Sample records for praseodymium holmium erbium

  1. Holmium:YAG and erbium:YAG laser interaction with hard and soft tissue

    NASA Astrophysics Data System (ADS)

    Charlton, Andrew; Dickinson, Mark R.; King, Terence A.; Freemont, Anthony J.

    1991-06-01

    The holmium YAG and erbium YAG lasers operating at 2.1 micrometers and 2.9 micrometers respectively, are the subject of great interest for various medical applications. The interaction of both these pulsed lasers with biological tissue involves absorption of the radiation by water leading to rapid heating and ablation, however the different absorption coefficients at these two wavelengths give rise to different ablation efficiencies and haemostatic properties for the two lasers. It is this cut/seal ratio that determines for which medical applications each of these lasers is most suited. The lasers were used to produce incisions in various tissues by translating the tissue at fixed speed beneath a focused laser beam. The laser energy density was varied between 100 and 500 J/cm2 and the lasers were operated at 2 Hz. After irradiation the tissues were fixed in formalin, processed routinely into paraffin wax, sectioned at 5 micrometers and stained with haemotoxylin and eosin. This allowed the dimensions of the incisions to be measured, as well as the depth of coagulative denatured tissue surrounding each incision. In this way the cut/seal ratio was determined for both the holmium YAG and erbium YAG laser in a range of hard and soft tissues. Results show that the latent heat of ablation for the holmium YAG laser interacting with soft tissue varies between 20-50 kJ/cm3, almost an order of magnitude larger than with the erbium YAG laser. Furthermore, the depth of coagulative necrosis with holmium YAG extends 100-400 micrometers , compared with 10-30 micrometers for erbium YAG. The two interactions clearly lead to vastly different results suggesting that the holmium YAG laser is suitable for producing lesions in highly vascular tissue where haemostasis is important, whereas the erbium YAG laser is better suited to avascular tissue requiring large depths of incision.

  2. Rare Earths; The Fraternal Fifteen (Rev.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, Jr., Karl A.

    1966-01-01

    Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.

  3. Rare Earth Element Concentrations in Geothermal Wells at the Puna Geothermal Field, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in the geothermal wells at the Puna geothermal field, Hawaii. Samples taken from geothermal wells KS-5, KS-6W, KS-9W, KS-14E, and KS-16N. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples collected on November 11-17, 2016.

  4. Rare Earth Element Concentrations from Wells at the Don A. Campbell Geothermal Plant, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    * Requires permission of originators for use. Rare earth element concentrations in thermal springs from the wells at the Don A. Campbell geothermal plant, Nevada. Samples taken from geothermal wells 85-11, 65-11, 54-11, and 64-11. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples from Don A. Campbell, Nevada collected on October 14, 2016.

  5. Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.; Freire, Ricardo O.

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945

  6. The holmium laser in urology.

    PubMed

    Wollin, T A; Denstedt, J D

    1998-02-01

    To review the physics related to the holmium laser, its laser-tissue interactions, and its application to the treatment of urological diseases. The holmium: YAG laser is a solid-state, pulsed laser that emits light at 2100 nm. It combines the qualities of the carbon dioxide and neodymium:YAG lasers providing both tissue cutting and coagulation in a single device. Since the holmium wavelength can be transmitted down optical fibers, it is especially suited for endoscopic surgery. The authors provide a review of the literature as it relates to the holmium laser and its application to urology. The holmium wavelength is strongly absorbed by water. Tissue ablation occurs superficially, providing for precise incision with a thermal injury zone ranging from 0.5 to 1.0 mm. This level of coagulation is sufficient for adequate hemostasis. The most common urologic applications of the holmium laser that have been reported include incision of urethral and ureteral strictures; ablation of superficial transitional cell carcinoma; bladder neck incision and prostate resection; and lithotripsy of urinary calculi. The holmium: YAG laser is a multi-purpose, multi-specialty surgical laser. It has been shown to be safe and effective for multiple soft tissue applications and stone fragmentation. Its utilization in urology is anticipated to increase with time as a result of these features.

  7. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  8. Early complications with the holmium laser

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Stewart, Steven C.; Ruckle, Herbert C.; Poon, Michael W.

    1997-05-01

    The purpose of this study is to report early complications in our initial experience with the holmium laser in 133 patients. A retrospective study of patients undergoing endourological procedures with the holmium laser was performed. Complications included urinary tract infection (3), post-operative bradycardia (1), inverted T-waves (1), intractable flank pain (1), urinary retention (1), inability to access a lower pole calyx with a 365 micron fiber (9), stone migration (5), termination of procedure due to poor visualization (2). No ureteral perforations or strictures occurred. The holmium laser was capable of fragmenting all urinary calculi in this study. In our initial experience, the holmium laser is safe and effective in the treatment of genitourinary pathology. Use of laser fibers larger than 200 microns occasionally limit deflection into a lower pole or dependent calyx.

  9. Intrinsic Studies of Materials.

    DTIC Science & Technology

    RELAXATION TIME , CRYSTAL LATTICES), (*RARE EARTH ELEMENTS, *ELECTRON TRANSITIONS), (*CRYSTAL DEFECTS, INTERACTIONS), EXCITATION, DOPING, LANTHANUM COMPOUNDS, PHONONS, ATOMIC ENERGY LEVELS, HOLMIUM, CHLORIDES, PRASEODYMIUM

  10. Application of the holmium:YAG laser for prostatectomy.

    PubMed

    Kabalin, J N; Gilling, P J; Fraundorfer, M R

    1998-02-01

    The authors review the current knowledge regarding the application of the Holmium: YAG laser for prostatectomy. Conventional surgical therapies for benign prostatic hyperplasia (BPH) are effective but associated with relatively high morbidity. Laser prostatectomy, using either Neodymium:YAG or potassium-titanyl-phosphate lasers, has emerged as a new and much safer operative approach to relieve symptoms of benign prostatic hyperplasia. However, these laser wavelengths possess key disadvantages that have limited their acceptability and dissemination in everyday urologic practice. THE authors review their own extensive experience in the development of clinical application of Holmium: YAG laser technology for prostatectomy, as well as the published reports in the current medical literature now dealing with this subject. In multiple clinical trials, Holmium:YAG laser resection of the prostate has proven efficacious in relieving symptomatic BPH. Both objective urodynamic measures of voiding outcomes and symptomatic improvement have been shown to be equivalent to standard electrocautery resection of the prostate. At the same time, these studies have demonstrated the superior safety and hemostasis of Holmium:YAG laser prostatectomy compared to electrocautery resection, similar to prior laser prostatectomy procedure. Unlike prior forms of laser prostatectomy, Holmium:YAG laser resection of the prostate acutely removes all obstructing prostate tissue, so that the postoperative catheterization requirement is typically only overnight and improvement in voiding is immediate. Current operative techniques and the latest technological developments to facilitate Holmium:YAG laser prostatectomy are described. Holmium: YAG laser prostatectomy combines the best features of prior laser prostatectomy technologies, including minimal complications and morbidity, with the efficacy and immediacy of voiding outcomes associated with conventional electrocautery resection of the prostate.

  11. Thermodynamics of reaction of praseodymium with gallium-indium eutectic alloy

    NASA Astrophysics Data System (ADS)

    Melchakov, S. Yu.; Ivanov, V. A.; Yamshchikov, L. F.; Volkovich, V. A.; Osipenko, A. G.; Kormilitsyn, M. V.

    2013-06-01

    Thermodynamic properties of Ga-In eutectic alloys saturated with praseodymium were determined for the first time employing the electromotive force method. The equilibrium potentials of the Pr-In alloys saturated with praseodymium (8.7-12.1 mol.% Pr) and Pr-Ga-In alloys (containing 0.0012-6.71 mol.% Pr) were measured between 573-1073 K. Pr-In alloy containing solid PrIn3 with known thermodynamic properties was used as the reference electrode when measuring the potentials of ternary Pr-In-Ga alloys. Activity, partial and excessive thermodynamic functions of praseodymium in alloys with indium and Ga-In eutectic were calculated. Activity (a), activity coefficients (γ) and solubility (X) of praseodymium in the studied temperature range can be expressed by the following equations: lgaα-Pr(In) = 4.425 - 11965/T ± 0.026. lgаα-Pr(Ga-In) = 5.866 - 14766/T ± 0.190. lgγα-Pr(Ga-In) = 2.351 - 9996/T ± 0.39. lgХPr(Ga-In) = 3.515 - 4770/T ± 0.20.

  12. Multiple Doped Erbium Glasses,

    DTIC Science & Technology

    GLASS, LASERS, ERBIUM, ERBIUM COMPOUNDS, DOPING, OXIDES, OPTIMIZATION, ATOMIC ENERGY LEVELS, PHOSPHATES , YTTERBIUM COMPOUNDS, NEODYMIUM COMPOUNDS, OPTICAL PUMPING, FLUORESCENCE, LIFE EXPECTANCY(SERVICE LIFE), BAND SPECTRA.

  13. Complications employing the holmium:YAG laser.

    PubMed

    Beaghler, M; Poon, M; Ruckle, H; Stewart, S; Weil, D

    1998-12-01

    We report the operative and early postoperative complications and limitations in 133 patients treated with the holmium laser. Complications included urinary tract infection (N = 3), postoperative bradycardia (1), inverted T-waves (1), intractable flank pain (1), urinary retention (1), inability to access a lower-pole calix with a 365-microm fiber (9), stone migration (5), and termination of procedure because of poor visibility (2). No ureteral perforations or strictures occurred, and no complications were directly attributable to the laser. The holmium laser was capable of fragmenting all urinary calculi in this study. In our initial experience, the holmium laser is safe and effective in the treatment of urinary pathology. Use of laser fibers larger than 200 microm occasionally limits deflection of the endoscope into a lower-pole or dependent calix.

  14. Surface studies of praseodymium by electron spectroscopies

    NASA Astrophysics Data System (ADS)

    Krawczyk, Mirosław; Pisarek, Marcin; Lisowski, Wojciech; Jablonski, Aleksander

    2016-12-01

    Electron transport properties in praseodymium (Pr) foil samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the Pr sample surface was pre-sputtered by Ar ions with ion energy of 2-3 keV. After such treatment, the Pr sample still contained about 10 at.% of residual oxygen in the surface region, as detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses. The inelastic mean free path (IMFP), characterizing electron transport within this region (4 nm-thick), was evaluated from EPES using both Ni and Au standards as a function of energy in the range of 0.5-2 keV. Experimental IMFPs, λ, were approximated by the simple function λ = kEp, where E is energy (in eV), and k = 0.1549 and p = 0.7047 were the fitted parameters. These values were compared with IMFPs for the praseodymium surface in which the presence of oxygen was tentatively neglected, and also with IMFPs resulting from the TPP-2M predictive equation for bulk praseodymium. We found that the measured IMFP values to be only slightly affected by neglect of oxygen in calculations. The fitted function applied here was consistent with the energy dependence of the EPES-measured IMFPs. Additionally, the measured IMFPs were found to be from 2% to 4.2% larger than the predicted IMFPs for praseodymium in the energy range of 500-1000 eV. For electron energies of 1500 eV and 2000 eV, there was an inverse correlation between these values, and then the resulting deviations of -0.4% and -2.7%, respectively, were calculated.

  15. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.

    PubMed

    Huang, P X; Wu, F; Zhu, B L; Li, G R; Wang, Y L; Gao, X P; Zhu, H Y; Yan, T Y; Huang, W P; Zhang, S M; Song, D Y

    2006-02-02

    Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.

  16. A cladding-pumped, tunable holmium doped fiber laser.

    PubMed

    Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian

    2013-11-18

    We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.

  17. Holmium laser lithotripsy of bladder calculi

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Poon, Michael W.

    1998-07-01

    Although the overall incidence of bladder calculi has been decreasing, it is still a significant disease affecting adults and children. Prior treatment options have included open cystolitholapaxy, blind lithotripsy, extracorporeal shock wave lithotripsy, and visual lithotripsy with ultrasonic or electrohydraulic probes. The holmium laser has been found to be extremely effective in the treatment of upper tract calculi. This technology has also been applied to the treatment of bladder calculi. We report our experience with the holmium laser in the treatment of bladder calculi. Twenty- five patients over a year and a half had their bladder calculi treated with the Holmium laser. This study was retrospective in nature. Patient demographics, stone burden, and intraoperative and post-operative complications were noted. The mean stone burden was 31 mm with a range of 10 to 60 mm. Preoperative diagnosis was made with either an ultrasound, plain film of the abdomen or intravenous pyelogram. Cystoscopy was then performed to confirm the presence and determine the size of the stone. The patients were then taken to the operating room and given a regional or general anesthetic. A rigid cystoscope was placed into the bladder and the bladder stone was then vaporized using the holmium laser. Remaining fragments were washed out. Adjunctive procedures were performed on 10 patients. These included transurethral resection of the prostate, transurethral incision of the prostate, optic internal urethrotomy, and incision of ureteroceles. No major complications occurred and all patients were rendered stone free. We conclude that the Holmium laser is an effective and safe modality for the treatment of bladder calculi. It was able to vaporize all bladder calculi and provides a single modality of treating other associated genitourinary pathology.

  18. Use of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Mattioli, Stefano

    1997-12-01

    The Holmium-YAG is a versatile laser with multiple soft- tissue applications including tissue incision and vaporization, and pulsed-laser applications such as lithotripsy. At 2140 nanometers, the wavelength is highly absorbed by tissue water. Further, like CO2 laser, the Holmium produces immediate tissue vaporization while minimizing deep thermal damage to surrounding tissues. It is an excellent instrument for endopyelotomy, internal urethrotomy, bladder neck incisions and it can be used to resect the prostate. The Holmium creates an acute TUR defect which gives immediate results like the TURP. More than 50 patients were treated from Jan. 1996 to Jan. 1997 for obstructive symptoms due to benign prostatic hyperplasia, bladder neck stricture, urethral stenosis, and superficial bladder tumors.

  19. Biokinetics of yttrium and comparison with its geochemical twin holmium

    DOE PAGES

    Leggett, Rich

    2017-06-01

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  20. Choledochoscopic Holmium Laser Lithotripsy for Difficult Bile Duct Stones.

    PubMed

    Lv, Shangdong; Fang, Zheping; Wang, Aidong; Yang, Jian; Zhang, Wenlong

    2017-01-01

    The aim of this study was to evaluate the feasibility and efficacy of choledochoscopic holmium laser lithotripsy as a means of removing resistant extrahepatic and intrahepatic bile duct stones. Clinical data on 28 patients who had undergone choledochoscopic holmium laser lithotripsy were analyzed. Complete stone clearance was obtained in 24 patients; small numbers of residual stones in the left or right hepatic duct were found in 4 patients. No severe complications such as hemobilia and bile duct injuries occurred. Choledochoscopic holmium laser lithotripsy is a simple, safe, and effective treatment method for patients with resistant bile duct stones.

  1. Photoluminescent spectroscopy measurements in nanocrystalline praseodymium doped zirconia powders

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Murrieta S, H.; Hernández A, J.; Camarillo, E.; García-Hipólito, M.; Martínez-Martínez, R.; Álvarez-Fragoso, O.; Falcony, C.

    2006-05-01

    Praseodymium doped zirconia powder (ZrO2: (0.53 at%) Pr3+) was prepared by a co-precipitation technique and annealed in air at a temperature Ta = 950 °C. The x-ray diffraction pattern shows a nanocrystalline structure composed of 29.6% monoclinic and 70.4% cubic-tetragonal phases. Medium infrared and Raman analysis confirms the monoclinic/cubic-tetragonal crystalline structure and proves the absence of praseodymium aggregates in the material. Photoluminescent spectroscopy over excitations of 457.9 and 514.9 nm (at 20 K), shows two emission spectra composed of many narrow peaks in the visible-near infrared region (VIS-NIR) of the electromagnetic spectrum, associated with 4f inter-level electronic transitions in praseodymium ions incorporated in the zirconia. Excitation and emission spectra show the different mechanisms of the direct and non-direct excitation of the dopant ion (Pr3+), and the preferential relaxation of the material by charge transfer from the host (zirconia) to the 4f5d band and the 4f inter-level of the dopant ion (Pr3+). No evidence of energy transfer from the host to the dopant was observed.

  2. Facial and meridional isomers of holmium-nitrate N-tert-butylacetamide complexes

    NASA Astrophysics Data System (ADS)

    Chang, Ye-Di; Xue, Jun-Hui; Kang, Xiao-Yan; Yang, Li-Min; Li, Wei-Hong; Xu, Yi-Zhuang; Zhao, Guo-Zhong; Zhang, Gao-Hui; Liu, Ke-Xin; Chen, Jia-Er; Wu, Jin-Guang

    2018-06-01

    Two Ho(C6H13NO)3(NO3)3 complexes formed by holmium nitrate and N-tert-butylacetamide (NtBA) (Ho-NtBA(I) in a Cc space group, and Ho-NtBA(II) in a P21/c space group) are reported here to investigate the coordination of lanthanide ions with amide groups. Using X-ray single crystal diffraction, FTIR, Raman, FIR and THz methods the structures of the two complexes were identified, in which Ho3+ is 9-coordinated to three carbonyl oxygen atoms provided by three NtBA ligands and three bidentate nitrate ions to form the "facial" and "meridional" isomers. Their FTIR and Raman spectra indicate the formation of two holmium complexes, the variations of NtBA after holmium coordination and the spectra are similar for the isomers in some extent. Their FIR and THz spectroscopic results show the coordination of holmium ions and THz maybe more sensitive to isomers. The results demonstrate the coordination behaviors of holmium ions and NtBA ligand.

  3. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.

    PubMed

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.

  4. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  5. Structural and optical properties of α-Fe2O3 nanoparticles, influence by holmium ions

    NASA Astrophysics Data System (ADS)

    Mathevula, L. E.; Noto, L. L.; Mothudi, B. M.; Dhlamini, M. S.

    2018-04-01

    α-Fe2O3 and α-Fe2O3 doped with different concentration of holmium ions were synthesized by a simple sol-gel method. The XRD data confirmed the hexagonal structure of α-Fe2O3 for un-doped and holmium doped samples. The crystallite size was found to be decreasing with increasing holmium concentration. The amount of holmium was quantified using an EDS, which shows an increase in holmium quantity as concentration increases. The UV-Vis measurement shows an absorption edge around 570 nm. The band gap was estimated using the Kubelka-Munk relation and it was found to be fluctuating between 1.94 eV and 2.04 eV. The PL spectra confirmed the effect of holmium ions on luminescence properties of α-Fe2O3 which showed a maximum intensity at 0.1 mol% Holmium, and quenching as the concentration is increased from 0.3 mol% to 0.9 mol%.

  6. Evaluation of erbium:YAG and holmium:YAG laser radiation and dental hard tissue

    NASA Astrophysics Data System (ADS)

    Attrill, David Cameron

    Lasers have become increasingly established in medicine as effective alternatives or adjuncts to conventional techniques. In dentistry, several clinical laser systems have been developed and marketed, but their applications have been limited to soft tissue surgery. To date, no laser has been capable of effectively cutting or modifying the highly mineralised dental tissues of enamel and dentine. The aim of this study was to evaluate two new laser systems for use in dentistry through a series of in vitro experiments. Both generic erbium and holmium lasers have theoretically superior operating characteristics over currently established lasers for applications with dental hard tissues. The two lasers investigated in this study were pulsed Er:YAG (lambda=2.94) a.m. and Cr-Tm-Ho:YAG (lambda=2.1mu.m). Both operated with a macropulse duration of approximately 200lambdas, at pulse repetition rates of 2-8Hz and mean pulse energies up to 230mJ. Radiation was focused using CaF[2] lenses (f=50-120mm). The lasers could be operated with or without the addition of a surface water film at the interaction site. Tissue removal efficiency was expressed as a latent heat of ablation (LHA, kJ/cm[3]) using a modification of the technique described by Charlton et al. (1990). The mean LHA's for the Er:YAG laser were 6.24kJ/cm[3] and 22.99kJ/cm[3] with dentine and enamel respectively without water, and 10.07kJ/cm[3] and 18.73kJ/cm[3] for dentine and enamel with water. The Cr-Tm-Ho:YAG laser was unable to effectively remove enamel at the fluences and pulse energies available; the mean LHA's for the Cr-Tm- Ho:YAG laser with dentine were 82.79kJ/cm3 and 57.57kJ/cm3 with and without water respectively. The Cr-Tm-Ho;YAG was approximately 8-9 times less efficient for tissue removal than the Er:YAG system. Er:YAG tissue removal with water was characterised by clean "surgical" cuts, comparable in histological appearance to those obtained using conventional instrumentation. Some thermal disruption

  7. A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.

  8. Quantification of holmium:YAG optical tip degradation

    NASA Astrophysics Data System (ADS)

    Mues, Adam C.; Teichman, Joel M. H.; Knudsen, Bodo E.

    2009-02-01

    The holmium:yttrium aluminum garnet (YAG) laser is the gold standard laser for intracorporeal lithotripsy. Optical fibers are utilized to transmit laser energy to the surface of a stone for fragmentation. During lithotripsy, fiber tip degradation (burn back) can occur. The exact mechanism for tip degradation and related factors are not completely understood, and have not been investigated. This characteristic is important because fiber burn back may affect diminish fragmentation efficiency, increase operative time, and increase cost due to the need for fiber replacement. We hypothesize that fiber tip degradation (burn back) varies amongst different commercially available holmium:YAG laser fibers.

  9. Evaluation of six holmium:YAG optical fibers for ureteroscopy: What's new in 2009?

    NASA Astrophysics Data System (ADS)

    Knudsen, Bodo E.; Teichman, Joel M. H.

    2010-02-01

    The holmium:yttrium aluminum garnet (YAG) laser is the gold standard laser for intracorporeal lithotripsy.1 Optical fibers are utilized to transmit laser energy to the surface of a stone for fragmentation via a predominant photothermal mechanism.2 Previous work has demonstrated that performance characteristics of holmium:YAG optical fibers used for laser lithotripsy varies. Performance may difference not only between fibers made by different manufacturers but also between individual fibers produced by the same manufacturer.3,4 Fiber failure with bending, such as during lower pole ureterorenoscopy, can lead to catastrophic endoscope damage resulting in costly repair. Manufacturers continue to develop new holmium:YAG optical fibers. In this study we evaluate a series of newly commercially available fibers using a previously designed testing protocol. This study was designed to determine the performance and threshold for failure of six newly available holmium:YAG laser fibers from Cook Medical and Fibertech Gmbh. We hypothesize that fiber performance will continue to vary amongst different holmium:YAG optical fibers.

  10. Stone retropulsion during holmium:YAG lithotripsy.

    PubMed

    Lee, Ho; Ryan, R Tres; Teichman, Joel M H; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Welch, A J

    2003-03-01

    We modeled retropulsion during holmium:YAG lithotripsy on the conservation of momentum, whereby the force of ejected fragment debris off of the calculous surface should equal the force of retropulsion displacing the stone. We tested the hypothesis that retropulsion occurs as a result of ejected stone debris. Uniform calculous phantoms were irradiated with holmium:YAG energy in air and in water. Optical fiber diameter and pulse energy were varied. Motion of the phantom was monitored with high speed video imaging. Laser induced crater volume and geometry were characterized by optical coherence tomography. To determine the direction of plume laser burn paper was irradiated at various incident angles. Retropulsion was greater for phantoms irradiated in air versus water. Retropulsion increased as fiber diameter increased and as pulse energy increased (p <0.001). Crater volumes increased as pulse energy increased (p <0.05) and generally increased as fiber diameter increased. Crater geometry was wide and shallow for larger fibers, and narrow and deeper for smaller fibers. The ejected plume propagated in the direction normal to the burn paper surface regardless of the laser incident angle. Retropulsion increases as pulse energy and optical fiber diameter increase. Vector analysis of the ejected plume and crater geometry explains increased retropulsion using larger optical fibers. Holmium:YAG lithotripsy should be performed with small optical fibers to limit retropulsion.

  11. Rare Earth Laser Engineering Program. Part II.

    DTIC Science & Technology

    YTTRIUM ALUMINUM GARNET , NEAR INFRARED RADIATION, CONCENTRATION(CHEMISTRY), YTTRIUM COMPOUNDS, ALUMINUM COMPOUNDS, OXIDES, RELAXATION, RATES...VANADATES, DOPING, LANTHANUM, ERBIUM, HOLMIUM, GADOLINIUM COMPOUNDS, GARNET , TRANSPORT PROPERTIES, OSCILLATORS, LANTHANUM COMPOUNDS, FLUORIDES.

  12. Holmium laser enucleation for prostate adenoma greater than 100 gm.: comparison to open prostatectomy.

    PubMed

    Moody, J A; Lingeman, J E

    2001-02-01

    Options for treatment of large (greater than 100 gm.) prostatic adenomas have until now been limited to open surgery or transurethral resection by skilled resectionists. Considerable blood loss, morbidity, extended hospital stay and prolonged recovery occur with open surgery for large prostatic adenomas. Endoscopic surgery for benign prostatic hyperplasia has evolved during the last decade to offer the patient and surgeon significant advantages of transurethral removal of prostatic adenomas. Holmium laser enucleation of the prostate with transurethral tissue morcellation provides significant reductions in morbidity, bleeding and hospital stay for patients with large prostate adenomas. A retrospective review of data on 10 cases of holmium laser enucleation and 10 open prostatectomies for greater than 100 gm. prostatic adenomas was performed from 1998 to 1999 at our institution. Patient demographics, indication for surgery, preoperative and postoperative American Urological Association (AUA) symptom scores, operating time, serum hemoglobin, resected prostatic weight, pathological diagnosis, length of stay and complications were compared. Patient age, indications for surgery (retention, failed medical therapy, high post-void residual, bladder calculi, bladder diverticula and azotemia) and preoperative AUA symptom scores were similar in both groups. Postoperative AUA symptom scores were significantly decreased (p <0.004) in both groups. Operating times were not significantly different. Serum sodium was unchanged by holmium laser enucleation (not significant), and postoperative hemoglobin was not significantly reduced in the holmium laser enucleation group but decreased significantly in the open prostatectomy group (mean decrease 2.9 +/- 0.7 gm., p = 0.0003). Resected weight was greater in the holmium laser enucleation group (151 versus 106 gm., p = 0.07). Length of stay was significantly shorter in the holmium laser enucleation group (2.1 versus 6.1 days, p <0

  13. Thermal property of holmium doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  14. PARTIAL REVISION: ABSORPTION SPECTRUM AND QUANTUM STATES OF THE PRASEODYMIUM ION. I. SINGLE CRYSTALS OF PRASEODYMIUM CHLORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, E.V.; Sancier, K.M.; Freed, S.

    1958-07-01

    In an analysis of term splitting in the absorption spectrum of 24 samples of praseodymium chloride, Judd (Proc. Roy. Soc. (London) A241, 414(1957)) found all but two of the authors' results to be constant with his. A discussion of reconciliation is presentrd, and the authors point out that the error is due to a mistake in descrimination between electronic transitions and the weak vibrationally coupled lines. (J.R.D.)

  15. Multi-wavelength Praseodymium fiber laser using stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Aidit, S. N.; Tiu, Z. C.

    2018-02-01

    A multi-wavelength Brillouin Praseodymium fiber laser (MWBPFL) operating at 1300 nm region is demonstrated based on the hybrid scheme by utilizing Brillouin gain medium and Praseodymium-doped fluoride fiber as linear gain medium. A 15 μm air gap is incorporated into the cavity to allow the switching of Brillouin frequency spacing from double to single spacing. Under the Brillouin pump of 8 dBm and the 1020 nm pump power of 567.2 mW, 36 Stokes lines with a wavelength spacing of 0.16 nm and 24 Stokes lines with a wavelength spacing of 0.08 nm are achieved. The wavelength tunability of 8 nm is realized for both MWBPFLs by shifting the Brillouin pump wavelength. The MWBPFLs exhibit an excellent stability in the number of generated Stokes and power level over one-hour period.

  16. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Zhihao; Qiu, Feng; Wu, Xiaoxue

    The effects of praseodymium on age hardening behavior and creep resistance of cast Al–Cu alloy were investigated. The results indicated that praseodymium facilitated the formation of the θ′ precipitates during the age process and improved the hardness of the Al–Cu alloy. Besides, praseodymium resulted in the formation of the Al{sub 11}Pr{sub 3} phase in the grain boundaries and among the dendrites of the modified alloy. Because of the good thermal stability of Al{sub 11}Pr{sub 3} phase, it inhibits grain boundary migration and dislocation movement during the creep process, which contributes to the improvement in the creep resistance of the modifiedmore » alloy at elevated temperatures. - Highlights: • Pr addition enhances the hardness and creep resistance of the Al–Cu alloy. • Pr addition facilitates the formation of the θ′ precipitates. • Pr addition results in the formation of the Al11Pr3 phase in the Al–Cu alloy.« less

  17. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    NASA Astrophysics Data System (ADS)

    Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.

    2017-07-01

    Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  18. Cystoscopic suture removal by Holmium-YAG laser after Burch procedure

    PubMed Central

    Karaşahin, Emre Kazım; Esin, Sertaç; Alanbay, İbrahim; Ercan, Mutlu Cihangir; Mutlu, Erol; Başer, İskender; Basal, Şeref

    2011-01-01

    Burch colposuspension remains one of the successful operations performed for stress incontinence. Accidental suturing of the bladder wall during the procedure or subsequent erosion may lead to lower urinary tract symptoms. Diagnosis and management of these sutures indicate precise evaluation for which a 70 degree cystoscope is used. In selected cases, Holmium-YAG laser may enable us to manage long-standing, encrustated neglected sutures. Here we would like to report successful removal of intravesical sutures using the Holmium-YAG laser. PMID:24591960

  19. Efficacy of percutaneous treatment of biliary tract calculi using the holmium:YAG laser.

    PubMed

    Hazey, J W; McCreary, M; Guy, G; Melvin, W S

    2007-07-01

    Few Western studies have focused on percutaneous techniques using percutaneous transhepatic choledochoscopy (PTHC) and holmium:yttrium-aluminum-garnet (YAG) laser to ablate biliary calculi in patients unable or unwilling to undergo endoscopic or surgical removal of the calculi. The authors report the efficacy of the holmium:YAG laser in clearing complex biliary calculi using percutaneous access techniques. This study retrospectively reviewed 13 non-Asian patients with complex secondary biliary calculi treated percutaneously using holmium:YAG laser. Percutaneous access was accomplished via left, right, or bilateral hepatic ducts and upsized for passage of a 7-Fr video choledochoscope. Lithotripsy was performed under choledochoscopic vision using a holmium:YAG laser with 200- or 365-microm fibers generating 0.6 to 1.0 joules at 8 to 15 Hz. Patients underwent treatment until stone clearance was confirmed by PTHC. Downsizing and subsequent removal of percutaneous catheters completed the treatment course. Seven men and six women with an average age of 69 years underwent treatment. All the patients had their biliary tract stones cleared successfully. Of the 13 patients, 3 were treated solely as outpatients. The average length of percutaneous access was 108 days. At this writing, one patient still has a catheter in place. The average number of holmium:YAG laser treatments required for stone clearance was 1.6, with no patients requiring more than 3 treatments. Of the 13 patients, 8 underwent a single holmium:YAG laser treatment to clear their calculi. Prior unsuccessful attempts at endoscopic removal of the calculi had been experienced by 7 of the 13 patients. Five patients underwent percutaneous access and subsequent stone removal as their sole therapy for biliary stones. Five patients were cleared of their calculi after percutaneous laser ablation of large stones and percutaneous basket retrieval of the remaining stone fragments. There was one complication of pain

  20. Holmium: yttrium aluminum garnet laser-assisted endoscopic sinus surgery: laboratory experience.

    PubMed

    Shapshay, S M; Rebeiz, E E; Bohigian, R K; Hybels, R L; Aretz, H T; Pankratov, M M

    1991-02-01

    Endoscopic sinus surgery has gained wide acceptance since its introduction into the United States. Complex sinus anatomy and troublesome bleeding have been associated with complications, which vary in severity from synechia to blindness and leakage of cerebrospinal fluid. Endoscopic sinus surgery using a holmium: yttrium aluminum garnet pulsed solid-state laser oscillating at 2.1 microns with fiberoptic delivery was performed in the laboratory, and the results were compared with those of conventional endoscopic sinus surgery. Three beagle dogs, six human cadaver heads, and one calf head were used in the in vivo and in vitro studies to evaluate the bone ablation, tissue coagulation, and hemostatic properties of the holmium: yttrium aluminum garnet laser. Modified endoscopic telescopes for sinus surgery, a newly developed handpiece for fiberoptic delivery, and other surgical instruments were used. The results indicate that the holmium: yttrium aluminum garnet laser and new delivery instrumentation provide good hemostasis and controlled soft-tissue ablation and bone removal. The access to all sinuses in the human cadaver model was very good. The canine in vivo study showed delayed but complete healing on the laser-treated side. Clinical evaluation of the holmium: yttrium aluminum garnet laser is warranted to increase the precision and safety of endoscopic sinus surgery.

  1. Holmium:YAG (lambda = 2,120 nm) versus thulium fiber (lambda = 1,908 nm) laser lithotripsy.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2010-03-01

    The holmium:YAG laser is currently the most common laser lithotripter. However, recent experimental studies have demonstrated that the thulium fiber laser is also capable of vaporizing urinary stones. The high-temperature water absorption coefficient for the thulium wavelength (mu(a) = 160 cm(-1) at lambda = 1,908 nm) is significantly higher than for the holmium wavelength (mu(a) = 28 cm(-1) at lambda = 2,120 nm). We hypothesize that this should translate into more efficient laser lithotripsy using the thulium fiber laser. This study directly compares stone vaporization rates for holmium and thulium fiber lasers. Holmium laser radiation pulsed at 3 Hz with 70 mJ pulse energy and 220 microseconds pulse duration was delivered through a 100-microm-core silica fiber to human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Thulium fiber laser radiation pulsed at 10 Hz with 70 mJ pulse energy and 1-millisecond pulse duration was also delivered through a 100-microm fiber for the same sets of 10 stones each. For the same number of pulses and total energy (126 J) delivered to each stone, the mass loss averaged 2.4+/-0.6 mg (UA) and 0.7+/-0.2 mg (COM) for the holmium laser and 12.6+/-2.5 mg (UA) and 6.8+/-1.7 (COM) for the thulium fiber laser. UA and COM stone vaporization rates for the thulium fiber laser averaged 5-10 times higher than for the holmium laser at 70 mJ pulse energies. With further development, the thulium fiber laser may represent an alternative to the conventional holmium laser for more efficient laser lithotripsy.

  2. Metrological traceability of holmium oxide solution

    NASA Astrophysics Data System (ADS)

    Gonçalves, D. E. F.; Gomes, J. F. S.; Alvarenga, A. P. D.; Borges, P. P.; Araujo, T. O.

    2018-03-01

    Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.

  3. Wound repair in rat urinary bladder following electrocautery or holmium laser incision

    NASA Astrophysics Data System (ADS)

    Venzi, Giordano; Schmidlin, Franz R.; Gabbiani, Giulio; Delacretaz, Guy P.; Pittet, Brigitte; Leisinger, Hans-Juerg; Iselin, Christoph E.

    1999-06-01

    Woundhealing is a complex phenomenon which varies according the type of tissue but is also depending from the type of tissue injury. Electrocautery mainly induces coagulation necrosis while thermal damages induced by the Holmium laser primarily lead to tissue vaporization which may induce less tissue injury. The aim of this study was to evaluate the healing process of the Holmium laser induced lesions compared to electrocautery induced lesions in urothelial tissue by assessing the inflammatory response and myofibroblast behavior in sequential healing phases. A surgical wound was created in the urinary rat bladder of 32 rats either by electrocautery or by laser (N=16). The inflammatory response, the total lesion depth and the myofibroblast activity during woundhealing was then analyzed on a qualitative basis on days 0/2/4/8. The overall inflammatory response was comparable in both groups up to days two and four. However, at day eight less cellular inflammatory reaction and less myofibroblast activity was found in the specimen of lesions created by the Holmium laser. These results suggest that wound repair may be a less invasive process after Holmium laser than electrocautery.

  4. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  5. Defect-free erbium silicide formation using an ultrathin Ni interlayer.

    PubMed

    Choi, Juyun; Choi, Seongheum; Kang, Yu-Seon; Na, Sekwon; Lee, Hoo-Jeong; Cho, Mann-Ho; Kim, Hyoungsub

    2014-08-27

    An ultrathin Ni interlayer (∼1 nm) was introduced between a TaN-capped Er film and a Si substrate to prevent the formation of surface defects during thermal Er silicidation. A nickel silicide interfacial layer formed at low temperatures and incurred uniform nucleation and the growth of a subsequently formed erbium silicide film, effectively inhibiting the generation of recessed-type surface defects and improving the surface roughness. As a side effect, the complete transformation of Er to erbium silicide was somewhat delayed, and the electrical contact property at low annealing temperatures was dominated by the nickel silicide phase with a high Schottky barrier height. After high-temperature annealing, the early-formed interfacial layer interacted with the growing erbium silicide, presumably forming an erbium silicide-rich Er-Si-Ni mixture. As a result, the electrical contact property reverted to that of the low-resistive erbium silicide/Si contact case, which warrants a promising source/drain contact application for future high-performance metal-oxide-semiconductor field-effect transistors.

  6. Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients.

    PubMed

    Sofer, Mario; Watterson, James D; Wollin, Timothy A; Nott, Linda; Razvi, Hassan; Denstedt, John D

    2002-01-01

    We assessed the effectiveness and safety of holmium:YAG laser lithotripsy for managing upper urinary tract calculi in a prospective cohort of 598 patients. Ureteroscopic holmium:YAG laser lithotripsy was performed in 598 patients between 1993 and 1999. Calculi were located in the distal ureter in 39.6% of cases, mid ureter in 18.6%, proximal ureter in 32.4% and kidney in 9.4%. Patients were treated on an outpatient basis with various flexible and semirigid endoscopes. Of the cases 59% were referred as previous treatment failures. Patients were assessed 6 to 12 weeks postoperatively with repeat plain x-ray and ultrasound or excretory urography for late obstructive complications. The overall stone-free rate was 97%. As stratified by location, the stone-free rate was 98% in the distal ureter, 100% in the mid ureter, 97% in the proximal ureter and 84% in the kidney. Fragmentation was incomplete in 6% of cases and secondary intervention was required in 6%. The overall complication rate was 4%. New onset ureteral stricture developed postoperatively in 0.35% of patients. Holmium:YAG laser lithotripsy is a highly effective and safe treatment modality for managing ureteral and a proportion of intrarenal calculi on an outpatient basis. The effectiveness and versatility of the holmium laser combined with small rigid or flexible endoscopes make it our modality of choice for ureteroscopic lithotripsy.

  7. Compact erbium lasers in the IR photorefractive keratectomy (PRK)

    NASA Astrophysics Data System (ADS)

    Liu, Baining; Eichler, Hans J.; Sperlich, O.; Holschbach, A.; Kayser, M.

    1996-09-01

    Erbium lasers deliver laser radiation near 3 micrometers and are a promising alternative to excimer laser photorefractive keratectomy (UV-PRK). In addition to easier handling due to all solid state technology, especially when operated in the fundamental mode, IR-PRK eliminates the potential of mutagenic side effects associated with UV-PRK. However, a successful IR-PRK for the clinic treatment in the near future demands both technological development of erbium lasers in different operation modes and clinical investigation of interaction between 3 micrometers radiation and human corneas. The excellent cooperation between university, company and hospital makes this possible. Uncoated thin plates made from infrared materials were found to be effective etalon reflectors with high damage threshold as high as 1 GW/cm2 for erbium lasers. Four kinds of such reflectors were successfully tested in Q-switched Er:YAG-laser at 2.94 micrometers and Er:Cr:YSGG-laser at 2.80 micrometers. Very stable operation of our erbium lasers with high output energy both in free-running and Q-switched modes is realized. First infrared photorefractive keratectomy (IR-PRK) for myopic correction in human corneas by a free-running erbium laser based on our new construction concepts was achieved.

  8. Polarization spectroscopy of atomic erbium in a hollow cathode lamp

    NASA Astrophysics Data System (ADS)

    Ang'ong'a, Jackson; Gadway, Bryce

    2018-02-01

    In this work we perform polarization spectroscopy of erbium atoms in a hollow cathode lamp (HCL). We review the theory behind Doppler-free polarization spectroscopy, theoretically model the expected erbium polarization spectra, and compare the numerically calculated spectra to our experimental data. We further analyze the dependence of the measured spectra on the HCL current and the peak intensities of our pump and probe lasers to determine conditions. Applications include wavelength stabilization of diode laser radiation to the 400.91 nm erbium transition.

  9. Strong modification of photoluminescence in erbium-doped porous silicon microcavities

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Snow, P. A.; Russell, P. St. J.

    2000-10-01

    A microcavity composed of porous silicon multilayer mirrors was electrochemically etched and doped with erbium. Measurements of the reflectivity and photoluminescence spectra are presented. Thermal processing under a nitrogen atmosphere optically activated the erbium ions. Photopumping yielded room temperature emission around 1.54 μm from the erbium-doped samples with the emitted light strongly modified by the microcavity structure. Emission spectra with a peak at 1.536 μm had a full width at half maximum of ˜6 nm.

  10. Minimally invasive management with holmium laser in total urinary tract calculi.

    PubMed

    Zhang, Xiao; Yu, Jianjun; Yang, Ranxing

    2013-05-01

    The purpose of this article was to study the management of total urinary tract calculi using holmium laser minimally invasive techniques. It is rare for patients to present kidney stones, ureteral stones, and bladder stones simultaneously, and their treatment is considered to be complicated and difficult, specifically by minimally invasive techniques. We collected seven cases of total urinary tract calculi from May 2007 to September 2012. Three cases were unilateral, and the others were bilateral. All of the cases presented calculus in the bladder, ureter, and kidney, which were secondary to the long-term indwelling double J stent or lower urinary obstruction. Extracorporeal shock-wave lithotripsy (SWL) was administered first, followed by the operation. For patients with bilateral calculi, at one stage, ureteroscopic lithotripsy (URL) with holmium laser was performed in all four cases to remove the bladder and bilateral ureter stones. Then, all patients underwent percutaneous nephrolithotomy (PCNL) with holmium procedures to address the bilateral kidney and upper ureter stones at the second stage. The indwelling double J stents were removed at the same time. For the patients with unilateral calculi, we performed a single operation, but it was conducted using the same treatment sequence as the bilateral procedure. The related symptoms in all cases disappeared after the operation. Re-examination showed that the stones were nearly dissolved and that renal function was recovered. URL with holmium laser for the bladder and ureters combined with PCNL to dissolve kidney and upper ureteral stones could be the ideal choice for the treatment of total urinary tract calculi.

  11. Thermal Response to High-Power Holmium Laser Lithotripsy.

    PubMed

    Aldoukhi, Ali H; Ghani, Khurshid R; Hall, Timothy L; Roberts, William W

    2017-12-01

    The aim of this study was to investigate "caliceal" fluid temperature changes during holmium laser activation/lithotripsy using settings up to 40 W power output with different irrigation flow rates. The experimental system consisted of a glass test tube (diameter 10 mm/length 75 mm) filled with deionized water, to mimic a calix. Real-time temperature was recorded using a thermocouple (Physitemp, NJ) positioned 5 mm from the bottom of the tube. A 200 μm laser fiber (Flexiva; Boston Scientific, MA) was introduced through the working channel of a disposable ureteroscope (LithoVue; Boston Scientific) and the laser fiber tip was positioned 15 mm above the bottom of the test tube. Deionized water irrigation (room temperature) through the working channel of the ureteroscope was delivered at flow rates of 0, 7-8, 14-15, and 38-40 mL/minute. A 120-W holmium laser (pulse 120; Lumenis, CA) was used. The following settings were explored: 0.5 J × 10 Hz, 1.0 J × 10 Hz, 0.5 J × 20 Hz, 1.0 J × 20 Hz, 0.5 J × 40 Hz, 1.0 J × 40 Hz, and 0.5 J × 80 Hz. During each experiment, the laser was activated continuously for 60 seconds. Temperature increased with increasing laser power output and decreasing irrigation flow rate. The highest temperature, 70.3°C (standard deviation 2.7), occurred with laser setting of 1.0 J × 40 Hz and no irrigation after 60 seconds of continuous laser firing. None of the tested laser settings and irrigation parameters produced temperature exceeding 51°C when activated for only 10 seconds of continuous laser firing. High-power holmium settings fired in long bursts with low irrigation flow rates can generate high fluid temperatures in a laboratory "caliceal" model. Awareness of this risk allows urologist to implement a variety of techniques (higher irrigation flow rates, intermittent laser activation, and potentially cooled irrigation fluid) to control and mitigate thermal

  12. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  13. Radiation-hardened nano-particles-based Erbium-doped fiber for space environment

    NASA Astrophysics Data System (ADS)

    Thomas, Jérémie; Myara, Mikhaël.; Signoret, Philippe; Burov, Ekaterina; Pastouret, Alain; Melin, Gilles; Boivin, David; Gilard, Olivier; Sotom, Michel

    2017-11-01

    We demonstrate for the first time a radiationresistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

  14. Development and characterisation of polymeric microparticle of poly(d,l-lactic acid) loaded with holmium acetylacetonate.

    PubMed

    de Azevedo, Mariangela de Burgos M; de Melo, Vitor H S; Soares, Carlos Roberto J; Miyamoto, Douglas M; Katayama, Ricardo A; Squair, Peterson L; Barros, Caio H N; Tasic, Ljubica

    2018-06-14

    Biodegradable polymers containing radioactive isotopes such as Holmium 166 ( 166 Ho) have potential applications as beta particle emitters in tumour tissues. It is also a gamma ray emitter, allowing nuclear imaging of any tissue to be acquired. It is frequently used in the form of complexes such as holmium acetylacetonate (HoAcAc), which may cause damages in tissues next to the targets cancer cells, as it is difficult to control its linkage or healthy tissues radiotherapy effects. Poly(d,l-lactic acid), PDLLA, was used to encapsulate holmium acetylacetonate (HoAcAc) using an emulsion solvent extraction/evaporation technique. Microspheres with sizes between 20-53 µm were extensively characterised. HoAcAc release from the microspheres was assessed through studies using Inductively Coupled Plasma - Optical Emission Spectroscopy, and the microspheres showed no holmium leakage after a period of 10 half-lives and following gamma irradiation. Thus, HoAcAc loaded microspheres are here presented as a potential system for brachytherapy and imaging purposes.

  15. Soft-tissue applications of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.; Razvi, Hassan A.; Chun, Samuel S.; Sales, Jack L.

    1995-05-01

    The ideal surgical laser for the treatment of soft tissue pathology should possess both ablative and hemostatic abilities. As well, for use in urologic conditions the laser must also be suitable for endoscopic use. The Holmium:YAG laser possesses these qualities and in preliminary clinical use has demonstrated a variety of potential urologic applications. In this study we review our initial experience with the Holmium:YAG laser over a 18 month period. A total of 51 patients underwent 53 procedures for a variety of soft tissue conditions including: bladder tumor ablation (25), incision of ureteral stricture (15), incision of urethral stricture (6), treatment of ureteropelvic junction obstruction (3), incision of bladder neck contracture (2), and ablation of a ureteral tumor (2). Satisfactory hemostasis was achieved in all cases. Procedures were considered successful (no further intervention being required to treat the condition) in 81% of the cases. Two patients with dense bladder neck contractures required electroincision under the same anesthetic for completion of the procedure. A single complication, that of urinary extravasation following incision of a urethral stricture resolved with conservative management. In summary, the Holmium:YAG laser has demonstrated safety and proficiency in the treatment of a variety of urologic soft tissue conditions.

  16. Holmium:YAG laser coronary angioplasty: quantitative angiography and clinical results in a large experience of a single medical center

    NASA Astrophysics Data System (ADS)

    Topaz, On; Luxenberg, Michael; Schumacher, Audrey

    1994-07-01

    Clinical experience with the mid IR holmium:YAG laser in a single medical center (St. Paul Ramsey Medical Center, University of Minnesota Medical School, St. Paul, MN) includes 112 patients who underwent holmium laser coronary angioplasty. Utilizing a unique lasing technique; `pulse and retreat,' we applied this laser to thrombotic and nonthrombotic lesions in patients presenting with unstable angina, stable angina, and acute myocardial infarction. A very high clinical success and very low complication rates were achieved. Holmium:YAG laser is effective and safe therapy for patients with symptomatic coronary artery disease. Unlike excimer lasers, the clinical success, efficacy and safety of holmium laser angioplasty is not compromised when thrombus is present.

  17. Erbium lasers in dentistry.

    PubMed

    van As, Glenn

    2004-10-01

    Erbium hard tissue lasers have the capability to prepare enamel, dentin, caries, cementum, and bone in addition to cutting soft tissue. The ability of hard tissue lasers to reduce or eliminate vibrations, the audible whine of drills, microfractures, and some of the discomfort that many patients fear and commonly associate with high-speed handpieces is impressive. In addition, these lasers can be used with a reduced amount of local anesthetic for many procedures. Today, these instruments have evolved from their initial use for all classes of cavity preparations to their ability for removing soft tissue, their usefulness in the disinfection of bacteria within endodontic canals, and most recently, as an alternative to the high speed handpiece for the removal of bone in oral and maxillofacial surgery. In addition, recent research has centered on the value of the erbium family of laser wavelengths in periodontics, including the removal of calculus.

  18. [Comparison of validity and safety between holmium: YAG laser and traditional surgery in partial nephrectomy].

    PubMed

    Bi, Sheng; Xia, Ming

    2015-08-11

    To compare the validity and safety between holmium: YAG laser and traditional surgery in partial nephrectomy. A total of 28 patients were divided into two groups (holmium: YAG laser group without renal artery clamping and traditional surgery group with renal artery clamping). The intraoperative blood loss, total operative time, renal artery clamping time, postoperative hospital stay, separated renal function, postoperative complications and depth of tissue injury were recorded. The intraoperative blood loss, total operative time, renal artery clamping time, postoperative hospital stay, separated renal function, postoperative complications and depth of tissue injury were 80 ml, 77 min, 0 min, 7.4 days, 35 ml/min, 0, 0.9 cm, respectively, in holmium: YAG laser group. And in traditional surgery group were 69 ml, 111 min, 25.5 min, 7.3 days, 34 ml/min, 0, 2.0 cm, respectively. The differences of total operative time, renal artery clamping time and depth of tissue injury between two groups were statistically significant. The others were not statistically significant. Holmium: YAG laser is effective and safe in partial nephrectomy. It can decrease the total operative time, minimize the warm ischemia time and enlarge the extent of surgical excision.

  19. Erbium Laser Technology vs Traditional Drilling for Caries Removal: A Systematic Review with Meta-Analysis.

    PubMed

    Tao, Siying; Li, Lan; Yuan, He; Tao, Sibei; Cheng, Yiming; He, Libang; Li, Jiyao

    2017-12-01

    The study aimed to assess the efficacy of erbium laser technology compared with traditional drilling for caries removal. A systematic search was conducted through Medline via PubMed, Embase, Cochrane databases, CNKI till December 2016. Randomised controlled trials, quasi-randomized controlled trials, or controlled clinical trials with data comparing the efficacy of erbium laser technology versus traditional drilling for caries removal were included. Fourteen studies were selected in our meta-analysis. Erbium laser technology showed an increased time when removing caries compared with drilling (mean difference: 3.48, 95% confidence interval: 1.90-5.06, P < .0001). However, erbium laser technology reduced the requirement for local anesthesia (risk ratio: 0.28, 95% confidence interval: 0.13-0.62, P = .002). Erbium laser technology was also not significantly different to traditional drilling with regard to restoration loss, pulpal vitality, and postoperative sensitivity. Erbium laser technology showed an increased time for cavity preparation compared with traditional drilling. However, erbium laser technology reduced the requirement for local anesthesia. There was no significant difference between erbium laser technology and traditional drilling regarding restoration loss, pulpal vitality, and postoperative sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ureteroscopic holmium laser cutting for inadvertently sutured drainage tube (report of five cases).

    PubMed

    Gao, Xu; Lu, Xin; Ren, Shancheng; Xu, Chuanliang; Sun, Yinghao

    2008-07-01

    The aim of this paper is to report a simple solution for inadvertently sutured drainage tube after urological surgery and discuss the different managements according to different types of this embarrassing complication. From September 2001 to January 2007, five inadvertently sutured drainage tubes were treated with ureteroscopic holmium laser cutting for the suture. All drainage tubes were removed after the operation without other complications. Holmium laser cutting via ureteroscope is a simple solution for the embarrassing problem of inadvertently sutured drainage tube. It can save the patient from undergoing another open surgery.

  1. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  2. Application of erbium: YAG laser in ocular ablation.

    PubMed

    Tsubota, K

    1990-01-01

    Recent developments in lasers have provided us the possibility of laser ocular surgery. The xenon, argon, neodymium:YAG and dye lasers have been successfully used in out-patient clinics. The excimer laser has been attracting researchers' interest in the new application of laser to cornea and lens. The erbium:YAG laser emits a 2.94-microns beam that can ablate the transparent ocular tissues such as lenses and corneas. The author has applied this laser to the cornea, lens, vitreous and other ocular tissues. The erbium:YAG laser beam was directed through a 1.5-meter-long, 200-microns-diameter fiberoptic guide. The radiant energy measured about 50 mJ at the end of the probe. The laser was emitted as a 400-microsecond pulse. Freshly enucleated rabbit eyes were used in this study. Laser burns were applied to the tissue surface at various energy settings. At minimal power, the tissues were coagulated by the erbium:YAG laser application. At a power of more than 636-954 mJ/mm2, tissue began to evaporate; the tissue loss was observed under a surgical light microscope. Corneal photoablation, lens ablation, iridotomy, trabeculotomy, cutting of the vitreous and retinal ablation were easily performed. Like the excimer laser, the erbium:YAG laser is a potential tool for ocular surgery.

  3. Endoscopic-assisted disruption of urinary calculi using a holmium:YAG laser in standing horses.

    PubMed

    Judy, Carter E; Galuppo, Larry D

    2002-01-01

    To describe a technique for endoscope-assisted disruption and removal of urinary calculi using a holmium:YAG laser in sedated, standing horses. Retrospective study. Six horses with urinary calculi. A holmium:YAG laser was used to disrupt naturally occurring urinary calculi in horses (4 geldings, 1 stallion, 1 mare). Ischial urethrotomy was performed in male horses to provide a portal for the endoscope and laser fiber. Calculus fragments were removed by a combination of lavage, transendoscopic basket snare removal, forceps, and digital manipulation. Ischial urethrotomies healed by second intention. Follow-up was obtained by recheck examination and telephone interview of owners. No major operative or postoperative complications occurred. Two calculi (1 stallion and 1 mare) were fragmented by a combination of laser ablation and manual disruption with a lithotrite. Postoperative dysuria occurred in the mare, but resolved after 1 month. Mean (+/- SD) follow-up was 306 +/- 149 days; no other complications were reported. Calcium carbonate urinary calculi (up to 15 cm in diameter) in horses can be effectively fragmented with a holmium:YAG laser. It is not known if this technique would be completely effective for larger calculi or extremely dense calculi. Calculus disruption by an endoscopically assisted holmium:YAG laser offers a minimally invasive method that can be performed in standing horses and that minimizes patient risk. Copyright 2002 by The American College of Veterinary Surgeons

  4. Erbium--169 versus triamcinolone hexacetonide in the treatment of rheumatoid finger joints.

    PubMed Central

    Ruotsi, A; Hypén, M; Rekonen, A; Oka, M

    1979-01-01

    Erbium--169 was compared with triamcinolone hexacetonide in the topical treatment of 32 patients suffering from rheumatoid arthritis. Erbium--169 was injected into 83 and triamcinolone hexacetonide into 54 proximal interphalangeal or metacarpophalangeal joints. Both treatments produced alleviation of joint pain and swelling and improvement of grip strength. At every check-up (1--18 months) the percentage of remissions was higher after triamcinolone hexacetonide injection than after erbium--169. The difference was significant at 1, 3, and 6 months. PMID:434946

  5. Holmium laser enucleation versus laparoscopic simple prostatectomy for large adenomas.

    PubMed

    Juaneda, R; Thanigasalam, R; Rizk, J; Perrot, E; Theveniaud, P E; Baumert, H

    2016-01-01

    The aim of this study is to compare Holmium laser enucleation of the prostate with another minimally invasive technique, the laparoscopic simple prostatectomy. We compared outcomes of a series of 40 patients who underwent laparoscopic simple prostatectomy (n=20) with laser enucleation of the prostate (n=20) for large adenomas (>100 grams) at our institution. Study variables included operative time and catheterization time, hospital stay, pre- and post-operative International Prostate Symptom Score and maximum urinary flow rate, complications and economic evaluation. Statistical analyses were performed using the Student t test and Fisher test. There were no significant differences in patient age, preoperative prostatic size, operating time or specimen weight between the 2 groups. Duration of catheterization (P=.0008) and hospital stay (P<.0001) were significantly less in the laser group. Both groups showed a statistically significant improvement in functional variables at 3 months post operatively. The cost utility analysis for Holmium per case was 2589 euros versus 4706 per laparoscopic case. In the laser arm, 4 patients (20%) experienced complications according to the modified Clavien classification system versus 5 (25%) in the laparoscopic group (P>.99). Holmium enucleation of the prostate has similar short term functional results and complication rates compared to laparoscopic simple prostatectomy performed in large glands with the advantage of less catheterization time, lower economic costs and a reduced hospital stay. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. COEXISTENCE OF DIFFERENT TYPES OF TRANSVERSE CONDUCTIVITY IN Y1-xPrxBa2Cu3 O7-δ SINGLE CRYSTALS WITH DIFFERENT PRASEODYMIUM CONCENTRATIONS

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Goulatis, I. L.; Chroneos, A.

    2013-10-01

    In this paper, the influence of praseodymium doping on the conductivity across (transverse) the basal plane of high-temperature superconducting Y1-xPrxBa2Cu3O7-δ single crystals is investigated. It is determined that an increase of praseodymium doping leads to increased localization effects and the implementation of a metal-insulator transition Y1-xPrxBa2Cu3O7-δ, which always precedes the superconducting transition. The increase of the praseodymium concentration also leads to a significant displacement of the point of the metal-insulator transition to the low temperature region.

  7. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  8. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.

    PubMed

    Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  9. Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??

    PubMed Central

    Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga

    2015-01-01

    The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease. PMID:25713635

  10. Resonantly photo-pumped nickel-like erbium X-ray laser

    DOEpatents

    Nilsen, Joseph

    1990-01-01

    A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).

  11. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    NASA Astrophysics Data System (ADS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  12. Holmium laser use in the treatment of selected dry eye syndrome complications

    NASA Astrophysics Data System (ADS)

    Kecik, Dariusz; Kecik, Tadeusz; Kasprzak, Jan; Kecik, Mariusz

    1996-03-01

    The authors present initial results of treatment selected complications of dry eye syndrome with holmium laser. The lacrimal puncta obliteration and coagulation of the corneal ulcer surface were done.

  13. Transmission electron microscopy study of erbium silicide formation from Ti/Er stack for Schottky contact applications.

    PubMed

    Ratajczak, J; Łaszcz, A; Czerwinski, A; Katcki, J; Phillipp, F; Van Aken, P A; Reckinger, N; Dubois, E

    2010-03-01

    In this paper, we present results of transmission electron microscopy studies on erbium silicide structures fabricated under various thermal conditions. A titanium cap has been used as a protective layer against oxidation during rapid thermal annealing of an erbium layer in a temperature range of 300-700 degrees C. Both layers (200 nm Ti and 25 nm Er) were deposited by electron-beam sputtering. The investigations have shown that the transformation of the 25-nm-thick erbium into erbium silicide is completed after annealing at 500 degrees C. At higher temperatures, the formation of a titanium silicide layer above erbium silicide is observed. The lowest Schottky barrier has been measured in the sample annealed at 700 degrees C.

  14. Towards diode-pumped mid-infrared praseodymium-ytterbium-doped fluoride fiber lasers

    NASA Astrophysics Data System (ADS)

    Woodward, R. I.; Hudson, D. D.; Jackson, S. D.

    2018-02-01

    We explore the potential of a new mid-infrared laser transition in praseodymium-doped fluoride fiber for emission around 3.4 μm, which can be conveniently pumped by 0.975 μm diodes via ytterbium sensitizer co-doping. Optimal cavity designs are determined through spectroscopic measurements and numerical modeling, suggesting that practical diode-pumped watt-level mid-infrared fiber sources beyond 3 μm could be achieved.

  15. Percutaneous endoscopic holmium laser lithotripsy for management of complicated biliary calculi.

    PubMed

    Healy, Kelly; Chamsuddin, Abbas; Spivey, James; Martin, Louis; Nieh, Peter; Ogan, Kenneth

    2009-01-01

    Advances in endoscopic techniques have transformed the management of urolithiasis. We sought to evaluate the role of such urological interventions for the treatment of complex biliary calculi. We conducted a retrospective review of all patients (n=9) undergoing percutaneous holmium laser lithotripsy for complicated biliary calculi over a 4-year period (12/2003 to 12/2007). All previously failed standard techniques include ERCP with sphincterotomy (n=6), PTHC (n=7), or both of these. Access to the biliary system was obtained via an existing percutaneous transhepatic catheter or T-tube tracts. Endoscopic holmium laser lithotripsy was performed via a flexible cystoscope or ureteroscope. Stone clearance was confirmed intra- and post-operatively. A percutaneous transhepatic drain was left indwelling for follow-up imaging. Mean patient age was 65.6 years (range, 38 to 92). Total stone burden ranged from 1.7 cm to 5 cm. All 9 patients had stones located in the CBD, with 2 patients also having additional stones within the hepatic ducts. All 9 patients (100%) were visually stone-free after one endoscopic procedure. No major perioperative complications occurred. Mean length of stay was 2.4 days. At a mean radiological follow-up of 5.4 months (range, 0.5 to 21), no stone recurrence was noted. Percutaneous endoscopic holmium laser lithotripsy is a minimally invasive alternative to open salvage surgery for complex biliary calculi refractory to standard approaches. This treatment is both safe and efficacious. Success depends on a multidisciplinary approach.

  16. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.; ...

    2018-06-08

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  17. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  18. Endoscopic placement of Jones lacrimal tubes with the assistance of holmium YAG laser.

    PubMed

    Boboridis, Kostas G; Downes, Richard N

    2005-06-01

    The aim of this paper is to highlight the use of the Holmium YAG laser in the endoscopic placement of Lester Jones tubes in patients with a blocked canaliculus or failed lacrimal pump function. Sixteen cases with a non-functional canaliculus were included over a one-year period. Following caruncle excision, a 19 G needle is inserted through the medial canthal tissues into the nasal space. Nasal endoscopy confirms the accurate positioning in relation to the nasal anatomy. With the Holmium YAG laser, a tissue channel is fashioned around the guide needle through the structures of the lateral nasal wall to facilitate an accurate and secure placement of the Jones tube. The endoscopic, laser-assisted placement reduces the operating time to less than 20 minutes, minimizes tissue trauma and does not require the initial surgical steps of an open DCR procedure. There were 14 cases (87.5%) with securely retained tubes and two cases (12.5%) that required tube replacement. The advantage of the procedure is especially great in revision surgery where the ostium is opened through scar tissue. Nasal endoscopy with the assistance of the Holmium YAG laser offers simplicity and precision in the placement of Jones tubes. It minimizes tissue trauma and increases the surgical success rate.

  19. Retinotomy using an erbium:YAG laser on human autopsy eyes

    NASA Astrophysics Data System (ADS)

    Ellsworth, Lansing G.; Kramer, Theresa R.; Noecker, Robert J.; Snyder, Robert W.; Yarborough, J. Michael

    1994-06-01

    Mid-IR lasers that operate near the absorption peak of water have a short penetration depth in ocular tissues. Ablation of tissue can be accomplished with minimal coagulative damage to underlying structures. We used an erbium:YAG laser equipped with a contact probe to create retinotomy sites in the human retina of eye bank eyes. An erbium:YAG laser (2.94 micrometers ) equipped with an infrared transmitting glass fiber and a sapphire tip (400 micrometers ) was used to directly ablate the surface of the retina. We administered both single and multiple pulses to the macula and peripheral retina using energy levels from 4 to 16 mJ per pulse. The retinas were then examined histopathologically to evaluate the extent of ablation and coagulative damage. Single pulses at low energy levels were noted to cause ablative damage to the nerve fiber layer and ganglion cell layer without a notable coagulative effect. The mean ablation depth at lower energy levels was less than the mean ablation depth at higher energy levels. Extensive laser application produced disruption of the retinal pigment epithelium, choroid and sclera. the erbium:YAG laser equipped with a contact probe is an effective means of creating retinotomies in human autopsy eyes. When used in the single pulse mode at lower energy levels, the erbium:YAG laser appears capable of removing superficial retinal layers without damaging deeper structures.

  20. Percutaneous Endoscopic Holmium Laser Lithotripsy for Management of Complicated Biliary Calculi

    PubMed Central

    Healy, Kelly; Chamsuddin, Abbas; Spivey, James; Martin, Louis; Nieh, Peter

    2009-01-01

    Background and Objectives: Advances in endoscopic techniques have transformed the management of urolithiasis. We sought to evaluate the role of such urological interventions for the treatment of complex biliary calculi. Methods: We conducted a retrospective review of all patients (n=9) undergoing percutaneous holmium laser lithotripsy for complicated biliary calculi over a 4-year period (12/2003 to 12/2007). All previously failed standard techniques include ERCP with sphincterotomy (n=6), PTHC (n=7), or both of these. Access to the biliary system was obtained via an existing percutaneous transhepatic catheter or T-tube tracts. Endoscopic holmium laser lithotripsy was performed via a flexible cystoscope or ureteroscope. Stone clearance was confirmed intra- and postoperatively. A percutaneous transhepatic drain was left indwelling for follow-up imaging. Results: Mean patient age was 65.6 years (range, 38 to 92). Total stone burden ranged from 1.7 cm to 5 cm. All 9 patients had stones located in the CBD, with 2 patients also having additional stones within the hepatic ducts. All 9 patients (100%) were visually stone-free after one endoscopic procedure. No major perioperative complications occurred. Mean length of stay was 2.4 days. At a mean radiological follow-up of 5.4 months (range, 0.5 to 21), no stone recurrence was noted. Conclusions: Percutaneous endoscopic holmium laser lithotripsy is a minimally invasive alternative to open salvage surgery for complex biliary calculi refractory to standard approaches. This treatment is both safe and efficacious. Success depends on a multidisciplinary approach. PMID:19660213

  1. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser.

    PubMed

    Marguet, Charles G; Sung, Jeff C; Springhart, W Patrick; L'Esperance, James O; Zhou, Songlin; Zhong, Pei; Albala, David M; Preminger, Glenn M

    2005-05-01

    The frequency doubled, double pulse Nd:YAG (FREDDY) laser (World of Medicine, Berlin, Germany) functions through the generation of a plasma bubble. Upon bubble collapse a mechanical shock wave is generated, causing stone fragmentation. This mechanism of action is in contrast to the holmium laser, which cause stone destruction by vaporization. Observed clinical stone retropulsion and fragmentation with the FREDDY and holmium lasers has prompted a series of in vitro experiments designed to compare laser induced retropulsion and fragmentation with those of a holmium laser and pneumatic lithotrite. For retropulsion a hands-off underwater laboratory setup, including a horizontally oriented silicone tube 1.3 cm in diameter and a holder to keep the stone phantom in contact with the quartz laser fiber or pneumatic probe, was used. Previously weighed, cylindrical Bego stone phantoms (Bego USA, Smithfield, Rhode Island) were placed in the apparatus. Stone fragmentation was performed with the FREDDY or holmium laser, or the pneumatic lithotripter. The FREDDY and holmium lasers were tested at similar pulse energy and frequency settings. As a standard for comparison, a pneumatic lithotrite was tested with a semirigid probe and single pulse settings of 100, 200 and 300 kPa. Stone phantoms underwent 30 shocks per setting. Mean net retropulsion, defined as the final resting point of the stone, as determined by direct measurement, was recorded for each setting. For fragmentation plaster of Paris stone phantoms of known weights were used to compare the fragmentation ability of each laser. Stones phantoms were placed in a hands-off underwater setup, consisting of an inverted silicon syringe and holder immersed in tap water. The laser fiber (365 microm for the holmium and 280 microm for the FREDDY) was placed through the tip of the syringe in contact with the stone phantom. A total of 24 stones were divided into 4 groups of 6 per group. Two groups were fragmented with the FREDDY laser

  2. Strategic Materials in the Automobile: A Comprehensive Assessment of Strategic and Minor Metals Use in Passenger Cars and Light Trucks.

    PubMed

    Field, Frank R; Wallington, Timothy J; Everson, Mark; Kirchain, Randolph E

    2017-12-19

    A comprehensive component-level assessment of several strategic and minor metals (SaMMs), including copper, manganese, magnesium, nickel, tin, niobium, light rare earth elements (LREEs; lanthanum, cerium, praseodymium, neodymium, promethium, and samarium), cobalt, silver, tungsten, heavy rare earth elements (yttrium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium), and gold, use in the 2013 model year Ford Fiesta, Focus, Fusion, and F-150 is presented. Representative material contents in cars and light-duty trucks are estimated using comprehensive, component-level data reported by suppliers. Statistical methods are used to accommodate possible errors within the database and provide estimate bounds. Results indicate that there is a high degree of variability in SaMM use and that SaMMs are concentrated in electrical, drivetrain, and suspension subsystems. Results suggest that trucks contain greater amounts of aluminum, nickel, niobium, and silver and significantly greater amounts of magnesium, manganese, gold, and LREEs. We find tin and tungsten use in automobiles to be 3-5 times higher than reported by previous studies which have focused on automotive electronics. Automotive use of strategic and minor metals is substantial, with 2013 vehicle production in the United States, Canada, EU15, and Japan alone accounting for approximately 20% of global production of Mg and Ta and approximately 5% of Al, Cu, and Sn. The data and analysis provide researchers, recyclers, and decision-makers additional insight into the vehicle content of strategic and minor metals of current interest.

  3. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  4. Ultra-narrow-linewidth Brillouin/erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Wang, Chenyu; Wang, Jianfei; Luo, Hong; Meng, Zhou

    2018-02-01

    Ultra-narrow-linewidth lasers are of great interest in many applications, such as precise spectroscopy, optical communications, and sensors. Stimulated Brillouin scattering (SBS), as one of the main nonlinear effects in fibers, is capable of generating narrow-linewidth light emission. We establish a compact Brillouin/erbium fiber laser (BEFL) utilizing 4-m erbium-doped fiber as both the Brillouin gain and linear media. A 360-kHz-linewidth laser diode is injected into the cavity as the Brillouin pump (BP) light and generates Brillouin Stokes lasing light. Both of the phase noise of the BP and BEFL output are measured by a high-accuracy unbalanced Michelson interferometer. It is demonstrated that 53- dB phase noise reduction is achieved after the BP is transferred into Brillouin Stokes emission. The linewidth of the BEFL is indicated at Hz-range by both calculation and experiment.

  5. [Research on the cytotoxic and genotoxic effects of rare-earth element holmium to Vicia faba].

    PubMed

    Qu, Ai; Wang, Cheng-Run; Bo, Jun

    2004-03-01

    Crystal of nitrate, made by the reaction of holmium trioxide and nitric acid, was dissolved in distilled water, thus diluted into gradient solution. Soaked in the solution for 6 hours (6h), the root tips of Vicia faba were then recovered and cultivated for 22 h and 24 h, respectively. By observing the change of root tips and calculating the frequency of micronucleus (FMN), the frequency of chromosomal aberrations(CAF) and mitosis index (MI),we find that the dosage below 4mg/L (expressed by concentration of holmium trioxide) could accelerate the growth of root tips of Vicia faba. CAF and FMN increased while MI decreased with the rise of concentrations. From it a dosage effect relationship is clearly seen. And it indicated that the rare earth element holmium has certain cytotoxic and genotoxic effects. Furthermore, the different recovery groups have different FMN, CAF and MI, and the difference lies in the fact that FMN of 22 h recovery group was lower than that of 24 h recovery group, while CAF and MI were higher than those of 24 h recovery group. The results suggest that the statistics of FMN should be made after that of CAF.

  6. Fast and slow light property improvement in erbium-doped amplifier

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Wu, F. K.; Kao, W. C.; Chen, J.; Lin, C. T.; Chi, S.

    2013-01-01

    This work experimentally demonstrates improvement of the fast light property in erbium-doped amplifiers at room temperature. The difference between the signal power and the pump power associated with bending loss is used to control the signal power at the different positions of the erbium-doped fiber (EDF) to improve the fast light property. Periodic bending of the EDF increases the time advance of the probe signal by over 288%. Additionally, this concept also could improve the fast light property using coherent population oscillations in semiconductor optical amplifiers.

  7. Praseodymium methanesulfonate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones.

    PubMed

    Wang, Min; Song, Zhiguo; Gong, Hong; Jiang, Heng

    2008-01-01

    A series of 3,4-dihydropyrimidin-2-(1H)-ones compounds was synthesized efficiently by a one-pot cyclocondensation of an aldehyde, 1,3-dicarbonyl compound, and urea in absolute ethanol under refluxing temperature using praseodymium methanesulfonate as catalyst. After the reaction, the catalyst can be easily recovered and reused several times without distinct decrease in reaction yields.

  8. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  9. The evaluation of tissue mass loss in the incision line of prostate with benign hyperplasia performed using holmium laser and cutting electrode

    PubMed Central

    Szewczyk, Mariusz; Jesionek–Kupnicka, Dorota; Lipinski, Piotr; Różański, Waldemar

    2014-01-01

    Introduction The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). Material and methods The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. Results In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Conclusions Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode. PMID:25247088

  10. The evaluation of tissue mass loss in the incision line of prostate with benign hyperplasia performed using holmium laser and cutting electrode.

    PubMed

    Szewczyk, Mariusz; Jesionek-Kupnicka, Dorota; Lipiński, Marek Ireneusz; Lipinski, Piotr; Różański, Waldemar

    2014-01-01

    The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode.

  11. Erbium:YAG laser contouring of the nasal dorsum: a preliminary investigation

    NASA Astrophysics Data System (ADS)

    Truong, Mai T.; Majaron, Boris; Pandoh, Nidhi S.; Wong, Brian J.

    2001-05-01

    In conventional aesthetic rhinoplasty operations, manual or powered rasps are used to reduce the osseo-cartilagenous nasal dorsum. This tactile method requires palpation of the instrument and the dorsum during surgery to estimate the degree of volume reduction, and often requires forceful manipulation of the dorsum which may illicit pain during surgery and contribute to post-operative edema and echymosis. In this preliminary study, we investigated the use of the Erbium:YAG laser ((lambda) equals294 micrometers ) to reduce bone and cartilage using ex-vivo porcine nasal dorsum and human cadaveric tissues. The short pulsed length and high absorption of this laser in biologic tissues results in minimization of thermal injury which are ideal for non- contact optical contouring of osseous and cartilagenous tissues in the face. Two Erbium:YAG lasers were used to ablate fresh porcine nasal bone and compared for their use. One Erbium:YAG laser, the Fidelis Laser, Fontana Medical Lasers, Ljubljana, Slovenija with variable pulse repetition rates (2 to 50 Hz), pulse energy (80 to 1000 mJ), and pulse duration (100, 300, 750 and 1000 microsecond(s) ) was used and compared to the Ultrafine Erbium:YAG laser, Coherent Inc., Santa Clara California, with variable pulse repetition rate (2 to 10 Hz), pulse energy (2-16 J/cm2), and spot diameter (2-6 mm). Only laser parameters approximating the conditions for thermal confinement were evaluated.

  12. Transurethral holmium-YAG laser lithotripsy for large symptomatic prostatic calculi: initial experience.

    PubMed

    Goyal, Neeraj Kumar; Goel, Apul; Sankhwar, Satyanarayan

    2013-08-01

    Symptomatic prostatic calculi are a rare clinical entity with wide range of management options, however, there is no agreement about the preferred method for treating these symptomatic calculi. In this study we describe our experience of transurethral management of symptomatic prostatic calculi using holmium-YAG laser lithotripsy. Patients with large, symptomatic prostatic stones managed by transurethral lithotripsy using holmium-YAG laser over 3-year duration were included in this retrospective study. Patients were evaluated for any underlying pathological condition and calculus load was determined by preoperative X-ray KUB film/CT scan. Urethrocystoscopy was performed using 30° cystoscope in lithotomy position under spinal anesthesia, followed by transurethral lithotripsy of prostatic calculi using a 550 μm laser fiber. Stone fragments were disintegrated using 100 W laser generators (VersaPulse PowerSuite 100 W, LUMENIS Surgical, CA). Larger stone fragments were retreived using Ellik's evacuator while smaller fragments got flushed under continuous irrigation. Five patients (median age 42 years) with large symptomatic prostatic calculi were operated using the described technique. Three patients had idiopathic stones while rest two had bulbar urethral stricture and neurogenic bladder, respectively. Median operative time was 62 min. All the patients were stone free at the end of procedure. Median duration of catheterization was 2 days. Significant improvement was observed in symptoms score and peak urinary flow and none of the patient had any complication. Transurethral management using holmium-YAG laser lithotripsy is a safe and highly effective, minimally invasive technique for managing symptomatic prostatic calculi of all sizes with no associated morbidity.

  13. Effects of the holmium laser on the human cornea: a preliminary study

    NASA Astrophysics Data System (ADS)

    Mueller, Linda J.; Tassignon, Marie J.; Trau, Rene; Pels, Liesbeth; Vrensen, Gijs F.

    1996-12-01

    Treatment of peripheral post-mortem human corneas with the Holmium laser in a ring pattern resulted in opaque spots. One pair of treated eyes was immediately processed for light and electron microscopy and three other treated eyes were preserved for 4 days in medium in order to compare direct and short-term effects of the Holmium laser. Cross as well as frontal light microscopical sections of all eyes revealed interconnecting bands between the spots. At the ultrastructural level the anterior corneal tissue within these spots was characterized by coagulation of cells and collagen and shoed either a dramatic distorting effect on the epithelium in the eyes processed immediately or a single layer of flattened multi-nucleolated epithelial cells having more than one nucleolus per nucleus in the eyes stored in medium. Furthermore, the spots showed disturbed Bowman's layer, destroyed keratocytes and collagen fibrils which were either coagulated or organized chaotically. The interconnecting bands contained alternating normal and coagulated collagen fibers. The rest of the cornea outside the spots had a normal appearance. In corneas stored in medium, both keratocytes and epithelial cells over the entire cornea exhibited accumulations of cytoplasmic fibrils and glycogen particles. These phenomena were not observed in non-preserved corneas, suggesting that the differences are due to preservation and not due to the laser treatment. It is concluded that morphological changes occur mainly in the treated peripheral cornea whereas the central untreated cornea remains unaffected,indicating that the Holmium laser is a reliable instrument to treat hypermetropic patients.

  14. Synthesis of praseodymium-ion-doped perovskite nanophosphor in supercritical water

    NASA Astrophysics Data System (ADS)

    Hakuta, Yukiya; Sue, Kiwamu; Takashima, Hiroshi

    2018-05-01

    We report the synthesis of praseodymium-doped calcium strontium titanate nanoparticles, (Ca0.6Sr0.4)0.997Pr0.002TiO3 (PCSTO), using hydrothermal synthesis under supercritical water conditions and the production of red luminescence. Starting solutions were prepared by dissolving calcium nitrate, strontium nitrate, titanium hydroxide sols, and praseodymium nitrate in distilled water. We investigated the effect of the reaction temperature, concentration, and pH of the starting solution on the luminescence properties. Synthesis was conducted at temperatures of 200 °C–400 °C, a reaction pressure of 30 MPa, and for reaction times of 4–20 s. The Pr concentration was set to 0.2 mol% relative to the (Ca0.6Sr0.4) ions. We also investigated the effect of high temperature annealing on the luminescence properties of the PCSTO nanoparticles. Particle characteristics were evaluated using x-ray diffraction, a scanning transmission electron microscope (STEM) equipped with an energy-dispersive x-ray spectrometer, and a fluorometer. Single-phase perovskite particles were obtained at hydrothermal reaction temperatures of over 300 °C even for a reaction time of several seconds. STEM images showed that the particles had cubic-like shapes with diameters of 8–13 nm and that they were chemically homogeneous. The PCSTO nanoparticles exhibited sharp red luminescence at 612 nm corresponding to the f–f transition of Pr3+ ions. Moreover, annealing at 1000 °C led to particle growth, achieving diameters of 40 nm and an increase in the quantum efficiency to around 12.0%.

  15. Holmium:YAG laser: 12-year study of indications for use and outcomes in benign and malignant otolaryngological conditions.

    PubMed

    Joseph, J; Jaberoo, M-C; Dilkes, M

    2010-08-01

    We present the largest recorded case series of holmium:YAG laser use in otolaryngology. This laser's hand-held delivery device is easier to manipulate compared with other ENT lasers, and its pulsed delivery mode gives it enhanced cutting and coagulation properties. We conducted a 12-year, retrospective study of holmium:YAG laser use in a tertiary referral centre. Sixty-eight patients were included. Nineteen received primary laser treatment of squamous cell carcinoma of the upper aerodigestive tract (nine with simultaneous neck dissection), and 49 underwent either palatine or lingual tonsillectomy for benign disease. One cancer patient developed a pharyngo-cutaneous fistula, and a second suffered a secondary haemorrhage. No other complications were recorded. There were no local recurrences. The holmium:YAG laser is safe and effective for benign and malignant otolaryngological conditions. In cancer treatment, it may be best to delay neck dissection until the primary site has healed, in order to avoid fistula formation.

  16. Kidney stone ablation times and peak saline temperatures during Holmium:YAG and Thulium fiber laser lithotripsy, in vitro, in a ureteral model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-02-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental Thulium fiber laser (TFL) was studied and compared to clinical gold standard Holmium:YAG laser. The Holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. TFL (λ = 1908 nm) was operated with 35 mJ, 500 μs, 150-500 Hz, and 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate / 40% calcium phosphate), of uniform mass and diameter (4-5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 ml/min and 13.7 ml/min for the TFL and Holmium laser, respectively. The temperature 3 mm from tube's center and 1 mm above mesh sieve was measured by a thermocouple and recorded during experiments. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. Holmium laser time measured 167 +/- 41 s (n = 12). TFL times measured 111 +/- 49 s, 39 +/- 11 s, and 23 +/- 4 s, for pulse rates of 150, 300, and 500 Hz (n = 12 each). Mean peak saline irrigation temperatures reached 24 +/- 1 °C for Holmium, and 33 +/- 3 °C, 33 +/- 7 °C, and 39 +/- 6 °C, for TFL at pulse rates of 150, 300, and 500 Hz. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and reduced stone retropulsion, and may provide a clinical alternative to the conventional Holmium laser for lithotripsy.

  17. Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application.

    PubMed

    Zielhuis, S W; Nijsen, J F W; de Roos, R; Krijger, G C; van Rijk, P P; Hennink, W E; van het Schip, A D

    2006-03-27

    Radioactive holmium-166 loaded poly(L-lactic acid) microspheres are promising systems for the treatment of liver malignancies. The microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method. After preparation, the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor. In this paper, the aspects of the production of a (relatively) large-scale GMP batch (4 g, suitable for treatment of 5-10 patients) of Ho-PLLA-MS are described. The critical steps of the Ho-PLLA-MS production process (sieving procedure, temperature control during evaporation and raw materials) were considered and the pharmaceutical quality of the microspheres was evaluated. The pharmaceutical characteristics (residual solvents, possible bacterial contaminations and endotoxins) of the produced Ho-PLLA-MS batches were in compliance with the requirements of the European Pharmacopoeia. Moreover, neutron irradiated Ho-PLLA-MS retained their morphological integrity and the holmium remained stably associated with the microspheres; it was observed that after 270h (10 times the half-life of Ho-166) only 0.3+/-0.1% of the loading was released from the microspheres in an aqueous solution. In conclusion, Ho-PLLA-MS which are produced as described in this paper, can be clinically applied, with respect to their pharmaceutical quality.

  18. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-04-01

    The purpose of the study was to review the existing literature on holmium:yttrium-aluminum-garnet laser lithotripsy regarding lithotripter settings and laser fibers. An online search of current and past peer-reviewed literature on holmium laser lithotripsy was performed on several databases, including PubMed, SciElo, and Google Scholar. Relevant studies and original articles about lithotripter settings and laser fibers were examined, and the most important information is summarized and presented here. We examine how the choice of lithotripter settings and laser fibers influences the performance of holmium laser lithotripsy. Traditional laser lithotripter settings are analyzed, including pulse energy, pulse frequency, and power levels, as well as newly developed long-pulse modes. The impact of these settings on ablation volume, fragment size, and retropulsion is also examined. Advantages of small- and large-diameter laser fibers are discussed, and controversies are highlighted. Additionally, the influence of the laser fiber is examined, specifically the fiber tip preparation and the lithotripter settings' influence on tip degradation. Many technical factors influence the performance of holmium laser lithotripsy. Knowing and understanding these controllable parameters allows the urologist to perform a laser lithotripsy procedure safely, efficiently, and with few complications.

  19. Holmium:YAG (lambda=2120nm) vs. Thulium fiber (lambda=1908nm) laser for high-power vaporization of canine prostate tissue

    NASA Astrophysics Data System (ADS)

    Casperson, Andrew L.; Barton, Robert A.; Scott, Nicholas J.; Fried, Nathaniel M.

    2008-02-01

    Direct studies comparing different lasers for treatment of BPH are lacking. This preliminary study compares continuous-wave (CW) vs. pulsed prostate tissue vaporization for the Thulium fiber laser and Holmium:YAG laser, both operating near the 1940 nm water absorption peak in tissue. A 50-W Thulium fiber laser (λ= 1908 nm) delivered CW laser radiation through a 600-μm silica fiber in non-contact mode with a 5-mm-diameter spot at the tissue surface. A Holmium:YAG laser (λ= 2120 nm) operated with an energy of 2 J, pulse rate of 25 Hz, and average power of 50 W, and delivered pulsed laser radiation through a 600-μm silica fiber with a 5-mm-diameter laser spot to achieve similar irradiances at the tissue surface. Tissue vaporization was performed in air with the prostate kept hydrated in saline. Tissue vaporization efficiency of both lasers was compared (n = 10 canine prostates for each laser group). Mean vaporization efficiency measured 5.30 +/- 0.48 kJ/g vs. 4.13 +/- 0.46 kJ/g for Thulium fiber and Holmium lasers (P < 0.05). Tissue vaporization rates measured 0.57 +/- 0.05 g/min vs. 0.73 +/- 0.07 g/min (P < 0.05). The Holmium:YAG laser vaporizes prostate tissue at a higher rate than the Thulium fiber laser, for the same average power delivered to the tissue. Both the Thulium fiber laser and Holmium:YAG lasers are capable of vaporizing prostate tissue at a rate > 1 g/min if operated at the high powers (100-W) typically used in the clinic.

  20. Electrical properties of praseodymium oxide doped Boro-Tellurite glasses

    NASA Astrophysics Data System (ADS)

    Jagadeesha Gowda G., V.; Devaraja, C.; Eraiah, B.

    2016-05-01

    Glasses of the composition xPr6O11- (35-x)TeO2-65B2O3 (x=0, 0.1 to 0.5 mol %) have been prepared using the melt quenching method. The ac and dc conductivity of glass have been measured over a wide range of frequencies and temperatures. Experimental results indicate that the ac conductivity depend on temperature, frequency and Praseodymium content. The conductivity as a function of frequency exhibited two components: dc conductivity (σdc), and ac conductivity (σac). The activation energies are estimated and found to be decreases with composition. The impedance plot at each temperature appeared as a semicircle passes through the origin.

  1. Evaluation of Contemporary Holmium Laser Fibers for Performance Characteristics.

    PubMed

    Lusch, Achim; Heidari, Emon; Okhunov, Zhamshid; Osann, Kathryn; Landman, Jaime

    2016-05-01

    Several holmium:YAG laser fibers for urologic applications are currently commercially available. We compared contemporary holmium laser fibers with different core sizes for performance characteristics, including energy transmission, fiber failure, fiber flexibility, and core diameter. Single-use fibers from Cook, Boston Scientific, and Storz were tested in small (200 and 272/273 μm), medium (365 μm), and large (550 and 940/1000 μm) core sizes. Fibers were tested in straight and deflected configurations. All fibers were evaluated for flexibility, true fiber diameter, energy transmission, and fiber failure. For energy transmission, fibers were tested at a pulse energy of 1 J and a frequency of 10 Hz for 30 seconds. All tests were performed on a 30 W holmium laser. For the small core fibers, Storz, Cook OptiLite, and Smart Sync had the smallest core diameter (p < 0.005). In the large core group, Cook OptiLite and Boston Scientific AccuMax showed the smallest diameter. Among the small core fibers, Storz and Cook Smart Sync showed a significant higher deflection, whereas in the 550 μm group, Boston Scientific AccuMax and Cook Smart Sync were the most flexible fibers. In the large and medium core groups, Boston Scientific AccuMax showed superior energy transmission (p = 0.007 and p = 0.001, respectively), whereas in the small core group, there was no significant difference between the fibers, except for 272/3 μm (Storz was inferior compared with the competitors [p < 0.0005]). For fiber failure, Storz, Cook OptiLite, and BS AccuTrac completed all testing without failing (200 μm, bending radius <0.5 cm). In the 365 μm group, Cook OptiLite showed superior results, whereas in the large core group, Boston Scientific AccuMax was superior. Performance characteristics differ significantly between different laser fiber diameters and manufacturers, and fiber choice should depend on specific surgical requirements. There is a trend for less

  2. Surface segregation effects of erbium in GaAs growth and their implications for optical devices containing ErAs nanostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Bank, Seth R.

    2011-03-01

    We report on the integration of semimetallic ErAs nanoparticles with high optical quality GaAs-based semiconductors, grown by molecular beam epitaxy. Secondary ion mass spectrometry and photoluminescence measurements provide evidence of surface segregation and incorporation of erbium into layers grown with the erbium cell hot, despite the closed erbium source shutter. We establish the existence of a critical areal density of the surface erbium layer, below which the formation of ErAs precipitates is suppressed. Based upon these findings, we demonstrate a method for overgrowing ErAs nanoparticles with III-V layers of high optical quality, using subsurface ErAs nanoparticles as a sink to deplete the surface erbium concentration. This approach provides a path toward realizing optical devices based on plasmonic effects in an epitaxially-compatible semimetal/semiconductor system.

  3. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less

  4. Widely tunable erbium-doped fiber laser based on multimode interference effect.

    PubMed

    Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P

    2010-01-18

    A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

  5. Holmium laser enucleation of the prostate combined with electrocautery resection: the mushroom technique.

    PubMed

    Hochreiter, Werner W; Thalmann, George N; Burkhard, Fiona C; Studer, Urs E

    2002-10-01

    The holmium laser allows bloodless enucleation of the prostate. A problem is how to remove a whole enucleated, free floating, large prostatic lobe from the bladder. A mechanical morcellator has been used to achieve tissue fragmentation but aspiration of and damage to the bladder wall are risks. Using the mushroom technique holmium laser enucleation and electrocautery resection can be combined without compromising the bloodless advantages of the laser procedure. We treated 156 patients with benign prostatic hyperplasia using a holmium laser with the mushroom technique. Preoperatively all patients were assessed using the International Prostate Symptom Score, maximum urine flow, ultrasound estimation of prostate volume and post-void residual urine, and pressure flow study. Laser enucleation of the prostatic lobes was performed at 66 W. Instead of releasing the lobes into the bladder they were left attached at the bladder neck by a narrow mushroom-like pedicle. At that point the vascular supply was almost completely interrupted and the lobes could easily be electroresected into small pieces without bleeding. Patients were followed 6, 12 and 24 months after the procedure. No patient had significant blood loss or signs of the transurethral resection syndrome. A total of 19 patients were treated while under oral anticoagulation without major bleeding problems. Complete followup was available on 125 patients. Median baseline International Prostate Symptom Score decreased from 20 to 3 at 6 months (p <0.05) and remained stable at 12 and 24 months. Median maximum urine flow increased from 8 to 20 ml. per second at 6, 12 and 24 months (p <0.05). Median baseline post-void residual urine decreased from 190 to 30 ml. at 6 months (p <0.05) and remained low at 20 and 30 ml. at 12 and 24 months, respectively. Urodynamic evaluation preoperatively and 6 months postoperatively was available in 83 cases. Relief of obstruction was documented with a statistically significant decrease in

  6. Electronic and optical properties of Praseodymium trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in

    2014-10-24

    We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity formore » PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.« less

  7. Structural and Luminescent property of Holmium doped Borate Glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-02-01

    Holmium doped Lithium Lead Borate glasses of different compositions were prepared by melt quenching technique. Fourier transform infrared investigations on lithium lead borate glasses have been made to study the local order and vibrations of atoms in the glass network and it contains mainly BO3 and BO4 structural units. Photoluminescence techniques were employed to investigate the luminescent property of these glasses excited at 451nm. Blue emission have been observed from the transition 495 (5F3 → 5I8).

  8. Evaluation of holmium laser versus cold knife in optical internal urethrotomy for the management of short segment urethral stricture.

    PubMed

    Jain, Sudhir Kumar; Kaza, Ram Chandra Murthy; Singh, Bipin Kumar

    2014-10-01

    SACHSE COLD KNIFE IS CONVENTIONALLY USED FOR OPTICAL INTERNAL URETHROTOMY INTENDED TO MANAGE URETHRAL STRICTURES AND HO: YAG laser is an alternative to it. The aim of this study was to evaluate the role of urethral stricture treatment outcomes, efficacy, and complications using cold knife and Ho: YAG (Holmium laser) for optical internal urethrotomy. In this prospective study included, 90 male patients age >18 years, with diagnosis of urethral stricture admitted for internal optical urethrotomy during April 2010 to March 2012. The patients were randomized into two groups containing 45 patients each using computer generated random number. In group A (Holmium group), internal urethrotomy was done with Holmium laser and in group B (Cold knife group) Sachse cold knife was used. Patients were followed up for 6 months after surgery in Out Patient Department on 15, 30 and 180 post-operative days. At each follow up visit physical examination, and uroflowmetry was performed along with noting complaints, if any. The peak flow rates (PFR) were compared between the two groups on each follow up. At 180 days (6 month interval) the difference between mean of PFR for Holmium and Cold knife group was statistically highly significant (P < 0.001). Complications were seen in 12.22% of cases. Both modalities are effective in providing immediate relief to patients with single and short segment (<2 cm long) urethral strictures but more sustained response was attained with Cold knife urethrotomy.

  9. Lattice vibrations and electronic transitions in the rare-earth metals: praseodymium under pressure.

    PubMed

    Olijnyk, Helmut; Grosshans, Walter A; Jephcoat, Andrew P

    2004-12-17

    Praseodymium was investigated by Raman spectroscopy under pressure. A negative pressure shift of the E(2g) mode is observed in the dhcp phase, which indicates that the initial structural sequence hcp-->Sm-type-->dhcp-->fcc as a whole in the regular lanthanides is associated with a softening of this mode. The pressure response of the phonon modes, observed in the monoclinic and alpha-uranium phases, where 4f bonding becomes important, is characteristic for anisotropic bonding properties.

  10. Lattice Vibrations and Electronic Transitions in the Rare-Earth Metals: Praseodymium under Pressure

    NASA Astrophysics Data System (ADS)

    Olijnyk, Helmut; Grosshans, Walter A.; Jephcoat, Andrew P.

    2004-12-01

    Praseodymium was investigated by Raman spectroscopy under pressure. A negative pressure shift of the E2g mode is observed in the dhcp phase, which indicates that the initial structural sequence hcp→Sm-type→dhcp→fcc as a whole in the regular lanthanides is associated with a softening of this mode. The pressure response of the phonon modes, observed in the monoclinic and α-uranium phases, where 4f bonding becomes important, is characteristic for anisotropic bonding properties.

  11. Combining ultrasonography and noncontrast helical computerized tomography to evaluate Holmium laser lithotripsy

    PubMed Central

    Mi, Jia; Li, Jie; Zhang, Qinglu; Wang, Xing; Liu, Hongyu; Cao, Yanlu; Liu, Xiaoyan; Sun, Xiao; Shang, Mengmeng; Liu, Qing

    2016-01-01

    Abstract The purpose of the study was to establish a mathematical model for correlating the combination of ultrasonography and noncontrast helical computerized tomography (NCHCT) with the total energy of Holmium laser lithotripsy. In this study, from March 2013 to February 2014, 180 patients with single urinary calculus were examined using ultrasonography and NCHCT before Holmium laser lithotripsy. The calculus location and size, acoustic shadowing (AS) level, twinkling artifact intensity (TAI), and CT value were all documented. The total energy of lithotripsy (TEL) and the calculus composition were also recorded postoperatively. Data were analyzed using Spearman's rank correlation coefficient, with the SPSS 17.0 software package. Multiple linear regression was also used for further statistical analysis. A significant difference in the TEL was observed between renal calculi and ureteral calculi (r = –0.565, P < 0.001), and there was a strong correlation between the calculus size and the TEL (r = 0.675, P < 0.001). The difference in the TEL between the calculi with and without AS was highly significant (r = 0.325, P < 0.001). The CT value of the calculi was significantly correlated with the TEL (r = 0.386, P < 0.001). A correlation between the TAI and TEL was also observed (r = 0.391, P < 0.001). Multiple linear regression analysis revealed that the location, size, and TAI of the calculi were related to the TEL, and the location and size were statistically significant predictors (adjusted r2 = 0.498, P < 0.001). A mathematical model correlating the combination of ultrasonography and NCHCT with TEL was established; this model may provide a foundation to guide the use of energy in Holmium laser lithotripsy. The TEL can be estimated by the location, size, and TAI of the calculus. PMID:27930563

  12. Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China.

    PubMed

    Wang, Bin; Yan, Lailai; Huo, Wenhua; Lu, Qun; Cheng, Zixi; Zhang, Jingxu; Li, Zhiwen

    2017-01-01

    Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Liquid praseodymium heat content by levitation calorimetry. [Sample size 0. 5 - 1. 5g; 1460 to 2289/sup 0/K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stretz, L.A.; Bautista, R.G.

    1976-01-01

    The high-temperature heat content of liquid praseodymium was measured experimentally by the levitation calorimetry technique. The samples, ranging in size from 0.5 to 1.5 g, were simultaneously levitated and heated by a radiofrequency generator in an argon-helium mixture prior to being dropped into a conventional copper block drop calorimeter. Corrections were made for the convection and radiation losses during the fall of the sample from the levitation chamber into the calorimeter. The praseodymium data, from 1460 to 2289K, were fitted by the following equation where the indicated errors represent the average deviation of the experimental value from the value predictedmore » by the equation: H/sub T/ - H/sub 298/./sub 15/ = (41.57 +- 0.29) (T - 1208) + (41733 +- 197) J/mol. (auth)« less

  14. Effect of Partial Substitution of Neodymium with Praseodymium on the Magnetic and Process Properties of Sintered Magnets of Type NdFeB

    NASA Astrophysics Data System (ADS)

    Dormidontov, N. A.; Dormidontov, A. G.; Lileev, A. S.; Kamynin, A. V.; Lukin, A. A.

    2017-01-01

    The effect of substitution of neodymium with praseodymium in sintered magnets of type NdFeB on their magnetic and process properties in the concentration range of [Pr] = 0 - 13 wt.% is studied. The special features of milling of the alloys, sintering processes and heat treatments in the production of magnets containing praseodymium are discussed. Hysteresis characteristics of B r ≥ 1.2 T, H cJ ≥ 1200 kA/m, H cb ≥ 880 kA/m, H k ≥ 960 kA/m, and BH max ≥ 280 kJ/m3 are obtained for magnets with composition (in wt.%) 33 Nd, 10 Pr, 1.5 (Ti + Al + Cu), 1.3 B, the remainder Fe.

  15. Effects of 1,540-nm Fractional Nonablative Erbium and 2,940-nm Fractional Ablative Erbium on p53 Epidermal Expression After 3 months: A Split-Face Interventional Study.

    PubMed

    Borges, Juliano; Araújo, Luciana; de Oliveira, Rodrigo P B; Manela-Azulay, Monica

    2018-04-16

    Expression of p53 by keratinocytes may be important in the pathogenesis of skin cancer induced by ultraviolet light. We used side-by-side nonablative and ablative erbium fractional laser resurfacing to assess the effects on expression of p53 by facial keratinocytes. Ten female patients (age range, 50-63 years) with Fitzpatrick skin Types I-IV and clinical signs of photoaging underwent erbium fractional laser resurfacing (nonablative, 1,540-nm; ablative, 2,940-nm) on opposite sides of the face. Skin biopsies were obtained before treatment and 3 months after treatment for comparison with control biopsies of face and inner arm, quantifying p53 in immunostained tissue sections. Only ablative (2,940-nm) treatments produced a statistically significant reduction in p53 scoring after 3 months. The histologic appearance of skin after ablative resurfacing more closely resembled inner arm skin (rather than facial skin) of control subjects. Epidermal repopulation with p53-negative keratinocytes through ablative erbium fractional laser resurfacing may diminish the risk of eventual malignancy in photoaged skin.

  16. Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions

    NASA Astrophysics Data System (ADS)

    Manna, S.; Aluguri, R.; Bar, R.; Das, S.; Prtljaga, N.; Pavesi, L.; Ray, S. K.

    2015-01-01

    Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 μm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er3+ ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.

  17. Near-IR imaging of erbium laser ablation with a water spray

    NASA Astrophysics Data System (ADS)

    Darling, Cynthia L.; Maffei, Marie E.; Fried, William A.; Fried, Daniel

    2008-02-01

    Near-IR (NIR) imaging can be used to view the formation of ablation craters during laser ablation since the enamel of the tooth is almost completely transparent near 1310-nm1. Laser ablation craters can be monitored under varying irradiation conditions to assess peripheral thermal and transient-stress induced damage, measure the rate and efficiency of ablation and provide insight into the ablation mechanism. There are fundamental differences in the mechanism of enamel ablation using erbium lasers versus carbon dioxide laser systems due to the nature of the primary absorber and it is necessary to have water present on the tooth surface for efficient ablation at erbium laser wavelengths. In this study, sound human tooth sections of approximately 2-3-mm thickness were irradiated by free running and Q-switched Er:YAG & Er:YSGG lasers under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with a band-pass filter centered at 1310-nm combined with an InGaAs area camera with a NIR zoom microscope. Obvious differences in the crater evolution were observed between CO2 and erbium lasers. Ablation stalled after a few laser pulses without a water spray as anticipated. Efficient ablation was re-initiated by resuming the water spray. Micro-fractures were continuously produced apparently driven along prism lines during multi-pulse ablation. These fractures or fissures appeared to merge together as the crater evolved to form the leading edge of the ablation crater. These observations support the proposed thermo-mechanical mechanisms of erbium laser involving the strong mechanical forces generated by selective absorption by water.

  18. Holmium:YAG surgical lasers.

    PubMed

    1995-03-01

    "Holmium:YAG (Ho:YAG)" is the shorthand name for a family of solid-state lasers that use the doping element holmium in a laser crystal (e.g., YAG [yttrium-aluminum-garnet]) and that emit energy at approximately 2.1 microns. This wavelength is relatively new to medicine and has been used in laser surgery for only about the last six years. Like the carbon dioxide (CO2) laser when it was first used clinically, the Ho:YAG laser is poised for rapid and wide-spread use. Ho:YAG lasers, like CO2 lasers, offer precise cutting with minimal damage to adjacent tissue; however, unlike CO2 lasers, they also offer fiberoptic delivery (which is ideal for endoscopic use) and the ability to treat tissue in a liquid-filled environment (e.g., saline, blood). The initial specialty for which the Ho:YAG laser was used was arthroscopic surgery, especially diskectomy. Today, it is effectively used in many surgical specialties, including general surgery, urology, laparoscopy, neurosurgery, lithotripsy, angioplasty, orthopedic surgery (which includes procedures such as meniscectomy, bone sculpting [may also be performed in plastic surgery], and some experimental surgery, such as cartilage shrinking to tighten loose joints), and dentistry. Because of its broad range of potential applications, it has been called the "Swiss Army Knife" of lasers. High-powered Ho:YAG lasers, which enable surgeons to work more quickly and cut more smoothly, have been made available only within the last three years (units offering > 20 W) to 18 months (units offering > 60 W). Because of this rapid increase, high-powered units are still relatively expensive, and it is not yet clear whether maximum power outputs will continue to increase or whether the cost of higher-power units will begin to come down. Although low-power and high-power Ho:YAG lasers can be used for the same procedures, their different ranges of possible clinical techniques make them better suited to different applications: low-power units are

  19. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  20. Holmium laser vs. conventional (cold knife) direct visual internal urethrotomy for short-segment bulbar urethral stricture: Outcome analysis.

    PubMed

    Jhanwar, Ankur; Kumar, Manoj; Sankhwar, Satya Narayan; Prakash, Gaurav

    2016-01-01

    Our goal was to analyze the outcome between holmium laser and cold knife direct visual internal urethrotomy (DVIU) for short-segment bulbar urethral stricture. We conducted a prospective study comprised of 112 male patients seen from June 2013 to December 2014. Inclusion criterion was short-segment bulbar urethral stricture (≤1.5cm). Exclusion criteria were prior intervention/urethroplasty, pan-anterior urethral strictures, posterior stenosis, urinary tract infection, and those who lost to followup. Patients were divided into two groups; Group A (n=58) included cold knife DVIU and group B (n=54) included holmium laser endourethrotomy patients. Patient followup included uroflowmetry at postoperative Day 3, as well as at three months and six months. Baseline demographics were comparable in both groups. A total of 107 patients met the inclusion criteria and five patients were excluded due to inadequate followup. Mean stricture length was 1.31 ± 0.252 cm (p=0.53) and 1.34 ± 0.251 cm in Groups A and B, respectively. Mean operating time in Group A was 16.3 ± 1.78 min and in Group B was 20.96 ± 2.23 min (p=0.0001). Five patients in Group A had bleeding after the procedure that was managed conservatively by applying perineal compression. Three patients in Group B had fluid extravasation postoperatively. Qmax (ml/s) was found to be statistically insignificant between the two groups at all followups. Both holmium laser and cold knife urethrotomy are safe and equally effective in treating short-segment bulbar urethral strictures in terms of outcome and complication rate. However, holmium laser requires more expertise and is a costly alternative.

  1. Bone dissemination of prostate cancer after holmium laser enucleation of the prostate: a case report and a review of the literature.

    PubMed

    Koguchi, Dai; Nishi, Morihiro; Satoh, Takefumi; Shitara, Toshiya; Matsumoto, Kazumasa; Fujita, Tetsuo; Yoshida, Kazunari; Iwamura, Masatsugu

    2014-02-01

    We report a case of dissemination of prostate cancer after holmium laser enucleation of the prostate in an 80-year-old patient. The patient presented at hospital because of nocturia. Transrectal ultrasound-guided biopsy was carried out because of high serum prostate-specific antigen (3.55 ng/mL), but it showed no malignancies. Benign prostate hyperplasia was diagnosed, and he was started on an α1-blocker. Although the urinary symptom improved with silodosin, acute urinary retention occurred 3 years after therapy began. Holmium laser enucleation of the prostate for relief of bladder outlet obstruction enabled discharge of urine. Pathological examination of the resected tissue found adenocarcinoma with a high Gleason score, 4 + 5. Serum alkaline phosphatase increased rapidly after holmium laser enucleation, and bone scintigraphy confirmed multiple bone metastases. Prostate cancer, T1bN0M1b, was diagnosed. © 2013 The Japanese Urological Association.

  2. Treatment of pulmonary diseases with Holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Mei-Jue; Zhu, Jing; Zhang, Hui-Guo; Wang, Fu-Juan; Ke, Lin; Ma, Wei; Luo, Qun-Hua; Zhang, Yue-E.

    1998-11-01

    We report 5 cases of pulmonary disease treated with Holmium:YAG laser through fibrous bronchoscope. 1 inflammatory granuloma was cured after three times of treatment. Compared with conventional methods such as electrocautery and microwave treatment, laser has the merit of good hemostasis effect and quick recovery of the operation area. The other 4 patients who were suffered late lung cancer received 3-7 times of palliative treatment. After the treatment, the tumor tissues become smaller variably, and tact were unobstructed, symptoms of tract- obstructed obviously alleviated. We think that laser treatment has some practical significance in alleviating tract blocking of pulmonary diseases of late stage, and therefore raise the life quality.

  3. Micro-fractional ablative skin resurfacing with two novel erbium laser systems.

    PubMed

    Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B

    2008-02-01

    Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.

  4. Optical study of Erbium-doped-porous silicon based planar waveguides

    NASA Astrophysics Data System (ADS)

    Najar, A.; Ajlani, H.; Charrier, J.; Lorrain, N.; Haesaert, S.; Oueslati, M.; Haji, L.

    2007-06-01

    Planar waveguides were formed from porous silicon layers obtained on P + substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er 3+ ions in the IR range and the decay curve of the 1.53 μm emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 μm after doping.

  5. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.

    1985-07-08

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies.

  6. Acoustic transient generation in pulsed holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.

    1994-08-01

    In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.

  7. Modelling of micromachining of human tooth enamel by erbium laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.

    2014-08-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.

  8. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)

    NASA Astrophysics Data System (ADS)

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h

  9. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  10. Negative parity states and some electromagnetic transition properties of even-odd erbium isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazar, Harun Resit; Uluer, Ihsan

    2007-03-15

    The negative parity states and some electromagnetic transition properties of even-odd erbium isotopes ({sup 159,161,163,165}Er) were studied within the framework of the interacting boson-fermion model. The single fermion is assumed to be in one of the lh{sub 9/2},3p{sub 3/2},2f{sub 5/2}, and 3p{sub 1/2} single-particle orbits. It was found that the calculated negative parity state energy spectra of the even-odd erbium isotopes agree quite well with the experimental data. The B(E2) values were also calculated and compared with the experimental data.

  11. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.

  12. Erbium ion implantation into diamond - measurement and modelling of the crystal structure.

    PubMed

    Cajzl, Jakub; Nekvindová, Pavla; Macková, Anna; Malinský, Petr; Sedmidubský, David; Hušák, Michal; Remeš, Zdeněk; Varga, Marián; Kromka, Alexander; Böttger, Roman; Oswald, Jiří

    2017-02-22

    Diamond is proposed as an extraordinary material usable in interdisciplinary fields, especially in optics and photonics. In this contribution we focus on the doping of diamond with erbium as an optically active centre. In the theoretical part of the study based on DFT simulations we have developed two Er-doped diamond structural models with 0 to 4 carbon vacancies in the vicinity of the Er atom and performed geometry optimizations by the calculation of cohesive energies and defect formation energies. The theoretical results showed an excellent agreement between the calculated and experimental cohesive energies for the parent diamond. The highest values of cohesive energies and the lowest values of defect formation energies were obtained for models with erbium in the substitutional carbon position with 1 or 3 vacancies in the vicinity of the erbium atom. From the geometry optimization the structural model with 1 vacancy had an octahedral symmetry whereas the model with 3 vacancies had a coordination of 10 forming a trigonal structure with a hexagonal ring. In the experimental part, erbium doped diamond crystal samples were prepared by ion implantation of Er + ions using ion implantation fluences ranging from 1 × 10 14 ions per cm 2 to 5 × 10 15 ions per cm 2 . The experimental results revealed a high degree of diamond structural damage after the ion implantation process reaching up to 69% of disordered atoms in the samples. The prepared Er-doped diamond samples annealed at the temperatures of 400, 600 and 800 °C in a vacuum revealed clear luminescence, where the 〈110〉 cut sample has approximately 6-7 times higher luminescence intensity than the 〈001〉 cut sample with the same ion implantation fluence. The reported results are the first demonstration of the Er luminescence in the single crystal diamond structure for the near-infrared spectral region.

  13. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    PubMed

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.

  14. Erbium laser resurfacing for actinic cheilitis.

    PubMed

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA).

  15. Structural properties of alkaline sodium lead fluoride borate glasses incorporated with Praseodymium ion

    NASA Astrophysics Data System (ADS)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    The effect of different alkaline and Pr ions on the density and structure of Na2O-PbO-MO-B2O3 (M represents Ba/Ca/Sr) has been investigated using X-ray diffraction (XRD), infrared spectrophotometer (FTIR). The amorphous phase has been identified based on X-ray diffraction analysis. The Praseodymium oxide plays the role as a glass-modifier and influences on BO3↔BO4 conversion. The same effect is also observed in density and molar volume variation due to non bridging oxygen's (NBO) created when BO3 units are converted.

  16. Modelling of micromachining of human tooth enamel by erbium laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength betweenmore » the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)« less

  17. Treatment of ureteric calculi--use of Holmium: YAG laser lithotripsy versus pneumatic lithoclast.

    PubMed

    Tipu, Salman Ahmed; Malik, Hammad Afzal; Mohhayuddin, Nazim; Sultan, Gauhar; Hussain, Manzoor; Hashmi, Altaf; Naqvi, Syed Ali Anwar; Rizvi, Syed Adibul Hasan

    2007-09-01

    To compare the efficacy of Holmium: YAG laser and pneumatic lithoclast in treating ureteric calculi. The study included total of 100 patients divided into two equal groups of laser lithotripsy (LL) and pneumatic lithoclast (PL). Study was conducted between September 2006 and February 2007. Inclusion criteria were patients with a ureteric stone of size 1-2 cm and negative urine culture. An x-ray KUB was mandatory. IVU and CT pyelogram were also done when required. Procedures were done under general anaesthesia after a single dose of pre-operative antibiotic. A 7.5 Fr semi rigid ureteroscope was used for ureteroscopy in all cases. Holmium: YAG laser with 365 microm wide probe was employed in laser group and frequency was set between 5 and 10 Hz at a power of 10 to 15 W. Swiss lithoclast with single or multiple fire technique was used accordingly in PL group. Postoperatively patients underwent radiography and helical CT as required at 4th week of follow up to asses stone clearance. The mean patient age in LL and PL group was 38 +/- 10 and 40 +/- 10 years respectively. The male to female ratio and stone size were similar between the groups. Stone migration up in pelvicalyceal system occurred in two patients of LL group while in eight patients of PL group. JJ Stent was placed in 5(10%) patients in laser group where as 13 (26%) patients required it in pneumatic lithoclast group. Stone free rate at 4 weeks was 92% in laser group as compared to 82% in pneumatic lithoclast group. Hospital stay was more than 24 hours in 2 patients of laser group as compared to 5 patients of pneumatic lithoclast group. Complication rate was 4% in LL group whereas it was 14% in PL group. Holmium: YAG laser lithotripsy is a superior technology compared to pneumatic lithoclast in terms of rate of stone clearance and complications, especially in upper ureteric stones.

  18. Effect of praseodymium on the electrical resistance of YВа2Сu3О7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2014-07-01

    The electrical resistivity in the ab-plane of the Y1-yPryВа2Сu3О7-δ single crystals with high degree of perfection in the interval of Тc - 300 K was investigated. The increasing of praseodymium content leads to the reduction of the critical temperature (Tc) from 92 to 30 K. The experimental results can be approximated by the expression, taking into account the scattering of electrons by phonons, defects, the fluctuation conductivity in the 3D Aslamazov-Larkin model, as well as the transition to a "semiconductor" type behavior of the resistivity at the high praseodymium concentrations. The concentration dependences of all fitting parameters indicate a structural transition in the region 0.35≤у≤0.43. In particular, the Debye temperature changes in this range from 350 to 550 K, and the transverse coherence length passes through a maximum ξС(0)≈5 Å. The concentration dependence of the critical temperature testifies the d-pairing of the BCS model.

  19. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  20. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  1. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  2. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.

    PubMed

    Kaufmann, R; Hartmann, A; Hibst, R

    1994-02-01

    Pulsed mid-infrared lasers allow a precise removal of soft tissues with only minimal thermal damage. To study the potential dermatosurgical usefulness of currently available systems at different wavelengths (2010-nm Thulium:YAG laser, 2100-nm Holmium:YAG laser, 2790-nm Erbium:YSGG laser, and 2940-nm Erbium:YAG laser) in vivo on pig skin. Immediate effects and wound healing of superficial laser-abrasions and incisions were compared with those of identical control lesions produced by dermabrasion, scalpel incisions, or laser surgery performed by a 1060-nm Nd:YAG and a 1060-nm CO2 laser (continuous and superpulsed mode). Best efficiency and least thermal injury was found for the pulsed Erbium:YAG laser, leading to ablative and incisional lesions comparable to those obtained by dermabrasion or superficial scalpel incisions, respectively. In contrast to other mid-infrared lasers tested, the 2940-nm Erbium:YAG laser thus provides a potential instrument for future applications in skin surgery, especially when aiming at a careful ablative removal of delicate superficial lesions with maximum sparing of adjacent tissue structures. However, in the purely incisional application mode pulsed mid-infrared lasers, though of potential usefulness in microsurgical indications (eg, surgery of the cornea), do not offer a suggestive alternative to simple scalpel surgery of the skin.

  3. Preparation of erbium ion-doped TiO2 films and the study of their photocatalytic activity under simulated solar light

    NASA Astrophysics Data System (ADS)

    Lin, Hongfei; Huang, Yujiao; Li, Shaoni; Luan, Chunhui; Huang, Wei; Wang, Xiaodong; Feng, Xianshe

    2017-11-01

    A series of erbium ion-doped TiO2 (Er3+-TiO2) films were prepared by a sol-gel dip/spin coating method, and the effect of the dosage of erbium ion (0-2.0 mol%), the films coating layers (1-5 layers), and calcination temperature (400-700 °C) on the film structure and photocatalytic activity were investigated in detail. The films were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis (TG-DTG) and UV-Vis diffusive reflectance spectra (DRS). The results showed that the films were composed of anatase, and no other TiO2 phases (rutile and brookite). With the increase of the erbium ion dosage, the crystal size decreased. Erbium ion doping could enhance the thermal stability of TiO2 and inhibit the increase of the crystallite size. Meanwhile doping of erbium ions gave rise to three typical absorption peaks within the range of visible light (400-700 nm), locating at 490, 523, and 654 nm, attributed to the transition of 4f electrons. The higher calcination temperature led to higher crystallinity and bigger crystal grains. The photocatalytic performance of the films was evaluated by degradation of methyl orange solution under simulated solar light. The highest quality film we prepared was with 4 layers, 1.0 mol% dosage of erbium ion, and the calcination temperature of 500 °C. With this film, the degradation percentage of 7.8 mg/L methyl orange solution was up to 53.3% under simulated solar light after 6 h photoreaction.

  4. Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser

    DTIC Science & Technology

    2015-09-01

    composite fiber laser of holmium-core and thulium-doped cladding . The composite fiber was optically pumped by an 803-nm fiber coupled diode source and was...4 odd and 5 even modes were exclusive to the core and first cladding . As the Tm laser modes are excluded from lasing in the second (undoped...of the Tm-doped clad /Ho-doped core fiber laser . In particular, calculations of the model overlap of the cladding modes with the core have been

  5. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    NASA Astrophysics Data System (ADS)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  6. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers.

    PubMed

    Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi

    2018-03-13

    Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  8. 2.05 µm holmium-doped all-fiber laser diode-pumped at 1.125 µm

    NASA Astrophysics Data System (ADS)

    Kir'yanov, A. V.; Barmenkov, Y. O.; Villegas Garcia, I.

    2017-08-01

    We report a holmium-doped all-fiber laser oscillating at ~2.05 µm in continuous wave at direct in-core pumping by a 1.125 µm laser diode. Two types of home-made holmium-doped alumino-germano-silicate fiber (HDF), differentiated in the Ho3+ doping level, were fabricated to implement the laser, for revealing the effect of Ho3+ concentration upon the laser output. Firstly, the fibers were characterized thoroughly from the material and optical viewpoints. Then, laser action with both HDFs was assessed using the simplest Fabry-Perot cavity, assembled by a couple of spectrally adjusted fiber Bragg gratings, also made-in-house. In the best case, when using the lower-doped HDF of proper length (1.4 m), low threshold (~370 mW) and moderate slope efficiency (~13%) of ~2.05 µm lasing were obtained at 1.125 µm diode pumping. Long-term stability, high brightness, low noise, and purely CW operation are shown to be the laser’s attractive features. Yet, when utilizing the heavier-doped HDF, laser output is revealed to be overall worse, with a possible reason being the deteriorating Ho3+ concentration-related effects.

  9. A systematic review of comparative studies of CO2 and erbium:YAG lasers in resurfacing facial rhytides (wrinkles).

    PubMed

    Chen, Kee-Hsin; Tam, Ka-Wai; Chen, I-Fan; Huang, Shihping Kevin; Tzeng, Pei-Chuan; Wang, Hsian-Jenn; Chen, Chiehfeng Cliff

    2017-08-01

    Laser resurfacing is used to minimize wrinkles, solar scars and sequelae of acne. Purpose of the systematic review was to compare resurfacing outcomes of CO 2 laser and erbium: yttrium aluminium garnet (erb:YAG) laser therapies. Medline, Cochrane Library, EMBASE and Google Scholar databases were searched until 9 April 2015 using the following terms: laser, carbon dioxide/CO 2 , facial wrinkles, rhytides and erbium-doped yttrium aluminium garnet/erbium:YAG/Er:YAG. Two-armed controlled split faced studies that compared CO 2 laser and erbium:YAG laser in patients with mild-to-moderate facial wrinkles or rhytides were included. The pooled data in this study and findings of other studies support the greater efficacy with the CO 2 laser in improving facial wrinkles, but the erb:YAG laser was associated with a better complication profile compared with the CO 2 laser. Except one case of hypopigmentation, other complications (i.e., erythema, hyperpigmentation and crusting) and their rates were reported by studies examining both lasers. In general, the CO 2 laser appeared to be more efficacious then the erb:YAG laser in treating facial wrinkles. Both lasers treatments were well tolerated.

  10. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  11. [Experimental liver and kidney surgery with CO2, CO, holmium, and neodym lasers. Cutting effect, hemostasis, histopathology, and healing (author's transl)].

    PubMed

    Karbe, E; Königsmann, G; Beck, R

    1980-01-01

    Various laser devices (CO2, CO, Nd: YAG, and holmium: YAG lasers) have been used on pig livers and on dog kidneys for comparison with conventional surgical instruments (electroscalpel, cryoscalpel, and scalpel). CO2 and CO lasers caused the least tissue damage, followed by the holmium laser; severe damage was caused by the Nd: YAG laser. The order was reverse for coagulative effect. The conventional reference instruments showed a weaker hemostatic effect. Surfaces cut by laser healed in four to eight weeks without complications. Remnants of charred tissue in various quantities could still be detected after eight weeks in all cases where CO2, CO, and Nd: YAG lasers had been used. This obviously did not affect scar formation.

  12. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  13. Long-Term Outcomes of Laser Prostatectomy for Storage Symptoms: Comparison of Serial 5-Year Followup Data between High Performance System Photoselective Vaporization and Holmium Laser Enucleation of the Prostate.

    PubMed

    Cho, Min Chul; Song, Won Hoon; Park, Juhyun; Cho, Sung Yong; Jeong, Hyeon; Oh, Seung-June; Paick, Jae-Seung; Son, Hwancheol

    2018-06-01

    We compared long-term storage symptom outcomes between photoselective laser vaporization of the prostate with a 120 W high performance system and holmium laser enucleation of the prostate. We also determined factors influencing postoperative improvement of storage symptoms in the long term. Included in our study were 266 men, including 165 treated with prostate photoselective laser vaporization using a 120 W high performance system and 101 treated with holmium laser enucleation of the prostate, on whom 60-month followup data were available. Outcomes were assessed serially 6, 12, 24, 36, 48 and 60 months postoperatively using the International Prostate Symptom Score, uroflowmetry and the serum prostate specific antigen level. Postoperative improvement in storage symptoms was defined as a 50% or greater reduction in the subtotal storage symptom score at each followup visit after surgery compared to baseline. Improvements in frequency, urgency, nocturia, subtotal storage symptom scores and the quality of life index were maintained up to 60 months after photoselective laser vaporization or holmium laser enucleation of the prostate. There was no difference in the degree of improvement in storage symptoms or the percent of patients with postoperative improvement in storage symptoms between the 2 groups throughout the long-term followup. However, the holmium laser group showed greater improvement in voiding symptoms and quality of life than the laser vaporization group. On logistic regression analysis a higher baseline subtotal storage symptom score and a higher BOOI (Bladder Outlet Obstruction Index) were the factors influencing the improvement in storage symptoms 5 years after prostate photoselective laser vaporization or holmium laser enucleation. Our serial followup data suggest that storage symptom improvement was maintained throughout the long-term postoperative period for prostate photoselective laser vaporization with a 120 W high performance system and holmium

  14. Phase transformations and equation of state of praseodymium metal to 103 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnut, Gary N.; Vohra, Yogesh K.

    2000-08-01

    Pressure-induced structural phase transformations in a trivalent rare-earth metal praseodymium (Pr) were studied at room temperature in a diamond anvil cell to 103 GPa by energy dispersive x-ray diffraction using a synchrotron source. Our x-ray diffraction studies document the following crystal structure sequence: dhcp{yields}fcc{yields}distorted fcc(hR24 type){yields}monoclinic(C2/m){yields}{alpha}-uranium with increasing pressure. We measure a 16.7% volume collapse at the transition to the {alpha}-uranium phase at 20 GPa. The high-pressure {alpha}-uranium phase in Pr was found to be stable to the highest pressure of 103 GPa, which corresponds to a volume compression V/V{sub 0}=0.407. (c) 2000 The American Physical Society.

  15. Gain and energy storage in holmium YLF

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Deyst, John P.

    1991-01-01

    It is demonstrated that Q-switched holmium lasers are capable of high-gain and high-energy operation at 300 K. Small-signal gain coefficients of 0.50 and 0.12/cm have been measured in YLF and YAG, respectively. Small-signal gains of 0.50/cm are comparable to those achievable in Nd:YAG and are not typical of low-gain materials. This large gain in the Ho:YLF material is made possible by operating the amplifier in the ground state depletion mode. The amplifier performance data and associated analysis presented demonstrate that efficient energy storage is possible with very high excited state ion densities of the Ho 5I7 upper laser level. This is an important result since upconversion can limit the 5I7 population. Although upconversion was still present in this experiment, it was possible to achieve efficient energy storage, demonstrating that the problem is manageable even at high excitation densities in YLF.

  16. Combination of Electronic Choledochoscopy and Holmium Laser Lithotripsy for Complicated Biliary Calculus Treatment: A New Exploration.

    PubMed

    Ni, Zhong-Kai; Jin, Hai-Min; Li, Xiao-Wen; Li, Ye; Huang, Hai

    2018-06-01

    The safety and efficacy of the combination of electronic choledochoscopy and holmium laser lithotripsy for complicated bile duct stones were assessed. In total, 20 patients participated in this study, which was conducted between 2012 and 2017. None of the patients were candidates for endoscopic retrograde cholangiopancreatography with stone extraction. Outcome measures included complete stone clearance and complications postprocedure. Mean stone size was 17±5.2 mm (8 to 30 mm) and mean number of stones was 1.7±1.3 (1 to 5). The mean number of laser sessions was 1.3±0.7 (1 to 4). A mean of 1.0 to 1.5 J/20 to 25 Hz was applied during laser lithotripsy sessions with a mean operative time of 67.8±24.8 minutes. The clearance rate of stone was 18/20 (90%). No mortality existed in this study; however, 1 patient developed acute pancreatitis. The combination of holmium laser lithotripsy and electronic choledochoscopy for complicated biliary calculi is safe, reliable, and minimally invasive and has low residual stone rate.

  17. 1.54 micron Emission from Erbium implanted GaN for Photonic Applications

    NASA Technical Reports Server (NTRS)

    Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.

    1998-01-01

    The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.

  18. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamida, B A; Cheng, X S; Harun, S W

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achievedmore » with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.« less

  19. Infrared spectroscopy and upconversion luminescence behaviour of erbium doped yttrium (III) oxide phosphor

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Tiwari, Ratnesh; Tamrakar, Raunak Kumar; Rathore, Gajendra Singh; Sharma, Chitrakant; Tiwari, Neha

    2014-11-01

    The paper reports upconversion luminescence behaviour and infra-red spectroscopic pattern of erbium doped yttrium (III) oxide phosphor. Sample was synthesized by solid state reaction method with variable concentration or erbium (0.5-2.5 mol%). The conventional solid state method is suitable for large scale production and eco-friendly method. The prepared sample was characterized by X-ray diffraction (XRD) technique. From structural analysis by XRD technique shows cubic structure of prepared sample with variable concentration of erbium and no impurity phase were found when increase the concentration of Er3+. Particle size was calculated by Scherer's formula and it varies from 67 nm to 120 nm. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM) technique. The surface morphology of the sample shows good connectivity with grains as well as some agglomerates formation occurs in sample. The functional group analysis was done by Fourier transform infra-red technique (FTIR) analysis which confirm the formation of Y2O3:Er3+ phosphor was prepared. The results indicated that the Y2O3:Er3+ phosphors might have high upconversion efficiency because of their low vibrational energy. Under 980 nm laser excitation sample shows intense green emission at 555 nm and orange emission at 590 nm wavelength. For green emission transition occurs 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 for upconversion emissions. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The near infrared luminescence spectra was recorded. The upconversion luminescence intensity increase with increasing the concentration or erbium up to 2 mol% after that luminescence intensity decreases due to concentration quenching occurs. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage (CIE) technique. From CIE technique the dominant peak of from PL spectra shows

  20. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    NASA Astrophysics Data System (ADS)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  1. Coder’s Manual: A Guide to TEPIAC Documentation.

    DTIC Science & Technology

    1977-07-01

    Po Polonium Am Americium Hg Mercury Pr Praseodymium *Ar Argon (Hydrargyrum) Pt Platinum (also A) Ho Holmium Pu Plutonium *As Arsenic *1 Iodine Ra...Er 20 3 208 D ChD2 110 F F 2 Fe (FeF 21 209 E C 6H1 5ErO1 2S 3[Er(C 2 HSO 4)3] III G GaO4P [GaPO4] 210 F CH3 F 112 H 1iNO 212 G C8 H20Ge [Ge(C 2 H 5...Fluidity, 69 Heat conductance (contact), 62 Fluidized bed, 27 Heat conduction, 57 Fluorescence, 125 Heat conductivity, 57 Food products, 31 Heat content

  2. Silicon nanocluster-sensitized emission from erbium: The role of stress in the formation of silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Temple, M. P.; Kallis, A.; Wojdak, M.; Oton, C. J.; Barbier, D.; Saleh, H.; Kenyon, A. J.; Loh, W. H.

    2008-12-01

    Erbium-doped silicon-rich silicon oxide films deposited by plasma enhanced chemical vapor deposition suffer from compressive stress as deposited, which converts to a large tensile stress on annealing due to the release of hydrogen. Although the cracking that results from this stress can be avoided by patterning the films into ridges, significant stress remains along the ridge axis. Measurements of erbium photoluminescence sensitized by silicon nanoclusters in stressed and relaxed films suggest an important role for internal film stresses in promoting the phase separation of excess silicon into nanoclusters, which has previously been thought of as a thermally driven process.

  3. High-sensitivity sucrose erbium-doped fiber ring laser sensor

    NASA Astrophysics Data System (ADS)

    Khaleel, Wurood Abdulkhaleq; Al-Janabi, Abdul Hadi M.

    2017-02-01

    We investigate a high-sensitivity sucrose sensor based on a standard erbium-doped fiber ring laser incorporating a coreless fiber (CF). A single-mode-coreless-single mode (SCS) structure with a very low insertion loss has been constructed. The SCS fiber structure performed dual function as an intracavity fiber filter and/or a sensing element. The gain medium (erbium-doped fiber) is pumped by a 975-nm wavelength fiber coupled diode laser. Laser emission around 1537 nm with -2 dBm peak output power is obtained when a CF in SCS structure has a diameter of 125 μm. The 3-dB line-width of the laser is <0.14 nm, which is beneficial to high precision sensing. The sucrose concentration varied from 0% to 60%, and the relationship between the lasing wavelength and the sucrose concentration exhibited linear behavior (R2=0.996), with sensitivity of 0.16 nm/% was obtained. To improve the measurement sensitivity, the CF is etched by hydrofluoric acid. The splice joint of etched CF with SMF is a taper, which improves its sensitivity to sucrose changes. An average sensitivity of 0.57 nm/% and a high signal-to-noise ratio of 50 dB make the proposed sensor suitable for potential applications.

  4. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    PubMed

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  5. A review of technology and safety aspects of erbium lasers in dentistry.

    PubMed

    Clarkson, D M

    2001-01-01

    This article reviews aspects of the probable mechanisms used by erbium dental lasers for cutting dentine and enamel, describes key issues of the risk of temperature elevation and speed of cutting relative to conventional techniques and looks at issues concerned with the safety of lasers.

  6. Water quality and quantity of selected springs and seeps along the Colorado River corridor, Utah and Arizona: Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park, 1997-98

    USGS Publications Warehouse

    Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten

  7. Selected trace elements in the Sacramento River, California: occurrence and distribution.

    PubMed

    Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P

    2012-05-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  8. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  9. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  10. High power operation of cladding pumped holmium-doped silica fibre lasers.

    PubMed

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  11. Melasma treatment using an erbium:YAG laser: a clinical, immunohistochemical, and ultrastructural study.

    PubMed

    Attwa, Enayat; Khater, Mohamed; Assaf, Magda; Haleem, Manal Abdel

    2015-02-01

    Melasma is a common pigmentary disorder that remains resistant to available therapies. The aim of the present study was to evaluate the efficacy of erbium:YAG lasers in the treatment of refractory melasma and investigate the histopathological and ultrastructural changes between melasma skin and adjacent control skin before and after surgery. Fifteen Egyptian female patients with melasma unresponsive to previous therapy of bleaching creams and chemical peels were included in this study. Full-face skin resurfacing using an erbium:YAG laser was performed. Clinical parameters included physician and patient assessment, and melasma area and severity index score were done. Adverse effects after laser resurfacing were recorded. Biopsies of lesions and adjacent healthy skin were stained using hematoxylin-eosin, immunohistochemically marked for Melan-A, and evaluated by electron microscopy. The amount of melanin, staining intensity, and number of epidermal melanocytes are increased in melasma lesions as compared to normal skin. Electron microscopic analysis revealed an increased number of mature melanosomes in keratinocytes and melanocytes, with more marked cytoplasmic organelles in melasma skin than in biopsy specimens from normal skin, suggesting increased cell activity. After surgery, the number of melanocytes and concentration of melanin decreased in melasma skin, and the mean melasma area and severity index score decreased dramatically. Erbium:YAG laser resurfacing effectively improves melasma; however, the almost universal appearance of transient postinflammatory hyperpigmentation necessitates prompt and persistent intervention. © 2014 The International Society of Dermatology.

  12. Recent progress of erbium-doped fiber amplifiers and their components

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Miura, Jutaro

    2007-09-01

    The Erbium-doped fiber amplifiers (EDFA) are widely available in a today's commercial market, and are deployed in various optical transmission applications from terrestrial system to undersea system. Broad gain spectrum over 9 THz enabled huge growth of bandwidth usage in 1550nm region aimed at broadband Internet, and its broad gain characteristics triggered bandwidth competition on dense wavelength division multiplex (DWDM) network these ten years. At first, we briefly review the evolutional history of EDFA with previous achievements. And we will explain the primary and important key devices which compose EDFA. We will discuss design parameters, and recent trend and achievements of the devices, which cover Erbium-doped fibers (EDF), 980-nm laser diodes (LD), and gain flattening filters (GFFs). The chip structure of 980-nm LD is explained to achieve high power and to realize high reliability. These key devices enabled EDFA to prevail in commercial area. After the discussion of key components, we will introduce recent achievements of gain controlled EDFAs which are applied in conjunction with Re-configurable Optical Add/Drop Multiplexer (ROADM). We will report the transient gain dynamics of the cascaded EDFAs with a recirculating loop experiment.

  13. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  14. Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion

    NASA Astrophysics Data System (ADS)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.

  15. Robotic Assisted Simple Prostatectomy versus Holmium Laser Enucleation of the Prostate for Lower Urinary Tract Symptoms in Patients with Large Volume Prostate: A Comparative Analysis from a High Volume Center.

    PubMed

    Umari, Paolo; Fossati, Nicola; Gandaglia, Giorgio; Pokorny, Morgan; De Groote, Ruben; Geurts, Nicolas; Goossens, Marijn; Schatterman, Peter; De Naeyer, Geert; Mottrie, Alexandre

    2017-04-01

    We report a comparative analysis of robotic assisted simple prostatectomy vs holmium laser enucleation of the prostate in patients who had benign prostatic hyperplasia with a large volume prostate (greater than 100 ml). A total of 81 patients underwent robotic assisted simple prostatectomy and 45 underwent holmium laser enucleation of the prostate in a 7-year period. Patients were preoperatively assessed with transrectal ultrasound and uroflowmetry. Functional parameters were assessed postoperatively during followup. Perioperative outcomes included operative time, postoperative hemoglobin, catheterization time and hospitalization. Complications were reported according to the Clavien-Dindo classification. Compared to the holmium laser enucleation group, patients treated with prostatectomy were significantly younger (median age 69 vs 74 years, p = 0.032) and less healthy (Charlson comorbidity index 2 or greater in 62% vs 29%, p = 0.0003), and had a lower rate of suprapubic catheterization (23% vs 42%, p = 0.028) and a higher preoperative I-PSS (International Prostate Symptom Score) (25 vs 21, p = 0.049). Both groups showed an improvement in the maximum flow rate (15 vs 11 ml per second, p = 0.7), and a significant reduction in post-void residual urine (-73 vs -100 ml, p = 0.4) and I-PSS (-20 vs -18, p = 0.8). Median operative time (105 vs 105 minutes, p = 0.9) and postoperative hemoglobin (13.2 vs 13.8 gm/dl, p = 0.08) were similar for robotic assisted prostatectomy and holmium laser enucleation, respectively. Median catheterization time (3 vs 2 days, p = 0.005) and median hospitalization (4 vs 2 days, p = 0.0001) were slightly shorter in the holmium laser group. Complication rates were similar with no Clavien grade greater than 3 in either group. Our results from a single center suggest comparable outcomes for robotic assisted simple prostatectomy and holmium laser enucleation of the prostate in patients with a large volume prostate. These findings require

  16. Complications associated with cervical endoscopic discectomy with the holmium laser.

    PubMed

    Haufe, Scott M W; Mork, Anthony R

    2004-02-01

    Our aim was to determine the rate of surgical complications associated with cervical endoscopic discectomy (CED). There are no studies that state the degree of complications after CED. Forty-one patients underwent CED with holmium laser. Two out of 41 patients incurred vascular compromise during the procedure. One patient developed recurrent laryngeal nerve damage. One patient developed discitis, and two patients complained of a "clicking" sensation postoperatively. Although CED has a relatively high success rate, there is a 15% rate of complications associated with the procedure. Most of the complications were minor (such as vascular compromise, recurrent laryngeal nerve injury, and postoperative "clicking" sensations), but there was one case of severe discitis, and there is the potential of serious complication from both vascular compromise and neural injury.

  17. Synthesis and structural studies of praseodymium doped silver borate glasses

    NASA Astrophysics Data System (ADS)

    Jagadeesha Gowda, G. V.; Eraiah, B.

    2013-02-01

    Praseodymium doped silver borate glasses with nominal composition xPr6O11-(25-x)Ag2O-75B2O3 (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (Tg) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The Tg of these glasses increases with increase in concentration of Pr6O11 except at 0.2 mol%, Tg value is lower. 11B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm-1. This studies revealed that the progressive addition Ag2O and Pr6O11 leads to modification of B2O3 into BO4 groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.

  18. Low coordinated mononuclear erbium(iii) single-molecule magnets with C3v symmetry: a method for altering single-molecule magnet properties by incorporating hard and soft donors.

    PubMed

    Zhang, Haitao; Nakanishi, Ryo; Katoh, Keiichi; Breedlove, Brian K; Kitagawa, Yasutaka; Yamashita, Masahiro

    2018-01-02

    Structures and magnetic characteristics of two three-coordinate erbium(iii) compounds with C 3v geometry, tris(2,6-di-tert-butyl-p-cresolate)erbium, Er(dbpc) 3 (1) and tris(bis(trimethylsilyl)methyl)erbium, Er(btmsm) 3 (2), were determined. Both underwent temperature-dependent slow magnetic relaxation processes in the absence of an external magnetic field. As a result of the differences in the coordination environment, they exhibit different energy barriers and quantum tunneling of magnetization (QTM) constants.

  19. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs

    PubMed Central

    Nijsen, J. F. W.; de Wit, T. C.; Seppenwoolde, J. H.; Krijger, G. C.; Seevinck, P. R.; Huisman, A.; Zonnenberg, B. A.; van den Ingh, T. S. G. A. M.; van het Schip, A. D.

    2008-01-01

    Purpose The aim of this study is to evaluate the toxicity of holmium-166 poly(l-lactic acid) microspheres administered into the hepatic artery in pigs. Methods Healthy pigs (20–30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres (165HoMS; n = 5) or with holmium-166-loaded microspheres (166HoMS; n = 13). The microspheres’ biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and (166HoMS group only) hematologically over a period of 1 month (165HoMS group) or over 1 or 2 months (166HoMS group). Finally, a pathological examination was undertaken. Results After microsphere administration, some animals exhibited a slightly diminished level of consciousness and a dip in appetite, both of which were transient. Four lethal adverse events occurred in the 166HoMS group due either to incorrect administration or comorbidity: inadvertent delivery of microspheres into the gastric wall (n = 2), preexisting gastric ulceration (n = 1), and endocarditis (n = 1). AST levels were transitorily elevated post-166HoMS administration. In the other blood parameters, no abnormalities were observed. Nuclear scans were acquired from all animals from the 166HoMS group, and MRI scans were performed if available. In pigs from the 166HoMS group, atrophy of one or more liver lobes was frequently observed. The actual radioactivity distribution was assessed through ex vivo 166mHo measurements. Conclusion It can be concluded that the toxicity profile of HoMS is low. In pigs, hepatic arterial embolization with 166HoMS in amounts corresponding with liver-absorbed doses of over 100 Gy, if correctly administered, is not associated with clinically relevant side effects. This result offers a good perspective for upcoming patient trials. PMID:18330569

  20. Prospective analysis of a complete retrograde ureteroscopic technique with holmium laser stent cutting for management of encrusted ureteral stents.

    PubMed

    Thomas, Alexandre; Cloutier, Jonathan; Villa, Luca; Letendre, Julien; Ploumidis, Achilles; Traxer, Olivier

    2017-03-14

    To propose and evaluate a new endoscopic technique using only a retrograde ureteroscopic approach for the removal of heavily encrusted ureteral stents. Data from 51 consecutive patients with encrusted and retained ureteral stents were prospectively collected. Description of the successive steps of surgery is detailed. The Holmium-YAG laser properties offer the opportunity for fragmentation of stent-attached encrustation and the ability to cut the stent itself. Reducing the length of the stent is critical to creating space in the ureter and to allow free access for ureteroscopes or ureteral access sheath placement. The primary outcome of this study was the feasibility and the safety of this retrograde intra-renal approach. Some factors of encrustation and outcomes are also discussed in comparison with lithotripsy, percutaneous, laparoscopic, open surgery or a combination of these techniques. The removal of the encrusted stent was possible with only this retrograde technique in 98% of patients. The transection of the encrusted stent with the Holmium-YAG laser was useful in 71% of the patients. Mean operative time was 110 minutes and mean hospital stay was 2.33 days. Postoperative complications were mainly non-obstructive pyelonephritis (10%). The most significant predictor of this life threatened complication was the presence of struvite stones with the encrusted stent (p=0,018). Contrariwise, operative time, BMI, gender and encrustation rate were not associated with postoperative pyelonephritis. Cystine stone disease or pregnancy both led to faster stent encrustation. Retrograde ureteroscopic surgery is efficient and safe for removing retained stents and associated stone burdens. The Holmium-YAG laser is essential to perform the encrustation removal and sectioning of the stent.

  1. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    NASA Astrophysics Data System (ADS)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  2. Amphoteric doping of praseodymium Pr 3+ in SrTiO 3 grain boundaries

    DOE PAGES

    Yang, H.; Lee, H. S.; Kotula, P. G.; ...

    2015-03-26

    Charge Compensation in rare-earth Praseodymium (Pr 3+) doped SrTiO 3 plays an important role in determining the overall photoluminescence properties of the system. Here, the Pr 3+ doping behavior in SrTiO 3 grain boundaries (GBs) is analyzed using aberration corrected scanning transmission electron microscopy (STEM). The presence of Pr 3+ induces structure variations and changes the statistical prevalence of GB structures. In contrast to the assumption that Pr 3+ substitutes for A site as expected in the bulk, Pr 3+ is found to substitute both Sr and Ti sites inside GBs with the highest concentration in the Ti sites. Asmore » a result, this amphoteric doping behavior in the boundary plane is further confirmed by first principles theoretical calculations.« less

  3. Amphoteric Doping of Praseodymium Pr3+ in SrTiO3 Grain Boundaries

    DOE PAGES

    Yang, Hao; Lee, H. S.; Kotula, Paul G.; ...

    2015-03-23

    Charge Compensation in rare-earth Praseodymium (Pr 3+) doped SrTiO 3 plays an important role in determining the overall photoluminescence properties of the system. Here, the Pr 3+ doping behavior in SrTiO 3 grain boundaries (GBs) is analyzed using aberration corrected scanning transmission electron microscopy (STEM). The presence of Pr 3+ induces structure variations and changes the statistical prevalence of GB structures. In contrast to the assumption that Pr 3+ substitutes for A site as expected in the bulk, Pr 3+ is found to substitute both Sr and Ti sites inside GBs with the highest concentration in the Ti sites. Asmore » a result, this amphoteric doping behavior in the boundary plane is further confirmed by first principles theoretical calculations.« less

  4. X-Ray Diffraction Study of Elemental Erbium to 65 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica, M.G.; Lipinska-Kalita, K.; Quine, Z.

    2006-02-02

    We have investigated phase transitions in elemental erbium in a diamond anvil cell up to 65 GPa using x-ray powder diffraction methods. We present preliminary evidence of a series of phase transitions that appear to follow the expected hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc sequence. In particular, we believe that we have evidence for the predicted dhcp {yields} distorted fcc transition between 43 GPa and 65 GPa.

  5. [Erbium 169 synoviortheses and infiltrations of triamcinolone hexacetonide in metatarsophalangeal arthritis of chronic inflammatory rheumatism].

    PubMed

    Bouvier, M; Bouysset, M; Bonvoisin, B; Diaine, A; Lejeune, E

    1983-04-01

    The authors report their experience in the treatment of metatarsophalangeal arthritis of chronic inflammatory rheumatism by Erbium 169 synoviortheses (112 joints treated) and by infiltrations of triamcinolone hexacetonide (53 joints treated). The steroid appears to have a marked early superiority as it gives 85% good results compared to 61.6% for Erbium 169 after a period of one to three months. However, its results then deteriorate more rapidly and after 6 months, the proportion of good results is greater with the radioactive treatment (64% compared to 46.7%). The authors consider it reasonable to use triamcinolone hexacetonide as the first line treatment as it is easier to manage and less expensive, reserving the radioactive synoviortheses for later with the prospect of more lasting results.

  6. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing.

    PubMed

    Wei, Heming; Krishnaswamy, Sridhar

    2017-05-01

    Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.

  7. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing.

    PubMed

    Yao, Chuanfei; He, Chunfeng; Jia, Zhixu; Wang, Shunbin; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2015-10-15

    Holmium (Ho3+)-doped fluorotellurite microstructured fibers based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. By using a 1.992 μm fiber laser as the pump source, lasing at 2.077 μm is obtained from a 27 cm long Ho3+-doped fluorotellurite microstructured fiber. The maximum unsaturated power is about 161 mW and the corresponding slope efficiency is up to 67.4%. The influence of fiber length on lasing at 2.1 μm is also investigated. Our results show that Ho3+-doped fluorotellurite microstructured fibers are promising gain media for 2.1 μm laser applications.

  8. Percutaneous Transhepatic Endoscopic Holmium Laser Lithotripsy for Intrahepatic and Choledochal Biliary Stones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimon, Uri, E-mail: rimonu@sheba.health.gov.il; Kleinmann, Nir; Bensaid, Paul

    2011-12-15

    Purpose: To report our approach for treating complicated biliary calculi by percutaneous transhepatic endoscopic biliary holmium laser lithotripsy (PTBL). Patients and Methods: Twenty-two symptomatic patients (11 men and 11 women, age range 51 to 88 years) with intrahepatic or common bile duct calculi underwent PTBL. Nine patients had undergone previous gastrectomy and small-bowel anastomosis, thus precluding endoscopic retrograde cholangiopancreatography. In the other 13 patients, stone removal attempts by ERCP failed due to failed access or very large calculi. We used a 7.5F flexible ureteroscope and a 200-{mu}m holmium laser fiber by way of a percutaneous transhepatic tract, with graded fluoroscopy,more » to fragment the calculi with direct vision. Balloon dilatation was added when a stricture was seen. The procedure was performed with the patient under general anaesthesia. A biliary drainage tube was left at the end of the procedure. Results: All stones were completely fragmented and flushed into the small bowel under direct vision except for one patient in whom the procedure was aborted. In 18 patients, 1 session sufficed, and in 3 patients, 2 sessions were needed. In 7 patients, balloon dilatation was performed for benign stricture after Whipple operation (n = 3), for choledochalenteric anastomosis (n = 3), and for recurrent cholangitis (n = 1). Adjunctive 'balloon push' (n = 4) and 'rendezvous' (n = 1) procedures were needed to completely clean the biliary tree. None of these patients needed surgery. Conclusion: Complicated or large biliary calculi can be treated successfully using PTBL. We suggest that this approach should become the first choice of treatment before laparoscopic or open surgery is considered.« less

  9. Experimental investigations of the use of an erbium:YAG laser on temporomandibular joint (TMJ) structures: first experimental results

    NASA Astrophysics Data System (ADS)

    Nuebler-Moritz, Michael; Niederdellmann, Herbert; Hering, Peter; Deuerling, Christian; Dammer, Ralf; Behr, M.

    1995-04-01

    The following paper introduces the results of an interdisciplinary research project. With the aid of photomacroscopic examination, light and scanning electron microscope investigations, changes to temporomandibular joint structures were detected in vitro after irradiation with an Erbium:YAG laser system. The solid-state Erbium:YAG laser, operating at a wavelength of 2.94 micrometers was used in the normal- spiking mode. The free-running laser beam was focussed onto freshly excised porcine tissue samples using a 108-mm sapphire lens. In this study the output was generally pulsed at a repetition rate of 4 Hz, with a pulse duration varying from 120 microsecond(s) to 500 microsecond(s) . Between 50 mJ and 500 mJ per pulse were applied to create pinpoint lesions. The optimum average energy density and pulse duration of the Erbium:YAG laser radiation for the purpose of TMJ-surgery (as far as it concerns meniscus and articulating facets) - which means efficient etch rate and minimal adjacent injury - seems to be about 24-42 J/cm2 and 120 microsecond(s) -240 microsecond(s) , respectively.

  10. Cutaneous resurfacing with CO2 and erbium: YAG lasers: preoperative, intraoperative, and postoperative considerations.

    PubMed

    Alster, T S

    1999-02-01

    The development and integration of pulsed and scanned CO2 and erbium:YAG laser systems into mainstream surgical practice over the past years has revolutionized cutaneous resurfacing. These lasers are capable of delivering to skin high peak fluences to effect controlled tissue vaporization, while leaving an acceptably narrow zone of residual thermal damage. The inherent technological differences that exist between the two distant laser systems in terms of ablation depths, degree of thermal coagulation, and postoperative side-effects and complications guide patient selection and management. This article reviews the basic principles of CO2 and erbium:YAG laser resurfacing, including preoperative, intraoperative, and postoperative patient considerations. Side-effects and complications encountered after laser resurfacing are discussed with specific guidelines provided on their appropriate management. Anticipated future developments and cutting-edge research endeavors in cutaneous laser resurfacing are also briefly outlined.

  11. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  12. Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-Infrared fiber laser

    NASA Astrophysics Data System (ADS)

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J.

    2018-02-01

    Short pulse operation of fiber lasers operating at wavelengths up 3 micron have been reported in recent years. At longer wavelengths, fiber lasers have only been demonstrated with a continuous operation mode. Short pulse operation in the mid-IR is necessary for utilizing such lasers in laser radars and for medical applications. Our previous numerical work suggested that Q-switching is possible on the 3.5 μm transition in erbium-doped ZBLAN in a similar manner to work demonstrated on the 2.8 μm transition in erbium. In this work we report on initial experimental results of a Q-switched, dualwavelength pumped fiber laser operating on the 3.5 μm transition in erbium-doped ZBLAN glass fibers. Using a hybrid fiber and open resonator configuration utilizing an acousto-optic modulator we demonstrated stable single pulse Q-switching while operating at repetition rates of 20 kHz and up to 120 kHz. The laser achieved a peak power of 8 W with pulse energy of 7 μJ while operating at 25 kHz. Long pulse widths on the order of 1 μs were obtained. The low peak power and long pulses are likely the result of both low gain of the transition and additional losses in the resonator which are currently being investigated. Our latest results will be presented.

  13. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  14. Crystallographic phases in heavy rare earth metals under megabar pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, G. K.; Vohra, Y. K.

    2012-07-01

    Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.

  15. Magneto-optical study of holmium iron garnet Ho3Fe5O12

    NASA Astrophysics Data System (ADS)

    Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.

    2012-09-01

    Bulk holmium iron garnet Ho3Fe5O12 is a cubic ferrimagnet with Curie temperature TC = 567 K and magnetization compensation point in the range 130-140 K. The magneto-optical data are presented for a holmium iron garnet Ho3Fe5O12 film, ˜10 μm thick, epitaxially grown on a (111)-type gadolinium-gallium garnet Gd3Ga5O12 substrate. A specific feature of this structure is that the parameters of the bulk material, from which the film was grown, closely match the substrate ones. The temperature and field dependences of Faraday rotation as well as the temperature dependence of the domain structure in zero field were investigated. The compensation point of the structure was found to be Tcomp = 127 K. It was shown that the temperature dependence of the characteristic size of domain structure diverges at this point. Based on the obtained results we established that the magnetic anisotropy of the material is determined by both uniaxial and cubic contributions, each characterized by different temperature dependence. A complex shape of hysteresis loops and sharp changes of the domain pattern with temperature indicate the presence of collinear-noncollinear phase transitions. Study of the optical second harmonic generation was carried out using 100 fs laser pulses with central photon energy E = 1.55 eV. The electric dipole contribution (both crystallographic and magnetic) to the second harmonic generation was observed with high reliability despite a small mismatch of the film and substrate parameters.

  16. Holmium: YAG laser lithotripsy versus pneumatic lithotripsy for treatment of distal ureteral calculi: a meta-analysis.

    PubMed

    Yin, Xiangrui; Tang, Ziwei; Yu, Bei; Wang, Yarong; Li, Yuehua; Yang, Qi; Tang, Wei

    2013-04-01

    The objective of this study was to estimate the treatment effect of Pneumatic Lithotripsy (PL) versus holmium: YAG laser lithotripsy (LL) in the treatment of distal ureteric calculi. A bibliographic search covering the period from 1990 to April 2012 was conducted using search engines such as MEDLINE, EMBASE, and Cochrane library. Data were extracted and analyzed with RevMan5.1 software. A total of 47 studies were scant, and 4 independent studies were finally recruited. Holmium: YAG LL conveyed significant benefits compared with PL in terms of early stone-free rate [odds ratio (OR)=4.42, 95% confidence interval (CI) (1.14, 17.16), p=0.03], delayed stone-free rate [OR=4.42, 95%CI (1.58, 12.37), p=0.005], mean operative time [WMD=-16.86, 95%CI (-21.33, -12.39), p<0.00001], retaining double-J catheter rate [OR=0.44, 95%CI (0.25, 0.78), p=0.004], and stone migration incidence [OR=0.26, 95%CI (0.11, 0.62), p=0.003], but not yet in the postoperative hematuria rate and the ureteral perforation rate according to this meta-analysis. Precise estimates on larger sample size and trials of high quality may provide more uncovered outcomes in the future.

  17. Gadolinium and didymium (praseodymium/neodymium) cations as capture agents in lightmicroscopical histochemistry of acid and alkaline phosphatase.

    PubMed

    Halbhuber, K J; Zimmermann, N

    1987-01-01

    In previous papers, cerium and lanthanum based methods for light-microscopical detection of acid and alkaline phosphatase activity were proposed. In this paper, the usefulness of other lanthanide cations such as gadolinium and praseodymium/neodymium cations as capture agents in phosphatase histochemistry is tested. It is evident that phosphate ions were sufficiently trapped by these cations. According to the lead and silver multistep procedures earlier described it is possible to visualize alkaline phosphatase activity in the brush borders of the intestine or kidney as well as acid phosphatase activity in the lysosomes. These methods can be recommended.

  18. Treatment of giant pyogenic granuloma with the Nd/YAG holmium laser: a case report.

    PubMed

    Yang, Chunjun; Liu, Shengxiu

    2013-08-01

    Pyogenic granuloma (PG) is a common vascular tumor that can be treated using various means. However, some large lesions and those located on some difficult-to-treat body sites may represent a formidable selection to the clinician because of the residual pain after treatment, difficulties in surgical excision at one trial and covering with one dressing, and the risk of sequelae. We report a successful treatment of such a giant lesion that arises in the scar which was left because of port wine stain, using a Nd/YAG holmium pulsed dye laser.

  19. Praseodymium sorption on Laminaria digitata algal beads and foams.

    PubMed

    Wang, Shengye; Hamza, Mohammed F; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-10-15

    Algal (Laminaria digitata) beads and algal foams have been prepared by a new synthesis mode and the sorbents were tested for praseodymium sorption in batch and fixed-bed like systems (recirculation or one-pass modes), respectively. Metal binding occurs through ion-exchange with Ca(II) ions used for ionotropic gelation of alginate contained in the algal biomass and eventually with protons. Sorption isotherms at pH 4 are described by the Langmuir and the Sips equations with maximum sorption capacities close to 110-120mgPrg -1 . Uptake kinetics are fitted by the pseudo-second order reaction rate equation for both beads and foams; in the case of beads the Crank equation also gives good fit of experimental data. Metal is successfully desorbed using 2M HCl/0.05M CaCl 2 solutions and the sorbent can be efficiently re-used for a minimum of 5 cycles with negligible decrease in sorption/desorption properties and appreciable concentrating effect (around 8-10 times the initial metal concentration). Tested in continuous mode, the algal foam shows typical breakthrough curves that are fitted by the Yan method; desorption is also efficient and allows under the best conditions to achieve a concentration factor close to 8. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Magnetic phase diagrams of erbium

    NASA Astrophysics Data System (ADS)

    Frazer, B. H.; Gebhardt, J. R.; Ali, N.

    1999-04-01

    The magnetic phase diagrams of erbium in the magnetic field-temperature plane have been constructed for applied magnetic fields along the a and b axes. For an a-axis applied field our H-T phase diagrams determined from magnetization and magnetoresistance data are in good agreement and consistent with that of Jehan et al. for temperatures below 50 K. A splitting of the basal plane Néel temperature (TN⊥) above 3.75 T introduces two new magnetic phases. Also a transition from a fan to a canted fan phase as suggested by Jehan et al. is observed in an increasing field below TC. Our phase diagram for a b-axis applied field constructed from magnetization data is very similar to the phase diagram of Watson and Ali using magnetoresistance measurements. However, the anomaly at 42 K reported by Watson and Ali is not observed in the present study. No splitting of the TN⊥ transition is observed in either work for a field applied along the b axis.

  1. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions.

    PubMed

    Girard, S; Laurent, A; Pinsard, E; Robin, T; Cadier, B; Boutillier, M; Marcandella, C; Boukenter, A; Ouerdane, Y

    2014-05-01

    We present a new structure for erbium-doped optical fibers [hole-assisted carbon-coated, (HACC)] that, combined with an appropriate choice of codopants in the core, strongly enhances their radiation tolerance. We built an erbium-doped fiber amplifier based on this HACC fiber and characterize its degradation under γ-ray doses up to 315 krad (SiO2) in the ON mode. The 31 dB amplifier is practically radiation insensitive, with a gain change of merely -2.2×10(-3) dB/krad. These performances authorize the use of HACC doped fibers and amplifiers for various applications in environments associated with today's missions (of doses up to 50 krad) and even for future space missions associated with higher dose constraints.

  2. X-ray diffraction study of elemental erbium to 70 GPa

    NASA Astrophysics Data System (ADS)

    Pravica, Michael G.; Romano, Edward; Quine, Zachary

    2005-12-01

    We have investigated phase transitions in elemental erbium in a diamond anvil cell (DAC) up to 70GPa using angular-dispersive x-ray powder diffraction methods. We present evidence of a series of phase transitions that appear to follow the anticipated hcp→Sm-type→doublehcp(dhcp)→distorted fcc sequence. In particular, we present evidence for the predicted dhcp→distorted fcc transition above 63GPa . Equation of state data are also presented up to 70GPa .

  3. Erbium-doped fiber amplifier elements for structural analysis sensors

    NASA Technical Reports Server (NTRS)

    Hanna-Hawver, P.; Kamdar, K. D.; Mehta, S.; Nagarajan, S.; Nasta, M. H.; Claus, R. O.

    1992-01-01

    The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed.

  4. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    NASA Astrophysics Data System (ADS)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  5. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loh, K. K.; Yeo, K. S.; Shee, Y. G.

    2015-04-24

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  6. Detecting Thermal Barrier Coating Delamination Using Visible and Near-Infrared Luminescence from Erbium-Doped Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bencic, T. J.; Martin, R. E.; Singh, J.; Wolfe, D. E.

    2007-01-01

    Nondestructive diagnostic tools are needed to monitor early stages of delamination progression in thermal barrier coatings (TBCs) because the risk of delamination induced coating failure will compromise engine performance and safety. Previous work has demonstrated that for TBCs composed of yttria-stabilized zirconia (YSZ), luminescence from a buried europium-doped sublayer can be utilized to identify the location of TBC delamination from the substantially higher luminescence intensity observed from the delaminated regions of the TBC. Luminescence measurements from buried europium-doped layers depend on sufficient transmittance of the 532 nm excitation and 606 nm emission wavelengths through the attenuating undoped YSZ overlayer to produce easily detected luminescence. In the present work, improved delamination indication is demonstrated using erbium-doped YSZ sublayers. For visible-wavelength luminescence, the erbium-doped sublayer offers the advantage of a very strong excitation peak at 517 nm that can be conveniently excited a 514 nm Ar ion laser. More importantly, the erbium-doped sublayer also produces near-infrared luminescence at 1550 nm that is effectively excited by a 980 nm laser diode. Both the 980 nm excitation and the 1550 nm emission are transmitted through the TBC with much less attenuation than visible wavelengths and therefore show great promise for delamination monitoring through thicker or more highly scattering TBCs. The application of this approach for both electron beam physical vapor deposited (EB-PVD) and plasma-sprayed TBCs is discussed.

  7. Bleeding after holmium laser enucleation of the prostate: lessons learned the hard way.

    PubMed

    Martin, Aaron D; Nunez, Rafael N; Humphreys, Mitchell R

    2011-02-01

    To examine specific causes of postoperative bleeding requiring transfusion after holmium laser enucleation of the prostate (HoLEP) in order to enhance preoperative screening and counseling. After Institutional Review Board (IRB) approval, a retrospective review of a single surgeon's experience of 130 consecutive HoLEPs was performed to specifically examine patients requiring perioperative blood transfusions. All patients from August 2007 to April 2009 who underwent a HoLEP at our institution since its inception were included. These patients' charts were reviewed to gain insight into their bleeding diathesis. A case series report was compiled and compared with the relevant published literature. Of the 130 patients, eight (6.7%) were found to require transfusion postoperatively. Four of these patients required a second operation for completion. These patients had a variety of causes for increased bleeding and subsequent transfusion including: chronic anticoagulation (n = 1), significant cardiac disease requiring maintenance of hemoglobin (n = 4), sepsis with secondary disseminated intravascular coagulation (n = 1), large prostate size (>150 g) (n = 4), underlying prostate cancer (n = 1) and inadequate anesthesia during the procedure leading to patient movement (n = 1). All patients made a full recovery with satisfactory urinary symptom improvement except for one patient with residual incontinence at last follow-up. Despite the many benefits of holmium laser enucleation, all patients should be counseled regarding the real potential for postoperative blood transfusion. When feasible, any known bleeding risk should be minimized by the surgeon as long it is done safely for the benefit of the patient considering their co-morbidities. © 2010 THE AUTHORS. JOURNAL COMPILATION © 2010 BJU INTERNATIONAL.

  8. X-ray diffraction study of elemental erbium to 70 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica, Michael G.; Romano, Edward; Quine, Zachary

    2005-12-01

    We have investigated phase transitions in elemental erbium in a diamond anvil cell (DAC) up to 70 GPa using angular-dispersive x-ray powder diffraction methods. We present evidence of a series of phase transitions that appear to follow the anticipated hcp{yields}Sm-type{yields}double hcp (dhcp){yields}distorted fcc sequence. In particular, we present evidence for the predicted dhcp{yields}distorted fcc transition above 63 GPa. Equation of state data are also presented up to 70 GPa.

  9. Transmission electron microscopy characterization of the erbium silicide formation process using a Pt/Er stack on a silicon-on-insulator substrate.

    PubMed

    Łaszcz, A; Katcki, J; Ratajczak, J; Tang, Xiaohui; Dubois, E

    2006-10-01

    Very thin erbium silicide layers have been used as source and drain contacts to n-type Si in low Schottky barrier MOSFETs on silicon-on-insulator substrates. Erbium silicide is formed by a solid-state reaction between the metal and silicon during annealing. The influence of annealing temperature (450 degrees C, 525 degrees C and 600 degrees C) on the formation of an erbium silicide layer in the Pt/Er/Si/SiO(2)/Si structure was analysed by means of cross-sectional transmission electron microscopy. The Si grains/interlayer formed at the interface and the presence of Si grains within the Er-related layer constitute proof that Si reacts with Er in the presence of a Pt top layer in the temperature range 450-600 degrees C. The process of silicide formation in the Pt/Er/Si structure differs from that in the Er/Si structure. At 600 degrees C, the Pt top layer vanishes and a (Pt-Er)Si(x) system is formed.

  10. Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers

    NASA Astrophysics Data System (ADS)

    Richter, A.; Pavel, N.; Heumann, E.; Huber, G.; Parisi, D.; Toncelli, A.; Tonelli, M.; Diening, A.; Seelert, W.

    2006-04-01

    We describe a new approach for the generation of coherent ultraviolet radiation. Continuous-wave ultraviolet light at 320 nm has been obtained by intracavity frequency doubling of red-emitting Praseodymium lasers. Lasing at the 640-nm fundamental wavelength in Pr:LiYF4 and Pr:BaY2F8 was realized by employing an optically pumped semiconductor laser at 480 nm as pump source.Using LiB3O5 as nonlinear medium, ~19 mW of ultraviolet radiation with ~9% optical efficiency with respect to absorbed power was reached for both laser crystals; the visible-to-ultraviolet conversion efficiency was 26% and 35% for Pr:LiYF4 and Pr:BaY2F8, respectively.

  11. Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study.

    PubMed

    Elhilali, Mostafa M; Badaan, Shadie; Ibrahim, Ahmed; Andonian, Sero

    2017-06-01

    To evaluate in vitro and in vivo effects of Moses technology in Holmium laser and to compare it with the Regular mode in terms of lithotripsy efficiency and laser-tissue interactions. The Lumenis ® Pulse™ P120H holmium laser system together with Moses D/F/L fibers were used to compare the Regular mode with the Moses modes in stone retropulsion by using a high-speed camera, and stone ablation efficiency. In addition, a porcine ureteroscopy model was used to assess stone fragmentation and dusting as well as laser-tissue interaction with the ureteral wall. After a laser pulse, in vitro stone displacement experiments showed a significant reduction in retropulsion when using the Moses mode. The stone movement was reduced by 50 times at 0.8 J and 10 Hz (p < 0.01). The pronounced reduction of retropulsion in the Moses mode was clearly observed during fragmentation setting (high energy) and dusting (low energy, high Hz). In addition, stone fragmentation tests showed that the Moses modes resulted in a significantly higher ablation volume when compared with the Regular mode (160% higher; p < 0.001). In vivo assessment also supported the reduction in retropulsion when treating stones in the porcine kidney. Histological analysis of the porcine ureter after direct lasing in the Moses mode suggested less damage than in the Regular mode. The Moses technology resulted in more efficient laser lithotripsy, in addition to significantly reduced stone retropulsion, and displayed a margin of safety that may result in a shorter procedural time and safer lithotripsy.

  12. Use of the holmium:YAG laser for percutaneous photothermal ablation of cervical invertebral disks in dogs

    NASA Astrophysics Data System (ADS)

    Rochat, Mark; Henry, George A.; Campbell, Gregory A.; Stair, Ernest L.; Bartels, Kenneth E.; Dickey, Tom

    1999-06-01

    Holmium:YAG laser ablation of thoracolumbar disks in dogs has been shown to be an effective alternative to standard surgical fenestration techniques. Our hypothesis was the Holmium:YAG laser could be equally effective and safe when used to ablate cervical intervertebral disks. Six normal chondrodystrophoid breed dogs were used. A sterile, cleaved, 320 micrometers , low-OH quartz optical fiber was inserted into each needle and the laser activated for 40 s at 2 W mean power and a 15 Hz pulse repetition rate for a total of 80 J. Dogs were observed in pain, neurological deficits, or other complications for 24 weeks. At 24 weeks, dogs were euthanatized and cervical disks collected and placed in 10 percent neutral buffered formalin. Disks were decalcified, sectioned at 5 micrometers , and stained with H and E. No problems were encountered during the procedure except occasional difficulties passing the needle by the shoulder to enter the C6-7 disk space. No complications, including neurologic deficits or pain were observe during the 24 weeks. Histologic examination revealed varying degrees of necrosis and defects created in the nucleus pulposus by laser irradiation. In some instances there was evidence of mild adjacent annular and bony thermal injury. On the basis of these result, the Ho:YAG laser appears to be a safe and efficacious method for ablation of canine cervical disks.

  13. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  14. Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Fuchuan; Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130; Peng, Bo

    2014-09-08

    We report Fano-like asymmetric resonances modulated by optical gain in a whispering-gallery-mode resonator fabricated from erbium-doped silica. A time-dependent gain profile leads to dynamically varying sharp asymmetric resonances with features similar to Fano resonances. Depending on the scan speed of the frequency of the probe laser and the pump-probe power ratio, transmission spectra of the active microcavity exhibit a resonance dip, a resonance peak, or a Fano-like resonance.

  15. Spectra- and temperature-dependent dynamics of directly end-pumped holmium lasers

    NASA Astrophysics Data System (ADS)

    Ji, Encai; Shen, Yijie; Nie, Mingming; Fu, Xing; Liu, Qiang

    2017-04-01

    We develop a theoretical model with high accuracy for directly end-pumped Ho3+ laser system considering the influences of ground-state depletion, energy transfer up-conversion, temperature-dependent cross sections, and pump spectra shift. The heat generation in our model is precisely evaluated by calculating the transition rates of non-radiation relaxation processes among manifolds and in-band relaxation processes based on a detailed analysis of energy levels structure of holmium ions. A spatial dynamic thermal iteration method, just developed by our group, is applied to describe the coupled influences between spatial thermal effects and pump spectra. This model is verified to both adapt to the narrow-band good beam-quality pumped case and the broad-band bad beam-quality pumped case, which is in accordance with our previous reported experimental results.

  16. Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source

    NASA Astrophysics Data System (ADS)

    Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.

    2017-09-01

    Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].

  17. Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models.

    PubMed

    Amann, Philipp M; Marquardt, Yvonne; Steiner, Timm; Hölzle, Frank; Skazik-Voogt, Claudia; Heise, Ruth; Baron, Jens M

    2016-04-01

    Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin.

  18. Laser heating dynamics and glow spectra of carbon-, titanium- and erbium-containing optothermal fibre converters for laser medicine

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.

    2017-07-01

    Titanium- and erbium-containing optothermal fibre converters of laser radiation mounted at the distal end of quartz-quartz optical fibre are discussed for the first time. Technology of fabricating such converters is described. Carbon-containing converters are also considered. The laser heating dynamics of the converters and the glow spectra are studied by irradiating converters of each type by a 980 ± 10 nm semiconductor laser with an average power up to 4 W. It is shown that alongside with broadband thermal radiation accompanying the laser heating of all three types of converters in the temperature range 600-1100 °C, only in the spectrum of the erbium-containing converter the intense bands with the maxima at wavelengths 493, 523, 544, 660, and 798 nm, corresponding to the erbium radiative transitions 4F7/2 → 4I15/2, 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2 and 4I9/2 → 4I15/2, respectively, are present. Such converters can be used in laser medicine for tissue surgery as well as in procedures combining laser, thermal, biostimulation or photodynamic action.

  19. Photoluminescence studies on holmium (III) and praseodymium (III) doped calcium borophosphate (CBP) phosphors

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Damodaraiah, S.; Devara, S. N.; Ratnakaram, Y. C.

    2018-05-01

    Using solid state reaction method, Ho3+ and Pr3+ doped calcium borophosphate (CBP) phosphors were prepared. These phosphors were characterized using XRD, SEM, FT-IR, 31P solid state NMR, photoluminescence (PL) and decay profiles. Structural details were discussed from XRD and FT-IR spectra. From 31P NMR spectra of these phosphors, mono-phosphate complexes Q0-(PO43-) were observed. Photoluminescence spectra were measured for both Ho3+ and Pr3+ doped calcium borophosphate phosphors and the spectra were studied for different concentrations. Decay curves were obtained for the excited level, 5F4+5S2 of Ho3+ and 1D2 level of Pr3+ in these calcium borophosphate phosphors and lifetimes were measured. CIE color chromaticity diagrams are drawn for these two rare earth ions in calcium borophosphate phosphors. Results show that Ho3+ and Pr3+ doped CBP phosphors might be served as green and red luminescence materials.

  20. Laser-induced activation of regeneration processes in spine disc cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil N.; Vorobjeva, Natalia N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Baskov, Andrey V.; Shekhter, Anatoliy B.; Baskov, Vladimir A.; Feldchtein, Felix I.; Kamensky, Vladislav A.; Kuranov, Roman V.

    2000-05-01

    The effect of laser radiation on the regeneration processes in spine disk cartilage has been studied in-vivo. We used rabbits as a model and a Holmium (2.09 micrometer) and an Erbium fiber (1.56 micrometer) lasers for irradiation the discs which were preliminary opened to remove annulus fibrosus and the nucleus pulposus of the intervertebral disc. The irradiated zone has been examined using an optical coherent tomography in one month after the operation and conventional histological technique in two months after the laser operation. It has been shown that laser radiation promotes the growth of the new cartilaginous tissue of fibrous and hyaline types.

  1. Intensity noise coupling in soliton fiber oscillators.

    PubMed

    Wan, Chenchen; Schibli, Thomas R; Li, Peng; Bevilacqua, Carlo; Ruehl, Axel; Hartl, Ingmar

    2017-12-15

    We present an experimental and numerical study on the spectrally resolved pump-to-output intensity noise coupling in soliton fiber oscillators. In our study, we observe a strong pump noise coupling to the Kelly sidebands, while the coupling to the soliton pulse is damped. This behavior is observed in erbium-doped as well as holmium-doped fiber oscillators and confirmed by numerical modeling. It can be seen as a general feature of laser oscillators in which soliton pulse formation is dominant. We show that spectral blocking of the Kelly sidebands outside the laser cavity can improve the intensity noise performance of the laser dramatically.

  2. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  3. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  4. Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals.

    PubMed

    Di Lieto, Alberto; Sottile, Alberto; Volpi, Azzurra; Zhang, Zhonghan; Seletskiy, Denis V; Tonelli, Mauro

    2014-11-17

    We investigated the effect of rare earth impurities on the cooling efficiency of Yb³⁺:LiYF₄ (Yb:YLF). The refrigeration performance of two single crystals, doped with 5%-at. Yb and with identical history but with different amount of contaminations, have been compared by measuring the cooling efficiency curves. Spectroscopic and elemental analyses of the samples have been carried out to identify the contaminants, to quantify their concentrations and to understand their effect on the cooling efficiencies. A model of energy transfer processes between Yb and other rare earth ions is suggested, identifying Erbium and Holmium as elements that produce a detrimental effect on the cooling performance.

  5. HO:LULF and HO:LULF Laser Materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Morrison, Clyde A. (Inventor); Filer, Elizabeth D. (Inventor); Jani, Mahendra G. (Inventor); Murray, Keith E. (Inventor); Lockard, George E. (Inventor)

    1998-01-01

    A laser host material LULF (LuLiF4) is doped with holmium (Ho) and thulium (Tm) to produce a new laser material that is capable of laser light production in the vicinity of 2 microns. The material provides an advantage in efficiency over conventional Ho lasers because the LULF host material allows for decreased threshold and upconversion over such hosts as YAG and YLF. The addition of Tm allows for pumping by commonly available GaAlAs laser diodes. For use with flashlamp pumping, erbium (Er) may be added as an additional dopant. For further upconversion reduction, the Tm can be eliminated and the Ho can be directly pumped.

  6. Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution

    NASA Astrophysics Data System (ADS)

    Kovalevsky, A. V.; Yaremchenko, A. A.; Populoh, S.; Weidenkaff, A.; Frade, J. R.

    2013-02-01

    In order to identify the effects of Pr additions on thermoelectric properties of strontium titanate, crystal structure, electrical and thermal conductivity, and Seebeck coefficient of Sr1-xPrxTiO3 (x = 0.02-0.30) materials were studied at 400 < T < 1180 K under highly reducing atmosphere. The mechanism of electronic transport was found to be similar up to 10% of praseodymium content, where generation of the charge carriers upon substitution resulted in significant increase of the electrical conductivity, moderate decrease in Seebeck coefficient, and general improvement of the power factor. Formation of point defects in the course of substitution led to suppression of the lattice thermal conductivity, whilst the contribution from electronic component was increasing with carrier concentration. Possible formation of layered structures and growing distortion of the perovskite lattice resulted in relatively low thermoelectric performance for Sr0.80Pr0.20TiO3 and Sr0.70Pr0.30TiO3. The maximum dimensionless figure of merit was observed for Sr0.90Pr0.10TiO3 and amounted to ˜0.23 at 670 K and ˜0.34 at 1170 K, close to the values, obtained in similar conditions for the best bulk thermoelectrics, based on rare-earth substituted SrTiO3.

  7. Lande gJ factors for even-parity electronic levels in the holmium atom

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.

    2018-05-01

    In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.

  8. Crystal grain growth at the α -uranium phase transformation in praseodymium

    NASA Astrophysics Data System (ADS)

    Cunningham, Nicholas C.; Velisavljevic, Nenad; Vohra, Yogesh K.

    2005-01-01

    Structural phase transformations under pressure are examined in praseodymium metal for the range 0-40GPa at ambient temperature. Pressure was generated with a diamond-anvil cell, and data were collected using high-resolution synchrotron x-ray diffraction and the image plate technique. The structural sequence double hexagonal close packed (dhcp)→face centered cubic (fcc)→distorted-fcc (d-fcc)→ α -uranium (α-U) is observed with increasing pressure. Rietveld refinement of all crystallographic phases provided confirmation of the hR24 structure for the d-fcc phase while the previously reported monoclinic phase between the d-fcc and the α-U phase was not confirmed. We observe dramatic crystal grain growth during the volume collapse concurrent with the symmetry-lowering transition to the α-U structure. No preferred orientation axis is observed, and the formation process for these large grains is expected to be via a nucleation and growth mechanism. An analogous effect in rare earth metal cerium suggests that the grain growth during transformation to the α-U structure is a common occurrence in f -electron metals at high pressures.

  9. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

    NASA Astrophysics Data System (ADS)

    Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.

    2016-08-01

    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

  10. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    PubMed

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  12. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  13. A tunable erbium-doped fiber ring laser with power-equalized output

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lin, Ming-Ching; Chi, Sien

    2006-12-01

    We propose and demonstrate a tunable erbium-based fiber ring laser with power-equalized output. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable laser oscillation. This proposed laser can obtain the flatter lasing wavelength in an effectively operating range of 1533.3 to 1574.6 nm without any other operating mechanism. Moreover, the performances of the output power, wavelength tuning range, and side-mode suppression ratio (SMSR) were studied.

  14. VizieR Online Data Catalog: Spectra of a Holmium in the near-UV. I. Ho I. (Al-Labady+, 2017)

    NASA Astrophysics Data System (ADS)

    Al-Labady, N.; Ozdalgic, B.; Er, A.; Guzelcimen, F.; Ozturk, I. K.; Kroger, S.; Kruzins, A.; Tamanis, M.; Ferber, R.; Basar, G.

    2017-04-01

    The high-resolution spectra of Holmium (Ho) were recorded with a Fourier Transform spectrometer IFS125 HR at the Laser Centre of the University of Latvia in Riga. Two Ho spectra were recorded, one with argon (Ar) as a buffer gas and one with neon (Ne). The spectra cover the ultraviolet spectral range from 25000 up to 31530cm-1, or 317 to 400nm, respectively. (1 data file).

  15. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    NASA Astrophysics Data System (ADS)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  16. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  17. Treatment for residual stones using flexible ureteroscopy and holmium laser lithotripsy after the management of complex calculi with single-tract percutaneous nephrolithotomy.

    PubMed

    Chen, L; Sha, M-L; Li, D; Zhuo, J; Jiang, C-Y; Zhu, Y-P; Xia, S-J; Lu, J; Shao, Y

    2017-04-01

    This study validated the effectiveness and safety of the treatment for residual stones using flexible ureteroscopy (fURS) and holmium laser (0.6-1.2 J, 20-30 Hz) lithotripsy via a fiber with a 200-μm core diameter and 0.22 numerical aperture (NA) after the management of complex calculi with single-tract percutaneous nephrolithotomy (PCNL). Between January 2014 and June 2016, 27 consecutive patients with complex calculi underwent fURS and holmium laser lithotripsy after a planned single-tract PCNL. Among the 27 patients with complex calculi, 9 had full staghorn calculi, 7 had partial staghorn calculi, and 11 had multiple calculi. After the first single-tract PCNL session, the mean stone size and mean stone surface area were 18.0 ± 10.7 mm and 181.9 ± 172.2 mm 2 , respectively. Treatment for residual stones with fURS and holmium laser lithotripsy was successfully completed and was performed without intraoperative complications. The mean operative time of the fURS procedure was 69.1 ± 23.6 min, and the mean hospital stay was 5.3 ± 2.4 days. The mean decrease in the hemoglobin level was 7.3 ± 6.5 g/l. After the fURS procedure, the overall stone-free rate was 88.9%. The overall postoperative complication rate was 14.8% (Clavien grade I 11.1%; Clavien grade II 3.7%). The current approach tested here combines the advantages of both PCNL and fURS and effectively manages complex calculi with a high stone-free rate (SFR) (88.9%). This approach also reduced the number of treatment sessions, the number of percutaneous access tracts, and the blood loss and potential morbidity associated with multiple tracts.

  18. LD-pumped erbium and neodymium lasers with high energy and output beam quality

    NASA Astrophysics Data System (ADS)

    Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.

    2013-05-01

    Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.

  19. Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Feng, Xinhuan; Tam, Hwa-yaw; Liu, Heliang; Wai, P. K. A.

    2006-12-01

    A stable and broad bandwidth multiwavelength erbium-doped fiber laser is proposed and demonstrated successfully. A nonlinear optical loop mirror which induces wavelength-dependent cavity loss and behaves as an amplitude equalizer is employed to ensure stable room-temperature multiwavelength operation. Up to 50 wavelengths lasing oscillations with wavelength spacing of 0.8 nm within a 3-dB spectral range of 1562-1605 nm has been achieved. The measured power fluctuation of each wavelength is about 0.1 dB within a 2-h period.

  20. Erbium-doped zinc-oxide waveguide amplifiers for hybrid photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    O'Neal, Lawrence; Anthony, Deion; Bonner, Carl; Geddis, Demetris

    2016-02-01

    CMOS logic circuits have entered the sub-100nm regime, and research is on-going to investigate the quantum effects that are apparent at this dimension. To avoid some of the constraints imposed by fabrication, entropy, energy, and interference considerations for nano-scale devices, many have begun designing hybrid and/or photonic integrated circuits. These circuits consist of transistors, light emitters, photodetectors, and electrical and optical waveguides. As attenuation is a limiting factor in any communications system, it is advantageous to integrate a signal amplifier. There are numerous examples of electrical amplifiers, but in order to take advantage of the benefits provided by optically integrated systems, optical amplifiers are necessary. The erbium doped fiber amplifier is an example of an optical amplifier which is commercially available now, but the distance between the amplifier and the device benefitting from amplification can be decreased and provide greater functionality by providing local, on-chip amplification. Zinc oxide is an attractive material due to its electrical and optical properties. Its wide bandgap (≍3.4 eV) and high refractive index (≍2) make it an excellent choice for integrated optics systems. Moreover, erbium doped zinc oxide (Er:ZnO) is a suitable candidate for optical waveguide amplifiers because of its compatibility with semiconductor processing technology, 1.54 μm luminescence, transparency, low resistivity, and amplification characteristics. This research presents the characterization of radio frequency magnetron sputtered Er:ZnO, the design and fabrication of integrated waveguide amplifiers, and device analysis.

  1. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  2. Praseodymium - A Competent Dopant for Luminescent Downshifting and Photocatalysis in ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-05-01

    Highly transparent and conducting Zinc oxide (ZnO) thin films doped with Praseodymium (Pr) were deposited on glass substrates by using the spray pyrolysis method. The X-ray diffraction (XRD) analysis revealed the polycrystallinity of the deposited films with a hexagonal wurtzite structure, whereas the energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the incorporation of Pr in the films. The optical energy gap decreased by Pr doping due to the merging of the conduction band with the impurity bands formed within the forbidden gap. The room temperature photoluminescence spectra of the Pr-doped film showed enhancement of visible emission, suggesting efficient luminescent downshifting. The photocatalytic activity of the Pr-doped films is higher than that of undoped films due to the effective suppression of the rapid recombination of the photo-generated electron-hole pairs. The impurity levels formed within the forbidden gap act as efficient luminescent centers and electron traps, which lead to luminescent downshifting and enhanced photocatalytic activity.

  3. 2.05-μm Holmium-doped all-fiber continuous-wave laser at in-core diode-pumping at 1.125 μm

    NASA Astrophysics Data System (ADS)

    Kir'yanov, Alexander V.; Barmenkov, Yuri O.

    2017-08-01

    We report a Holmium-doped all-fiber laser oscillating in continuous-wave at 2.05 μm, at in-core pumping by a 1.125-μm laser diode. The active fibers employed are alumino-germano-silicate fibers doped with Ho3+ at concentrations of 1.2×1019 and 1.8×1019 cm-3. The laser is implemented in non-optimized Fabry-Perot cavity's geometry, composed of a couple of fiber Bragg gratings with reflectivity of 99 and 90%. When using the lower doped Holmium-doped fiber of proper length (1.4 m), low threshold ( 370 mW) and moderate slope efficiency ( 13%) of 2.05-μm lasing were obtained. High-brightness (laser line's width is 60 pm) and good noise-to-signal ratio (<0.006) are the laser's attractivities. In case of the heavier doped fiber of optimal length (1.2 m), the laser output (threshold of 430 mW, slope efficiency of 9%, output power of 9 mW, laser line's width of 110 pm, noise-to-signal ratio of <0.009) is worse, with a probable reason being deteriorating Ho3+ concentration effects.

  4. [The first experience with the concurrent effect of YAG-neodymium and YAG-erbium laser on experimental animal tissues and the possibility of its use in surgery].

    PubMed

    Roshal', L M; Gorbatova, N E; Livshits, Iu L; Parkhomenko, Iu G; Osiko, V V; Danileĭko, Iu K; Sidorin, A V; Tylaĭkova, T B; Ivanov, A D

    1991-08-01

    To guarantee the necessary rate of cutting live tissues with adequate hemostasis along the line of the incision, the authors studied isolated and joint effect of radiations of AIG-neodymium and AIG-erbium lasers on the tissues of laboratory animals. The possibility of accomplishing intraoperative hemostasis on the parenchymal organs was studied in experiments with AIG-neodymium laser. A good dissection effect in cutting various tissues was produced in the second series of experiments with AIG-erbium laser. The simultaneous action of AIG-neodymium and AIG-erbium beams converged at one point on the surface of the biological object was studied in the third series of experiments. It was found that the effect ensures a good dissection of tissues with sufficient hemostasis. The results of dynamic morphological studies are shown. The possibility of using the device in surgery is discussed.

  5. Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yijun; College of Physics Science and Engineering Technology, Yichun University, Yichun, Jiangxi Province 336000; Yao, Yong, E-mail: yaoyong@hit.edu.cn

    2014-01-28

    We experimentally study the dependences of high-order Stokes lines on the erbium-doped fiber (EDF) pump power P{sub EDF}, the Brillouin pump (BP) power P{sub BP}, and its working wavelength in a multiwavelength Brillouin erbium-doped fiber laser (MBEFL). By using the rate and propagation equations, and the coupled wave equations of stimulated Brillouin scattering, we establish a lumped model to describe the MBEFL. Numerical simulations show that the number of Stokes lines can be increased by decreasing the spacing between the BP wavelength and the EDF peak gain or P{sub BP} as long as it is larger than a critical valuemore » P{sub BP}{sup (cr)}=1.7 mW, or by increasing P{sub EDF} without reaching a saturation value P{sub EDF}{sup (cr)}=250 mW. However, when P{sub BP} and P{sub EDF} are varied beyond P{sub BP}{sup (cr)} and P{sub EDF}{sup (cr)}, respectively, the number of Stokes lines is reduced, accompanied by some self-lasing cavity modes. These results by numerical simulation are consistent with experimental observations from the MBEFL.« less

  6. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com

    2016-05-06

    Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range ofmore » 2.31 to 2.37.« less

  7. Broadband features of passively harmonic mode locking in dispersion-managed erbium-doped all-fiber lasers

    NASA Astrophysics Data System (ADS)

    Geng, Y.; Li, L.; Shu, C. J.; Wang, Y. F.; Tang, D. Y.; Zhao, L. M.

    2018-06-01

    Broadband features of passively harmonic mode locking (HML) in dispersion-managed erbium-doped all-fiber lasers are explored. The bandwidth of HML state is generally narrower than that of fundamental mode locking before pulse breaking occurs. There exists a broadest bandwidth versus the order of HML. HML state with bandwidth up to 61.5 nm is obtained.

  8. Clinical development of holmium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Holmium:YAG (Ho:YAG) laser vaporization and resection of the prostate offers advantages in immediate tissue removal compared to the Neodymium:YAG (Nd:YAG) laser. Ongoing development of appropriate operative techniques and Ho:YAG laser delivery systems suitable for endoscopic prostate surgery, including side-firing optical delivery fibers, have facilitated this approach. We performed Ho:YAG laser prostatectomy in 20 human subjects, including 2 men treated immediately prior to radical prostatectomy to assess Ho:YAG laser effects in the prostate. A total of 18 men were treated in an initial clinical trial of Ho:YAG prostatectomy. Estimated excess hyperplastic prostate tissue averaged 24 g (range 5 - 50 g). A mean of 129 kj Ho:YAG laser energy was delivered, combined with a mean of 11 kj Nd:YAG energy to provide supplemental coagulation for hemostasis. We have observed no significant perioperative or late complications. No significant intraoperative changes in hematocrit or serum electrolytes were documented. In addition to providing acute removal of obstructing prostate tissue, Ho:YAG laser resection allowed tissue specimen to be obtained for histologic examination. A total of 16 of 18 patients (90%) underwent successful removal of their urinary catheter and voiding trial within 24 hours following surgery. Immediate improvement in voiding, comparable to classic transurethral electrocautery resection of the prostate (TURP), was reported by all patients. Ho:YAG laser resection of the prostate appears to be a viable surgical technique associated with minimal morbidity and immediate improvement in voiding.

  9. Stable dual-wavelength single-longitudinal-mode ring erbium-doped fiber laser for optical generation of microwave frequency

    NASA Astrophysics Data System (ADS)

    Wang, T.; Liang, G.; Miao, X.; Zhou, X.; Li, Q.

    2012-05-01

    We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.

  10. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser.

    PubMed

    Feng, Tianxian; Mao, Dong; Cui, Xiaoqi; Li, Mingkun; Song, Kun; Jiang, Biqiang; Lu, Hua; Quan, Wangmin

    2016-11-11

    We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid exfoliation approach exploiting N -methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI), a piece of BP-PI film was obtained after evaporating the mixture in a petri dish. The BP-PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP-PI film can act as a promising nonlinear optical device for laser applications.

  11. Effect of erbium(III) oxide addition on thermal properties and crystallization behavior of some zinc-borate glasses

    NASA Astrophysics Data System (ADS)

    Borodi, G.; Bolundut, L. C.; Pascuta, P.

    2017-12-01

    The effect of replacing B2O3 with Er2O3 on the thermal properties and crystallization behaviour of B2O3-ZnO glasses were investigated by Differential Thermal Analysis (DTA) and X-ray Diffraction Analysis (XRD) measurements. DTA measurements reveal that the temperature of vitreous transition and the glass stability increase with the increasing in concentration the erbium ions added in the samples. The fragility index of the glasses increases also, when the dopant concentration from the studied samples increases. The glass was obtained from kinetically strong-glass-forming liquid (KS type glass). The most stable sample from the thermal point of view seems to be the sample that contains 10 mol% of Er2O3. The XRD patterns of the heat-treated samples at 860°C show new crystalline phases that contain erbium when the concentration of Er2O3 in the samples is higher than 3 mol%.

  12. Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.

    2018-02-01

    We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.

  13. Preliminary investigations on the utility of an erbium, chromium YSGG laser.

    PubMed

    Eversole, L R; Rizoiu, I M

    1995-12-01

    A variety of laser systems are under investigation as potential tools in dentistry. Most of these systems have been shown to be efficacious for soft tissue surgery of the mucous membranes; however, cutting bone and dental hard tissues has only recently been possible. In this report from the University of California at Los Angeles School of Dentistry, a review of laser applications in dentistry is discussed. The utility of a new laser system using an erbium YSGG medium with air water spray to cut soft tissues, bone, enamel and dentin is under investigation and preliminary research findings are presented.

  14. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  15. Pulpal thermal responses to an erbium,chromium: YSGG pulsed laser hydrokinetic system.

    PubMed

    Rizoiu, I; Kohanghadosh, F; Kimmel, A I; Eversole, L R

    1998-08-01

    Laser systems are known to raise pulpal temperatures when applied to tooth surfaces. Dental biocalcified tissues can be cut with an erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system. This device is effective for caries removal and cavity preparation in vitro. Pulpal monitoring of temperature changes during hard tissue cutting by a hydrokinetic system have not been reported. This study compared the effects of hydrokinetic system, dry bur, and wet bur tooth cutting on pulpal temperature. In vivo thermocouple intrapulpal measurements were made on cuspid teeth in anesthetized beagle dogs. In vitro measurements were made on extracted human molar teeth preserved in high-salt solution and later rinsed in phosphate-buffered saline (pH 7.4) to simulate in vivo conditions. The hydrokinetic system was compared with conventional air-turbine-powered bur cutting. The hydrokinetic system cuts and bur preparations were randomly made on the buccal surfaces at the cervical one third of the crown and extended until exposure of the pulp was confirmed clinically. Pulpal temperatures associated with the hydrokinetic system either showed no change or decreased by up to 2 degrees C. Wet bur preparations resulted in a 3 degrees to 4 degrees C rise. With dry bur preparations, a 14 degrees C rise in temperature was recorded. Under the conditions of this study, the erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system, when used for cavity preparation, had no apparent adverse thermal effect as measured in the pulp space.

  16. Co2/Erbium:YAG/Dye laser combination: an effective and successful treatment for angiofibromas in tuberous sclerosis.

    PubMed

    Fioramonti, Paolo; De Santo, Liliana; Ruggieri, Martina; Carella, Sara; Federico, Lo Torto; Onesti, Maria Giuseppina; Scuderi, Nicolò

    2014-02-01

    Tuberous sclerosis, an autosomal dominant neurocutaneous syndrome seen in approximately 1 in 6,000 people worldwide, is characterized by the appearance of hamartomas in multiple organs. The classic clinical triad consists of angiofibromas, epilepsy, and developmental delay. Dermatologic disorder is one of the main characteristics. Angiofibromas, a common form of presentation, causes significant cosmetic and medical problems. The current treatment for skin lesions is laser therapy. The carbon dioxide (CO2) laser has been used satisfactorily in treating these lesions, but several studies have demonstrated a high percentage of recurrences. Erbium:yttrium-aluminum-garnet (YAG) laser treatment has been used to resurface skin abnormalities in patients with dermatologic conditions. The dye laser as an alternative uses the principles of selective photothermolysis and is very effective in treating the vascular component of tuberous sclerosis. The use of all these lasers to treat skin lesions in patients affected by tuberous sclerosis has never been described in the literature. A retrospective study, conducted from 2007 to May 2013, investigated 13 patients who had tuberous sclerosis treated with an erbium:YAG/CO2/dye laser combination. All the patients showed great improvement of their skin lesions. The results were evident immediately after the first treatment. No patient experienced complications or recurrence. The combined use of the erbium:YAG/Dye/CO2 laser is a safe and effective treatment for skin lesions in patients affected by tuberous sclerosis. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  17. Use of the holmium:YAG laser in urology.

    PubMed

    Johnson, D E; Cromeens, D M; Price, R E

    1992-01-01

    The tissue effects of a holmium:YAG (Ho:YAG) laser operating at a wavelength of 2.1 mu with a maximum power of 15 watts (W) and 10 different energy-pulse settings was systematically evaluated on kidney, bladder, prostate, ureteral, and vasal tissue in the dog. In addition, various urologic surgical procedures (partial nephrectomy, transurethral laser incision of the prostate, and laser-assisted vasovasostomy) were performed in the dog, and a laparoscopic pelvic lymph node dissection was carried out in a pig. Although the Ho:YAG laser has a strong affinity for water, precise tissue ablation was achieved in both the contact and non-contact mode when used endoscopically in a fluid medium to ablate prostatic and vesical tissue. Using the usual parameters for tissue destruction (blanching without charring), the depth of thermal injury in the bladder and ureter was kept superficial. In performing partial nephrectomies, a 2-fold reduction in the zone of coagulative necrosis was demonstrated compared to the use of the continuous wave Neodymium:YAG laser (Nd:YAG). When used through the laparoscope, the Ho:YAG laser provided precise cutting and, combined with electrocautery, allowed the dissection to proceed quickly and smoothly. Hemostatic control was adequate in all surgical procedures. Although the results of these investigations are preliminary, our initial experience with the Ho:YAG laser has been favorable and warrants further investigations.

  18. Acute and chronic response of meniscal fibrocartilage to holmium:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Horan, Patrick J.; Popovic, Neven A.; Islinger, Richard B.; Kuklo, Timothy R.; Dick, Edward J.

    1997-05-01

    The acute and chronic (10 week) histological effects of the holmium:YAG laser during partial meniscectomy in an in vivo rabbit model were investigated. Twenty-four adult male New Zealand rabbits underwent bilateral parapatellar medial knee arthrotomies. In the right knee, a partial medial meniscectomy was done through the avascular zone using a standard surgical blade. In the left knee, an anatomically similar partial medial meniscectomy was performed using a Ho:YAG laser (Coherent, USA). This study indicates that the laser creates two zones of damage in the meniscal fibrocartilage and that the zone of thermal change may act as a barrier to healing. The zone of thermal change which is eventually debrided was thought at the time of surgery to be viable. In the laser cut menisci, the synovium appears to have greater inflammation early and to be equivalent with the scalpel cut after three weeks. At all time periods there appeared more cellular damage in the laser specimens.

  19. Transurethral lithotripsy with holmium-YAG laser of a large exogenous prostatic calculus.

    PubMed

    Hasegawa, Masanori; Ohara, Rei; Kanao, Kent; Nakajima, Yosuke

    2011-04-01

    Prostatic calculi are classified into two types, endogenous and exogenous calculi, based on their origin. Endogenous calculi are commonly observed in elderly men; however, exogenous prostatic calculi are extremely rare. We report here the case of a 51-year-old man who suffered incontinence and pollakiuria with a giant exogenous prostatic calculus almost completely replacing the prostatic tissue. X-rays and computed tomography demonstrated a large calculus of 65 × 58 mm in the small pelvic cavity. The patient underwent a transurethral lithotripsy with a holmium-YAG laser and a total of 85 g of disintegrated stones was retrieved and chemical stone analysis revealed the presence of magnesium ammonium phosphate. The incontinence improved and the voiding volume increased dramatically, and no stone recurrence in the prostatic fossa occurred at the 2 years follow-up. The etiology of this stone formation seemed to be based on some exogenous pathways combined with urinary stasis and chronic urinary infection due to compression fracture of the lumbar vertebra.

  20. Application of 2-um wavelength holmium lasers for treatment of skin diseases

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Ivan A.; Klimov, Igor V.; Tsvetkov, Vladimir B.; Nerobeev, Alexander I.; Sadovnikova, Lija B.; Eliseenko, Vladimir I.

    1994-09-01

    Theoretical and experimental analysis of the efficiency of application of 2 micrometers pulsed holmium laser for cosmetic and plastic surgery and dermatology is carried out. Preliminary experiments were carried out on rats. Solid state 2 micrometers pulsed laser was allowed to operate in free running mode with pulse energy up to 1.5 J and pulse repetition rate up to 5 Hz. To deliver emission to the object a flexible quartz fiber without further focusing of 2.5 m in length and 400 micrometers of the core diameter was used. The effect of the different power density emission on the skin was studied. The second stage was the study of the influence of 2 micrometers emission on human skin. The results of the removal of hemangioma, papilloma, telangiectasia, nevus, nevus acantholytic, xanthelasma palpebral, verruca, chloasma, pigmental spots, tattoos, etc. are presented. Precision, simplicity, efficiency, and the high cosmetic effect of these operations is noted.

  1. Modular flexible ureteroscopy and holmium laser lithotripsy for the treatment of renal and proximal ureteral calculi: A single-surgeon experience of 382 cases.

    PubMed

    Yan, Zejun; Xie, Guohai; Yuan, Hesheng; Cheng, Yue

    2015-10-01

    To determine the safety and efficacy of modular flexible ureteroscopy and holmium laser lithotripsy for the treatment of renal and proximal ureteral calculi, a retrospective chart review of a single surgeon's 3-year modular flexible ureteroscopy experience was performed. All of the patients were treated with modular flexible ureteroscopy and holmium laser lithotripsy by a single surgeon. Stone-free status was defined as no fragments or a single fragment ≤4 mm in diameter at the 3-month follow-up. The procedure number, operative time, stone-free rates, repeat usage of the multilumen catheter, and perioperative complications were documented. The present study included 215 male patients and 167 female patients, with an average age of 48.5±13.7 years (range, 17-84 years). The mean stone size was 11.5±4.1 mm (range, 4-28 mm), and the mean total stone burden was 17.5±5.7 mm (range 15-46 mm). A total of 305 patients (79.8%) had a stone burden ≤20 mm, and 77 patients (20.2%) had a stone burden >20 mm. The mean number of primary procedures was 1.3±0.2 (range, 1-3). The stone-free rate following the first and the second procedure was 73.4 and 86.9%, respectively. The mean postoperative hospital stay was 3.1±1.2 days (range, 2-6 days). The highest clearance rates were observed for proximal ureteral stones (100%) and renal pelvic stones (88.7%), whereas the lowest clearance rates were observed for lower calyx stones (76.7%) and multiple calyx stones (77.8%). The higher the initial stone burden, the lower the postoperative stone-free rate (≤20 vs. >20 mm; 89.8 vs. 75.3%). The overall complication rate was 8.1%. The results of the present study suggest that modular flexible ureteroscopy with holmium laser lithotripsy may be considered the primary method for the treatment of renal and proximal ureteral calculi in select patients, due to its acceptable efficacy, low morbidity, and relatively low maintenance costs.

  2. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    PubMed

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  3. Evidence-based outcomes of holmium laser enucleation of the prostate.

    PubMed

    Large, Tim; Krambeck, Amy E

    2018-05-01

    Holmium laser enucleation of the prostate (HoLEP) has been a mainstay therapy for the treatment of lower urinary tract symptoms (LUTS) secondary to benign prostate hyperplasia (BPH) for nearly 20 years. We briefly review current and sentinel publications that provide outcomes data after HoLEP. Current literature continues to support HoLEP as a versatile and durable surgical option for men with LUTS secondary to BPH. Despite evidence supporting durable symptom relief beyond 10 years even in large prostate glands, HoLEP is still not widely available to all patients. Concerns surrounding the learning curve of the procedure, high rates of retrograde ejaculation, and transient urinary incontinence seem to persist and limit the adoption of HoLEP by established urologists and residency training programs. Recent publications continue to show excellent short-term and long-term outcomes after HoLEP, in the categories of voiding function and patient satisfaction. Continued attempts to demonstrate equivalent outcomes of alternate-BPH surgical techniques are being met with renewed efforts by those performing HoLEP to demonstrate equivalent outcomes and patient safety during the learning phase of HoLEP for both mentored and self-directed surgical training.

  4. Two-species five-beam magneto-optical trap for erbium and dysprosium

    NASA Astrophysics Data System (ADS)

    Ilzhöfer, P.; Durastante, G.; Patscheider, A.; Trautmann, A.; Mark, M. J.; Ferlaino, F.

    2018-02-01

    We report on the first realization of a two-species magneto-optical trap (MOT) for the highly magnetic erbium and dysprosium atoms. The MOT operates on an intercombination line for the respective species. Owing to the narrow-line character of such a cooling transition and the action of gravity, we demonstrate a trap geometry employing only five beams in the orthogonal configuration. We observe that the mixture is cooled and trapped very efficiently, with up to 5 ×108 Er atoms and 109 Dy atoms at temperatures of about 10 μ K . Our results offer an ideal starting condition for the creation of a dipolar quantum mixture of highly magnetic atoms.

  5. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer.

    PubMed

    Munaweera, Imalka; Levesque-Bishop, Daniel; Shi, Yi; Di Pasqua, Anthony J; Balkus, Kenneth J

    2014-12-24

    Radiation therapy is used as a primary treatment for inoperable tumors and in patients that cannot or will not undergo surgery. Radioactive holmium-166 ((166)Ho) is a viable candidate for use against skin cancer. Nonradioactive holmium-165 ((165)Ho) iron garnet nanoparticles have been incorporated into a bandage, which, after neutron-activation to (166)Ho, can be applied to a tumor lesion. The (165)Ho iron garnet nanoparticles ((165)HoIG) were synthesized and introduced into polyacrylonitrile (PAN) polymer solutions. The polymer solutions were then electrospun to produce flexible nonwoven bandages, which are stable to neutron-activation. The fiber mats were characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma mass spectrometry. The bandages are stable after neutron-activation at a thermal neutron-flux of approximately 3.5 × 10(12) neutrons/cm(2)·s for at least 4 h and 100 °C. Different amounts of radioactivity can be produced by changing the amount of the (165)HoIG nanoparticles inside the bandage and the duration of neutron-activation, which is important for different stages of skin cancer. Furthermore, the radioactive bandage can be easily manipulated to irradiate only the tumor site by cutting the bandage into specific shapes and sizes that cover the tumor prior to neutron-activation. Thus, exposure of healthy cells to high energy β-particles can be avoided. Moreover, there is no leakage of radioactive material after neutron activation, which is critical for safe handling by healthcare professionals treating skin cancer patients.

  6. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  7. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    PubMed

    Olivier, Michel; Piché, Michel

    2016-02-08

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

  8. Erbium ion implantation into different crystallographic cuts of lithium niobate

    NASA Astrophysics Data System (ADS)

    Nekvindova, P.; Svecova, B.; Cajzl, J.; Mackova, A.; Malinsky, P.; Oswald, J.; Kolistsch, A.; Spirkova, J.

    2012-02-01

    Single crystals like lithium niobate are frequently doped with optically active rare-earth or transition-metal ions for a variety of applications in optical devices such as solid-state lasers, amplifiers or sensors. To exploit the potential of the Er:LiNbO 3, one must ensure high intensity of the 1.5 μm luminescence as an inevitable prerequisite. One of the important factors influencing the luminescence properties of a lasing ion is the crystal field of the surrounding, which is inevitably determined by the crystal structure of the pertinent material. From that point it is clear that it cannot be easy to affect the resulting luminescence properties - intensity or position of the luminescence band - without changing the structure of the substrate. However, there is a possibility to utilise a potential of the ion implantation of the lasing ions, optionally accompanied with a sensitising one, that can, besides the doping, also modify the structure of the treated area od the crystal. This effect can be eventually enhanced by a post-implantation annealing that may help to recover the damaged structure and hence to improve the desired luminescence. In this paper we are going to report on our experiments with ion-implantation technique followed with subsequent annealing could be a useful way to influence the crystal field of LN. Optically active Er:LiNbO 3 layers were fabricated by medium energy implantation under various experimental conditions. The Er + ions were implanted at energies of 330 and 500 keV with fluences ranging from 1.0 × 10 15 to 1.0 × 10 16 ion cm -2 into LiNbO 3 single-crystal cuts of both common and special orientations. The as-implanted samples were annealed in air and oxygen at two different temperatures (350 and 600 °C) for 5 h. The depth concentration profiles of the implanted erbium were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He + ions. The photoluminescence spectra of the samples were measured to determine the

  9. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  10. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  11. Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.

    PubMed

    Lü, Tao; Xiao, Qing; Xia, Danqing; Ruan, Kai; Li, Zhengjia

    2010-01-01

    To overcome the inconsecutive drawback of shadow and schlieren photography, the complete dynamics of cavitation bubble oscillation or ablation products induced by a single holmium laser pulse [2.12 microm, 300 micros (FWHM)] transmitted in different core diameter (200, 400, and 600 microm) fibers is recorded by means of high-speed photography. Consecutive images from high-speed cameras can stand for the true and complete process of laser-water or laser-tissue interaction. Both laser pulse energy and fiber diameter determine cavitation bubble size, which further determines acoustic transient amplitudes. Based on the pictures taken by high-speed camera and scanned by an optical coherent microscopy (OCM) system, it is easily seen that the liquid layer at the distal end of the fiber plays an important role during the process of laser-tissue interaction, which can increase ablation efficiency, decrease heat side effects, and reduce cost.

  12. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  13. Spectroscopic study of trivalent praseodymium in barium yttrium fluoride

    NASA Astrophysics Data System (ADS)

    Bowlby, Brian Edward

    1998-09-01

    This work investigates the spectroscopic properties of trivalent praseodymium (Pr3+) in barium yttrium fluoride (BaY2F8). Two doping concentrations were studied: BaY2F8:Pr3+ (.3%) and BaY2F8:Pr3+ (1%). Absorption spectra were taken at 77K and 300K and these were then used to calculate the Judd-Ofelt coefficients for both samples. These coefficients were then used to calculate the theoretical lifetimes and radiative branching ratios for all manifolds. Continuous luminescence spectra and lifetime measurements were also performed, and from these, experimentally determined values for the branching ratio and lifetimes were determined. These were then compared to their theoretical counterparts. It was found that while the theory gave values that were qualitatively correct, the quantitative correlation between theory and experiment shows the complexity of the physical reality and the difficulty of synthesizing an encompassing theoretical model. Absorption spectra and continuous luminescence spectra were also used to determine the energy levels of all manifolds in both samples. A total of 59 energy levels in 11 manifolds were identified in the BaY2F8:Pr3+ (1%) sample, while 51 levels in 11 manifolds were identified in the BaY2F8:Pr3+ (.3%) sample. Finally, the effects of temperature on the line width and line position for several radiative transitions was studied. It was found that while most transitions exhibited the expected broadening and shifting towards longer wavelengths at higher temperatures (a 'red shift'), the transition from the 3P0 level to the 3H4 ground state showed a shift towards shorter wavelengths at higher temperature (a 'blue shift'). Again this highlights the complexity of the ion- host interaction.

  14. The first example of erbium triple-stranded helicates displaying SMM behaviour.

    PubMed

    Gorczyński, Adam; Kubicki, Maciej; Pinkowicz, Dawid; Pełka, Robert; Patroniak, Violetta; Podgajny, Robert

    2015-10-14

    A series of isostructural C3-symmetrical triple stranded dinuclear lanthanide [Ln2L3](NO3)3 molecules have been synthesized using subcomponent self-assembly of Ln(NO3)3 with 2-(methylhydrazino)benzimidazole and 4-tert-butyl-2,6-diformylphenol, where Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), and Yb (6). The temperature dependent and field dependent magnetic properties of 1-6 were modeled using the van Vleck approximation including the crystal field term HCF, the super-exchange term HSE and the Zeeman term HZE. Ferromagnetic interactions were found in 1, 2, 4 and 6, while antiferromagnetic interactions were found in 3 and 5. The erbium analogue reveals field induced SMM behaviour.

  15. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    PubMed

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  16. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  17. All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2017-01-01

    A passively mode-locked thulium/holmium-doped fiber laser (THDFL) based on tungsten disulfide (WS2) saturable absorber (SA) was demonstrated. The WS2 nanosheets were prepared by liquid phase exfoliation method and the SA was fabricated by depositing the few-layer WS2 nanosheets on the surface of a fiber taper. The modulation depth, saturable intensity, and non-saturable loss of this SA were measured to be 8.2%, 0.82 GW cm-2, and 29.4%, respectively. Based on this SA, a stable mode-locked laser operated at 1.91 µm was achieved with pulse duration of 825 fs and repetition rate of 15.49 MHz, and signal-to-noise ratio (SNR) of 67 dB. Meanwhile, by increasing the pump power and adjusting the position of polarization controller, harmonic mode-locking operations were obtained. These results showed that the WS2 nanosheet-based SA could be served as a desirable candidate for a short-pulse mode locker at 2 µm wavelength.

  18. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Kang, Zhe; Xu, Yang; Zhang, Lei; Jia, Zhixu; Liu, Lai; Zhao, Dan; Feng, Yan; Qin, Guanshi; Qin, Weiping

    2013-07-01

    We demonstrated a passively mode-locked erbium-doped fiber laser by using gold nanorods as a saturable absorber. The gold nanorods (GNRs) were mixed with sodium carboxymethylcellulose (NaCMC) to form GNRs-NaCMC films. By inserting one of the GNRs-NaCMC films into an EDFL cavity pumped by a 980 nm laser diode, stable passively mode-locking was achieved with a threshold pump power of ˜54 mW, and 12 ps pulses at 1561 nm with a repetition rate of 34.7 MHz and a maximum average power of ˜2.05 mW were obtained for a pump power of ˜62 mW.

  19. Organo-erbium systems for optical amplification at telecommunications wavelengths.

    PubMed

    Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P

    2014-04-01

    Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.

  20. High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K.

    2008-07-01

    High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalizationmore » in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)« less

  1. Holmium laser lithotripsy (HoLL) of ureteral calculi

    NASA Astrophysics Data System (ADS)

    Kuntz, Rainer M.; Lehrich, Karin; Fayad, Amr

    2001-05-01

    The effectiveness and side effects of ureteroscopic HoLL of ureteral stones should be evaluated. In 63 patients (17 female, 46 males) a total of 75 stones of 3-20 mm diameter were treated with ureteroscopic HoLL. 18.7 percent of stones were located in the proximal third, 24.0 percent in the middle third and 57.3 percent in the distal third of the ureter. HoLL was performed with small diameter semirigid and flexible ureteroscopes, 220 or 365 nm flexible laser fibers and a holmium:YAG laser at a power of 5-15 W (0.5-1.0 J, 10- 15 Hz). 47 of 63 patients (74.6 percent) were immediately free of stones, and 8 others (12.6 percent) lost their residual fragments spontaneously within two weeks. Another 2 patients received additional chmolitholysis for uric acid stone fragments, i.e. 90.5 percent of patients were stone free by one sitting of ureterscopic HoLL. Of the remaining 6 patients (9.5 percent) who still had residual calculi 4 weeks after HoLL, 2 asymptomatic patients refused any additional treatment, 2 patients preferred treatment with ESWL, and 2 patients had a successful second HoLL, thereby raising the success rate of ureteroscopic HoLL to 93.7 percent. 2 patients showed contrast medium extravasation on retrograde ureterograms, due to guide wire perforation. No ureteral stricture occurred. In conclusion, transurethral ureteroscopic HoLL proved to be a safe and successful minimal invasive treatment of ureteral calculi.

  2. High-power Q-switched erbium-ytterbium codoped fiber laser using multiwalled carbon nanotubes saturable absorber

    NASA Astrophysics Data System (ADS)

    Ab Razak, Mohd Zulhakimi; Saleh, Zatul Saliza; Ahmad, Fauzan; Anyi, Carol Livan; Harun, Sulaiman W.; Arof, Hamzah

    2016-10-01

    Due to an enormous potential of pulsed lasers in applications such as manufacturing, metrology, environmental sensing, and biomedical diagnostics, a high-power and stable Q-switched erbium-ytterbium codoped double-clad fiber laser (EYDFL) incorporating of multiwall carbon nanotubes (MWCNTs) saturable absorber (SA) made based on polyvinyl alcohol (PVA) with a 3∶2 ratio is demonstrated. The SA was fabricated by mixing a dilute PVA solution with an MWCNTs homogeneous solution. Subsequently, the mixture was sonicated and centrifuged to produce a homogeneous suspension that was left to dry at room temperature to form the MWCNTs-PVA film. The SA was formed by inserting the film between a pair of FC/PC fiber connectors. Then, it was integrated into the EYDFL's ring cavity, which uses a 5-m-long erbium-ytterbium codoped fiber (EYDF). The lasing threshold for the Q-switched EYDFL was at 330 mW. At the maximum available pump power of 900 mW, the proposed EYDFL produced Q-switched pulses with a repetition rate of 74.85 kHz, pulsewidth of ˜3.6 μs, and an average output power of about 5 mW. The maximum energy per pulse of ˜85 nJ was obtained at pump power of ˜700 mW with peak power of 21 mW.

  3. A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System.

    PubMed

    Rhie, Jong Won; Shim, Jeong Su; Choi, Won Seok

    2015-01-01

    The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color.

  4. A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System

    PubMed Central

    Rhie, Jong Won; Choi, Won Seok

    2015-01-01

    Background The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Methods Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Results Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. Conclusions The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color. PMID:25606490

  5. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Mou, Chengbo; Arif, Raz; Lobach, Anatoly S.; Khudyakov, Dmitry V.; Spitsina, Nataliya G.; Kazakov, Valery A.; Turitsyn, Sergei; Rozhin, Aleksey

    2015-02-01

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  6. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  7. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  8. Amplification and noise properties of an erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; Yan, M F; Zhu, B; Fini, J M; Monberg, E M; Dimarcello, F V; Wisk, P W

    2011-08-15

    A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible. © 2011 Optical Society of America

  9. Rapid onsite detection of bacterial spores of biothreat importance by paper-based colorimetric method using erbium-pyrocatechol violet complex.

    PubMed

    Shivakiran, M S; Venkataramana, M; Lakshmana Rao, P V

    2016-01-01

    Dipicolinic acid (DPA) is an important chemical marker for the detection of bacterial spores. In this study, complexes of lanthanide series elements such as erbium, europium, neodymium, and terbium were prepared with pyrocatechol violet and effectively immobilized the pyrocatechol violet (PV)-metal complex on a filter paper using polyvinyl alcohol. These filter paper strips were employed for the onsite detection of bacterial spores. The test filter papers were evaluated quantitatively with different concentrations of DPA and spores of various bacteria. Among the four lanthanide ions, erbium displayed better sensitivity than the other ions. The limit of detection of this test for DPA was 60 μM and 5 × 10(6) spores. The effect of other non-spore-forming bacteria and interfering chemicals on the test strips was also evaluated. The non-spore-forming bacteria did not have considerable effect on the test strip whereas chemicals such as EDTA had significant effects on the test results. The present test is rapid and robust, capable of providing timely results for better judgement to save resources on unnecessary decontamination procedures during false alarms.

  10. Watt-level dysprosium fiber laser at 315 μm with 73% slope efficiency

    NASA Astrophysics Data System (ADS)

    Woodward, R. I.; Majewski, M. R.; Bharathan, G.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2018-04-01

    Rare-earth-doped fiber lasers are emerging as promising high-power mid-infrared sources for the 2.6-3.0 {\\mu}m and 3.3-3.8 {\\mu}m regions based on erbium and holmium ions. The intermediate wavelength range, however, remains vastly underserved, despite prospects for important manufacturing and defense applications. Here, we demonstrate the potential of dysprosium-doped fiber to solve this problem, with a simple in-band pumped grating-stabilized linear cavity generating up to 1.06 W at 3.15 {\\mu}m. A slope efficiency of 73% with respect to launched power (77% relative to absorbed power) is achieved: the highest value for any mid-infrared fiber laser to date, to the best of our knowledge. Opportunities for further power and efficiency scaling are also discussed.

  11. Using multi-ring structure for suppression of mode competition in stable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai

    2017-12-01

    In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.

  12. Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks

    NASA Astrophysics Data System (ADS)

    Choi, H. B.; Oh, J. M.; Lee, D.; Ahn, S. J.; Park, B. S.; Lee, S. B.

    2002-11-01

    The performance of L-band erbium-doped fiber amplifier (EDFA) of a simple structure with a fiber Bragg grating (FBG) was investigated. The injected C-band ASE by the FBG offers low-cost amplification and greatly improves the efficiency of the EDFA. There are 9 and 4 dB improvements with the FBG at 1587 nm, at low and high input, respectively. The flat gain of 18 dB, up to a total input of -5 dBm at 150 mW of 980 nm pump, is obtained over 30 nm with less than ±0.5 dB gain variations without any gain equalizer. The proposed EDFA provides a cost-effective solution for wavelength division multiplexing systems.

  13. Stabilized single-longitudinal-mode erbium fibre laser employing silicon-micro-ring resonator and saturable absorber

    NASA Astrophysics Data System (ADS)

    Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun

    2018-07-01

    In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.

  14. Holmium:YAG laser coronary angioplasty in patients with lesions not ideal for balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shunichi; Nonogi, Hiroshi; Goto, Yoichi; Itoh, Akira; Ozono, Keizaburo; Daikoku, Satoshi; Haze, Kazuo

    1993-06-01

    Conventional balloon coronary angioplasty has limitations for application on particular lesions, such as lesions near the left main trunk (LMT), ostial location, and highly eccentric lesions. Hence, efficacy of newly developed Holmium YAG laser coronary angioplasty (HLCA) was assessed for 24 patients with angina. Adjunctive balloon angioplasty was performed for 21 of 24 lesions. Delivered energy ranged from 1.5 to 2.5 watts/pulse and the total exposure time ranged from 6 to 32 seconds. Laser success, defined as 20% reduction of stenotic ratio, was obtained in 16 of 24 (67%) and overall procedural success rate was 92%. Follow up coronary angiography after 3 months showed restenosis in 9 of 19 patients (47%). HLCA is an acutely effective treatment for lesions identified as not ideal for balloon angioplasty. However, angiographical restenosis rate is similar to the conventional balloon angioplasty and a highly calcified complex lesion may not be a candidate for the treatment of HLCA, because of a potential risk of coronary perforation.

  15. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    NASA Technical Reports Server (NTRS)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs), while revolutionizing optical communications, remain vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random pulses with high peak power, i.e. giant pulses. Giant pulses can damage the components in a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on conditions under which normal pulses evolve into giant pulses, and provide results on the transient effects of giant pulses on amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  16. Erbium: YAG Laser Incision of Urethral Strictures for Treatment of Urinary Incontinence After Prostate Cancer Surgery

    DTIC Science & Technology

    2005-02-01

    Each of these medical applications has different requirements for the Erbium laser and optical fiber delivery system. Dental applications require high...1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Wavelength [microns] Figure 1. Transmission loss of germanium fibers (from IFS). Figure 2. Dental ...cable with handpiece A typical delivery system for the Er:YAG laser consists of an approximately 2 meter long "trunk" fiber to deliver laser power from

  17. High energy passively mode-locked erbium-doped fiber laser at tens of kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Chen, Jiong; Jia, Dongfang; Wang, Changle; Wang, Junlong; Wang, Zhaoying; Yang, Tianxin

    2011-12-01

    We demonstrate an ultra-long cavity all-fiber Erbium-doped fiber laser that is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 4.046 km, which is achieved by incorporating a 4 km single mode fiber. The laser generates stable mode-locked pulses with a 50.90 kHz fundamental repetition rate. The maximum average power of output pulses is 2.73 mW, which corresponds to per-pulse energy of 53.63 nJ.

  18. Therapeutic applications of lasers in urology: an update.

    PubMed

    Fried, Nathaniel M

    2006-01-01

    There has been renewed interest in the use of lasers for minimally invasive treatment of urologic diseases in recent years. The introduction of more compact, higher power, less expensive and more user-friendly solid-state lasers, such as the holmium:yttrium-aluminum-garnet (YAG), frequency-doubled neodymium:YAG and diode lasers has made the technology more attractive for clinical use. The availability of small, flexible, biocompatible, inexpensive and disposable silica optical fiber delivery systems for use in flexible endoscopes has also promoted the development of new laser procedures. The holmium:YAG laser is currently the workhorse laser in urology since it can be used for multiple soft- and hard-tissue applications, including laser lithotripsy, benign prostate hyperplasia, bladder tumors and strictures. More recently, higher power potassium-titanyl-phosphate lasers have been introduced and show promise for the treatment of benign prostatic hyperplasia. On the horizon, newer and more effective photosensitizing drugs are being tested for potential use in photodynamic therapy of bladder and prostate cancer. Additionally, new experimental lasers such as the erbium:YAG, Thulium and Thulium fiber lasers, may provide more precise incision of soft tissues, more efficient laser lithotripsy and more rapid prostate ablation. This review provides an update on the most important new clinical and experimental therapeutic applications of lasers in urology over the past 5 years.

  19. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared.

    PubMed

    Washburn, Brian R; Diddams, Scott A; Newbury, Nathan R; Nicholson, Jeffrey W; Yan, Man F; Jørgensen, Carsten G

    2004-02-01

    A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.

  20. Thulium vapoenucleation of the prostate versus holmium laser enucleation of the prostate for the treatment of large volume prostates: preliminary 6-month safety and efficacy results of a prospective randomized trial.

    PubMed

    Becker, B; Herrmann, T R W; Gross, A J; Netsch, C

    2018-05-05

    We compared the perioperative and postoperative characteristics of thulium vapoenucleation and holmium laser enucleation of the prostate for the treatment of large volume benign prostatic hyperplasia. A total of 94 patients with benign prostatic hyperplasia and a median prostate size of 80 (IQR 46.75-100) cc were either randomized to thulium vapoenucleation or holmium laser enucleation of the prostate. Patients were assessed preoperatively, 1 and 6 months postoperatively. The median operative time was 60 (IQR 41-79) min without significant differences between the groups. There were no significant differences between the groups regarding catheter time [2 (IQR 2-2) days] and postoperative stay [2 (IQR 2-3) days]. Clavien 1 (13.8%), 2 (3.2%), 3a (2.1%), and Clavien 3b (4.3%) complications occurred without significant differences between the groups. At 6-month follow-up, median maximum flow rate (10.7 vs. 25.9 ml/s), post-void residual urine (100 vs. 6.5 ml), I-PSS (20 vs. 5), quality of life (4 vs. 1), PSA (4.14 vs. 0.71 µg/l), and prostate volume (80 vs. 16 ml) had improved significantly (p < 0.001) compared to baseline without significant differences between the groups. Median PSA decrease was 79.7% (58.8-90.6%) and prostate volume reduction was 74.5% (68.57-87.63%) without differences between the groups. The reoperation rate was zero at 6-month follow-up. Thulium vapoenucleation and holmium laser enucleation of the prostate are safe and effective procedures for the treatment of large volume benign prostatic hyperplasia. Both procedures give satisfactory micturition improvement with low morbidity and sufficient prostate volume reduction at 6-month follow-up.

  1. Generation of dark solitons in erbium-doped fiber lasers based Sb(2)Te(3) saturable absorbers.

    PubMed

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2015-10-05

    Dark solitons, which have better stability in the presence of noise, have potential applications in optical communication and ultrafast optics. In this paper, the dark soliton formation in erbium-doped fiber lasers based Sb(2)Te(3) saturable absorber (SA) is first experimentally demonstrated. The Sb(2)Te(3) SA is fabricated by using the pulsed laser deposition method. The generated dark solitons are centered at the wavelength of 1530 nm and repetition rate of 94 MHz. Analytic solutions for dark solitons are also obtained theoretically.

  2. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach-Zehnder interferometer and tunable filter

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2  ×  2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.

  3. Interactions of praseodymium and neodymium with nucleosides and nucleotides: absorption difference and comparative absorption spectral study.

    PubMed

    Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H

    1992-02-01

    The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.

  4. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    NASA Technical Reports Server (NTRS)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  5. Control of pulse format in high energy per pulse all-fiber erbium/ytterbium laser systems

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Block, Matthew K.; Deffenbaugh, James; Fitzpatrick, Zak G.; Urioste, Michael T.; Henry, Leanne J.; Jain, Ravinder

    2017-02-01

    A multi-stage linearly polarized (PM) (15 dB) pulsed fiber laser system at 1550 nm capable of operating at repetition rates between 3 and 20 kHz was investigated. A narrow linewidth seed source was linewidth broadened to approximately 20 GHz and pulses were created and shaped via an electro-optic modulator (EOM) in conjunction with a home built arbitrary waveform generator. As expected, a high repetition rate pulse train with a near diffraction limited beam quality (M2 1.12) was achieved. However, the ability to store energy was limited by the number of active ions within the erbium/ytterbium doped gain fiber within the various stages. As a result, the maximum energy per pulse achievable from the system was approximately 0.3 and 0.38 mJ for 300 ns and 1 μs pulses, respectively, at 3 kHz. Because the system was operated at high inversion, the erbium/ytterbium doped optical fiber preferred to lase at 1535 nm versus 1550 nm resulting in amplified spontaneous emission (ASE) both intra- and inter-pulse. For the lower power stages, the ASE was controllable via a EOM whose function was to block the energy between pulses as well as ASE filters whose purpose was to block spectral components outside of the 1550 nm passband. For the higher power stages, the pump diodes were pulsed to enable strategic placement of an inversion resulting in higher intrapulse energies as well as an improved spectrum of the signal. When optimized, this system will be used to seed higher power solid state amplifier stages.

  6. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  7. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.

    PubMed

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E

    2013-07-01

    Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.

  8. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  9. Evaluation of the optical switching characteristics of erbium-doped fibres for the development of a fibre Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.

    2014-05-01

    A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.

  10. Treatment of burn scars in Fitzpatrick phototype III patients with a combination of pulsed dye laser and non-ablative fractional resurfacing 1550 nm erbium:glass/1927 nm thulium laser devices.

    PubMed

    Tao, Joy; Champlain, Amanda; Weddington, Charles; Moy, Lauren; Tung, Rebecca

    2018-01-01

    Burn scars cause cosmetic disfigurement and psychosocial distress. We present two Fitzpatrick phototype (FP) III patients with burn scars successfully treated with combination pulsed dye laser (PDL) and non-ablative fractional lasers (NAFL). A 30-year-old, FP III woman with a history of a second-degree burn injury to the bilateral arms and legs affecting 30% body surface area (BSA) presented for cosmetic treatment. The patient received three treatments with 595 nm PDL (7 mm, 8 J, 6 ms), six with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and five with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). Treated burn scars improved significantly in thickness, texture and colour. A 33-year-old, FP III man with a history of a second-degree burn injury of the left neck and arm affecting 7% BSA presented for cosmetic treatment. The patient received two treatments with 595 nm PDL (5 mm, 7.5 J, 6 ms), four with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and two with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). The burn scars became thinner, smoother and more normal in pigmentation and appearance. Our patients' burn scars were treated with a combination of PDL and NAFL (two wavelengths). The PDL targets scar hypervascularity, the 1550 nm erbium:glass stimulates collagen remodelling and the 1927 nm thulium targets epidermal processes, particularly hyperpigmentation. This combination addresses scar thickness, texture and colour with a low side effect profile and is particularly advantageous in patients at higher risk of post-procedure hyperpigmentation. Our cases suggest the combination of 595nm PDL plus NAFL 1550 nm erbium:glass/1927 nm thulium device is effective and well-tolerated for burn scar treatment in skin of colour.

  11. Assignments of the Raman modes of monoclinic erbium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, D.; Wu, P., E-mail: pingwu@sas.ustb.edu.cn; Zhang, S. P.

    2013-11-21

    As a heavy rare earth oxide, erbium oxide (Er{sub 2}O{sub 3}) has many attractive properties. Monoclinic Er{sub 2}O{sub 3} has useful properties not found in stable cubic Er{sub 2}O{sub 3}, such as unique optical properties and high radiation damage tolerance. In this study, cubic Er{sub 2}O{sub 3} coating and Er{sub 2}O{sub 3} coating with mixed phases were prepared. The Raman scattering spectra of these coatings were investigated by using a confocal micro-Raman spectrometer equipped with 325, 473, 514, 532, 633, and 784 nm lasers. A total of 17 first-order Raman modes of monoclinic Er{sub 2}O{sub 3} were identified and assigned. Themore » modes at 83, 112, 152, 170, 278, 290, 409, 446, 478, 521, 603, and 622 cm{sup −1} are of A{sub g} symmetry, whereas modes at 71, 98, 333, 409, 446, and 468 cm{sup −1} are of B{sub g} symmetry. This research provides basic data necessary for the characterization of monoclinic Er{sub 2}O{sub 3} by Raman spectroscopy.« less

  12. Refractive index of erbium doped GaN thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alajlouni, S.; Sun, Z. Y.; Li, J.

    2014-08-25

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers andmore » represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.« less

  13. Use of 1540nm fractionated erbium:glass laser for split skin graft resurfacing: a case study.

    PubMed

    Narinesingh, S; Lewis, S; Nayak, B S

    2013-09-01

    The field of laser skin resurfacing has evolved rapidly over the past two decades from ablative lasers, to nonablative systems using near-infrared, intense-pulsed light and radio-frequency systems, and most recently fractional laser resurfacing. Although fractional thermolysis is still in its infancy, its efficacy in in the treatment of skin disorders have been clearly demonstrated. Here we present a case report on the safety and efficacy of a 1540nm erbium:glass laser in the treatment of the waffle pattern of a meshed skin graft in a 38-year-old patient with type V skin in the Caribbean.

  14. Actively Q-switched, thulium-holmium-codoped fiber laser incorporating a silicon-based, variable-optical-attenuator-based Q switch.

    PubMed

    Jung, Minwan; Han Lee, Ju

    2013-04-20

    An actively Q-switched thulium-holmium-codoped fiber laser incorporating an Si-based variable optical attenuator (VOA) is experimentally demonstrated. It has been shown that an Si-based VOA with a response time of hundreds of nanoseconds can be used as a cost-effective 2 μm Q switch due to its extremely wide operating bandwidth from 1.5 to 2 μm, and low electrical power consumption. In our study, the laser's slope efficiency was measured to be ~17% at an operating wavelength of 1.89 μm. The repetition rate tuning range was from 20 to 80 kHz, which was limited by the optical damage threshold and the response time. The minimum temporal pulsewidth was measured to be ~184 ns at a modulation frequency of 20 kHz, and the corresponding maximum peak power was ~10 W.

  15. Impact of holmium fibre laser radiation (λ = 2.1 μm) on the spinal cord dura mater and adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatova, S A; Kamynin, V A; Ryabova, A V

    The impact of holmium fibre laser radiation on the samples of biologic tissues (dura mater of spinal cord and adipose tissue with interlayers of muscle) is studied. The experimental results are evaluated by the size of carbonisation and coagulation necrosis zones. The experiment shows that in the case of irradiation of the spinal cord dura mater samples the size of carbonisation and coagulation necrosis zones is insignificant. In the adipose tissue the carbonisation zone is also insignificant, but the region of cellular structure disturbance is large. In the muscle tissue the situation is opposite. The cw laser operation provides clinicallymore » acceptable degree of destruction in tissue samples with a minimal carbonisation zone. (laser applications in medicine)« less

  16. Acoustic transients in pulsed holmium laser ablation: effects of pulse duration

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Delacretaz, Guy P.; Jansen, E. Duco; Welch, Ashley J.; Frenz, Martin

    1995-01-01

    The goal of this work was to study the influence of pulse duration on acoustic transient generation in holmium laser ablation. For this, the generation and collapse of cavitation bubbles induced by Q-switched and free-running laser pulses delivered under water were investigated. Polyacrylamide gel of 84% water content served as a model for soft tissue. This gel is a more realistic tissue phantom than water because it mimics not only the optical properties but also the mechanical properties of tissue. The dynamics of bubble formation inside the clear gel were observed by 1 ns time resolved flash videography. A polyvinylidenefluoride (PVDF) needle probe transducer measured absolute values of pressure amplitudes. Pressure wave generation by cavitation bubble collapse was observed in all phantoms used. Maximum pressures of more than 180 bars at 1 mm from the collapse center were observed in water and high water-contents gels with a pulse energy of 200 mJ and a 400 micrometers fiber. A strong dependency of the bubble collapse pressure on the pulse duration for constant pulse energy was observed in gel as well as in water. For pulse durations longer than 400 microsecond(s) a 90% reduction of pressure amplitudes relative to 100 microsecond(s) pulses was found. This suggests that optimization of pulse duration offers a degree of freedom allowing us to minimize the risk of acoustical damage in medical applications like arthroscopy and angioplasty.

  17. Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)

    NASA Astrophysics Data System (ADS)

    Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.

    2016-11-01

    We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.

  18. Molecular effects of fractional ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimensional organotypic skin models.

    PubMed

    Schmitt, Laurenz; Amann, P M; Marquardt, Y; Heise, R; Czaja, K; Gerber, P A; Steiner, T; Hölzle, F; Baron, Jens Malte

    2017-05-01

    The molecular changes in gene expression following ablative laser treatment of skin lesions, such as atrophic scars and UV-damaged skin, are not completely understood. A standardized in vitro model of human skin, to study the effects of laser treatment on human skin, has been recently developed. Therefore, the aim of the investigation was to examine morphological and molecular changes caused by fractional ablative erbium:YAG laser treatment on an in vitro full-thickness 3D standardized organotypic model of human skin. A fractional ablative erbium:YAG laser was used to irradiate organotypic human 3D models. Laser treatments were performed at four different settings using a variety of stacked pulses with similar cumulative total energy fluence (60 J/cm 2 ). Specimens were harvested at specified time points and real-time PCR (qRT-PCR) and microarray studies were performed. Frozen sections were examined histologically. Three days after erbium:YAG laser treatment, a significantly increased mRNA expression of matrix metalloproteinases and their inhibitors (MMP1, MMP2, MMP3, TIMP1, and TIMP2), chemokines (CXCL1, CXCL2, CXCL5, and CXCL6), and cytokines such as IL6, IL8, and IL24 could be detected. qRT-PCR studies confirmed the enhanced mRNA expression of IL6, IL8, IL24, CXCLs, and MMPs. In contrast, the mRNA expression of epidermal differentiation markers, such as keratin-associated protein 4, filaggrin, filaggrin 2, and loricrin, and antimicrobial peptides (S100A7A, S100A9, and S100A12) as well as CASP14, DSG2, IL18, and IL36β was reduced. Four different settings with similar cumulative doses have been tested (N10%, C10%, E10%, and W25%). These laser treatments resulted in different morphological changes and effects on gene regulations. Longer pulse durations (1000 μs) especially had the strongest impact on gene expression and resulted in an upregulation of genes, such as collagen-1A2, collagen-5A2, and collagen-6A2, as well as FGF2. Histologically, all treatment

  19. Laboratory investigation of the efficacy of holmium:YAG laser irradiation in removing intracanal debris

    NASA Astrophysics Data System (ADS)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    Current endodontic therapy involves debridement and disinfection of the root canal by means of mechanical instrumentation and chemical irrigation. However, several studies have shown that these techniques fail to achieve complete cleansing. Recently, lasers have been suggested for use within root canals. This study was conducted to determine the efficacy of Holmium:YAG laser irradiation in removing intracanal debris and smear layer. Root canal surfaces of freshly-extracted human teeth were exposed to pulsed Ho:YAG laser radiation. Subsequently, laser induced structural changes were investigated using scanning electron microscopy. Temperature measurements during irradiation were performed by means of thermocouples. The result of this survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment modalities. However, limitations exist with regard to circumscribed and well-quantified irradiation of root canal surfaces, due to the lack of perpendicular delivery of the laser beam. Additional studies will be required to develop suitable optical transmission systems, in order to achieve complete cleansing and to avoid damage to the periradicular tissues, respectively.

  20. Damage thresholds of silica fibers in holmium:YAG laser energy delivery for medical applications

    NASA Astrophysics Data System (ADS)

    Marolda, Matthew D.; Perrault, Donald F., Jr.; Pankratov, Michail M.; Shapshay, Stanley M.

    1993-07-01

    Pulsed Holmium:YAG (Ho:YAG) laser has been approved for some clinical applications and is under investigation for others. There is little published evidence on the durability or damage parameters for the fibers used in delivering energy from pulsed Ho:YAG laser. This study makes an initial attempt to investigate the damage threshold of different silica fibers under various conditions. Three types of fibers supplied by different manufacturers underwent laboratory testing. The overall finding of the study is that a new `perfect' fiber sustains no damage when fired without a target in air or in saline at energies up to 1.5 J/pulse and repetition rate up to 10 Hz. This study suggests that one may need to chose a fiber according to the clinical procedure to be performed: in cases where only soft tissue is to be manipulated - - any fiber may fare well, in cases where bone or calcified tissue is to be lased -- one may need fiber with aluminized or other hard coating. We also conclude that only professional refinishing with the removal of all exposed core-cladding material can insure trouble free performance.

  1. Influence of lasing parameters on the cleaning efficacy of laser-activated irrigation with pulsed erbium lasers.

    PubMed

    Meire, Maarten A; Havelaerts, Sophie; De Moor, Roeland J

    2016-05-01

    Laser-activated irrigation (LAI) using erbium lasers is an irrigant agitation technique with great potential for improved cleaning of the root canal system, as shown in many in vitro studies. However, lasing parameters for LAI vary considerably and their influence remains unclear. Therefore, this study sought to investigate the influence of pulse energy, pulse frequency, pulse length, irradiation time and fibre tip shape, position and diameter on the cleaning efficacy of LAI. Transparent resin blocks containing standardized root canals (apical diameter of 0.4 mm, 6% taper, 15 mm long, with a coronal reservoir) were used as the test model. A standardized groove in the apical part of each canal wall was packed with stained dentin debris. The canals were filled with irrigant, which was activated by an erbium: yttrium aluminium garnet (Er:YAG) laser (2940 nm, AT Fidelis, Fotona, Ljubljana, Slovenia). In each experiment, one laser parameter was varied, while the others remained constant. In this way, the influence of pulse energy (10-40 mJ), pulse length (50-1000 μs), frequency (5-30 Hz), irradiation time (5-40 s) and fibre tip shape (flat or conical), position (pulp chamber, canal entrance, next to groove) and diameter (300-600 μm) was determined by treating 20 canals per parameter. The amount of debris remaining in the groove after each LAI procedure was scored and compared among the different treatments. The parameters significantly (P < 0.05, Kruskal-Wallis) affecting debris removal from the groove were fibre tip position, pulse length, pulse energy, irradiation time and frequency. Fibre tip shape and diameter had no significant influence on the cleaning efficacy.

  2. Analysis of soft x-ray emission spectra of laser-produced dysprosium, erbium and thulium plasmas

    NASA Astrophysics Data System (ADS)

    Sheil, John; Dunne, Padraig; Higashiguchi, Takeshi; Kos, Domagoj; Long, Elaine; Miyazaki, Takanori; O'Reilly, Fergal; O'Sullivan, Gerard; Sheridan, Paul; Suzuki, Chihiro; Sokell, Emma; White, Elgiva; Kilbane, Deirdre

    2017-03-01

    Soft x-ray emission spectra of dysprosium, erbium and thulium ions created in laser-produced plasmas were recorded with a flat-field grazing-incidence spectrometer in the 2.5-8 nm spectral range. The ions were produced using an Nd:YAG laser of 7 ns pulse duration and the spectra were recorded at various power densities. The experimental spectra were interpreted with the aid of the Cowan suite of atomic structure codes and the flexible atomic code. At wavelengths above 5.5 nm the spectra are dominated by overlapping n = 4 - n = 4 unresolved transition arrays from adjacent ion stages. Below 6 nm, n = 4 - n = 5 transitions also give rise to a series of interesting overlapping spectral features.

  3. Phase diagram and equation of state of praseodymium at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Baer, Bruce J.; Cynn, Hyunchae; Iota, Valentin; Yoo, Choong-Shik; Shen, Guoyin

    2003-04-01

    The phase diagram for praseodymium (Pr) has been determined for pressures between 5 and 60 GPa and temperatures between 295 and 830 K using both in situ energy- and angle-dispersive x-ray diffraction with externally heated diamond-anvil cells. Mineral oil and argon were alternatively used as pressure media in order to compare conflicting results in the literature and to ensure the validity of mineral oil as an inert medium. Evidence for the presence of an, as yet, unidentified phase (denoted Pr-VI) above 675 K has been observed, whereas no compelling evidence has been observed for the existence of the recently reported monoclinic phase (Pr-V). The new constraints of the phase diagram, therefore, suggest that the phase transitions occur as Pr-I(dhcp)→Pr-II(fcc)→Pr-VI→Pr-IV(α-U) above approximately 700 K. Additionally, there is a Pr-III(distorted fcc), Pr-VI, and Pr-IV triple point at approximately 675 K and 23.8 GPa. Temperature-dependent equations of state have been determined, allowing the temperature-dependent volume collapse at the transition between Pr-III and Pr-IV to be calculated. We report a linear decrease of the volume collapse along the Pr-III to Pr-IV boundary with temperature, ΔV/V (%)=16.235-0.0156[T(K)]; the extrapolation indicates that the volume collapse should vanish well below the melting point. With the temperature-dependent equation of state data and new phase diagram we demonstrate that the volume collapse can be accounted for by a change in the multiplicity of Pr atoms as the f electrons go from localized to itinerant.

  4. Stabilized and tunable single-longitudinal-mode erbium fiber laser employing ytterbium-doped fiber based interference filter

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng

    2017-02-01

    In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.

  5. Preparative scale separation of thulium from erbium for neutron capture cross section measurements - Part: Preparative scale

    DOE PAGES

    Birnbaum, Eva R.; Bene, Balazs J.; Taylor, Wayne Allen; ...

    2016-06-04

    Here, this paper discusses the development of a separation method for isolation of Tm-171 from a half-gram irradiated erbium target in support of stockpile stewardship and astrophysics research. The developed procedure is based on cation exchange separation using alpha-hydroxyisobutyric acid (α-HIBA) as chelating agent. It is able to achieve either a decontamination factor of 1.4(4) × 10 5 with 68.9(3) % recovery or 95.4(3) % recovery with a decontamination factor of 5.82(7) × 10 3 for a mock 500-mg target containing 17.9 mg thulium in a single pass-through at room temperature.

  6. Erbium doped aluminum nitride nanoparticles for nano-thermometer applications

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Kordesch, Martin E.

    2015-06-01

    We have synthesized nanoparticles (NPs) of aluminum nitride (AlN) doped in situ with erbium (Er) using the inert gas condensation technique. These NPs have optical properties that make them good candidates for nanoscale temperature sensors. The photoluminescence (PL) spectrum of Er3+ in these NPs shows two emission peaks in the green region at around 540 and 560 nm. The ratio of the intensities of these luminescence peaks is related to temperature. Using Boltzmann’s distribution, the temperature of the NP and its surrounding can be calculated. The NPs were directly deposited on (111) p-type silicon wafers, transmission electron microscope grids and glass cover slips. XRD and HRTEM study indicates that most of the NPs have crystalline hexagonal AlN structure. An enhancement of the luminescence from these NPs was observed after heating in-air at 770 K for 3 h. The sample was then heated in air using a scanning optical microscope laser. The corresponding change in PL peak intensities of the NPs was recorded for laser powers ranging from 0.2 to 15.1 mW. Temperature calculated using the Boltzmann’s distribution was in the range of 300-470 K. This temperature range is of interest for semiconductor device heating and for thermal treatment of cancerous cells, for example.

  7. Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.

    PubMed

    Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2014-10-10

    A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.

  8. Experimental erbium: YAG laser photoablation of trabecular meshwork in rabbits: an in-vivo study.

    PubMed

    Dietlein, T S; Jacobi, P C; Schröder, R; Krieglstein, G K

    1997-05-01

    Photoablative laser trabecular surgery has been proposed as an outflow-enhancing treatment for open-angle glaucoma. The aim of the study was to investigate the time course of repair response following low-thermal Erbium: YAG laser trabecular ablation. In 20 anaesthetized rabbits gonioscopically controlled ab-interno photoablation of the ligamenta pectinata and underlying trabecular meshwork (TM) was performed with a single-pulsed (200 microseconds) Erbium: YAG (2.94 microns) laser. The right eye received 12-15 single laser pulses (2 mJ) delivered through an articulated zirconium fluoride fiberoptic and a 200 microns (core diameter) quartz fiber tip, the left unoperated eye served as control. At time intervals of 30 minutes, 2, 10, 30, and 60 days after laser treatment, eyes were processed for light- and scanning electron microscopy. The applied energy density of 6-4 J cm-2 resulted in visible dissection of the ligamenta pectinata and reproducible microperforations of the TM exposing scleral tissue accompanied by blood reflux from the aqueous plexus. The initial ablation zones measured 154 +/- 36 microns in depth and 45 +/- 6 microns in width. Collateral thermal damage zones were 22 +/- 8 microns. At two days post-operative, ablation craters were still blood- and fibrin-filled. The inner surface of the craters were covered with granulocytes. No cellular infiltration of the collateral thermal damage zone was observed. At 10 days post-operative, progressive fibroblastic proliferation was observed, resulting in dense scar tissue formation with anterior synechiae, proliferating capillaries and loss of intertrabecular spaces inside the range of former laser treatment at 60 days post-operative. Trabecular microperforations were closed 60 days after laser treatment in all rabbits. IOP in treated and contralateral eyes did not significantly change its level during whole period of observation. Low-thermal infrared laser energy with minimal thermal damage to collateral

  9. Effect of gain contouring in erbium-doped fiber amplifiers on bit error rate performance of wavelength-division multiplexing-based radio over fiber links

    NASA Astrophysics Data System (ADS)

    Jose, Tony; Narayanan, Vijayakumar

    2018-03-01

    Radio over fiber (RoF) systems use a large number of base stations (BSs) and a number of central stations (CSs), which are interlinked together to form the network. RoF systems use multiple wavelengths for communication between CSs or between CSs and BSs to facilitate the huge amount of data traffic due to the multiple services for a large number of users. When erbium-doped fiber amplifiers (EDFAs) are used as amplifiers in such wavelength-division multiplexed systems, the nonuniform gain spectrum of EDFAs causes instability to some of the channels while providing faithful amplification to other channels. To avoid this inconsistency, the gain spectrum of the amplifier needs to be uniform along the whole usable range of wavelengths. A gain contouring technique is proposed to provide uniform gain to all channels irrespective of wavelength. Optical add/drop multiplexers (OADMs) and different lengths of erbium-doped fibers are used to create such a gain contouring mechanism in the optical domain itself. The effect of a cascade of nonuniform gain amplifiers is studied, and the proposed system mitigates the adverse effects caused due to nonuniform gain-induced channel instability effectively.

  10. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong

    2013-10-01

    A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.

  11. Holmium: YAG laser-induced liquid jet knife: possible novel method for dissection.

    PubMed

    Nakagawa, Atsuhiro; Hirano, Takayuki; Komatsu, Makoto; Sato, Mariko; Uenohara, Hiroshi; Ohyama, Hideki; Kusaka, Yasuko; Shirane, Reizo; Takayama, Kazuyoshi; Yoshimoto, Takashi

    2002-01-01

    Making surgical incisions in vessel-rich organs without causing bleeding is difficult. Thus, it is necessary to develop new devices for this purpose, especially for surgery involving small vessels as in neurosurgery, where damage against even small cerebral vessels result in severe neurological deficits. A laser-induced liquid jet was generated by irradiating pulsed Holmium Yttrium-Aluminum-Garnet (Ho: YAG) laser (beams of 350 microseconds pulse width) within a copper tube (internal diameter, 1 mm) with pure water (150 ml /hour). Ho: YAG laser beams were irradiated through an optical fiber (core diameter, 0.4 mm). The influence of the input of laser energy, structure of the nozzle, and the stand-off distance between the optical fiber tip and nozzle exit on the jet velocity was measured by a high-speed video camera to evaluate controllability of jet. The effect on artificial organs made of 10 and 30%(w/v) gelatin, each of which represent features of soft tissue and blood vessels. Jet velocity increased in proportion to gain in laser energy input, and maximum penetration depth into 10%(w/v) gelatin was 35 mm by single exposure at 350 mJ/pulse without impairing a vessel model. Shapes of nozzle also modified jet velocity with optimal nozzle/tube area ratio of 0.25. The laser-induced liquid jet has excellent potential as a new tool for removing soft tissue without damaging vital structures. Copyright 2002 Wiley-Liss, Inc.

  12. Magnetic Ordering of Erbium and Uranium NICKEL(2) SILICON(2) by Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lin, Hong

    The magnetic ordering has been studied in UNi _2Si_2 and erbium single crystals by elastic neutron scattering. Abundant results are given regarding the magnetic structure, magnetic phase transitions, and the effect of a magnetic field on these properties. Three ordered phases are observed in UNi _2Si_2. They have been determined to be an incommensurate longitudinal spin density wave with a magnetic wave vector around q = 0.74c ^* in the high temperature phase, a simple body-centred antiferromagnet in the intermediate temperature phase, and a square wave in the low temperature phase. This square wave can be viewed equivalently as a longitudinal spin density wave with q = 2/3c ^* superimposed on a ferromagnetic component. Hysteresis and sample dependence are observed in the low-temperature phase transition. The two lower temperature phase transitions are both first order. The transition to paramagnetism is second order with a critical exponent beta = 0.35 +/- 0.03. When a magnetic field is applied along the c axis, the intermediate temperature phase is destabilised and disappears above a field of 3.5T. Although there is no new phase induced by the field, there exists a reentrant point where the three ordered phases can coexist. Erbium has three distinct ordered phases: the cone phase at low temperatures, the c-axis modulated (CAM) phase at higher temperatures, and the intermediate phase with moments modulated both along c and perpendicular to c. Within these phases the modulation of the moments may lock in to the lattice. The observed weak harmonics of the wave vector q in the basal plane for the cone phase and the q = 1/4c^* structure in the intermediate phase can be explained by a basal-plane spin slip model. The effect of magnetic field along the c axis on the magnetic structure is to stabilise the cone phase and to destabilise the intermediate phase. A new lock-in structure with q = 1/4c^* in the cone phase is induced by fields above 1.8T. The presence of the

  13. Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium.

    PubMed

    Chen, Guihua; Wang, Yong; Zhang, Juihui; Wu, Chenglin; Liang, Huading; Yang, Hui

    2012-05-01

    A series of nitrogen and erbium co-doped TiO2 photocatalyst was prepared by sol-hydrothermal method. The structure and properties of the photocatalyst were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (DRS). The XRD and BET results showed that co-doping inhibited the increase of crystallite size and enlarged specific surface areas. XPS spectroscopy indicated nitrogen atoms were incorporated into TiO2 lattice, and erbium atoms mostly existed in the forms of Er2O3. A shift of the absorption edge to the lower energy and four absorption bands located at 654, 544, 524 and 489 nm attributed to the 4f transitions of 4I15/2 --> 4F2/9, 4I15/2 --> 4S3/2, 4I15/2 --> 2H11/2, 4I15/2 --> 4F7/2 of Er3+ were observed using DRS spectroscopy. The catalytic efficency was evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the photocatalytic performance of the co-doped TiO2 was related with the hydrothermal temperature and the molar ratio of N/Ti, and they showed higher acitivites than pure TiO2. Results determined by fluorescence technique revealed that irradiation (lambda > 400 nm) of TiO2 photocatalyst dispersed in MO solution induces the generation of the highly active hydroxyl radicals (OH). It indicated the photocatalytic activities of TiO2 photocatalyst were correlation with the formation rate of hydroxyl radicals (OH) and other active oxygen species.

  14. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  15. Low versus High Fluence Parameters in the Treatment of Facial Laceration Scars with a 1,550 nm Fractional Erbium-Glass Laser

    PubMed Central

    Shim, Hyung-Sup; Jun, Dai-Won; Kim, Sang-Wha; Jung, Sung-No; Kwon, Ho

    2015-01-01

    Purpose. Early postoperative fractional laser treatment has been used to reduce scarring in many institutions, but the most effective energy parameters have not yet been established. This study sought to determine effective parameters in the treatment of facial laceration scars. Methods. From September 2012 to September 2013, 57 patients were enrolled according to the study. To compare the low and high fluence parameters of 1,550 nm fractional erbium-glass laser treatment, we virtually divided the scar of each individual patient in half, and each half was treated with a high and low fluence setting, respectively. A total of four treatment sessions were performed at one-month intervals and clinical photographs were taken at every visit. Results. Results were assessed using the Vancouver Scar Scale (VSS) and global assessment of the two portions of each individual scar. Final evaluation revealed that the portions treated with high fluence parameter showed greater difference compared to pretreatment VSS scores and global assessment values, indicating favorable cosmetic results. Conclusion. We compared the effects of high fluence and low fluence 1,550 nm fractional erbium-glass laser treatment for facial scarring in the early postoperative period and revealed that the high fluence parameter was more effective for scar management. PMID:26236738

  16. Restenosis of the coronary stenotic lesions treated by holmium:YAG laser coronary angioplasty

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shunichi; Nonogi, Hiroshi; Goto, Yoichi; Itoh, Akira; Ozono, Keizaburo; Daikoku, Satoshi; Haze, Kazuo

    1994-07-01

    Clinical efficacy of newly developed Holmium YAG laser coronary angioplasty (HLCA) was assessed for 30 patients with angina. There were 12 near left main trunk (LMT) lesions and 4 aorto- ostial lesions. Adjunctive balloon angioplasty was performed for 25 of 30 lesions. Delivered energy ranged from 1.5 to 2.5 watts/pulse and the total exposure time ranged from 6 to 55 seconds. External diameter of laser catheter was 1.5 mm for 13 lesions, 1.4 mm for 17 lesions, and 1.7 mm for 5 lesions. Laser success, defined as 20% reduction of stenotic ratio, was obtained in 21 of 30 (70%) and overall procedural success rate was 93%. There were 3 cases with acute coronary occlusions relieved by adjunctive balloon angioplasty and one coronary perforation without manifestation of cardiac tamponade. There were no large coronary dissection which involved more than 5 mm of the coronary artery. Follow up coronary angiography after 3 months showed restenosis in 14 of 27 patients (52%). Percent stenosis after lasering (56%) was similar to that at 3 months after (62%). HLCA is acutely effective treatment for lesions near LMT, because of low incidence of large coronary dissection. However, angiographical restenosis rate is high at 3 months after HLCA. This may be attributed to the relatively large residual stenosis after the procedure and vessel injury caused by shock wave.

  17. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  18. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  19. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  20. Surgical Management of Stones: New Technology

    PubMed Central

    Matlaga, Brian R.; Lingeman, James E.

    2011-01-01

    In recent years, the surgical treatment of kidney stone disease has undergone tremendous advances, many of which were possible only as a result of improvements in surgical technology. Rigid intracorporeal lithotrites, the mainstay of percutaneous nephrolithotomy, are now available as combination ultrasonic and ballistic devices. These combination devices have been reported to clear a stone burden with much greater efficiency than devices that operate by either ultrasonic or ballistic energy alone. The laser is the most commonly used flexible lithotrite; advances in laser lithotripsy have led to improvements in the currently utilized Holmium laser platform, as well as the development of novel laser platforms such as Thulium and Erbium devices. Our understanding of shock wave lithotripsy (SWL)has been improved over recent years as a consequence of basic science investigations. It is now recognized that there are certain maneuvers with SWL that the treating physician can do that will increase the likelihood of a successful outcome while minimizing the likelihood of adverse treatment-related events. PMID:19095207

  1. Performance and safety of holmium: YAG laser optical fibers.

    PubMed

    Knudsen, Bodo E; Glickman, Randolph D; Stallman, Kenneth J; Maswadi, Saher; Chew, Ben H; Beiko, Darren T; Denstedt, John D; Teichman, Joel M H

    2005-11-01

    Lower-pole ureteronephroscopy requires transmission of holmium:YAG energy along a deflected fiber. Current ureteroscopes are capable of high degrees of deflection, which may stress laser fibers beyond safe limits during lower-pole use. We hypothesized that optical fiber and safety measures differ among manufacturers. Small (200-273-microm) and medium-diameter (300-400-microm) Ho:YAG fibers were tested in a straight and 180 degrees bent configuration. Energy transmission was measured by an energy detector. Fiber durability was assessed by firing the laser in sequentially tighter bending diameters. The fibers were bent to 180 degrees with a diameter of 6 cm and run at 200- to 4000-mJ pulse energy to determine the minimum energy required to fracture the fiber. The bending diameter was decreased by 1-cm increments and testing repeated until a bending diameter of 1 cm was reached. The maximum deflection of the ACMI DUR-8E ureteroscope with each fiber in the working channel was recorded. The flow rate through the working channel of the DUR-8E was measured for each fiber. The mean energy transmission differed among fibers (P < 0.001). The Lumenis SL 200 and the InnovaQuartz 400 were the best small and medium-diameter fibers, respectively, in resisting thermal breakdown (P < 0.01). The Dornier Lightguide Super 200 fractured repeatedly at a bend diameter of 2 cm and with the lowest energy (200 mJ). The other small fibers fractured only at a bend diameter of 1 cm. The Sharplan 200 and InnovaQuartz Sureflex 273T were the most flexible fibers, the Lumenis SL 365 the least. The flow rate was inversely proportional to four times the power of the diameter of the fiber. Optical performance and safety differ among fibers. Fibers transmit various amounts of energy to their cladding when bent. During lower-pole nephroscopy with the fiber deflected, there is a risk of fiber fracture from thermal breakdown and laser-energy transmission to the endoscope. Some available laser fibers

  2. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi

    2018-04-01

    In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

  3. Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.

    PubMed

    Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K

    2013-02-11

    In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.

  4. Comparison of Vela and holmium laser enucleation of the prostate: a retrospective clinical trial with a 12-month follow-up.

    PubMed

    Gu, Meng; Liu, Chong; Chen, Yan-Bo; Xu, Huan; Fu, Shi; Chen, Qi; Wang, Zhong

    2018-05-01

    This study aimed to estimate the validity and applicability of Vela laser enucleation of the prostate (VoLEP) in the management of benign prostatic hyperplasia (BPH). A retrospective chart review of 112 patients with BPH who underwent VoLEP (n = 60) or holmium laser enucleation of the prostate (HoLEP) (n = 56) was conducted at our institution from January 2015 to June 2015. The general and perioperative characteristics of the patients were collected. The 12-month follow-up data, including the lower urinary tract symptom (LUTS) indexes (International Prostate Symptom Score [I-PSS], quality-of-life [QoL] score and maximum flow rate [Qmax]), as well as rates of perioperative and late complications, were analyzed. No significant differences were observed in pre- and perioperative parameters, including operation time (58.05 ± 10.14 vs. 60.14 ± 12.30 min, P = 0.44), serum sodium decrease (3.49 ± 0.83 vs. 3.48 ± 0.84 mmol/L, P = 0.97), hemoglobin decrease (1.28 ± 0.38 vs. 1.24 ± 0.77 g/dL, P = 0.71), catheterization time (3.63 ± 1.10 vs. 3.89 ± 1.11 days, P = 0.21) and hospital stay (4.57 ± 1.25 vs. 4.68 ± 1.18 days, P = 0.63) between the two groups of patients. Compared with the HoLEP group, the noise during operation was lower in VoLEP group (47.22 ± 10.31 vs. 59.45 ± 9.65 db, P < 0.05). During 1, 6 and 12 months of follow-up visits, the LUTS indexes (I-PSS, QoL score and Qmax) were remarkably improved in both groups when comparing with the baseline values. Furthermore, LUTS indexes were comparable in both groups (P > 0.05). Similarly as the holmium laser, the Vela laser is a potent, safe, efficient durable and surgical treatment option for minimally invasive surgery in patients with BPH-induced LUTS.

  5. Salvage Holmium laser enucleation of prostate to treat residual benign prostatic hyperplasia.

    PubMed

    Oh, Jin Kyu; Bae, Jungbum; Jeong, Chang Wook; Paick, Jae-Seung; Oh, Seung-June

    2014-03-01

    The Holmium laser enucleation of the prostate (HoLEP) technique to remove residual adenoma has not been reported. Salvage HoLEP enables anatomical enucleation of residual adenoma in patients who have previously undergone surgical treatment. We describe not only anatomical insights into the frequent location of adenoma recurrence, but also the feasibility of the salvage HoLEP technique. We retrospectively reviewed a database containing HoLEP video records for 35 patients out of a total of 535 individuals on whom HoLEP was performed by 2 surgeons (SJO & JSP) between July 2008 and June 2011. Group 1 consisted of patients who underwent salvage HoLEP due to recurring adenoma and Group 2 of patients who underwent HoLEP as an initially surgical management to treat benign prostate hyperplasia (BPH). We compared the dataset of pre-, intra- and postoperative parameters between Groups 1 and 2. In the analysis of the video records of Group 1 (n = 35), there was significant remnant tissue around the verumontanum and the lateral lobes were also incompletely removed by previous conventional procedures. When we compared pre-, intra- and postoperative parameters between the 2 groups, there were no significant differences, including operation time, duration of hospital stay. However, the duration of the catheterization of Group 1 was shorter than that of Group 2 (1.38 ± 0.55 vs. 1.90 ± 1.81 days, p < 0.001). Even for cases of residual BPH, salvage HoLEP is a feasible and effective procedure for treating residual adenoma along the anatomical plane.

  6. Realisation et Applications D'un Laser a Fibre a L'erbium Monofrequence

    NASA Astrophysics Data System (ADS)

    Larose, Robert

    L'incorporation d'ions de terres rares a l'interieur de la matrice de verre d'une fibre optique a permis l'emergence de composants amplificateurs tout-fibre. Le but de cette these consiste d'une part a analyser et a modeliser un tel dispositif et d'autre part, a fabriquer puis a caracteriser un amplificateur et un oscillateur a fibre. A l'aide d'une fibre fortement dopee a l'erbium fabriquee sur demande, on realise un laser a fibre syntonisable qui fonctionne en regime multimodes longitudinaux avec une largeur de raie de 1.5 GHz et egalement comme source monofrequencielle de largeur de raie de 70 kHz. Le laser sert ensuite a caracteriser un reseau de Bragg ecrit par photosensibilite dans une fibre optique. La technique de syntonisation permet aussi l'asservissement au fond d'une resonance de l'acetylene. Le laser garde alors la position centrale de la raie avec une erreur de moins de 1 MHz corrigeant ainsi les derives mecaniques de la cavite.

  7. Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high-power erbium-doped fiber amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K.; Yoshida, E.; Sugawa, T.

    1995-08-01

    It is shown for the first time to our knowledge that short-pulse amplification in high-power erbium-doped fiber amplifiers, simultaneously accompanied by stimulated Raman scattering, generates a broadband optical spectrum at high output power (270 mW). At 20 dB down from the peak the continuum extended over 329 nm, from 1427 to 1756 nm. The FWHM bandwidth was 125 nm, centered at 1650 nm. The coherence was measured to be 15 fringes, which corresponds to a 25-{mu}m coherence length. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  8. Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm

    NASA Astrophysics Data System (ADS)

    Najar, Adel; Charrier, Joël; Lorrain, Nathalie; Haji, Lazhar; Oueslati, Mehrezi

    2007-09-01

    The on-off optical gain measurements as a function of the pump power were performed on porous silicon planar waveguides codoped by erbium and ytterbium ions. These measurements were obtained for different ratios of Yb concentration to Er concentration. The highest value of the gain was reached when the Yb concentration is three times higher than that of Er at a moderate 980nm pump power value equal to 70mW. Optical losses measurements have been performed on these waveguides and were equal to 2.1dB/cm and an internal gain of about 6.4dB/cm was obtained.

  9. Line Identification of Atomic and Ionic Spectra of Holmium in the Near-UV. Part I. Spectrum of Ho I

    NASA Astrophysics Data System (ADS)

    Al-Labady, N.; Özdalgiç, B.; Er, A.; Güzelçimen, F.; Öztürk, I. K.; Kröger, S.; Kruzins, A.; Tamanis, M.; Ferber, R.; Başar, Gö.

    2017-02-01

    The Fourier Transform spectra of a Holmium hollow cathode discharge lamp have been investigated in the UV spectral range from 25,000 up to 31,530 cm-1 (317 to 400 nm). Two Ho spectra have been measured with neon and argon as buffer gases. Based on the intensity ratios from these two spectra, a distinction was made between atomic and ionic lines (ionic lines are discussed in an accompanying paper). Using the known Ho I energy levels, 71 lines could be classified as transitions of atomic Ho, 34 of which have not been published previously. Another 32 lines, which could not be classified, are listed in the literature and assigned as atomic Ho. An additional 370 spectral lines have been assigned to atomic Ho based on the signal-to-noise ratio in the two spectra measured under different discharge conditions, namely with buffer gases argon and neon, respectively. These 370 lines have not been previously listed in the literature.

  10. Optimal Settings for the Noncontact Holmium:YAG Stone Fragmentation Popcorn Technique.

    PubMed

    Emiliani, Esteban; Talso, Michele; Cho, Sung-Yong; Baghdadi, Mohammed; Mahmoud, Sadam; Pinheiro, Hugo; Traxer, Olivier

    2017-09-01

    The purpose of this study was to evaluate the popcorn technique using a wide range of holmium laser settings and fiber sizes in a systematic in vitro assessment. Evaluations were done with 4 artificial stones in a collection tube. A fixed ureteroscope was inserted through a ureteral access sheath to provide constant irrigation flow and the laser was placed 1 mm from the bottom. Combinations of 0.5 to 1.5 J, 10 to 20 and 40 Hz, and long and short pulses were tested for 2 and 4 minutes. We used 273 and 365 μm laser fibers. All tests were repeated 3 times. The stones were weighed before and after the experiments to evaluate the setting efficiency. Significant predictors of a highly efficient technique were assessed. A total of 144 tests were performed. Mean starting weight of the stones was 0.23 gm, which was consistent among the groups. After the experiment the median weight difference was 0.07 gm (range 0.01 to 0.24). When designating a 50% reduction in stone volume as the threshold indicating high efficiency, the significant predictors of an efficient popcorn technique were a long pulse (OR 2.7, 95% CI 1.05-7.15), a longer duration (OR 11.4, 95% CI 3.88-33.29), a small (273 μm) laser fiber (OR 0.23, 95% CI 0.08-0.70) and higher power (W) (OR 1.14, 95% CI 1.09-1.20). Higher energy, a longer pulse, frequencies higher than 10 Hz, a longer duration and a smaller laser fiber predict a popcorn technique that is more efficient at reducing stone volume. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Tunable self-seeded multi-wavelength Brillouin-erbium fiber laser based on few-mode fiber filter

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yun-shan; Liu, Chun-xiao

    2017-11-01

    A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser (BEFL) is proposed and demonstrated based on a few-mode fiber filter (FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber (FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber (SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 dB optical signal- to-noise ratio ( OSNR) is realized.

  12. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber.

    PubMed

    Lau, K Y; Abu Bakar, M H; Muhammad, F D; Latif, A A; Omar, M F; Yusoff, Z; Mahdi, M A

    2018-05-14

    Mode-locked fiber laser incorporating a saturable absorber is an attractive configuration due to its stability and simple structure. In this work, we demonstrate a dual-wavelength passively mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. A laser resonator is developed based on dual cavity architecture with unidirectional signal oscillation, which is connected by a fiber branch sharing a common gain medium and saturable absorber. Dual wavelength mode-locked fiber lasers are observed at approximately 1530 and 1560 nm with 22.6 mW pump power threshold. Soliton pulse circulates in the laser cavity with pulse duration of 900 and 940 fs at shorter and longer wavelengths, respectively. This work presents a viable option in developing a low threshold mode-locked laser source with closely spaced dual wavelength femtosecond pulses in the C-band wavelength region.

  13. Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating

    PubMed Central

    Abdullah, Wan Rafizah Wan; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr6O11) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr6O11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary. PMID:22606043

  14. Synthesis mechanism of low-voltage praseodymium oxide doped zinc oxide varistor ceramics prepared through modified citrate gel coating.

    PubMed

    Abdullah, Wan Rafizah Wan; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr(6)O(11) addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr(6)O(11) from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr(6)O(11) content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.

  15. Temperature dependences of the photoluminescence intensities of centers in silicon implanted with erbium and oxygen ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Shtel’makh, K. F.; Kalyadin, A. E.

    2015-12-15

    Low-temperature photoluminescence in n-Cz-Si after the implantation of erbium ions at an elevated temperature and subsequent implantation of oxygen ions at room temperature is studied. So-called X and W centers formed from self-interstitial silicon atoms, H and P centers containing oxygen atoms, and Er centers containing Er{sup 3+} ions are observed in the photoluminescence spectra. The energies of enhancing and quenching of photoluminescence for these centers are determined. These energies are determined for the first time for X and H centers. In the case of P and Er centers, the values of the energies practically coincide with previously published data.more » For W centers, the energies of the enhancing and quenching of photoluminescence depend on the conditions of the formation of these centers.« less

  16. Effects of an erbium, chromium: yttrium, scandium, gallium, garnet laser on mucocutanous soft tissues.

    PubMed

    Rizoiu, I M; Eversole, L R; Kimmel, A I

    1996-10-01

    Lasers are effective tools for soft tissue surgery. The erbium, chromium: yttrium, scandium, gallium, garnet laser is a new system that incorporates an air-water spray. This study evaluates the cutting margins of this laser and compares healing with laser and conventional scalpel and punch biopsy-induced wounds. New Zealand white rabbits were divided into serial sacrifice groups; the tissues were grossly and microscopically analyzed after laser and convential steel surgical wounding. Wound margins were found to show minimal edge coagulation artifact and were 20 to 40 mm in width. Laser wounds showed minimal to no hemorrhage and re-epithelialization and collagenization were found to occur by day 7 in both laser and conventional groups. The new laser system is an effective soft tissue surgical device; wound healing is comparable to that associated with surgical steel wounds. The minimal edge artifact observed with this laser system should allow for the procurement of diagnostic biopsy specimens.

  17. The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss.

    PubMed

    Lee, G-Y; Lee, S-J; Kim, W-S

    2011-12-01

    Female pattern hair loss (FPHL) is the most common cause of hair loss in women, and its prevalence increases with advancing age. Affected women may experience psychological distress and social withdrawal. A variety of laser and light sources have been tried for treatment of hair loss, and some success has been reported. The purpose of this study was to determine the efficacy and safety of a 1550 nm fractional erbium-glass laser in treatment of female pattern hair loss. Twenty eight ethnic South Korean patients with varying degrees of FPHL were enrolled in the study. Patients received ten treatments with a 1550 nm fractional Er:Glass Laser (Mosaic, Lutronic Co., Ltd, Seoul, South Korea) at 2-weeks intervals using the same parameters (5-10 mm tip, 6 mJ pulse energy, 800 spot/cm(2) density, static mode). Phototrichogram and global photographs were taken at baseline and at the end of laser treatment, and analysed for changes in hair density and hair shaft diameter. Global photographs underwent blinded review by three independent dermatologists using a 7-point scale. Patients also answered questionnaires assessing hair growth throughout the study. All adverse effects were reported during the study. Twenty seven patients completed a 5-month schedule of laser treatment. One patient was excluded during treatment due to occurrence of alopecia areata. At the initial visit, mean hair density was 100 ± 14/cm(2) , and mean hair thickness was 58 ± 12 μm. After 5 months of laser treatment, hair density showed a marked increase to 157 ± 28/cm(2) (P < 0.001), and hair thickness also increased to 75 ± 13 μm (P < 0.001). Global photographs showed improvement in 24 (87.5%) of the 27 patients. Two patients (7.4%) reported mild pruritus after laser treatment; however, these resolved within 2 h. A 1550 nm fractional erbium-glass laser irradiation may be an effective and safe treatment option for women with female pattern hair loss. © 2011 The Authors. Journal of the European

  18. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  19. Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues.

    PubMed

    Colucci, Vivian; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2009-09-01

    Since lasers were introduced in dentistry, there has been considerable advancement in technology. Several wavelengths have been investigated as substitutes for high-speed air turbine. Owing to its high absorbability in water and hydroxyapatite, the erbium:yttrium-aluminum-garnet (Er:YAG) laser has been of great interest among dental practitioners and scientists. In spite of its great potential for hard tissue ablation, Er:YAG laser effectiveness and safety is directly related to an adequate setting of the working patterns. It is assumed that the ablation rate is influenced by certain conditions, such as water content of the target tissue, and laser parameters. It has been shown that Er:YAG irradiation with water coolant attenuates temperature rise and, hence, minimizes the risk of thermally induced pulp injury. It also increases ablation efficiency and enhances adhesion to the lased dental tissue. The aim of this review was to obtain insights into the ablation process and to discuss the effects of water flow on dental tissue ablation using Er:YAG laser.

  20. Laser diode pumped, erbium-doped, solid state laser with high slope efficiency

    NASA Astrophysics Data System (ADS)

    Esterowitz, Leon; Allen, R.; Kintz, G.

    1989-10-01

    A laser and method for producing a laser emission at a wavelength of substantially 2.8 microns is disclosed. In a preferred embodiment of the invention, the laser comprises laser diode means for emitting a pump beam at a preselected wavelength; and a crystal having a preselected host material doped with a predetermined percent concentration of erbium activator ions sufficient to produce a laser emission at substantially 2.8 microns at a slope efficiency of at least 5 percent, but preferrably 10 percent, when the crystal is pumped by the pump beam. It is well known that the human body is comprised of approximately 70 percent water, with various human tissues containing about 60 to 90 percent of water, and bone and cartilage containing about 30 to 40 percent of water. Since the 2.8 micron wavelength has a substantially maximum absorption in water, this 2.8 micron wavelength is the ideal wavelength to use for a large variety of medical laser applications on the human body. A 2.8 micron wavelength laser could be used for precise surgery in such exemplary applications as brain surgery, neurosurgery, eye surgery, plastic surgery, burn treatment, and the removal of malignancies.

  1. Comparison of Perioperative Outcomes Between Holmium Laser Enucleation of the Prostate and Robot-Assisted Simple Prostatectomy.

    PubMed

    Zhang, Mimi W; El Tayeb, Marawan M; Borofsky, Michael S; Dauw, Casey A; Wagner, Kristofer R; Lowry, Patrick S; Bird, Erin T; Hudson, Tillman C; Lingeman, James E

    2017-09-01

    To compare perioperative outcomes for patients undergoing holmium laser enucleation of the prostate (HoLEP) and robotic-assisted simple prostatectomy (RSP) for benign prostatic hypertrophy (BPH). Patient demographics and perioperative outcomes were compared between 600 patients undergoing HoLEP and 32 patients undergoing RSP at two separate academic institutions between 2008 and 2015. Patients undergoing HoLEP and RSP had comparable ages (71 vs 71, p = 0.96) and baseline American Urological Association Symptom Scores (20 vs 24, p = 0.21). There was no difference in mean specimen weight (96 g vs 110 g, p = 0.15). Mean operative time was reduced in the HoLEP cohort (103 minutes vs 274 minutes, p < 0.001). Patients undergoing HoLEP had lesser decreases in hemoglobin, decreased transfusions rates, shorter hospital stays, and decreased mean duration of catheterization. There was no difference in the rate of complications Clavien grade 3 or greater (p = 0.33). HoLEP and RSP are both efficacious treatments for large gland BPH. In expert hands, HoLEP appears to have a favorable perioperative profile. Further studies are necessary to compare long-term efficacy, cost, and learning curve influences, especially as minimally invasive approaches become more widespread.

  2. Generation of ultrashort pulses with minimum duration of 90\\ {\\text{fs}} in a hybrid mode-locked erbium-doped all-fibre ring laser

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.

    2016-11-01

    Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.

  3. Holmium:YAG thermokeratoplasty: treatment parameters for the correction of astigmatism based upon enucleated human eyes using an application mask

    NASA Astrophysics Data System (ADS)

    Kriegerowski, Martin; Rassmann, Katja; Oltrup, Theo; Bende, Thomas; Jean, Benedikt J.

    1995-05-01

    The refractive outcome of thermokeratoplasty depends upon the location and angle of the coagulation spots, applied with a focusing handpiece onto the corneal surface. Accuracy can be enhanced using a specially designed application mask. An astigmatism correction was performed on 10 human donor eyes (Holmium 25, Technomed, FRG, 15 Hz, 20 mJ/pulse, 25 pulses) with an optical zone of 8.1 mm, 5 eyes received a free hand laser application (marked positions) and the other 5 eyes were treated using a suctioned metal mask with drills for the handpiece (optical zone 8.1 mm). To compare the results a silicone replica was taken and analyzed by a confocal laser microtopometer. The refractive change for the steepest meridian was 10 D with a standard deviation of +/- 3.7 D for the free hand application. Using the application mask the refractive outcome was 9.8 D with a standard deviation of only 0.8 D. Using the application mask the standard deviation for the induced refractive change decreases by a factor of five.

  4. Absorption spectra of 4f electron transitions of neodymium and erbium with 8-hydroxyquinoline-5-sulphonic acid and diethylamine systems and its analytical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Naixing; Qi Ping

    1992-06-01

    In this paper the absorption spectra of 4f electron transitions of the systems of neodymium and erbium with 8-hydroxyquinoline-5-sulphonic acid and diethylamine have been studied by normal and third-derivative spectrophotometry. Their molar absorptivities are 80 1.mol{sup {minus}1}.cm{sup {minus}1} for neodymium and 65 1.mol{sup {minus}1}.cm{sup {minus}1} for erbium. Use of the third-derivative spectra, eliminates the interference by other rare earths and increases the sensitivity for Nd and Er. The derivative molar absorptivities are 390 1.mol{sup {minus}1}.cm{sup {minus}1} for Nd and 367 1.mol{sup {minus}1}.cm{sup {minus}1} for Er. The calibration graphs were linear up to 11.8 {mu}g/ml of Nd and 12.3 {mu}g/ml ofmore » Er, respectively. The relative standard deviations evaluated from eleven independent determinations of 7.2 {mu}g/ml (for Nd) and 8.3 {mu}g/ml (for Er) are 1.3% and 1.4%, respectively. The detection limits are 0.2 {mu}g/ml for Nd and 0.3 {mu}g/ml for Er. The method has been developed for determining those two elements in mixture of lanthanides by means of the third-derivative spectra and the analytical results obtained are satisfactory.« less

  5. Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Scott, Austin Murphy

    The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable absorbers are then created both by coating the end facet of a fiber with a dispersion containing carbon nanotubes and by inserting a fabricated poly-methyl-methacrylate (PMMA) and single-walled carbon nanotube (SWCNT) polymer composite film between two fiber end facets. Once inserted into the cavity, the saturable absorbers passively Q-switch the laser in three distinct cases. A fiber end facet coating of SWCNTs dispersed into isopropanol produced pulses with duration of 17.45 +/- 0.11 micros and 2.74 +/- 0.14 micros, with repetition rates of 25.36 +/- 0.53 kHz and 37.77 +/- 0.33 kHz, respectively. A second fiber end facet coating of SWCNTs dispersed into dimethylformamide (DMF) produced pulses with duration of 12.28 +/- 1.08 micros and 3.58 +/- 0.12 micros, with repetition rates of 25.13 +/- 0.63 kHz and 26.46 +/- 0.13 kHz, respectively. The PMMA plus SWCNT polymer composite film produced pulses of 0.716 +/- 0.007 micros duration and 142.8 +/- 1 kHz repetition rate.

  6. Potential applications of Erbium:YAG laser in periodontics.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2004-08-01

    Since lasers were introduced for the treatment of oral diseases, there has been considerable advancement in technology. As a result, numerous laser systems are currently available for oral use. Neodymium:Yttrium-Aluminum:Garnet (Nd:YAG), carbon dioxide (CO(2)) laser and the semiconductor Diode lasers have already been approved by the US Food and Drug Administration for soft tissue treatment in oral cavity. The Erbium:YAG (Er:YAG) laser was approved in 1997 for hard tissue treatment in dentistry and recent studies have reported positive results. This suggests that the Er:YAG laser system is a promising apparatus, which will be able to revolutionize and improve dental practice, in particular periodontal treatment. In this mini-review, we would like to describe the positive characteristics of the Er:YAG laser which indicate its potential as a new treatment modality in periodontics. Recent findings are summarized briefly to evaluate the potential of the Er:YAG laser for clinical application in periodontics. The Er:YAG laser possesses suitable characteristics for oral soft and hard tissue ablation. Recently, it has been applied for effective elimination of granulation tissue, gingival melanin pigmentation and gingival discoloration. Contouring and cutting of bone with minimal damage and even or faster healing can also be performed with this laser. In addition, irradiation with the Er:YAG laser has a bactericidal effect with reduction of lipopolysaccharide, high ability of plaque and calculus removal, with the effect limited to a very thin layer of the surface and is effective for implant maintenance. The Er:YAG laser seems to be an effective tool for periodontal therapy, however, further clinical and basic investigations are required to confirm its clinical application. Copyright Blackwell Munksgaard, 2004

  7. Switchable dual-wavelength erbium-doped fiber laser based on the photonic crystal fiber loop mirror and chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng

    2010-03-01

    The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.

  8. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2011-11-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  9. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2012-03-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  10. Novel methotrexate soft nanocarrier/fractional erbium YAG laser combination for clinical treatment of plaque psoriasis.

    PubMed

    Ramez, Shahenda A; Soliman, Mona M; Fadel, Maha; Nour El-Deen, Faisal; Nasr, Maha; Youness, Eman R; Aboel-Fadl, Dalea M

    2018-02-15

    Psoriasis is a commonly encountered chronic dermatological disease, presenting with inflammatory symptoms in patients. Systemic treatment of psoriasis is associated with several adverse effects, therefore the development of a customized topical treatment modality for psoriasis would be an interesting alternative to systemic delivery. The therapeutic modality explored in this article was the comparative treatment of psoriatic patients using nanoparticulated methotrexate in the form of jojoba oil-based microemulsion with or without fractional erbium YAG laser. Assessment parameters included follow-up photography for up to 8 weeks of treatment, estimation of the psoriasis severity [TES (thickness, erythema, scales)] score, and histopathological skin evaluation. The prepared methotrexate microemulsion was clinically beneficial and safe in treatment of psoriasis vulgaris. The concomitant use of the fractional laser provided improvement in the psoriatic plaques within shorter time duration (3 weeks compared to 8 weeks of treatment), presenting an alternative topical treatment modality for psoriasis vulgaris.

  11. Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Zhang, Huanian; Li, Zhen; Sheng, Yingqiang; Guo, Quanxin; Han, Xile; Liu, Yanjun; Man, Baoyuan; Ning, Tingyin; Jiang, Shouzhen

    2018-04-01

    Dark solitons, which have good stability, long transmission distance and strong anti-interference ability. By using a coprecipitation method, the high quality indium tin oxide (ITO) were prepared with an average diameter of 34.1 nm. We used a typical Z-scan scheme involving a balanced twin-detector measurement system to investigated nonlinear optical properties of the ITO nanoparticles. The saturation intensity and modulation depths are 13.21 MW/cm2 and 0.48%, respectively. In an erbium-doped fiber (EDF) lasers, we using the ITO nanoparticles as saturable absorber (SA), and the formation of dark soliton is experimentally demonstrated. The generated dark solitons are centered at the wavelength of 1561.1 nm with a repetition rate of 22.06 MHz. Besides, the pulse width and pulse-to-pulse interval of the dark solitons is ∼1.33ns and 45.11 ns, respectively. These results indicate that the ITO nanoparticles is a promising nanomaterial for ultrafast photonics.

  12. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Lim, Herianto; Stavrias, Nikolas; Johnson, Brett C.; Marvel, Robert E.; Haglund, Richard F.; McCallum, Jeffrey C.

    2014-03-01

    Vanadium dioxide (VO2) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator-to-metal transition, the phase transition in VO2 can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO2 with erbium ions (Er3+) and observe their combined properties. The first excited-state luminescence of Er3+ lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er3+ into VO2 could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO2 thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO2 by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ˜800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO2 thin films. We conclude that Er-implanted VO2 can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO2.

  13. Polarization independent thermally tunable erbium-doped fiber amplifier gain equalizer using a cascaded Mach-Zehnder coupler.

    PubMed

    Sahu, P P

    2008-02-10

    A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.

  14. Fragmentation targeted at preferred discontinuities: A new concept in endolithotripsy with Holmium laser:YAG.

    PubMed

    Sánchez-Martín, F M; Emiliani, E; Pueyo-Morer, E; Angerri-Feu, O; Sanguedolce, F; Millán, F; Villavicencio, H

    2018-04-17

    There are currently 3holmium laser, YAG (Ho:YAG) endolithotripsy procedures that are considered basic (fragmentation, pulverisation, "pop-corn" technique). We present the technique of fragmentation targeted at preferred discontinuities (FTPD), a new concept of endolithotripsy by Ho:YAG laser. The FTPD technique is based on the selective application of energy (targeting a specific preselected point) to an area that is visually prone to the formation of a fracture line or preferred discontinuity (conditioned by the anisotropy of the urolithiasis). The ideal energy regimen (setting) is a high range of working energy (2-3J) with a very low frequency range (5-8Hz) and short pulse width. Between January 2015 to February 2017, the FTPD technique was used in 37 procedures (7 NLP, 16 RIRS, 12 URS, 2 cystolithotomies), with a Ho:YAG laser (Lumenis Pulse 120H ® , Tel-Aviv, Israel). Maximum power used: 24W (3J/8Hz) with fibres of 365μ and 273μ (URS, RIRS), and 32W (4J/8Hz) with fibres of 550μ (NLP, cystolithotomy). Strategic improvement was achieved in all cases using the TFPD technique to continue the endolithotripsy or remove fragments. No complications were recorded after the use of this method. FTPD can be considered a complementary option in combination with the basic methods of fragmentation and pulverisation. In our experience, it constitutes significant progress in optimising the performance of Ho:YAG laser endolithotripsy. Copyright © 2018 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Treatment of port wine stains using Pulsed Dye Laser, Erbium YAG Laser, and topical rapamycin (sirolimus)-A randomized controlled trial.

    PubMed

    Greveling, Karin; Prens, Errol P; van Doorn, Martijn B

    2017-01-01

    Pulsed Dye Laser (PDL) is currently the gold standard treatment for port wine stains (PWS), although the degree of lesion blanching is variable and often unpredictable. This appears to be due to reformation and reperfusion of blood vessels. Rapamycin has shown potential as an antiangiogenic agent and may prevent the revascularization after PDL treatment. The objective of this study was to evaluate the efficacy of adjuvant use of (commercially available) topical rapamycin after PDL treatment in patients with PWS. We conducted a prospective, intra-patient, randomized controlled trial. Four treatment areas of 1 cm 2 were created in each PWS. PDL-only treatment was compared to the following three treatments: PDL + rapamycin, PDL + Erbium YAG laser ablation of the stratum corneum + rapamycin, and rapamycin monotherapy. We also compared PDL + Erbium YAG + rapamycin with PDL + rapamycin. The primary endpoint was the percentage clearance assessed colorimetrically at 6 months follow-up. Secondary outcomes were photographic evaluation by an expert panel, patient satisfaction, treatment related pain, and safety. Fourteen patients completed the treatment protocol. The highest percentage clearance was achieved with PDL-only treatment (mean [SD] 16% [34]), but there were no statistically significant differences between treatments. The best photographic evaluation and highest patient satisfaction were also achieved with PDL-only treatment, but only the difference between PDL-only and rapamycin monotherapy was statistically significant. The treatment related pain was well tolerated. Application-site pruritus was a frequent occurring adverse event. Allergic contact dermatitis to rapamycin occurred in one patient. There were no serious adverse events. Topical application of the commercially available solution of rapamycin (Rapamune ® 0.1%) as an adjuvant to PDL treatment does not appear to improve PWS blanching. Lasers Surg. Med. 49:104-109, 2017. © 2016

  16. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    NASA Astrophysics Data System (ADS)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  17. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng

    2017-08-01

    A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.

  18. Microtensile bond strength of composite resin to human enamel prepared using erbium: Yttrium aluminum garnet laser.

    PubMed

    Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka

    2007-02-01

    The Erbium: Yttrium Aluminum Garnet (YAG) laser used for preparation of cavity can alter the substrate and it could influence the bond strength of enamel. The aim of this in vitro study was to evaluate the influence of Er:YAG laser's energy using microtensile bond test. Three groups were obtained (cavity preparation) and each group was divided into two subgroups (adhesive system). After that the adhesive protocol was performed, sections with a cross-sectional area of 0.8 mm2 (+/-0.2 mm2) were obtained. The specimens were mounted in a universal testing machine (0.5 mm/min). Statistical analysis showed a decrease in bond strength for lased groups (p < 0.01) and when the total-etching adhesive system was used the laser 300 mJ subgroup showed higher bond strength compared to the laser 250 mJ (p < 0.01). It was concluded that the cavities prepared using laser appear less receptive to adhesive procedures than conventional bur-cut cavities. Copyright 2006 Wiley Periodicals, Inc.

  19. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  20. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  1. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.

    2015-06-01

    We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.

  2. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    PubMed Central

    Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-01-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032

  3. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less

  4. Biodegradable seeds of holmium don't change neurological function after implant in brain of rats.

    PubMed

    Diniz, Mirla Fiuza; Ferreira, Diogo Milioli; de Lima, Wanderson Geraldo; Pedrosa, Maria Lucia; Silva, Marcelo Eustáquio; de Almeida Araujo, Stanley; Sampaio, Kinulpe Honorato; de Campos, Tarcisio Passos Ribeiro; Siqueira, Savio Lana

    2017-01-01

    To evaluate the surgical procedure and parenchymal abnormalities related to implantation of ceramic seeds with holmium-165 in rats' brain. An effective method of cancer treatment is brachytherapy in which radioactive seeds are implanted in the tumor, generating a high local dose of ionizing radiation that can eliminate tumor cells while protecting the surrounding healthy tissue. Biodegradable Ho 166 -ceramic-seeds have been addressed recently. The experiments in this study were approved by the Ethics Committee on Animal Use at the Federal University of Ouro Preto, protocol number 2012/034. Twenty-one adult Fischer rats were divided into Naive Group, Sham Group and Group for seed implants (ISH). Surgical procedures for implantation of biodegradable seeds were done and 30 days after the implant radiographic examination and biopsy of the brain were performed. Neurological assays were also accomplished to exclude any injury resulting from either surgery or implantation of the seeds. Radiographic examination confirmed the location of the seeds in the brain. Neurological assays showed animals with regular spontaneous activity. The histological analysis showed an increase of inflammatory cells in the brain of the ISH group. Electron microscopy evidenced cytoplasmic organelles to be unchanged. Biochemical analyzes indicate there was neither oxidative stress nor oxidative damage in the ISH brain. CAT activity showed no difference between the groups as well as lipid peroxidation measured by TBARS. The analysis of the data pointed out that the performed procedure is safe as no animal showed alterations of the neurological parameters and the seeds did not promote histological architectural changes in the brain tissue.

  5. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  6. High pressure phase transitions in the rare earth metal erbium to 151 GPa

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2011-08-01

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  7. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    PubMed

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  8. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  9. Effects of erbium,chromium:YSGG laser irradiation on canine mandibular bone.

    PubMed

    Kimura, Y; Yu, D G; Fujita, A; Yamashita, A; Murakami, Y; Matsumoto, K

    2001-09-01

    Only relatively few reports have described the morphological effects on bone produced by erbium,chromium: yttrium,scandium,gallium,garnet (Er,Cr:YSGG) laser irradiation, and none has investigated the atomic changes or estimated the temperature increases involved. The objectives of this study were to investigate the morphological, atomic, and temperature changes in irradiated areas during and after laser irradiation, and to evaluate the cutting effect on canine mandibular bone in vitro. Two canine mandibular bones were cut into 3 to 5 cm pieces and irradiated by an Er,Cr:YSGG laser utilizing a water-air spray at 5 W and 8 Hz for 10 or 30 seconds. During and after laser irradiation, temperature increases in the irradiated areas were measured by thermography. The samples were then observed by stereoscopy and scanning electron microscopy to determine morphological changes and by energy dispersive x-ray spectroscopy to evaluate atomic alterations. Regular holes or grooves having sharp edges and smooth walls were produced, but no melting or carbonization was observed. The maximum temperature increase was an average 12.6 degrees C for 30-second irradiation. The continuous time of a temperature increase of more than 10 degrees C was consistently less than 10 seconds. An atomic analytical examination revealed that the calcium:phosphorus ratio was not significantly changed between the lased and unlased areas (P>0.0 1). These results showed that the Er,Cr:YSGG laser cuts canine mandibular bone effectively without burning, melting, or altering the calcium:phosphorus ratio of the irradiated bone.

  10. 100 MeV swift Si{sup 7+} ion induced thermoluminescence studies of nanocrystalline erbium doped ZrO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokesha, H. S.; Nagabhushana, K. R., E-mail: bhushankr@gmail.com; Singh, Fouran

    2015-06-24

    Pure and erbium (1mol%) doped nanocrystalline ZrO{sub 2} is synthesized by combustion technique. Thermoluminescence (TL) properties ZrO{sub 2}pellets annealed at 873 K and irradiated by 100 MeV swift Si{sup 7+} ion for various fluence are recorded. The evolution crystalline structure and crystallite size are done using by XRD data. Two TL glow curves, a well resolved one peak at ∼420 K and an unresolved with peak at ∼598 K are observed. TL intensity increases up to 3×10{sup 12} ions cm{sup −2} beyond which the TL intensity decreases. The glow peak shape method is used to calculate the TL trap parameter and discussed in thismore » paper.« less

  11. Holmium laser urethrotomy for treatment of traumatic stricture urethra: a review of 78 patients.

    PubMed

    Hussain, Manzoor; Lal, Murli; Askari, Syed Hasan; Hashmi, Altaf; Rizvi, Syed Adibul Hasan

    2010-10-01

    To evaluate the efficacy and long-term results of laser urethrotomy as minimally invasive treatment for traumatic stricture urethra. Between January 2006 and June 2008, 78 male patients were treated with Holmium Laser urethrotomy. 16 Fr urethroscope was used through which 600um laser fiber was introduced through side channel. Stricture was visualized and incised at 12 o'clock position with energy set at 1500-2000 MJ at pulse rate of 10-12. Two other incisions were given at 2 and 10 o'clock positions. Further ablation was done till 16Fr Foley's catheter was passed. Patients were followed in a stricture clinic. Patients age ranged from 15-73 years. All strictures were due to trauma, Road traffic accident in 40 (52%) post catheter trauma 4 (5%), fall as ride 27 (35%) and failed urethroplasty 7 (8%). Site of stricture was bulbar 57 (73%), bulbomembranous 16 (20%) and membranoprostatic 5 (2.5%). Length of stricture ranged from 0.8-2.5 cms. At 3 months follow-up, 60 (77%) patients remained catheter and symptoms free while 18 (23%) developed recurrence of stricture but at the end of 36 months follow-up success rate decreased to 47 (60%). Among those who developed re-strictures, 6 ( 7.6%) had 2nd sitting laser while 4 (5.1%) had urethroplasty, and others were on intermittent dilatation. Immediate complications were sepsis 10 (13%), extravasation 2 (4%), failed urethrotomy 2 (4%) and mild haematuria 3 (5.8%). Hospital stay ranged from day care to 3 days. Laser urethrotomy is minimally invasive and an effective treatment for short strictures in bulbarurethra. The recurrence rate is 40% in the long-term follow-up and is more commonly seen in completely obliterated strictures.

  12. Self-contained eye-safe laser radar using an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Driscoll, Thomas A.; Radecki, Dan J.; Tindal, Nan E.; Corriveau, John P.; Denman, Richard

    2003-07-01

    An Eye-safe Laser Radar has been developed under White Sands Missile Range sponsorship. The SEAL system, the Self-contained Eyesafe Autonomous Laser system, is designed to measure target position within a 0.5 meter box. Targets are augmented with Scotchlite for ranging out to 6 km and augmented with a retroreflector for targets out to 20 km. The data latency is less than 1.5 ms, and the position update rate is 1 kHz. The system is air-cooled, contained in a single 200-lb, 6-cubic-foot box, and uses less than 600 watts of prime power. The angle-angle-range data will be used to measure target dynamics and to control a tracking mount. The optical system is built around a diode-pumped, erbium-doped fiber laser rated at 1.5 watts average power at 10 kHz repetition rate with 25 nsec pulse duration. An 8 inch-diameter, F/2.84 telescope is relayed to a quadrant detector at F/0.85 giving a 5 mrad field of view. Two detectors have been evaluated, a Germanium PIN diode and an Intevac TE-IPD. The receiver electronics uses a DSP network of 6 SHARC processors to implement ranging and angle error algorithms along with an Optical AGC, including beam divergence/FOV control loops.Laboratory measurements of the laser characteristics, and system range and angle accuracies will be compared to simulations. Field measurements against actual targets will be presented.

  13. Impressive Performance: New Disposable Digital Ureteroscope Allows for Extreme Lower Pole Access and Use of 365 μm Holmium Laser Fiber.

    PubMed

    Leveillee, Raymond J; Kelly, Emily Fell

    2016-01-01

    Since the development of the first flexible ureteroscope, in 1964, technological advances in image quality, flexibility, and deflection have led to the development of the first single-use digital flexible ureteroscope, LithoVue™ (Boston Scientific, Marlborough, MA). With respect to reusable fiber-optic and now digital ureteroscopes, there is an initial capital cost of several thousand dollars (USD) as well as, controversy regarding durability, the cost of repairs and the burdensome reprocessing steps of ureteroscopy. The single-use LithoVue eliminates the need for costly repairs, the occurrence of unpredictable performance, and procedural delays. Renal stones located in the lower pole of the kidney can be extremely challenging as extreme deflections of greater than 160° are difficult to maintain and are often further compromised when using stone treatment tools, such as laser fibers and baskets. This case describes an initial use of the LithoVue digital disposable ureteroscope in the effective treatment of lower pole calculi using a 365 μm holmium laser fiber. A 35-year-old female, with a medical history significant for chronic bacteriuria, and recurrent symptomatic culture proven urinary tract infections, underwent localization studies. Retrograde ureteropyelography demonstrated two calcifications adjoining, measuring a total of 1.4 cm, overlying the left renal shadow. Urine aspirated yielded clinically significant, >100,000, Escherichia coli and Streptococcus anginosus bacteriuria, which was felt to be originating from the left lower calix. This case used the newly FDA-approved LithoVue flexible disposable ureteroscope. The two stones were seen using the ureteroscope passed through an ureteral access sheath in the lower pole calix. A 365 μm holmium laser fiber was inserted into the ureteroscope and advanced toward the stones. There was no loss of deflection as the ureteroscope performed reproducibly. The laser was used for more than 4000 pulses at 15

  14. Holmium laser enucleation of the prostate and retropubic prostatic adenomectomy: morbidity analysis and anesthesia considerations.

    PubMed

    Soto-Mesa, D; Amorín-Díaz, M; Pérez-Arviza, L; Fernández-Pello Montes, S; Martín-Huéscar, A

    2015-11-01

    Holmium laser enucleation of the prostate (HoLEP) is an alternative to prostatic adenomectomy for the surgical treatment of benign prostatic hypertrophy. We analyzed our learning curve for this technique, and we compared it in a secondary manner with prostatic adenomectomy. A retrospective comparative study was conducted that included the first 100 cases of HoLEP performed in our center and the latest 50 cases of retropubic adenomectomy. We collected data on the patients, the surgery, the anesthesia, the perioperative variables, the anesthesia complications and the postoperative variables, with a 6-month follow-up. We analyzed the learning curve without mentors for HoLEP and compared the characteristics of HoLEP in 2 separate phases (learning and stabilization phases) with the latest retropubic prostatic adenomectomies performed. Intradural anesthesia was the most common technique. The transfusion needs, length of stay (P<.01) and postoperative morbidity were lower for HoLEP than for adenomectomy. However, the retropubic adenomectomy group had larger initial prostate volumes (P<.001) and shorter surgical times (P<.001). Better surgical performance (P<.001) and a lower incidence of complications were observed in the HoLEP-B group (once the learning curve had been overcome) compared with the HoLEP-A group. In our center, HoLEP was introduced as a valid alternative to open retropubic adenomectomy, with excellent results in terms of morbidity and reduced hospital stay. In terms of the learning curve, we consider that approximately 50 patients (without mentor) is an appropriate cutoff. Local anesthesia is a good choice for the anesthesia technique. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Titanium Dioxide (TiO2) film as a new saturable absorber for generating mode-locked Thulium-Holmium doped all-fiber laser

    NASA Astrophysics Data System (ADS)

    Mohd Rusdi, Muhammad Farid; Latiff, Anas Abdul; Paul, Mukul Chandra; Das, Shyamal; Dhar, Anirban; Ahmad, Harith; Harun, Sulaiman Wadi

    2017-03-01

    We report the generation of mode-locked thulium-holmium doped fiber laser (THDFL) at 1979 nm. This is a first demonstration of mode-locked by using Titanium Dioxide (TiO2) film as a saturable absorber (SA). A piece of 1 mm×1 mm TiO2 film was sandwiched in between two fiber ferrule in the cavity. Fabrication process of TiO2 film incorporated a TiO2 and a polyvinyl alcohol (PVA). The stable 9 MHz repetition rate of mode-locked mode operation with 58 dB SNR was generated under pump power of 902-1062 mW. At maximum pump power, the mode-locked THDFL has output power and pulse energy of 15 mW and 1.66 nJ, respectively. Our results demonstrate the TiO2 can be used promisingly in ultrafast photonics applications.

  16. The Impact of Increased Bladder Blood Flow on Storage Symptoms after Holmium Laser Enucleation of the Prostate

    PubMed Central

    Ide, Hisamitsu; Aoki, Hiroaki; Muto, Satoru; Yamaguchi, Raizo; Tsujimura, Akira; Horie, Shigeo

    2015-01-01

    In order to investigate how holmium laser enucleation of the prostate (HoLEP) improves urinary storage symptoms, we assessed blood flow in the urinary bladder mucosa of patients with benign prostatic hyperplasia (BPH) before and after laser surgery. Seventy-four consecutive patients with BPH (median age 69 years, range; 53–88) underwent HoLEP at our institution and are included in this study. We prospectively assessed the International Prostate Symptom Score (IPSS), IPSS-QOL Score, the Overactive Bladder Symptom Score (OABSS), uroflowmetry, and blood flow in the urinary bladder, before and after surgery. Blood flow in the bladder mucosa was measured using the OMEGA FLOW (OMEGAWAVE, Tokyo, Japan) laser Doppler flowmeter. The median volume of the enucleated adenomas was 45.0 g (range: 25.0 to 83.2). The median IPSS improved significantly from 20 (range: 6–35) to 3 (0–22) (p<0.001; Wilcoxon signed-rank test), as did the storage symptoms score, which decreased from 13 (2–20) to 3 (1–8) (p<0.001). Median bladder blood flow increased at the trigone from 9.57±0.83 ml/sec to 17.60±1.08 ml/sec. Multiple regression analysis for the improved storage symptom score eliminated all explanatory variables except increased bladder perfusion. The data suggest that HoLEP improves blood flow in the bladder mucosa, which independently leads to the improvement of storage symptoms. PMID:26090819

  17. Predictors of urgency improvement after Holmium laser enucleation of the prostate in men with benign prostatic hyperplasia.

    PubMed

    Hur, Won Sok; Kim, Joon Chul; Kim, Hyo Sin; Koh, Jun Sung; Kim, Sang Hoon; Kim, Hyun Woo; Cho, Su Yeon; Cho, Kang Jun

    2016-11-01

    To investigate the change in urinary urgency and predictors of urgency improvement after holmium laser enucleation of the prostate (HoLEP) in men with benign prostatic hyperplasia (BPH). We retrospectively analyzed the medical records of patients who were treated with HoLEP for BPH and had preoperative urgency measuring ≥3 on a 5-point urinary sensation scale. Those with prostate cancer diagnosed prior to or after HoLEP, a history of other prostatic and/or urethral surgery, moderate to severe postoperative complications, and neurogenic causes were excluded. Patients who had improved urgency with antimuscarinic medication after HoLEP were excluded. We divided the patients into 2 groups based on urgency symptoms 3 months after HoLEP: improved and unimproved urgency. Improved urgency was defined as a reduction of 2 or more points on the 5-point urinary sensation scale. Preoperative clinical and urodynamic factors as well as perioperative factors were compared between groups. In total, 139 patients were included in this study. Voiding parameters in all patients improved significantly after HoLEP. Seventy-one patients (51.1%) had improved urgency, while 68 (48.9%) did not show any improvement. A history of acute urinary retention (AUR) and postvoid residual were associated with postoperative urgency improvement in univariate analysis. In multivariate analysis, a history of AUR was an independent factor affecting urgency improvement. A preoperative history of AUR could influence the change in urgency after HoLEP surgery in patients with BPH.

  18. Effects of erbium, chromium:YSGG laser irradiation on root surface: morphological and atomic analytical studies.

    PubMed

    Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K

    2001-04-01

    The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.

  19. Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design.

    PubMed

    Wu, Tsung-Han; Kieu, K; Peyghambarian, N; Jones, R J

    2011-03-14

    We report on a low noise all-fiber erbium fs frequency comb based on a simple and robust tapered-fiber carbon nanotube (tf-CNT) design. We mitigate dominant noise sources to show that the free-running linewidth of the carrier-envelope offset frequency (fceo) can be comparable to the best reported performance to date for fiber-based frequency combs. A free-running fceo linewidth of ~20 kHz is demonstrated, corresponding to an improvement of ~30 times over previous work based on a CNT mode-locked fiber laser [Opt. Express 18, 1667 (2010)]. We also demonstrate the use of an acousto-optic modulator external to the laser cavity to stabilize fceo, enabling a 300 kHz feedback control bandwidth. The offset frequency is phase-locked with an in-loop integrated phase noise of ~0.8 rad from 10Hz to 400kHz. We show a resolution-limited linewidth of ~1 Hz, demonstrating over 90% of the carrier power within the coherent fceo signal. The results demonstrate that the relatively simple tf-CNT fiber laser design can provide a compact, robust and high-performance fs frequency comb.

  20. Influence of Laser Activated Irrigation with two Erbium Lasers on Bond Strength of Inidividually Formed Fiber Reinforced Composite Posts to Root Canal Dentin.

    PubMed

    Parčina, Ivana; Amižić; Miletić, Ivana; Ionescu, Andrei C; Brambilla, Eugenio; Gabrić, Dragana; Baraba, Anja

    2016-12-01

    The aim of this in vitro study was to investigate the effect of laser activated irrigation (LAI) using two erbium lasers on bond strength of individually formed fiber-reinforced composite (FRC) posts to root canal dentin. Twenty-seven single-rooted human teeth were endodontically treated and after post space preparation divided into three groups (n=9 per group), according to the pre-treatment of post space preparation: 1) Conventional syringe irrigation (CSI) and saline; 2) Er.YAG photon-induced photoacoustic streaming (PIPS) technique and saline; 3) Er,Cr:YSGG activated irrigation with RFT2 tip. Two specimens from each group were used for SEM analysis. The remaining specimens (n=7 per group) received individually formed FRC post, everStick POST, luted with self-adhesive cement, G-CEM LinkAce. After cementation, the roots were perpendicularly sectioned into 1 mm thin sections and a push-out test was carried out (0.5 mm/min). The data were calculated as megapascals and were log transformed and statistically analysed using one-way ANOVA at the level of significance set at 5%. In the control group, the smear layer was still present. In the Er:YAG group, the smear layer was removed. In the Er,Cr:YSGG group, the smear layer was partially removed. The Er,Cr:YSGG group achieved the highest bond strength values, followed by the control group and then the Er:YAG group, but no statistically significant difference was found in bond strength values in the tested group of post space pretreatment (p=0.564). LAI using two erbium lasers, with PIPS or RFT2 tip, did not affect the bond strength of individually formed FRC posts to root canal dentin.

  1. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  2. Lasers in clinical urology: state of the art and new horizons.

    PubMed

    Marks, Andrew J; Teichman, Joel M H

    2007-06-01

    We present an overview of current and emerging lasers for Urology. We begin with an overview of the Holmium:YAG laser. The Ho:YAG laser is the gold standard lithotripsy modality for endoscopic lithotripsy, and compares favorably to standard electrocautery transurethral resection of the prostate for benign prostatic hyperplasia (BPH). Available laser technologies currently being studied include the frequency doubled double-pulse Nd:Yag (FREDDY) and high-powered potassium-titanyl-phosphate (KTP) lasers. The FREDDY laser presents an affordable and safe option for intracorporeal lithotripsy, but it does not fragment all stone compositions, and does not have soft tissue applications. The high power KTP laser shows promise in the ablative treatment of BPH. Initial experiments with the Erbium:YAG laser show it has improved efficiency of lithotripsy and more precise ablative and incisional properties compared to Ho:YAG, but the lack of adequate optical fibers limits its use in Urology. Thulium:YAG fiber lasers have also demonstrated tissue ablative and incision properties comparable to Ho:YAG. Lastly, compact size, portability, and low maintenance schedules of fiber lasers may allow them to shape the way lasers are used by urologists in the future.

  3. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    PubMed

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  4. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    PubMed

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.

  5. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  6. Photothermal laser lithotripsy of uric acid calculi: clinical assessment of the effects of cyanide production

    NASA Astrophysics Data System (ADS)

    Teichman, Joel M. H.; Champion, Paolo C.; Glickman, Randolph D.; Wollin, Timothy A.; Denstedt, John D.

    1999-06-01

    The mechanism of holmium:YAG lithotripsy is photothermal. Holmium:YAG lithotripsy of uric acid calculi produces cyanide, which is a known, thermal decomposition produce of uric acid. we review our experience with holmium:YAG lithotripsy of uric acid to determine if there is any clinical evidence of cyanide toxicity. A retrospective analysis of all of our cases of holmium:YAG lithotripsy of uric acid calculi was done. Anesthetic and postoperative data were reviewed. A total of 18 patients with uric acid calculi were tread with holmium:YAG lithotripsy by urethroscopy (5), retrograde nephroscopy (2), percutaneous nephrolithotomy (5) or cystolithotripsy (6). Total holmium:YAG irradiation ranged from 1.2 to 331 kJ. No patient had evidence of increased end-tidal carbon dioxide, change sin electrocardiogram or significant decrease in postoperative serum bicarbonate. An 84 year old woman had decreased diastolic pressure of 30 mm Hg while under general anesthesia. No cyanide related neurologic, cardiac or respiratory complications were noted. These data suggest no significant cyanide toxicity from holmium:YAG lithotripsy or uric acid calculi in typical clinical settings. More specific studies in animals are warranted to characterize the risk.

  7. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  8. All-polarization maintaining erbium fiber laser based on carbon nanowalls saturable absorber

    NASA Astrophysics Data System (ADS)

    Kurata, Shintaro; Izawa, Jun; Kawaguchi, Norihito

    2018-02-01

    We report a soliton mode locked femtosecond oscillation with all-polarization maintaining erbuim doped fiber laser based on Carbon Nanowalls saturable absorber (CNWs SA). To improve the stability and the capability of the oscillator, the all-polarization maintaining(all-PM) fiber is generally used since PM fiber is tolerant of stretches and bends. The saturable absorber is an optical device that placed in a laser cavity to suppress continuous wave operation to promote cooperation between many modes to sustain ultrashort pulse operation. We apply CNWs for the material of SAs in our oscillator. CNWs are one of the nanocarbon materials, which are a high-aspect-ratio structure in the cross-section, where, although their width and height range in a few micrometers, the thickness is as small as ten nanometers or so. A sheet of CNWs is made up of nano-size graphite grain aggregates. Then CNWs structure is expected to have a high absorption to the incident light and large modulation depth due to a small number of carbon layers as well as CNT and Graphene. With this all-PM fiber laser oscillator based on CNWs SA, the soliton mode-locked laser oscillated with 66.3MHz repetition frequency and its spectrum width is 5.6nm in FWHM. Average output power is 8.1mW with 122.5mW laser diode pump power. In addition, the laser amplification system with erbium-doped fiber is constructed and amplifies the femtosecond pulse laser into 268.2mW and 3000mW pumping power.

  9. Influence of Pelvicaliceal Anatomy on Stone Clearance After Flexible Ureteroscopy and Holmium Laser Lithotripsy for Large Renal Stones.

    PubMed

    Inoue, Takaaki; Murota, Takashi; Okada, Shinsuke; Hamamoto, Shuzo; Muguruma, Kouei; Kinoshita, Hidefumi; Matsuda, Tadashi

    2015-09-01

    This study was performed to evaluate the impact of pelvicaliceal anatomy on stone clearance in patients with remnant fragments in the lower pole after flexible ureteroscopy and holmium laser lithotripsy (fURSL) for renal stones >15 mm. This retrospective study included 67 patients with radiopaque residual fragments (>2 mm) in the lower pole after fURSL for large renal stones (>15 mm). The preoperative infundibular length (IL), infundibular width (IW), infundibulopelvic angle (IPA), and caliceal pelvic height (CPH) were measured using intravenous urography. Multivariate analysis was performed to determine whether any of these measurements affected stone clearance. Of the 67 patients, 55 (82.1%) were stone free (SF) 3 months after fURSL. The anatomic factors significantly favorable for an SF status were a short IL, broad IW, wide IPA, and low CPH. On multivariate analysis, the IPA had a significant influence on an SF status after fURSL (p=0.010). An IPA <30° was a negative risk factor (p=0.019). Postoperative complications occurred in nine patients (13.4%), including Clavien grade I complications in two patients (2.9%), grade II in six patients (8.9%), and grade IIIa in one patient (1.8%). Almost all complications were minor. An IPA <30° is the only negative risk factor for stone clearance after fURSL for large renal stones according to our multivariate analysis. Additional studies are required to further evaluate the characteristics of the pelvicaliceal anatomy influencing stone clearance.

  10. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets

    NASA Astrophysics Data System (ADS)

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-03-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.

  11. Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO{sub 2} films on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Chunyan; Department of Chemistry, Huzhou University, Zhejiang, Huzhou 313000; Zhu, Chen

    2015-04-06

    We report on erbium (Er)-related electroluminescence (EL) in the visible and near-infrared (NIR) from metal-oxide-semiconductor (MOS) devices with Er-doped CeO{sub 2} (CeO{sub 2}:Er) films on silicon. The onset voltage of such EL under either forward or reverse bias is smaller than 10 V. Moreover, the EL quenching can be avoidable for the CeO{sub 2}:Er-based MOS devices. Analysis on the current-voltage characteristic of the device indicates that the electron transportation at the EL-enabling voltages under either forward or reverse bias is dominated by trap-assisted tunneling mechanism. Namely, electrons in n{sup +}-Si/ITO can tunnel into the conduction band of CeO{sub 2} host viamore » defect states at sufficiently high forward/reverse bias voltages. Then, a fraction of such electrons are accelerated by electric field to become hot electrons, which impact-excite the Er{sup 3+} ions, thus leading to characteristic emissions. It is believed that this work has laid the foundation for developing viable silicon-based emitters using CeO{sub 2}:Er films.« less

  12. Observation of low voltage driven green emission from erbium doped Ga{sub 2}O{sub 3} light-emitting devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhengwei; Wang, Xu; Zhang, Fabi

    Erbium doped Ga{sub 2}O{sub 3} thin films were deposited on Si substrate by pulsed laser deposition method. Bright green emission (∼548 nm) can be observed by naked eye from Ga{sub 2}O{sub 3}:Er/Si light-emitting devices (LEDs). The driven voltage of this LEDs is 6.2 V which is lower than that of ZnO:Er/Si or GaN:Er/Si devices. Since the wide bandgap of Ga{sub 2}O{sub 3} contain more defect-related level which will enhance the effects of recombination between electrons in the defect-related level and the holes in the valence band, resulting in the improvement of the energy transfer to Er ions. We believe that this workmore » paves the way for the development of Si-based green LEDs by using wide bandgap Ga{sub 2}O{sub 3} as the host materials for Er{sup 3+} ions.« less

  13. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PMmore » fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.« less

  14. Dynamic behavior of pump light radiation induced photo-bleaching effect on BAC-Si in bismuth/erbium co-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Ding, Mingjie; Luo, Yanhua; Wen, Jianxiang; Peng, Gang-Ding

    2018-02-01

    Ultra-wide emission in bismuth doped optical fiber has been extremely studied for the development of the laser and amplifier working at near infrared band. In our homemade bismuth/erbium co-doped optical fiber, bismuth active center associated with silica (BAC-Si) has been found that when pumping at its resonant wavelength at 830 nm the NIR emission could be partially bleached. In addition, a self-recovery process has been observed at room temperature. However, the exact mechanism is still unclear. In this work, we have investigated the photo-bleaching effect on the BAC-Si via the pump power, pump wavelength and temperature dependence. Based on analyzing the result using stretched exponential function, it shows that the bleaching effect on BAC-Si has a strong link with the excitation process of Bi ion in BAC-Si. A potential energy curve model is used to illustrate the BAC-Si photo-bleaching process.

  15. Generation of dual-wavelength square pulse in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion.

    PubMed

    Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan

    2015-08-01

    A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.

  16. Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy.

    PubMed

    Molina, Wilson R; Marchini, Giovanni S; Pompeo, Alexandre; Sehrt, David; Kim, Fernando J; Monga, Manoj

    2014-04-01

    To evaluate the association of preoperative noncontrast computed tomography stone characteristics, laser settings, and stone composition with cumulative holmium:yttrium-aluminum-garnet (Ho:YAG) laser time/energy. We retrospectively reviewed patients who underwent semirigid/flexible ureteroscopy and Ho:YAG laser lithotripsy (200 or 365 μm laser fiber; 0.8-1.0 J energy; and 8-10 Hz rate) at 2 tertiary care centers (April 2010-May 2012). Studied parameters were as follows: patient's characteristics; stone characteristics (location, burden, hardness, and composition); total laser time and energy; and surgical outcomes. One hundred patients met our inclusion criteria. Mean stone size was 1.01 ± 0.42 cm and volume 0.33 ± 0.04 cm(3). Mean stone radiodensity was 990 ± 296 HU, and Hounsfield units density 13.8 ± 6.0 HU/mm. All patients were considered stone free. Stone size and volume had a significant positive correlation with laser energy (R = 0.516, P <.001; R = 0.621, P <.001) and laser time (R = 0.477, P <.001; R = 0.567, P <.001). When controlling for stone size, only the correlation between HU and laser time was significant (R = 0.262, P = .011). In the multivariate analysis, with exception of stone composition (P = .103), all parameters significantly increased laser energy (R(2) = 0.524). Multivariate analysis revealed a positive significant association of laser time with stone volume (P <.001) and Hounsfield units density (P <.001; R(2) = 0.512). In multivariate analysis for laser energy, only calcium phosphate stones required less energy to fragment compared with uric acid stones. No significant differences were found in the multivariate laser time model. Ho:YAG laser cumulative energy and total time are significantly affected by stone dimensions, hardness location, fiber size, and power. Kidney location, laser fiber size, and laser power have more influence on the final laser energy than on the total laser time. Calcium phosphate stones require less laser

  17. Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate.

    PubMed

    Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan

    2016-12-01

    We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02  K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.

  18. Tunable, stable source of femtosecond pulses near 2 μm via supercontinuum of an Erbium mode-locked laser.

    PubMed

    Klose, Andrew; Ycas, Gabriel; Maser, Daniel L; Diddams, Scott A

    2014-11-17

    A source of ultrashort pulses of light in the 2 μm region was constructed using supercontinuum broadening from an erbium mode-locked laser. The output spectrum spanned 1000 nm to 2200 nm with an average power of 250 mW. A pulse width of 39 fs for part of the spectrum in the 2000 nm region, corresponding to less than six optical cycles, was achieved. A heterodyne measurement of the free-running mode-locked laser with a narrow-linewidth continuous wave laser resulted in a near shot noise-limited beat note with a signal-to-noise ratio of 45 dB in a 10 kHz resolution bandwidth. The relative intensity noise of the broadband system was investigated over the entire supercontinuum, and the integrated relative intensity noise of the 2000 nm portion of the spectrum was 1.7 × 10(-3). The long-term stability of the system was characterized, and intensity fluctuations in the spectrum were found to be highly correlated throughout the supercontinuum. Spectroscopic limitations due to the laser noise characteristics are discussed.

  19. Wavelength-switchable C-band erbium-doped fibre laser incorporating all-fibre Fabry-Perot interferometer fabricated by chemical etching

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    A switchable and stable triple-wavelength, ring-cavity, erbium-doped fibre laser incorporating an all-fibre Fabry-Perot interferometer (FPI) is designed and experimentally demonstrated. In the proposed fibre laser, the all-fibre FPI is fabricated using the chemical etching method and is used to generate the filter effect. The laser threshold is 88 mW. Switchable single-wavelength lasing at 1529.9, 1545.1 and 1560.2 nm can be realized with a power fluctuation less than 0.64 dB under 20 min of scanning time at room temperature. In addition, the wavelength-switchable dual-wavelength lasers can be tuned by changing the polarization state in the experiment, and the maximum power fluctuations for the 1545.1 and 1560.2 nm lasers are less than 1.19 and 1.57 dB at 26 °C, respectively. Furthermore, a triple-wavelength laser is obtained by adjusting the polarization controller. The results demonstrate that switchable single-, dual-, or triple-wavelength lasers can be generated through the proposed fibre laser.

  20. An 8 cm long holmium-doped fiber saturable absorber for Q-switched fiber laser generation at 2-μm region

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Dhar, A.; Das, S.; Dutta, D.; Paul, M. C.; Rusdi, M. F. M.; Latiff, A. A.; Dimyati, K.; Harun, S. W.

    2018-07-01

    We demonstrate a Q-switched all-fiber laser operating at 2-μm region by adding a piece of 8 cm long holmium doped fiber (HDF) as a fiber saturable absorber (SA) in Thulium doped fiber laser (TDFL) ring cavity. Doping of Ho ions into yttria-alumina silica glass was done through conventional Modified Chemical Vapor Deposition (MCVD) technique in conjunction with solution doping process. The fabricated HDF has a linear absorption of 3 dB with a core diameter and a numerical aperture of 10 μm and 0.18, respectively. A self-started Q-switching operation begins at 418 mW pump level and continually dominant until 564 mW pump level. As the pump power increases, stable pulse train presence from 30.61 kHz to 38.89 kHz while the pulse width reduces from 3.18 μs to 2.27 μs. Both maximum output power and maximum peak power are obtained at 5.05 mW and 57.2 mW, respectively, while the maximum pulse energy is calculated to be 129 nJ. The signal-to-noise ratio (SNR) of the fundamental frequency is 50 dB. Our work may contribute to the discovery of stable, robust, and economic SA for pulse fiber laser generation at 2-μm region.

  1. Analysis of Depth of Ablation,Thermal Damage, Wound Healing, and Wound Contraction With Erbium YAG Laser in a Yorkshire Pig Model.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Smith, Wiley J; DeRienzo, Damian P

    2015-11-01

    The erbium YAG laser is commonly used for skin resurfacing. It is known that varying the pulse duration can influence residual thermal damage and wound healing. Our study used a porcine model to evaluate a broad range of settings in a comparison of depth of ablation, depth of residual thermal damage (RTD), and wound contraction employing both a full coverage and fractional hand piece with an erbium YAG laser. The laser delivered an ablative pulse followed by a heating pulse of variable duration using either the full coverage or fractional hand piece. Pulse durations for specific coagulation depths were selected based on existing heat transfer models. The bilateral flanks of a single Yorkshire pig were irradiated. There were 14 treatment groups. 3 sites were treated per group for a total of 42 sites. Two of the 3 sites were for observational assessments and the 3rd site served as a reservoir for biopsies. Biopsy specimens were collected on days 0, 1, 3, 7, 14, and 28. Bleeding, erythema, wound healing, and wound contraction (in the fractional hand piece groups) were assessed. Wound healing is faster for fractional laser skin resurfacing compared with traditional contiguous resurfacing as demonstrated by textural changes and degree of erythema. The laser operator can be confident that the depth of ablation displayed on this system accurately reflects what is occurring in vivo for both confluent and fractional modes. Likewise, the measured degree of coagulation was consistent with panel display settings for the confluent mode. However, the degree of coagulation, as measured by the thickness of residual thermal damage, did not vary significantly between the fractional groups. In other words, the pulse duration of the second (heating) pulse did not impact the degree of coagulation in the fractional mode. There was a 2.3% wound contraction between some groups and a 6.5% wound contraction between other groups. A two way analysis of variance found a statistically

  2. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  3. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    NASA Astrophysics Data System (ADS)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  4. Comparison of the efficiency and complications of Lumenis and Wolf morcellators after holmium laser enucleation of the prostate

    PubMed Central

    Maheshwari, Pankaj N.; Wagaskar, Vinayak G.; Maheshwari, Reeta P.

    2018-01-01

    Introduction: Holmium laser enucleation of the prostate (HoLEP) is a recognized option for the surgical management of benign prostatic hyperplasia. While the laser parameters and enucleation techniques have been widely studied, the morcellation techniques still remain under-evaluated. The current study evaluates the two commonly used morcellation devices for their in vivo efficiency and patient safety. Materials and Methods: A total of 222 patients who underwent HoLEP at two medical centres between January 2011 to December 2013 by a single surgeon were included. Of these 222 patients, the Richard Wolf Piranha Morcellation System, Germany (WM), was used on 140 patients, while on the remaining 82, the Lumenis® VersaCut™ Morcellator, Yokneam, Israel (LM), was used. These devices were compared for safety parameters such as the incidence of bladder mucosal injury, deep muscle injury, bladder perforation, and bleeding requiring electrocoagulation. The morcellation efficiency (ME) defined as the ratio of the weight of morcellated tissue in grams to the time required for morcellation in minutes was also compared. Results: The incidence of bladder mucosal injury, deep muscle injury, and bleeding requiring electrocoagulation was statistically significantly lower for the WM than the LM. None of the patients had a full-thickness bladder perforation with either of the morcellators. The ME was higher for the LM. In eight patients, hard, smooth rounded adenomatous nodules could not be morcellated by the WM and had to be crushed by a stone grasping forceps before morcellation. Conclusions: While the LM is a faster morcellator, WM has a better safety profile. PMID:29692508

  5. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2009-06-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.

  6. Controlled spontaneous emission in erbium-doped microphotonic materials

    NASA Astrophysics Data System (ADS)

    Kalkman, Jeroen

    2005-03-01

    Erbium is a rare-earth metal that, when incorporated in a solid, can emit light at a wavelength of 1.5 μm. It plays a key role in current day telecommunication technology as the principle ingredient of optical fiber amplifiers. In this thesis the control of the Er spontaneous emission in three different types of microphotonic materials is described. Part I of this thesis focuses on the effect of a metallo-dielectric interface on the spontaneous emission of optical emitters in silica glass. It is shown that Er ions near a Ag interface can couple to surface plasmons (SPs) via a near-field interaction. By coupling SPs out into the far field, large changes in the Er photoluminescence emission distribution, spectra, and polarization can be observed. The excitation of SPs also results in an increase of the Er photoluminescence decay rate. The observed decay rates are in good agreement with calculations based on a classical dipole oscillator model. From the change in photoluminescence decay rate of Si nanocrystals near a Ag interface it is shown that Si nanocrystals can efficiently excite SPs and have an internal quantum efficiency of 77 %. Part II focuses on the effect of a microcavity on the spontaneous emission of Er and describes how ion implantation can be used to dope dielectric microresonators with optically active Er ions. The fabrication and characterization of an Er ion-implanted silica microsphere resonator is described that shows lasing at 1.5 μm when pumped above its lasing threshold. Ion implantation is also used to dope toroidal microcavities on a Si chip with Er. The microtoroids are doped by either pre-implantation into the SiO2 base material, or by post-implantation in a fully fabricated microtoroid. The optical activation of Er ions in the microtoroid is investigated and Er lasing at 1.5 μm is observed for both types of microcavities with the lowest threshold (4.5 μW) for the pre-implanted microtoroids. Part III describes the fabrication of an Er

  7. Comparison of cold-knife optical internal urethrotomy and holmium:YAG laser internal urethrotomy in bulbar urethral strictures

    PubMed Central

    Yenice, Mustafa Gurkan; Sam, Emre; Colakoglu, Yunus; Atar, Feyzi Arda; Sahin, Selcuk; Simsek, Abdulmuttalip; Tugcu, Volkan

    2017-01-01

    Introduction To compare the results of cold-knife optical internal urethrotomy (OIU) and Holmium:YAG laser internal urethrotomy (HIU) in primary bulbar urethral strictures. Material and methods A total of 63 patients diagnosed with primary bulbar urethral stricture between August 2014 and September 2015 were assigned to the OIU (n = 29) and HIU (n = 34) groups. The demographic variables, biochemistry panels, and preoperative and postoperative uroflowmetry results including the maximum flow rate (Qmax) and mean flow rate (Qmean) values, retrograde urethrography, and diagnostic flexible urethroscopy findings were recorded prospectively. Demographic features and preoperative values were not statistically different between groups (p >0.05). Mean surgical times were 18.4 ±2.3 min for OIU and 21.9 ±3.8 min for HIU groups, which was statistically significant (p <0.05). There was no significant difference in complication rates in both groups (p = 0.618). Results Postoperative Qmax values were increased in both groups even though postoperative Qmax values were not significantly different between the two groups in the short- and long-term results at 3, 6, and 12 months (p >0.05). There was no recurrence in the first 3 months in either group. The urethral stricture recurrence rate up to month 12 was not statistically significant for the OIU group (n = 6, 20.7%) as compared to the HIU group (n = 11, 32.4%; p = 0.299). At follow-up, the SFR and IFR was 96% and 88% at 3-months, and 82% and 71% at 12-months, respectively (p <0.001). While almost three-quarters of patients were stone and infection free at 12-months, the majority of those with stones recurrence also had recurrence of their UTI. Conclusions HIU is an alternative method to OIU, and it has similar success rates in the treatment of short segment bulbar urethral strictures. PMID:29732217

  8. Combined retrograde flexible ureteroscopic lithotripsy with holmium YAG laser for renal calculi associated with ipsilateral ureteral stones.

    PubMed

    Cocuzza, Marcello; Colombo, Jose R; Ganpule, Arvind; Turna, Burak; Cocuzza, Antonio; Dhawan, Divyar; Santos, Bruno; Mazzucchi, Eduardo; Srougi, Miguel; Desai, Mahesh; Desai, Mihir

    2009-02-01

    The purpose of this study was to evaluate the effectiveness of combined ureteroscopic holmium YAG lithotripsy for renal calculi associated with ipsilateral ureteral stones. Between August 2002 and March 2007, retrograde flexible ureteroscopic stone treatment was attempted in 351 cases. Indication for treatment was concurrent symptomatic ureteral stones in 63 patients (group I). Additional operative time and perioperative complication rates were compared to a group of 39 patients submitted to ureteroscopic treatment for ureteral calculi exclusively (group II). Mean ureteral stone size was 8.0 +/- 2.6 mm and 8.1 +/- 3.4 mm for groups I and II, respectively. Mean operative time for group I was 67.9 +/- 29.5 minutes and for group 2 was 49.3 +/- 13.2 minutes (p < 0.001). Flexible ureteroscopic therapy for renal calculi increased 18 minutes in the mean operative time. The overall complication rate was 3.1% and 2.5% for groups I and II, respectively (p = 0.87). Mean renal stone size was 10.7 +/- 6.4 mm, overall stone free rate in group I was 81%. However, considering only patients with renal stones smaller than 15 mm, the stone free rate was 88%. Successful treatment occurred in 81% of patients presenting lower pole stones, but only 76% of patients with multiple renal stones became stone free. As expected, stone free rate showed a significant negative correlation with renal stone size (p = 0.03; r = -0.36). Logistic regression model indicated an independent association of renal stones smaller than 15 mm and stone free rate (OR = 13.5; p = 0.01). Combined ureteroscopic treatment for ureteral and ipsilateral renal calculi is a safe and attractive option for patients presenting for symptomatic ureteral stone and ipsilateral renal calculi smaller than 15 mm.

  9. Serial Changes in Sexual Function Following Holmium Laser Enucleation of the Prostate: A Short-term Follow-up Study.

    PubMed

    Jeong, Min Su; Ha, Seung Beom; Lee, Chang Ju; Cho, Min Chul; Kim, Soo Woong; Paick, Jae-Seung

    2012-02-01

    To evaluate the serial changes in sexual function in the short-term period after holmium laser enucleation of the prostate (HoLEP) for benign prostatic hyperplasia (BPH) and to investigate whether a change in each domain of the International Index of Erectile Function (IIEF) is associated with improvement of micturition. Thirty-eight potent men who underwent HoLEP and in whom complete 12-month follow-up data on the IIEF were available were included in this retrospective study. All patients underwent a baseline evaluation for BPH. The surgical outcome was evaluated at 1, 3, 6, and 12 months postoperatively by use of the International Prostate Symptom Score, IIEF, and uroflowmetry. The mean age and body mass index of the patients was 64.5±6.2 years and 24.2±2.6 kg/m(2), respectively. Mean total prostate volume and transitional zone volume were 48.8±18.8 ml and 24.2±16.1 ml, respectively. Most IIEF domain scores showed a slight decrease at 1, 3, and 6 months after surgery but recovered to the baseline or showed a marginal but nonsignificant increase at 12 months postoperatively compared with baseline. Orgasmic function and the overall sexual satisfaction domain score remained slightly reduced up to 12 months postoperatively. There was no significant correlation between improvement of micturition and change in sexual function throughout the follow-up period after surgery. Although HoLEP achieves significant improvements in micturition, overall sexual function decreases slightly in the early postoperative period, but recovers to the baseline at 12 months postoperatively. Our data suggest that changes in sexual function after HoLEP are not associated with improvement of micturition.

  10. Proteus mirabilis viability after lithotripsy of struvite calculi

    NASA Astrophysics Data System (ADS)

    Prabakharan, Sabitha; Teichman, Joel M. H.; Spore, Scott S.; Sabanegh, Edmund; Glickman, Randolph D.; McLean, Robert J. C.

    2000-05-01

    Urinary calculi composed of struvite harbor urease-producing bacteria within the stone. The photothermal mechanism of holmium:YAG lithotripsy is uniquely different than other lithotripsy devices. We postulated that bacterial viability of struvite calculi would be less for calculi fragmented with holmium:YAG irradiation compared to other lithotripsy devices. Human calculi of known struvite composition (greater than 90% magnesium ammonium phosphate hexahydrate) were incubated with Proteus mirabilis. Calculi were fragmented with no lithotripsy (controls), or shock wave, intracorporeal ultrasonic, electrohydraulic, pneumatic, holmium:YAG or pulsed dye laser lithotripsy. After lithotripsy, stone fragments were sonicated and specimens were serially plated for 48 hours at 38 C. Bacterial counts and the rate of bacterial sterilization were compared. Median bacterial counts (colony forming units per ml) were 8 X 106 in controls and 3 X 106 in shock wave, 3 X 107 in ultrasonic, 4 X 105 in electrohydraulic, 8 X 106 in pneumatic, 5 X 104 in holmium:YAG and 1 X 106 in pulsed dye laser lithotripsy, p less than 0.001. The rate of bacterial sterilization was 50% for holmium:YAG lithotripsy treated stones versus 0% for each of the other cohorts, p less than 0.01. P. mirabilis viability is less after holmium:YAG irradiation compared to other lithotripsy devices.

  11. High Temperature Superconductivity in Praseodymium Doped (0%, 2%, 4%) in Melt-Textured Y(1-x)Pr(x)Ba2Cu3O(7-delta) Systems

    NASA Technical Reports Server (NTRS)

    James, Claudell

    1995-01-01

    A study of the magnetic and structural properties of the alloy Y(1-x)Pr(x)Ba2Cu3O(7-delta) of 0%, 2%, and 4% doping of praseodymium is presented. The resulting oxides of the alloy series are a high-temperature superconductor Y-Ba-Cu-O, which has an orthorhombic superconducting crystal-lattice. Magnetic relaxation studies have been performed on the Y-Pr-Ba-CuO bulk samples for field orientation parallel to the c-axis, using a vibrating sample magnetometer. Relaxation was measured at several temperatures to obtain the irreversible magnetization curves used for the Bean model. Magnetization current densities were derived from the relaxation data. Field and temperature dependence of the logarithmic flux-creep relaxation was measured in critical state. The data indicates that the effective activation energy U(eff) increases with increasing T between 77 K and 86 K. Also, the data shows that U(eff)(T) and superconducting transition temperature, Tc, decreased as the lattice parameters increased with increasing Pr ion concentration, x, for the corresponding Y(1-x)Pr(x)Ba(x)Cu3O(7-delta) oxides. One contribution to Tc decrease in this sampling is suspected to be due to the larger ionic radius of the Pr(3+) ion. The upper critical field (H(sub c2)) was measured in the presence of magnetic field parallel to the c axis. A linear temperature dependence with H(sub c2) was obtained.

  12. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    PubMed

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  13. Combination of fractional erbium-glass laser and topical therapy in melasma resistant to triple-combination cream.

    PubMed

    Tourlaki, Athanasia; Galimberti, Michela Gianna; Pellacani, Giovanni; Bencini, Pier Luca

    2014-06-01

    Melasma is a common melanosis often difficult to treat. The aim of this paper was to report on the safety and efficacy of non-ablative fractional photothermolysis combined with the use of triple-combination cream (TCC) on a large population with melasma resistant (i.e., with no complete/near-complete clearing) to TCC alone. Seventy-six patients with resistant melasma underwent a combined treatment protocol. The protocol consisted of a TCC (hydroquinone 4%, retinoic acid 0.03%, hydrocortisone butyrate 0.1%) applied daily for 10 days followed by four laser treatments performed in 3-week intervals with a fractional 1540-nm erbium-glass laser. During these intervals, and for 3 months after the last laser session, TCC was also applied daily following a "pulse-therapy" scheme. Improvement was assessed by the melasma-area-and-severity-index (MASI) score. At 1 month, marked (>75%) and moderate (51-75%) clearing of melasma were observed in 46 of 76 (67.1%) and 12 of 76 (21%) cases, respectively. At 6 months, we noticed a marked improvement in 16 of 76 (21.1%) and no improvement in 33 of 76 (43.4%) patients. Our study proposes the combination of NFP/TCC as a useful therapy for patients with melasma resistant to TCC alone, but it shows that its long-term efficacy is limited.

  14. Temperature dependence of the ratio of intensities of up-conversion fluorescence bands of YVO4 and YGdVO4 crystals and lead fluoride nano glass ceramics activated with erbium ions

    NASA Astrophysics Data System (ADS)

    Varaksa, Yu. A.; Sinitsyn, G. V.; Khodasevich, M. A.; Aseev, V. A.; Kolobkova, E. V.; Yasyukevich, A. S.

    2015-01-01

    Up-conversion fluorescence spectra of YVO4 and YGdVO4 crystals and lead fluoride nano glass ceramics coactivated with erbium and ytterbium ions have been studied in the wavelength range of 520-560 nm under 967-nm pumping. The ratio of intensities of fluorescence bands in the ranges of 520-530 and 540-550 nm has been measured in the temperature range of from room temperature to 150°C. It is shown that the considered materials can be used for preparing a sensing element of optical fluorescent temperature sensors; the sensitivity of measuring the temperature of nano glass-ceramics can be close to that of crystal samples.

  15. Evaluation of a new 240-μm single-use holmium:YAG optical fiber for flexible ureteroscopy.

    PubMed

    Khemees, Tariq A; Shore, David M; Antiporda, Michael; Teichman, Joel M H; Knudsen, Bodo E

    2013-04-01

    Numerous holmium:yttrium-aluminum-garnet laser fibers are available for flexible ureteroscopy. Performance and durability of fibers can vary widely among different manufacturers and their product lines with differences within a single product line have been reported. We sought to evaluate a newly developed nontapered, single-use 240-μm fiber, Flexiva™ 200 (Boston Scientific, Natick, MA), during clinical use and in a bench-testing model. A total of 100 new fibers were tested after their use in 100 consecutive flexible ureteroscopic lithotripsy procedures by a single surgeon (B.K.). Prospectively recorded clinical parameters were laser pulse energy and frequency settings, total energy delivered and fibers failure. Subsequently, each fiber was bench-tested using an established protocol. Parameters evaluated for were fibers true diameter, flexibility, tip degradation, energy transmission in straight and 180° bend configuration and fibers failure threshold with stress testing. The mean total energy delivered was 2.20 kJ (range 0-18.24 kJ) and most common laser settings used were 0.8 J at 8 Hz, 0.2 J at 50 Hz, and 1.0 J at 10 Hz, respectively. No fiber fractured during clinical procedures. The true fiber diameter was 450 μm. Fiber tips burnt back an average of 1.664 mm, but were highly variable. With laser setting of 400 mJ at 5 Hz, the mean energy transmitted was 451 and 441 mJ in straight and 180° bend configuration, respectively. Thirteen percent of fibers fractured at the bend radius of 0.5 cm with a positive correlation to the total energy transmitted during clinical use identified. Fiber performance was consistent in terms of energy transmission and resistance to fracture when activated in bent configuration. Fiber failure during stress testing showed significant correlation with the total energy delivered during the clinical procedure. The lack of fiber fracture during clinical use may reduce the risk of flexible endoscope damage due to fiber failure.

  16. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    NASA Astrophysics Data System (ADS)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  17. Self-mixing detection of backscattered radiation in a single-mode erbium fibre laser for Doppler spectroscopy and velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriev, A K; Konovalov, A N; Ul'yanov, V A

    2014-04-28

    We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with amore » high signal-to-noise ratio (above 10{sup 2}) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues. (control of laser radiation parameters)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Rich

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  19. Metal-organic framework assembled from erbium and a tetrapodal polyphosphonic acid organic linker.

    PubMed

    Mendes, Ricardo F; Firmino, Ana D G; Tomé, João P C; Almeida Paz, Filipe A

    2018-06-01

    A three-dimensional metal-organic framework (MOF), poly[[μ 6 -5'-pentahydrogen [1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(phosphonato)]erbium(III)] 2.5-hydrate], formulated as [Er(C 12 H 11 O 12 P 4 )]·2.5H 2 O or [Er(H 5 btp)]·2.5H 2 O (I) and isotypical with a Y 3+ -based MOF reported previously by our research group [Firmino et al. (2017b). Inorg. Chem. 56, 1193-1208], was constructed based solely on Er 3+ and on the polyphosphonic organic linker [1,1'-biphenyl]-3,3',5,5'-tetrakis(phosphonic acid) (H 8 btp). The present work describes our efforts to introduce lanthanide cations into the flexible network, demonstrating that, on the one hand, the compound can be obtained using three distinct experimental methods, i.e. hydro(solvo)thermal (Hy), microwave-assisted (MW) and one-pot (Op), and, on the other hand, that crystallite size can be approximately fine-tuned according to the method employed. MOF I contains hexacoordinated Er 3+ cations which are distributed in a zigzag inorganic chain running parallel to the [100] direction of the unit cell. The chains are, in turn, bridged by the anionic organic linker to form a three-dimensional 6,6-connected binodal network. This connectivity leads to the existence of one-dimensional channels (also running parallel to the [100] direction) filled with disordered and partially occupied water molecules of crystalization which are engaged in O-H...O hydrogen-bonding interactions with the [Er(H 5 btp)] framework. Additional weak π-π interactions [intercentroid distance = 3.957 (7) Å] exist between aromatic rings, which help to maintain the structural integrity of the network.

  20. Cubic crystalline erbium oxide growth on GaN(0001) by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yu; Posadas, Agham B.; Kwon, Sunah; Wang, Qingxiao; Kim, Moon J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-12-01

    Growth of crystalline Er2O3, a rare earth sesquioxide, on GaN(0001) is described. Ex situ HCl and NH4OH solutions and an in situ N2 plasma are used to remove impurities on the GaN surface and result in a Ga/N stoichiometry of 1.02. Using atomic layer deposition with erbium tris(isopropylcyclopentadienyl) [Er(iPrCp)3] and water, crystalline cubic Er2O3 (C-Er2O3) is grown on GaN at 250 °C. The orientation relationships between the C-Er2O3 film and the GaN substrate are C-Er2O3(222) ǁ GaN(0001), C-Er2O3⟨-440⟩ ǁ GaN ⟨11-20⟩, and C-Er2O3⟨-211⟩ ǁ GaN ⟨1-100⟩. Scanning transmission electron microscopy and electron energy loss spectroscopy are used to examine the microstructure of C-Er2O3 and its interface with GaN. With post-deposition annealing at 600 °C, a thicker interfacial layer is observed, and two transition layers, crystalline GaNwOz and crystalline GaErxOy, are found between GaN and C-Er2O3. The tensile strain in the C-Er2O3 film is studied with x-ray diffraction by changes in both out-of-plane and in-plane d-spacing. Fully relaxed C-Er2O3 films on GaN are obtained when the film thickness is around 13 nm. Additionally, a valence band offset of 0.7 eV and a conduction band offset of 1.2 eV are obtained using x-ray photoelectron spectroscopy.

  1. Periodontal plastic surgery: thermal effect analysis using Erbium:YAG Kesler's handpiece. Histochemical evaluation by Picrosirius red stain and polarization microscopy for collagen determination: in

    NASA Astrophysics Data System (ADS)

    Kesler, Gavriel; Koren, Rumelia; Kesler, Anat; Kristt, Don; Gal, Rivka

    2000-03-01

    Recent technological advances lead to an increase in the options for the treatment of the periodontal diseases. Lasers utilized for gingival soft tissue resurfacing mainly for esthetics purposes, require careful histopathological evaluation of the effects on tissue. Up to date no comparative clinical or histological studies have been performed, aiming at demonstration of the effects of laser irradiation on connective tissue, especially its most important component -- the collagen fibers. The alteration in the structures of this tissue plays the most important role in the healing process. The aim of the present study is to evaluate the influence of Erbium: YAG - Kesler's hand piece on gingival tissue. This handpiece is designed for gingival resurfacing, in cases of 'Gummy smile' and gingival pigmentation. The following irradiation parameters were used: energy per pulse -- 500 mJ, repetition rate 10 pps, spot size 3 mm. Gingival biopsies specimens of 10 patients, 6 with 'Gummy smile' and 4 with gingival pigmentation were examined before laser treatment, and at 7 and 14 days after laser treatment. The tissues were fixed in LNRS, embedded in paraffin, and sectioned into 5 micrometer thickness, dewaxed in xylol and stained with H&E and Picrosirius Red (PSR). The sections were examined by polarization microscopy. PSR is a collagen stain that differentiates collagen fiber density by the range of colors from green through yellow to red, and/or fiber size. This was utilized in the present study to evaluate the hypothesis that Erbium -- YAG (Er: YAG) laser energy is capable of remodeling the collagen fibers in the gingival connective tissue through a photothermal process. We found a significant difference between the structures of collagen fibers at the first week and at 14 days post treatment. In the normal gingiva the predominant polarization colors were in the red-orange range, signifying tightly packed, mature collagen. During the first postoperative week, collagen

  2. The long-term effect of 1550 nm erbium:glass fractional laser in acne vulgaris.

    PubMed

    Liu, Yale; Zeng, Weihui; Hu, Die; Jha, Smita; Ge, Qin; Geng, Songmei; Xiao, Shengxiang; Hu, Guanglei; Wang, Xiaoxiao

    2016-04-01

    We evaluated the short-term and long-term effects of the 1550 nm erbium:glass (Er:glass) fractional laser in the treatment of facial acne vulgaris. Forty-five (9 male and 36 female) acne patients were treated 4 times at 4-week intervals with the following parameters: 169 spot density and 15-30 mJ/cm(2) fluence. There was no control group. The laser spots were adjustable (maximum overlap: 20%) according to the treatment area, and delivered in rows in order to cover all the face. Clinical photographs were taken. The IGA scores and lesion counts were performed for each treatment. Their current state was obtained by phone call follow-up to determine the long-term effect and photographs were offered by themselves or taken in hospital. After four treatments, all patients had an obvious reduction of lesion counts and IGA score and the peak lesion counts decreased to 67.7% after the initial four treatment sessions. For long-term effect, 8 patients lost follow-up, hence 37 patients were followed-up. 8 patients were 2-year follow up, 27 at the 1-year follow-up, and all patients at the half-year follow-up. The mean percent reduction was 72% at the half-year follow-up, 79 at the 1-year follow-up and 75% at the 2-year follow-up. Side effects and complications were limited to transient erythema and edema, and few patients suffered from transient acne flare-ups and sensitivity. All patients responded that their skin was less prone to oiliness. In conclusion, acne can be successfully treated by 1550 nm Er:glass fractional laser, with few side effects and prolonged acne clearing.

  3. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions

    NASA Astrophysics Data System (ADS)

    Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.

    2017-04-01

    In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (<10% as the maximum error for the highest doses). Compared to our previous results obtained on Er/Yb-amplifiers, these results reveal the importance of the photo-bleaching mechanism competing with the RIA that cannot be neglected for the modeling of the radiation-induced gain degradation of EDFAs. This implies to measure in representative conditions the RIA at the pump and signal wavelengths that are used as input parameters for the simulation. The validated numerical codes have then been used to evaluate the potential of some EDFA architecture evolutions in the amplifier performance during the space mission. Optimization of both the

  4. High-Frequency Dusting Versus Conventional Holmium Laser Lithotripsy for Intrarenal and Ureteral Calculi.

    PubMed

    Li, Roger; Ruckle, David; Keheila, Mohamed; Maldonado, Jonathan; Lightfoot, Michelle; Alsyouf, Muhannad; Yeo, Alexander; Abourbih, Samuel R; Olgin, Gaudencio; Arenas, Javier L; Baldwin, D Duane

    2017-03-01

    The efficiency of holmium laser lithotripsy for urolithiasis depends upon several factors, including laser pulse energy and frequency and stone composition and retropulsion. This study investigates the complex interplay between these factors and quantifies lithotripsy efficiency using different laser settings in a benchtop kidney and ureter model. In vitro caliceal and ex vivo porcine ureteral models were constructed. Calcium oxalate monohydrate stones were fragmented using a 200-μm laser fiber. In the caliceal model, stone fragmentation and vaporization rates at settings of 0.6 J/5 Hz, 0.2 J/15 Hz, and 0.2 J/50 Hz were compared. In the ureteral model, fragmentation time, retropulsion rate, fragmentation rate, and fragmented stone weight were compared at settings of 0.6 J/5 Hz and 0.2 J/15 Hz. Retropulsive forces generated at 0.6 J/5 Hz, 0.2 J/15 Hz, and 0.2 J/50 Hz settings were compared. Analysis was performed using Student's t-test and one-way ANOVA. In the caliceal model, the 0.6 J/5 Hz setting fragmented and vaporized stones at a higher rate than the 0.2 J/15 Hz setting (0.072 vs. 0.049 mg/s; p < 0.001). However, when the 0.2 J energy setting was combined with the 50 Hz frequency, the fragmentation rate (0.069 mg/s) was similar to the fragmentation rate at 0.6 J/5 Hz (0.072 mg/s; p = 0.677). In the ureteral model, the 0.6 J/5 Hz setting produced higher fragmentation rates (0.089 vs. 0.049 mg/s; p < 0.001), but resulted in significantly lower fragmented stone weight overall (16.815 vs. 25.485 mg; p = 0.009) due to higher retropulsion rates (0.732 vs. 0.213 mm/s; p < 0.001). Retropulsive forces decreased significantly when pulse energy decreased from 0.6 to 0.2 J (0.907 vs. 0.223 N; p < 0.001). Frequency did not affect retropulsive force at 15 and 50 Hz settings (0.223 vs. 0.288 N; p = 0.509). Laser lithotripsy of calcium oxalate monohydrate stones in the ureter

  5. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu

    We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less

  6. Effect of Young's modulus on bubble formation and pressure waves during pulsed holmium ablation of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Motamedi, Massoud; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed laser ablation of tissue is caused by rapid bubble expansions and collapse or by laser-induced pressure waves. In this study the effect of material elasticity on the ablation process has been investigated. Polyacrylamide tissue phantoms with various water concentrations (75-95%) were made. The Young's moduli of the gels were determined by measuring the stress-strain relationship. An optical fiber (200 or 400 micrometers ) was translated into the clear gel and one pulse of holmium:YAG laser radiation was given. The laser was operated in either the Q-switched mode (tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation inside the gels was recorded using a fast flash photography setup while simultaneously recording pressures with a PVDP needle hydrophone (40 ns risetime) positioned in the gel, approximately 2 mm away from the fibertip. A thermo-elastic expansion wave was measured only during Q-switched pulse delivery. The amplitude of this wave (approximately equals 40 bar at 1 mm from the fiber) did not vary significantly in any of the phantoms investigated. Rapid bubble formation and collapse was observed inside the clear gels. Upon bubble collapse, a pressure transient was emitted; the amplitude of this transient depended strongly on bubble size and geometry. It was found that (1) the bubble was almost spherical for the Q-switched pulse and became more elongated for the free-running pulse, and (2) the maximum bubble size and thus the collapse amplitude decreased with an increase in Young's modulus (from 68 +/- 11 bar at 1 mm in 95% water gel to 25 +/- 10 bar at 1 mm in 75% water gel).

  7. Low-power holmium:YAG laser urethrotomy for treatment of urethral strictures: functional outcome and quality of life.

    PubMed

    Kamp, Stefan; Knoll, Thomas; Osman, Mahmoud M; Köhrmann, Kai Uwe; Michel, Maurice S; Alken, Peter

    2006-01-01

    To evaluate the efficacy of endourethrotomy with the holmium:YAG laser as a minimally invasive treatment for urethral stricture. Between January 2002 and January 2004, 32 male patients with symptomatic urethral strictures (8 bulbar, 9 penile, 9 combined) were treated with Ho:YAG-laser urethrotomy in our department. The stricture was iatrogenic in 60% (N = 18), inflammatory in 16.6% (N = 5), traumatic in 13.3% (N = 4), and idiopathic in 7% (N = 3). The stricture was incised under vision at the 12 o'clock location or the site of maximum scar tissue or narrowing in asymmetric strictures. Laser energy was set on 1200 to 1400 mJ with a frequency of 10 to 13 Hz. Postoperatively, drainage of the bladder was performed for 4 days using a 18F silicone catheter. Triamcinolone was instilled intraurethrally after removal of the catheter in all patients. Patients were followed up by mailed questionnaire, including International Prostate Symptom Score and quality of life. Retrograde endoscopic Ho:YAG laser urethrotomy could be performed in all 32 patients. Most patients (22; 68.7%) did not need any reintervention. Ten patients developed recurrent strictures that were treated by another laser urethrotomy in 4 patients (12.5%), while 6 patients (18.7%) needed open urethroplasty with buccal mucosa. Including 2 patients treated with repeat laser urethrotomy, 24 patients (75%) were considered successful after a mean follow-up of 27 months (range 13-38 months). No intraoperative complications were encountered, although in 5% of patients, a urinary-tract infection was diagnosed postoperatively. No gross hematuria occurred. The Ho:YAG laser urethrotomy is a safe and effective minimally invasive therapeutic modality for urethral stricture with results comparable to those of conventional urethrotomy. Further data from long-time follow-up are necessary to compare the success rate with that of conventional urethrotomy and urethroplasty. Nevertheless, the Ho:YAG laser urethrotomy might at

  8. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.

  9. Multiple minimally invasive Erbium:YAG laser mini-peels for skin rejuvenation: An objective assessment

    PubMed Central

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, Mỹ G.; Uitto, Jouni

    2012-01-01

    Summary Background As the demand for minimally invasive rejuvenation is increasing, micro-peel resurfacing using Erbium:Yttrium Aluminium Garnet (Er:YAG ) laser 2940 nm has been reported for the treatment of photoaged skin without ablation of the epidermis. However, little is known about the efficacy and underlying histologic changes associated with this type of treatment. Aims The purpose of this study is to evaluate the clinical effect and objectively quantify the histological changes in response to multiple sessions of Er:YAG laser 2940 nm mini-peels. Patients and methods Six female volunteers of Fitzpatrick skin type III-IV and Glogau’s class I-III wrinkles were subjected to six microresurfacing peels at 2-week intervals using Er:YAG 2940 nm laser at sub-ablative fluences of 2 - 3 J/cm2 to treat periorbital rhytides. Quantitative evaluation of collagen types I, III and VII, newly synthesized collagen, total elastin and tropoelastin was performed by histochemistry and immunohistochemistry coupled with computerized morphometric analysis at base line, end of treatment, and three months post treatment. Results Compared to the base line, evaluation of volunteers revealed obvious clinical improvement in response to Er:YAG mini-peels. Collagen types I, III, and VII, as well as newly synthesized collagen, together with tropoelastin showed a statistically significant increase in response to treatment, while the mean level of total elastin was significantly decreased in response to treatment. However, this was followed by regression of improvement at 3 months post treatment, but was still better than baseline. Conclusions The present study revealed that multiple Er:YAG mini-peels is a promising treatment option for photoaging as it reverses the signs of photoaged skin with little downtime and side effects. However, to maintain the short term improvement achieved after treatment, continued Er:YAG 2940 nm laser mini-peels is required. PMID:22672276

  10. Carbon dioxide laser versus erbium:YAG laser in treatment of epidermal verrucous nevus: a comparative randomized clinical study.

    PubMed

    Osman, Mai Abdel Raouf; Kassab, Ahmed Nazmi

    2017-08-01

    A verrucous epidermal nevus (VEN) is a skin disorder that has been treated using different treatment modalities with varying results. Ablative lasers such as carbon dioxide laser (CO 2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) laser have been considered as the gold standard for the treatment of epidermal nevi. To evaluate and compare the efficacy, postoperative wound healing and side effects of pulsed CO 2 laser and Er:YAG laser for the treatment of verrucous epidermal nevi. Twenty patients with localized VEN were randomly divided into two groups. Group 1 was administered CO 2 laser and group 2 underwent Er:YAG laser treatment. A blinded physician evaluated the photographs and dermoscopic photomicrographs for the efficacy and possible side effects. All patients received one treatment session and were followed up over a 6-month period. Both lasers induced noticeable clinical improvement, but there were no significant differences between two lasers in treatment response, patient satisfaction, duration of erythema and side effects. The average time to re-epithelialization was 13.5 days with CO 2 and 7.9 days with Er:YAG laser (p< .0005). No scarring was observed in Er:YAG laser group and no lesional recurrence was detected in CO 2 laser group since treatment. Apart from re-epithelialization, both lasers showed equivalent outcomes with respect to treatment response, patient satisfaction, side effects and complications.

  11. [Effects of retroperitoneal laparoscopic ureterolithotomy and flexible-ureteroscopic holmium laser lithotripsy for complex upper ureteral calculi].

    PubMed

    Zhang, L J; Wu, B; Zha, Z L; Zhao, H; Yang, W; Chen, X H; Jiang, B; Huang, Q; Li, W J; Yuan, J

    2017-10-01

    Objective: To explore the clinical effects of retroperitoneal laparoscopic ureterolithotomy (RPLU) and flexible-ureteroscopic holmium laser lithotripsy (f-UHLL) for complicated upper ureteral calculi. Methods: A total of 45 cases of complicated upper ureteral calculi between March 2014 and January 2016 in Department of Urology, Affiliated Jiangyin Hospital of Southeast University Medical College were retrospectively analyzed, there were 32 males and 13 females, ranging from 27 to 45 years with an average age of (34.1±9.5) years. Of the 45 patients, 28 had ureteral distortion and 17 had concurrent ureteral stones in the lower or middle ipsilateral ureter. In those patients, 20 cases underwent f-UHLL, and 25 cases received RPLU. The stone size, operation time, hospital stay, stone clearance rates and postoperative fever rates between the two groups were compared with t test and χ(2)test. Results: The operation was successfully performed in all patients, no complications with leakage of urine or ureteral perforation occurred, and no significant difference in renal function between the two methods were founded in postoperative period. There was no significant difference in operation time((78.4±8.5) minuetes vs .(73.3±11.3) minuetes, t =0.61, P =0.67), time of double J tube removed ((33.8±3.4)days vs . (37.6±8.9) d, t =2.37, P =0.08) and ipsilateral renal glomerular filtration rates ((41.3±7.6)ml/minuetes vs .(40.5±7.1) ml/min, t =0.78, P =1.27) between the two groups. However, the hospitalization time ((5.9±1.7)days vs . (4.2±1.6) days, t =1.92, P =0.04), postoperative fever rates (4% vs .30%, χ(2)=5.72, P =0.03) and calculus clearance rates (100% vs . 75%, χ(2)=7.03, P =0.01) in RPLU were significantly higher than f-UHLL. Besides, 5 patients in the f-UHLL group had postoperative stone residue and were treated with extracorpore shock wave lithotripsy. Conclusions: Both RPLU and f-UHLL are safety and validity for complex upper ureteral calculi. RPLU can

  12. In Vitro Comparison of Stone Fragmentation When Using Various Settings with Modern Variable Pulse Holmium Lasers.

    PubMed

    Bell, John Roger; Penniston, Kristina L; Nakada, Stephen Y

    2017-10-01

    There are limited data regarding optimal laser and energy settings during stone fragmentation. We assessed effects on fragmentation using a variety of energy and frequency settings with two laser systems. Artificial stones were created using BegoStone. A clear polyvinylchloride (PVC) tube with an inner diameter of 13 mm was closed at one end with a removable plug to create the in vitro ureteral and caliceal environments. The Lumenis Pulse 120H and the Cook Rhapsody H-30 holmium lasers were studied in the caliceal and ureteral models. A single urologist fragmented each stone to <2 mm. The caliceal studies assessed the time to fragmentation (n = 56). The ureteral studies measured the retropulsion distance of each stone phantom after 5 minutes of laser treatment time using different pulse width settings (n = 15). Complete treatment of the stone with the 120H required 10.9 minutes at ≥1 J vs 26.9 minutes at <1 J (p < 0.001). The H-30 showed similar results with treatment times of 11.2 minutes at ≥1 J vs 22.8 minutes at <1 J (p < 0.001). There was no significant difference in treatment time when comparing the two lasers using settings of 0.8 J × 8 Hz and 1.5 J × 10 Hz (25.5 minutes vs 24.8 minutes, p = 0.861; and 13.2 minutes vs 9.5 minutes, p = 0.061; respectively). Retropulsion distances using the 120H were 13.9 cm using long pulse, 25.2 cm using medium pulse, and 56.6 cm using short pulse. Retropulsion distances using the H-30 laser were 7 cm using long pulse and 14.5 cm using short pulse, which differed from the 120H (p < 0.001). Laser fragmentation was faster with both lasers when energy settings of ≥1 J were used. Treatment times using the 120H and the H-30 lasers were equivalent. Retropulsion distances were less with both lasers when longer pulse widths were used. The H-30 resulted in less stone retropulsion compared with the 120H.

  13. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Fractional versus ablative erbium:yttrium-aluminum-garnet laser resurfacing for facial rejuvenation: an objective evaluation.

    PubMed

    El-Domyati, Moetaz; Abd-El-Raheem, Talal; Abdel-Wahab, Hossam; Medhat, Walid; Hosam, Wael; El-Fakahany, Hasan; Al Anwer, Mustafa

    2013-01-01

    Laser is one of the main tools for skin resurfacing. Erbium:yttrium-aluminum-garnet (Er:YAG) was the second ablative laser, after carbon dioxide, emitting wavelength of 2940 nm. Fractional laser resurfacing has been developed to overcome the drawbacks of ablative lasers. We aimed to objectively evaluate the histopathological and immunohistochemical effects of Er:YAG 2940-nm laser for facial rejuvenation (multiple sessions of fractional vs single session of ablative Er:YAG laser). Facial resurfacing with single-session ablative Er:YAG laser was performed on 6 volunteers. Another 6 were resurfaced using fractional Er:YAG laser (4 sessions). Histopathological (hematoxylin-eosin, orcein, Masson trichrome, and picrosirius red stains) and immunohistochemical assessment for skin biopsy specimens were done before laser resurfacing and after 1 and 6 months. Histometry for epidermal thickness and quantitative assessment for neocollagen formation; collagen I, III, and VII; elastin; and tropoelastin were done for all skin biopsy specimens. Both lasers resulted in increased epidermal thickness. Dermal collagen showed increased neocollagen formation with increased concentration of collagen types I, III, and VII. Dermal elastic tissue studies revealed decreased elastin whereas tropoelastin concentration increased after laser resurfacing. Neither laser showed significant difference between their effects clinically and on dermal collagen. Changes in epidermal thickness, elastin, and tropoelastin were significantly more marked after ablative laser. The small number of patients is a limitation, yet the results show significant improvement. Multiple sessions of fractional laser have comparable effects to a single session of ablative Er:YAG laser on dermal collagen but ablative laser has more effect on elastic tissue and epidermis. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  15. Detachable microsphere scalpel tips for potential use in ophthalmic surgery with the erbium:YAG laser.

    PubMed

    Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M

    2014-01-01

    Vitreoretinal surgery is performed using mechanical dissection that sometimes results in iatrogenic complications, including vitreous hemorrhage, retinal breaks, incomplete membrane delamination, retinal distortion, microscopic damage, etc. An ultraprecise laser probe would be an ideal tool for cutting away pathologic membranes; however, the depth of surgery should be precisely controlled to protect the sensitive underlying retina. The ultraprecise surgical microprobe formed by chains of dielectric spheres for use with the erbium:YAG laser source (λ=2940  nm), with extremely short optical penetration depth in tissue, was optimized. Numerical modeling demonstrated a potential advantage of five-sphere focusing chains of sapphire spheres with index n=1.71 for ablating the tissue with self-limited depth around 10 to 20 μm. Novel detachable microsphere scalpel tips formed by chains of 300 μm sapphire (or ruby) spheres were tested on ophthalmic tissues, ex vivo. Detachable scalpel tips could allow for reusability of expensive mid-infrared trunk fibers between procedures, and offer more surgical customization by interchanging various scalpel tip configurations. An innovative method for aiming beam integration into the microsphere scalpel to improve the illumination of the surgical site was also shown. Single Er:YAG pulses of 0.2 mJ and 75-μs duration produced ablation craters in cornea epithelium for one, three, and five sphere structures with the latter generating the smallest crater depth (10 μm) with the least amount of thermal damage depth (30 μm). Detachable microsphere laser scalpel tips may allow surgeons better precision and safety compared to mechanical scalpels when operating on delicate or sensitive areas like the retina.

  16. Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery of hydroquinone in the treatment of melasma

    PubMed Central

    Badawi, Ashraf M; Osman, Mai Abdelraouf

    2018-01-01

    Background Melasma is a difficult-to-treat hyperpigmentary disorder. Ablative fractional laser (AFL)-assisted delivery of topically applied drugs to varied targets in the skin has been an area of ongoing study and research. Objective The objective of this study was to evaluate the efficacy and safety of fractional erbium-doped yttrium aluminum garnet (Er:YAG) laser as an assisted drug delivery for enhancing topical hydroquinone (HQ) permeation into the skin of melasma patients. Patients and methods Thirty female patients with bilateral melasma were randomly treated in a split-face controlled manner with a fractional Er:YAG laser followed by 4% HQ cream on one side and 4% HQ cream alone on the other side. All patients received six laser sessions with a 2-week interval. The efficacy of treatments was determined through photographs, dermoscopic photomicrographs and Melasma Area Severity Index (MASI) score, all performed at baseline and at 12 weeks of starting therapy. The patient’s level of satisfaction was also recorded. Results Er:YAG laser + HQ showed significantly better results (p<0.005) with regard to decrease in the degree of pigmentation as assessed on the 4-point scale than HQ alone. There was a significant decrease in MASI scores on Er:YAG laser + HQ side vs HQ side. Minor reversible side effects were observed on both sides. Conclusion AFL-assisted delivery of HQ is a safe and effective method for the treatment of melasma. PMID:29379308

  17. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  18. Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inabayashi, Masaki; Doi, Yoshihiro; Wakeshima, Makoto

    2017-06-15

    . Significant spin polarization is seen on the magnetic Pr and Ru ions, but there is also some on the O(1), (3) ligands of Ru. - Highlights: • New fluorite-related quaternary praseodymium ruthenates were prepared. • Pr{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 55 K. • The Ru-O-Pr superexchange interactions are three-dimensional.« less

  19. Lasers in the management of calcified urinary tract stents

    NASA Astrophysics Data System (ADS)

    Nseyo, Unyime O.; Tunuguntla, Hari S. G. R.; Crone, Michael

    2003-06-01

    Indwelling double J ureteral stents are used for internal urinary diversion for ureteral obstruction and post-surgical drainage of the upper urinary tract. Stent calcification is a serious complication especially in those with forgotten stents. In a retrospective review of 16 patients (10 male and 6 female) we found holmium laser to be highly effective in the management of calcified stents. Encrustations/calcifications were noted on the distal end of the sent in 6 patiens (37.5%), middle and distal portions in 2 patients (12.5%), along the entire length of the stent in 3 patients (18.75%), lower portion of the stent in 4 patients (25%) and at the upper and lower ends of the stent in one patient (6.25%). Cystolitholapaxy, retrograde ureteroscopy (URS) with holmium: YAG (yttrium-aluminum-garnet) laser intracorporeal lithotripsy, percutaneous nephrostolithotomy (PNL) and antegrade URS with holmium: YAG laser intracorporeal lithotripsy were effectively performed without intraoperative complications. Lithotripsy became necessary before stent removal in 11 patients (68.75%). Holmium laser lithotripsy was useful in managing 7 patients (43.75%), and shockwave lithotripsy (SWL) in 6 patients (37.5%). In two patients (12.5%) both holmium and SWL were used before the stent can be removed.

  20. Prostatic vascular damage induced by cigarette smoking as a risk factor for recovery after holmium laser enucleation of the prostate (HoLEP)

    PubMed Central

    Gu, Meng; Chen, Yanbo; Cai, Zhikang; Chen, Qi; Wang, Zhong

    2017-01-01

    Purpose To evaluate the relationship between prostatic vessel changes induced by cigarette smoking and the perioperative outcome of holmium laser enucleation of the prostate (HoLEP). Materials and Methods A total of 268 postoperative patients with benign prostatic hyperplasia (BPH) were prospectively analysed in our department. They were divided into two groups (smokers and non-smokers) according to smoking history. Transrectal colour Doppler ultrasound was performed to evaluate the prostate vascular changes. Pathologically, HE staining, CD31 and CD34 were analysed in prostatic section chips. Furthermore, postoperative outcomes were determined during a 6-month follow-up period. Results The preoperative prostate volume was significantly decreased in smoking patients (P = 0.04). CPI was significantly lower in smoking BPH patients (P < 0.01), whereas RI was significantly increased in smokers compared with non-smokers (P < 0.01). Histological assays revealed elevated CD34 in the smoking BPH individuals presenting an increased number of microvessels. The HoLEP duration was increased in smokers. Interestingly, we identified significantly increased overactive bladder syndrome score (OABSS) and decreased Qmax in smoking individuals during the 6-month follow-up with no difference being observed preoperatively. However, no significant difference between the groups was observed for the International Prostate Symptom Score (IPSS). Conclusions The significantly lower CPI and higher RI values in smoking BPH patients indicated the presence of considerable vascular damage in these subjects. Moreover, cigarette smoking extended the surgical duration and prolonged the recovery period of overactive bladder (OAB) syndrome. Thus, integrated treatment should be suggested for various BPH individuals. PMID:27732940

  1. Comparison of the Nanopulse Lithotripter to the Holmium Laser: Stone Fragmentation Efficiency and Impact on Flexible Ureteroscope Deflection and Flow.

    PubMed

    Kaplan, Adam G; Chen, Tony T; Sankin, Georgy; Yang, Chen; Dale, Joanne A; Simmons, W Neal; Zhong, Pei; Preminger, Glenn M; Lipkin, Michael Eric

    2016-11-01

    The Nanopulse Lithotripter (NPL; Lithotech Medical, Israel) is a novel intracorporeal device that uses a nanosecond duration electrical discharge through a reusable flexible coaxial probe to endoscopically fragment urinary stones. This device was compared with a holmium laser lithotripsy (HoL) with regard to stone fragmentation efficiency (SFE) and its impact on flexible ureteroscope (URS) deflection and flow of irrigation. Using a custom bench model, a 6 mm BegoStone cylindrical phantom (mixture 5:2) was confined under 0.9% saline atop sequential mesh sieves. The SFE of two NPL probe sizes (2.0F, 3.6F) and two HoL fibers (200, 365 μm) was evaluated using concordant settings of 1 J and 5 Hz. URS deflection and irrigation flow with NPL probes in the working channel were tested in five new fourth generation flexible URS and compared with other adjunct endourologic instruments. The 2.0F NPL showed improved SFE compared with the 200 μm laser (86 mg/min vs 52 mg/min, p = 0.014) as did the 3.6F NPL vs the 365 μm laser (173 mg/min vs 80 mg/min, p = 0.05). The NPL created more 1 to 2 mm fragments; the laser created more dust. URS deflection reduced by 3.75° with the 2.0 NPL probe. URS irrigation flow reduced from 36.5 to 6.3 mL/min with the 2.0F NPL probe. NPL shows improved SFE compared with HoL. Flow with the 2.0F probe is akin to a stone basket. NPL offers an effective alternative to HoL.

  2. [An investigation of lanthanum and other metals levels in blood, urine and hair among residents in the rare earth mining area of a city in China].

    PubMed

    Bao, T M; Tian, Y; Wang, L X; Wu, T; Lu, L N; Ma, H Y; Wang, L

    2018-02-20

    Objective: To investigate the levels of lanthanum, cerium, praseodymium, and neodymium in the blood, urine, and hair samples from residents in the rare earth mining area of a city in China, and to provide a scientific basis for the control of rare earth pollution and the protection of population health. Methods: A total of 147 residents who had lived in the rare earth mining area of a city for a long time were selected as the exposure group, and 108 residents in Guyang County of this city who lived 91 km away from the rare earth mining area were selected as the control group. Blood, urine, and hair samples were collected from the residents in both groups. Inductively coupled plasma mass spectrometry was used to determine the content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair samples. Results: In the exposure group, the median levels of lanthanum, cerium, praseodymium, and neodymium were 0.854, 1.724, 0.132, and 0.839 μg/L, respectively, in blood samples, 0.420, 0.920, 0.055, and 0.337 μg/L, respectively, in urine samples, and 0.052, 0.106, 0.012, and 0.045 μg/g, respectively, in hair samples. The exposure group had significantly higher levels of the four rare earth elements in blood, urine, and hair samples than the control group ( P <0.01) . Conclusion: The residents in the rare earth mining area of this city have higher content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair than those in the non-mining area; the content of cerium is highest, followed by lanthanum, neodymium, and praseodymium.

  3. A Comparative Histological Study of Bone Healing in Rat Calvarial Defect Using the Erbium-Doped Yttrium Aluminum Garnet Laser and Rotary Instruments

    NASA Astrophysics Data System (ADS)

    Jung, Mi-Kyung; Kim, Su-Gwan; Oh, Ji-Su; Jin, Seung-Chan; Lee, Sook-Young; Jang, Eun-Sook; Piao, Zheng-Gang; Lim, Sung-Chul; Jeong, Mi-Ae

    2012-01-01

    Erbium-doped yttrium aluminum garnet (Er:YAG) lasers have been used in dentistry for cutting bone and removal of caries. The purpose of this study was to evaluate the bone healing in a skull defect prepared in rats using various instruments including Er:YAG laser. The 7 mm calvarial defects were created in 45 rats and 45 rats were divided into three groups (n = 15): a high-speed rotation engine with carbide round bur (2-mm diameter), a low-speed rotation engine with carbide round bur (2-mm diameter), and an Er:YAG laser. Specimens obtained after 3 days or 4 or 8 weeks were submitted for histological analysis. Three days after surgery, no bone formation had occurred in any of the groups. Four weeks after surgery, 90 ±8.16% new bone formation was observed in the high-speed group, and 8 weeks after surgery, 100 ±0% new bone formation was observed in the low- and high-speed groups. There were significant differences among the periods after surgery, but no significant differences were observed among final results with in different device groups.

  4. Efficacy and safety of erbium-doped yttrium aluminium garnet fractional resurfacing laser for treatment of facial acne scars.

    PubMed

    Nirmal, Balakrishnan; Pai, Sathish B; Sripathi, Handattu; Rao, Raghavendra; Prabhu, Smitha; Kudur, Mohan H; Nayak, Sudhir U K

    2013-01-01

    Treatment of acne scars with ablative fractional laser resurfacing has given good improvement. But, data on Indian skin are limited. A study comparing qualitative, quantitative, and subjective assessments is also lacking. Our aim was to assess the improvement of facial acne scars with Erbium-doped Yttrium Aluminium Garnet (Er:YAG) 2940 nm fractional laser resurfacing and its adverse effects in 25 patients at a tertiary care teaching hospital. All 25 patients received four treatment sessions with Er:YAG fractional laser at 1-month interval. The laser parameters were kept constant for each of the four sittings in all patients. Qualitative and quantitative assessments were done using Goodman and Barron grading. Subjective assessment in percentage of improvement was also documented 1 month after each session. Photographs were taken before each treatment session and 1 month after the final session. Two unbiased dermatologists performed independent clinical assessments by comparing the photographs. The kappa statistics was used to monitor the agreement between the dermatologists and patients. Most patients (96%) showed atleast fair improvement. Rolling and superficial box scars showed higher significant improvement when compared with ice pick and deep box scars. Patient's satisfaction of improvement was higher when compared to physician's observations. No serious adverse effects were noted with exacerbation of acne lesions forming the majority. Ablative fractional photothermolysis is both effective and safe treatment for atrophic acne scars in Indian skin.Precise evaluation of acne scar treatment can be done by taking consistent digital photographs.

  5. Outpatient erbium:YAG (2940 nm) laser treatment for snoring: a prospective study on 40 patients.

    PubMed

    Storchi, Isabelle Fini; Parker, Steven; Bovis, Francesca; Benedicenti, Stefano; Amaroli, Andrea

    2018-02-01

    Snoring is a sleep phenomenon due to the partial upper airway obstruction during sleep which causes vibration of the tissues of the rhino-oro-hypopharynx and less frequently the larynx. This study evaluated the use and effectiveness of the erbium:YAG 2940-nm laser as an adjunctive in providing treatment for patients suffering from chronic snoring-related sleep disorders. A prospective study of 40 consecutive patients with snoring and sleep disorders was performed, assessing data before and after three Er:YAG laser treatment sessions. During laser treatment, the pain was almost absent. There were no side effects, except a very mild sore throat in 1 out of 40 patients. The patient's evaluation of satisfaction of the results obtained after the treatments showed that 85% of cases were very satisfied, 5 patients (12.5%) reported being fairly satisfied with the treatment and only 1 subject (2.5%) was not satisfied. Mallampati, Friedman Tongue Position, and degree of O (oropharynx) at nose oropharynx hypopharynx and larynx classification were significantly decreased after the laser sessions. The decrease of Epworth Sleepiness Scale and Visual Analogue Scale for loudness of snoring, waking up during sleep because of snoring, dry mouth on waking, and choking was all statistically significant. The incidence of dreaming during the night also raised significantly; 30/40 (75%) of cases perceived less tightness in their throat and better breathing after treatment. These results were stable at 20 months follow-up (14-24 q) in 72% of cases. Nonsurgical and non-invasive Er:YAG laser treatment demonstrated to be a valid procedure in reducing the loudness of snoring.

  6. Doping porous silicon with erbium: pores filling as a method to limit the Er-clustering effects and increasing its light emission.

    PubMed

    Mula, Guido; Printemps, Tony; Licitra, Christophe; Sogne, Elisa; D'Acapito, Francesco; Gambacorti, Narciso; Sestu, Nicola; Saba, Michele; Pinna, Elisa; Chiriu, Daniele; Ricci, Pier Carlo; Casu, Alberto; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni; Falqui, Andrea

    2017-07-20

    Er clustering plays a major role in hindering sufficient optical gain in Er-doped Si materials. For porous Si, the long-standing failure to govern the clustering has been attributed to insufficient knowledge of the several, concomitant and complex processes occurring during the electrochemical Er-doping. We propose here an alternative road to solve the issue: instead of looking for an equilibrium between Er content and light emission using 1-2% Er, we propose to significantly increase the electrochemical doping level to reach the filling the porous silicon pores with luminescent Er-rich material. To better understand the intricate and superposing phenomena of this process, we exploit an original approach based on needle electron tomography, EXAFS and photoluminescence. Needle electron tomography surprisingly shows a heterogeneous distribution of Er content in the silicon thin pores that until now couldn't be revealed by the sole use of scanning electron microscopy compositional mapping. Besides, while showing that pore filling leads to enhanced photoluminescence emission, we demonstrate that the latter is originated from both erbium oxide and silicate. These results give a much deeper understanding of the photoluminescence origin down to nanoscale and could lead to novel approaches focused on noteworthy enhancement of Er-related photoluminescence in porous silicon.

  7. Comparison of Predictive Factors for Postoperative Incontinence of Holmium Laser Enucleation of the Prostate by the Surgeons' Experience During Learning Curve.

    PubMed

    Shigemura, Katsumi; Tanaka, Kazushi; Yamamichi, Fukashi; Chiba, Koji; Fujisawa, Masato

    2016-03-01

    To detect predictive factors for postoperative incontinence following holmium laser enucleation of the prostate (HoLEP) according to surgeon experience (beginner or experienced) and preoperative clinical data. Of 224 patients, a total of 203 with available data on incontinence were investigated. The potential predictive factors for post-HoLEP incontinence included clinical factors, such as patient age, and preoperative urodynamic study results, including detrusor overactivity (DO). We also classified the surgeons performing the procedure according to their HoLEP experience: beginner (<21 cases) and experienced (≥21 cases). Our statistical data showed DO was a significant predictive factor at the super-short period (the next day of catheter removal: odds ratio [OR], 3.375; P=0.000). Additionally, patient age, surgeon mentorship (inverse correlation), and prostate volume were significant predictive factors at the 1-month interval after HoLEP (OR, 1.072; P=0.004; OR, 0.251; P=0.002; and OR, 1.008; P=0.049, respectively). With regards to surgeon experience, DO and preoperative International Prostate Symptom Score (inverse) at the super-short period, and patient age and mentorship (inverse correlation) at the 1-month interval after HoLEP (OR, 3.952; P=0.002; OR, 1.084; P=0.015; and OR,1.084; P=0.015; OR, 0.358; P=0.003, respectively) were significant predictive factors for beginners, and first desire to void (FDV) at 1 month after HoLEP (OR, 1.009; P=0.012) was a significant predictive factor for experienced surgeons in multivariate analysis. Preoperative DO, IPSS, patient age, and surgeon mentorship were significant predictive factors of postoperative patient incontinence for beginner surgeons, while FDV was a significant predictive factors for experienced surgeons. These findings should be taken into account by surgeons performing HoLEP to maximize the patient's quality of life with regards to urinary continence.

  8. Learning curves and perioperative outcomes after endoscopic enucleation of the prostate: a comparison between GreenLight 532-nm and holmium lasers.

    PubMed

    Peyronnet, Benoit; Robert, Grégoire; Comat, Vincent; Rouprêt, Morgan; Gomez-Sancha, Fernando; Cornu, Jean-Nicolas; Misrai, Vincent

    2017-06-01

    To compare the learning curves, perioperative and early functional outcomes after HoLEP and GreenLEP. Data from the first 100 consecutive cases treated by GreenLEP and HoLEP by two surgeons were prospectively collected from dedicated databases and analysed retrospectively. En-bloc GreenLEP and two-lobar HoLEP enucleations were conducted using the GreenLight HPS™ 2090 laser and Lumenis™ holmium laser. Patients' characteristics, perioperative outcomes and functional outcomes after 1, 3 and 6 months were compared between groups. Total energy delivered and operative times were significantly shorter for GreenLEP (58 vs. 110 kJ, p < 0.0001; 60 vs. 90 min, p < 0.0001). Operative time reached a plateau after 30 procedures in each group. Length of catheterization and hospital stay were significantly shorter in the HoLEP group (2 vs. 1 day, p < 0.0001; 2 vs. 1 day, p < 0.0001). Postoperative complications were comparable between GreenLEP and HoLEP (19 vs. 25 %; p = 0.13). There was a greater increase of Q max at 3 months and a greater IPSS decrease at 1 month for GreenLEP, whereas decreases in IPSS and IPSS-Q8 at 6 months were greater for HoLEP. Transient stress urinary incontinence was comparable between both groups (6 vs. 9 % at 3 months; p = 0.42). Pentafecta was achieved in four consecutive patients after the 18th and the 40th procedure in the GreenLEP and HoLEP group, respectively. Learning curves ranged from 14 to 30 cases for GreenLEP and 22 to 40 cases for HoLEP. Learning curves of GreenLEP and HoLEP provided roughly similar peri-operative and short-term functional outcomes.

  9. Neutron-activatable radionuclide cancer therapy using graphene oxide nanoplatelets.

    PubMed

    Kim, Junghyun; Jay, Michael

    2017-09-01

    Neutron-activation is a promising method of generating radiotherapeutics with minimal handling of radioactive materials. Graphene oxide nanoplatelets (GONs) were examined as a carrier for neutron-activatable holmium with the purpose of exploiting inherent characteristics for theranostic application. GONs were hypothesized to be an ideal candidate for this application owing to their desirable characteristics such as a rigid structure, high metal loading capacity, low density, heat resistance, and the ability to withstand harsh environments associated with the neutron-activation process. Non-covalently PEGylated GONs (GONs-PEG) offered enhanced dispersibility and biocompatibility, and also exhibited increased holmium loading capacity nearly two-fold greater than GONs. Holmium leaching was investigated over a wide pH range, including conditions that mimic the tumor microenvironment, following neutron irradiation. The in vitro cell-based cytotoxicity analysis of GONs-based formulations with non-radioactive holmium confirmed their safety profile within cells. The results demonstrate the potential of GONs as a carrier of neutron-activatable radiotherapeutic agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  11. Analysis of Er{sup 3+} and Ho{sup 3+} codoped fluoroindate glasses as wide range temperature sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro-Gonzalez, P., E-mail: patharo@ull.es; Leon-Luis, S.F.; Gonzalez-Perez, S.

    2011-07-15

    Graphical abstract: The sensor sensitivity as a function of the temperature of erbium and holmium doped fluoroindate glasses. A wide temperature range from 20 K to 425 K is covered with a sensitivity larger than 0.0005. Highlights: {yields} The FIR technique has been carried out in fluoroindate glass sample. {yields} The Er doped fluoroindate sample has a maximum sensitivity of 0.0028 K{sup -1} at 425 K. {yields} The Ho doped fluoroindate sample has a maximum sensitivity of 0.0036 K{sup -1} at 59 K. -- Abstract: The fluorescence intensity ratio technique for two fluoroindate glass samples has been carried out. Themore » green emissions at 523 nm and at 545 nm in a 0.1 mol% of Er{sup 3+} doped fluoroindate glass was studied in a wide range of temperature from 125 K to 425 K with a maximum sensitivity of 0.0028 K{sup -1} for 425 K. In a sample doped with 0.1 mol% of Ho{sup 3+} the emissions at 545 nm and at 750 nm were analyzed as a function of temperature from 20 K to 300 K obtaining a maximum sensitivity of 0.0036 K{sup -1} at 59 K. Using both fluoroindate glass samples a wide temperature range from 20 K to 425 K is easily covered pumping with two low-cost diode laser at 406 nm and 473 nm.« less

  12. A pilot study of treatment of striae distensae with variable square pulse Erbium: YAG laser resurfacing.

    PubMed

    Wanitphakdeedecha, Rungsima; Meeprathom, Walailak; Manuskiatti, Woraphong

    2017-12-01

    Striae distensae (SD) are a frequent skin condition for which treatment remains a challenge. Various laser treatments have been employed to remove the epidermis and cause dermal wound and heating with subsequent dermal collagen remodeling. To determine the efficacy and safety of a variable square pulse Erbium: YAG (VSP Er:YAG) laser for the treatment of striae in skin phototypes III-IV. Twenty-one women with SD were treated monthly for 2 months with VSP Er:YAG laser resurfacing using a 7-mm spot size. One side of their striae was randomly treated with one pass of 400 mJ in short pulse (SP) mode with 50% overlapping and one pass of 2.2 J/cm 2 in smooth (SM) mode with nonoverlapping. The other side of their striae was treated with two passes of 400 mJ in SP mode with 50% overlapping. Objective and subjective assessments were obtained at baseline and 1-, 3-, and 6-month after treatment. In both SP&SM and SP only group, volume of SD measured by Visioscan VC98 reduced significantly at 6-month follow-up visit (P=.017 and P=.034, respectively). There were no statistically significant differences in skin roughness (SER), skin smoothness (SESM), and surface measured by Visioscan VC98. Transient postinflammatory hyperpigmentation (PIH) is the common side effect found in patients with darker skin tone even in nonsun exposure areas and can last as long as 6 months. VSP Er:YAG laser resurfacing is a promising treatment option for SD. Lower fluence should be used in patients with darker skin phototype to avoid the risk of PIH. In addition, pre- and post-treatment with topical preparations for PIH prevention may be needed. © 2017 Wiley Periodicals, Inc.

  13. Holmium laser enucleation versus simple prostatectomy for treating large prostates: Results of a systematic review and meta-analysis.

    PubMed

    Jones, Patrick; Alzweri, Laith; Rai, Bhavan Prasad; Somani, Bhaskar K; Bates, Chris; Aboumarzouk, Omar M

    2016-03-01

    To compare and evaluate the safety and efficacy of holmium laser enucleation of the prostate (HoLEP) and simple prostatectomy for large prostate burdens, as discussion and debate continue about the optimal surgical intervention for this common pathology. A systematic search was conducted for studies comparing HoLEP with simple prostatectomy [open (OP), robot-assisted, laparoscopic] using a sensitive strategy and in accordance with Cochrane collaboration guidelines. Primary parameters of interest were objective measurements including maximum urinary flow rate (Q max) and post-void residual urine volume (PVR), and subjective outcomes including International Prostate Symptom Score (IPSS) and quality of life (QoL). Secondary outcomes of interest included volume of tissue retrieved, catheterisation time, hospital stay, blood loss and serum sodium decrease. Data on baseline characteristics and complications were also collected. Where possible, comparable data were combined and meta-analysis was conducted. In all, 310 articles were identified and after screening abstracts (114) and full manuscripts (14), three randomised studies (263 patients) were included, which met our pre-defined inclusion criteria. All these compared HoLEP with OP. The mean transrectal ultrasonography (TRUS) volume was 113.9 mL in the HoLEP group and 119.4 mL in the OP group. There was no statistically significant difference in Q max, PVR, IPSS and QoL at 12 and 24 months between the two interventions. OP was associated with a significantly shorter operative time (P = 0.01) and greater tissue retrieved (P < 0.001). However, with HoLEP there was significantly less blood loss (P < 0.001), patients had a shorter hospital stay (P = 0.03), and were catheterised for significantly fewer hours (P = 0.01). There were no significant differences in the total number of complications recorded amongst HoLEP and OP (P = 0.80). The results of the meta-analysis have shown that HoLEP and OP possess

  14. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  15. Efficacy of holmium laser enucleation of the prostate (HoLEP) in men with bladder outlet obstruction (BOO) and non-neurogenic bladder dysfunction.

    PubMed

    Pyun, Jong Hyun; Kang, Sung Gu; Kang, Seok Ho; Cheon, Jun; Kim, Je Jong; Lee, Jeong Gu

    2017-09-01

    We aimed to compare the short-term outcomes of men who had urodynamic evidence of detrusor underactivity (DU) or detrusor overactivity (DO) of a non-neurogenic etiology as well as bladder outlet obstruction (BOO) and who underwent Holmium Laser Enucleation of the prostate (HoLEP). A database of 322 patients who underwent HoLEP between 2010 and 2014 was analyzed. Patients were classified into three groups according to the results of a preoperative urodynamic study. Preoperative parameters such as International Prostate Symptom Score (IPSS), Quality of Life (QoL) index, IPSS grade, uroflowmetry were compared with postoperative parameters measured at 6 months. There were 138 patients with BOO-only and 89 patients with BOO and detrusor dysfunction including 56 with DO and 33 with DU. The degree of improvement in IPSS-total (BOO: 10.7, DO: 8.3, DU: 7.0; p = 0.023) was greater in the BOO-only group than in the DU group. There were more patients whose IPSS grade improved in the BOO-only group (71%) than in the detrusor dysfunction group (DO: 53.6% and DU: 45.5%). Postoperative IPSS-voiding (4.5 vs 7.0), and Qmax (18 vs 13.7) in the BOO-only group were significantly better than those in the DU group. Additionally, postoperative IPSS-storage (4.7 vs 6.7), and IPSS-total (9.1 vs 12.3) in the BOO-only group were significantly better than in the DO group (all p < 0.05). In conclusion, early surgical management for men with severe LUTS and associated BPH before secondary degeneration occurs may be beneficial for preserving detrusor function and yield better treatment outcomes. Copyright © 2017. Published by Elsevier Taiwan.

  16. Holmium:YAG Laser Ablation for the Management of Lower Urinary Tract Foreign Bodies Following Incontinence Surgery: A Case Series and Systematic Review.

    PubMed

    Chan, Garson; Mamut, Adiel; Martin, Paul; Welk, Blayne

    2016-11-01

    The objective of this study was to determine the outcomes associated with the endoscopic removal of foreign bodies (such as mesh or permanent suture) in the lower urinary tract after female stress incontinence surgery with the Holmium:YAG (Ho:YAG) laser, and to systematically review the literature on this topic. A retrospective chart review of 18 consecutive women found to have mesh or suture exposure was performed. All patients underwent Ho:YAG laser ablation. A systematic review was performed to identify literature addressing the endoscopic management of mesh/suture exposure after stress incontinence surgery. Between November 2011 and February 2016, 18 women underwent Ho:YAG laser ablation of exposed mesh or suture. Presenting symptoms included lower urinary tract symptoms, pelvic pain, incontinence, or recurrent urinary tract infections. Thirteen women had a previous synthetic midurethral sling and five had a prior retropubic suspension. The median age was 58 years (interquartile range [IQR] 50-60) and median follow-up was 2 years (IQR 1-2). Four patients (22%) had residual mesh after the first procedure, requiring a repeat endoscopic procedure. Only one patient had a small amount of asymptomatic residual mesh on cystoscopy after the final procedure. Only minor postoperative complications were observed. Eight patients had stress incontinence and four underwent operative treatment for this. In our systematic review, we identified 16 case series, which described a total of 158 patients. Women most commonly presented with voiding symptoms or incontinence. Based on the synthesis of these data, repeat procedures were necessary in 16% and vesicovaginal fistula occurred in 2%. Recurrent/persistent stress incontinence was present in 20%, and of these patients, 3/4 underwent a new stress incontinence procedure. Both our case series and the systematic review of the literature demonstrated that endoscopic treatment of lower urinary tract foreign bodies after stress

  17. In Vitro Comparison of Holmium Lasers: Evidence for Shorter Fragmentation Time and Decreased Retropulsion Using a Modern Variable-pulse Laser.

    PubMed

    Bell, John Roger; Penniston, Kristina L; Nakada, Stephen Y

    2017-09-01

    To compare the performance of variable- and fixed-pulse lasers on stone phantoms in vitro. Seven-millimeter stone phantoms were made to simulate calcium oxalate monohydrate stones using BegoStone plus. The in vitro setting was created with a clear polyvinyl chloride tube. For each trial, a stone phantom was placed at the open end of the tubing. The Cook Rhapsody H-30 variable-pulse laser was tested on both long- and short-pulse settings and was compared to the Dornier H-20 fixed-pulse laser; 5 trials were conducted for each trial arm. Fragmentation was accomplished with the use of a flexible ureteroscope and a 273-micron holmium laser fiber using settings of 1 J × 12 Hz. The treatment time (in minute) for complete fragmentation was recorded as was the total retropulsion distance (in centimeter) during treatment. Laser fibers were standardized for all repetitions. The treatment time was significantly shorter with the H-30 vs the H-20 laser (14.3 ± 2.5 vs 33.1 ± 8.9 minutes, P = .008). There was no difference between the treatment times using the long vs short pulse widths of the H-30 laser (14.4 ± 3.4 vs 14.3 ± 1.7 minutes, P = .93). Retropulsion differed by laser type and pulse width, H-30 long pulse (15.8 ± 5.7 cm), H-30 short pulse (54.8 ± 7.1 cm), and H-20 (33.2 ± 12.5 cm) (P <.05). The H-30 laser fragmented stone phantoms in half the time of the H-20 laser regardless of the pulse width. Retropulsion effects differed between the lasers, with the H-30 causing the least retropulsion. Longer pulse widths result in less stone retropulsion. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    PubMed Central

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-01-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148

  19. Thulium fiber laser lithotripsy in an in vitro ureter model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ=2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  20. Noise Characterization of Erbium-Doped Fiber Amplifiers and Avalanche Photodiodes in Optical Communication Systems.

    NASA Astrophysics Data System (ADS)

    Kahraman, Gokalp

    We examine the performance of optical communication systems using erbium-doped fiber amplifiers (OFAs) and avalanche photodiodes (APDs) including nonlinear and transient effects in the former and transient effects in the latter. Transient effects become important as these amplifiers are operated at very high data rates. Nonlinear effects are important for high gain amplifiers. In most studies of noise in these devices, the temporal and nonlinear effects have been ignored. We present a quantum theory of noise in OFAs including the saturation of the atomic population inversion and the pump depletion. We study the quantum-statistical properties of pulse amplification. The generating function of the output photon number distribution (PND) is determined as a function of time during the course of the pulse with an arbitrary input PND assumed. Under stationary conditions, we determine the Kolmogorov equation obeyed by the PND. The PND at the output is determined for arbitrary input distributions. The effect of the counting time and the filter bandwidth used by the detection circuit is determined. We determine the gain, the noise figure, and the sensitivity of receivers using OFAs as preamplifiers, including the effect of backward amplified spontaneous emission (ASE). Backward ASE degrades the noise figure and the sensitivity by depleting the population inversion at the input side of the fiber and thus increasing the noise during signal amplification. We show that the sensitivity improves with the bit rate at low rates but degrades at high rates. We provide a stochastic model that describes the time dynamics in a double-carrier multiplication (DCM) APD. A discrete stochastic model for the electron/hole motion and multiplication is defined on a spatio-temporal lattice and used to derive recursive equations for the mean, the variance, and the autocorrelation of the impulse response as functions of time. The power spectral density of the photocurrent produced in response to a

  1. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  2. Temperature-tuned erbium-doped fiber ring laser with Mach-Zehnder interferometer based on two quasi-abrupt tapered fiber sections

    NASA Astrophysics Data System (ADS)

    Selvas-Aguilar, R.; Martínez-Rios, A.; Anzueto-Sánchez, G.; Castillo-Guzmán, A.; Hernández-Luna, M. C.; Robledo-Fava, R.

    2014-10-01

    We present a wavelength tuning of an Erbium-Doped Fiber Ring Laser (EDFRL) based in a Mach-Zehnder fiber interferometer (MZFI) that consists on two tapers fabricated on commercial SMF28 from Corning as an intracavity filter. The MZFI spectral interference pattern is modified by external refractive index changes that alter the light transmission characteristics. In this work, the fiber device is immersed into a glycerol solution with higher dispersion in its refractive index in relation with temperature. Since the temperature sensitiveness of the glycerol is much higher than that of the fiber in a temperature range from 25-110 °C, therefore, the spectral changes are mainly due to the dispersion of glycerol refractive index when heat increases. Also, when this device is inserted into the EDFRL cavity, the gain spectrum of the EDF is modified accordingly and the changes, which can be controlled in an electrical heater, allow the tuning of the laser wavelength determined by the interference fringes. A wavelength shift as high as 180 pm/°C and a tunable range of 12 nm are obtained. The side mode suppression ratio (SMSR) of the fiber laser is around 25-30 dB depending on the notch filtering position. The insertion losses of the filter are below 0.3 dB and the measured wavelength shift has a quasilinear dependence as a function of temperature in the 80-110 °C. This method is very simple, portable and inexpensive over traditional methods to tune a fiber laser.

  3. Integrated cooling-vacuum-assisted 1540-nm erbium:glass laser is effective in treating mild-to-moderate acne vulgaris.

    PubMed

    Politi, Y; Levi, A; Enk, C D; Lapidoth, M

    2015-12-01

    Acne treatment by a mid-infrared laser may be unsatisfactory due to deeply situated acne-affected sebaceous glands which serve as its target. Skin manipulation by vacuum and contact cooling may improve laser-skin interaction, reduce pain sensation, and increase overall safety and efficacy. To evaluate the safety and efficacy of acne treatment using an integrated cooling-vacuum-assisted 1540-nm erbium:glass laser, a prospective interventional study was conducted. It included 12 patients (seven men and five women) suffering from mild-to-moderate acne vulgaris. The device utilizes a mid-infrared 1540-nm laser (Alma Lasers Ltd. Caesarea, Israel), which is integrated with combined cooling-vacuum-assisted technology. An acne lesion is initially manipulated upon contact by a vacuum-cooling-assisted tip, followed by three to four stacked laser pulses (500-600 mJ, 4 mm spot size, and frequency of 2 Hz). Patients underwent four to six treatment sessions with a 2-week interval and were followed-up 1 and 3 months after the last treatment. Clinical photographs were taken by high-resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists, and results were graded on a scale of 0 (exacerbation) to 4 (76-100 % improvement). Patients' and physicians' satisfaction was also recorded. Pain perception and adverse effects were evaluated as well. All patients demonstrated a moderate to significant improvement (average score of 3.6 and 2.0 within 1 and 3 months, respectively, following last treatment session). No side effects, besides a transient erythema, were observed. Cooling-vacuum-assisted 1540-nm laser is safe and effective for the treatment of acne vulgaris.

  4. Exploiting nonlinear properties of pure and Sn-doped Bi2Te2Se for passive Q-switching of all-polarization maintaining ytterbium- and erbium-doped fiber lasers.

    PubMed

    Bogusławski, Jakub; Kowalczyk, Maciej; Iwanowski, Przemysław; Hruban, Andrzej; Diduszko, Ryszard; Piotrowski, Kazimierz; Dybko, Krzysztof; Wojciechowski, Tomasz; Aleszkiewicz, Marta; Sotor, Jarosław

    2017-08-07

    Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi 2 Te 2 Se (BTS) and Sn-doped Bi 2 Te 2 Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

  5. Thermophysical Properties of Matter - The TPRC Data Series. Volume 6. Specific Heat - Nonmetallic Liquids and Gases

    DTIC Science & Technology

    1970-01-01

    dlcarbide (Cr5C2) Heptachromium tricarbide (CrTCj) Chromium chlorides: CrCl2 CrClj Chromium dichloride (CrC^) Chromium trichloride (CrC...methane (see Propane) Dysprosia (see Dysprosium oxide) Dysprosium Dysprosium trichloride hexahydrate (DyClj-6HjO) Dysprosium oxide (DyjOj...Dysprosium sesquioxide (see Dysprosium oxide) Didysprosium trioxide (see Dysprosium oxide) Erbia (see Erbium oxide) Erbium Erbium trichloride

  6. Holmium laser enucleation of the prostate for treatment for large-sized benign prostate hyperplasia; is it a realistic endourologic alternative in developing country?

    PubMed

    Elshal, Ahmed M; Mekkawy, Ramy; Laymon, Mahmoud; Barakat, Tamer S; Elsaadany, Mohamed M; El-Assmy, Ahmed; El-Nahas, Ahmed R

    2016-03-01

    To assess the functional outcome and cumulative health-resource-related cost of holmium laser enucleation of the prostate (HoLEP) in comparison with transvesical open prostatectomy (TVOP) in a developing country. Matching of 92 HoLEP and 91 TVOP procedures was performed using resected prostate tissue weight as a sole matching criterion. Safety, efficacy, and accordingly health-related cost-efficiency of both procedures were statistically compared. Preoperative criteria and mean prostate size (166.7 ± 49.7, 161.4 ± 35.7 ml) were similar in HoLEP and TVOP, respectively; however, HoLEP treated more comorbid patients. Blood transfusion was 2.1 and 26.1 % after HoLEP and TVOP, respectively (P = 0.001). Median time to catheter removal and hospital stay was 2 days after HoLEP and 5 and 9 days, respectively, after TVOP (P < 0.001). On modified Clavien scale, grade per grade, there was no statistically significant difference between the two groups apart from local wound complications in TVOP group. High-grade complications (≥ grade 3) were reported in 3.2 and 6.5 % in HoLEP and TVOP, respectively (P = 0.49). Resected prostate tissue weight was independently associated with high-grade periprocedure complications (OR[95 %CI] 1.22[1.02:1.49], P = 0.03). Last follow-up symptom score, peak urine flow rate, residual urine, % PSA reduction, and need for reoperation were comparable between the two groups. HoLEP costs the hospital in the first 3 months 4111.8EP (575US$) versus 4305.4EP (602US$) for TVOP (P = 0.09). In high-volume hospital, HoLEP procedure seems to be equally safe and effective as TVOP with the advantages of minimally invasive procedures. Two years after adopting the technique, HoLEP equally costs the hospital as TVOP. Significant hospital cost savings are anticipated in subsequent cases.

  7. High sensitization efficiency and energy transfer routes for population inversion at low pump intensity in Er organic complexes for IR amplification.

    PubMed

    Hu, J X; Karamshuk, S; Gorbaciova, J; Ye, H Q; Lu, H; Zhang, Y P; Zheng, Y X; Liang, X; Hernández, I; Wyatt, P B; Gillin, W P

    2018-02-19

    Organic erbium complexes have long been of interest due to their potential for using the strong absorption into the organic to sensitise the erbium emission. Despite this interest there is remarkably little quantitative information on how effective the approach is and the discussion of the energy transfer mechanism is generally vague. Here we accurately quantify the sensitisation as a function of excitation pump density and model it using a rate equation approach. As a result, we can calculate the degree of population inversion for the erbium ions as a function of the pump intensity. We demonstrate that even when we increase the erbium concentration in the films from ~10 to ~80% we find a relatively small decrease in the sensitisation which we attribute to the large (>20 Å) Förster radius for the sensitisation process. We show that we can obtain population inversion in our films at very low pump powers ~600 mW/cm 2 . The calculated Förster radius for the organic erbium complexes suggests design rules for energy transfer between antennas and erbium ions in molecular systems and hybrid organic-inorganic nanoparticles.

  8. Caractérisation expérimentale et modélisation numérique des propriétés spectroscopiques d'absorbants saturables pour le déclenchement passif de laser verre erbium

    NASA Astrophysics Data System (ADS)

    Girard, S.; Shcherbitsky, V.; Fromager, M.; Aït Ameur, K.; Moncorgé, R.; Ferrand, B.; Montagne, J.

    2002-06-01

    Une comparaison entre différents absorbants saturables (LMA, MALO, ZnS et ZnSe dopés Col^+ et ZnSe dopé Cr^{2+}) utilisables comme interrupteur optique passif pour déclencher les sources lasers verre erbium à 1.53 μm est présentée. Des expériences de saturation en simple passage sont interprétées en tenant compte de la distribution spatiale et temporelle du laser de pompe. Cette technique permet d'obtenir des sections efficaces de saturation effectives fiables et indépendantes des conditions de mesure sans introduire artificiellement d'absorption dans l'état excité qui, en principe, n'existe pas dans ce type de système contrairement aux études effectuées jusqu'ici sur ces matériaux.

  9. New, efficient, room temperature mid-infrared laser at 3.9 mu m in holmium:barium yttrium fluoride and visible praseodymium:lithium yttrium fluoride laser for holography

    NASA Astrophysics Data System (ADS)

    Tabirian, Anna Murazian

    This dissertation describes a series of experiments and theoretical studies, which led to the development of two new solid state laser systems: efficient, room temperature mid-infrared solid state laser at 3.9 μm in Ho 3+ doped BaY2F8 and visible Pr:LiYF4 laser at 640 mn for holography. The 3.9 μm laser wavelength matches the peak of mid-IR atmospheric transmission window, which makes it very important for multiple applications such as remote sensing, imaging, IR countermeasures, eye-safe lidars and environmental agent detection. We present the results of spectroscopic evaluations and numerical modeling of energy transfer processes between rare earth ions of Ho3+ doped in two host laser materials: BaY2F8 and LiYF 4. The 3.9 μm laser is based on transition with upper laser lifetime considerably shorter than lower level lifetime, which in general leads to self-terminating laser action in the cw mode or at high repetition rates. Therefore, three different pumping and lasing schemes, that could allow overcoming these limitations have been suggested and studied. First, cascade laser action at 1.4 μm and 3.9 μm was achieved with low thresholds and near-theoretical quantum efficiency in Ho3+ doped BaY2F8 pumped at 532 nm by a Q- switched frequency doubled Nd:YAG laser. Next, the feasibility of achieving 3.9 μm laser with cw resonant cascade pumping at 750 mn by a Ti:Sapphire laser was studied. New energy transfer process, such as upconversion from terminal level of the 3.9 μm laser was observed in high concentration Ho3+ doped BaY2F 8. Finally, we proposed to use high-energy flashlamp pumped tunable Cr:LiSAF laser operating in long pulse regime for the direct pumping of the upper level of the 3.9 μm laser. Pulsed laser oscillation at 3.9 μm is demonstrated in Ho3+ doped BaY2F8 with low threshold of 3 mJ and a slope efficiency of 14.5% with maximal energy of 30 mJ. The second part of the thesis describes the design and the development of the visible Pr:LiYF4 laser for holography at 640 nm resonantly pumped by the frequency-doubled flashlamp pumped tunable Cr:LiSAF laser at 444 nm.

  10. Modified rare earth semiconductor oxide as a new nucleotide probe.

    PubMed

    Shrestha, S; Mills, C E; Lewington, J; Tsang, S C

    2006-12-28

    Recent rapid developments in biological analysis, medical diagnosis, pharmaceutical industry, and environmental control fuel the urgent need for recognition of particular DNA sequences from samples. Currently, DNA detection techniques use radiochemical, enzymatic, fluorescent, or electrochemiluminescent methods; however, these techniques require costly labeled DNA and highly skilled and cumbersome procedure, which prohibit any in-situ monitoring. Here, we report that hybridization of surface-immobilized single-stranded oligonucleotide on praseodymium oxide (evaluated as a biosensor surface for the first time) with complimentary strands in solution provokes a significant shift of electrical impedance curve. This shift is attributed to a change in electrical characteristics through modification of surface charge of the underlying modified praseodymium oxide upon hybridization with the complementary oligonucelotide strand. On the other hand, using a noncomplementary single strand in solution does not create an equivalent change in the impedance value. This result clearly suggests that a new and simple electrochemical technique based on the change in electrical properties of the modified praseodymium oxide semiconductor surface upon recognition and transduction of a biological event without using labeled species is revealed.

  11. Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip

    DTIC Science & Technology

    2014-10-31

    OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter

  12. Erbium:Yttrium Aluminum Garnet Laser-Activated Sodium Hypochlorite Irrigation: A Promising Procedure for Minimally Invasive Endodontics.

    PubMed

    Cheng, Xiaogang; Tian, Tiantian; Tian, Yu; Xiang, Doudou; Qiu, Jun; Liu, Xiaohua; Yu, Qing

    2017-12-01

    This study was to evaluate the potential of Erbium:Yttrium Aluminum Garnet laser-activated sodium hypochlorite irrigation (Er:YAG + NaOCl) for minimally invasive endodontics (MIE). Er:YAG laser irradiation can dramatically enhance the penetration of NaOCl, which may be a promising protocol for MIE. Extracted human teeth were contaminated with Enterococcus faecalis for 4 weeks. The infected canals were then shaped to different apical terminal working widths (ATWW, 15#/0.04, 20#/0.04, 25#/0.04, 30#/0.04, and 40#/0.04) and treated with either Er:YAG + NaOCl (0.3 W, 20 sec) or NaOCl alone. Then, the ATWW were fixed at 15#/0.04, and the canals were treated with Er:YAG + NaOCl at 0.3 W for 40 and 60 sec, or at 0.5 and 1.0 W for 20 sec. Finally, bacterial reductions were evaluated using the cell count method. Er:YAG + NaOCl showed a higher disinfection efficacy at each ATWW compared with NaOCl alone (p < 0.001). The maximum bacterial reduction was 99.9% for the 40#/Er:YAG + NaOCl group and 93.6% for the 40#/NaOCl group. To achieve similar disinfection efficacy, the Er:YAG + NaOCl group needed a smaller ATWW than the NaOCl group. At a fixed ATWW, increasing the output power of the Er:YAG laser was more effective than increasing the radiation time to improve the disinfection efficacy of Er:YAG + NaOCl. The 15#/Er:YAG + NaOCl group reached the maximum bacterial reduction of 99.2% when the Er:YAG laser was activated at 1.0 W for 20 sec. The 15#/Er:YAG + NaOCl with the Er:YAG laser irradiation at 1.0 W for 20 sec may be considered a promising procedure for MIE.

  13. Atomic weights of the elements 2013 (IUPAC Technical Report)

    USGS Publications Warehouse

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 19 elements. The standard atomic weights of four elements have been revised based on recent determinations of isotopic abundances in natural terrestrial materials:cadmium to 112.414(4) from 112.411(8),molybdenum to 95.95(1) from 95.96(2),selenium to 78.971(8) from 78.96(3), andthorium to 232.0377(4) from 232.038 06(2). The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) also revised the standard atomic weights of fifteen elements based on the 2012 Atomic Mass Evaluation:aluminium (aluminum) to 26.981 5385(7) from 26.981 5386(8),arsenic to 74.921 595(6) from 74.921 60(2),beryllium to 9.012 1831(5) from 9.012 182(3),caesium (cesium) to 132.905 451 96(6) from 132.905 4519(2),cobalt to 58.933 194(4) from 58.933 195(5),fluorine to 18.998 403 163(6) from 18.998 4032(5),gold to 196.966 569(5) from 196.966 569(4),holmium to 164.930 33(2) from 164.930 32(2),manganese to 54.938 044(3) from 54.938 045(5),niobium to 92.906 37(2) from 92.906 38(2),phosphorus to 30.973 761 998(5) from 30.973 762(2),praseodymium to 140.907 66(2) from 140.907 65(2),scandium to 44.955 908(5) from 44.955 912(6),thulium to 168.934 22(2) from 168.934 21(2), andyttrium to 88.905 84(2) from 88.905 85(2). The Commission also recommends the standard value for the natural terrestrial uranium isotope ratio, N(238U)/N(235U)=137.8(1).

  14. Production yield of rare-earth ions implanted into an optical crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  15. Optimizing the Activation of Chlorin e6 Utilizing Upconversion Energy Transfer

    NASA Astrophysics Data System (ADS)

    Avalos, Julio C.; Pedraza, Francisco J.; Sardar, Dhiraj K.

    2015-03-01

    Current cancer therapy techniques, such as chemotherapy and radiation therapy, possess several drawbacks including lack of selectivity resulting in harmful side effects. Photodynamic therapy (PDT) is one of the fastest emerging techniques due to its many advantages, including the use of nonionizing radiation, targeted delivery, and controlled doses. In PDT, photosensitizers (PSs) are activated inside targeted cells to produce irreversible damage inducing cell death. Since most PSs operate in the visible range, it is difficult to activate them due to the high attenuation of soft tissue. Upconverting nanoparticles (UCNP) are able to absorb in the NIR region, where light is less attenuated, and emit in the visible range, resulting in deeper tissue penetration. UCNPs are able to assist with the activation of the PS by energy transfer when the PS is conjugated onto the UCNP. Chlorin e6 (Ce6) is a commonly used PSs due to its ability to release reactive oxygen species (ROS), which is one of the main processes utilized in PDT. The UCNP studied contain a combination of rare earth doped ions including Erbium, Thulium, and Holmium precisely doped into the host nanocrystal to improve upconversion emission and energy transfer. The work presented will focus on exploring the factors that affect the activation of Ce6. The results will include the enhancement of Ce6 activation and ROS release when conjugated onto a rare earth-doped UCNP. This research was funded by NSF-PREM Grant No. DMR -0934218 and RISE Grant No. GM 060655.

  16. Visual internal urethrotomy for management of urethral strictures in boys: a comparison of short-term outcome of holmium laser versus cold knife.

    PubMed

    Aboulela, Waseem; ElSheemy, Mohammed S; Shoukry, Mahmoud; Shouman, Ahmed M; Shoukry, Ahmed I; Ghoneima, Waleed; El Ghoneimy, Mohamed; Morsi, Hany A; Mohsen, Mostafa Abdel; Badawy, Hesham

    2018-04-01

    To compare efficacy and safety of visual internal urethrotomy (VIU) using holmium laser (Ho:YAG) (group A) versus cold knife (group B) in children with urethral strictures. It may be the first comparative study on this issue in children. This study compared Ho:YAG group, which was evaluated prospectively from January 2014 till January 2016, versus cold knife group, which was a historical control performed from March 2008 till February 2010. Children ≤ 13 years old with urethral strictures ≤ 1.5 cm were included successively. Recurrent cases, congenital obstructions and cases with complete arrest of dye in voiding cystourethrography were excluded. Scar tissue was incised at twelve o'clock. Outcome was compared using Student's t, Mann-Whitney, Chi-square or Fisher exact tests as appropriate. Each group included 21 patients. Mean age was 6.27 ± 3.23 (2-13) years old. Mean stricture length was 1.02 versus 1 cm in group A versus B, respectively (p = 0.862). Ten cases of penile/bulbous strictures and another 11 cases of membranous strictures were found in each group. There was no significant difference between both groups in preoperative data. Success rate for initial VIU was 66.7% in group A versus 38% in group B (p = 0.064). This was associated with significantly higher Q max in group A (mean 16.52 vs 12.09 ml/s; p = 0.03). Success rate after two trials of VIU was 76.2% for group A and 47.61% for group B (p = 0.057). No complications were reported in both groups. Laser VIU has a higher success rate than cold knife VIU for urethral strictures ≤ 1.5 cm in children with significantly higher Q max . Both are easy to perform, low invasive and safe.

  17. Comparative evaluation of photoablative efficacy of erbium: yttrium-aluminium-garnet and diode laser for the treatment of gingival hyperpigmentation. A randomized split-mouth clinical trial.

    PubMed

    Giannelli, Marco; Formigli, Lucia; Bani, Daniele

    2014-04-01

    The use of lasers in periodontology is a matter of debate, mainly because of the lack of consensual therapeutic protocols. In this randomized, split-mouth trial, the clinical efficacy of two different photoablative dental lasers, erbium:yttrium-aluminum-garnet (Er:YAG) and diode, for the treatment of gingival hyperpigmentation is compared. Twenty-one patients requiring treatment for mild-to-severe gingival hyperpigmentation were enrolled. Maxillary or mandibular left or right quadrants were randomly subjected to photoablative deepithelialization with either Er:YAG or diode laser. Masked clinical assessments of each laser quadrant were made at admission and days 7, 30, and 180 postoperatively by an independent observer. Histologic examination was performed before and soon after treatment and 6 months after irradiation. Patients also compiled a subjective evaluation questionnaire. Both diode and Er:YAG lasers gave excellent results in gingival hyperpigmentation. However, Er:YAG laser induced deeper gingival tissue injury than diode laser, as judged by bleeding at surgery, delayed healing, and histopathologic analysis. The use of diode laser showed additional advantages compared to Er:YAG in terms of less postoperative discomfort and pain. This study highlights the efficacy of diode laser for photoablative deepithelialization of hyperpigmented gingiva. It is suggested that this laser can represent an effective and safe therapeutic option for gingival photoablation.

  18. Color vision deficits and laser eyewear protection for soft tissue laser applications.

    PubMed

    Teichman, J M; Vassar, G J; Yates, J T; Angle, B N; Johnson, A J; Dirks, M S; Thompson, I M

    1999-03-01

    Laser safety considerations require urologists to wear laser eye protection. Laser eye protection devices block transmittance of specific light wavelengths and may distort color perception. We tested whether urologists risk color confusion when wearing laser eye protection devices for laser soft tissue applications. Subjects were tested with the Farnsworth-Munsell 100-Hue Test without (controls) and with laser eye protection devices for carbon dioxide, potassium titanyl phosphate (KTP), neodymium (Nd):YAG and holmium:YAG lasers. Color deficits were characterized by error scores, polar graphs, confusion angles, confusion index, scatter index and color axes. Laser eye protection device spectral transmittance was tested with spectrophotometry. Mean total error scores plus or minus standard deviation were 13+/-5 for controls, and 44+/-31 for carbon dioxide, 273+/-26 for KTP, 22+/-6 for Nd:YAG and 14+/-8 for holmium:YAG devices (p <0.001). The KTP laser eye protection polar graphs, and confusion and scatter indexes revealed moderate blue-yellow and red-green color confusion. Color axes indicated no significant deficits for controls, or carbon dioxide, Nd:YAG or holmium:YAG laser eye protection in any subject compared to blue-yellow color vision deficits in 8 of 8 tested with KTP laser eye protection (p <0.001). Spectrophotometry demonstrated that light was blocked with laser eye protection devices for carbon dioxide less than 380, holmium:YAG greater than 850, Nd:YAG less than 350 and greater than 950, and KTP less than 550 and greater than 750 nm. The laser eye protection device for KTP causes significant blue-yellow and red-green color confusion. Laser eye protection devices for carbon dioxide, holmium:YAG and Nd:YAG cause no significant color confusion compared to controls. The differences are explained by laser eye protection spectrophotometry characteristics and visual physiology.

  19. Comparative evaluation of surface topography of tooth prepared using erbium, chromium: Yttrium, scandium, gallium, garnet laser and bur and its clinical implications.

    PubMed

    Verma, Mahesh; Kumari, Pooja; Gupta, Rekha; Gill, Shubhra; Gupta, Ankur

    2015-01-01

    Erbium, chromium: Yttrium, scandium, gallium, garnet (Er, Cr: YSGG) laser has been successfully used in the ablation of dental hard and soft tissues. It has been reported that this system is also useful for preparing tooth surfaces and etching, but no consensus exist in the literature regarding the advantage of lasers over conventional tooth preparation technique. Labial surfaces of 25 extracted human maxillary central incisors were divided into two halves. Right half was prepared with diamond bur and left half with Er, Cr; YSGG laser and a reduction of 0.3-0.5 mm was carried out. Topography of prepared surfaces of five teeth were examined under scanning electron microscope (SEM). The remaining samples were divided into 4 groups of 10 specimens each based on the surface treatment received: One group was acid etched and other was nonetched. Composite resin cylinders were bonded on prepared surfaces and shear bond strength was assessed using a universal testing machine. The SEM observation revealed that the laser prepared surfaces were clean, highly irregular and devoid of a smear layer. Bur prepared surfaces were relatively smooth but covered with smear layer. Highest bond strength was shown by laser prepared acid etched group, followed by bur prepared the acid etched group. The bur prepared nonacid etched group showed least bond strength. Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability.

  20. Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Ali, N. M.; Salleh, Z. S.; Rahman, A. A.; Harun, S. W.; Manaf, M.; Arof, H.

    2015-01-01

    A passive, stable and low cost Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), which are embedded in polyethylene oxide (PEO) film as a saturable absorber (SA). The film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation operating at wavelength of 1533.6 nm. With SWCNTs, the laser produces a stable pulse train with repetition rate and pulse width ranging from 9.52 to 33.33 kHz and 16.8 to 8.0 μs while varying the 980 nm pump power from 48.5 mW to 100.4 mW. On the other hand, with MWCNTs, the repetition rate and pulse width can be tuned in a wider range of 6.12-33.62 kHz and 9.5- 4.2 μs, respectively as the pump power increases from 37.9 to 120.6 mW. The MWCNTs produce the pulse train at a lower threshold and attain a higher repetition rate compared to the SWCNTs. This is due to thicker carbon nanotubes layer of the MWCNTs which provides more absorption and consequently higher damage threshold. The Q-switched EDFL produces the highest pulse energy of 531 nJ at pump power of 37.9 mW with the use of MWCNTs-PEO SA.