of cinchonidinium salts in a weakly basic biphasic reaction system. Optimal results were realized using a novel cinchonidinium geranyl derivative with its C-9 hydroxyl group playing a crucial role in enantioselectivity.

  18. Synthesis and spectroscopic properties of novel asymmetric Schiff bases.

    PubMed

    Güngör, Ozlem; Gürkan, Perihan

    2010-09-15

    Three novel diimine Schiff bases including two asymmetric imines (2-OH)R-CHN-C(6)H(4)-CHN-R'(2-OH) type [where R=R'=phenyl for H(2)L(1); R=naphthyl, R'=phenyl for H(2)L(2) and R=R'=naphthyl for H(2)L(3)] have been synthesized with a new two step method. For this purpose, the starting Schiff bases 4-nitrobenzylidene-2-hydroxyaniline (SB(1)-NO(2)) and 4-nitrobenzylidene-2-hydroxy-3-naphthylamine (SB(2)-NO(2)) have been synthesized, previously. Nitro groups of them have been reduced into their amino derivatives (SB(1)-NH(2) and SB(2)-NH(2)) with sodium dithionite as selective reductant and the other imino groups have been formed by adding salicylaldehyde or 2-hydroxy-1-naphthaldehyde to the same solutions. The structures of the diimine Schiff bases were confirmed by elemental analyses, ESI-MS, FT-IR, (1)H NMR and (13)C NMR spectroscopy. The phenol-imine and keto-amine tautomerism of the Schiff bases were investigated by FT-IR, (1)H NMR, (13)C NMR techniques and UV-vis spectra in different solvents (DMSO, methanol, chloroform, toluene and cyclohexane). The effects of acidic and basic media on the tautomeric equilibria were discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Engineering acyclic stereocontrol in the alkylation of vinylglycine-derived dianions: asymmetric synthesis of higher alpha-vinyl amino acids.

    PubMed

    Berkowitz, D B; McFadden, J M; Sloss, M K

    2000-05-19

    , valine, and norvaline. The lysine side chain is elaborated via a 4-step sequence from the alkylation product obtained with 1-chloro-4-iodobutane as electrophile. Importantly, to our knowledge, this work represents the first asymmetric synthesis of L-alpha-vinyl analogues of m-tyrosine, ornithine, and lysine, known time-dependent inhibitors for amino acid decarboxylases.

  20. Asymmetric ion trap

    DOEpatents

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  1. Asymmetric ion trap

    DOEpatents

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  2. Highly stereoselective construction of the C2 stereocentre of α-tocopherol (vitamin E) by asymmetric addition of Grignard reagents to ketones.

    PubMed

    Bieszczad, Bartosz; Gilheany, Declan G

    2017-08-09

    Tertiary alcohol precursors of both C2 diastereoisomers of α-tocopherol were prepared in three ways by our recently reported asymmetric Grignard synthesis. The versatility of Grignard chemistry inherent in its three-way disconnection was exploited to allow the synthesis of three product grades: 77 : 23 dr (5 steps), 81 : 19 dr (5 steps) and 96 : 4 dr (7 steps, one gram scale) from readily available and abundant starting materials. The products were converted to their respective α-tocopherols in 3 steps, which allowed a definitive re-assignment of their absolute configurations.

  3. Seeing left- or right-asymmetric tail wagging produces different emotional responses in dogs.

    PubMed

    Siniscalchi, Marcello; Lusito, Rita; Vallortigara, Giorgio; Quaranta, Angelo

    2013-11-18

    Left-right asymmetries in behavior associated with asymmetries in the brain are widespread in the animal kingdom, and the hypothesis has been put forward that they may be linked to animals' social behavior. Dogs show asymmetric tail-wagging responses to different emotive stimuli-the outcome of different activation of left and right brain structures controlling tail movements to the right and left side of the body. A crucial question, however, is whether or not dogs detect this asymmetry. Here we report that dogs looking at moving video images of conspecifics exhibiting prevalent left- or right-asymmetric tail wagging showed higher cardiac activity and higher scores of anxious behavior when observing left- rather than right-biased tail wagging. The finding that dogs are sensitive to the asymmetric tail expressions of other dogs supports the hypothesis of a link between brain asymmetry and social behavior and may prove useful to canine animal welfare theory and practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Ahuja, Preety; Ujjain, Sanjeev Kumar; Kanojia, Rajni

    2018-01-01

    This paper reports the interaction of 3d-4d transition metal mixed oxide as simultaneous existence of M(3d) and M(4d) expectedly enhance the electrochemical performance of the resulting composite. Electrochemical performance of MnO2-RuO2 nanoflakes reduced graphene oxide nanoribbon composite (MnO2-RuO2@GNR) is intensively explored in symmetric and asymmetric supercapacitor assembly. In situ incorporation of graphene oxide nanoribbon (GONR) during synthesis provides efficient binding sites for growth of MnO2-RuO2 nanoflakes via their surface functionalities. The interconnected MnO2-RuO2 nanoflakes via GNR form a network with enhanced diffusion kinetics leading to efficient supercapacitor performance. Fabricated asymmetric supercapacitor reveals energy density 60 Wh kg-1 at power density 14 kW kg-1. Based on the analysis of impedance data in terms of complex power, quick response time of supercapacitor reveals excellent power delivery of the device. Improved cycling stability after 7000 charge discharge cycles for symmetric and asymmetric supercapacitor highlights the buffering action of GNR and can be generalized for next generation high performance supercapacitor.

  5. The Reception of J. H. van't Hoff's Theory of the Asymmetric Carbon Atom

    ERIC Educational Resources Information Center

    Snelders, H. A. M.

    1974-01-01

    Discusses Jacobus Henricus van't Hoff's revolutionary theory of the asymmetric carbon atom and its early reception among his contemporaries in the Netherlands. Indicates that the extension of the new idea to practical problems gives the impetus to the development of stereochemistry. (CC)

  6. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    PubMed

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging.

    PubMed

    Raszeja, Lukasz J; Siegmund, Daniel; Cordes, Anna L; Güldenhaupt, Jörn; Gerwert, Klaus; Hahn, Stephan; Metzler-Nolte, Nils

    2017-01-16

    The synthesis and photophysical properties of a novel series of rhenium tricarbonyl complexes based on tridentate phenanthridinyl-containing ligands are described. Photophysical data reveal beneficial luminescence behaviour especially for compounds with an asymmetric ligand set. These advantageous properties are not limited to organic solvents, but indeed also improved in aqueous solutions. The suitability of our new rhenium complexes as potent imaging agents has been confirmed by fluorescence microscopy on living cancer cells, which also confirms superior long-time stability under fluorescence microscopy conditions. Colocalisation studies with commercial organelle stains reveal an accumulation of the complexes in the endoplasmic reticulum for all tested cell lines.

  8. Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise.

    PubMed

    Wang, Hui; Cheng, Xiujun; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan

    2018-01-01

    This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β≈-0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.

  9. Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Cheng, Xiujun; Duan, Jinqiao; Kurths, Jürgen; Li, Xiaofan

    2018-01-01

    This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β ≈ - 0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.

  10. Asymmetric intergroup bullying: The enactment and maintenance of societal inequality at work.

    PubMed

    Soylu, Soydan; Sheehy-Skeffington, Jennifer

    2015-07-01

    What does inequality mean for dysfunctional organizational behaviours, such as workplace bullying? This article argues that workplace bullying can be understood as a manifestation of intergroup dynamics originating beyond the organization. We introduce the construct of asymmetric intergroup bullying: the disproportionate mistreatment of members of low status groups, with the intended effect of enhancing the subordination of that group in society at large. Analysis of data from 38 interviews with public and private sector workers in Turkey depicts a pattern of asymmetric intergroup bullying, undertaken to achieve organizational and broader sociopolitical goals. Respondents reported bullying acts used to get rid of unwanted personnel, with the goal of avoiding severance pay, or of removing supporters of the former government from positions of political and economic influence. Bullying was also described as working towards the dominance of the sociocultural worldview of one political group over another. We discuss asymmetric intergroup bullying as one mechanism through which acute intergroup hierarchy in the broader society corrupts management practice and employee interactions, in turn exacerbating economic inequality along group lines.

  11. Asymmetric intergroup bullying: The enactment and maintenance of societal inequality at work

    PubMed Central

    Soylu, Soydan; Sheehy-Skeffington, Jennifer

    2015-01-01

    What does inequality mean for dysfunctional organizational behaviours, such as workplace bullying? This article argues that workplace bullying can be understood as a manifestation of intergroup dynamics originating beyond the organization. We introduce the construct of asymmetric intergroup bullying: the disproportionate mistreatment of members of low status groups, with the intended effect of enhancing the subordination of that group in society at large. Analysis of data from 38 interviews with public and private sector workers in Turkey depicts a pattern of asymmetric intergroup bullying, undertaken to achieve organizational and broader sociopolitical goals. Respondents reported bullying acts used to get rid of unwanted personnel, with the goal of avoiding severance pay, or of removing supporters of the former government from positions of political and economic influence. Bullying was also described as working towards the dominance of the sociocultural worldview of one political group over another. We discuss asymmetric intergroup bullying as one mechanism through which acute intergroup hierarchy in the broader society corrupts management practice and employee interactions, in turn exacerbating economic inequality along group lines. PMID:26819482

  12. Inclined asymmetric librations in exterior resonances

    NASA Astrophysics Data System (ADS)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  13. Asymmetric functional organozinc additions to aldehydes catalyzed by 1,1'-bi-2-naphthols (BINOLs).

    PubMed

    Pu, Lin

    2014-05-20

    Chiral alcohols are ubiquitous in organic structures. One efficient method to generate chiral alcohols is the catalytic asymmetric addition of a carbon nucleophile to a carbonyl compound since this process produces a C-C bond and a chiral center simultaneously. In comparison with the carbon nucleophiles such as an organolithium or a Grignard reagent, an organozinc reagent possesses the advantages of functional group tolerance and more mild reaction conditions. Catalytic asymmetric reactions of aldehydes with arylzincs, vinylzincs, and alkynylzincs to generate functional chiral alcohols are discussed in this Account. Our laboratory has developed a series of 1,1'-bi-2-naphthol (BINOL)-based chiral catalysts for the asymmetric organozinc addition to aldehydes. It is found that the 3,3'-dianisyl-substituted BINOLs are not only highly enantioselective for the alkylzinc addition to aldehydes, but also highly enantioselective for the diphenylzinc addition to aldehydes. A one-step synthesis has been achieved to incorporate Lewis basic amine groups into the 3,3'-positions of the partially hydrogenated H8BINOL. These H8BINOL-amine compounds have become more generally enantioselective and efficient catalysts for the diphenylzinc addition to aldehydes to produce various types of chiral benzylic alcohols. The application of the H8BINOL-amine catalysts is expanded by using in situ generated diarylzinc reagents from the reaction of aryl iodides with ZnEt2, which still gives high enantioselectivity and good catalytic activity. Such a H8BINOL-amine compound is further found to catalyze the highly enantioselective addition of vinylzincs, in situ generated from the treatment of vinyl iodides with ZnEt2, to aldehydes to give the synthetically very useful chiral allylic alcohols. We have discovered that the unfunctionalized BINOL in combination with ZnEt2 and Ti(O(i)Pr)4 can catalyze the terminal alkyne addition to aldehydes to produce chiral propargylic alcohols of high synthetic

  14. Diastereoselective auxiliary- and catalyst-controlled intramolecular aza-Michael reaction for the elaboration of enantioenriched 3-substituted isoindolinones. Application to the synthesis of a new pazinaclone analogue

    PubMed Central

    Sallio, Romain; Lebrun, Stéphane; Capet, Frédéric; Agbossou-Niedercorn, Francine

    2018-01-01

    A new asymmetric organocatalyzed intramolecular aza-Michael reaction by means of both a chiral auxiliary and a catalyst for stereocontrol is reported for the synthesis of optically active isoindolinones. A selected cinchoninium salt was used as phase-transfer catalyst in combination with a chiral nucleophile, a Michael acceptor and a base to provide 3-substituted isoindolinones in good yields and diastereomeric excesses. This methodology was applied to the asymmetric synthesis of a new pazinaclone analogue which is of interest in the field of benzodiazepine-receptor agonists. PMID:29623121

  15. Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.

  16. Enantioselective synthesis of allylic esters via asymmetric allylic substitution with metal carboxylates using planar-chiral cyclopentadienyl ruthenium catalysts.

    PubMed

    Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2010-02-03

    An asymmetric allylic substitution with sodium carboxylate using a planar-chiral cyclopentadienyl ruthenium complex has been developed. Optically active allylic esters were prepared in good yields with high regio- and enantioselectivities.

  17. Helicobacter pylori shows asymmetric and polar cell divisome assembly associated with DNA replisome.

    PubMed

    Kamran, Mohammad; Dubey, Priyanka; Verma, Vijay; Dasgupta, Santanu; Dhar, Suman K

    2018-05-09

    DNA replication and cell division are two fundamental processes in the life cycle of a cell. The majority of prokaryotic cells undergo division by means of binary fission in coordination with replication of the genome. Both processes, but especially their coordination, are poorly understood in Helicobacter pylori. Here, we studied the cell divisome assembly and the subsequent processes of membrane and peptidoglycan synthesis in the bacterium. To our surprise, we found the cell divisome assembly to be polar, which was well-corroborated by the asymmetric membrane and peptidoglycan synthesis at the poles. The divisome components showed its assembly to be synchronous with that of the replisome and the two remained associated throughout the cell cycle, demonstrating a tight coordination among chromosome replication, segregation and cell division in H. pylori. To our knowledge, this is the first report where both DNA replication and cell division along with their possible association have been demonstrated for this pathogenic bacterium. © 2018 Federation of European Biochemical Societies.

  18. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    magnesium ProPhenol complex was used to facilitate enantioselective diazoacetate aldol reactions with aryl, α,β-unsaturated, and aliphatic aldehydes. The utility of bimetallic ProPhenol catalysts was extended to asymmetric additions with a wide range of substrate combinations. Effective pronucleophiles include oxazolones, 2-furanone, nitroalkanes, pyrroles, 3-hydroxyoxindoles, alkynes, meso-1,3-diols, and dialkyl phosphine oxides. These substrates were found to be effective with a number of electrophiles, including aldehydes, imines, nitroalkenes, acyl silanes, vinyl benzoates, and α,β-unsaturated carbonyls. A truly diverse range of enantioenriched compounds have been prepared using the ProPhenol ligand, and the commercial availability of both ligand enantiomers makes it ideally suited for the synthesis of complex molecules. To date, enantioselective ProPhenol-catalyzed reactions have been used in the synthesis of more than 20 natural products. PMID:25650587

  19. Classroom Literacy Practices in Low- and Middle-Income Countries: An Interpretative Synthesis of Ethnographic Studies

    ERIC Educational Resources Information Center

    Nag, Sonali; Snowling, Margaret J.; Asfaha, Yonas Mesfun

    2016-01-01

    Surveys in low- and middle-income (LMI countries) reveal persistently low levels of learning among children in disadvantaged communities. Against this background, our synthesis of ethnographies aims at a fresh interpretation of classroom practices to clarify instruction-related barriers to literacy attainments. The review focuses on the period…

  20. Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques

    DOEpatents

    Wu, Hunter; Sealy, Kylee Devro; Sharp, Bryan Thomas; Gilchrist, Aaron

    2016-01-26

    A method and apparatus for LCL resonant converter control utilizing Asymmetric Voltage Cancellation is described. The methods to determine the optimal trajectory of the control variables are discussed. Practical implementations of sensing load parameters are included. Simple PI, PID and fuzzy logic controllers are included with AVC for achieving good transient response characteristics with output current regulation.

  1. Asymmetric cryptography based on wavefront sensing.

    PubMed

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  2. Coordinative Alignment of Chiral Molecules to Control over the Chirality Transfer in Spontaneous Resolution and Asymmetric Catalysis.

    PubMed

    Xia, Zhengqiang; Jing, Xu; He, Cheng; Wang, Xiaoge; Duan, Chunying

    2017-11-13

    The production and availability of enantiomerically pure compounds that spurred the development of chiral technologies and materials are very important to the fine chemicals and pharmaceutical industries. By coordinative alignment of enantiopure guests in the metal‒organic frameworks, we reported an approach to control over the chirality of homochiral crystallization and asymmetric transformation. Synthesized by achiral triphenylamine derivatives, the chirality of silver frameworks was determined by the encapsulated enantiopure azomethine ylides, from which clear interaction patterns were observed to explore the chiral induction principles. With the changing of addition sequence of substrates, the enantioselectivity of asymmetric cycloaddition was controlled to verify the determinant on the chirality of the bulky MOF materials. The economical chirality amplification that merges a series of complicated self-inductions, bulk homochiral crystallization and enantioselective catalysis opens new avenues for enantiopure chemical synthesis and provides a promising path for the directional design and development of homochiral materials.

  3. Transaminases for the synthesis of enantiopure beta-amino acids

    PubMed Central

    2012-01-01

    Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122

  4. Asymmetric soft-error resistant memory

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)

    1991-01-01

    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.

  5. Synthesis of an Imidazolidinone Organocatalyst and Its Application in a Diels-Alder Cycloaddition: A Multistep Experiment for the Organic Teaching Laboratory

    ERIC Educational Resources Information Center

    Murphy, John J.; Driver, Ross B.; Walsh, Ria; Stephens, John C.

    2016-01-01

    The development of novel, high-yielding, and selective methodologies for the asymmetric synthesis of stereocenters is at the forefront of modern synthetic chemistry research. Organocatalysis can now be viewed as a viable alternative to the use of the sometimes toxic transition-metal catalysts. In this experiment, the simple synthesis of an achiral…

  6. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  7. Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.

    PubMed

    Zhao, Enbo; Qin, Chuanli; Jung, Hong-Ryun; Berdichevsky, Gene; Nese, Alper; Marder, Seth; Yushin, Gleb

    2016-04-26

    Porous carbons suffer from low specific capacitance, while intercalation-type active materials suffer from limited rate when used in asymmetric supercapacitors. We demonstrate that nanoconfinement of intercalation-type lithium titanate (Li4Ti5O12) nanoparticles in carbon nanopores yielded nanocomposite materials that offer both high ion storage density and rapid ion transport through open and interconnected pore channels. The use of titanate increased both the gravimetric and volumetric capacity of porous carbons by more than an order of magnitude. High electrical conductivity of carbon and the small size of titanate crystals allowed the composite electrodes to achieve characteristic charge and discharge times comparable to that of the electric double-layer capacitors. The proposed composite synthesis methodology is simple, scalable, and applicable for a broad range of active intercalation materials, while the produced composite powders are compatible with commercial electrode fabrication processes.

  8. Diastereoselective synthesis of chiral 1,3-cyclohexadienals

    PubMed Central

    de la Granja, Ángela P.; Capitán, M. Carmen; Moro, R. F.; Marcos, Isidro S.; Garrido, Narciso M.; Sanz, Francisca; Calle, Emilio

    2018-01-01

    A novel approach to the production of chiral 1,3-cyclohexadienals has been developed. The organocatalysed asymmetric reaction of different β-disubstituted-α,β-unsaturated aldehydes with a chiral α,β-unsaturated aldehyde in the presence of a Jørgensen-Hayashi organocatalyst provides easy and stereocontrolled access to the cyclohexadienal backbone. This method allows for the synthesis of potential photoprotective chiral 1,3-cyclohexadienals and extra extended conjugation compounds in a simple manner. PMID:29438416

  9. Diastereoselective synthesis of chiral 1,3-cyclohexadienals.

    PubMed

    Urosa, Aitor; Tobal, Ignacio E; de la Granja, Ángela P; Capitán, M Carmen; Moro, R F; Marcos, Isidro S; Garrido, Narciso M; Sanz, Francisca; Calle, Emilio; Díez, David

    2018-01-01

    A novel approach to the production of chiral 1,3-cyclohexadienals has been developed. The organocatalysed asymmetric reaction of different β-disubstituted-α,β-unsaturated aldehydes with a chiral α,β-unsaturated aldehyde in the presence of a Jørgensen-Hayashi organocatalyst provides easy and stereocontrolled access to the cyclohexadienal backbone. This method allows for the synthesis of potential photoprotective chiral 1,3-cyclohexadienals and extra extended conjugation compounds in a simple manner.

  10. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  11. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, X. Z.; Xiang, H. J.

    2014-09-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the "asymmetric multiferroic." In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  12. Strong Asymmetric Limit of the Quasi-Potential of the Boundary Driven Weakly Asymmetric Exclusion Process

    NASA Astrophysics Data System (ADS)

    Bertini, Lorenzo; Gabrielli, Davide; Landim, Claudio

    2009-07-01

    We consider the weakly asymmetric exclusion process on a bounded interval with particles reservoirs at the endpoints. The hydrodynamic limit for the empirical density, obtained in the diffusive scaling, is given by the viscous Burgers equation with Dirichlet boundary conditions. In the case in which the bulk asymmetry is in the same direction as the drift due to the boundary reservoirs, we prove that the quasi-potential can be expressed in terms of the solution to a one-dimensional boundary value problem which has been introduced by Enaud and Derrida [16]. We consider the strong asymmetric limit of the quasi-potential and recover the functional derived by Derrida, Lebowitz, and Speer [15] for the asymmetric exclusion process.

  13. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow‐Generated Diazo Compounds and Propargylated Amines

    PubMed Central

    Poh, Jian‐Siang; Makai, Szabolcs; von Keutz, Timo; Tran, Duc N.; Battilocchio, Claudio; Pasau, Patrick

    2017-01-01

    Abstract We report herein the asymmetric coupling of flow‐generated unstabilized diazo compounds and propargylated amine derivatives, using a new pyridinebis(imidazoline) ligand, a copper catalyst and base. The reaction proceeds rapidly, generating chiral allenes in 10–20 minutes with high enantioselectivity (89–98 % de/ee), moderate yields and a wide functional group tolerance. PMID:28075518

  14. A synthesis of the "state-of-the-practice for advancing planning and operations integration opportunities within transportation agencies".

    DOT National Transportation Integrated Search

    2014-12-01

    Linking Planning and Operations is vital to improving transportation decision-making and overall : efficiency of transportation systems management. This synthesis summarizes current state of : knowledge and practices in Planning and Operations Integr...

  15. Chiral poly-rare earth metal complexes in asymmetric catalysis

    PubMed Central

    Shibasaki, Masakatsu

    2006-01-01

    Asymmetric catalysis is a powerful component of modern synthetic organic chemistry. To further broaden the scope and utility of asymmetric catalysis, new basic concepts for the design of asymmetric catalysts are crucial. Because most chemical reactions involve bond-formation between two substrates or moieties, high enantioselectivity and catalyst activity should be realized if an asymmetric catalyst can activate two reacting substrates simultaneously at defined positions. Thus, we proposed the concept of bifunctional asymmetric catalysis, which led us to the design of new asymmetric catalysts containing two functionalities (e.g. a Lewis acid and a Brønsted base or a Lewis acid and a Lewis base). These catalysts demonstrated broad reaction applicability with excellent substrate generality. Using our catalytic asymmetric reactions as keys steps, efficient total syntheses of pharmaceuticals and their biologically active lead natural products were achieved. PMID:25792774

  16. A General Asymmetric Formal Synthesis of Aza-Baylis-Hillman Type Products under Bifunctional Catalysis.

    PubMed

    Frías, María; Carrasco, Ana Cristina; Fraile, Alberto; Alemán, José

    2018-03-02

    A new organocatalytic strategy for the synthesis of enantioenriched aza-Baylis-Hillman type products via a frustrated vinylogous reaction is presented. This process proceeds under mild conditions with good yields, completed Z/E selectivity and excellent enantioselectivities. Moreover, easy derivatizations of the final products led to important building blocks of organic synthesis such as 1,3-aminoalcohols and Lewis base catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow-Generated Diazo Compounds and Propargylated Amines.

    PubMed

    Poh, Jian-Siang; Makai, Szabolcs; von Keutz, Timo; Tran, Duc N; Battilocchio, Claudio; Pasau, Patrick; Ley, Steven V

    2017-02-06

    We report herein the asymmetric coupling of flow-generated unstabilized diazo compounds and propargylated amine derivatives, using a new pyridinebis(imidazoline) ligand, a copper catalyst and base. The reaction proceeds rapidly, generating chiral allenes in 10-20 minutes with high enantioselectivity (89-98 % de/ee), moderate yields and a wide functional group tolerance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modified chiral triazolium salts for enantioselective benzoin cyclization of enolizable keto-aldehydes: synthesis of (+)-sappanone B.

    PubMed

    Takikawa, Hiroshi; Suzuki, Keisuke

    2007-07-05

    Asymmetric synthesis of (+)-sappanone B (1), a natural product with a 3-hydroxy chromanone structure, was achieved via enantioselective benzoin cyclization by using a modified Rovis catalyst and triethylamine. This catalyst enabled the successful benzoin cyclization of readily enolizable keto-aldehydes.

  19. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  20. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  1. A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device.

    PubMed

    Shinde, N M; Xia, Qi Xun; Yun, Je Moon; Singh, Saurabh; Mane, Rajaram S; Kim, Kwang-Ho

    2017-05-23

    The present study involves the synthesis of a bismuth oxide (Bi 2 O 3 ) electrode consisting of an arranged nano-platelets for evolving a flower-type surface appearance on nickel-foam (Bi 2 O 3 -Ni-F) by a simple, inexpensive, binder-free and one-step chemical bath deposition (CBD) method, popularly known as a wet chemical method. The as-prepared Bi 2 O 3 on Ni-foam, as an electrode material, demonstrates 557 F g -1 specific capacitance (SC, at 1 mA cm -2 ), of which 85% is retained even after 2000 cycles. With specific power density of 500 kW kg -1 , the Bi 2 O 3 -Ni-F electrode documents a specific energy density of 80 Wh kg -1 . Furthermore, a portable asymmetric supercapacitor device, i.e. a pencil-type cell consisting of Bi 2 O 3 -Ni-F as an anode and graphite as a cathode in 6 M KOH aqueous electrolyte solution, confirms 11 Wh kg -1 and 720 kW kg -1 specific energy and specific power densities, respectively. An easy and a simple synthesis approach for manufacturing a portable laboratory scale pencil-type supercapacitor device is a major outcome of this study, which can also be applied for ternary and quaternary metal oxides for recording an enhanced performance. In addition, we presented a demonstration of lighting a light emitting diode (LED) using a home-made pencil-type supercapacitor device which, finally, has confirmed the scaling and technical potentiality of Bi 2 O 3 -Ni-F in energy storage devices.

  2. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    PubMed

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  3. Asymmetric Functional Organozinc Additions to Aldehydes Catalyzed by 1,1′-Bi-2-naphthols (BINOLs)†

    PubMed Central

    2015-01-01

    Conspectus Chiral alcohols are ubiquitous in organic structures. One efficient method to generate chiral alcohols is the catalytic asymmetric addition of a carbon nucleophile to a carbonyl compound since this process produces a C–C bond and a chiral center simultaneously. In comparison with the carbon nucleophiles such as an organolithium or a Grignard reagent, an organozinc reagent possesses the advantages of functional group tolerance and more mild reaction conditions. Catalytic asymmetric reactions of aldehydes with arylzincs, vinylzincs, and alkynylzincs to generate functional chiral alcohols are discussed in this Account. Our laboratory has developed a series of 1,1′-bi-2-naphthol (BINOL)-based chiral catalysts for the asymmetric organozinc addition to aldehydes. It is found that the 3,3′-dianisyl-substituted BINOLs are not only highly enantioselective for the alkylzinc addition to aldehydes, but also highly enantioselective for the diphenylzinc addition to aldehydes. A one-step synthesis has been achieved to incorporate Lewis basic amine groups into the 3,3′-positions of the partially hydrogenated H8BINOL. These H8BINOL–amine compounds have become more generally enantioselective and efficient catalysts for the diphenylzinc addition to aldehydes to produce various types of chiral benzylic alcohols. The application of the H8BINOL–amine catalysts is expanded by using in situ generated diarylzinc reagents from the reaction of aryl iodides with ZnEt2, which still gives high enantioselectivity and good catalytic activity. Such a H8BINOL–amine compound is further found to catalyze the highly enantioselective addition of vinylzincs, in situ generated from the treatment of vinyl iodides with ZnEt2, to aldehydes to give the synthetically very useful chiral allylic alcohols. We have discovered that the unfunctionalized BINOL in combination with ZnEt2 and Ti(OiPr)4 can catalyze the terminal alkyne addition to aldehydes to produce chiral propargylic alcohols

  4. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang

    2016-04-01

    This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI

  5. Asymmetrical Capacitors for Propulsion

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Melcher, Cory; Winet, Edwin

    2004-01-01

    Asymmetrical Capacitor Thrusters have been proposed as a source of propulsion. For over eighty years, it has been known that a thrust results when a high voltage is placed across an asymmetrical capacitor, when that voltage causes a leakage current to flow. However, there is surprisingly little experimental or theoretical data explaining this effect. This paper reports on the results of tests of several Asymmetrical Capacitor Thrusters (ACTs). The thrust they produce has been measured for various voltages, polarities, and ground configurations and their radiation in the VHF range has been recorded. These tests were performed at atmospheric pressure and at various reduced pressures. A simple model for the thrust was developed. The model assumed the thrust was due to electrostatic forces on the leakage current flowing across the capacitor. It was further assumed that this current involves charged ions which undergo multiple collisions with air. These collisions transfer momentum. All of the measured data was consistent with this model. Many configurations were tested, and the results suggest general design principles for ACTs to be used for a variety of purposes.

  6. Convenient divergent strategy for the synthesis of TunePhos-type chiral diphosphine ligands and their applications in highly enantioselective Ru-catalyzed hydrogenations.

    PubMed

    Sun, Xianfeng; Zhou, Le; Li, Wei; Zhang, Xumu

    2008-02-01

    A convenient, divergent strategy for the synthesis of a series of modular and fine-tunable C3-TunePhos-type chiral diphosphine ligands and their applications in highly efficient Ru-catalyzed asymmetric hydrogenations were explored. Up to 97 and 99% ee values were achieved for the enantioselective synthesis of beta-methyl chiral amines and alpha-hydroxy acid derivatives, respectively.

  7. Asymmetric collimation: Dosimetric characteristics, treatment planning algorithm, and clinical applications

    NASA Astrophysics Data System (ADS)

    Kwa, William

    1998-11-01

    In this thesis the dosimetric characteristics of asymmetric fields are investigated and a new computation method for the dosimetry of asymmetric fields is described and implemented into an existing treatment planning algorithm. Based on this asymmetric field treatment planning algorithm, the clinical use of asymmetric fields in cancer treatment is investigated, and new treatment techniques for conformal therapy are developed. Dose calculation is verified with thermoluminescent dosimeters in a body phantom. In this thesis, an analytical approach is proposed to account for the dose reduction when a corresponding symmetric field is collimated asymmetrically to a smaller asymmetric field. This is represented by a correction factor that uses the ratio of the equivalent field dose contributions between the asymmetric and symmetric fields. The same equation used in the expression of the correction factor can be used for a wide range of asymmetric field sizes, photon energies and linear accelerators. This correction factor will account for the reduction in scatter contributions within an asymmetric field, resulting in the dose profile of an asymmetric field resembling that of a wedged field. The output factors of some linear accelerators are dependent on the collimator settings and whether the upper or lower collimators are used to set the narrower dimension of a radiation field. In addition to this collimator exchange effect for symmetric fields, asymmetric fields are also found to exhibit some asymmetric collimator backscatter effect. The proposed correction factor is extended to account for these effects. A set of correction factors determined semi-empirically to account for the dose reduction in the penumbral region and outside the radiated field is established. Since these correction factors rely only on the output factors and the tissue maximum ratios, they can easily be implemented into an existing treatment planning system. There is no need to store either

  8. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols.

    PubMed

    Shi, Shi-Liang; Wong, Zackary L; Buchwald, Stephen L

    2016-04-21

    The chirality, or 'handedness', of a biologically active molecule can alter its physiological properties. Thus it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation. Despite many advances in asymmetric synthesis, developing general and practical strategies for obtaining all possible stereoisomers of an organic compound that has multiple contiguous stereocentres remains a challenge. Here, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, we synthesized these amino-alcohol products using sequential, copper-hydride-catalysed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino-alcohol products, which contain up to three contiguous stereocentres. We leveraged catalyst control and stereospecificity simultaneously to attain exceptional control of the product stereochemistry. Beyond the immediate utility of this protocol, our strategy could inspire the development of methods that provide complete sets of stereoisomers for other valuable synthetic targets.

  9. Asymmetric lasing at spectral singularities

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2018-03-01

    Scattering coefficients can diverge at spectral singularities. In such situation, the stationary solution becomes a laser solution with outgoing waves only. We explore a parity-time (PT )-symmetric non-Hermitian two-arm Aharonov-Bohm interferometer consisting of three coupled resonators enclosing synthetic magnetic flux. The synthetic magnetic flux does not break the PT symmetry, which protects the symmetric transmission. The features and conditions of symmetric, asymmetric, and unidirectional lasing at spectral singularities are discussed. We elucidate that lasing affected by the interference is asymmetric; asymmetric lasing is induced by the interplay between the synthetic magnetic flux and the system's non-Hermiticity. The product of the left and right transmissions is equal to that of the reflections. Our findings reveal that the synthetic magnetic flux affects light propagation, and the results can be applied in the design of lasing devices.

  10. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    PubMed

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  11. Recent efforts directed to the development of more sustainable asymmetric organocatalysis.

    PubMed

    Hernández, José G; Juaristi, Eusebio

    2012-06-04

    In line with the principles of "green" chemistry, organocatalysis seeks to reduce energy consumption and to optimize the use of the available resources, aiming to become a sustainable strategy in chemical transformations. Nevertheless, during the last decade diverse experimental protocols have made organocatalysis an even "greener" alternative by the use of friendlier reaction conditions, or via the application of solvent-free methodologies, or through the design and synthesis of more selective catalysts, or via the development of multicomponent one-pot organocatalytic reactions, or by the recycling and reuse of organocatalysts, or by means of the application of more energy-efficient activation techniques, among other approaches. In this feature article we review some of the remarkable advancements that have made it possible to develop even more sustainable asymmetric organocatalyzed methodologies.

  12. Development of A Concise Synthesis of (−)-Oseltamivir (Tamiflu®)

    PubMed Central

    Trost, Barry M.; Zhang, Ting

    2011-01-01

    We report a full account of our work towards the development of an eight-step synthesis of anti-influenza drug (−)-oseltamivir (Tamiflu®) from commercially available starting material. The final synthetic route proceeds with an overall yield of 30 %. Key transformations include a novel palladium-catalyzed asymmetric allylic alkylation reaction (Pd-AAA) as well as a rhodium-catalyzed chemo-, regio-, and stereoselective aziridination reaction. PMID:21365707

  13. Synthesis of α,α-Difluorinated Phosphonate pSer/pThr Mimetics via Rhodium-Catalyzed Asymmetric Hydrogenation of β-Difluorophosphonomethyl α-(Acylamino)acrylates.

    PubMed

    Chen, Hong-Xue; Kang, Jie; Chang, Rong; Zhang, Yun-Lai; Duan, Hua-Zhen; Li, Yan-Mei; Chen, Yong-Xiang

    2018-06-01

    A novel and facile synthetic strategy for α,α-difluorinated phosphonate mimetics of phosphoserine/phosphothreonine utilizing rhodium-catalyzed asymmetric hydrogenation was developed. The dehydrogenated substrate β-difluorophosphonomethyl α-(acylamino)acrylates were first prepared from protected serine/threonine followed by asymmetric hydrogenation using the rhodium-DuPhos catalytic system to generate the chiral center(s). These important phosphonate building blocks were successfully incorporated into phosphatase-resistant peptides, which displayed similar inhibition to the 14-3-3 ζ protein as the parent pSer/pThr peptides.

  14. Asymmetric nucleophilic monofluorobenzylation of carbonyl compounds: synthesis of enantiopure vic-fluorohydrins and α-fluorobenzylketones.

    PubMed

    Arroyo, Yolanda; Sanz-Tejedor, M Ascensión; Parra, Alejandro; García Ruano, José Luis

    2012-04-23

    Asymmetric nucleophilic monofluoroalkylation of a broad range of aldehydes with an α-fluoro-γ-sulfinylbenzyl carbanion takes place with complete control of the facial selectivity at the carbanion and good to high anti-diastereoselectivity to give easily separable mixtures of two optically pure 1,2-fluorohydrin derivatives (up to 24:1 anti/syn). Separation and removal of the p-tolylsulfinyl group with tBuLi provides enantiomerically pure anti-1,2-disubstituted-1,2-fluorohydrins, whereas α-fluorobenzylketones can be obtained by desulfinylation of the mixture followed by pyridinium chlorochromate oxidation (one-pot process). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity.

    PubMed

    Thomas, John Meurig; Raja, Robert

    2008-06-01

    In the mid-1990s, it became possible to prepare high-area silicas having pore diameters controllably adjustable in the range ca. 20-200 Å. Moreover, the inner walls of these nanoporous solids could be functionalized to yield single-site, chiral, catalytically active organometallic centers, the precise structures of which could be determined using in situ X-ray absorption and FTIR and multinuclear magic angle spinning (MAS) NMR spectroscopy. This approach opened up the prospect of performing heterogeneous enantioselective conversions in a novel manner, under the spatial restrictions imposed by the nanocavities within which the reactions occur. In particular, it suggested an alternative method for preparing pharmaceutically and agrochemically useful asymmetric products by capitalizing on the notion, initially tentatively perceived, that spatial confinement of prochiral reactants (and transition states formed at the chiral active center) would provide an altogether new method of boosting the enantioselectivity of the anchored chiral catalyst. Initially, we anchored chiral single-site heterogeneous catalysts to nanopores covalently via a ligand attached to Pd(II) or Rh(I) centers. Later, we employed a more convenient and cheaper electrostatic method, relying in part on strong hydrogen bonding. This Account provides many examples of these processes, encompassing hydrogenations, oxidations, and aminations. Of particular note is the facile synthesis from methyl benzoylformate of methyl mandelate, which is a precursor in the synthesis of pemoline, a stimulant of the central nervous system; our procedure offers several viable methods for reducing ketocarboxylic acids. In addition to relying on earlier (synchrotron-based) in situ techniques for characterizing catalysts, we have constructed experimental procedures involving robotically controlled catalytic reactors that allow the kinetics of conversion and enantioselectivity to be monitored continually, and we have access to

  16. Vortex Dynamics of Asymmetric Heave Plates

    NASA Astrophysics Data System (ADS)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  17. Catalytic asymmetric Michael reactions promoted by a lithium-free lanthanum-BINOL complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, Hiroaki; Arai, Takayoshi; Shibasaki, Masakatsu

    1994-02-23

    In this communication, we report about a new lithium-free BINOL-lanthanum complex, which is quite effective in catalytic asymmetric Michael reaction. We have succeeded in developing effective asymmetric base catalysts, in particular, asymmetric ester enolate catalysts for asymmetric Michael reactions. Two asymmetric lanthanum complexes are now available, namely, BINOL-lanthanum-lithium complex, which is quite effective in catalytic asymmetric nitrosaldol reactions, and a new lithium-free BINOL-lanthanum ester enolate complex, that is very effective in catalytic asymmetric Michael reactions. The two complexes complement each other in their ability to catalyze asymmetric nitroaldol and asymmetric Michael reactions. 14 refs., 1 fig., 2 tabs.

  18. Exploring the Scope of Asymmetric Synthesis of β-Hydroxy-γ-lactams via Noyori-type Reductions.

    PubMed

    Lynch, Denis; Deasy, Rebecca E; Clarke, Leslie-Ann; Slattery, Catherine N; Khandavilli, U B Rao; Lawrence, Simon E; Maguire, Anita R; Magnus, Nicholas A; Moynihan, Humphrey A

    2016-10-07

    Enantio- and diastereoselective hydrogenation of β-keto-γ-lactams with a ruthenium-BINAP catalyst, involving dynamic kinetic resolution, has been employed to provide a general, asymmetric approach to β-hydroxy-γ-lactams, a structural motif common to several bioactive compounds. Full conversion to the desired β-hydroxy-γ-lactams was achieved with high diastereoselectivity (up to >98% de) by addition of catalytic HCl and LiCl, while β-branching of the ketone substituent demonstrated a pronounced effect on the modest to excellent enantioselectivity (up to 97% ee) obtained.

  19. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  20. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  1. Subcopula-based measure of asymmetric association for contingency tables.

    PubMed

    Wei, Zheng; Kim, Daeyoung

    2017-10-30

    For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  3. Rhinoplasty: The Asymmetric Crooked Nose-An Overview.

    PubMed

    Kosins, Aaron M; Daniel, Rollin K; Nguyen, Dananh P

    2016-08-01

    There are three reasons why the asymmetric crooked nose is one of the greatest challenges in rhinoplasty surgery. First, the complexity of the problem is not appreciated by the patient nor understood by the surgeon. Patients often see the obvious deviation of the nose, but not the distinct differences between the right and left sides. Surgeons fail to understand and to emphasize to the patient that each component of the nose is asymmetric. Second, these deformities can be improved, but rarely made flawless. For this reason, patients are told that the result will be all "-er words," better, straighter, cuter, but no "t-words," there is no perfect nor straight. Most surgeons fail to realize that these cases represent asymmetric noses on asymmetric faces with the variable of ipsilateral and contralateral deviations. Third, these cases demand a wide range of sophisticated surgical techniques, some of which have a minimal margin of error. This article offers an in-depth look at analysis, preoperative planning, and surgical techniques available for dealing with the asymmetric crooked nose. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Asymmetric distances for binary embeddings.

    PubMed

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  5. The Catalytic Asymmetric Intramolecular Stetter Reaction

    PubMed Central

    de Alaniz, Javier Read; Rovis, Tomislav

    2010-01-01

    This account chronicles our efforts at the development of a catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows. PMID:20585467

  6. Defect-free ultrahigh flux asymmetric membranes

    DOEpatents

    Pinnau, Ingo; Koros, William J.

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  7. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat

  8. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  9. Method development of damage detection in asymmetric buildings

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  10. Kinetic resolution and stereoselective synthesis of 3-substituted aspartic acids by using engineered methylaspartate ammonia lyases.

    PubMed

    Raj, Hans; Szymanski, Wiktor; de Villiers, Jandré; Puthan Veetil, Vinod; Quax, Wim J; Shimamoto, Keiko; Janssen, Dick B; Feringa, Ben L; Poelarends, Gerrit J

    2013-08-19

    Enzymatic amino acid synthesis: Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described. These biocatalytic methodologies for the selective preparation of aspartic acid derivatives appear to be attractive alternatives for existing chemical methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.

    PubMed

    Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-02-25

    Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.

  12. Survey of beta-particle interaction experiments with asymmetric matter

    NASA Astrophysics Data System (ADS)

    Van Horn, J. David; Wu, Fei

    2018-05-01

    Asymmetry is a basic property found at multiple scales in the universe. Asymmetric molecular interactions are fundamental to the operation of biological systems in both signaling and structural roles. Other aspects of asymmetry are observed and useful in many areas of science and engineering, and have been studied since the discovery of chirality in tartrate salts. The observation of parity violation in beta decay provided some impetus for later experiments using asymmetric particles. Here we survey historical work and experiments related to electron (e-) or positron (e+) polarimetry and their interactions with asymmetric materials in gas, liquid and solid forms. Asymmetric interactions may be classified as: 1) stereorecognition, 2) stereoselection and 3) stereoinduction. These three facets of physical stereochemistry are unique but interrelated; and examples from chemistry and materials science illustrate these aspects. Experimental positron and electron interactions with asymmetric materials may be classified in like manner. Thus, a qualitative assessment of helical and polarized positron experiments with different forms of asymmetric matter from the past 40 years is presented, as well as recent experiments with left-hand and right-hand single crystal quartz and organic compounds. The purpose of this classification and review is to evaluate the field for potential new experiments and directions for positron (or electron) studies with asymmetric materials.

  13. Asymmetrical accommodation in hyperopic anisometropic amblyopia

    PubMed Central

    Toor, Sonia; Riddell, Patricia

    2018-01-01

    Background/aims To investigate the presence of asymmetrical accommodation in hyperopic anisometropic amblyopia. Methods Accommodation in each eye and binocular vergence were measured simultaneously using a PlusoptiX SO4 photorefractor in 26 children aged 4–8 years with hyperopic anisometropic amblyopia and 13 controls (group age-matched) while they viewed a detailed target moving in depth. Results Without spectacles, only 5 (19%) anisometropes demonstrated symmetrical accommodation (within the 95% CI of the mean gain of the sound eye of the anisometropic group), whereas 21 (81%) demonstrated asymmetrical accommodation. Of those, 15 (58%) showed aniso-accommodation and 6 (23%) demonstrated ‘anti-accommodation’ (greater accommodation for distance than for near). In those with anti-accommodation, the response gain in the sound eye was (0.93±0.20) while that of the amblyopic eye showed a negative accommodation gain of (−0.44±0.23). Anti-accommodation resolved with spectacles. Vergence gains were typical in those with symmetrical and asymmetrical accommodation. Conclusion The majority of hyperopic anisometropic amblyopes demonstrated non-consensual asymmetrical accommodation. Approximately one in four demonstrated anti-accommodation. PMID:29051327

  14. Organization Development and U.S. Institutions of Higher Education: A Thematic Meta-Synthesis of Approaches and Practice

    ERIC Educational Resources Information Center

    Overstreet, Kirk E., Jr.

    2017-01-01

    Organization Development (OD) has been used in a variety of ways to improve organizations both large and small. Interestingly, the institutions that teach and conduct research on organizations have been slow to adopt or utilize OD approaches and practices in their own institutions. This dissertation will use a thematic meta-synthesis approach to…

  15. A practical and improved synthesis of (3S,5S)-3-[(tert-butyloxycarbonyl)methyl]- 5-[(methanesulfonyloxy)methyl]-2- pyrrolidinone.

    PubMed

    Yee, Nathan K; Dong, Yong; Kapadia, Suresh R; Song, Jinhua J

    2002-11-29

    A practical and improved synthesis of (3S,5S)-3-[(tert-butyloxycarbonyl)methyl]-5-[(methanesulfonyloxy)methyl]-2-pyrrolidinone (1) is described. The key transformations involve a highly efficient reaction sequence consisting of ethoxycarbonylation, alkylation, hydrolysis, and decarboxylation to produce compound 10. The process described herein is practical, robust, and cost-effective, and it has been successfully implemented in a pilot plant to produce a multikilogram quantity of mesylate 1.

  16. Three dimensional force balance of asymmetric droplets

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook

    2016-11-01

    An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  17. Catalytic asymmetric enyne addition to aldehdyes and Rh(I)-catalyzed stereoselective domino Pauson-Khand/[4 + 2] cycloaddition.

    PubMed

    Chen, Wei; Tay, Jia-Hui; Ying, Jun; Yu, Xiao-Qi; Pu, Lin

    2013-03-15

    The 1,1'-bi-2-naphthol-ZnEt2-Ti(O(i)Pr)4-Cy2NH system is found to catalyze the 1,3-enyne addition to aliphatic aldehydes as well as other aldehydes at room temperature with 75-96% yield and 82-97% ee. This system is also broadly applicable for the highly enantioselective reaction of other alkyl-, aryl-, and silylalkynes with structurally diverse aldehydes. The propargylic alcohols prepared from the catalytic asymmetric enyne addition to aliphatic aldehydes are used to prepare a series of optically active trienynes. In the presence of a catalytic amount of [RhCl(CO)2]2 and 1 atm of CO, the optically active trienynes undergo highly stereoselective domino Pauson-Khand/[4 + 2] cycloaddition to generate optically active multicyclic products. The Rh(I) catalyst is also found to catalyze the coupling of a diyne with CO followed by [4 + 2] cycloaddition to generate an optically active multicyclic product. These transformations are potentially useful for the asymmetric synthesis of polyquinanes containing a quaternary chiral carbon center.

  18. Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation

    NASA Astrophysics Data System (ADS)

    Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak

    2018-02-01

    The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.

  19. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    PubMed

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  20. Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives.

    PubMed

    Viveros-Ceballos, José Luis; Ordóñez, Mario; Sayago, Francisco J; Cativiela, Carlos

    2016-08-29

    α-Amino-C-phosphinic acids and derivatives are an important group of compounds of synthetic and medicinal interest and particular attention has been dedicated to their stereoselective synthesis in recent years. Among these, phosphinic pseudopeptides have acquired pharmacological importance in influencing physiologic and pathologic processes, primarily acting as inhibitors for proteolytic enzymes where molecular stereochemistry has proven to be critical. This review summarizes the latest developments in the asymmetric synthesis of acyclic and phosphacyclic α-amino-C-phosphinic acids and derivatives, following in the first case an order according to the strategy used, whereas for cyclic compounds the nitrogen embedding in the heterocyclic core is considered. In addition selected examples of pharmacological implications of title compounds are also disclosed.

  1. Exploring and Implementing Participatory Action Synthesis

    ERIC Educational Resources Information Center

    Wimpenny, Katherine; Savin-Baden, Maggi

    2012-01-01

    This article presents participatory action synthesis as a new approach to qualitative synthesis which may be used to facilitate the promotion and use of qualitative research for policy and practice. The authors begin by outlining different forms of qualitative research synthesis and then present participatory action synthesis, a collaborative…

  2. Reforming medical education: a review and synthesis of five critiques of medical practice.

    PubMed

    Sales, Christopher S; Schlaff, Anthony L

    2010-06-01

    For physicians to provide appropriate healthcare at a reasonable cost, health reform may not be enough. This essay discusses the scope of educational reform needed in the U.S. to train tomorrow's physicians to practice effectively in an increasingly complicated health care arena. We undertook a review and synthesis of five critiques of medical practice in the U.S.: of quality, evidence-based medicine, population medicine, health policy and heuristics. Our findings suggest that physicians are inadequately trained to function in the complex organizational and social systems that characterize modern practice. Successful health care reform in the U.S. will require physicians who are trained not only in bio-medicine, but also in the social sciences. Other developed countries, which have both greater government control of health care and a culture less oriented to individualism, may have less need for specific efforts to train physicians in the social sciences but could still benefit from considering an expanded curriculum. Effective educational reform must address the medical admissions process, academic and intellectual preparation, and professional and clinical training. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Investigation of heterogeneous asymmetric dihydroxylation over OsO{sub 4}-(QN){sub 2}PHAL catalysts of functionalized bimodal mesoporous silica with ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Shenjie; Sun, Jihong, E-mail: jhsun@bjut.edu.cn; Li, Yuzhen

    2011-08-15

    Highlights: {yields} Functionalized bimodal mesoporous silica with MTMSPIm{sup +}Cl{sup -}. {yields} Mesoporous catalyst immobilized with OsO{sub 4}-(QN){sub 2}PHAL. {yields} Catalysts for asymmetric dihydroxylation reaction with high yield and enatioselectivity. {yields} Recyclable catalysts. -- Abstract: A novel synthesis of the functionalized bimodal mesoporous silica with ionic liquid (FBMMs) was performed. After grafting 1-methyl-3-(trimethoxysilyl)propylimidazolium chloride onto the surface of bimodal mesoporous silicas, 1,4-bis(9-O-quininyl)phthalazine ((QN){sub 2}-PHAL) and K{sub 2}Os(OH){sub 4}.2H{sub 2}O were immobilized onto the modified FBMMs by adsorption or ionic exchange methods, and then, the asymmetric dihydroxylation reaction was carried out by using solid catalysts. Techniques such as X-ray diffraction, Fourier Transformmore » Infrared spectroscopy, N{sub 2} adsorption and desorption were employed to characterize their structure and properties. The results showed that the mesoporous ordering degree of bimodal mesoporous silica decreased after functionalization and immobilization of OsO{sub 4}-(QN){sub 2}PHAL. Being very effective in asymmetric dihydroxylation with high yield and enantioselectivity, the prepared heterogeneous solid catalyst could be recycled for five times with little loss of enantioselectivity, with comparison of those results obtained in homophase system. Moreover, the effect of Osmium catalyst on asymmetric dihydroxylation was investigated.« less

  4. Swarm Counter-Asymmetric-Threat (CAT) 6-DOF Dynamics Simulation

    DTIC Science & Technology

    2005-07-01

    NAWCWD TP 8593 Swarm Counter-Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation by James Bobinchak Weapons and Energetics...mathematical models used in the swarm counter- asymmetric-threat ( CAT ) simulation and the results of extensive Monte Carlo simulations. The swarm CAT ...Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation (U) 6. AUTHOR(S) James Bobinchak and Gary Hewer 7. PERFORMING ORGANIZATION NAME(S) AND

  5. Comparison of accelerator physics issues for symmetric and asymmetric B-factory rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tigner, M.

    1990-10-10

    A systematic comparison of accelerator physics issues from the beam-beam interaction to single particle stability including ring and IR layout, synchrotron radiation and lost particle backgrounds, and single and multi-bunch instabilities is given. While some practical handicap probably accrues to the asymmetric design because of its extra constraints, the differences in the two approaches tend to be obscured by larger issues such as how to achieve the enormous increases in luminosity demanded of a b-factory.

  6. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  7. Total Synthesis and Absolute Configuration of Laurenditerpenol: A Hypoxia Inducible Factor-1 Activation Inhibitor

    PubMed Central

    Chittiboyina, Amar G.; Kumar, Gundluru Mahesh; Carvalho, Paulo B.; Liu, Yang; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    The absolute stereo structure of the natural product laurenditerpenol (1S, 6R, 7S, 10R, 11R, 14S, 15R) has been accomplished from eight plausible stereoisomers by its first asymmetric total synthesis in a highly convergent and flexible synthetic pathway. Six stereoisomers of laurenditerpenol were synthesized and evaluated for their biological activity. PMID:18004798

  8. Highly productive CNN pincer ruthenium catalysts for the asymmetric reduction of alkyl aryl ketones.

    PubMed

    Baratta, Walter; Chelucci, Giorgio; Magnolia, Santo; Siega, Katia; Rigo, Pierluigi

    2009-01-01

    Chiral pincer ruthenium complexes of formula [RuCl(CNN)(Josiphos)] (2-7; Josiphos = 1-[1-(dicyclohexylphosphano)ethyl]-2-(diarylphosphano)ferrocene) have been prepared by treating [RuCl(2)(PPh(3))(3)] with (S,R)-Josiphos diphosphanes and 1-substituted-1-(6-arylpyridin-2-yl)methanamines (HCNN; substituent = H (1 a), Me (1 b), and tBu (1 c)) with NEt(3). By using 1 b and 1 c as a racemic mixture, complexes 4-7 were obtained through a diastereoselective synthesis promoted by acetic acid. These pincer complexes, which display correctly matched chiral PP and CNN ligands, are remarkably active catalysts for the asymmetric reduction of alkyl aryl ketones in basic alcohol media by both transfer hydrogenation (TH) and hydrogenation (HY), achieving enantioselectivities of up to 99 %. In 2-propanol, the enantioselective TH of ketones was accomplished by using a catalyst loading as low as 0.002 mol % and afforded a turnover frequency (TOF) of 10(5)-10(6) h(-1) (60 and 82 degrees C). In methanol/ethanol mixtures, the CNN pincer complexes catalyzed the asymmetric HY of ketones with H(2) (5 atm) at 0.01 mol % relative to the complex with a TOF of approximately 10(4) h(-1) at 40 degrees C.

  9. Asymmetric Aldol Additions: A Guided-Inquiry Laboratory Activity on Catalysis

    ERIC Educational Resources Information Center

    King, Jorge H. Torres; Wang, Hong; Yezierski, Ellen J.

    2018-01-01

    Despite the importance of asymmetric catalysis in both the pharmaceutical and commodity chemicals industries, asymmetric catalysis is under-represented in undergraduate chemistry laboratory curricula. A novel guided-inquiry experiment based on the asymmetric aldol addition was developed. Students conduct lab work to compare the effectiveness of…

  10. Enantioselective synthesis of 2,2-disubstituted terminal epoxides via catalytic asymmetric Corey-Chaykovsky epoxidation of ketones.

    PubMed

    Sone, Toshihiko; Yamaguchi, Akitake; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2012-02-07

    Catalytic asymmetric Corey-Chaykovsky epoxidation of various ketones with dimethyloxosulfonium methylide using a heterobimetallic La-Li(3)-BINOL complex (LLB) is described. The reaction proceeded smoothly at room temperature in the presence of achiral phosphine oxide additives, and 2,2-disubstituted terminal epoxides were obtained in high enantioselectivity (97%-91% ee) and yield ( > 99%-88%) from a broad range of methyl ketones with 1-5 mol% catalyst loading. Enantioselectivity was strongly dependent on the steric hindrance, and other ketones, such as ethyl ketones and propyl ketones resulted in slightly lower enantioselectivity (88%-67% ee).

  11. Depth Structure from Asymmetric Shading Supports Face Discrimination

    PubMed Central

    Chen, Chien-Chung; Chen, Chin-Mei; Tyler, Christopher W.

    2013-01-01

    To examine the effect of illumination direction on the ability of observers to discriminate between faces, we manipulated the direction of illumination on scanned 3D face models. In order to dissociate the surface reflectance and illumination components of front-view face images, we introduce a symmetry algorithm that can separate the symmetric and asymmetric components of the face in both low and high spatial frequency bands. Based on this approach, hybrid faces stimuli were constructed with different combinations of symmetric and asymmetric spatial content. Discrimination results with these images showed that asymmetric illumination information biased face perception toward the structure of the shading component, while the symmetric illumination information had little, if any, effect. Measures of perceived depth showed that this property increased systematically with the asymmetric but not the symmetric low spatial frequency component. Together, these results suggest that (1) the asymmetric 3D shading information dramatically affects both the perceived facial information and the perceived depth of the facial structure; and (2) these effects both increase as the illumination direction is shifted to the side. Thus, our results support the hypothesis that face processing has a strong 3D component. PMID:23457484

  12. Seasonally asymmetric enhancement of northern vegetation productivity

    NASA Astrophysics Data System (ADS)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  13. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    PubMed

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  14. Numerical simulation of steady and unsteady asymmetric vortical flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.

    1992-01-01

    The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.

  15. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol.

    PubMed

    Li, Hui; Sheeran, Jillian W; Clausen, Andrew M; Fang, Yuan-Qing; Bio, Matthew M; Bader, Scott

    2017-08-01

    The development of a flow chemistry process for asymmetric propargylation using allene gas as a reagent is reported. The connected continuous process of allene dissolution, lithiation, Li-Zn transmetallation, and asymmetric propargylation provides homopropargyl β-amino alcohol 1 with high regio- and diastereoselectivity in high yield. This flow process enables practical use of an unstable allenyllithium intermediate. The process uses the commercially available and recyclable (1S,2R)-N-pyrrolidinyl norephedrine as a ligand to promote the highly diastereoselective (32:1) propargylation. Judicious selection of mixers based on the chemistry requirement and real-time monitoring of the process using process analytical technology (PAT) enabled stable and scalable flow chemistry runs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-performance aqueous asymmetric supercapacitor based on K0.3WO3 nanorods and nitrogen-doped porous carbon

    NASA Astrophysics Data System (ADS)

    Ma, Guofu; Zhang, Zhiguo; Sun, Kanjun; Feng, Enke; Peng, Hui; Zhou, Xiaozhong; Lei, Ziqiang

    2016-10-01

    A novel asymmetric supercapacitor device for energy storage is fabricated using K0.3WO3 nanorods as negative electrode and nitrogen-doped porous carbon (CBC-1) based on agricultural wastes corn bract as positive electrode. The K0.3WO3 nanorods are composed of some thinner needle-shaped nanorods which are parallel to each other, and the CBC-1 reveals rough surface of coral-like frameworks with abundant nanopores. The structures can provide high surface area, low diffusion paths and intercalation/de-intercalation of electrolyte ions between the electrode/electrolyte interfaces. Thus, the asymmetric supercapacitor exhibits high energy density about 26.3 Wh kg-1 at power density of 404.2 W kg-1 in the wide voltage region of 0-1.6 V, as well as a good electrochemical stability (80% capacitance retention after 1000 cycles). Such outstanding electrochemical behaviors imply the CBC-1//K0.3WO3 asymmetric supercapacitor is a promising practical energy-storage system.

  17. Enantioselective synthesis of syn/anti-1,3-amino alcohols via proline-catalyzed sequential alpha-aminoxylation/alpha-amination and Horner-Wadsworth-Emmons olefination of aldehydes.

    PubMed

    Jha, Vishwajeet; Kondekar, Nagendra B; Kumar, Pradeep

    2010-06-18

    A novel and general method for asymmetric synthesis of both syn/anti-1,3-amino alcohols is described. The method uses proline-catalyzed sequential alpha-aminoxylation/ alpha-amination and Horner-Wadsworth-Emmons (HWE) olefination of aldehydes as the key step. By using this method, a short synthesis of a bioactive molecule, (R)-1-((S)-1-methylpyrrolidin-2-yl)-5-phenylpentan-2-ol, is also accomplished.

  18. Readily Available Chiral Benzimidazoles-Derived Guanidines as Organocatalysts in the Asymmetric α-Amination of 1,3-Dicarbonyl Compounds.

    PubMed

    Benavent, Llorenç; Puccetti, Francesco; Baeza, Alejandro; Gómez-Martínez, Melania

    2017-08-11

    The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di- t -butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among all of them, those derived from ( R )-1-phenylethan-1-amine ( 1 ) and ( S )-1-(2-naphthyl)ethan-1-amine ( 3 ) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high yields and moderate-to-good enantioselectivities for the amination products.

  19. Collective synthesis of natural products by means of organocascade catalysis

    PubMed Central

    Jones, Spencer B.; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W. C.

    2012-01-01

    Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. PMID:21753848

  20. Synthesis and DNA interaction of a mixed proflavine-phenanthroline Tröger base.

    PubMed

    Baldeyrou, Brigitte; Tardy, Christelle; Bailly, Christian; Colson, Pierre; Houssier, Claude; Charmantray, Franck; Demeunynck, Martine

    2002-04-01

    We report the synthesis of an asymmetric Tröger base containing the two well characterised DNA binding chromophores, proflavine and phenanthroline. The mode of interaction of the hybrid molecule was investigated by circular and linear dichroism experiments and a biochemical assay using DNA topoisomerase I. The data are compatible with a model in which the proflavine moiety intercalates between DNA base pairs and the phenanthroline ring occupies the DNA groove. DNase I cleavage experiments were carried out to investigate the sequence preference of the hybrid ligand and a well resolved footprint was detected at a site encompassing two adjacent 5'-GTC.5-GAC triplets. The sequence preference of the asymmetric molecule is compared to that of the symmetric analogues.

  1. Enantioselective Total Synthesis of (−)-Minovincine in Nine Chemical Steps: An Approach to Ketone Activation in Cascade Catalysis

    PubMed Central

    Laforteza, Brian N.; Pickworth, Mark

    2014-01-01

    More cycling–fewer steps The first enantioselective total synthesis of (−)-minovincine has been accomplished in nine chemical steps and 13% overall yield. A novel, one-step Diels–Alder/β-elimination/conjugate addition organocascade sequence allowed rapid access to the central tetracyclic core in an asymmetric manner. PMID:24000234

  2. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  3. Synthesis of Mikto-Arm Star Peptide Conjugates.

    PubMed

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  4. Asymmetric total synthesis of 6-Tuliposide B and its biological activities against tulip pathogenic fungi.

    PubMed

    Shigetomi, Kengo; Omoto, Shoko; Kato, Yasuo; Ubukata, Makoto

    2011-01-01

    The structure-activity relationship was investigated to evaluate the antifungal activities of tuliposides and tulipalins against tulip pathogenic fungi. 6-Tuliposide B was effectively synthesized via the asymmetric Baylis-Hillman reaction. Tuliposides and tulipalins showed antifungal activities against most of the strains tested at high concentrations (2.5 mM), while Botrytis tulipae was resistant to tuliposides. Tulipalin formation was involved in the antifungal activity, tulipalin A showed higher inhibitory activity than 6-tuliposide B and tulipalin B. Both the tuliposides and tulipalins showed pigment-inducing activity against Gibberella zeae and inhibitory activity against Fusarium oxysporum f. sp tulipae. These activities were induced at a much lower concentration (0.05 mM) than the antifungal MIC values.

  5. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu

    2016-08-21

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted andmore » mathematically controlled, which extends the design concept of unidirectional transmission devices.« less

  6. Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified D-phenylalanine residues.

    PubMed

    van der Knaap, Matthijs; Engels, Eefje; Busscher, Henk J; Otero, José M; Llamas-Saiz, Antonio L; van Raaij, Mark J; Mars-Groenendijk, Roos H; Noort, Daan; van der Marel, Gijsbert A; Overkleeft, Herman S; Overhand, Mark

    2009-09-01

    The synthesis of new analogues of the cationic antimicrobial peptide gramicidin S, having a modified D-phenylalanine residue, their antibacterial properties against several gram positive and negative strains, as well as their hemolytic activity is reported.

  7. Synthesis of S-linked trisaccharide glycal of derhodinosylurdamycin A: Discovery of alkyl thiocyanate as an efficient electrophile for stereoselective sulfenylation of 2-deoxy glycosyl lithium.

    PubMed

    Acharya, Padam P; Baryal, Kedar N; Reno, Cristin E; Zhu, Jianglong

    2017-08-07

    Stereoselective synthesis of S-linked trisaccharide glycal of angucycline antitumor antibiotic derhodinosylurdamycin A is described. The synthesis has been accomplished employing our previously reported umpolung S-glycosylation strategy - stereoselective sulfenylation of 2-deoxy glycosyl lithium. It was found that sugar-derived thiocyanate was a better electrophile than corresponding asymmetric disulfide in this type of stereoselective sulfenylation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    NASA Astrophysics Data System (ADS)

    Zia, R. K. P.; Dong, J. J.; Schmittmann, B.

    2011-07-01

    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.

  9. An artificial molecular machine that builds an asymmetric catalyst

    NASA Astrophysics Data System (ADS)

    De Bo, Guillaume; Gall, Malcolm A. Y.; Kuschel, Sonja; De Winter, Julien; Gerbaux, Pascal; Leigh, David A.

    2018-05-01

    Biomolecular machines perform types of complex molecular-level tasks that artificial molecular machines can aspire to. The ribosome, for example, translates information from the polymer track it traverses (messenger RNA) to the new polymer it constructs (a polypeptide)1. The sequence and number of codons read determines the sequence and number of building blocks incorporated into the biomachine-synthesized polymer. However, neither control of sequence2,3 nor the transfer of length information from one polymer to another (which to date has only been accomplished in man-made systems through template synthesis)4 is easily achieved in the synthesis of artificial macromolecules. Rotaxane-based molecular machines5-7 have been developed that successively add amino acids8-10 (including β-amino acids10) to a growing peptide chain by the action of a macrocycle moving along a mono-dispersed oligomeric track derivatized with amino-acid phenol esters. The threaded macrocycle picks up groups that block its path and links them through successive native chemical ligation reactions11 to form a peptide sequence corresponding to the order of the building blocks on the track. Here, we show that as an alternative to translating sequence information, a rotaxane molecular machine can transfer the narrow polydispersity of a leucine-ester-derivatized polystyrene chain synthesized by atom transfer radical polymerization12 to a molecular-machine-made homo-leucine oligomer. The resulting narrow-molecular-weight oligomer folds to an α-helical secondary structure13 that acts as an asymmetric catalyst for the Juliá-Colonna epoxidation14,15 of chalcones.

  10. Asymmetric type F botulism with cranial nerve demyelination.

    PubMed

    Filozov, Alina; Kattan, Jessica A; Jitendranath, Lavanya; Smith, C Gregory; Lúquez, Carolina; Phan, Quyen N; Fagan, Ryan P

    2012-01-01

    We report a case of type F botulism in a patient with bilateral but asymmetric neurologic deficits. Cranial nerve demyelination was found during autopsy. Bilateral, asymmetric clinical signs, although rare, do not rule out botulism. Demyelination of cranial nerves might be underrecognized during autopsy of botulism patients.

  11. A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming

    2017-06-01

    A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.

  12. On the Asymmetric Zero-Range in the Rarefaction Fan

    NASA Astrophysics Data System (ADS)

    Gonçalves, Patrícia

    2014-02-01

    We consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for totally asymmetric jumps, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For partially asymmetric jumps, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the constant-rate totally asymmetric zero-range with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions.

  13. From screening to synthesis: using nvivo to enhance transparency in qualitative evidence synthesis.

    PubMed

    Houghton, Catherine; Murphy, Kathy; Meehan, Ben; Thomas, James; Brooker, Dawn; Casey, Dympna

    2017-03-01

    To explore the experiences and perceptions of healthcare staff caring for people with dementia in the acute setting. This article focuses on the methodological process of conducting framework synthesis using nvivo for each stage of the review: screening, data extraction, synthesis and critical appraisal. Qualitative evidence synthesis brings together many research findings in a meaningful way that can be used to guide practice and policy development. For this purpose, synthesis must be conducted in a comprehensive and rigorous way. There has been previous discussion on how using nvivo can assist in enhancing and illustrate the rigorous processes involved. Qualitative framework synthesis. Twelve documents, or research reports, based on nine studies, were included for synthesis. The benefits of using nvivo are outlined in terms of facilitating teams of researchers to systematically and rigorously synthesise findings. nvivo functions were used to conduct a sensitivity analysis. Some valuable lessons were learned, and these are presented to assist and guide researchers who wish to use similar methods in future. Ultimately, good qualitative evidence synthesis will provide practitioners and policymakers with significant information that will guide decision-making on many aspects of clinical practice. The example provided explored how people with dementia are cared for acute settings. © 2016 The Authors. Journal of Clinical Nursing Published by John Wiley & Sons Ltd.

  14. Enantio- and stereoselective route to the phoslactomycin family of antibiotics: formal synthesis of (+)-fostriecin and (+)-phoslactomycin B.

    PubMed

    Sarkar, Shaheen M; Wanzala, Everlyne N; Shibahara, Setsuya; Takahashi, Keisuke; Ishihara, Jun; Hatakeyama, Susumi

    2009-10-21

    A general methodology applicable for the synthesis of the phoslactomycin family of antibiotics, potent and selective protein phosphatase inhibitors, has been developed starting from a beta-isocupreidine-catalyzed asymmetric Baylis-Hillman reaction of 3-(4-methoxybenzyloxy)propanal with hexafluoroisopropyl acrylate, and thereby formal syntheses of (+)-fostriecin and (+)-phoslactomycin B have been accomplished.

  15. Asymmetric Type F Botulism with Cranial Nerve Demyelination

    PubMed Central

    Kattan, Jessica A.; Jitendranath, Lavanya; Smith, C. Gregory; Lúquez, Carolina; Phan, Quyen N.; Fagan, Ryan P.

    2012-01-01

    We report a case of type F botulism in a patient with bilateral but asymmetric neurologic deficits. Cranial nerve demyelination was found during autopsy. Bilateral, asymmetric clinical signs, although rare, do not rule out botulism. Demyelination of cranial nerves might be underrecognized during autopsy of botulism patients. PMID:22257488

  16. Asymmetric Synthesis of (R)-1-Alkyl Substituted Tetrahydro-ß-carbolines Catalyzed by Strictosidine Synthases.

    PubMed

    Pressnitz, Desiree; Fischereder, Eva-Maria; Pletz, Jakob; Kofler, Christina; Hammerer, Lucas; Hiebler, Katharina; Lechner, Horst; Richter, Nina; Eger, Elisabeth; Kroutil, Wolfgang

    2018-05-31

    Stereoselective methods for the synthesis of tetrahydro-ß-carbolines are of significant interest due to the broad spectrum of biological activity of the target molecules. In the plant kingdom strictosidine synthases catalyze the C-C coupling via a Pictet-Spengler reaction of tryptamine and secologanin to exclusively form the (S)-configured tetrahydro-ß-carboline (S)-strictosidine. Investigating the biocatalytic Pictet-Spengler reaction of tryptamine with small-molecular-weight aliphatic aldehydes revealed that the strictosidine synthases gave unexpectedly access to the (R)-configured product. Developing an efficient expression method of the catalyst allowed the preparative transformation of various aldehydes giving the products with up to >98% ee. With this tool in hand a chemoenzymatic two-step synthesis of (R)-harmicine was achieved giving (R)-harmicine in 67% overall yield in optically pure form. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and chirality of amino acids under interstellar conditions.

    PubMed

    Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J

    2013-01-01

    Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.

  18. Helicopters on the asymmetric battlefield: challenges for photonics

    NASA Astrophysics Data System (ADS)

    Heikell, Johnny

    2007-10-01

    The problem set of battlefield helicopters and related photonics in asymmetric scenarios is addressed with emphasis on survivability and electronic warfare. The problem set is identified starting from an operational perspective, asking how different the asymmetric battlefield is from the traditional Cold War scenario, and by identifying relevant characteristics of battlefield helicopters. Based on this information requirements for photonics are deduced. It is concluded that the shift to asymmetric conflicts brings evolutionary-but not revolutionary-challenges for photonics, mostly so for the laser community. Main causes for the evolutionary drive are shortened engagement ranges, increased threat from ballistic and CBRE weapons, stringent ROEs, and assassination operations.

  19. Asymmetrical knowledge claims in general practice consultations with frequently attending patients: limitations and opportunities for patient participation.

    PubMed

    Ariss, Steven M

    2009-09-01

    Asymmetry of knowledge does not simply relate to knowing or not knowing. Participants in consultations also display normative entitlements to knowledge which are related to their identities in the interaction. Claims of entitlement to knowledge are oriented to by the other participant as either straightforwardly acceptable or problematic. Thus research has shown that asymmetry in doctor-patient interactions is collaboratively achieved. Whilst the asymmetry of medical consultations has long been recognised, understanding asymmetry in the context of patient participation is becoming an increasingly important priority. This paper is not concerned with potential benefits or the feasibility of increasing patient participation in general practice (GP) consultations. Rather it seeks to describe specific limitations and opportunities for the participation of patients regarding the discussion of their problems, treatments and management of illness. Using Conversation Analysis this paper investigates GP consultations with frequently attending patients in the UK. It describes how the moral dimensions of epistemic authority constrain the different conversational resources available to GPs and patients. Findings suggest that in maintaining asymmetrical claims to knowledge debate is foregone in favour of efficient progression through the phases of the interaction. Thus interactions militate against the discussion of areas where alignment of perspectives might be lacking and participants do not pursue actions which might lead towards claiming a greater understanding of each others' point of view. However, there are aspects of consultations with frequently attending patients which display reduced asymmetry with regard to participants' claims to epistemic authority.

  20. Design, synthesis and evaluation of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on nickel foam as self-supported electrodes for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Bin; Kong, Ling-Bin; Ma, Xue-Jing; Luo, Yong-Chun; Kang, Long

    2014-12-01

    A novel self-supported electrode of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on the conductive substrate of nickel foam have been designed and synthesized by the combination of hydrothermal synthesis and subsequent annealing treatment. Based on the morphology, a possible mechanism is proposed. The unique nanostructure has been served as an "ion reservoir" to infiltrate between the electrode surface area and the electrolyte, which can ensure the ion/electron transfer. And the powerful distribution of electric field on nanorods makes the surface in response the electrode reaction as completely as possible. The electrode manifests satisfying capacitance of 847.2 F g-1, outstanding rate capability and excellent cycling stability. Also, an asymmetric supercapacitor has been assembled, where Co3O4/Co3(VO4)2 and activated carbon acted as the positive and negative electrodes respectively, and the maximum specific capacitance of 105 F g-1 and the specific energy of 38 Wh kg-1 are demonstrated at a cell voltage between 0 and 1.6 V, exhibiting a high energy density and stable power characteristic.

  1. Regio- and enantioselective palladium-catalyzed allylic alkylation of nitromethane with monosubstituted allyl substrates: synthesis of (R)-rolipram and (R)-baclofen.

    PubMed

    Yang, Xiao-Fei; Ding, Chang-Hua; Li, Xiao-Hui; Huang, Jian-Qiang; Hou, Xue-Long; Dai, Li-Xin; Wang, Pin-Jie

    2012-10-19

    The Pd-catalyzed asymmetric allylic alkylation (AAA) reaction of nitromethane with monosubstituted allyl substrates was realized for the first time to provide corresponding products in high yields with excellent regio- and enantioselectivities. The protocol was applied to the enantioselective synthesis of (R)-baclofen and (R)-rolipram.

  2. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong

    2018-03-01

    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  3. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  4. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOEpatents

    Friesen, D.T.; Babcock, W.C.

    1989-11-28

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  5. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  6. Orientation and spread of reconnection x-line in asymmetric current sheets

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Hesse, M.; Wendel, D. E.; Kuznetsova, M.; Wang, S.

    2017-12-01

    The magnetic field in solar wind plasmas can shear with Earth's dipole magnetic field at arbitrary angles, and the plasma conditions on the two sides of the (magnetopause) current sheet can greatly differ. One of the outstanding questions in such asymmetric geometry is what local physics controls the orientation of the reconnection x-line; while the x-line in a simplified 2D model (simulation) always points out of the simulation plane by design, it is unclear how to predict the orientation of the x-line in a fully three-dimensional (3D) system. Using kinetic simulations run on Blue Waters, we develop an approach to explore this 3D nature of the reconnection x-line, and test hypotheses including maximizing the reconnection rate, tearing mode growth rate or reconnection outflow speed, and the bisection solution. Practically, this orientation should correspond to the M-direction of the local LMN coordinate system that is often employed to analyze diffusion region crossings by the Magnetospheric Multiscale Mission (MMS). In this talk, we will also discuss how an x-line spread from a point source in asymmetric geometries, and the boundary effect on the development of the reconnection x-line and turbulence.

  7. Keto-enol tautomerism in asymmetric Schiff bases derived from p-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Užarević, Krunoslav; Rubčić, Mirta; Stilinović, Vladimir; Kaitner, Branko; Cindrić, Marina

    2010-12-01

    Reaction of dehydroacetic acid and p-phenylenediamine afforded a monosubstituted Schiff base, I, with the other amino group free. In further reactions with various salicylaldehyde derivatives, I served as a precursor for synthesis of asymmetric bis-Schiff bases. The synthesized compounds are thus comprised of two subunits, dehydroacetic ( dha) and salicylidene ( sal), which are bridged by the phenylene linker. All products were investigated by means of elemental analysis, FT-IR and NMR spectroscopy, thermal methods, powder X-ray diffraction and, when possible, by single crystal X-ray crystallography. Structural and spectroscopic studies revealed that in the bis-products, the dha subunit adopts the keto-amino tautomeric form, while the sal subunit adopts the enol-imino form. Tautomeric forms were not affected if a methoxo group was introduced on the salicylidene ring. Both tautomeric subunits are stabilized by strong resonance-assisted hydrogen bonds, RAHB. The two subunits of the prepared bis-Schiff bases predominantly retain in solution the same tautomeric forms as found in the solid state.

  8. Mean-field approaches to the totally asymmetric exclusion process with quenched disorder and large particles

    NASA Astrophysics Data System (ADS)

    Shaw, Leah B.; Sethna, James P.; Lee, Kelvin H.

    2004-08-01

    The process of protein synthesis in biological systems resembles a one-dimensional driven lattice gas in which the particles (ribosomes) have spatial extent, covering more than one lattice site. Realistic, nonuniform gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric exclusion process with large particles and quenched disorder via several mean-field approaches and compare the mean-field results with Monte Carlo simulations. Mean-field equations obtained from the literature are found to be reasonably effective in describing this system. A numerical technique is developed for computing the particle current rapidly. The mean-field approach is extended to include two-point correlations between adjacent sites. The two-point results are found to match Monte Carlo simulations more closely.

  9. Asymmetric conditional volatility in international stock markets

    NASA Astrophysics Data System (ADS)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  10. Distribution of quantum Fisher information in asymmetric cloning machines

    PubMed Central

    Xiao, Xing; Yao, Yao; Zhou, Lei-Ming; Wang, Xiaoguang

    2014-01-01

    An unknown quantum state cannot be copied and broadcast freely due to the no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of one copy results in decreasing the QFI of the other copy. It is perhaps also unsurprising that asymmetric phase-covariant cloning outperforms universal cloning in distributing QFI since a priori information of the input state has been utilized. However, interesting results appear when we compare the distributabilities of fidelity (which quantifies the full information of quantum states), and QFI (which only captures the information of relevant parameters) in asymmetric cloning machines. Unlike the results of fidelity, where the distributability of symmetric cloning is always optimal for any d-dimensional cloning, we find that any asymmetric cloning outperforms symmetric cloning on the distribution of QFI for d ≤ 18, whereas some but not all asymmetric cloning strategies could be worse than symmetric ones when d > 18. PMID:25484234

  11. Dienamine and Friedel-Crafts one-pot synthesis, and antitumor evaluation of diheteroarylalkanals.

    PubMed

    Frías, María; Padrón, José M; Alemán, José

    2015-05-26

    An asymmetric synthesis of diheteroarylalkanals through one-pot dienamine and Friedel-Crafts reaction is presented. The reaction tolerates a large variety of substituents at different positions of the starting aldehyde and also in the indole nucleophile, and a range of diheterocyclic alkanals can be achieved. Furthermore, we have studied the antiproliferative activity of these new compounds in representative cancer tumor cell lines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Collective synthesis of natural products by means of organocascade catalysis.

    PubMed

    Jones, Spencer B; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W C

    2011-07-13

    Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. ©2011 Macmillan Publishers Limited. All rights reserved

  13. Flatfish: an asymmetric perspective on metamorphosis.

    PubMed

    Schreiber, Alexander M

    2013-01-01

    The most asymmetrically shaped and behaviorally lateralized of all the vertebrates, the flatfishes are an endless source of fascination to all fortunate enough to study them. Although all vertebrates undergo left-right asymmetric internal organ placement during embryogenesis, flatfish are unusual in that they experience an additional period of postembryonic asymmetric remodeling during metamorphosis, and thus deviate from a bilaterally symmetrical body plan more than other vertebrates. As with amphibian metamorphosis, all the developmental programs of flatfish metamorphosis are ultimately under the control of thyroid hormone. At least one gene pathway involved in embryonic organ lateralization (nodal-lefty-pitx2) is re-expressed in the larval stage during flatfish metamorphosis. Aspects of modern flatfish ontogeny, such as the gradual translocation of one eye to the opposite side of the head and the appearance of key neurocranial elements during metamorphosis, seem to elegantly recapitulate flatfish phylogeny. This chapter highlights the current state of knowledge of the developmental biology of flatfish metamorphosis with emphases on the genetic, morphological, behavioral, and evolutionary origins of flatfish asymmetry. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Asymmetric nanoparticle may go "active" at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing

    2017-04-01

    Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.

  15. FAIMS Operation for Realistic Gas Flow Profile and Asymmetric Waveforms Including Electronic Noise and Ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.

    The use of Field Asymmetric waveform Ion Mobility Spectrometry (FAIMS) has rapidly grown with the advent of commercial FAIMS systems coupled to mass spectrometry. However, many fundamental aspects of FAIMS remain obscure, hindering its technological improvement and expansion of analytical utility. Recently, we developed a comprehensive numerical simulation approach to FAIMS that can handle any device geometry and operational conditions. The formalism was originally set up in one dimension for a uniform gas flow and limited to ideal asymmetric voltage waveforms. Here we extend the model to account for a realistic gas flow velocity distribution in the analytical gap, axialmore » ion diffusion, and waveform imperfections (e.g. noise and ripple). The non-uniformity of gas flow velocity profile has only a minor effect, slightly improving resolution. However, waveform perturbations are significant even at very low levels, in some cases {approx} 0.01% of nominal voltage. These perturbations always improve resolution and decrease sensitivity. Variation of noise or ripple amplitude produces a trade-off between resolution and sensitivity. This trade-off is physically equivalent to that obtained via adjustment of the gap width and/or asymmetric waveform frequency, but the scaling of low-frequency ripple appears to be a more practical way to control FAIMS resolution.« less

  16. Representing Practice: Practice Models, Patterns, Bundles

    ERIC Educational Resources Information Center

    Falconer, Isobel; Finlay, Janet; Fincher, Sally

    2011-01-01

    This article critiques learning design as a representation for sharing and developing practice, based on synthesis of three projects. Starting with the findings of the Mod4L Models of Practice project, it argues that the technical origins of learning design, and the consequent focus on structure and sequence, limit its usefulness for sharing…

  17. Chiral and achiral phosphine derivatives of alkylidyne tricobalt carbonyl clusters as catalyst precursors for (asymmetric) inter- and intramolecular Pauson-Khand reactions.

    PubMed

    Moberg, Viktor; Mottalib, M Abdul; Sauer, Désirée; Poplavskaya, Yulia; Craig, Donald C; Colbran, Stephen B; Deeming, Antony J; Nordlander, Ebbe

    2008-05-14

    Phosphine derivatives of alkylidyne tricobalt carbonyl clusters have been tested as catalysts/catalyst precursors in intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. A number of new phosphine derivatives of the tricobalt alkylidyne clusters [Co3(micro3-CR)(CO)9] (R = H, CO2Et) were prepared and characterised. The clusters [Co3(micro3-CR)(CO)9-x(PR'3)x] (PR'3 = achiral or chiral monodentate phosphine, x = 1-3) and [Co3(micro3-CR)(CO)7)(P-P)] (P-P = chiral diphosphine; 1,1'- and 1,2-structural isomers) were assayed as catalysts for intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. The phosphine-substituted tricobalt clusters proved to be viable catalysts/catalyst precursors that gave moderate to very good product yields (up to approximately 90%), but the enantiomeric excesses were too low for the clusters to be of practical use in the asymmetric reactions.

  18. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2015-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  19. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2016-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  20. Reduction of asymmetric wall force in ITER disruptions with fast current quench

    NASA Astrophysics Data System (ADS)

    Strauss, H.

    2018-02-01

    One of the problems caused by disruptions in tokamaks is the asymmetric electromechanical force produced in conducting structures surrounding the plasma. The asymmetric wall force in ITER asymmetric vertical displacement event (AVDE) disruptions is calculated in nonlinear 3D MHD simulations. It is found that the wall force can vary by almost an order of magnitude, depending on the ratio of the current quench time to the resistive wall magnetic penetration time. In ITER, this ratio is relatively low, resulting in a low asymmetric wall force. In JET, this ratio is relatively high, resulting in a high asymmetric wall force. Previous extrapolations based on JET measurements have greatly overestimated the ITER wall force. It is shown that there are two limiting regimes of AVDEs, and it is explained why the asymmetric wall force is different in the two limits.

  1. Systematic study of probable projectile-target combinations for the synthesis of the superheavy nucleus 302120

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Safoora, V.

    2016-08-01

    Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.

  2. Meta-synthesis of qualitative research: the challenges and opportunities.

    PubMed

    Mohammed, Mohammed A; Moles, Rebekah J; Chen, Timothy F

    2016-06-01

    Synthesis of qualitative studies is an emerging area that has been gaining more interest as an important source of evidence for improving health care policy and practice. In the last decade there have been numerous attempts to develop methods of aggregating and synthesizing qualitative data. Although numerous empirical qualitative studies have been published about different aspects of health care research, to date, the aggregation and syntheses of these data has not been commonly reported, particularly in pharmacy practice related research. This paper describes different methods of conducting meta-synthesis and provides an overview of selected common methods. The paper also emphasizes the challenges and opportunities associated with conducting meta-synthesis and highlights the importance of meta-synthesis in informing practice, policy and research.

  3. Flexible Fe2O3 and V2O5 nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors.

    PubMed

    Jiang, He; Niu, Hao; Yang, Xue; Sun, Zhiqin; Li, Fuzhi; Wang, Qian; Qu, Fengyu

    2018-04-16

    Flexible highly porous Fe2O3 and V2O5 nanofibers are synthesized by a facile electrospinning method followed by calcination treatment and directly used as binder-free electrodes for high-performance supercapacitors. These Fe2O3 and V2O5 nanofibers interconnect with each other and construct three-dimensional hierarchical porous films with high specific surface area. Benefiting from the unique structural features, the intriguing binder-free Fe2O3 and V2O5 porous nanofiber electrodes possess high specific capacitance of 255 F g-1 and 256 F g-1 at 2 mV s-1 in 1 M Na2SO4 electrolyte, respectively. An all-solid-state asymmetric supercapacitor is fabricated using Fe2O3 and V2O5 nanofibers as negative and positive electrodes, respectively, and the all-solid-state asymmetric supercapacitor can be operated up to 1.8 V attributed to the wide and opposite potential window of both electrodes. The assembled all-solid-state asymmetric supercapacitor achieves a high energy density up to 32.2 Wh kg-1 at an average power density of 128.7 W kg-1 as well as excellent cycling stability and power capability. The effective and facile synthesis method and superior electrochemical performance provided in this work make electrospun Fe2O3 and V2O5 nanofibers promising electrode materials for high performance asymmetric supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cell Chirality Drives Left-Right Asymmetric Morphogenesis.

    PubMed

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.

  5. Cell Chirality Drives Left-Right Asymmetric Morphogenesis

    PubMed Central

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila, we discovered that cells can have an intrinsic chirality to their structure, and that this “cell chirality” is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF (Myo31DF), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans, chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine. PMID:29666795

  6. Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles

    NASA Astrophysics Data System (ADS)

    Silveira, M.; Pontes, B. R.; Balthazar, J. M.

    2014-03-01

    In this study the behaviour of two different types of shock absorbers, symmetrical (linear) and asymmetrical (nonlinear) is compared for use on passenger vehicles. The analyses use different standard road inputs and include variation of the severity parameter, the asymmetry ratio and the velocity of the vehicle. Performance indices and acceleration values are used to assess the efficacy of the asymmetrical systems. The comparisons show that the asymmetrical system, with nonlinear characteristics, tends to have a smoother and more progressive performance, both for vertical and angular movements. The half-car front asymmetrical system was introduced, and the simulation results show that the use of the asymmetrical system only at the front of the vehicle can further diminish the angular oscillations. As lower levels of acceleration are essential for improved ride comfort, the use of asymmetrical systems for vibrations and impact absorption can be a more advantageous choice for passenger vehicles.

  7. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.

    PubMed

    Chen, Wei; Xia, Chuan; Alshareef, Husam N

    2014-09-23

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50,000 cycles.

  8. Asymmetric multiscale multifractal analysis of wind speed signals

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaonei; Zeng, Ming; Meng, Qinghao

    We develop a new method called asymmetric multiscale multifractal analysis (A-MMA) to explore the multifractality and asymmetric autocorrelations of the signals with a variable scale range. Three numerical experiments are provided to demonstrate the effectiveness of our approach. Then, the proposed method is applied to investigate multifractality and asymmetric autocorrelations of difference sequences between wind speed fluctuations with uptrends or downtrends. The results show that these sequences appear to be far more complex and contain abundant fractal dynamics information. Through analyzing the Hurst surfaces of nine difference sequences, we found that all series exhibit multifractal properties and multiscale structures. Meanwhile, the asymmetric autocorrelations are observed in all variable scale ranges and the asymmetry results are of good consistency within a certain spatial range. The sources of multifractality and asymmetry in nine difference series are further discussed using the corresponding shuffled series and surrogate series. We conclude that the multifractality of these series is due to both long-range autocorrelation and broad probability density function, but the major source of multifractality is long-range autocorrelation, and the source of asymmetry is affected by the spatial distance.

  9. Helical cone beam CT with an asymmetrical detector.

    PubMed

    Zamyatin, Alexander A; Taguchi, Katsuyuki; Silver, Michael D

    2005-10-01

    If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions.

  10. Synthesis, Morphological and Electrical Characterization of Solution Processable Low Bandgap Organic Materials

    DTIC Science & Technology

    2008-12-05

    bandgap: 1.98 eV Okamoto, Toshihiro; Senatore, Michelle L.; Ling, Mang-Mang; Mallik , Abhijit B.; Tang, Ming L.; Bao, Zhenan. Synthesis...grant: 1. R.A.B. Devine, M.M. Ling, A. Mallik , M.Roberts, Z. Bao, "X-irradiation Effects on Top Contact, Pentacene Based Field Effect Transistors...Semiconductors: Asymmetric Linear Acenes Containing Sulphur ",J. Am. Chem. Soc., 128, 160002-160003,2006. 3. T. Okamoto, M.L. Senatore, M.M. Ling, A.B. Mallik

  11. Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling

    PubMed Central

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265

  12. Three-dimensional infrared metamaterial with asymmetric transmission

    DOE PAGES

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; ...

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way puremore » optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.« less

  13. Helium in chirped laser fields as a time-asymmetric atomic switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaprálová-Žďánská, Petra Ruth, E-mail: kapralova@jh-inst.cas.cz; J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8; Moiseyev, Nimrod, E-mail: nimrod@tx.technion.ac.il

    2014-07-07

    Tuning the laser parameters exceptional points in the spectrum of the dressed laser helium atom are obtained. The weak linearly polarized laser couples the ground state and the doubly excited P-states of helium. We show here that for specific chirped laser pulses that encircle an exceptional point one can get the time-asymmetric phenomenon, where for a negative chirped laser pulse the ground state is transformed into the doubly excited auto-ionization state, while for a positive chirped laser pulse the resonance state is not populated and the neutral helium atoms remains in the ground state as the laser pulse is turnedmore » off. Moreover, we show that the results are very sensitive to the closed contour we choose. This time-asymmetric state exchange phenomenon can be considered as a time-asymmetric atomic switch. The optimal time-asymmetric switch is obtained when the closed loop that encircles the exceptional point is large, while for the smallest loops, the time-asymmetric phenomenon does not take place. A systematic way for studying the effect of the chosen closed contour that encircles the exceptional point on the time-asymmetric phenomenon is proposed.« less

  14. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    PubMed Central

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  15. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    NASA Astrophysics Data System (ADS)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-03-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.

  16. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products.

    PubMed

    Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J

    2013-07-24

    The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine.

  17. Homo-Roche Ester Derivatives By Asymmetric Hydrogenation and Organocatalysis

    PubMed Central

    Khumsubdee, Sakunchai; Zhou, Hua; Burgess, Kevin

    2013-01-01

    Asymmetric hydrogenation routes to homologs of The Roche ester tend to be restricted to hydrogenations of itaconic acid derivatives, ie substrates that contain a relatively unhindered, 1,1-disubstituted, alkene. This is because in hydrogenations mediated by RhP2 complexes, the typical catalysts, it is difficult to obtain high conversions using the alternative substrate for the same product, the isomeric trisubstituted alkenes (D in the text). However, chemoselective modification of the identical functional groups in itaconic acid derivatives are difficult, hence it would be favorable to use the trisubstituted alkene. Trisubstituted alkene substrates can be hydrogenated with high conversions using chiral analogs of Crabtree’s catalyst of the type IrN(carbene). This paper demonstrates such reactions are scalable (tens of grams) and can be manipulated to give optically pure homo-Roche ester chirons. Organocatalytic fluorination, chlorination, and amination of the homo-Roche building blocks was performed to demonstrate that they could be easily transformed into functionalized materials with two chiral centers and α,ω-groups that provide extensive scope for modifications. A synthesis of (S,S)- and (R,S)-γ-hydroxyvaline was performed to illustrate one application of the amination product. PMID:24219839

  18. Asymmetric (1+1)-dimensional hydrodynamics in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    2011-05-01

    The possibility that particle production in high-energy collisions is a result of two asymmetric hydrodynamic flows is investigated using the Khalatnikov form of the (1+1)-dimensional approximation of hydrodynamic equations. The general solution is discussed and applied to the physically appealing “generalized in-out cascade” where the space-time and energy-momentum rapidities are equal at initial temperature but boost invariance is not imposed. It is demonstrated that the two-bump structure of the entropy density, characteristic of the asymmetric input, changes easily into a single broad maximum compatible with data on particle production in symmetric processes. A possible microscopic QCD interpretation of asymmetric hydrodynamics is proposed.

  19. Bio-inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control.

    PubMed

    Zhang, Huacheng; Hou, Xu; Yang, Zhe; Yan, Dadong; Li, Lin; Tian, Ye; Wang, Huanting; Jiang, Lei

    2015-02-18

    Inspired by biological asymmetric ion channels, new shape-tunable and pH-responsive asymmetric hourglass single nanochannel systems demonstrate unique ion-transport properties. It is found that the change in shape and pH cooperatively control the ion transport within the nanochannel ranging from asymmetric shape with asymmetric ion transport, to asymmetric shape with symmetric ion transport and symmetric shape with symmetric ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Peloruside B, a Potent Antitumor Macrolide from the New Zealand Marine Sponge Mycale hentscheli: Isolation, Structure, Total Synthesis and Bioactivity

    PubMed Central

    Singh, A. Jonathan; Xu, Chun-Xiao; Xu, Xiaoming; West, Lyndon M.; Wilmes, Anja; Chan, Ariane; Hamel, Ernest; Miller, John H.; Northcote, Peter T.; Ghosh, Arun K.

    2009-01-01

    Peloruside B (2), a natural congener of peloruside A (1), was isolated in sub-milligram quantities from the New Zealand marine sponge Mycale hentscheli. Peloruside B promotes microtubule polymerization and arrests cells in the G2M phase of mitosis similar to paclitaxel, and its bioactivity was comparable to that of peloruside A. NMR-directed isolation, structure elucidation, structure confirmation by total synthesis and bioactivity of peloruside B are described in this article. The synthesis features Sharpless dihydroxylation, Brown's asymmetric allylboration reaction, reductive aldol coupling, Yamaguchi macrolactonization and selective methylation. PMID:19957922

  1. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  2. Catalytic asymmetric trifluoromethylthiolation via enantioselective [2,3]-sigmatropic rearrangement of sulfonium ylides

    NASA Astrophysics Data System (ADS)

    Zhang, Zhikun; Sheng, Zhe; Yu, Weizhi; Wu, Guojiao; Zhang, Rui; Chu, Wen-Dao; Zhang, Yan; Wang, Jianbo

    2017-10-01

    The trifluoromethylthio (SCF3) functional group has been of increasing importance in drug design and development as a consequence of its unique electronic properties and high stability coupled with its high lipophilicity. As a result, methods to introduce this highly electronegative functional group have attracted considerable attention in recent years. Although significant progress has been made in the introduction of SCF3 functionality into a variety of molecules, there remain significant challenges regarding the enantioselective synthesis of SCF3-containing compounds. Here, an asymmetric trifluoromethylthiolation that proceeds through the enantioselective [2,3]-sigmatropic rearrangement of a sulfonium ylide generated from a metal carbene and sulfide (Doyle-Kirmse reaction) has been developed using chiral Rh(II) and Cu(I) catalysts. This transformation features mild reaction conditions and excellent enantioselectivities (up to 98% yield and 98% e.e.), thus providing a unique, highly efficient and enantioselective method for the construction of C(sp3)-SCF3 bonds bearing chiral centres.

  3. Asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with a new trifluoromethoxylation reagent

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Cong, Fei; Guo, Rui; Wang, Liang; Tang, Pingping

    2017-06-01

    Fluorinated organic compounds are becoming increasingly important in pharmaceuticals, agrochemicals and materials science. The introduction of trifluoromethoxy groups into new drugs and agrochemicals has attracted much attention due to their strongly electron-withdrawing nature and high lipophilicity. However, synthesis of trifluoromethoxylated organic molecules is difficult owing to the decomposition of trifluoromethoxide anion and β-fluoride elimination from transition-metal-trifluoromethoxide complexes, and no catalytic enantioselective trifluoromethoxylation reaction has been reported until now. Here, we present an example of an asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with trifluoromethyl arylsulfonate (TFMS) as a new trifluoromethoxylation reagent. Compared to other trifluoromethoxylation reagents, TFMS is easily prepared and thermally stable with good reactivity. In addition, this reaction is operationally simple, scalable and proceeds under mild reaction conditions. Furthermore, broad scope and good functional group compatibility has been demonstrated by application of the method to the bromotrifluoromethoxylation of double bonds in natural products and natural product derivatives.

  4. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.

    PubMed

    Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang

    2015-04-01

    D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

  5. [The importance of regulation of endogenous methylarginine concentrations in clinical practice].

    PubMed

    Kopieczna-Grzebieniak, Ewa; Goss, Małgorzata

    2005-01-01

    Endogenous methylarginines, the catabolism products of proteins containing post-translationally methylated arginine residues, are the modulators of arginine metabolism. Endogenous methylarginines compete with arginine about cationic aminoacid transporter and some of them, e.g. asymmetric dimethylarginine (ADMA) and N-mono-methylarginine (MMA), are competitive inhibitors of nitric oxide synthases. The changes of arginine metabolism, induced by these methylarginines, may have serious consequences, because arginine is the precursor of cell-signalling molecules such as NO, agmatine, glutamate and gamma-aminobutyric acid (GABA) and the regulatory molecules polyamines. ADMA has also prooxidant properties and increases endothelial adhesiveness for monocytes. Asymmetric methyl-arginines induce endothelial dysfunction, which may be reversed by L-arginine supplementation, what is defined as "arginine paradox". The increased plasma concentration of asymmetric methylarginines is induced by hypercholesterolemic or hyperhomocysteinemic diets and by rich sodium chloride intake. The high level of plasma asymmetric methyl-arginines accompanies atherosclerosis, hypertension, chronic renal failure, diabetes, insulin resistence, hyperthyreosis, schizophrenia and sclerosis multiplex. The causes of increased concentration ADMA and MMA in these diseases are just now discovered. The hope in the future is the modulation of methylarginines concentration by regulation of expression and activities of enzymes taking part in the metabolism of these substances, particularly of dimethyl-arginine dimethyl-aminotransferase. The main aim of the present study is to pay attention to possibility of the modulation of asymmetric methyl-arginines concentration, what may be a new way of synthase nitric oxide activity regulation in vivo and may be useful in future therapy of patologies in which synthesis of NO is troubled.

  6. Efficient unidirectional launching of surface plasmons by a cascade asymmetric-groove structure.

    PubMed

    Song, Xue-Yang; Zhang, Zhengxing; Liao, Huimin; Li, Zhi; Sun, Chengwei; Chen, Jianjun; Gong, Qihuang

    2016-03-28

    Increasing the unidirectional launching efficiency of surface plasmon polaritons (SPPs) is crucial in plasmonics. Here, we demonstrate that this efficiency may be improved by cascading subwavelength unidirectional SPP launching units. A unidirectional SPP launching efficiency of at least 46% and an extinction ratio of 40 are experimentally demonstrated using a cascade asymmetric-groove structure. Meanwhile, the device is ultracompact, and has a lateral dimension of only 1.1 μm. The proposed structure also presents a broadband response and is easy to fabricate. This high-performance wavelength-scale unidirectional SPP launcher represents an important development in practical SPP sources.

  7. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    PubMed

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  8. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis

    NASA Astrophysics Data System (ADS)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  9. Exploiting Enzymatic Dynamic Reductive Kinetic Resolution (DYRKR) in Stereocontrolled Synthesis

    PubMed Central

    Applegate, Gregory A.; Berkowitz, David B.

    2015-01-01

    Over the past two decades, the domains of both frontline synthetic organic chemistry and process chemistry and have seen an increase in crosstalk between asymmetric organic/organometallic approaches and enzymatic approaches to stereocontrolled synthesis. This review highlights the particularly auspicious role for dehydrogenase enzymes in this endeavor, with a focus on dynamic reductive kinetic resolutions (DYRKR) to “deracemize” building blocks, often setting two stereocenters in so doing. The scope and limitations of such dehydrogenase-mediated processes are overviewed, as are future possibilities for the evolution of enzymatic DYRKR. PMID:26622223

  10. Asymmetric Weakness and West Nile Virus Infection.

    PubMed

    Kuo, Dick C; Bilal, Saadiyah; Koller, Paul

    2015-09-01

    Weakness is a common presentation in the emergency department (ED). Asymmetric weakness or weakness that appears not to follow an anatomical pattern is a less common occurrence. Acute flaccid paralysis with no signs of meningoencephalitis is one of the more uncommon presentations of West Nile virus (WNV). Patient may complain of an acute onset of severe weakness, or even paralysis, in one or multiple limbs with no sensory deficits. This weakness is caused by injury to the anterior horn cells of the spinal cord. We present a case of acute asymmetric flaccid paralysis with preserved sensory responses that was eventually diagnosed as neuroinvasive WNV infection. A 31-year-old male with no medical history presented with complaints of left lower and right upper extremity weakness. Computed tomography scan was negative and multiple other studies were performed in the ED. Eventually, he was admitted to the hospital and was found to have decreased motor amplitudes, severely reduced motor neuron recruitment, and denervation on electrodiagnostic study. Cerebrospinal fluid specimen tested positive for WNV immunoglobulin (Ig) G and IgM antibodies. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Acute asymmetric flaccid paralysis with no signs of viremia or meningoencephalitis is an unusual presentation of WNV infection. WNV should be included in the differential for patients with asymmetric weakness, especially in the summer months in areas with large mosquito populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat.

    PubMed

    Clemente-Suárez, Vicente J; Robles-Pérez, José J

    2013-09-01

    In current theaters of operation, soldiers had to face a different situation as symmetrical (defined battlefield) and asymmetrical combat (non-defined battlefield), especially in urban areas. The mechanical and organic responses of soldiers in these combats are poorly studied in specific literature. This research aimed to analyze physical, mechanical, and physiological parameters during symmetrical and asymmetrical combat simulations. We analyzed 20 soldiers from the Spanish Army and Spanish Forces and Security Corps (34.5 ± 4.2 years; 176.4 ± 8.4 cm; 74.6 ± 8.7 kg; 63.3 ± 8.0 kg muscular mass; 7.6 ± 3.2 kg fat mass) during a symmetric combat (traditional combat simulation) and during an asymmetrical combat (urban combat simulation). Heart rate (HR), speed, sprints, distances, impact, and body load parameters were measured by a GPS system and a HR belt. Results showed many differences between symmetrical and asymmetrical combat. Asymmetrical combat presented higher maximum velocity movement, number of sprints, sprint distance, and average HR. By contrary, symmetric combat presented higher number of impact and body load. This information could be used to improve specific training programs for each type of combat.

  12. Asymmetric multiscale detrended fluctuation analysis of California electricity spot price

    NASA Astrophysics Data System (ADS)

    Fan, Qingju

    2016-01-01

    In this paper, we develop a new method called asymmetric multiscale detrended fluctuation analysis, which is an extension of asymmetric detrended fluctuation analysis (A-DFA) and can assess the asymmetry correlation properties of series with a variable scale range. We investigate the asymmetric correlations in California 1999-2000 power market after filtering some periodic trends by empirical mode decomposition (EMD). Our findings show the coexistence of symmetric and asymmetric correlations in the price series of 1999 and strong asymmetric correlations in 2000. What is more, we detect subtle correlation properties of the upward and downward price series for most larger scale intervals in 2000. Meanwhile, the fluctuations of Δα(s) (asymmetry) and | Δα(s) | (absolute asymmetry) are more significant in 2000 than that in 1999 for larger scale intervals, and they have similar characteristics for smaller scale intervals. We conclude that the strong asymmetry property and different correlation properties of upward and downward price series for larger scale intervals in 2000 have important implications on the collapse of California power market, and our findings shed a new light on the underlying mechanisms of power price.

  13. Treatment outcome of bimaxillary surgery for asymmetric skeletal class II deformity.

    PubMed

    Chen, Yun-Fang; Liao, Yu-Fang; Chen, Yin-An; Chen, Yu-Ray

    2018-05-04

    Facial asymmetry is one of the main concerns in patients with a dentofacial deformity. The aims of the study were to (1) evaluate the changes in facial asymmetry after bimaxillary surgery for asymmetric skeletal class II deformity and (2) compare preoperative and postoperative facial asymmetry of class II patients with normal controls. The facial asymmetry was assessed for 30 adults (21 women and 9 men, mean age: 29.3 years) who consecutively underwent bimaxillary surgery for asymmetric skeletal class II deformity using cone-beam computed tomography before and at least 6 months after surgery. Thirty soft tissue and two dental landmarks were identified on each three-dimensional facial image, and the asymmetry index of each landmark was calculated. Results were compared with those of 30 normal control subjects (21 women and 9 men, mean age: 26.2 years) with skeletal class I structure. Six months after surgery, the asymmetric index of the lower face and total face decreased significantly (17.8 ± 29.4 and 16.6 ± 29.5 mm, respectively, both p < 0.01), whereas the asymmetric index of the middle face increased significantly (1.2 ± 2.2 mm, p < 0.01). Postoperatively, 53% of the class II patients had residual chin asymmetry. The postoperative total face asymmetric index was positively correlated with the preoperative asymmetric index (r = 0.37, p < 0.05). Bimaxillary surgery for patients with asymmetric class II deformity resulted in a significant improvement in lower face asymmetry. However, approximately 50% of the patients still had residual chin asymmetry. The total face postoperative asymmetry was moderately related to the initial severity of asymmetry. These findings could help clinicians better understand orthognathic outcomes on different facial regions for patients with asymmetric class II deformity.

  14. Tunable synthesis of hierarchical NiCo2O4 nanosheets-decorated Cu/CuOx nanowires architectures for asymmetric electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Kuang, Min; Zhang, Yu Xin; Li, Tong Tao; Li, Kai Feng; Zhang, Sheng Mao; Li, Gang; Zhang, Wei

    2015-06-01

    We demonstrate a facile and tunable preparative strategy of porous NiCo2O4 nanosheets-decorated Cu-based nanowires hybrids as high-performance supercapacitor electrodes. A fast faradic reaction has been realized by inducing elementary copper core in the composite, which assists in high electric conductivity of the cell and creates intimate channels for fast charge collection and electron transfer. As a result, this hybrid composite electrode displays high specific capacitance (578 F g-1 at current density of 1.0 A g-1) and rate capability (80.1% capacitance retention from 1 A g-1 to 10 A g-1). Additionally, asymmetric device is constructed from NiCo2O4/Cu-based NWs and activated graphene (AG) with an operation potential from 0 to 1.4 V. The asymmetric device exhibits an energy density of 12.6 Wh kg-1 at a power density of 344 W kg-1 and excellent long-term cycling stability (only 1.8% loss of its initial capacitance after 10,000 cycles). These attractive findings suggest that such unique NiCo2O4/Cu-based NWs hybrid architecture is promising for electrochemical applications as efficient electrode material.

  15. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  16. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  17. De novo asymmetric synthesis and biological analysis of the daumone pheromones in Caenorhabditis elegans and in the soybean cyst nematode Heterodera glycines

    USDA-ARS?s Scientific Manuscript database

    The de novo asymmetric total syntheses of daumone 1, daumone 2 and analogs are described. The key steps of our approach are the diastereoselective palladium catalyzed glycosylation reaction, the Noyori reduction of a acetylfuran and a propargyl ketone, which introduce the absolute stereochemistry of...

  18. Chiral allene-containing phosphines in asymmetric catalysis

    PubMed Central

    Cai, Feng; Pu, Xiaotao; Qi, Xiangbing; Lynch, Vincent; Radha, Akella; Ready, Joseph M.

    2011-01-01

    Traditionally, ligands used in asymmetric catalysis have contained either stereogenic atoms or hindered single bonds (atropisomerism), or both. Here we demonstrate that allenes, chiral 1,2-dienes, appended with basic functionality can serve as ligands for transition metals. We describe an allene-containing bisphosphine that, when coordinated to Rh(I), promotes the asymmetric addition of aryl boronic acids to α-keto esters with high enantioselectivity. Solution and solid-state structural analysis reveals that one olefin of the allene can coordinate to transition metals generating bi- and tri-dentate ligands. PMID:21972824

  19. Synthesis of Enantiomerically Pure Lignin Dimer Models for Catalytic Selectivity Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njiojob, Costyl N.; Rhinehart, Jennifer L.; Bozell, Joseph J.

    2015-02-06

    A series of highly enantioselective transformations, such as the Sharpless asymmetric epoxidation and Jacobsen hydrolytic kinetic resolution, were utilized to achieve the complete stereoselective synthesis of β-O-4 lignin dimer models containing the S, G, and H subunits with excellent ee (>99%) and moderate to high yields. This unprecedented synthetic method can be exploited for enzymatic, microbial, and chemical investigations into lignin’s degradation and depolymerization as related to its stereochemical constitution. Preliminary degradation studies using enantiopure Co(salen) catalysts are also reported.

  20. Effect of asymmetric auxin application on Helianthus hypocotyl curvature

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Rayle, D. L.

    1989-01-01

    Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.

  1. High efficiency silicon solar cell based on asymmetric nanowire.

    PubMed

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki

    2015-07-08

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

  2. Total synthesis of (+)-ileabethoxazole via an iron-mediated Pauson-Khand [2 + 2 + 1] carbocyclization.

    PubMed

    Williams, David R; Shah, Akshay A

    2014-06-18

    Studies describe the total synthesis of (+)-ileabethoxazole (1) using a Stille cross-coupling reaction of propargylic stannanes with 5-iodo-1,3-oxazoles to produce 1,1-disubstituted allenes (11). An iron-mediated [2 + 2 + 1] carbocyclization yields a novel cyclopentenone for elaboration to 1. Site-selective palladium insertion reactions allow for regiocontrolled substitutions of the heterocycle. Asymmetric copper hydride reductions are examined, and strategies for the formation of the central aromatic ring are discussed.

  3. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  4. A practical two-step synthesis of imidazo[1,2-a]pyridines from N-(prop-2-yn-1-yl)pyridin-2-amines.

    PubMed

    Sucunza, David; Samadi, Abdelouahid; Chioua, Mourad; Silva, Daniel B; Yunta, Cristina; Infantes, Lourdes; Carmo Carreiras, M; Soriano, Elena; Marco-Contelles, José

    2011-05-07

    The Sandmeyer reaction of differently C-2 substituted N-(prop-2-yn-1-ylamino)pyridines is an efficient, mild, new and practical method for the stereospecific synthesis of (E)-exo-halomethylene bicyclic pyridones bearing the imidazo[1,2-a]pyridine heterocyclic ring system. © The Royal Society of Chemistry 2011

  5. Interfacing theories of program with theories of evaluation for advancing evaluation practice: Reductionism, systems thinking, and pragmatic synthesis.

    PubMed

    Chen, Huey T

    2016-12-01

    Theories of program and theories of evaluation form the foundation of program evaluation theories. Theories of program reflect assumptions on how to conceptualize an intervention program for evaluation purposes, while theories of evaluation reflect assumptions on how to design useful evaluation. These two types of theories are related, but often discussed separately. This paper attempts to use three theoretical perspectives (reductionism, systems thinking, and pragmatic synthesis) to interface them and discuss the implications for evaluation practice. Reductionism proposes that an intervention program can be broken into crucial components for rigorous analyses; systems thinking view an intervention program as dynamic and complex, requiring a holistic examination. In spite of their contributions, reductionism and systems thinking represent the extreme ends of a theoretical spectrum; many real-world programs, however, may fall in the middle. Pragmatic synthesis is being developed to serve these moderate- complexity programs. These three theoretical perspectives have their own strengths and challenges. Knowledge on these three perspectives and their evaluation implications can provide a better guide for designing fruitful evaluations, improving the quality of evaluation practice, informing potential areas for developing cutting-edge evaluation approaches, and contributing to advancing program evaluation toward a mature applied science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of asymmetrical stance and movement on body rotation in pushing.

    PubMed

    Lee, Yun-Ju; Aruin, Alexander S

    2015-01-21

    Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of asymmetrical stance and movement on body rotation in pushing

    PubMed Central

    Lee, Yun-Ju; Aruin, Alexander S.

    2014-01-01

    Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. PMID:25498915

  8. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.

    PubMed

    Kim, Jaehwan; Jeon, Jin-Han; Kim, Hyun-Jun; Lim, Hyuneui; Oh, Il-Kwon

    2014-03-25

    Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.

  9. Asymmetric threat data mining and knowledge discovery

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  10. Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte

    NASA Astrophysics Data System (ADS)

    Guerrero-García, Guillermo Iván; González-Mozuelos, Pedro; de la Cruz, Mónica Olvera

    2011-10-01

    In a previous theoretical and simulation study [G. I. Guerrero-García, E. González-Tovar, and M. Olvera de la Cruz, Soft Matter 6, 2056 (2010)], it has been shown that an asymmetric charge neutralization and electrostatic screening depending on the charge polarity of a single nanoparticle occurs in the presence of a size-asymmetric monovalent electrolyte. This effect should also impact the effective potential between two macroions suspended in such a solution. Thus, in this work we study the mean force and the potential of mean force between two identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte, showing that these results go beyond the standard description provided by the well-known Derjaguin-Landau-Verwey-Overbeek theory. To include consistently the ion-size effects, molecular dynamics (MD) simulations and liquid theory calculations are performed at the McMillan-Mayer level of description in which the solvent is taken into account implicitly as a background continuum with the suitable dielectric constant. Long-range electrostatic interactions are handled properly in the simulations via the well established Ewald sums method and the pre-averaged Ewald sums approach, originally proposed for homogeneous ionic fluids. An asymmetric behavior with respect to the colloidal charge polarity is found for the effective interactions between two identical nanoparticles. In particular, short-range attractions are observed between two equally charged nanoparticles, even though our model does not include specific interactions; these attractions are greatly enhanced for anionic nanoparticles immersed in standard electrolytes where cations are smaller than anions. Practical implications of some of the presented results are also briefly discussed. A good accord between the standard Ewald method and the pre-averaged Ewald approach is attained, despite the fact that the ionic system studied here is certainly inhomogeneous. In general, good

  11. Asymmetric triplex metallohelices with high and selective activity against cancer cells

    NASA Astrophysics Data System (ADS)

    Faulkner, Alan D.; Kaner, Rebecca A.; Abdallah, Qasem M. A.; Clarkson, Guy; Fox, David J.; Gurnani, Pratik; Howson, Suzanne E.; Phillips, Roger M.; Roper, David I.; Simpson, Daniel H.; Scott, Peter

    2014-09-01

    Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.

  12. anti-Selective catalytic asymmetric nitroaldol reaction via a heterobimetallic heterogeneous catalyst.

    PubMed

    Nitabaru, Tatsuya; Nojiri, Akihiro; Kobayashi, Makoto; Kumagai, Naoya; Shibasaki, Masakatsu

    2009-09-30

    Full details of an anti-selective catalytic asymmetric nitroaldol reaction promoted by a heterobimetallic catalyst comprised of Nd(5)O(O(i)Pr)(13), an amide-based ligand, and NaHMDS (sodium hexamethyldisilazide) are described. A systematic synthesis and evaluation of amide-based ligands led to the identification of optimum ligand 1m, which provided a suitable platform for the Nd/Na heterobimetallic complex. During the catalyst preparation in THF, a heterogeneous mixture developed and centrifugation of the suspension allowed for separation of the precipitate, which contained the active catalyst and which could be stored for at least 1 month without any loss of catalytic performance. The precipitate promoted a nitroaldol (Henry) reaction for a broad range of nitroalkanes and aldehydes under heterogeneous conditions, affording the corresponding 1,2-nitroalkanol in a highly anti-selective (up to anti/syn = >40/1) and enantioselective manner (up to 98% ee). Inductively coupled plasma (ICP) and X-ray fluorescence (XRF) analyses revealed that the precipitate indeed included both neodymium and sodium, which was further supported by high-resolution ESI TOF MS spectrometry.

  13. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis

    PubMed Central

    Li, Min; Zhang, Zhi-Jun; Kong, Xu-Dong; Yu, Hui-Lei

    2017-01-01

    ABSTRACT Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T5015, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C5015, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter−1 day−1. These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor. IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low

  14. The asymmetric geospace - the most common state of the system

    NASA Astrophysics Data System (ADS)

    Ostgaard, Nikolai; Reistad, Jone P.; Tenfjord, Paul; Laundal, Karl M.; Rexer, Theresa; Haaland, Stein; Snekvik, Kristian; Hesse, Michael; Milan, Steve; Ohma, Anders

    2017-04-01

    Previous studies have shown that conjugate auroral features are significantly displaced in the two hemispheres when the interplanetary magnetic field (IMF) has a transverse (Y) component. Furthermore, it has been shown that a By component is induced in the closed magnetosphere due to the asymmetric loading of magnetic flux in the lobes following asymmetric dayside reconnection when IMF has a strong Y component. The magnetic field lines with azimuthally displaced footpoints map into a «banana» cell in one hemisphere and an «orange» cell in the other. This means that both the magnetosphere and the ionosphere are asymmetric during such conditions. As the most common orientation of IMF is to have a dominant By component an asymmetric geospace is in fact the most common state of the system. In this paper we study auroral features observed (IMAGE and Polar) and convection pattern (all available data) during a magnetic storm on August 17, 2001. Due to the combination of a strong IMF By component (>20 nT) and tilt angle of 23 degrees we observed conjugate auroral features, which were displaced as much as 4 MLT. Convection data are consistent with this asymmetric state of geospace. We also observed that the asymmetries were reduced by substorms during that period.

  15. Holding-time-aware asymmetric spectrum allocation in virtual optical networks

    NASA Astrophysics Data System (ADS)

    Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.

  16. Night-time road construction operations synthesis of practice.

    DOT National Transportation Integrated Search

    2008-05-01

    report synthesizes existing literature on nighttime construction operations, identifies gaps in the current state of knowledge, and summarizes research in progress studies that are planned or underway. The literature review and synthesis found the fo...

  17. Persistent Asymmetric Optic Disc Swelling After Long-Duration Space Flight: Implications for Pathogenesis.

    PubMed

    Mader, Thomas H; Gibson, C Robert; Otto, Christian A; Sargsyan, Ashot E; Miller, Neil R; Subramanian, Prem S; Hart, Stephen F; Lipsky, William; Patel, Nimesh B; Lee, Andrew G

    2017-06-01

    Several ophthalmic findings including optic disc swelling, globe flattening and choroidal folds have been observed in astronauts following long-duration space flight. The authors now report asymmetric choroidal expansion, disc swelling and optic disc morphologic changes in a 45-year-old astronaut which occurred during long-duration space flight and persisted following his space mission. Case study of ocular findings in an astronaut documented during and after a long-duration space flight of approximately 6 months. Before, during and after his spaceflight, he underwent complete eye examination, including fundus photography, ultrasound, and optical coherence tomography. We documented asymmetric choroidal expansion inflight that largely resolved by 30 days postflight, asymmetric disc swelling observed inflight that persisted for over 180 days postflight, asymmetric optic disc morphologic changes documented inflight by OCT that persisted for 630 days postflight and asymmetric globe flattening that began inflight and continued 660 days postflight. Lumbar puncture opening pressures obtained at 7 and 365 days post-mission were 22 and 16 cm H20 respectively. The persistent asymmetric findings noted above, coupled with the lumbar puncture opening pressures, suggest that prolonged microgravity exposure may have produced asymmetric pressure changes within the perioptic subarachnoid space.

  18. Synthesis Polarimetry Calibration

    NASA Astrophysics Data System (ADS)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  19. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    NASA Technical Reports Server (NTRS)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  20. From design to manufacturing of asymmetric teeth gears using computer application

    NASA Astrophysics Data System (ADS)

    Suciu, F.; Dascalescu, A.; Ungureanu, M.

    2017-05-01

    The asymmetric cylindrical gears, with involutes teeth profiles having different base circle diameters, are nonstandard gears, used with the aim to obtain better function parameters for the active profile. We will expect that the manufacturing of these gears became possible only after the design and realization of some specific tools. The paper present how the computer aided design and applications developed in MATLAB, for obtain the geometrical parameters, in the same time for calculation some functional parameters like stress and displacements, transmission error, efficiency of the gears and the 2D models, generated with AUTOLISP applications, are used for computer aided manufacturing of asymmetric gears with standard tools. So the specific tools considered one of the disadvantages of these gears are not necessary and implicitly the expected supplementary costs are reduced. The calculus algorithm established for the asymmetric gear design application use the „direct design“ of the spur gears. This method offers the possibility of determining first the parameters of the gears, followed by the determination of the asymmetric gear rack’s parameters, based on those of the gears. Using original design method and computer applications have been determined the geometrical parameters, the 2D and 3D models of the asymmetric gears and on the base of these models have been manufacturing on CNC machine tool asymmetric gears.

  1. Totally Asymmetric Limit for Models of Heat Conduction

    NASA Astrophysics Data System (ADS)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  2. Gravity-induced asymmetric distribution of a plant growth hormone

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  3. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  4. Time-asymmetric photovoltaics.

    PubMed

    Green, Martin A

    2012-11-14

    Limits upon photovoltaic energy conversion efficiency generally are formulated using the detailed balance approach of Shockley and Queisser. One key underlying assumption is invariance upon time reversal, underpinning detailed balance itself. Recent proposals for compact, layered, time-asymmetrical, magneto-optical devices make their routine implementation likely. It is shown that such time-asymmetry can alter the relationship between solar cell emission and absorption assumed in the Shockley-Queisser approach, allowing generally accepted photovoltaic performance limits to be exceeded.

  5. Design and implementation of a laboratory-based drug design and synthesis advanced pharmacy practice experience.

    PubMed

    Philip, Ashok; Stephens, Mark; Mitchell, Sheila L; Watkins, E Blake

    2015-04-25

    To provide students with an opportunity to participate in medicinal chemistry research within the doctor of pharmacy (PharmD) curriculum. We designed and implemented a 3-course sequence in drug design or drug synthesis for pharmacy students consisting of a 1-month advanced elective followed by two 1-month research advanced pharmacy practice experiences (APPEs). To maximize student involvement, this 3-course sequence was offered to third-year and fourth-year students twice per calendar year. Students were evaluated based on their commitment to the project's success, productivity, and professionalism. Students also evaluated the course sequence using a 14-item course evaluation rubric. Student feedback was overwhelmingly positive. Students found the experience to be a valuable component of their pharmacy curriculum. We successfully designed and implemented a 3-course research sequence that allows PharmD students in the traditional 4-year program to participate in drug design and synthesis research. Students report the sequence enhanced their critical-thinking and problem-solving skills and helped them develop as independent learners. Based on the success achieved with this sequence, efforts are underway to develop research APPEs in other areas of the pharmaceutical sciences.

  6. Asymmetrical external effects on transmission, conductance and giant tunneling magnetoresistance in silicene

    NASA Astrophysics Data System (ADS)

    Oubram, O.; Navarro, O.; Guzmán, E. J.; Rodríguez-Vargas, I.

    2018-01-01

    Electron transport in a silicene structure, composed of a pair of magnetic gates, is studied in a ferromagnetic and antiferromagnetic configuration. The transport properties are investigated for asymmetrical external effects like an electrostatic potential, a magnetic field and for asymmetrical geometric structure. This theoretical study, has been done using the matrix transfer method to calculate the transmission, the conductance for parallel and antiparallel magnetic alignment and the tunneling magnetoresistance (TMR). In Particular, we have found that the transmission, conductance and magnetoresistance oscillate as a function of the width of barriers. It is also found that a best control and high values of TMR spectrum are achieved by an asymmetrical application of the contact voltage. Besides, we have shown that the TMR is enhanced several orders of magnitude by the combined asymmetrical magnetization effect with an adequate applied electrostatic potential. Whereby, the asymmetrical external effects play an important role to improve TMR than symmetrical ones. Finally, the giant TMR can be flexibly modulated by incident energy and a specific asymmetrical application of control voltage. These results could be useful to design filters and digital nanodevices.

  7. Intramolecular Tsuji-Trost-type Allylation of Carboxylic Acids: Asymmetric Synthesis of Highly π-Allyl Donative Lactones.

    PubMed

    Suzuki, Yusuke; Seki, Tomoaki; Tanaka, Shinji; Kitamura, Masato

    2015-08-05

    Tsuji-Trost-type asymmetric allylation of carboxylic acids has been realized by using a cationic CpRu complex with an axially chiral picolinic acid-type ligand (Cl-Naph-PyCOOH: naph = naphthyl, py = pyridine). The carboxylic acid and allylic alcohol intramolecularly condense by the liberation of water without stoichiometric activation of either nucleophile or electrophile part, thereby attaining high atom- and step-economy, and low E factor. This success can be ascribed to the higher reactivity of allylic alcohols as compared with the allyl ester products in soft Ru/hard Brønstead acid combined catalysis, which can function under slightly acidic conditions unlike the traditional Pd-catalyzed system. Detailed analysis of the stereochemical outcome of the reaction using an enantiomerically enriched D-labeled substrate provides an intriguing view of enantioselection.

  8. [Combined orthodontic-orthoganthic surgery to treat asymmetric mandibular excess malocclusions].

    PubMed

    Li, Xiao-Bing; Chen, Song; Chen, Yang-Xi; Li, Jun

    2005-06-01

    To discuss the skeletal and dentoalveolar characteristics of asymmetric mandibular excess malocclusions and to discuss the procedures of combined orthodontic-orthonganthic surgery treatments of asymmetric mandibular excess malocclusions. 25 cases treated by combined orthodontic-orthognathic surgery treatments were reviewed to find out the specialties of this kind of therapy. The asymmetric of mandible presents anterior and posterior teeth tipped both sagitally and horizontally, as well as upper and lower jaws incompatibility. The pre-surgical orthodontic treatments included decomposition of anterior and posterior teeth, leveling and aligning the teeth etc. The post-surgical orthodontic treatments were to detail the occlusions. The patients all got functional and aesthetic good results after the combined orthodontic-orthognathic surgery treatments. The asymmetric mandibular excess affects the harmony of the face badly, and the correction of it must be carried out by the combined orthodontic-orthognathic surgery treatments. The pre- and post-surgical orthodontic treatments are the key stages to make the skeletal corrections stable.

  9. Ferroelectricity and tunneling electroresistance effect in asymmetric ferroelectric tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, L. L.; Wang, J., E-mail: jianwang@hku.hk

    2016-06-14

    We report the investigation on the ferroelectricity and tunneling electroresistance (TER) effect in PbTiO{sub 3} (PTO)-based ferroelectric tunnel junctions (FTJs) using first-principles calculations. For symmetric FTJs, we have calculated the average polarizations of PTO film and effective screening lengths of different metal electrodes for a number of FTJs, which is useful for experimental research. For asymmetric FTJs, significant asymmetric ferroelectric displacements in PTO film are observed, which is attributed to the intrinsic field generated by the two dissimilar electrodes. Moreover, by performing quantum transport calculations on those asymmetric FTJs, a sizable TER effect is observed. It is found that themore » asymmetry of ferroelectric displacements in PTO barrier, which is determined by the difference of work functions of the electrodes, controls the observed TER effect. Our results will help unravel the TER mechanism of asymmetric FTJs in most experiments and will be useful for the designing of FTJ-based devices.« less

  10. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    PubMed

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  11. Design of activated carbon/activated carbon asymmetric capacitors

    NASA Astrophysics Data System (ADS)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  12. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion.

    PubMed

    Yao, Hiroshi; Iwatsu, Mana

    2016-04-05

    Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.

  13. Direct catalytic asymmetric aldol-Tishchenko reaction.

    PubMed

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  14. Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    NASA Astrophysics Data System (ADS)

    Wang, Tianju; Zhong, Zhong; Wang, Ju

    2018-05-01

    Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.

  15. Asymmetric synthesis of α-alkenyl homoallylic primary amines via 1,2-addition of Grignard reagent to α,β-unsaturated phosphonyl imines.

    PubMed

    Xiong, Yiwen; Mei, Haibo; Xie, Chen; Han, Jianlin; Li, Guigen; Pan, Yi

    2013-01-01

    A series of chiral N -phosphonyl protected α-alkenyl homoallylic primary amines were synthesized by asymmetric addition of allylmagnesium bromide Grignard reagent towards chiral α,β-unsaturated imines. Only 1,2-adduct was obtained for all the imines with good yields and excellent diastereoselectivities. The chiral auxiliary could be easily removed under simple conditions, giving free multiple functionalized primary amines.

  16. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  17. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    DTIC Science & Technology

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...using incomplete feedback and allowing two-sided adaptive play. Combining these aspects in an evolving game , we use optimization, simulation, and

  18. Enantioconvergent Cross-Couplings of Racemic Alkylmetal Reagents with Unactivated Secondary Alkyl Electrophiles: Catalytic Asymmetric Negishi α-Alkylations of N-Boc-pyrrolidine

    PubMed Central

    Cordier, Christopher J.; Lundgren, Rylan J.; Fu, Gregory C.

    2013-01-01

    Although enantioconvergent alkyl-alkyl couplings of racemic electrophiles have been developed, there have been no reports of the corresponding reactions of racemic nucleophiles. Herein, we describe Negishi cross-couplings of racemic α-zincated N-Boc-pyrrolidine with unactivated secondary halides, thus providing a one-pot, catalytic asymmetric method for the synthesis of a range of 2-alkylpyrrolidines (an important family of target molecules) from N-Boc-pyrrolidine, a commercially available precursor. Preliminary mechanistic studies indicate that two of the most straightforward mechanisms for enantioconvergence (a dynamic kinetic resolution of the organometallic coupling partner and a simple β-hydride elimination/β-migratory insertion pathway) are unlikely to be operative. PMID:23869442

  19. Asymmetric chorea as presenting symptom in Graves' disease.

    PubMed

    Park, Jinsung; Kim, Jung-Guk; Park, Sung-Pa; Lee, Ho-Won

    2012-04-01

    Chorea is an involuntary movement disorder characterized by irregular, brief movements that flow from one body part to another in a non-stereotyped fashion. In rare instances, chorea is associated with autoimmune thyroid disease. Most of them have been related with Hashimoto's encephalopathy and few cases have been related with Graves' disease. Most reported cases have been in women with Graves' disease. We describe a 16-year-old male patient with asymmetric chorea as presenting symptom in Graves' disease. He had no family history of neurological disease. Brain imaging, laboratory findings and electroencephalogram demonstrated no abnormality except for thyroid dysfunction which was proved by thyroid function test, sonography and radioiodine uptake scan. Asymmetric chorea improved over months after anti-thyroid medications. This asymmetry could be explained by difference in increased hypersensitivity or by the difference in the number of dopamine receptors, and an asymmetrical breakdown of blood-brain barrier due to their genetic differences.

  20. Synthesis of Shoulder Rumble Strip Practices and Policies.

    DOT National Transportation Integrated Search

    2001-12-07

    This synthesis provides a review of shoulder rumble strip research and the rumble strips' crash reduction record. A discussion of shoulder rumble strips as perceived by the motorist and the bicyclist is followed by the presentation of results of thre...

  1. Carrying asymmetric loads during stair negotiation.

    PubMed

    Wang, Junsig; Gillette, Jason

    2017-03-01

    Individuals often carry items in one hand instead of both hands during activities of daily living. The combined effects of carrying asymmetric loads and stair negotiation may create even higher demands on the low back and lower extremity. The purpose of this study was to investigate the effect of symmetric and asymmetric loading conditions on L5/S1 and lower extremity moments during stair negotiation. Twenty-two college students performed stair ascent and stair descent on a three-step staircase (step height 18.5cm, tread depth 29.5cm) at preferred pace under five load conditions: no load, 10% body weight (BW) unilateral load, 20% BW unilateral load, 10% BW bilateral load, and 20% BW bilateral load. Video cameras and force platforms were used to collect kinematic and kinetic data. Inverse dynamics was used to calculate frontal plane moments for the L5/S1 and lower extremity. A 20% BW unilateral load resulted in significantly higher peak L5/S1 lateral bending, hip abduction, and external knee varus moments than nearly all other loading conditions during stair ascent and stair descent. Therefore, we suggest potential benefits when carrying symmetrical loads as compared to an asymmetric load in order to decrease the frontal joint moments, particularly at 20% BW load. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Asymmetric cellular responses in primary human myoblasts using sera of different origin and specification

    PubMed Central

    Rullman, Eric; Lilja, Mats; Mandić, Mirko; Melin, Michael; Olsson, Karl; Gustafsson, Thomas

    2018-01-01

    For successful growth and maintenance of primary myogenic cells in vitro, culture medium and addition of sera are the most important factors. At present it is not established as to what extent sera of different origin and composition, supplemented in media or serum-free media conditions influence myoblast function and responses to different stimuli. By assessing markers of proliferation, differentiation/fusion, quiescence, apoptosis and protein synthesis the aim of the current study was to elucidate how primary human myoblasts and myotubes are modulated by different commonly used serum using FCS (foetal calf serum), (CS-FCS charcoal-stripped FCS, a manufacturing process to remove hormones and growth factors from sera), HS (horse serum) as well as in serum free conditions (DMEM). To characterise the biological impact of the different serum, myoblasts were stimulated with Insulin (100 nM) and Vitamin D (100 nM; 1α,25(OH)2D3, 1α,25-Dihydroxycholecalciferol, Calcitriol), two factors with characterised effects on promoting fusion and protein synthesis or quiescence, respectively in human myoblasts/myotubes. We demonstrate that sera of different origin/formulation differentially affect myoblast proliferation and myotube protein synthesis. Importantly, we showed that quantifying the extent to which Insulin effects myoblasts in vitro is highly dependent upon serum addition and which type is present in the media. Upregulation of mRNA markers for myogenic fusion, Myogenin, with Insulin stimulation, relative to DMEM, appeared dampened at varying degrees with serum addition and effects on p70S6K phosphorylation as a marker of protein synthesis could not be identified unless serum was removed from media. We propose that these asymmetric molecular and biochemical responses in human myoblasts reflect the variable composition of mitogenic and anabolic factors in each of the sera. The results have implications for both the reproducibility and interpretation of results from

  3. A Concise Synthesis of ent-Cholesterol

    PubMed Central

    Belani, Jitendra D.; Rychnovsky, Scott D.

    2009-01-01

    ent-Cholesterol was synthesized in 16 steps from commercially available (S)-citronellol. The overall yield for the synthesis was 2.0%. This route is amenable to gram scale preparation of ent-cholesterol. Isotopic incorporation near the end of the synthesis was achieved using labeled methyl iodide. This synthesis is the most practical to date, and it will make ent-cholesterol more readily available to use as a probe of the function and metabolism of cholesterol. PMID:18336043

  4. Using holistic interpretive synthesis to create practice-relevant guidance for person-centred fundamental care delivered by nurses.

    PubMed

    Feo, Rebecca; Conroy, Tiffany; Marshall, Rhianon J; Rasmussen, Philippa; Wiechula, Richard; Kitson, Alison L

    2017-04-01

    Nursing policy and healthcare reform are focusing on two, interconnected areas: person-centred care and fundamental care. Each initiative emphasises a positive nurse-patient relationship. For these initiatives to work, nurses require guidance for how they can best develop and maintain relationships with their patients in practice. Although empirical evidence on the nurse-patient relationship is increasing, findings derived from this research are not readily or easily transferable to the complexities and diversities of nursing practice. This study describes a novel methodological approach, called holistic interpretive synthesis (HIS), for interpreting empirical research findings to create practice-relevant recommendations for nurses. Using HIS, umbrella review findings on the nurse-patient relationship are interpreted through the lens of the Fundamentals of Care Framework. The recommendations for the nurse-patient relationship created through this approach can be used by nurses to establish, maintain and evaluate therapeutic relationships with patients to deliver person-centred fundamental care. Future research should evaluate the validity and impact of these recommendations and test the feasibility of using HIS for other areas of nursing practice and further refine the approach. © 2016 John Wiley & Sons Ltd.

  5. Practical and Metal-Free Synthesis of Novel Enantiopure Amides Containing the Potentially Bioactive 5-Nitroimidazole Moiety.

    PubMed

    Spitz, Cédric; Mathias, Fanny; Giuglio-Tonolo, Alain Gamal; Terme, Thierry; Vanelle, Patrice

    2016-11-04

    We report here a practical and metal-free synthesis of novel enantiopure amides containing the drug-like 5-nitroimidazole scaffold. The first step was a metal-free diastereoselective addition of 4-(4-(chloromethyl)phenyl)-1,2-dimethyl-5-nitro-1 H -imidazole to enantiomerically pure N - tert -butanesulfinimine. Then, the N - tert -butanesulfinyl-protected amine was easily deprotected under acidic conditions. Finally, the primary amine was coupled with different acid chlorides or acids to give the corresponding amides. The mild reaction conditions and high tolerance for various substitutions make this approach attractive for constructing pharmacologically interesting 5-nitroimidazoles.

  6. Stereodivergent Synthesis of 1,3-Syn-Polyol Natural Product for Stereochemical-Based Structure Activity Relationship Studies

    NASA Astrophysics Data System (ADS)

    Zheng, Jiamin

    The 1,3-syn-diol functionality is very common in many natural products. An important class containing this moiety are the 1,3-syn-polyol/pyranone natural products, which have been isolated from a variety of plant sources, and possess biological activities like plant growth inhibition as well as antifeedant, antifungal, antibacterial, and antitumor properties. The feature of this class is a 6-membered lactone where the lactoe oxygen is part of a 1,3-syn-diol motif. To pursue the 1,3-syn-polyol/pyranone natural products, an iterative hydration of polyene strategy was utilized to provide the 1,3- syn-diol functionality, and asymmetric synthetic strategies were explored to form the requisite stereochemistry. The versatility of the asymmetric approach was demonstrated in the synthesis of eupatorium pyranone and also in an ongoing project aimed at the synthesis of SIA7248. As an outgrowth of our work on the total syntheses of 1,3-syn -polyol natural products inspired a stereo-divergent synthesis of 1,3-syn-polyol natural products and their analogs for stereochemical-based structure-activity relationship (SSAR) studies. To identify the key structural factors important for the anticancer activity of the 1,3-syn-polyol/pyranones, a stereo-divergent 16-member library of pyranone/polyol congeners was designed, synthesized and tested with variations in both stereochemistry and numbers of polyol repeat units. Having access to stereochemical isomers of the biologically active natural products allowed us to design experiments that help illustrate their mechanisms of action.

  7. Social skills interventions for individuals with autism: evaluation for evidence-based practices within a best evidence synthesis framework.

    PubMed

    Reichow, Brian; Volkmar, Fred R

    2010-02-01

    This paper presents a best evidence synthesis of interventions to increase social behavior for individuals with autism. Sixty-six studies published in peer-reviewed journals between 2001 and July 2008 with 513 participants were included. The results are presented by the age of the individual receiving intervention and by delivery agent of intervention. The findings suggest there is much empirical evidence supporting many different treatments for the social deficits of individuals with autism. Using the criteria of evidence-based practice proposed by Reichow et al. (Journal of Autism and Developmental Disorders, 38:1311-1318, 2008), social skills groups and video modeling have accumulated the evidence necessary for the classifications of established EBP and promising EBP, respectively. Recommendations for practice and areas of future research are provided.

  8. Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis

    PubMed Central

    Zhang, Yin; Guo, Jun; Shi, Lin; Zhu, Yanfei; Hou, Ke; Zheng, Yonglong; Tang, Zhiyong

    2017-01-01

    A simple and effective strategy is developed to realize visible light–driven heterogeneous asymmetric catalysis. A chiral organic molecule, which only has very weak catalytic activity in asymmetric α-alkylation of aldehydes under visible light, is utilized as the ligand to coordinate with different types of metal ions, including Zn2+, Zr4+, and Ti4+, for construction of crystalline metal organic frameworks (MOFs). Impressively, when used as heterogeneous catalysts, all of the synthesized MOFs exhibit markedly enhanced activity. Furthermore, the asymmetric catalytic performance of these MOFs could be easily altered by selecting different metal ions, owing to the tunable electron transfer property between metal ions and chiral ligands. This work will provide a new approach for fabrication of heterogeneous catalysts and trigger more enthusiasm to conduct the asymmetric catalysis driven by visible light. PMID:28835929

  9. Simultaneous mixing and pumping using asymmetric microelectrodes

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Jae; Yoon, Sang Youl; Sung, Hyung Jin; Smith, Charles G.

    2007-10-01

    This study proposes ideas for simultaneous mixing and pumping using asymmetric microelectrode arrays. The driving force of the mixing and pumping was based on electroosmotic flows induced by alternating current (ac) electric fields on asymmetric microelectrodes. The key idea was to bend/incline the microelectrodes like diagonal/herringbone shapes. Four patterns of the asymmetric electrode arrays were considered depending on the shape of electrode arrays. For the diagonal shape, repeated and staggered patterns of the electrode arrays were studied. For the herringbone shape, diverging and converging patterns were examined. These microelectrode patterns forced fluid flows in the lateral direction leading to mixing and in the channel direction leading to pumping. Three-dimensional numerical simulations were carried out using the linear theories of ac electro-osmosis. The performances of the mixing and pumping were assessed in terms of the mixing efficiency and the pumping flow rate. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls.

  10. External combustion engine having an asymmetrical CAM

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1994-11-01

    An external combustion engine having an asymmetrical cam is the focus of this patent. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel and an even number of cylinders for receiving sequentially the energized gas through the rotary valve, the gas performing work on a piston disposed within each cylinder. The pistons transfer energy to a drive shaft through a connection to the asymmetrically shaped cam. The cam is shaped having two identical halves, each half having a power and an exhaust stroke. The identical halves provide that opposing cylinders are in thermodynamic balance, thus reducing rocking vibrations and torque pulsations. Having opposing pistons within the same thermodynamic cycle allows piston stroke to be reduced while maintaining displacement comparable to an engine having individual cycle positions. The reduced stroke diminishes gas flow velocity thus reducing flow induced noise. The power and exhaust strokes within each identical half of the cam are asymmetrical in that the power stroke is of greater duration than the exhaust stroke. The shape and length of the power stroke is optimized for increased efficiency.

  11. Bioinspired smart asymmetric nanochannel membranes.

    PubMed

    Zhang, Zhen; Wen, Liping; Jiang, Lei

    2018-01-22

    Bioinspired smart asymmetric nanochannel membranes (BSANM) have been explored extensively to achieve the delicate ionic transport functions comparable to those of living organisms. The abiotic system exhibits superior stability and robustness, allowing for promising applications in many fields. In view of the abundance of research concerning BSANM in the past decade, herein, we present a systematic overview of the development of the state-of-the-art BSANM system. The discussion is focused on the construction methodologies based on raw materials with diverse dimensions (i.e. 0D, 1D, 2D, and bulk). A generic strategy for the design and construction of the BSANM system is proposed first and put into context with recent developments from homogeneous to heterogeneous nanochannel membranes. Then, the basic properties of the BSANM are introduced including selectivity, gating, and rectification, which are associated with the particular chemical and physical structures. Moreover, we summarized the practical applications of BSANM in energy conversion, biochemical sensing and other areas. In the end, some personal opinions on the future development of the BSANM are briefly illustrated. This review covers most of the related literature reported since 2010 and is intended to build up a broad and deep knowledge base that can provide a solid information source for the scientific community.

  12. Electron Jet of Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  13. The influence of asymmetric force requirements on a multi-frequency bimanual coordination task.

    PubMed

    Kennedy, Deanna M; Rhee, Joohyun; Jimenez, Judith; Shea, Charles H

    2017-01-01

    An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N=20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Laser-Printed In-Plane Micro-Supercapacitors: From Symmetric to Asymmetric Structure.

    PubMed

    Huang, Gui-Wen; Li, Na; Du, Yi; Feng, Qing-Ping; Xiao, Hong-Mei; Wu, Xing-Hua; Fu, Shao-Yun

    2018-01-10

    Here, we propose and demonstrate a complete solution for efficiently fabricating in-plane micro-supercapacitors (MSCs) from a symmetric to asymmetric structure. By using an original laser printing process, symmetric MSC with reduced graphene oxide (rGO)/silver nanowire (Ag-NW) hybrid electrodes was facilely fabricated and a high areal capacitance of 5.5 mF cm -2 was achieved, which reaches the best reports on graphene-based MSCs. More importantly, a "print-and-fold" method has been creatively proposed that enabled the rapid manufacturing of asymmetric in-plane MSCs beyond the traditional cumbersome technologies. α-Ni(OH) 2 particles with high tapping density were successfully synthesized and employed as the pseudocapacitive material. Consequently, an improved supply voltage of 1.5 V was obtained and an areal capacitance as high as 8.6 mF cm -2 has been realized. Moreover, a demonstration of a miniaturized MSC pack was performed by multiply-folding the serial Ag-NW-connected MSC units. As a result, a compact MSC pack with a high supply voltage of 3 V was obtained, which can be utilized to power a light-emitting diode light. These presented technologies may pave the way for the efficiently producing high performance in-plane MSCs, meanwhile offering a solution for the achievement of practical power supply packs integrated in limited spaces.

  15. Influence of Asymmetric Recurrent Laryngeal Nerve Stimulation on Vibration, Acoustics, and Aerodynamics

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objectives/Hypothesis Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Study Design Basic science study using an in vivo canine model. Methods The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Results Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0, glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Conclusion Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. PMID:24913182

  16. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.

    PubMed

    Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar

    2014-11-01

    Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Chemistry of Renieramycins. Part 14: Total Synthesis of Renieramycin I and Practical Synthesis of Cribrostatin 4 (Renieramycin H).

    PubMed

    Yokoya, Masashi; Kobayashi, Keiichiro; Sato, Mitsuhiro; Saito, Naoki

    2015-08-06

    The first total synthesis of (±)-renieramycin I, which was isolated from the Indian bright blue sponge Haliclona cribricutis, is described. The key step is the selenium oxide oxidation of pentacyclic bis-p-quinone derivative (3) stereo- and regioselectively. We also report a large-scale synthesis of cribrostatin 4 (renieramycin H) via the C3-C4 double bond formation in an early stage based on the Avendaño's protocol, from readily available 1-acetyl-3-(3-methyl-2,4,5-trimethylphenyl)methyl-piperazine-2,5-dione (8) in 18 steps (8.3% overall yield). The synthesis provides unambiguous evidence supporting the original structure of renieramycin I.

  18. Nuclear structure of bound states of asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2017-11-01

    Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O (1 ) fraction of the constituent's mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.

  19. Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

    NASA Astrophysics Data System (ADS)

    Xue, Yang; Li, Ling-Po; He, Yan-Hong; Guan, Zhi

    2012-10-01

    We reported the first enzyme-catalysed, direct, three-component asymmetric Mannich reaction using protease type XIV from Streptomyces griseus (SGP) in acetonitrile. Yields of up to 92% with enantioselectivities of up to 88% e.e. and diastereoselectivities of up to 92:8 (syn:anti) were achieved under the optimised conditions. This enzyme's catalytic promiscuity expands the application of this biocatalyst and provides a potential alternative method for asymmetric Mannich reactions.

  20. Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines

    PubMed Central

    2013-01-01

    Background and methods Stem or progenitor cells from healthy tissues have the capacity to co-segregate their template DNA strands during mitosis. Here, we set out to test whether breast cancer cell lines also possess the ability to asymmetrically segregate their template DNA strands via non-random chromosome co-segregation, and whether this ability correlates with certain properties attributed to breast cancer stem cells (CSCs). We quantified the frequency of asymmetric segregation of template DNA strands in 12 human breast cancer cell lines, and correlated the frequency to molecular subtype, CD44+/CD24-/lo phenotype, and invasion/migration ability. We tested if co-culture with human mesenchymal stem cells, which are known to increase self-renewal, can alter the frequency of asymmetric segregation of template DNA in breast cancer. Results We found a positive correlation between asymmetric segregation of template DNA and the breast cancer basal-like and claudin-low subtypes. There was an inverse correlation between asymmetric segregation of template DNA and Her2 expression. Breast cancer samples with evidence of asymmetric segregation of template DNA had significantly increased invasion and borderline significantly increased migration abilities. Samples with high CD44+/CD24-/lo surface expression were more likely to harbor a consistent population of cells that asymmetrically segregated its template DNA; however, symmetric self-renewal was enriched in the CD44+/CD24-/lo population. Co-culturing breast cancer cells with human mesenchymal stem cells expanded the breast CSC pool and decreased the frequency of asymmetric segregation of template DNA. Conclusions Breast cancer cells within the basal-like subtype can asymmetrically segregate their template DNA strands through non-random chromosome segregation. The frequency of asymmetric segregation of template DNA can be modulated by external factors that influence expansion or self-renewal of CSC populations. Future

  1. Asymmetrical electrically induced injury of rabbit ventricular myocytes.

    PubMed

    Knisley, S B; Grant, A O

    1995-05-01

    Strong defibrillation-type electric field stimulation may injure myocytes when transmembrane potentials during the pulse exceed the threshold for membrane permeabilization. The location of injury may depend on intrinsic transmembrane potential or influx of calcium by "electro-osmosis" during the stimulation pulse in addition to the transmembrane potential changes induced by the pulse. We have studied injury by examining contracture and changes in transmembrane potential-sensitive dye fluorescence induced by electric field stimulation (St) with a duration of 20 ms and strength of 16-400 V/cm in isolated rabbit ventricular myocytes. St of 100-150 V/cm produced injury in myocytes oriented parallel to the St field frequently without injuring myocytes oriented perpendicular to the field. Injury required calcium in the solution and was asymmetric, occurring first at the myocyte and facing the St anode in 100% of injured myocytes in normal Tyrode's solution. Injury depended significantly on whether the product of the electric field strength and myocyte length exceeded a threshold of 1.1 V (P < 0.05). Asymmetric injury at the end facing the anode was still present in 96% of injured myocytes for stimulation after depolarization by an action potential or 20 mM or 125 mM potassium, suggesting that intrinsic transmembrane potential is not responsible for asymmetry. In 125 mM potassium, eliminating calcium from the bathing solution during the St pulse and introducing calcium after the pulse decreased the fraction of injured myocytes in which injury occurred at the end facing the anode to 62%, suggesting that calcium influx by "electro-osmosis" at the myocyte end facing the anode contributes to asymmetry. Asymmetric injury at the end facing the anode was still present in 100% of injured myocytes after adding 1 mM tetraethylammonium chloride, indicating that asymmetry is not sensitive to the potassium channel blockade. For stimulation pulses stronger than 50 V/cm given after

  2. Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure.

    PubMed

    Guo, Kai; Wang, Xianfu; Hu, Lintong; Zhai, Tianyou; Li, Huiqiao; Yu, Neng

    2018-06-01

    Fiber supercapacitors have attracted tremendous attention as promising power source candidates for the next generation of wearable electronics, which are flexible, stretchable, and washable. Although asymmetric fiber supercapacitors with a high energy density have been achieved, their stretchability is no more than 200%, and they still face mechanical instability and an unreliable waterproof structure. This work develops a highly integrated structure for a waterproof, highly stretchable, and asymmetric fiber-shaped supercapacitor, which is assembled by integrating a helix-shaped asymmetric fiber supercapacitor into a bifunctional polymer. The asymmetric fiber supercapacitor demonstrates a working voltage of 1.6 V, a high energy density of 2.86 mW h/cm 3 , has unchanged capacitance after being immersed in water for 50 h, and retains 95% of its initial capacitance after 3000 cycles of stretching-releasing at a maximum strain of 400%. The extraordinary waterproof capability, the large stretching strain, and excellent stretching stability are attributed to the highly integrated structure design, which can also simplify the assembly process of stretchable, waterproof fiber supercapacitors.

  3. Asymmetric bias in user guided segmentations of brain structures

    NASA Astrophysics Data System (ADS)

    Styner, Martin; Smith, Rachel G.; Graves, Michael M.; Mosconi, Matthew W.; Peterson, Sarah; White, Scott; Blocher, Joe; El-Sayed, Mohammed; Hazlett, Heather C.

    2007-03-01

    Brain morphometric studies often incorporate comparative asymmetry analyses of left and right hemispheric brain structures. In this work we show evidence that common methods of user guided structural segmentation exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. We studied several structural segmentation methods with varying degree of user interaction from pure manual outlining to nearly fully automatic procedures. The methods were applied to MR images and their corresponding left-right mirrored images from an adult and a pediatric study. Several expert raters performed the segmentations of all structures. The asymmetric segmentation bias is assessed by comparing the left-right volumetric asymmetry in the original and mirrored datasets, as well as by testing each sides volumetric differences to a zero mean standard t-tests. The structural segmentations of caudate, putamen, globus pallidus, amygdala and hippocampus showed a highly significant asymmetric bias using methods with considerable manual outlining or landmark placement. Only the lateral ventricle segmentation revealed no asymmetric bias due to the high degree of automation and a high intensity contrast on its boundary. Our segmentation methods have been adapted in that they are applied to only one of the hemispheres in an image and its left-right mirrored image. Our work suggests that existing studies of hemispheric asymmetry without similar precautions should be interpreted in a new, skeptical light. Evidence of an asymmetric segmentation bias is novel and unknown to the imaging community. This result seems less surprising to the visual perception community and its likely cause is differences in perception of oppositely curved 3D structures.

  4. A direction detective asymmetrical twin-core fiber curving sensor

    NASA Astrophysics Data System (ADS)

    An, Maowei; Geng, Tao; Yang, Wenlei; Zeng, Hongyi; Li, Jian

    2015-10-01

    Long period fiber gratings (LPFGs), which can couple the core mode to the forward propagating cladding modes of a fiber and have the advantage of small additional loss, no backward reflection, small size, which is widely used in optical fiber sensors and optical communication systems. LPFG has different fabricating methods, in order to write gratings on the twin-core at the same time effectively, we specially choose electric heating fused taper system to fabricate asymmetric dual-core long period fiber grating, because this kind of method can guarantee the similarity of gratings on the twin cores and obtain good geometric parameters of LPFG, such as cycle, cone waist. Then we use bending test platform to conduct bending test for each of the core of twin-core asymmetric long period fiber grating. Experiments show that: the sensitivity of asymmetrical twin-core long period fiber grating's central core under bending is -5.47nm·m, while the sensitivity of asymmetric twin-core long period fiber grating partial core changed with the relative position of screw micrometer. The sensitivity at 0°, 30°, 90° direction is -4.22nm·m, -9.84nm·m, -11.44nm·m respectively. The experiment results strongly demonstrate the properties of rim sensing of asymmetrical twin-core fiber gratings which provides the possibility of simultaneously measuring the bending magnitude and direction and solving the problem of cross sensing when multi-parameter measuring. In other words, we can detect temperature and bend at the same time by this sensor. As our knowledge, it is the first time simultaneously measuring bend and temperature using this structure of fiber sensors.

  5. Asymmetric Facial Bone Fragmentation Mirrors Asymmetric Distribution of Cranial Neuromasts in Blind Mexican Cavefish.

    PubMed

    Gross, Joshua B; Gangidine, Andrew; Powers, Amanda K

    2016-11-01

    Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation) are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.

  6. Radio-frequency measurement of an asymmetric single electron transistor

    NASA Astrophysics Data System (ADS)

    Ji, Zhongqing; Xue, Weiwei; Rimberg, A. J.

    2007-03-01

    Since the invention of the radio-frequency single-electron transistor (RF-SET) by Schoelkopf et al.,[1] most measurements have focused on the symmetric single electron transistor. It has been shown, however, that the symmetric SET has a rather low measurement efficiency in its normal working regime.[2][3] Recently, it has been pointed out that an asymmetric SET can be considerably more efficient than a symmetric SET as a quantum amplifier. In this case the measurement efficiency of the asymmetric SET becomes similar to that of the quantum point contact (QPC) detector which can approach the quantum limit. We investigate the asymmetric SET by fabricating Al/AlOx SETs with junction areas 40x40 nm^2 and 40x80nm^2 and total resistance of about 25kφ. The results of RF and DC characterization of such asymmetric SETs will be discussed. [1] R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, D. E. Prober, Science, 280, 1242 (1998). [2] A. N. Korotkov, Phys. Rev. B, 63, 085312 (2001); 63, 115403 (2001). [3] D. Mozyrsky, I. Martin, and M. B. Hastings, Phys. Rev. Lett., 92, 018303 (2004). [4] S. A. Gurvitz and G. P. Berman, Phys. Rev. B, 72 , 073303(2005).

  7. Tetrafluorobenzo-fused BODIPY: a platform for regioselective synthesis of BODIPY dye derivatives.

    PubMed

    Savoldelli, Andrea; Meng, Qianli; Paolesse, Roberto; Fronczek, Frank R; Smith, Kevin Malcolm; Vicente, M Graça Henriques

    2018-05-18

    A novel route for the synthesis of unsymmetrical benzo-fused BODIPYs is reported using 4,5,6,7-tetrafluoroisoindole as a precursor. The reactivity of the asymmetric 3,5-dibromo benzo-fused BODIPY was investigated under nucleophilic substitution and Pd(0)-catalyzed cross-coupling reaction conditions. In addition to the 3,5-bromines, one α-fluoro group on the benzo-fused ring can also be functionalized, and an unusual homocoupling with formation of a bisBODIPY was observed. This new class of fluorinated BODIPYs could find various applications in medicine and materials.

  8. Asymmetric Cherenkov acoustic reverse in topological insulators

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  9. Instrument Modeling and Synthesis

    NASA Astrophysics Data System (ADS)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  10. Highly Enantioselective Synthesis of syn-β-Hydroxy α-Dibenzylamino Esters via DKR Asymmetric Transfer Hydrogenation and Gram-Scale Preparation of Droxidopa.

    PubMed

    Sun, Guodong; Zhou, Zihong; Luo, Zhonghua; Wang, Hailong; Chen, Lei; Xu, Yongbo; Li, Shun; Jian, Weilin; Zeng, Jiebin; Hu, Benquan; Han, Xiaodong; Lin, Yicao; Wang, Zhongqing

    2017-08-18

    A highly efficient preparation of enantiomerically pure syn aryl β-hydroxy α-dibenzylamino esters is reported. The outcome was achieved via dynamic kinetic resolution and asymmetric transfer hydrogenation of aryl α-dibenzylamino β-keto esters. The desired products were obtained in high yields (up to 98%) with excellent diastereoselectivity (>20:1 dr) and enantioselectivity (up to >99% ee). Furthermore, this method was applied for the gram-scale preparation of droxidopa.

  11. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  12. Asymmetric electroosmotic pumping across porous media sandwiched with perforated ion-exchange membranes.

    PubMed

    Yaroshchuk, A; Licón, E E; Zholkovskiy, E K; Bondarenko, M P; Heldal, T

    2017-07-01

    To have non-zero net flow in AC electroosmotic pumps, the electroosmosis (EO) has to be non-linear and asymmetric. This can be achieved due to ionic concentration polarization. This is known to occur close to micro-/nano-interfaces provided that the sizes of the nanopores are not too large compared to the Debye screening length. However, operation of the corresponding EO pumps can be quite sensitive to the solution concentration and, thus, unstable in practical applications. Concentration polarization of ion-exchange membranes is much more robust. However, the hydraulic permeability of the membrane is very low, which makes EO flows through them extremely small. This communication shows theoretically how this problem can be resolved via making scarce microscopic perforations in an ion-exchange membrane and putting it in series with an EO-active nano-porous medium. The problem of coupled flow, concentration and electrostatic-potential distributions is solved numerically by using finite-element methods. This analysis reveals that even quite scarce perforations of micron-scale diameters are sufficient to observe practically-interesting EO flows in the system. If the average distance between the perforations is smaller than the thickness of the EO-active layer, there is an effective homogenization of the electrolyte concentration and hydrostatic pressure in the lateral direction at some distance from the interface. The simulations show this distance to be somewhat lower than the half-distance between the perforations. On the other hand, when the surface fraction of perforations is sufficiently small (below a fraction of a percent) this "homogeneous" concentration is considerably reduced (or increased, depending on the current direction), which makes the EO strongly non-linear and asymmetric. This analysis provides initial guidance for the design of high-productivity and inexpensive AC electroosmotic pumps.

  13. The meaning and perceived value of mind-body practices for people living with HIV: a qualitative synthesis.

    PubMed

    Donald, Graeme; Lawrence, Maggie; Lorimer, Karen; Stringer, Jacqui; Flowers, Paul

    2015-01-01

    Mind-body practices (MBPs) are a subset of complementary medicine that represents a selection of self-care activities that may promote the health of people living with HIV (PLWH). No synthesis of qualitative research in this context, which might inform service provision and research priorities, has yet been published. A systematic search of electronic databases was conducted, identifying papers exploring the experience of MBPs in PLWH. During thematic synthesis, all text under the headings "results" or "findings" was scanned line by line, and discrete, meaningful units of text were extracted as data items. Categories were identified, and second- and third-order constructs were developed. Concerns related to control and self-management appeared in the convergence of participants' worlds with the medical world and in being pragmatic about selecting MBPs and goal setting. The themes developed suggest a desire for more holistic and person-centered care, arguably marginalized as a result of effective antiretroviral therapy. Copyright © 2015 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  14. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors.

    PubMed

    Xing, Lei; Dong, Yidi; Hu, Fang; Wu, Xiang; Umar, Ahmad

    2018-04-24

    Herein, we report a simple and facile sequential hydrothermal process for the synthesis of Co3O4 nanowire@NiO nanosheet arrays (CNAs). The as-synthesized CNAs were characterized in detail using various analytical techniques, which confirmed the high crystallinity, purity, and high-density growth of these nanomaterials. From an application point of view, the as-synthesized CNAs were directly used as supercapacitor electrodes, revealing a specific capacitance of up to 2018 mF cm-2 at a current density of 2 mA cm-2. Furthermore, a flexible asymmetric supercapacitor was fabricated using the as-synthesized CNAs as the anode and activated carbon as the cathode, which revealed a specific capacitance of 134.6 mF cm-2 at a current density of 2 mA cm-2. In addition, the supercapacitor showed excellent capacity retention of 73.5% after 10 000 cycles at a current density of 10 mA cm-2.

  15. Synthesis and Chemistry of Novel Cyclic Fluorocarbons

    DTIC Science & Technology

    1993-05-27

    Perfluorosemibulvalene " Part II. "Synthesis and Studies of Perfluorobenzene Oxide / Perfluorooxepin ", 199 Correa, R.A., "Synthesis of Highly Fluorinated Bicyclo... Perfluorotmne . In the course of attempts to develop a more practical synthesis of the perfluorotropylium ion (21) than our original route, we found a new...34, J. Org. Chem. 1991,56, 157-60. 8. Takenaka, N.E.; Lemal, D.M. "The Perfluorobenzene Oxide/ Perfluorooxepin System" in Synthetic Fluorine Chemistry

  16. Synthesizing Evidence: Synthesis Methods for Evidence Clearinghouses

    ERIC Educational Resources Information Center

    Valentine, Jeff; Lau, Timothy

    2015-01-01

    Following the theme of the first two presentations, this presentation will focus on the choices available for research synthesis when summarizing research evidence. The presenters will describe the current research synthesis practice of the What Works Clearinghouse (WWC) as well as several alternative models, including inverse-variance weighted…

  17. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  18. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    PubMed Central

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  19. A Linear City Model with Asymmetric Consumer Distribution

    PubMed Central

    Azar, Ofer H.

    2015-01-01

    The article analyzes a linear-city model where the consumer distribution can be asymmetric, which is important because in real markets this distribution is often asymmetric. The model yields equilibrium price differences, even though the firms’ costs are equal and their locations are symmetric (at the two endpoints of the city). The equilibrium price difference is proportional to the transportation cost parameter and does not depend on the good's cost. The firms' markups are also proportional to the transportation cost. The two firms’ prices will be equal in equilibrium if and only if half of the consumers are located to the left of the city’s midpoint, even if other characteristics of the consumer distribution are highly asymmetric. An extension analyzes what happens when the firms have different costs and how the two sources of asymmetry – the consumer distribution and the cost per unit – interact together. The model can be useful as a tool for further development by other researchers interested in applying this simple yet flexible framework for the analysis of various topics. PMID:26034984

  20. Asymmetrical Switch Costs in Children

    ERIC Educational Resources Information Center

    Ellefson, Michelle R.; Shapiron, Laura R.; Chater, Nick

    2006-01-01

    Switching between tasks produces decreases in performance as compared to repeating the same task. Asymmetrical switch costs occur when switching between two tasks of unequal difficulty. This asymmetry occurs because the cost is greater when switching to the less difficult task than when switching to the more difficult task. Various theories about…

  1. Asymmetric twins in rhombohedral boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Takeshi, E-mail: tfujita@wpi-aimr.tohoku.ac.jp; Guan, Pengfei; Madhav Reddy, K.

    2014-01-13

    Superhard materials consisting of light elements have recently received considerable attention because of their ultrahigh specific strength for a wide range of applications as structural and functional materials. However, the failure mechanisms of these materials subjected to high stresses and dynamic loading remain to be poorly known. We report asymmetric twins in a complex compound, boron carbide (B{sub 4}C), characterized by spherical-aberration-corrected transmission electron microscopy. The atomic structure of boron-rich icosahedra at rhombohedral vertices and cross-linked carbon-rich atomic chains can be clearly visualized, which reveals unusual asymmetric twins with detectable strains along the twin interfaces. This study offers atomic insightsmore » into the structure of twins in a complex material and has important implications in understanding the planar defect-related failure of superhard materials under high stresses and shock loading.« less

  2. Asymmetric nonlinear system is not sufficient for a nonreciprocal wave diode

    NASA Astrophysics Data System (ADS)

    Wu, Gaomin; Long, Yang; Ren, Jie

    2018-05-01

    We demonstrate symmetric wave propagations in asymmetric nonlinear systems. By solving the nonlinear Schördinger equation, we first analytically prove the existence of symmetric transmission in asymmetric systems with a single nonlinear delta-function interface. We then point out that a finite width of the nonlinear interface region is necessary to produce nonreciprocity in asymmetric systems. However, a geometrical resonant condition for breaking nonreciprocal propagation is then identified theoretically and verified numerically. With such a resonant condition, the nonlinear interface region of finite width behaves like a single nonlinear delta-barrier so that wave propagations in the forward and backward directions are identical under arbitrary incident wave intensity. As such, reciprocity reemerges periodically in the asymmetric nonlinear system when changing the width of interface region. Finally, similar resonant conditions of discrete nonlinear Schördinger equation are discussed. Therefore, we have identified instances of reciprocity that breaking spatial symmetry in nonlinear interface systems is not sufficient to produce nonreciprocal wave propagation.

  3. Asymmetric cell division of stem cells in the lung and other systems

    PubMed Central

    Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740

  4. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE PAGES

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  5. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Zupan, Jure

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  6. Mobile-bearing knees reduce rotational asymmetric wear.

    PubMed

    Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung

    2007-09-01

    Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees.

  7. Asymmetric shape transitions of epitaxial quantum dots

    PubMed Central

    2016-01-01

    We construct a two-dimensional continuum model to describe the energetics of shape transitions in fully faceted epitaxial quantum dots (strained islands) via minimization of elastic energy and surface energy at fixed volume. The elastic energy of the island is based on a third-order approximation, enabling us to consider shape transitions between pyramids, domes, multifaceted domes and asymmetric intermediate states. The energetics of the shape transitions are determined by numerically calculating the facet lengths that minimize the energy of a given island type of prescribed island volume. By comparing the energy of different island types with the same volume and analysing the energy surface as a function of the island shape parameters, we determine the bifurcation diagram of equilibrium solutions and their stability, as well as the lowest barrier transition pathway for the island shape as a function of increasing volume. The main result is that the shape transition from pyramid to dome to multifaceted dome occurs through sequential nucleation of facets and involves asymmetric metastable transition shapes. We also explicitly determine the effect of corner energy (facet edge energy) on shape transitions and interpret the results in terms of the relative stability of asymmetric island shapes as observed in experiment. PMID:27436989

  8. Modelling crystal growth: Convection in an asymmetrically heated ampoule

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Rosenberger, Franz; Pulicani, J. P.; Krukowski, S.; Ouazzani, Jalil

    1990-01-01

    The objective was to develop and implement a numerical method capable of solving the nonlinear partial differential equations governing heat, mass, and momentum transfer in a 3-D cylindrical geometry in order to examine the character of convection in an asymmetrically heated cylindrical ampoule. The details of the numerical method, including verification tests involving comparison with results obtained from other methods, are presented. The results of the study of 3-D convection in an asymmetrically heated cylinder are described.

  9. One-step synthesis of Nickle Iron-layered double hydroxide/reduced graphene oxide/carbon nanofibres composite as electrode materials for asymmetric supercapacitor.

    PubMed

    Wang, Feifei; Wang, Ting; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan

    2018-06-11

    A novel NiFe-LDH/RGO/CNFs composite was produced by using a facile one-step hydrothermal method as electrode for supercapacitor. Compared with NiFe-LDH/CNFs, NiFe-LDH/CNTs and NiFe-LDH/RGO, NiFe-LDH/RGO/CNFs demonstrated a high specific capacitance of 1330.2 F g -1 at 1 A g -1 and a super rate capability of 64.2% from 1 to 20 A g -1 , indicating great potential for supercapacitor application. Additionally, an asymmetric supercapacitor using NiFe-LDH/RGO/CNFs composite as positive electrode material and activated carbon as negative electrode material was assembled. The asymmetric supercapacitor can work in the voltage range of 0-1.57 V. It displayed high energy density of 33.7 W h kg -1 at power density of 785.8 W kg -1 and excellent cycling stability with 97.1% of the initial capacitance after 2500 cycles at 8 A g -1 . Two flexible AC//LDH-RGO-CNFs ASC devices connected in series were able to light up a red LED indicator after being fully charged. The results demonstrate that the AC//LDH-RGO-CNFs ASC has a promising potential in commercial application.

  10. Uniform versus Asymmetric Shading Mediates Crown Recession in Conifers

    PubMed Central

    Schoonmaker, Amanda L.; Lieffers, Victor J.; Landhäusser, Simon M.

    2014-01-01

    In this study we explore the impact of asymmetrical vs. uniform crown shading on the mortality and growth of upper and lower branches within tree crowns, for two conifer species: shade intolerant lodgepole pine (Pinus contorta) and shade tolerant white spruce (Picea glauca). We also explore xylem hydraulics, foliar nutrition, and carbohydrate status as drivers for growth and expansion of the lower and upper branches in various types of shading. This study was conducted over a two-year period across 10 regenerating forest sites dominated by lodgepole pine and white spruce, in the lower foothills of Alberta, Canada. Trees were assigned to one of four shading treatments: (1), complete uniform shading of the entire tree, (2) light asymmetric shading where the lower 1/4–1/3 of the tree crown was shaded, (3) heavy asymmetric shading as in (2) except with greater light reduction and (4) control in which no artificial shading occurred and most of the entire crown was exposed to full light. Asymmetrical shading of only the lower crown had a larger negative impact on the bud expansion and growth than did uniform shading, and the effect was stronger in pine relative to spruce. In addition, lower branches in pine also had lower carbon reserves, and reduced xylem-area specific conductivity compared to spruce. For both species, but particularly the pine, the needles of lower branches tended to store less C than upper branches in the asymmetric shade, which could suggest a movement of reserves away from the lower branches. The implications of these findings correspond with the inherent shade tolerance and self-pruning behavior of these conifers and supports a carbon based mechanism for branch mortality – mediated by an asymmetry in light exposure of the crown. PMID:25136823

  11. Uniform versus asymmetric shading mediates crown recession in conifers.

    PubMed

    Schoonmaker, Amanda L; Lieffers, Victor J; Landhäusser, Simon M

    2014-01-01

    In this study we explore the impact of asymmetrical vs. uniform crown shading on the mortality and growth of upper and lower branches within tree crowns, for two conifer species: shade intolerant lodgepole pine (Pinus contorta) and shade tolerant white spruce (Picea glauca). We also explore xylem hydraulics, foliar nutrition, and carbohydrate status as drivers for growth and expansion of the lower and upper branches in various types of shading. This study was conducted over a two-year period across 10 regenerating forest sites dominated by lodgepole pine and white spruce, in the lower foothills of Alberta, Canada. Trees were assigned to one of four shading treatments: (1), complete uniform shading of the entire tree, (2) light asymmetric shading where the lower 1/4-1/3 of the tree crown was shaded, (3) heavy asymmetric shading as in (2) except with greater light reduction and (4) control in which no artificial shading occurred and most of the entire crown was exposed to full light. Asymmetrical shading of only the lower crown had a larger negative impact on the bud expansion and growth than did uniform shading, and the effect was stronger in pine relative to spruce. In addition, lower branches in pine also had lower carbon reserves, and reduced xylem-area specific conductivity compared to spruce. For both species, but particularly the pine, the needles of lower branches tended to store less C than upper branches in the asymmetric shade, which could suggest a movement of reserves away from the lower branches. The implications of these findings correspond with the inherent shade tolerance and self-pruning behavior of these conifers and supports a carbon based mechanism for branch mortality--mediated by an asymmetry in light exposure of the crown.

  12. Asymmetrically pressing nasal splint for crooked nose deformity.

    PubMed

    Tugrul, Selahattin; Dogan, Remzi; Kocak, Ilker; Ozturan, Orhan

    2015-01-01

    Correcting crooked nose deformity is one of the most difficult procedure in rhinoplastic surgery. For that reason, the authors have been designed an asymmetrically pressing nasal splint. In this prospective study, the aim was to compare the effects of applying asymmetrically pressing nasal splint and normal symmetrically splint on the crooked nose. This study included 129 patients who were operated on for crooked nose deformity. Patients were divided into 2 groups. Normal symmetrically pressing nasal splint was applied to groups 1a (I type) and 1b (C type). Asymmetrically pressing nasal splint was applied to groups 2a (I type) and 2b (C type). All groups were compared according to deflection angle from the midline, the percentage of postoperative improvement, patient satisfaction with visual analog scale, and complication rate. I-type noses in both groups at postoperative angle values were reduced, and C-type noses in both groups at postoperative angle values were increased significantly compared with preoperative values. I-type noses of group 2 at postoperative angle values compared with group 1 were reduced, and C-type noses were increased in group 2 significantly. Patient satisfaction rate in group 2 were significantly better than in group 1. The closeness ratios to the ideal angles in group 1 were in "good" and "moderate" levels, whereas in group 2, it was in "excellent" level. There was no significant difference in complication rate in both groups. Asymmetrically pressing splint (novel design) showed increasing success rate clearly in crooked nose surgery than in normal splints.

  13. Analysis and control of asymmetric vortex flows and supersonic vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1991-01-01

    Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.

  14. LG tools for asymmetric wargaming

    NASA Astrophysics Data System (ADS)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  15. Relative size of auditory pathways in symmetrically and asymmetrically eared owls.

    PubMed

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Wylie, Douglas R

    2011-01-01

    Owls are highly efficient predators with a specialized auditory system designed to aid in the localization of prey. One of the most unique anatomical features of the owl auditory system is the evolution of vertically asymmetrical ears in some species, which improves their ability to localize the elevational component of a sound stimulus. In the asymmetrically eared barn owl, interaural time differences (ITD) are used to localize sounds in azimuth, whereas interaural level differences (ILD) are used to localize sounds in elevation. These two features are processed independently in two separate neural pathways that converge in the external nucleus of the inferior colliculus to form an auditory map of space. Here, we present a comparison of the relative volume of 11 auditory nuclei in both the ITD and the ILD pathways of 8 species of symmetrically and asymmetrically eared owls in order to investigate evolutionary changes in the auditory pathways in relation to ear asymmetry. Overall, our results indicate that asymmetrically eared owls have much larger auditory nuclei than owls with symmetrical ears. In asymmetrically eared owls we found that both the ITD and ILD pathways are equally enlarged, and other auditory nuclei, not directly involved in binaural comparisons, are also enlarged. We suggest that the hypertrophy of auditory nuclei in asymmetrically eared owls likely reflects both an improved ability to precisely locate sounds in space and an expansion of the hearing range. Additionally, our results suggest that the hypertrophy of nuclei that compute space may have preceded that of the expansion of the hearing range and evolutionary changes in the size of the auditory system occurred independently of phylogeny. Copyright © 2011 S. Karger AG, Basel.

  16. Asymmetric synthesis of 5-arylcyclohexenones by rhodium(I)-catalyzed conjugate arylation of racemic 5-(trimethylsilyl)cyclohexenone with arylboronic acids.

    PubMed

    Chen, Qian; Kuriyama, Masami; Soeta, Takahiro; Hao, Xinyu; Yamada, Ken-ichi; Tomioka, Kiyoshi

    2005-09-29

    [reaction: see text] A catalytic asymmetric conjugate arylation of racemic 5-(trimethylsilyl)cyclohex-2-enone with arylboronic acids was catalyzed by 3 mol % chiral amidophosphane- or BINAP-Rh(I) in dioxane-water (10:1) to afford trans- and cis-3-aryl-5-(trimethylsilyl)cyclohexanones in high enantioselectivity. Dehydrosilylation of the product mixture with cupric chloride in DMF gave 5-arylcyclohex-2-enones with up to 93% ee in good yield. Enantiofacial selectivity with chiral phosphane-Rh(I) exceeds the trans-diastereoselectivity that is maintained in the achiral or racemic phosphane-Rh(I)-catalyzed conjugate arylation of 5-(trimethylsilyl)cyclohexenone.

  17. Study on Warm Forging Prosess of 45 Steel Asymmetric Gear

    NASA Astrophysics Data System (ADS)

    Qi, Yushi; Du, Zhiming; Sun, Hongsheng; Chen, Lihua; Wang, Changshun

    2017-09-01

    Asymmetric gear has complex structure, so using plastic forming technology to process the gear has problems of large forming load, short die life, bad tooth filling, and so on. To solve these problems, this paper presents a radial warm extrusion process of asymmetric gear to reduce the forming load and improve the filling in the toothed corner portion. Using the new mold and No. 45 steel to conducting forming experiments under the optimal forming parameters: billet temperature is 800°C, mold temperature is 250°C, the forming speed is 30mm/s, and the friction coefficient is 0.15, we can obtain the complete asymmetric gear with better surface and tooth filling. Asymmetric gears’ microstructure analysis and mechanical testing showed that the small grain evenly distributed in the region near the addendum circle with high strength; the area near the central portion of the gear had a coarse grain size, uneven distribution and low strength. Significant metal flow lines at the corner part of the gear indicated that a large number of late-forming metal flowed into the tooth cavity filling the corner portion.

  18. Studies of a Diazo Cyclopropanation Strategy for the Total Synthesis of (-)-Lundurine A.

    PubMed

    Huang, Hong-Xiu; Jin, Shuai-Jiang; Gong, Jin; Zhang, Dan; Song, Hao; Qin, Yong

    2015-09-14

    The bioactive Kopsia alkaloids lundurines A-D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (-)-lundurine A has previously been achieved through a Simmons-Smith cyclopropanation strategy. Here, the total synthesis of (-)-lundurine A was carried out using a metal-catalyzed diazo cyclopropanation strategy. In order to avoid a carbene CH insertion side reaction during cyclopropanation of α-diazo- carboxylates or cyanides, a one-pot, copper-catalyzed Bamford-Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

    PubMed

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie

    2013-02-07

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.

  20. About the bears and the bees: Adaptive responses to asymmetric warfare

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Conventional military forces are organised to generate large scale effects against similarly structured adversaries. Asymmetric warfare is a 'game' between a conventional military force and a weaker adversary that is unable to match the scale of effects of the conventional force. In asymmetric warfare, an insurgents' strategy can be understood using a multi-scale perspective: by generating and exploiting fine scale complexity, insurgents prevent the conventional force from acting at the scale they are designed for. This paper presents a complex systems approach to the problem of asymmetric warfare, which shows how future force structures can be designed to adapt to environmental complexity at multiple scales and achieve full spectrum dominance.

  1. About the bears and the bees: Adaptive responses to asymmetric warfare

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Conventional military forces are organised to generate large scale effects against similarly structured adversaries. Asymmetric warfare is a `game' between a conventional military force and a weaker adversary that is unable to match the scale of effects of the conventional force. In asymmetric warfare, an insurgents' strategy can be understood using a multi-scale perspective: by generating and exploiting fine scale complexity, insurgents prevent the conventional force from acting at the scale they are designed for. This paper presents a complex systems approach to the problem of asymmetric warfare, which shows how future force structures can be designed to adapt to environmental complexity at multiple scales and achieve full spectrum dominance.

  2. High power, 1060-nm diode laser with an asymmetric hetero-waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Zhang, Yu; Hao, E

    2015-07-31

    By introducing an asymmetric hetero-waveguide into the epitaxial structure of a diode laser, a 6.21-W output is achieved at a wavelength of 1060 nm. A different design in p- and n-confinement, based on optimisation of energy bands, is used to reduce voltage loss and meet the requirement of high power and high wall-plug efficiency. A 1060-nm diode laser with a single quantum well and asymmetric hetero-structure waveguide is fabricated and analysed. Measurement results show that the asymmetric hetero-structure waveguide can be efficiently used for reducing voltage loss and improving the confinement of injection carriers and wall-plug efficiency. (lasers)

  3. The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.

    2016-01-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

  4. Zonally Asymmetric Ozone and the Morphology of the Planetary Waveguide

    DTIC Science & Technology

    2011-07-15

    sections for the 271 troposphere , J. Atmos. Sci., 37, 2600-2616. 272 Eyring, V., et al. (2007), Multimodel projections of stratospheric ozone ...GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, JULY 15, 2011 Zonally asymmetric ozone and the morphology of the 1 planetary waveguide...that zonally asymmetric 6 ozone (ZAO) profoundly changes the morphology of the Northern Hemisphere planetary 7 waveguide (PWG). ZAO causes the PWG to

  5. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    NASA Astrophysics Data System (ADS)

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2007-09-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.

  6. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    PubMed Central

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2008-01-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426

  7. Asymmetric statistical features of the Chinese domestic and international gold price fluctuation

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Zhao, Yingchao; Han, Yan

    2015-05-01

    Analyzing the statistical features of fluctuation is remarkably significant for financial risk identification and measurement. In this study, the asymmetric detrended fluctuation analysis (A-DFA) method was applied to evaluate asymmetric multifractal scaling behaviors in the Shanghai and New York gold markets. Our findings showed that the multifractal features of the Chinese and international gold spot markets were asymmetric. The gold return series persisted longer in an increasing trend than in a decreasing trend. Moreover, the asymmetric degree of multifractals in the Chinese and international gold markets decreased with the increase in fluctuation range. In addition, the empirical analysis using sliding window technology indicated that multifractal asymmetry in the Chinese and international gold markets was characterized by its time-varying feature. However, the Shanghai and international gold markets basically shared a similar asymmetric degree evolution pattern. The American subprime mortgage crisis (2008) and the European debt crisis (2010) enhanced the asymmetric degree of the multifractal features of the Chinese and international gold markets. Furthermore, we also make statistical tests for the results of multifractatity and asymmetry, and discuss the origin of them. Finally, results of the empirical analysis using the threshold autoregressive conditional heteroskedasticity (TARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models exhibited that good news had a more significant effect on the cyclical fluctuation of the gold market than bad news. Moreover, good news exerted a more significant effect on the Chinese gold market than on the international gold market.

  8. Application of asymmetric flow field-flow fractionation (AF4) and multiangle light scattering (MALS) for the evaluation of changes in the product molar mass during PVP-b-PAMPS synthesis.

    PubMed

    Fuentes, Catalina; Castillo, Joel; Vila, Jose; Nilsson, Lars

    2018-06-01

    The use of polymers for the delivery of drugs has increased dramatically in the last decade. To ensure the desired properties and functionality of such substances, adequate characterization in terms of the molar mass (M) and size is essential. The aim of this study was to evaluate the changes in the M and size of PVP-b-PAMPS when the amounts of the synthesis reactants in the two-step radical reaction were varied. The determination of the M and size distributions was performed by an asymmetric flow field-flow fractionation (AF4) system connected to multiangle light scattering (MALS) and differential refractive index (dRI) detectors. The results show that the M of the polymers varies depending on the relative amounts of the reactants and that AF4-MALS-dRI is a powerful characterization technique for analyzing polymers. Using AF4, it was possible to separate the product of the first radical reaction (PVP-CTA) into two populations. The first population had an elongated, rod-like or random coil conformation, and the second had a conformation corresponding to homogeneous spheres or a microgel structure. PVP-b-PAMPS had only one population, which had a rod-like conformation. The molar masses of PVP-CTA and PVP-b-PAMPS found in this study were higher than those reported in previous studies.

  9. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  10. Cell chirality: its origin and roles in left–right asymmetric development

    PubMed Central

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  11. Cell chirality: its origin and roles in left-right asymmetric development.

    PubMed

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  12. Asymmetric Fireballs in Symmetric Collisions

    DOE PAGES

    Bialas, A.; Bzdak, A.; Zalewski, K.

    2013-01-01

    Here, this contribution reports on the results obtained in the two recently published papers demonstrating that data of the STAR Collaboration show a substantial asymmetric component in the rapidity distribution of the system created in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at the mid c.m. rapidity.

  13. Methods and apparatus for reduction of asymmetric rotor loads in wind turbines

    DOEpatents

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-10

    A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.

  14. Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.

    PubMed

    Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan

    2015-10-26

    The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    NASA Astrophysics Data System (ADS)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  16. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  17. An application of the suction analog for the analysis of asymmetric flow situations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1976-01-01

    A recent extension of the suction analogy for estimation of vortex loads on asymmetric configurations is reviewed. This extension includes asymmetric augmented vortex lift and the forward sweep effect on side edge suction. Application of this extension to a series of skewed wings has resulted in an improved estimating capability for a wide range of asymmetric flow situations. Hence, the suction analogy concept now has more general applicability for subsonic lifting surface analysis.

  18. The synchronization of asymmetric-structured electric coupling neuronal system

    NASA Astrophysics Data System (ADS)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  19. Examining Theories of Distributive Justice with an Asymmetric Public Goods Game

    ERIC Educational Resources Information Center

    Schmidt, Stephen J.

    2015-01-01

    In this article, the author presents an asymmetric version of the familiar public goods classroom experiment, in which some players are given more tokens to invest than others, and players collectively decide whether to divide the return to the group investment asymmetrically as well. The asymmetry between players raises normative issues about…

  20. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT

    PubMed Central

    Bedayat, Arash; Kumamaru, Kanako; Powers, Sara L.; Signorelli, Jason; Steigner, Michael L.; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T.

    2011-01-01

    The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use. PMID:21336552

  1. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.

    PubMed

    Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T

    2012-02-01

    The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.

  2. Longitudinal growth of head circumference in term symmetric and asymmetric small for gestational age infants.

    PubMed

    Kaur, Harvinder; Bhalla, A K; Kumar, Praveen

    2012-07-01

    To study longitudinal growth pattern of head circumference of full-term symmetric and asymmetric small for gestational age (SGA) infants of the two sexes during first year of life. Mixed-longitudinal growth research design. Head circumference amongst full-term 100 symmetric, 100 asymmetric as well as 100 appropriate for gestational age (AGA) infants was measured at birth, 1, 3, 6, 9 and 12 months of age using standardized technique and instrument. The mean head circumference of male symmetric SGA infants measured significantly (p≤0.001) smaller than asymmetric SGA infants while, in female symmetric SGA infants it measured shorter beyond 6 months. As compared to AGA infants, head circumference in symmetric and asymmetric SGA infants measured significantly smaller in size. Growth velocity for head circumference amongst symmetric and asymmetric SGA male infants did not show statistically significant differences. Rate of head circumference growth remained significantly higher amongst female asymmetric SGA infants than the symmetric ones between 3 and 6 months while, a reversal of trend was observed between 9 and 12 months. The better growth attainments for head circumference of male and female asymmetric SGA infants than their symmetric SGA counterparts during first postnatal year of life may be attributed to the continuation of influence of "head sparing" experienced by asymmetric SGA babies during prenatal life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption.

    PubMed

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2014-07-09

    Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.

  4. Diastereoselective oxidative α-amination of aliphatic aldehydes catalyzed by iodine: synthesis of syn-γ-hydroxy-α-amino acetals.

    PubMed

    Zhang, Yun-Xiao; Zhang, An-Qi; Tian, Jie-Sheng; Loh, Teck-Peng

    2013-12-28

    Aldehydes can react with secondary amines to give α-amino acetals via the α-amination of aliphatic aldehydes catalyzed by iodine. The presence of an asymmetric hydroxylated center at the γ-position of the aldehyde was found to induce the stereoselective amino group. This method represents a stereoselective α-amination of γ-hydroxyaldehydes for the synthesis of syn-γ-hydroxy-α-amino acetals in good yields and reasonable diastereoselectivities under very mild conditions.

  5. Thermal phonon transport in Si thin film with dog-leg shaped asymmetric nanostructures

    NASA Astrophysics Data System (ADS)

    Kage, Yuta; Hagino, Harutoshi; Yanagisawa, Ryoto; Maire, Jeremie; Miyazaki, Koji; Nomura, Masahiro

    2016-08-01

    Thermal phonon transport in single-crystalline Si thin films with dog-leg shaped nanostructures was investigated. Thermal conductivities for the forward and backward directions were measured and compared at 5 and 295 K by micro thermoreflectance. The Si thin film with dog-leg shaped nanostructures showed lower thermal conductivities than those of nanowires and two-dimensional phononic crystals with circular holes at the same surface-to-volume ratio. However, asymmetric thermal conductivity was not observed at small temperature gradient condition in spite of the highly asymmetric shape though the size of the pattern is within thermal phonon mean free path range. We conclude that strong temperature dependent thermal conductivity is required to observe the asymmetric thermal phonon conduction in monolithic materials with asymmetric nanostructures.

  6. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    NASA Astrophysics Data System (ADS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  7. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less

  8. Synthesis of prostaglandins by conjugate addition and alkylation of a directed enolate ion. 4,5-allenyl prostaglandins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.W.

    1990-09-28

    Over the previous two decades many elegant syntheses of prostaglandins, which in more sophisticated forms, allow the stereospecific introduction of the various asymmetric carbons have been accomplished. However, among these approaches the cuprate addition/enolate alkylation of suitable cyclopentenone {sup 2} stands out because of brevity and convergence. The recent reports by Noyori{sup 3} and Corey{sup 4} and their colleagues have reduced to practice the conversion of 4-alkoxycyclopentenones to prostaglandin E{sub 2} (PGE{sub 2}) by conjugate addition of an organocopper derivative of the lower side chain followed by alkylation of the resulting carbanion with methyl 7-halohept-2-enoate. The subject of this papermore » is application of the Tardella tin enolate alkylation developed by Noyori to the synthesis of 4, 5-allenic prostaglandins, a pharmacologically important class of compounds. The authors results demonstrate that the tandem alkylation of an enone precursor with a cuprate reagent followed by alkylation of the corresponding tin enolate with bromide reagent is a viable synthetic method for 4,5-didehydro-PGE{sub 2}. Because the optically active forms of 1 and the vinyl iodide precursor of the PGE{sub 2} lower side chain have been employed to produce a single enantiomer of PGE{sub 2}, the extension of the methodology described here to the synthesis of single enantiomers of 4a awaits only the preparation of the separate enantiomers of allene 14.« less

  9. Asymmetric information and economics

    NASA Astrophysics Data System (ADS)

    Frieden, B. Roy; Hawkins, Raymond J.

    2010-01-01

    We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.

  10. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    PubMed

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  11. Generation of isolated asymmetric umbilics in light's polarization

    NASA Astrophysics Data System (ADS)

    Galvez, Enrique J.; Rojec, Brett L.; Kumar, Vijay; Viswanathan, Nirmal K.

    2014-03-01

    Polarization-singularity C points, a form of line singularities, are the vectorial counterparts of the optical vortices of spatial modes and fundamental optical features of polarization-spatial modes. Their generation in tailored beams has been limited to so-called "lemon" and "star" C points that contain symmetric dislocations in state-of-polarization patterns. In this Rapid Communication we present the theory and laboratory measurements of two complementary methods to generate isolated asymmetric C points in tailored beams, of which symmetric lemon and star patterns are limiting cases; and we report on the generation of so-called "monstar" patterns, an asymmetric C point with characteristics of both lemons and stars.

  12. Theory of asymmetric tunneling in the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Anderson, P. W.; Ong, N. P.

    2006-01-01

    We explain quantitatively, within the Gutzwiller-Resonating Valence Bond theory, the puzzling observation of tunneling conductivity between a metallic point and a cuprate high-Tc superconductor which is markedly asymmetric between positive and negative voltage biases. The asymmetric part does not have a ‘coherence peak’ but does show structure due to the gap. The fit to data is satisfactory within the over-simplifications of the theory; in particular, it explains the marked ‘peak-dip-hump’ structure observed on the hole side and a number of other qualitative observations. This asymmetry is strong evidence for the projective nature of the ground state and hence for ‘t-J’ physics.

  13. CTAB-Aided Synthesis of Stacked V2O5 Nanosheets: Morphology, Electrochemical Features and Asymmetric Device Performance

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Maruthamuthu, S.; Umadevi, V.; Saravanan, V.

    To accomplish superior performance in supercapacitors, a fresh class of electrode materials with advantageous structures is essential. Owing to its rich electrochemical activity, vanadium oxides are considered to be an attractive electrode material for energy storing devices. In this work, vanadium pentoxide (V2O5) nanostructures were prepared using surfactant (CTAB)-assisted hydrothermal route. Stacked V2O5 sheets enable additional channels for electrolyte ion intercalation. These stacked V2O5 nanosheets show highest specific capacitance of 466Fg-1 at 0.5Ag-1. In addition, it exhibits good rate capacity, lower value of charge transfer resistance and good stability when used as an electrode material for supercapacitors. Further, an asymmetric supercapacitor device was assembled utilizing the stacked V2O5 sheets and activated carbon as electrodes. The electrochemical features of the device are also discussed.

  14. A cardioid oscillator with asymmetric time ratio for establishing CPG models.

    PubMed

    Fu, Q; Wang, D H; Xu, L; Yuan, G

    2018-01-13

    Nonlinear oscillators are usually utilized by bionic scientists for establishing central pattern generator models for imitating rhythmic motions by bionic scientists. In the natural word, many rhythmic motions possess asymmetric time ratios, which means that the forward and the backward motions of an oscillating process sustain different times within one period. In order to model rhythmic motions with asymmetric time ratios, nonlinear oscillators with asymmetric forward and backward trajectories within one period should be studied. In this paper, based on the property of the invariant set, a method to design the closed curve in the phase plane of a dynamic system as its limit cycle is proposed. Utilizing the proposed method and considering that a cardioid curve is a kind of asymmetrical closed curves, a cardioid oscillator with asymmetric time ratios is proposed and realized. Through making the derivation of the closed curve in the phase plane of a dynamic system equal to zero, the closed curve is designed as its limit cycle. Utilizing the proposed limit cycle design method and according to the global invariant set theory, a cardioid oscillator applying a cardioid curve as its limit cycle is achieved. On these bases, the numerical simulations are conducted for analyzing the behaviors of the cardioid oscillator. The example utilizing the established cardioid oscillator to simulate rhythmic motions of the hip joint of a human body in the sagittal plane is presented. The results of the numerical simulations indicate that, whatever the initial condition is and without any outside input, the proposed cardioid oscillator possesses the following properties: (1) The proposed cardioid oscillator is able to generate a series of periodic and anti-interference self-exciting trajectories, (2) the generated trajectories possess an asymmetric time ratio, and (3) the time ratio can be regulated by adjusting the oscillator's parameters. Furthermore, the comparison between the

  15. Clinical characteristics in patients with asymmetric idiopathic pulmonary fibrosis.

    PubMed

    Callahan, Sean J; Xia, Meng; Murray, Susan; Flaherty, Kevin R

    2016-10-01

    A group of patients with idiopathic pulmonary fibrosis (IPF) presents with disease affecting one lung markedly more than the other. At this time, it is unclear how this population differs from those who present with more symmetric disease. We sought to explain the characteristics of the asymmetric group and how their disease progresses. In this retrospective case-control study we accessed an interstitial lung disease (ILD) database and identified 14 asymmetric IPF cases via high-resolution computed tomography (HRCT) scoring of each lung lobe's disease severity. We identified 28 symmetric IPF controls from the same database using the same methods, and compared the clinical features of each group. Patients with asymmetric disease exhibited similar demographics as those in the general IPF population; they were predominantly male (64%), elderly (69 years old), and used tobacco (57%). We found a trend toward significantly increased all-cause mortality in the case population two years following diagnosis (p = 0.089). Pulmonary function tests were significantly lower in the case group at the time of diagnosis, then both groups experienced gradual decline. We found no statistically significant differences in number of IPF exacerbations (cases 43%, controls 39%, p = 0.824) and gastro-esophageal reflux (both groups 50%). Patients with asymmetric IPF resemble patients in the general IPF population but may have a lower overall survival rate. Further systemic factors may be studied to identify reasons for disease asymmetry and clinical decline in this population. Published by Elsevier Ltd.

  16. Elimination of the asymmetric modes in a Ka-band super overmoded coaxial Cerenkov oscillator

    NASA Astrophysics Data System (ADS)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang; Zhao, Xuelong; Yang, Fuxiang

    2017-12-01

    The issue of asymmetric modes output of a Ka-band super overmoded coaxial Cerenkov oscillator is analyzed in this paper. Due to serious passband overlapping in a super overmoded coaxial slow wave structure (SWS), the asymmetric competition mode EH11 can hardly be suppressed thoroughly by the methods adopted in moderately overmoded devices, especially in the startup of oscillation. If the output structures reflect the asymmetric modes, the asymmetric mode competition in SWS will be aggravated and the normal operation state will be destroyed. In order to solve this problem, a taper waveguide is inserted at a specific position to achieve the destructive interference of the reflected TM11, and a special support structure is designed to avoid reflection of TE11. With these methods, asymmetric mode competition can be successfully eliminated, and the oscillator is capable of achieving a steady fundamental mode operation performance.

  17. Dynamic self-organisation of haematopoiesis and (a)symmetric cell division.

    PubMed

    Måløy, Marthe; Måløy, Frode; Jakobsen, Per; Olav Brandsdal, Bjørn

    2017-02-07

    A model of haematopoiesis that links self-organisation with symmetric and asymmetric cell division is presented in this paper. It is assumed that all cell divisions are completely random events, and that the daughter cells resulting from symmetric and asymmetric stem cell divisions are, in general, phenotypically identical, and still, the haematopoietic system has the flexibility to self-renew, produce mature cells by differentiation, and regenerate undifferentiated and differentiated cells when necessary, due to self-organisation. As far as we know, no previous model implements symmetric and asymmetric division as the result of self-organisation. The model presented in this paper is inspired by experiments on the Drosophila germline stem cell, which imply that under normal conditions, the stem cells typically divide asymmetrically, whereas during regeneration, the rate of symmetric division increases. Moreover, the model can reproduce several of the results from experiments on female Safari cats. In particular, the model can explain why significant fluctuation in the phenotypes of haematopoietic cells was observed in some cats, when the haematopoietic system had reached normal population level after regeneration. To our knowledge, no previous model of haematopoiesis in Safari cats has captured this phenomenon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division.

    PubMed

    Pfender, Sybille; Kuznetsov, Vitaliy; Pleiser, Sandra; Kerkhoff, Eugen; Schuh, Melina

    2011-06-07

    Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle positioning and second, polar body extrusion. Here, we identify Spire1 and Spire2 as new key factors in asymmetric division of mouse oocytes. Spire proteins are novel types of actin nucleators that drive nucleation of actin filaments with their four WH2 actin-binding domains [2-6]. We show that Spire1 and Spire2 first mediate asymmetric spindle positioning by assembling an actin network that serves as a substrate for spindle movement. Second, they drive polar body extrusion by promoting assembly of the cleavage furrow. Our data suggest that Spire1 and Spire2 cooperate with Formin-2 (Fmn2) to nucleate actin filaments in mouse oocytes and that both types of nucleators act as a functional unit. This study not only reveals how Spire1 and Spire2 drive two critical steps of asymmetric oocyte division, but it also uncovers the first physiological function of Spire-type actin nucleators in vertebrates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces

    NASA Astrophysics Data System (ADS)

    Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.

    2014-04-01

    A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.

  20. Stochastic Differential Games with Asymmetric Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardaliaguet, Pierre, E-mail: Pierre.Cardaliaguet@univ-brest.fr; Rainer, Catherine

    2009-02-15

    We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.