Science.gov

Sample records for prebiotic low-digestible carbohydrate

  1. Intrinsic immunomodulatory effects of low-digestible carbohydrates selectively extend their anti-inflammatory prebiotic potentials.

    PubMed

    Breton, Jérôme; Plé, Coline; Guerin-Deremaux, Laetitia; Pot, Bruno; Lefranc-Millot, Catherine; Wils, Daniel; Foligné, Benoit

    2015-01-01

    The beneficial effects of carbohydrate-derived fibers are mainly attributed to modulation of the microbiota, increased colonic fermentation, and the production of short-chain fatty acids. We studied the direct immune responses to alimentary fibers in in vitro and in vivo models. Firstly, we evaluated the immunomodulation induced by nine different types of low-digestible fibers on human peripheral blood mononuclear cells. None of the fibers tested induced cytokine production in baseline conditions. However, only one from all fibers almost completely inhibited the production of anti- and proinflammatory cytokines induced by bacteria. Secondly, the impact of short- (five days) and long-term (three weeks) oral treatments with selected fibers was assessed in the trinitrobenzene-sulfonic acid colitis model in mice. The immunosuppressive fiber significantly reduced levels of inflammatory markers over both treatment periods, whereas a nonimmunomodulatory fiber had no effect. The two fibers did not differ in terms of the observed fermentation products and colonic microbiota after three weeks of treatment, suggesting that the anti-inflammatory action was not related to prebiotic properties. Hence, we observed a direct effect of a specific fiber on the murine immune system. This intrinsic, fiber-dependent immunomodulatory potential may extend prebiotic-mediated protection in inflammatory bowel disease. PMID:25977916

  2. Non-polyol low-digestible carbohydrates: food applications and functional benefits.

    PubMed

    Murphy, O

    2001-03-01

    Many LDCs currently on the market are not digested in the upper gastrointestinal tract and become fermented in the large intestine. They possess physiological benefits similar to those of dietary fibre. For some of these materials the fermentation process is highly specialised and leads to the selective stimulation and growth of beneficial gut bacteria, e.g. bifidobacteria. These materials are described as prebiotics, which are defined as nutrients fermented in the large bowel that favour the growth of desirable large bowel microflora. This activity has been demonstrated for inulin and oligofructose. Two other carbohydrates with low digestibility that offer desirable physiological properties are resistant starch (RS) and polydextrose (PD). These 'functional benefits have led to considerable interest from the food industry leading to the use of these ingredients in the development of new 'healthy' products. This paper describes the use of these materials in the development of 'healthy' products, some of their functional properties, and the benefits they confer on different food systems. PMID:11321026

  3. Prebiotic carbohydrate-related research within the USDA Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service of the U.S. Department of Agriculture is interested in the development of prebiotic carbohydrates for a number of reasons. Many of the novel carbohydrates used or proposed for use as prebiotics are made from agricultural commodities such as milk, cornstarch, sugar,...

  4. Isolation of prebiotic carbohydrates by supercritical fluid extraction. Scaling-up and economical feasibility.

    PubMed

    Montañés, F; Fornari, T; Olano, A; Ibáñez, E

    2012-08-10

    Production of prebiotic carbohydrates at competitive prices is a challenge nowadays since the well-established production processes involve many purification steps which are labour intensive and require important amounts of reagents and products thus increasing prebiotic's price. Several processes have been studied in our laboratory involving the use of Supercritical Fluid Technology to fractionate and purify carbohydrate solid mixtures. Research carried out at laboratory scale using theoretical mixtures (lactose/lactulose and galactose/tagatose), commercially available carbohydrate mixtures and carbohydrate mixtures produced by enzymatic transglycosylation and isomerized with complexating reagents demonstrated that purification of prebiotic carbohydrates was technically possible by supercritical fluid extraction. In the present work, the process optimized at laboratory scale to fractionate carbohydrate mixtures produced by enzymatic transglycosylation has been scaled-up to an industrial level and its economic feasibility has been simulated employing AspenONE(®) V7.3 software to obtain consistent data supporting the interest of a potential investment for prebiotics production at large scale using supercritical fluids. PMID:22560345

  5. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2015-01-01

    The α-glucosidase inhibitor acarbose, which slows carbohydrate digestion and blunts postprandial rises in plasma glucose, has long been used to treat patients with type 2 diabetes or glucose intolerance. Like metformin, acarbose tends to aid weight control, postpone onset of diabetes and decrease risk for cardiovascular events. Acarbose treatment can favourably affect blood pressure, serum lipids, platelet aggregation, progression of carotid intima-media thickness and postprandial endothelial dysfunction. In mice, lifetime acarbose feeding can increase median and maximal lifespan-an effect associated with increased plasma levels of fibroblast growth factor 21 (FGF21) and decreased levels of insulin-like growth factor-I (IGF-I). There is growing reason to suspect that an upregulation of fasting and postprandial production of glucagon-like peptide-1 (GLP-1)-stemming from increased delivery of carbohydrate to L cells in the distal intestinal tract-is largely responsible for the versatile health protection conferred by acarbose. Indeed, GLP-1 exerts protective effects on vascular endothelium, the liver, the heart, pancreatic β cells, and the brain which can rationalise many of the benefits reported with acarbose. And GLP-1 may act on the liver to modulate its production of FGF21 and IGF-I, thereby promoting longevity. The benefits of acarbose are likely mimicked by diets featuring slowly-digested 'lente' carbohydrate, and by certain nutraceuticals which can slow carbohydrate absorption. Prebiotics that promote colonic generation of short-chain fatty acids represent an alternative strategy for boosting intestinal GLP-1 production. The health benefits of all these measures presumably would be potentiated by concurrent use of dipeptidyl peptidase 4 inhibitors, which slow the proteolysis of GLP-1 in the blood. PMID:25685364

  6. Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity.

    PubMed

    Silva, Eric Keven; Zabot, Giovani L; Cazarin, Cinthia B B; Maróstica, Mário R; Meireles, M Angela A

    2016-06-25

    The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses. PMID:27083804

  7. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest.

    PubMed

    Corradini, Claudio; Lantano, Claudia; Cavazza, Antonella

    2013-05-01

    Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and

  8. Carbohydrates

    MedlinePlus

    Carbohydrates are one of the main types of nutrients. They are the most important source of energy for your body. Your digestive system changes carbohydrates into glucose (blood sugar). Your body uses this ...

  9. Carbohydrates

    MedlinePlus

    ... beans Vegetables, such as broccoli, Brussels sprouts, corn, potato with skin Fruits, such as raspberries, pears, apples, ... high in carbohydrates: Starchy vegetables: 1 cup mashed potato or sweet potato, 1 small ear of corn ...

  10. Analysis of Prebiotic Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.

    Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.

  11. Healthy carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional foods include dietary fiber consisting of health-promoting carbohydrates. We have produced novel prebiotics from orange peel and observed that they extend the shelf life of probiotic bacteria in synbiotics. Some pectic-oligosaccharides and xyloglucan-oligosaccharides also have anti-adhesi...

  12. Prebiotics to fight diseases: reality or fiction?

    PubMed

    Di Bartolomeo, F; Startek, J B; Van den Ende, W

    2013-10-01

    Bacteria living in the gastrointestinal tract are crucial for human health and disease occurrence. Increasing the beneficial intestinal microflora by consumption of prebiotics, which are 'functional foods', could be an elegant way to limit the number and incidence of disorders and to recover from dysbiosis or antibiotic treatments. This review focuses on the short-chain low-digestible carbohydrates (LDCs) which are metabolized by gut microbiota serving as energy source, immune system enhancers or facilitators of mineral uptake. Intake of foods containing LDCs can improve the state of health and may prevent diseases as for example certain forms of cancer. Given the large number of different molecules belonging to LDCs, we focused our attention on fructans (inulin, fructo-oligosaccharides), galacto-oligosaccharides and resistant starches and their therapeutic and protective applications. Evidence is accumulating that LDCs can inhibit bacterial and viral infections by modulating host defense responses and by changing the interactions between pathogenic and beneficial bacteria. Animal studies and studies on small groups of human subjects suggest that LDCs might help to counteract colorectal cancer, diabetes and metabolic syndrome. The action mechanisms of LDCs in the human body might be broader than originally thought, perhaps also including reactive oxygen species scavenging and signaling events. PMID:23280537

  13. [Prebiotics: concept, properties and beneficial effects].

    PubMed

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-01-01

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits. PMID:25659062

  14. Prebiotic chirality

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality

  15. Prebiotic Petroleum

    NASA Astrophysics Data System (ADS)

    Ali, Mekki-Berrada

    2014-12-01

    This short communication summarizes a global and continuous reflection on the origins of life. "Prebiotic Petroleum" assumes that " the class of most complex molecules of life that may have geochemical and abiotic origin is the class of fatty acids with long aliphatic chains" and proposes a physical process for the formation of liposomes. Developments following the workshop start from the idea that the liposomes also acquire ion exchange channels physically during their forming process.

  16. Prebiotic petroleum.

    PubMed

    Ali, Mekki-Berrada

    2014-12-01

    This short communication summarizes a global and continuous reflection on the origins of life. "Prebiotic Petroleum" assumes that "the class of most complex molecules of life that may have geochemical and abiotic origin is the class of fatty acids with long aliphatic chains" and proposes a physical process for the formation of liposomes. Developments following the workshop start from the idea that the liposomes also acquire ion exchange channels physically during their forming process. PMID:25743765

  17. Manufacture of Prebiotics from Biomass Sources

    NASA Astrophysics Data System (ADS)

    Gullón, Patricia; Gullón, Beatriz; Moure, Andrés; Alonso, José Luis; Domínguez, Herminia; Parajó, Juan Carlos

    Biomass from plant material is the most abundant and widespread renewable raw material for sustainable development, and can be employed as a source of polymeric and oligomeric carbohydrates. When ingested as a part of the diet, some biomass polysaccharides and/or their oligomeric hydrolysis products are selectively fermented in the colon, causing prebiotic effects.

  18. Prebiotics: why definitions matter.

    PubMed

    Hutkins, Robert W; Krumbeck, Janina A; Bindels, Laure B; Cani, Patrice D; Fahey, George; Goh, Yong Jun; Hamaker, Bruce; Martens, Eric C; Mills, David A; Rastal, Robert A; Vaughan, Elaine; Sanders, Mary Ellen

    2016-02-01

    The prebiotic concept was introduced twenty years ago, and despite several revisions to the original definition, the scientific community has continued to debate what it means to be a prebiotic. How prebiotics are defined is important not only for the scientific community, but also for regulatory agencies, the food industry, consumers and healthcare professionals. Recent developments in community-wide sequencing and glycomics have revealed that more complex interactions occur between putative prebiotic substrates and the gut microbiota than previously considered. A consensus among scientists on the most appropriate definition of a prebiotic is necessary to enable continued use of the term. PMID:26431716

  19. Prebiotics: why definitions matter

    PubMed Central

    Hutkins, Robert W; Krumbeck, Janina A; Bindels, Laure B; Cani, Patrice D; Fahey, George; Goh, Yong Jun; Hamaker, Bruce; Martens, Eric C; Mills, David A; Rastal, Robert A; Vaughan, Elaine; Sanders, Mary Ellen

    2015-01-01

    The prebiotic concept was introduced twenty years ago, and despite several revisions to the original definition, the scientific community has continued to debate what it means to be a prebiotic. How prebiotics are defined is important not only for the scientific community, but also for regulatory agencies, the food industry, consumers and healthcare professionals. Recent developments in community-wide sequencing and glycomics have revealed that more complex interactions occur between putative prebiotic substrates and the gut microbiota than previously considered. A consensus among scientists on the most appropriate definition of a prebiotic is necessary to enable continued use of the term. PMID:26431716

  20. Fiber and prebiotics: mechanisms and health benefits.

    PubMed

    Slavin, Joanne

    2013-04-01

    The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known "prebiotics", "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health." To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects. PMID:23609775

  1. Prebiotics as functional food ingredients preventing diet-related diseases.

    PubMed

    Florowska, A; Krygier, K; Florowski, T; Dłużewska, E

    2016-05-18

    This paper reviews the potential of prebiotic-containing foods in the prevention or postponement of certain diet-related diseases, such as cardiovascular diseases with hypercholesterolemia, osteoporosis, diabetes, gastrointestinal infections and gut inflammation. Also the data on prebiotics as food ingredients and their impact on food product quality are presented. Prebiotics are short chain carbohydrates that are resistant to the digestion process in the upper part of the digestive system, are not absorbed in any segment of the gastrointestinal system, and finally are selectively fermented by specific genera of colonic bacteria. The mechanisms of the beneficial impacts of prebiotics on human health are very difficult to specify directly, because their health-promoting functions are related to fermentation by intestinal microflora. The impact of prebiotics on diet-related diseases in many ways also depends on the products of their fermentation. Prebiotics as functional food ingredients also have an impact on the quality of food products, due to their textural and gelling properties. Prebiotics as food additives can be very valuable in the creation of functional food aimed at preventing or postponing many diet-related diseases. They additionally have beneficial technological properties which improve the quality of food products. PMID:26961814

  2. Quantification of prebiotics in commercial infant formulas.

    PubMed

    Sabater, Carlos; Prodanov, Marin; Olano, Agustín; Corzo, Nieves; Montilla, Antonia

    2016-03-01

    Since breastfeeding is not always possible, infant formulas (IFs) are supplemented with prebiotic oligosaccharides, such as galactooligosaccharides (GOS) and/or fructooligosaccharides (FOS) to exert similar effects to those of the breast milk. Nowadays, a great number of infant formulas enriched with prebiotics are disposal in the market, however there are scarce data about their composition. In this study, the combined use of two chromatographic methods (GC-FID and HPLC-RID) for the quantification of carbohydrates present in commercial infant formulas have been used. According to the results obtained by GC-FID for products containing prebiotics, the content of FOS, GOS and GOS/FOS was in the ranges of 1.6-5.0, 1.7-3.2, and 0.08-0.25/2.3-3.8g/100g of product, respectively. HPLC-RID analysis allowed quantification of maltodextrins with degree of polymerization (DP) up to 19. The methodology proposed here may be used for routine quality control of infant formula and other food ingredients containing prebiotics. PMID:26471520

  3. Genetics of carbohydrate accumulation in onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are soluble carbohydrates composed of fructose chains attached to a basal sucrose molecule and act both as health-enhancing pro- and pre-biotics. In onion, higher fructan concentrations are correlated with greater soluble solids content, dry weights, and pungency. We analyzed dry weights ...

  4. Fiber and Prebiotics: Mechanisms and Health Benefits

    PubMed Central

    Slavin, Joanne

    2013-01-01

    The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known “prebiotics”, “a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health.” To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects. PMID:23609775

  5. [The effect of prebiotics on lipid metabolism].

    PubMed

    Marti del Moral, A; Moreno-Aliaga, M J; Martínez Hernández, J Alfredo

    2003-01-01

    Prebiotics were defined in 1995 as non-digestible food ingredients beneficially affecting the host by stimulating the growth and/or activity of one or more bacteria in the colon, thus improving health. The proliferation of certain bacteria by fermentation of non-digestible carbohydrates has been shown to be able to inhibit the colonization of the intestine by pathogens, thus giving a protective effect vis-à-vis acute or chronic intestinal disorders. The fermentation of prebiotics may promote some specific physiological functions through the release of metabolites from the bacteria, especially short chain fatty acids (acetate, propionate, butyrate, lactate, etc.) into the lumen of the intestine. Short chain fatty acids may act directly or indirectly (by modifying the pH) on intestinal cells and may be involved in the control of various processes such as the proliferation of mucosa, inflammation, colorectal carcinogenesis, mineral absorption and the elimination of nitrogenated compounds. Curiously, numerous papers have hinted at the possibility that prebiotics may have systemic physiological effects that are related to beneficial effects on lipid metabolism and various cardiovascular risk factors. PMID:12884473

  6. Prebiotics and calcium bioavailability.

    PubMed

    Cashman, Kevin

    2003-03-01

    A prebiotic substance has been defined as a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon. Therefore, compared to probiotics, which introduce exogenous bacteria into the colonic microflora, a prebiotic aims at stimulating the growth of one or a limited number of the potentially health-promoting indigenous micro-organisms, thus modulating the composition of the natural ecosystem. In recent years, increasing attention has been focussed on the possible beneficial effects of prebiotics, such as enhanced resistance to invading pathogens, improved bowel function, anti-colon cancer properties, lipid lowering action, improved calcium bioavailability, amongst others. The objective of this review is to critically assess the available data on the effects of prebiotics on calcium bioavailability, and place it in the context of human physiology and, when possible, explain the underlying cellular and molecular mechanisms. The review will also try to highlight future areas of research that may help in the evaluation of prebiotics as potential ingredients for functional foods aimed at enhancing calcium bioavailability and protecting against osteoporosis. PMID:12691259

  7. Prebiotic mechanisms, functions and application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In October 2012, a group of scientists met at the 10th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) in Cork, Ireland to discuss issues surrounding prebiotics and their development. This article summarises outputs from the meeting. Various prebiotic defin...

  8. In vitro evaluation method for screening of candidate prebiotic foods.

    PubMed

    Date, Yasuhiro; Nakanishi, Yumiko; Fukuda, Shinji; Nuijima, Yumi; Kato, Tamotsu; Umehara, Mikihisa; Ohno, Hiroshi; Kikuchi, Jun

    2014-01-01

    The aim of this work was to develop a simple and rapid in vitro evaluation method for screening and discovery of uncharacterised and untapped prebiotic foods. Using a NMR-based metabolomic approach coupled with multivariate statistical analysis, the metabolic profiles generated by intestinal microbiota after in vitro incubation with feces were examined. The viscous substances of Japanese bunching onion (JBOVS) were identified as one of the candidate prebiotic foods by this in vitro screening method. The JBOVS were primarily composed of sugar components, especially fructose-based carbohydrates. Our results suggested that ingestion of JBOVS contributed to lactate and acetate production by the intestinal microbiota, and were accompanied by an increase in the Lactobacillus murinus and Bacteroidetes sp. populations in the intestine and fluctuation of the host-microbial co-metabolic process. Therefore, our approach should be useful as a rapid and simple screening tool for potential prebiotic foods. PMID:24444934

  9. Prebiotic synthesis of histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  10. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  11. Health benefits of prebiotic fibers.

    PubMed

    Meyer, Diederick

    2015-01-01

    This chapter describes the various compounds that can act as prebiotic fibers: their structure, occurrence, production, and physiological effects (health effects) will be presented. The basis for the description is the latest definitions for dietary fibers and for prebiotics. Using as much as possible data from human studies, both the fiber and the prebiotic properties will be described of a variety of compounds. Based on the presented data the latest developments in the area of prebiotics, fibers and gut and immune health will be discussed in more detail as they show best what the potential impact of prebiotics on health of the human host might be. PMID:25624035

  12. The potential of resistant starch as a prebiotic.

    PubMed

    Zaman, Siti A; Sarbini, Shahrul R

    2016-06-01

    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry. PMID:25582732

  13. Carbohydrate Analysis

    NASA Astrophysics Data System (ADS)

    Bemiller, James N.

    Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).

  14. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  15. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  16. Fate of prebiotic adenine.

    PubMed

    Cohn, C A; Hansson, T K; Larsson, H S; Sowerby, S J; Holm, N G

    2001-01-01

    Equilibrium adsorption isotherm data for the purine base adenine has been obtained on several prebiotically relevant minerals by frontal analysis using water as a mobile phase. Adenine is far displaced toward adsorption on pyrite (FeS2), quartz (SiO2), and pyrrhotite (FeS), but somewhat less for magnetite (Fe3O4) and forsterite (Mg2SiO4). The prebiotic prevalence of these minerals would have allowed them to act as a sink for adenine; removal from the aqueous phase would confer protection from hydrolysis as well, establishing a nonequilibrium thermodynamic framework for increased adenine synthesis. Our results provide evidence that adsorption phenomena may have been critical for the primordial genetic architecture. PMID:12448980

  17. Prebiotic activation processes.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Orgel, L. E.

    1973-01-01

    Questions regarding the combination of amino acids and ribonucleotides to polypeptides and polynucleotides are investigated. Each of the reactions considered occurs in the solid state in plausible prebiotic conditions. Together they provide the basis for a unified scheme of amino acid and nucleotide activation. Urea, imidazole and Mg(++) are essential catalytic components of the reaction mixtures. However, these compounds could probably be replaced by other organic molecules.

  18. Counting carbohydrates

    MedlinePlus

    ... There are 3 major types of carbohydrates: Sugars Starches Fiber Sugars are found naturally in some foods ... syrups, such as those added to canned fruit Starches are found naturally in foods. Your body breaks ...

  19. Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots.

    PubMed

    Caleffi, Edilainy Rizzieri; Krausová, Gabriela; Hyršlová, Ivana; Paredes, Larry Ladislao Ramos; dos Santos, Marcelo Müller; Sassaki, Guilherme Lanzi; Gonçalves, Regina Aparecida Correia; de Oliveira, Arildo José Braz

    2015-09-01

    Pfaffia glomerata (Amaranthaceae) is popularly known as "Brazilian ginseng." Previous studies have shown that fructose is the major carbohydrate component present in its roots. Inulin-type fructans, polymers of fructose, are the most widespread and researched prebiotics. Here, we isolated and chemically characterized inulin extracted from P. glomerata roots and investigated its potential prebiotic effect. Fructans were isolated and their structures were determined using colorimetric, chromatography, polarimetry, and spectroscopic analysis. The degree of polymerization (DP) was determined, and an in vitro prebiotic test was performed. The structure of inulin was confirmed by chromatography and spectroscopic analysis and through comparison with existing data. Representatives from the genera Lactobacillus and Bifidobacterium utilized inulin from P. glomerata, because growth was significantly stimulated, while this ability is strain specific. The results indicated that inulin extracted from P. glomerata roots represents a promising new source of inulin-type prebiotics. PMID:26126944

  20. A Prebiotic Synthesis of Pterins.

    PubMed

    Marín-Yaseli, Margarita R; Mompeán, Cristina; Ruiz-Bermejo, Marta

    2015-09-21

    The genesis of life on Earth is a hypothesis of evolutionary science that can be, at least partially, tested experimentally. The prebiotic synthesis of cofactors or coenzymes is a poorly explored issue, likely because their formation under plausible prebiotic conditions is not clear. In this sense, it has been proposed that the cofactors are "molecular fossils" of an early phase of life. In contrast, Eschenmoser and Loewenthal suggested a prebiotic hydrocyanic origin of cofactor building blocks. In the present paper, the formation of a set of pterins from cyanide polymerizations is demonstrated, showing that the main structure of some cofactors can be prebiotically formed. Indeed, it was observed that aqueous aerosols additionally increase the relative composition for pterins in the insoluble NH4CN polymers synthesized. The novel identification of pterins in NH4CN polymers, together with the previous detection of other important biomonomers, indicates that cyanide polymerizations were essential in the early state of prebiotic chemistry. PMID:26256284

  1. Learning about Carbohydrates

    MedlinePlus

    ... Here's Help White House Lunch Recipes Learning About Carbohydrates KidsHealth > For Kids > Learning About Carbohydrates Print A ... of energy for the body. Two Types of Carbohydrates There are two major types of carbohydrates (or ...

  2. Probiotics, prebiotics, and synbiotics.

    PubMed

    de Vrese, Michael; Schrezenmeir, J

    2008-01-01

    . Prevention of respiratory tract infections (common cold, influenza) and other infectious diseases as well as treatment of urogenital infections. Insufficient or at most preliminary evidence exists with respect to cancer prevention, a so-called hypocholesterolemic effect, improvement of the mouth flora and caries prevention or prevention or therapy of ischemic heart diseases or amelioration of autoimmune diseases (e.g. arthritis). A prebiotic is "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well being and health", whereas synergistic combinations of pro- and prebiotics are called synbiotics. Today, only bifidogenic, non-digestible oligosaccharides (particularly inulin, its hydrolysis product oligofructose, and (trans)galactooligosaccharides), fulfill all the criteria for prebiotic classification. They are dietary fibers with a well-established positive impact on the intestinal microflora. Other health effects of prebiotics (prevention of diarrhoea or obstipation, modulation of the metabolism of the intestinal flora, cancer prevention, positive effects on lipid metabolism, stimulation of mineral adsorption and immunomodulatory properties) are indirect, i.e. mediated by the intestinal microflora, and therefore less-well proven. In the last years, successful attempts have been reported to make infant formula more breast milk-like by the addition of fructo- and (primarily) galactooligosaccharides. PMID:18461293

  3. Phosphorus in prebiotic chemistry

    PubMed Central

    Schwartz, Alan W

    2006-01-01

    The prebiotic synthesis of phosphorus-containing compounds—such as nucleotides and polynucleotides—would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the ‘phosphorus problem’ is no longer the stumbling block which it was once thought to be. PMID:17008215

  4. Prebiotic photosynthetic reactions.

    PubMed

    Chittenden, G J; Schwartz, A W

    1981-01-01

    Historically, numerous attempts have been made to mimic - by means of inorganic model reactions - the photosynthetic fixation of CO2 by green plants. The literature in this field is strewn with claims and counter-claims. Two factors have led us to reexamine this subject: firstly; doubts concerning the highly reducing model for the atmosphere of the primitive Earth and secondly; recent results which demonstrate that photoreductive fixation is feasable on a suitable catalytic surface, for both CO2 and N2. The latter observation is of particular interest due to the well-known susceptibility of NH3 to photolytic destruction. Our review of the literature leads us to suggest that similar processes would have been plausible for the primitive Earth and could have been prebiotic precursors to an early development of CO2-fixing autotrophs. PMID:6791723

  5. Carbohydrate intake.

    PubMed

    Leturque, Armelle; Brot-Laroche, Edith; Le Gall, Maude

    2012-01-01

    Carbohydrates represent more than 50% of the energy sources present in most human diets. Sugar intake is regulated by metabolic, neuronal, and hedonic factors, and gene polymorphisms are involved in determining sugar preference. Nutrigenomic adaptations to carbohydrate availability have been evidenced in metabolic diseases, in the persistence of lactose digestion, and in amylase gene copy number. Furthermore, dietary oligosaccharides, fermentable by gut flora, can modulate the microbiotal diversity to the benefit of the host. Genetic diseases linked to mutations in the disaccharidase genes (sucrase-isomaltase, lactase) and in sugar transporter genes (sodium/glucose cotransporter 1, glucose transporters 1 and 2) severely impact carbohydrate intake. These diseases are revealed upon exposure to food containing the offending sugar, and withdrawal of this sugar from the diet prevents disease symptoms, failure to thrive, and premature death. Tailoring the sugar composition of diets to optimize wellness and to prevent the chronic occurrence of metabolic diseases is a future goal that may yet be realized through continued development of nutrigenetics and nutrigenomics approaches. PMID:22656375

  6. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.

    PubMed

    McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe

    2015-06-16

    Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients. PMID:25817019

  7. Effects of prebiotic oligosaccharides consumption on the growth and expression profile of cell surface-associated proteins of a potential probiotic Lactobacillus rhamnosus FSMM15

    PubMed Central

    MURTINI, Devi; ARYANTINI, Ni Putu Desy; SUJAYA, I Nengah; URASHIMA, Tadasu; FUKUDA, Kenji

    2015-01-01

    To investigate carbohydrate preference of a potential probiotic, Lactobacillus rhamnosus FSMM15, six prebiotics, including two milk-derived prebiotics, galactooligosaccharides and lacto-N-biose I, and four plant-origin prebiotics, beet oligosaccharide syrup, difructose anhydride III, fructooligosaccharides, and raffinose, were examined. The strain utilized the milk-derived prebiotics at similar levels to glucose but did not utilize the plant-origin ones in the same manner, reflecting their genetic background, which allows them to adapt to dairy ecological niches. These prebiotics had little influence on the expression pattern of cell surface-associated proteins in the strain; however, an ATP-binding cassette transporter substrate-binding protein and a glyceraldehyde-3-phosphate dehydrogenase were suggested to be upregulated in response to carbon starvation stress. PMID:26858929

  8. Dietary prebiotics: Current status and new definition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In November 2008, a group of scientists met at the 6th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) in London, Ontario. The aim was to discuss the functionality of prebiotics. As a result of this, it was decided that the prebiotic field as it stands is dom...

  9. High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert.

    PubMed

    Leach, Jeff D; Sobolik, Kristin D

    2010-06-01

    Archaeological evidence from dry cave deposits in the northern Chihuahuan Desert reveal intensive utilisation of desert plants that store prebiotic inulin-type fructans as the primary carbohydrate. In this semi-arid region limited rainfall and poor soil conditions prevented the adoption of agriculture and thus provides a unique glimpse into a pure hunter-forager economy spanning over 10 000 years. Ancient cooking features, stable carbon isotope analysis of human skeletons, and well-preserved coprolites and macrobotanical remains reveal a plant-based diet that included a dietary intake of about 135 g prebiotic inulin-type fructans per d by the average adult male hunter-forager. These data reveal that man is well adapted to daily intakes of prebiotics well above those currently consumed in the modern diet. PMID:20416127

  10. Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review.

    PubMed

    Karimi, Reza; Azizi, Mohammad Hossein; Ghasemlou, Mehran; Vaziri, Moharam

    2015-03-30

    Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier. PMID:25563948

  11. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  12. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome

    PubMed Central

    Parnell, Jill A.; Reimer, Raylene A.

    2013-01-01

    Prebiotic fibers are non-digestible carbohydrates that promote the growth of beneficial bacteria in the gut. Prebiotic consumption may benefit obesity and associated co-morbidities by improving or normalizing the dysbiosis of the gut microbiota. We evaluated the dose response to a prebiotic diet on the gut microbiota, body composition and obesity associated risk factors in lean and genetically obese rats. Prebiotic fibers increased Firmicutes and decreased Bacteroidetes, a profile often associated with a leaner phenotype. Bifidobacteria and Lactobacillus numbers also increased. Changes in the gut microbiota correlated with energy intake, glucose, insulin, satiety hormones, and hepatic cholesterol and triglyceride accumulation. Here we provide a comprehensive analysis evaluating the results through the lens of the gut microbiota. Salient, new developments impacting the interpretation and significance of our data are discussed. We propose that prebiotic fibers have promise as a safe and cost-effective means of modulating the gut microbiota to promote improved host:bacterial interactions in obesity and insulin resistance. Human clinical trials should be undertaken to confirm these effects. PMID:22555633

  13. Catalysis and prebiotic RNA synthesis

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  14. Development of a bread delivery vehicle for dietary prebiotics to enhance food functionality targeted at those with metabolic syndrome

    PubMed Central

    Costabile, Adele; Walton, Gemma E; Tzortzis, George; Vulevic, Jelena; Charalampopoulos, Dimitris; Gibson, Glenn R

    2015-01-01

    Prebiotics are dietary carbohydrates that favourably modulate the gut microbiota. The aims of the present study were to develop a functional prebiotic bread using Bimuno®, (galactooligosaccharide (B-GOS) mixture), for modulation of the gut microbiota in vitro in individuals at risk of metabolic syndrome. A control bread, (no added prebiotic) and positive control bread (containing equivalent carbohydrate to B-GOS bread) were also developed. A 3-stage continuous in vitro colonic model was used to assess prebiotic functionality of the breads. Bacteria were quantified by fluorescence in situ hybridization and short chain fatty acids by gas chromatography. Ion-exchange chromatography was used to determine GOS concentration after bread production. Following B-GOS bread fermentation numbers of bifidobacteria and lactobacilli were significantly higher compared to controls. There was no significant degradation of B-GOS during bread manufacture, indicating GOS withstood the manufacturing process. Furthermore, based on previous research, increased bifidobacteria and butyrate levels could be of benefit to those with obesity related conditions. Our findings support utilization of prebiotic enriched bread for improving gastrointestinal health. PMID:26099034

  15. Probiotics and prebiotics in pediatrics.

    PubMed

    Thomas, Dan W; Greer, Frank R

    2010-12-01

    This clinical report reviews the currently known health benefits of probiotic and prebiotic products, including those added to commercially available infant formula and other food products for use in children. Probiotics are supplements or foods that contain viable microorganisms that cause alterations of the microflora of the host. Use of probiotics has been shown to be modestly effective in randomized clinical trials (RCTs) in (1) treating acute viral gastroenteritis in healthy children; and (2) preventing antibiotic-associated diarrhea in healthy children. There is some evidence that probiotics prevent necrotizing enterocolitis in very low birth weight infants (birth weight between 1000 and 1500 g), but more studies are needed. The results of RCTs in which probiotics were used to treat childhood Helicobacter pylori gastritis, irritable bowel syndrome, chronic ulcerative colitis, and infantile colic, as well as in preventing childhood atopy, although encouraging, are preliminary and require further confirmation. Probiotics have not been proven to be beneficial in treating or preventing human cancers or in treating children with Crohn disease. There are also safety concerns with the use of probiotics in infants and children who are immunocompromised, chronically debilitated, or seriously ill with indwelling medical devices. Prebiotics are supplements or foods that contain a nondigestible food ingredient that selectively stimulates the favorable growth and/or activity of indigenous probiotic bacteria. Human milk contains substantial quantities of prebiotics. There is a paucity of RCTs examining prebiotics in children, although there may be some long-term benefit of prebiotics for the prevention of atopic eczema and common infections in healthy infants. Confirmatory well-designed clinical research studies are necessary. PMID:21115585

  16. Carbohydrate and dietary fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrate provides 50 to 60% of the calories consumed by the average American. Although relatively little carbohydrate is needed in the diet, carbohydrate spares protein and fat being metabolized for calories. The principal dietary carbohydrates are sugars and starches. Sugars (simple carbohydrat...

  17. Carbohydrates and Diabetes

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Carbohydrates and Diabetes KidsHealth > For Teens > Carbohydrates and Diabetes Print A A A Text Size ... that you should keep track of how many carbohydrates (carbs) you eat. But what exactly are carbohydrates ...

  18. Prebiotics in Companion and Livestock Animal Nutrition

    NASA Astrophysics Data System (ADS)

    Barry, Kathleen A.; Vester, Brittany M.; Fahey, George C.

    Prebiotic supplementation of animal diets began in an attempt to increase concentrations of beneficial intestinal microbiota. It was understood that prebiotics inhibited growth of intestinal pathogens and decreased concentrations of stool odor-causing metabolites. Since the use of prebiotics began, several countries have banned the use of antimicrobials in livestock animal feeds, and several more have placed restrictions on the quantity of antimicrobials that can be used. Prebiotic supplementation has become increasingly popular as the body of evidence supporting its use continues to grow. As this literature expands, the number of potential prebiotic substances has grown beyond those that are naturally occurring, such as those found in chicory and yeast products, to include a large number of synthetic or chemically/enzymatically manufactured prebiotics.

  19. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  20. Tolerance of probiotics and prebiotics.

    PubMed

    Marteau, Philippe; Seksik, Philippe

    2004-07-01

    The clinical efficacy of probiotics and prebiotics has been proved in several clinical settings. The authors review their proved or potential side effects. Probiotics as living microorganisms may theoretically be responsible for 4 types of side effects in susceptible individuals: infections, deleterious metabolic activities, excessive immune stimulation, and gene transfer. Very few cases of infection have been observed. These occurred mainly in very sick patients who received probiotic drugs because of severe medical conditions. Prebiotics exert an osmotic effect in the intestinal lumen and are fermented in the colon. They may induce gaseousness and bloating. Abdominal pain and diarrhea only occur with large doses. An increase in gastroesophageal reflux has recently been associated with large daily doses. Tolerance depends on the dose and individual sensitivity factors (probably the presence of irritable bowel syndrome or gastroesophageal reflux), and may be an adaptation to chronic consumption. PMID:15220662

  1. Coacervates as prebiotic chemical reactors

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Swanson, Mercedes; Menger, Fredric M.

    2012-10-01

    Coacervates are colloidal systems that are comprised of two immiscible aqueous layers, the colloid-rich layer, so-called coacervate, and the colloid-poor layer, so-called equilibrium liquid. Although immiscible, the two phases are both water-rich. Coacervates are important for prebiotic chemistry, but also have various practical applications, notably as transport vehicles of personal care products and pharmaceuticals. Our objectives are to explore the potential of coacervates as prebiotic chemical reactors. Since the reaction medium in coacervates is water, this creates a challenge, since most organic reactants are not water-soluble. To overcome this challenge we are utilizing recent Green Chemistry examples of the organic reactions in water, such as the Passerini reaction. We have investigated this reaction in two coacervate systems, and report here our preliminary results.

  2. Cashew juice containing prebiotic oligosaccharides.

    PubMed

    da Silva, Isabel Moreira; Rabelo, Maria Cristiane; Rodrigues, Sueli

    2014-09-01

    The enzyme dextransucrase in a medium containing sucrose and an acceptor as substrate synthesizes prebiotics oligosaccharides. The cashew apple juice works as a source of acceptors because it is rich in glucose and fructose (enzyme acceptors). The use of cashew apple juice becomes interesting because it aims at harnessing the peduncle of the cashew that is wasted during the nut processing, which is the product of greater economic expression. The production of dextransucrase enzyme was done by fermentative process by inoculating the bacterium Leuconostoc mesenteroides NRRL B512F into a culture medium containing sucrose as the only carbon source. Thus, the aim of this work was the production of prebiotic oligosaccharides by enzymatic process with addition of the dextransucrase enzyme to the clarified cashew apple juice. Dextran yield was favored by the combination of low concentrations of sucrose and reducing sugars. The formation of oligosaccharides was favored by increasing the concentration of reducing sugars and by the combination of high concentrations of sucrose and reducing sugars, the highest concentration of oligosaccharides obtained was 104.73 g/L and the qualitative analysis showed that at concentrations of 25 g/L and 75 g/L of sucrose and reducing sugar, respectively, it is possible to obtain oligosaccharides of degree of polymerization up to 12. The juice containing prebiotic oligosaccharide is a potential new functional beverage. PMID:25190866

  3. Was Ferrocyanide a Prebiotic Reagent?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    Hydrogen cyanide is the starting material for a diverse array of prebiotic syntheses, including those of amino acids and purines. Hydrogen cyanide also reacts with ferrous ions to give ferrocyanide, and so it is possible that ferrocyanide was common in the early ocean. This can only be true if the hydrogen cyanide concentration was high enough and the rate of reaction of cyanide with ferrous ions was fast enough. We show experimentally that the rate of formation of ferrocyanide is rapid even at low concentrations of hydrogen cyanide in the pH range 6-8, and therefore an equilibrium calculation is valid. The equilibrium concentrations of ferrocyanide are calculated as a function of hydrogen cyanide concentration, pH and temperature. The steady state concentration of hydrogen cyanide depends on the rate of synthesis by electric discharges and ultraviolet light and the rate of hydrolysis, which depends on pH and temperature. Our conclusions show that ferrocyanide was a major species in the prebiotic ocean only at the highest production rates of hydrogen cyanide in a strongly reducing atmosphere and at temperatures of 0 C or less, although small amounts would have been present at lower hydrogen cyanide production rates. The prebiotic application of ferrocyanide as a source of hydrated electrons, as a photochemical replication process, and in semi-permeable membranes is discussed.

  4. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. PMID:26404012

  5. Health benefits of probiotics and prebiotics in women.

    PubMed

    de Vrese, Michael

    2009-03-01

    Among the numerous positive effects of probiotic microorganisms and prebiotic carbohydrates observed in clinical studies--the majority of which, however, does not fulfil the criteria of pharmaceutical verification--some are of specific relevance to female health. The present review addresses--besides some notes concerning the potential microbiota-hormone interactions--the first line with preventive and/or therapeutic applications of probiotic bacteria in order to maintain a balanced intestinal and urogenital flora, as well as in the case of irritable bowel syndrome, constipation (idiopathic slow-transit) and urogenital tract infections. Further aspects are the promotion of bone health and osteoporosis prevention brought about by inulin, oligofructose and galactooligosaccharides. Some further conditions, namely anorexia nervosa, the premenstrual syndrome as well as prevention or alleviation of climacteric and menopausal disorders, for which the use of probiotics is rather hypothetical or is largely studied by alternative medicine practising physicians, are addressed briefly. PMID:19237621

  6. Microbial degradation of complex carbohydrates in the gut

    PubMed Central

    Flint, Harry J.; Scott, Karen P.; Duncan, Sylvia H.; Louis, Petra; Forano, Evelyne

    2012-01-01

    Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host–derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs. PMID:22572875

  7. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology.

    PubMed

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D

    2013-06-01

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity. PMID:23760057

  8. Evaluation of the prebiotic potential of arabinoxylans from brewer's spent grain.

    PubMed

    Reis, Sofia F; Gullón, Beatriz; Gullón, Patricia; Ferreira, Susana; Maia, Cláudio J; Alonso, José L; Domingues, Fernanda C; Abu-Ghannam, Nissreen

    2014-11-01

    Arabinoxylans (AX) consumption has been related to the treatment and prevention of cardiovascular diseases, type II diabetes, colorectal cancer and obesity. The beneficial health effects are conferred through gut microbiota modulation, and therefore, they have been proposed as potential slowly fermentable prebiotic candidates. As the mechanisms are not yet well understood, the prebiotic potential of AX from brewer's spent grain (BSG) has been investigated. Two types of AX from BSG (AX1 and AX2) of different length and branching averages were fermented with human faecal inocula and compared to fermented cultures containing a commercial prebiotic (fructooligosaccharide (FOS)) and cultures with no added carbohydrate (control). Results demonstrated that the AX were extensively metabolised after 48 h of fermentation. The pH decreased along fermentation and the lowest value was achieved in AX1 cultures. The production of short chain fatty acids (SCFA) was higher in AX cultures than in cultures containing FOS and controls, with AX1 presenting the highest concentrations. The stimulatory effect of beneficial bacteria was higher in AX cultures, and AX2 presented the highest positive effect. Prebiotic potential of AX from BSG was confirmed by the production of SCFA and the modulation of gut microbiota, especially by the high increase in bifidobacteria populations. PMID:25117549

  9. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology

    PubMed Central

    Hardy, Holly; Harris, Jennifer; Lyon, Eleanor; Beal, Jane; Foey, Andrew D.

    2013-01-01

    Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in “topping up your good bacteria” or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision—tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity. PMID:23760057

  10. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro.

    PubMed

    Scott, Karen P; Martin, Jennifer C; Duncan, Sylvia H; Flint, Harry J

    2014-01-01

    Dietary macronutrients affect the composition of the gut microbiota, and prebiotics are used to improve and maintain a healthy gut. The impact of prebiotics on dominant gut bacteria other than bifidobacteria, however, is under-researched. Here, we report carbohydrate utilisation patterns for representative butyrate-producing anaerobes, belonging to the Gram-positive Firmicutes families Lachnospiraceae and Ruminococcaceae, by comparison with selected Bacteroides and Bifidobacterium species. Growth assessments using anaerobic Hungate tubes and a new rapid microtitre plate assay were generally in good agreement. The Bacteroides strains tested showed some growth on basal medium with no added carbohydrates, utilising peptides in the growth medium. The butyrate-producing strains exhibited different growth profiles on the substrates, which included starch, inulin, fructooligosaccharides (FOS), galactooligosaccharides (GOS) and xylooligosaccharides (XOS). Eleven were able to grow on short-chain FOS, but this number decreased as the chain length of the fructan substrates increased. Long-chain inulin was utilised by Roseburia inulinivorans, but by none of the Bifidobacterium species examined here. XOS was a more selective growth substrate than FOS, with only six of the 11 Firmicutes strains able to use XOS for growth. These results illustrate the selectivity of different prebiotics and help to explain why some are butyrogenic. PMID:23909466

  11. Carbohydrate digestion and absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of simple and complex carbohydrates are present in human diets. Food carbohydrates include the sugars, starches, and fibers found mainly in fruits, vegetables, grains, and milk products. Small amounts of digestible carbohydrates come from non-plant sources (e.g., trehalose in insects and...

  12. Imitating prebiotic homochirality on Earth.

    PubMed

    Breslow, Ronald; Levine, Mindy; Cheng, Zhan-Ling

    2010-02-01

    We show how the amino acids needed on prebiotic earth in their homochiral L form can be produced by a reaction of L-alpha-methyl amino acids-that have been identified in the Murchison meteorite-with alpha-keto acids under credible prebiotic conditions. When they are simply heated together they perform a process of decarboxylative transamination but with almost no chiral transfer, and that in the wrong direction, producing D-amino acids from the L-alpha-methyl amino acids. With copper ion a square planar complex with two of the reaction intermediates is formed, and now there is the desired L to L transformation, producing small enantioexcesses of the normal L-amino acids. We also show how these can be amplified, not by making more of the L form but by increasing its concentration in water solution. The process can start with a miniscule excess and in one step generate water solutions with L/D ratios in the over 90% region. Kinetic processes can exceed the results from equilibria. We have also examined such amplifications with ribonucleosides, and have shown that initial modest excesses of the D-nucleosides can be amplified to afford water solutions with D to L ratios in the high 90's. We have shown that the homochiral compound has two effects on the solubility of the racemate. On one hand it decreases the solubility of the racemate by its role in the solubility product, as a theoretical equation predicts. On the other hand, it increases the solubility of the racemate by changing the nature of the solvent, acting as a cosolvent with the water. This explains why the amplification, while large, is not as large as the simple theoretical equation predicts. Thus when credible examples are produced where small enantioexcesses of D-ribose are created under credible prebiotic conditions, the prerequisites for the RNA world will have been exemplified. PMID:19911303

  13. The prebiotic synthesis of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1974-01-01

    This paper is primarily a review of recent developments in the abiotic synthesis of nucleotides, short chain oligonucleotides, and their mode of replication in solution. It also presents preliminary results from this laboratory on the prebiotic synthesis of thymidine oligodeoxynucleotides. A discussion, based on the physicochemical properties of RNA and DNA oligomers, relevant to the molecular evolution of these compounds leads to the tentative hypothesis that oligodeoxyribonucleotides of about 12 units may have been of sufficient length to initiate a self replicating coding system. Two models are suggested to account for the synthesis of high molecular weight oligomers using short chain templates and primers.

  14. Prebiotics and gut microbiota in chickens.

    PubMed

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. PMID:26208530

  15. [Autochthonous microbiota, probiotics and prebiotics].

    PubMed

    Suárez, Juan Evaristo

    2015-01-01

    The autochthonous microbiota is the community of microorganisms that colonizes the skin and mucosal surfaces. The symbiosis is, generally, mutualistic but it can become parasitic due to immune response alterations. The skin microbiota includes bacteria (95%), lipophilic fungi and mites. In the digestive apparatus, each cavity presents its own microbiota, which reaches its target organ during the perinatal period, originating complex and stable communities (homeostasis). The vaginal microbiota varies with the endocrine activity, significantly increasing during the fertile and pregnancy periods, when lactobacilli are the most abundant organisms. Four are the main benefits of the autochthonous microbiota: i) delivery of essential nutrients, such as vitamins and some amino acids; ii) utilization of undigestible diet components, the colonic microbiota degrades complex glycans and fulfils almost 20% of the calories present in a normal diet; iii) development of the immune system: the continuous contact with the immune system maintains it alert and in good shape to repel pathogens efficaciously and iv) microbial antagonism, hinders colonization of our mucosal surfaces by alochthonous, potentially pathogenic, organisms. This works through three mechanisms: colonization interference, production of antimicrobials and co-aggregation with the potential pathogens. The microbiota can, sporadically, produce damages: opportunistic endogenous infections and generation of carcinogenic compounds. Probiotics are "live microorganisms that when administered in adequate amounts, confer a health benefit to the consumer". Prebiotics are undigestible glycans that enhance the growth or activity of the intestinal microbiota, thus generating a health benefit. Synbiotics are mixes of probiotics and prebiotics that exert a synergistic health effect. PMID:25659048

  16. Attempted prebiotic synthesis of pseudouridine

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Miller, S. L. (Principal Investigator)

    1997-01-01

    Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (<0.01%). Only unreacted uracil and ribose decomposition products could be observed. Thus the rate of addition of ribose to uracil is much slower than the decomposition of ribose under any reasonable prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.

  17. Prebiotic synthesis of histidyl-histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Mills, T.; Oro, J.

    1990-01-01

    Histidyl-histidine (His-His) has been synthesized in a yield of up to 14.4% under plausible prebiotic conditions using histidine (His), cyanamide, and 4-amino-5-imidazole carboxamide. A trace amount of His trimer was also detected. Because the imidazole group of His is involved in a number of important enzymatic reactions, and His-His has been shown to catalyze the prebiotic synthesis of glycyl-glycine, we expect this work will stimulate further studies on the catalytic activities of simple His-containing peptides in prebiotic reactions.

  18. Potentially Prebiotic Syntheses of Condensed Phosphates

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  19. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus

    PubMed Central

    Khoroshkin, Matvei S.; Leyn, Semen A.; Van Sinderen, Douwe; Rodionov, Dmitry A.

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics. PMID:26903998

  20. Probiotics, prebiotics and colorectal cancer prevention.

    PubMed

    Ambalam, Padma; Raman, Maya; Purama, Ravi Kiran; Doble, Mukesh

    2016-02-01

    Colorectal cancer (CRC), the third major cause of mortality among various cancer types in United States, has been increasing in developing countries due to varying diet and dietary habits and occupational hazards. Recent evidences showed that composition of gut microbiota could be associated with the development of CRC and other gut dysbiosis. Modulation of gut microbiota by probiotics and prebiotics, either alone or in combination could positively influence the cross-talk between immune system and microbiota, would be beneficial in preventing inflammation and CRC. In this review, role of probiotics and prebiotics in the prevention of CRC has been discussed. Various epidemiological and experimental studies, specifically gut microbiome research has effectively improved the understanding about the role of probiotics and microbial treatment as anticarcinogenic agents. A few human studies support the beneficial effect of probiotics and prebiotics; hence, comprehensive understanding is urgent to realize the clinical applications of probiotics and prebiotics in CRC prevention. PMID:27048903

  1. Mechanisms of Prebiotic Impact on Health

    NASA Astrophysics Data System (ADS)

    Steed, H.; Macfarlane, S.

    Prebiotics were originally defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activities of one or a limited number of bacteria in the colon, thereby improving host health (Gibson and Roberfroid, 1995). However, a more recent definition is that “A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host wellbeing and health” (Gibson et al., 2004). The principal concept associated with both of these definitions is that the prebiotic has a selective effect on the microbiota that results in an improvement in the health of the host. Common prebiotics in use include inulins, fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), soya-oligosaccharides, xylo-oligosaccharides, pyrodextrins, isomalto-oligosaccharides and lactulose. The majority of studies carried out to date have focused on inulin, FOS and GOS (Macfarlane et al., 2008).

  2. Probiotics, prebiotics and synbiotics- a review.

    PubMed

    Pandey, Kavita R; Naik, Suresh R; Vakil, Babu V

    2015-12-01

    The health benefits imparted by probiotics and prebiotics as well as synbiotics have been the subject of extensive research in the past few decades. These food supplements termed as functional foods have been demonstrated to alter, modify and reinstate the pre-existing intestinal flora. They also facilitate smooth functions of the intestinal environment. Most commonly used probiotic strains are: Bifidobacterium, Lactobacilli, S. boulardii, B. coagulans. Prebiotics like FOS, GOS, XOS, Inulin; fructans are the most commonly used fibers which when used together with probiotics are termed synbiotics and are able to improve the viability of the probiotics. Present review focuses on composition and roles of Probiotics, Prebiotics and Synbiotics in human health. Furthermore, additional health benefits like immune-modulation, cancer prevention, inflammatory bowel disease etc. are also discussed. Graphical abstractPictorial summary of health benefits imparted by probiotics, prebiotics and synbiotics. PMID:26604335

  3. Prebiotics as immunostimulants in aquaculture: a review.

    PubMed

    Song, Seong Kyu; Beck, Bo Ram; Kim, Daniel; Park, John; Kim, Jungjoon; Kim, Hyun Duk; Ringø, Einar

    2014-09-01

    Prebiotics are indigestible fibers that increase beneficial gut commensal bacteria resulting in improvements of the host's health. The beneficial effects of prebiotics are due to the byproducts generated from their fermentation by gut commensal bacteria. In this review, the direct effects of prebiotics on the innate immune system of fish are discussed. Prebiotics, such as fructooligosaccharide, mannanoligosaccharide, inulin, or β-glucan, are called immunosaccharides. They directly enhance innate immune responses including: phagocytic activation, neutrophil activation, activation of the alternative complement system, increased lysozyme activity, and more. Immunosaccharides directly activate the innate immune system by interacting with pattern recognition receptors (PRR) expressed on innate immune cells. They can also associate with microbe associated molecular patterns (MAMPs) to activate innate immune cells. However, the underlying mechanisms involved in innate immune cell activation need to be further explored. Many studies have indicated that immunosaccharides are beneficial to both finfish and shellfish. PMID:24973515

  4. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  5. Life's chirality from prebiotic environments

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Walker, Sara Imari

    2012-10-01

    A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

  6. The prebiotic chemistry of nucleotides

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1984-01-01

    Diminosuccinonitrile (DISN), formed by the oxidation of diaminomaleonitrile, has been investigated as a potential prebiotic phosphorylating agent. DISN affects the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 39 percent yield. The mechanism of this reaction was investigated. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiencly in aqueous solution. The reaction of DISN with uridine-5'-phosphate and uridine results in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2'- and 3'-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3'-phosphate was investigated using homoionic montmorillonites.

  7. Prebiotic homochirality as a critical phenomenon.

    PubMed

    Gleiser, Marcelo; Thorarinson, Joel

    2006-12-01

    The development of prebiotic homochirality on early-Earth or another planetary platform may be viewed as a critical phenomenon. It is shown, in the context of spatio-temporal polymerization reaction networks, that environmental effects--be they temperature surges or other external disruptions--may destroy any net chirality previously produced. In order to understand the emergence of prebiotic homochirality it is important to model the coupling of polymerization reaction networks to different planetary environments. PMID:17120129

  8. Possible prebiotic synthesis of monosaccharides from formaldehyde in presence of phosphates

    NASA Astrophysics Data System (ADS)

    Simonov, A. N.; Pestunova, O. P.; Matvienko, L. G.; Snytnikov, V. N.; Snytnikova, O. A.; Tsentalovich, Yu. P.; Parmon, V. N.

    Condensation of formaldehyde and lower carbohydrates (glycolaldehyde, glyceraldehyde, and dihydroxyacetone) is effectively catalyzed by heterogeneous and homogeneous phosphates in neutral aqueous medium. The interaction of formaldehyde and dihydroxyacetone leads to the preferential formation of 3-pentulose and erythrulose with yields of 40% and 45%, respectively. In absence of formaldehyde, the condensation of glycolaldehyde and glyceraldehyde catalyzed by phosphates leads to the formation of ribose and fructose. We demonstrate the possibility of formation of higher monosaccharides from pure formaldehyde in the course of the combined photochemical and phosphate-catalyzed reactions in plausible prebiotic conditions.

  9. Radioiodinated branched carbohydrates

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  10. Dietary carbohydrates for diabetics.

    PubMed

    Rivellese, Angela A; Giacco, Rosalba; Costabile, Giuseppina

    2012-12-01

    The literature on the impact of dietary carbohydrates in the regulation of blood glucose levels and other metabolic abnormalities in diabetic patients over the last 3 years is reviewed. We try to differentiate the metabolic effects due to the amount of carbohydrates from those due to their different types. The review comprises a part dealing with the effects of diets having low or high carbohydrate content on body weight reduction, and a part in which the amount and the quality of carbohydrates are discussed in relation to isoenergetic diets. Overall, the data accumulated in the period considered seem to confirm that the decrease in energy intake is more important than the qualitative composition of the diet to reduce body weight, but that both the amount and the quality of carbohydrates are important in modulating blood glucose levels and other cardiovascular risk factors in both the fasting and the postprandial phases in diabetic individuals. PMID:22847773

  11. Computerized molecular modeling of carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computerized molecular modleing continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studi...

  12. Carbohydrates and Diabetes (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Carbohydrates and Diabetes KidsHealth > For Parents > Carbohydrates and Diabetes ... many kids with diabetes take to stay healthy. Carbohydrates and Blood Sugar The two main forms of ...

  13. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.

    PubMed

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  14. Prebiotic Synthesis of Diaminopyrimidine and Thiocytosine

    NASA Technical Reports Server (NTRS)

    Robertson, Michael P.; Levy, Matthew; Miller, Stanley L.

    1996-01-01

    The reaction of guanidine hydrochloride with cyanoacetaldehyde gives high yields (40-85%) of 2,4-diaminopyrimidine under the concentrated conditions of a drying lagoon model of prebiotic synthesis, in contrast to the low yields previously obtained under more dilute conditions. The prebiotic source of cyanoacetaldehyde, cyanoacetylene, is produced from electric discharges under reducing conditions. The effect of pH and concentration of guanidine hydrochloride on the rate of synthesis and yield of diaminopyrimidine were investigated, as well as the hydrolysis of diaminopyrimidine to cytosine, isocytosine, and uracil. Thiourea also reacts with cyanoacetaldehyde to give 2-thiocytosine, but the pyrimidine yields are much lower than with guanidine hydrochloride or urea. Thiocytosine hydrolyzes to thiouracil and cytosine and then to uracil. This synthesis would have been a significant prebiotic source of 2-thiopyrimidines and 5-substituted derivatives of thiouracil, many of which occur in tRNA. The applicability of these results to the drying lagoon model of prebiotic synthesis was tested by dry-down experiments where dilute solutions of cyanoacetaldehyde, guanidine hydrochloride, and 0.5 M NaCl were evaporated over varying periods of time. The yields of diaminopyrimidine varied from 1 to 7%. These results show that drying lagoons and beaches may have been major sites of prebiotic syntheses.

  15. Prebiotic Evolution of Nitrogen Compounds

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1999-01-01

    Support from this four year grant has funded our research on two general problems. One involves attempts to model the abiotic formation of simple source compounds for functional biomolecules, their concentration from dilute state in the hydrosphere and, in several cases, surface induced reactions to form precursor monomers for bioactive end products (refs. 1-5). Because of the pervasiveness and antiquity of phosphate based biochemistry and the catalytic activity of RNA we have exploring the hypothesis of an RNA World as an early stage in the emergence of life. This concept is now rather generally considered, but has been questioned due to the earlier lack of an experimentally demonstrated successful scheme for the spontaneous formation of ribose phosphate, the key backbone molecule in RNA. That impediment has now been removed. This has been achieved by demonstrating probable sources of activated (condensed) highly soluble and strongly sorbed phosphates in nature (Refs. 1,2) and effective condensation of aldehyde phosphates to form ribose phosphate in high yield (ref.6), thereby placing the RNA World concept on a somewhat safer experimental footing. Like all work in this field these experiments are oversimplifications that largely ignore competing side reactions with other compounds expected to be present. None the less our choice of experimental conditions aim at selective processes that eliminate interfering reactions. We have also sought to narrow the credibility gap by simulating geophysically and geochemically plausible conditions surrounding the putative prebiotic reactions.

  16. Probiotics and prebiotics in ulcerative colitis.

    PubMed

    Derikx, Lauranne A A P; Dieleman, Levinus A; Hoentjen, Frank

    2016-02-01

    The intestinal microbiota is one of the key players in the etiology of ulcerative colitis. Manipulation of this microflora with probiotics and prebiotics is an attractive strategy in the management of ulcerative colitis. Several intervention studies for both the induction and maintenance of remission in ulcerative colitis patients have been performed. Most of these studies evaluated VSL#3 or E. Coli Nissle 1917 and in general there is evidence for efficacy of these agents for induction and maintenance of remission. However, studies are frequently underpowered, lack a control group, and are very heterogeneous investigating different probiotic strains in different study populations. The absence of well-powered robust randomized placebo-controlled trials impedes the widespread use of probiotics and prebiotics in ulcerative colitis. However, given the promising results that are currently available, probiotics and prebiotics may find their way to the treatment algorithm for ulcerative colitis in the near future. PMID:27048897

  17. Prebiotically Important Molecules in Orion KL

    NASA Astrophysics Data System (ADS)

    Kuan, Yi-Jehng; Chuang, Yo-Ling

    Many interstellar, complex organic molecules are known to be prebiotically important and have essential functions in terrestrial biochemistry. Observations of complex organic molecular species in molecular clouds can thus enable us to test the origin of the primitive organic material found in the Solar System. Interstellar pyrimidine and glycine, the building block of nucleic acid and the simplest amino acid, respectively, are key molecules for astrobiology and were both detected in meteorites and comets. Although the formation of prebiotic molecules in extraterrestrial environments and their contribution to prebiotic chemistry and the origin of life remains unsettled, the connection between interstellar organic chemistry, meteoritic pyrimidines and amino acids, and the emergence of life on the early Earth would be strengthened with the discovery of interstellar pyrimidine and glycine. We have therefore observed the Orion KL hot molecular core to search for interstellar pyrimidine and for the confirmation of interstellar glycine using the ALMA array. We will present some of the encouraging, positive results.

  18. Prebiotics as gut microflora management tools.

    PubMed

    Gibson, Glenn R

    2008-07-01

    Functional foods is an often-used term applied to dietary ingredients that serve to improve consumer health. Over the last few decades, these foods have gained in popularity with sales continuing to increase rapidly. Recent scientific, and some lay, reports have shown the popularity of both probiotics and prebiotics. These serve to elicit changes in the gut microbiota composition that increase populations of purported beneficial gut bacterial genera, for example, lactobacilli or bifidobacteria. Probiotics use live microbial feed additions, whereas prebiotics target indigenous flora components. As gastrointestinal disorders are prevalent in terms of human health, both probiotics and prebiotics serve an important role in the prophylactic management of various acute and chronic gut derived conditions. Examples include protection from gastroenteritis and some inflammatory conditions. PMID:18542038

  19. Carbohydrate Dehydration Demonstrations.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Discusses the impact of various factors on the "charring reaction" of a carbohydrate with concentrated sulfuric acid including the type of sugar, the degree of fineness of the sugar crystals, and the amount of water added. (JRH)

  20. Carbohydrate Counting and Diabetes

    MedlinePlus

    ... both energy and nutrients, such as vitamins and minerals, and fiber. Fiber can help you prevent constipation, ... meet the body’s needs for energy, vitamins and minerals, and fiber. Experts suggest that carbohydrate intake for ...

  1. Carbohydrate Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally ...

  2. Insulin and carbohydrate dysregulation.

    PubMed

    Gelato, Marie C

    2003-04-01

    Patients with human immunodeficiency virus receiving highly active antiretroviral therapy (HAART) may experience abnormal body composition changes as well as metabolic abnormalities, including dyslipidemia, increases in triglycerides, low high-density lipoprotein cholesterol levels, and abnormal carbohydrate metabolism, ranging from insulin resistance with and without glucose intolerance to frank diabetes. Whether the body composition changes (i.e., increased visceral adiposity and fat wasting in the peripheral tissues) are linked to abnormalities in carbohydrate metabolism is unclear. The use of HAART with and without therapy with protease inhibitors (PIs) is related to carbohydrate abnormalities and changes in body composition. Regimens that include PIs appear to have a higher incidence of insulin resistance (up to 90%) and diabetes mellitus (up to 40%). The etiology of these abnormalities is not well understood; what is known about insulin and carbohydrate dysregulation with HAART is discussed. PMID:12652377

  3. Carbohydrates and Depression.

    ERIC Educational Resources Information Center

    Wurtman, Richard J.; Wurtman, Judith J.

    1989-01-01

    Describes the symptoms, such as appetite change and mood fluctuation, basic mechanisms, and some treatments of Seasonal Affective Disorder (SAD), Carbohydrate-Craving Obesity (CCO) and Premenstrual Syndrome (PMS). Provides several tables and diagrams, and three reading references. (YP)

  4. Prebiotics and Probiotics and Oral Health

    NASA Astrophysics Data System (ADS)

    Meurman, J. H.

    The first part of this chapter describes the unique characteristics of the mouth with special emphasis on the oral microbiota. Next, the highly prevalent dental diseases are briefly described together with more rare but still important diseases and symptoms of the mouth. Prevention and treatment of oral and dental diseases are also discussed focusing on aspects considered important with respect to the potential application of prebiotics and probiotics. The second part of the chapter then concentrates on research data on prebiotics and probiotics in the oral health perspective, ending up with conclusions and visions for future research.

  5. Fructan Prebiotics Derived from Inulin

    NASA Astrophysics Data System (ADS)

    Bosscher, Douwina

    Inulin, as well as the shorter form oligofructose, is a nondigestible carbohydrate (fructan) that has been part of the daily food of mankind for centuries. Inulin-type fructans naturally occur in many edible plants as storage carbohydrates. They are present in leek, onion, garlic, wheat, chicory, artichoke, and banana. It is estimated that an average North American consumes about 1-4 g/day of inulin or oligofructose. In Western Europe, the average intake varies between 3 and 10 g/day. Occasionally, people can have higher intakes, e.g., after consuming a bowl of French onion soup, salsify dish, etc., and intakes can then exceed easily 10 g. This illustrates that via the normal diet some, and at certain times, all populations consume relatively high quantities of inulin-type fructans. It also follows that wheat, onion, and banana, and to a lesser extend garlic are the most important sources of inulin-type fructans in the diet. Although inulin-type fructans are nutritive substances and part of our daily diet, these compounds are currently not taken up in food composition tables.

  6. Digestion and Absorption of Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates are the major dietary sources of energy for humans. While most dietary carbohydrates are derived from multiple botanical sources, lactose and trehalose are the only animal-derived carbohydrates. Digestion of starch, the carbohydrate most abundantly consumed by humans, depends on the c...

  7. Prebiotic effects: metabolic and health benefits.

    PubMed

    Roberfroid, Marcel; Gibson, Glenn R; Hoyles, Lesley; McCartney, Anne L; Rastall, Robert; Rowland, Ian; Wolvers, Danielle; Watzl, Bernhard; Szajewska, Hania; Stahl, Bernd; Guarner, Francisco; Respondek, Frederique; Whelan, Kevin; Coxam, Veronique; Davicco, Marie-Jeanne; Léotoing, Laurent; Wittrant, Yohann; Delzenne, Nathalie M; Cani, Patrice D; Neyrinck, Audrey M; Meheust, Agnes

    2010-08-01

    The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where

  8. An Introduction to the Avian Gut Microbiota and the Effects of Yeast-Based Prebiotic-Type Compounds as Potential Feed Additives

    PubMed Central

    Roto, Stephanie M.; Rubinelli, Peter M.; Ricke, Steven C.

    2015-01-01

    The poultry industry has been searching for a replacement for antibiotic growth promoters in poultry feed as public concerns over the use of antibiotics and the appearance of antibiotic resistance has become more intense. An ideal replacement would be feed amendments that could eliminate pathogens and disease while retaining economic value via improvements on body weight and feed conversion ratios. Establishing a healthy gut microbiota can have a positive impact on growth and development of both body weight and the immune system of poultry while reducing pathogen invasion and disease. The addition of prebiotics to poultry feed represents one such recognized way to establish a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific types of carbohydrates that are indigestible to the host while serving as substrates to select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca easily ferment commonly studied prebiotics, producing short-chain fatty acids, while pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-like substances are less commonly studied, but show promise in their effects on the prevention of pathogen colonization, improvements on the immune system, and host growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like substances, respectively, in animal feed has demonstrated positive associations with growth performance and modification of gut morphology. This review will aim to link together how such prebiotics and prebiotic-like substances function to influence the native and beneficial microorganisms that result in a diverse and well-developed gut microbiota. PMID:26664957

  9. Diarrhea caused by carbohydrate malabsorption.

    PubMed

    Hammer, Heinz F; Hammer, Johann

    2012-09-01

    This article will focus on the role of the colon in the pathogenesis of diarrhea in carbohydrate malabsorption or physiologically incomplete absorption of carbohydrates, and on the most common manifestation of carbohydrate malabsorption, lactose malabsorption. In addition, incomplete fructose absorption, the role of carbohydrate malabsorption in other malabsorptive diseases, and congenital defects that lead to malabsorption will be covered. The article concludes with a section on diagnostic tools to evaluate carbohydrate malabsorption. PMID:22917167

  10. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-01

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability. PMID:27516323

  11. Recent developments in manufacturing oligosaccharides with prebiotic functions.

    PubMed

    Kovács, Zoltán; Benjamins, Eric; Grau, Konrad; Ur Rehman, Amad; Ebrahimi, Mehrdad; Czermak, Peter

    2014-01-01

    The market for prebiotics is steadily growing. To satisfy this increasing worldwide demand, the introduction of effective bioprocessing methods and implementation strategies is required. In this chapter, we review recent developments in the manufacture of galactooligosaccharides (GOS) and fructooligosaccharides (FOS). These well-established oligosaccharides (OS) provide several health benefits and have excellent technological properties that make their use as food ingredients especially attractive. The biosyntheses of lactose-based GOS and sucrose-based FOS show similarities in terms of reaction mechanisms and product formation. Both GOS and FOS can be synthesized using whole cells or (partially) purified enzymes in immobilized or free forms. The biocatalysis results in a final product that consists of OS, unreacted disaccharides, and monosaccharides. This incomplete conversion poses a challenge to manufacturers because an enrichment of OS in this mixture adds value to the product. For removing digestible carbohydrates from OS, a variety of bioengineering techniques have been investigated, including downstream separation technologies, additional bioconversion steps applying enzymes, and selective fermentation strategies. This chapter summarizes the state-of-the-art manufacturing strategies and recent advances in bioprocessing technologies that can lead to new possibilities for manufacturing and purifying sucrose-based FOS and lactose-based GOS. PMID:23942834

  12. Probiotics, prebiotics and antioxidants as functional foods.

    PubMed

    Grajek, Włodzimierz; Olejnik, Anna; Sip, Anna

    2005-01-01

    The term "functional foods" comprises some bacterial strains and products of plant and animal origin containing physiologically active compounds beneficial for human health and reducing the risk of chronic diseases. Among the best known functional compounds probiotics, prebiotics and natural antioxidants should be given as examples. These substances can be obtained by biotechnological methods and by extraction from plant or animal tissues. PMID:16086074

  13. Emergent Sources of Prebiotics: Seaweeds and Microalgae.

    PubMed

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2016-02-01

    In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen. PMID:26828501

  14. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  15. Emergent Sources of Prebiotics: Seaweeds and Microalgae

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2016-01-01

    In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen. PMID:26828501

  16. Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health.

    PubMed

    Grizard, D; Barthomeuf, C

    1999-01-01

    Prebiotic agents are food ingredients that are potentially beneficial to the health of consumers. The main commercial prebiotic agents consist of oligosaccharides and dietary fibres (mainly inulin). They are essentially obtained by one of three processes: 1) the direct extraction of natural polysaccharides from plants; 2) the controlled hydrolysis of such natural polysaccharides; 3) enzymatic synthesis, using hydrolases and/or glycosyl transferases. Both of these enzyme types catalyse transglycosylation reactions, allowing synthesis of small molecular weight synthetic oligosaccharides from mono- and disaccharides. Presently, in Europe, inulin-type fructans, characterised by the presence of fructosyl units bound to the beta-2,1 position of sucrose, are considered as one of the carbohydrate prebiotic references. Prebiotics escape enzymatic digestion in the upper gastrointestinal tract and enter the caecum without change to their structure. None are excreted in the stools, indicating that they are fermented by colonic flora so as to give a mixture of short-chain fatty acids (acetate, propionate and butyrate), L-lactate, carbon dioxide and hydrogen. By stimulating bifidobacteria, they may have the following implications for health: 1) potential protective effects against colorectal cancer and infectious bowel diseases by inhibiting putrefactive bacteria (Clostridium perfringens ) and pathogen bacteria (Escherichia coli, Salmonella, Listeria and Shigella ), respectively; 2) improvement of glucid and lipid metabolisms; 3) fibre-like properties by decreasing the renal nitrogen excretion; 4) improvement in the bioavailability of essential minerals; and 5) low cariogenic factor. These potential beneficial effects have been largely studied in animals but have not really been proven in humans. The development of a second generation of oligosaccharides and the putative implication of a complex bacterial trophic chain in the intestinal prebiotic fermentation process are also

  17. Carbohydrates, pollinators, and cycads

    PubMed Central

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations. PMID:26479502

  18. Carbohydrate Elimination or Adaptation Diet for Symptoms of Intestinal Discomfort in IBD: Rationales for "Gibsons' Conundrum".

    PubMed

    Fung, Q Manyan; Szilagyi, Andrew

    2012-01-01

    THERAPEUTIC USE OF CARBOHYDRATES IN INFLAMMATORY BOWEL DISEASES (IBDS) IS DISCUSSED FROM TWO THEORETICAL, APPARENT DIAMETRICALLY OPPOSITE PERSPECTIVES: regular ingestion of prebiotics or withdrawal of virtually all carbohydrate components. Pathogenesis of IBD is discussed connecting microbial flora, host immunity, and genetic interactions. The best studied genetic example, NOD2 in Crohn's disease, is highlighted as a model which encompasses these interactions and has been shown to depend on butyrate for normal function. The role of these opposing concepts in management of irritable bowel syndrome (IBS) is contrasted with what is known in IBD. The conclusion reached is that, while both approaches may alleviate symptoms in both IBS and IBD, there is insufficient data yet to determine whether both approaches lead to equivalent bacterial effects in mollifying the immune system. This is particularly relevant in IBD. As such, caution is urged to use long-term carbohydrate withdrawal in IBD in remission to control IBS-like symptoms. PMID:22518336

  19. Complex carbohydrates (image)

    MedlinePlus

    ... foods such as peas, beans, whole grains, and vegetables. Both simple and complex carbohydrates are turned to glucose (blood sugar) in the body and are used as energy. Glucose is used in the cells of the body and in the brain. Any ...

  20. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations

    PubMed Central

    2011-01-01

    Background Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. Results In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. Conclusions This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources. Furthermore

  1. Carbohydrates and dietary fiber.

    PubMed

    Suter, P M

    2005-01-01

    The most widely spread eating habit is characterized by a reduced intake of dietary fiber, an increased intake of simple sugars, a high intake of refined grain products, an altered fat composition of the diet, and a dietary pattern characterized by a high glycemic load, an increased body weight and reduced physical activity. In this chapter the effects of this eating pattern on disease risk will be outlined. There are no epidemiological studies showing that the increase of glucose, fructose or sucrose intake is directly and independently associated with an increased risk of atherosclerosis or coronary heart disease (CHD). On the other hand a large number of studies has reported a reduction of fatal and non-fatal CHD events as a function of the intake of complex carbohydrates--respectively 'dietary fiber' or selected fiber-rich food (e.g., whole grain cereals). It seems that eating too much 'fast' carbohydrate [i.e., carbohydrates with a high glycemic index (GI)] may have deleterious long-term consequences. Indeed the last decades have shown that a low fat (and consecutively high carbohydrate) diet alone is not the best strategy to combat modern diseases including atherosclerosis. Quantity and quality issues in carbohydrate nutrient content are as important as they are for fat. Multiple lines of evidence suggest that for cardiovascular disease prevention a high sugar intake should be avoided. There is growing evidence of the high impact of dietary fiber and foods with a low GI on single risk factors (e.g., lipid pattern, diabetes, inflammation, endothelial function etc.) as well as also the development of the endpoints of atherosclerosis especially CHD. PMID:16596802

  2. Prebiotic Chemistry: Geochemical Context and Reaction Screening

    PubMed Central

    Cleaves, Henderson James

    2013-01-01

    The origin of life on Earth is widely believed to have required the reactions of organic compounds and their self- and/or environmental organization. What those compounds were remains open to debate, as do the environment in and process or processes by which they became organized. Prebiotic chemistry is the systematic organized study of these phenomena. It is difficult to study poorly defined phenomena, and research has focused on producing compounds and structures familiar to contemporary biochemistry, which may or may not have been crucial for the origin of life. Given our ignorance, it may be instructive to explore the extreme regions of known and future investigations of prebiotic chemistry, where reactions fail, that will relate them to or exclude them from plausible environments where they could occur. Come critical parameters which most deserve investigation are discussed. PMID:25369745

  3. Prussian Blue as a Prebiotic Reagent

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, M.; Menor-Salván, C.; Osuna-Esteban, S.; Veintemillas-Verdaguer, S.

    2009-12-01

    Ferrocyanide has been proposed as a potential prebiotic reagent and the complex salt Prussian Blue, Fe4[Fe(CN)6]3, might be an important reservoir of HCN, in the early Earth. HCN is considered the main precursor of amino acids and purine and pyrimidine bases under prebiotic conditions. Recently, we observed the formation of Prussian Blue in spark discharge experiments using saline solutions of ferrous chloride, FeCl2. Using Prussian Blue as starting material in ammonium suspensions, we obtained organic compounds containing nitrogen. These results seem to indicate that Prussian Blue could have been first, a sink of HCN, and then in subsequent reactions, triggered by pH fluctuations, it might have lead to organic life precursors.

  4. Prebiotic chemistry in the solar system

    NASA Astrophysics Data System (ADS)

    Raulin, Francois

    1990-11-01

    Forty years of experimental studies in prebiotic chemistry are summarized. Most of the building blocks of the living systems have been synthesized in conditions plausible to conditions found on the primitive Earth. The starting ingredients belong to two complementary classes: volatile organics, and their non volatile oligomers. They may have been formed in the atmosphere on the primitive Earth and/or imported by extraterrestrial sources. Organic molecules are found in meteorites, comets, in the giant planets and several of their satellites. Again this chemistry presents two complementary aspects. With a dense reduced atmosphere rich in organic compounds in gas and aerosol phases, Titan appears to be a natural laboratory for studying prebiotic chemistry on a planetary scale.

  5. Prebiotic significance of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.

    2005-09-01

    The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.

  6. Prebiotics and synbiotics: concepts and nutritional properties.

    PubMed

    Roberfroid, M B

    1998-10-01

    The main role of diet is to provide enough nutrients to meet the requirements of a balanced diet, while giving the consumer a feeling of satisfaction and well-being. The most recent knowledge in bioscience supports the hypothesis that diet also controls and modulates various functions in the body, and, in doing so, contributes to the state of good health necessary to reduce the risk of some diseases. It is such an hypothesis which is at the origin both of the concept of 'functional food' and the development of a new scientific discipline of 'functional food science'. In the context of this paper the potential 'functional foods' to be discussed are the prebiotics and the synbiotics. The prebiotics developed so far are the non-digestible oligosaccharides and especially the non-digestible fructans among which chicory fructans play a major role. The chicory fructans are beta (2-1) fructo-oligosaccharides classified as natural food ingredients. They positively affect various physiological functions in such a way that they are already or may, in the future, be classified as functional food ingredients for which claims of functional effects or of disease risk reduction might become authorized. They are classified as prebiotic and have been shown to induce an increase in the number of bifidobacteria in human faecal flora. As part of a synbiotic-type product, they are already bifidogenic at a dose of 2.75 g/d and the effect lasts for at least 7 weeks. The other potential functional effects are on the bioavailability of minerals, but also, and more systemically, on the metabolism of lipids. Potential health benefits may concern reduction of the risk of intestinal infectious diseases, cardiovascular disease, non-insulin-dependent diabetes, obesity, osteoporosis and cancer. However, except for the prebiotic effect, and tentatively the improvement of calcium bioavailability, the evidence to support such effects is still missing in humans though hypotheses already exist to

  7. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  8. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    PubMed Central

    Jheeta, Sohan; Joshi, Prakash C.

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  9. Specific Carbohydrate Diet: Does It Work?

    MedlinePlus

    ... Specific Carbohydrate Diet (SCD) Go Back The Specific Carbohydrate Diet (SCD) Email Print + Share There is no ... diet that has received attention is the Specific Carbohydrate Diet. This diet limits poorly digestible carbohydrates to ...

  10. Prebiotic properties of potato starch dextrins.

    PubMed

    Barczyńska, Renata; Śliżewska, Katarzyna; Libudzisz, Zdzisława; Kapuśniak, Kamila; Kapuśniak, Janusz

    2015-01-01

    The objective of the present study was to compare the prebiotic properties of starch dextrins, that is, resistant dextrins obtained from potato starch in the process of simultaneous thermolysis and chemical modification, which were selected based on previous research. Both prepared dextrins met the definition criterion of dietary fiber and also the basic prebiotic criterion - they were not degraded by the digestive enzymes of the initial sections of the gastrointestinal tract. The growth of probiotic lactobacilli and bifidobacteria, as well as Escherichia coli, Enterococcus, Bacteroides, and Clostridium strains isolated from feces of healthy people, showed that both studied dextrins were utilized as a source of assimilable carbon and energy by the strains. Furthermore, better growth (higher numbers of cells) counts of probiotic bacteria than those of fecal isolates indicated that the studied resistant dextrins showed a selective effect. Both dextrins might be considered as substances with prebiotic properties due to their chemical and physical properties and selectivity towards the studied probiotic bacterial strains. PMID:26400889

  11. Prebiotic network evolution: six key parameters.

    PubMed

    Nghe, Philippe; Hordijk, Wim; Kauffman, Stuart A; Walker, Sara I; Schmidt, Francis J; Kemble, Harry; Yeates, Jessica A M; Lehman, Niles

    2015-12-01

    The origins of life likely required the cooperation among a set of molecular species interacting in a network. If so, then the earliest modes of evolutionary change would have been governed by the manners and mechanisms by which networks change their compositions over time. For molecular events, especially those in a pre-biological setting, these mechanisms have rarely been considered. We are only recently learning to apply the results of mathematical analyses of network dynamics to prebiotic events. Here, we attempt to forge connections between such analyses and the current state of knowledge in prebiotic chemistry. Of the many possible influences that could direct primordial network, six parameters emerge as the most influential when one considers the molecular characteristics of the best candidates for the emergence of biological information: polypeptides, RNA-like polymers, and lipids. These parameters are viable cores, connectivity kinetics, information control, scalability, resource availability, and compartmentalization. These parameters, both individually and jointly, guide the aggregate evolution of collectively autocatalytic sets. We are now in a position to translate these conclusions into a laboratory setting and test empirically the dynamics of prebiotic network evolution. PMID:26490759

  12. Application of prebiotics in infant foods.

    PubMed

    Veereman-Wauters, Gigi

    2005-04-01

    The rationale for supplementing an infant formula with prebiotics is to obtain a bifidogenic effect and the implied advantages of a 'breast-fed-like' flora. So far, the bifidogenic effect of oligofructose and inulin has been demonstrated in animals and in adults, of oligofructose in infants and toddlers and of a long-chain inulin (10 %) and galactooligosaccharide (90 %) mixture in term and preterm infants. The addition of prebiotics to infant formula softens stools but other putative effects remain to be demonstrated. Studies published post marketing show that infants fed a long-chain inulin/galactooligosaccharide mixture (0.8 g/dl) in formula grow normally and have no side-effects. The addition of the same mixture at a concentration of 0.8 g/dl to infant formula was therefore recognized as safe by the European Commission in 2001 but follow-up studies were recommended. It is thought that a bifidogenic effect is beneficial for the infant host. The rising incidence in allergy during the first year of life may justify the attempts to modulate the infant's flora. Comfort issues should not be confused with morbidity and are likely to be multifactorial. The functional effects of prebiotics on infant health need further study in controlled intervention trials. PMID:15877896

  13. Multispecies population dynamics of prebiotic compositional assemblies.

    PubMed

    Markovitch, Omer; Lancet, Doron

    2014-09-21

    Present life portrays a two-tier phenomenology: molecules compose supramolecular structures, such as cells or organisms, which in turn portray population behaviors, including selection, evolution and ecological dynamics. Prebiotic models have often focused on evolution in populations of self-replicating molecules, without explicitly invoking the intermediate molecular-to-supramolecular transition. Here, we explore a prebiotic model that allows one to relate parameters of chemical interaction networks within molecular assemblies to emergent population dynamics. We use the graded autocatalysis replication domain (GARD) model, which simulates the network dynamics within amphiphile-containing molecular assemblies, and exhibits quasi-stationary compositional states termed compotype species. These grow by catalyzed accretion, divide and propagate their compositional information to progeny in a replication-like manner. The model allows us to ask how molecular network parameters influence assembly evolution and population dynamics parameters. In 1000 computer simulations, each embodying different parameter set of the global chemical interaction network parameters, we observed a wide range of behaviors. These were analyzed by a multi species logistic model often used for analyzing population ecology (r-K or Lotka-Volterra competition model). We found that compotypes with a larger intrinsic molecular repertoire show a higher intrinsic growth (r) and lower carrying capacity (K), as well as lower replication fidelity. This supports a prebiotic scenario initiated by fast-replicating assemblies with a high molecular diversity, evolving into more faithful replicators with narrower molecular repertoires. PMID:24831416

  14. Distant Site Effects of Ingested Prebiotics.

    PubMed

    Collins, Stephanie; Reid, Gregor

    2016-01-01

    The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption. PMID:27571098

  15. Carbohydrate force fields

    PubMed Central

    Foley, B. Lachele; Tessier, Matthew B.; Woods, Robert J.

    2014-01-01

    Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion. PMID:25530813

  16. Carbohydrate post-glycosylational modifications

    PubMed Central

    Yu, Hai; Chen, Xi

    2008-01-01

    Carbohydrate modification is a common phenomenon in nature. Many carbohydrate modifications such as some epimerization, O-acetylation, O-sulfation, O-methylation, N-deacetylation, and N-sulfation, take place after the formation of oligosaccharide or polysaccharide backbones. These modifications can be categorized as carbohydrate post-glycosylational modifications (PGMs). Carbohydrate PGMs further extend the complexity of the structures and the synthesis of carbohydrates and glycoconjugates. They also increase the capacity of the biological information that can be controlled by finely tuning the structures of carbohydrates. Developing efficient methods to obtain structurally defined naturally occurring oligosaccharides, polysaccharides, and glycoconjugates with carbohydrate PGMs is essential for understanding the biological significance of carbohydrate PGMs. Combine with high-throughput screening methods, synthetic carbohydrates with PGMs are invaluable probes in structure-activity relationship studies. We illustrate here several classes of carbohydrates with PGMs and their applications. Recent progress in chemical, enzymatic, and chemoenzymatic syntheses of these carbohydrates and their derivatives are also presented. PMID:17340000

  17. Early intestinal development and mucin transcription in the young poult with probiotic and mannan oligosaccharide prebiotic supplementation.

    PubMed

    Hutsko, S L; Meizlisch, K; Wick, M; Lilburn, M S

    2016-05-01

    Alternative and adjunctive approaches to decreasing the use of dietary antibiotics are becoming popular areas of study. Supplemental probiotics (commensal microbes) and prebiotics (indigestible complex carbohydrates) are 2 dietary approaches to facilitating the intestinal colonization of beneficial bacteria to compete with potential pathogens, thus creating a healthy mucosal environment. The intestinal mucosa is composed of mucin glycoproteins, which play a key role in preventing the attachment of pathogenic bacteria. At hatch, the neonatal turkey intestine is relatively aseptic and vulnderable to bacterial colonization by both commensal and pathogenic microbes. In the current study, we determined the transcription of MUC2, the primary mucin protein produced by goblet cells within the small intestine, and we also measured intestinal morphology immediately post-hatch through d 11. Poults were fed a conventional starter diet, the starter diet supplemented with one of 2 commercial probiotics (A, B), or a commercial mannan oligosaccharide. MUC2 transcription increased from d zero to d 4 post-hatch (P< 0.05), but there was no effect of probiotic or prebiotic supplementation. Villus height and villus area both increased with Probiotic B and mannan oligosaccharide supplementation (P<0.05) and there was a significant d X treatment interaction effect for crypt depth (P=0.007). These results suggest that probiotic and prebiotic supplementation can positively alter the intestinal microenvironment. PMID:26944966

  18. The Prebiotic Synthesis and Catalytic Role of Imidazoles and Other Condensing Agents

    NASA Astrophysics Data System (ADS)

    Oró, J.; Basile, B.; Cortes, S.; Shen, C.; Yamrom, T.

    1984-12-01

    In the past decade significant advances have been made in the synthesis of oligonucleotides and other polymers by means of imidazoles and other condensing agents. In spite of the current knowledge of the chemistry of imidazoles and their importance as prebiotic catalysts, their formation under primitive earth conditions has not been properly demonstrated. We have now been able to synthesize imidazole as well as its 2-methyl and 4-methyl derivatives under plausible prebiotic conditions. One method utilizes an aldehyde (formaldehyde or acetaldehyde), glyoxal and ammonia as the starting materials for the formation of imidazole and 2-methylimidazole. The other method uses a carbohydrate and ammonia as the key reagents for the synthesis of 4-methylimidazole. The importance of imidazole and related compounds (e.g., cyanamide) in the synthesis of oligonucleotides has been studied by us as well as others. Apparently the charge relay group (-N-C-N-) present in imidazoles, carbodiimides, cyanamide, or the histidine and arginine of enzyme active centers is essential for the synthesis of phosphodiester and pyrophosphate bonds.

  19. [Carbohydrates and fiber].

    PubMed

    Lajolo, F M; de Menezes, E W; Filisetti-Cozzi, T M

    1988-09-01

    Dietary carbohydrates comprise two fractions that may be classified as digestible, and which are useful as energy sources (simple and complex carbohydrates) and fiber, which is presumed to be of no use to the human body. There are insufficient epidemiologic data on the metabolic effects of simple carbohydrates and it is not advisable to make quantitative recommendations of intake. It is questionable to recommend in developing countries that a fixed proportion of dietary energy be derived from simple sugars, due to the high prevalence of deficient energy intake, cultural habits, and regional differences in food intake and physical activity. In relation to recommendations of complex carbohydrates, it should be considered that their absorption is influenced by many factors inherent to the individual and to the foods. Fiber is defined as a series of different substances derived from tissue structures, cellular residues and undigested chemical substances that may be partially utilized after intestinal bacteria have acted on them. There is not a clear definition of the chemical composition of fiber, but it consists mainly of polysaccharides (such as cellulose, hemicellulose and pectins), lignin and end products of the interactions of various food components. The effects of fiber, such as control of food intake, regulation of gastrointestinal transit, post-prandial blood concentrations of cholesterol, glucose and insulin, flatulence and alterations in nutrient bioavailability are due to various physical properties inherent to its chemical components. Impairment of nutrient absorption may be harmful, mainly among populations whose food intake is lower than their energy needs, and with a high fiber content. This may be particularly important in pregnant women, growing children and the elderly, and should be considered when making nutrient recommendations. A precise knowledge of fiber is also important to calculate the real energy value of foods, mainly for two reasons: 1

  20. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β-Glycoside Hydrolases

    PubMed Central

    van Zanten, Gabriella C.; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J.; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4–7) and the alkaline (pH 6–11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5–13.9-fold or decreasing 1.5–7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism. PMID:25961012

  1. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β -Glycoside Hydrolases.

    PubMed

    van Zanten, Gabriella C; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4-7) and the alkaline (pH 6-11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5-13.9-fold or decreasing 1.5-7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism. PMID:25961012

  2. A Prebiotic Formula Improves the Gastrointestinal Bacterial Flora in Toddlers

    PubMed Central

    Chen, Ya-Ling; Liao, Fang-Hsuean

    2016-01-01

    We aimed to investigate the effect of enriched 3-prebiotic formula (including inulin, fructooligosaccharides, and galactooligosaccharides) on toddler gut health by measuring fecal microbiota. Our results revealed that the consumption of 3-prebiotic formula three times per day giving total intake of 1.8 g prebiotic ingredients significantly showed the increased number of probiotic Bifidobacterium spp. colonies and the reduced populations of both C. perfringens and total anaerobic bacteria on the fecal bacterial flora in toddlers at 18~36 months. In addition, total organic acids in the fecal samples significantly increased which improves the utilization of bifidus under acidic conditions after consumption of the 3-prebiotic formula. Therefore, using the formula enriched with prebiotic may maintain gut health in toddlers. PMID:27403155

  3. Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology.

    PubMed

    de la Fuente, Jesus M; Penadés, Soledad

    2004-01-01

    Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented. PMID:15483380

  4. Cold prebiotic evolution, tunneling, chirality and exobiology

    SciTech Connect

    Goldanskii, V.I.

    1996-07-01

    The extra-terrestrial scenario of the origin of life suggested by Svante Arrhenius (1) as the {open_quote}panspermia{close_quote} hypothesis was revived by the discovery of a low-temperature quantum limit of a chemical reaction rate caused by the molecular tunneling (2). Entropy factors play no role near absolute zero, and slow molecular tunneling can lead to the exothermic formation of quite complex molecules. Interstellar grains or particles of cometary tails could serve as possible cold seeds of life, with acetic acid, urea and products of their polycondensation as quasi-equilibrium intermediates. Very cold solid environment hinders racemization and stabilizes optical activity under conditions typical for outer space. Neither {open_quote}advantage{close_quote} factors can secure the evolutionary formation of chiral purity of initial prebiotic monomeric medium{emdash}even being temporary achieved it cannot be maintained at subsequent stages of prebiotic evolution because of counteraction of {open_quote}enantioselective pressure{close_quote}. Only bifurcational mechanism of the formation of prebiotic homochiral{emdash}monomeric and afterwards polymeric{emdash}medium and its subsequent transformation in {open_quote}homochiral chemical automata{close_quote} ({open_quote}biological big bang{close_quote}{emdash}passage from {open_quote}stochastic{close_quote} to {open_quote}algorithmic{close_quote} chemistry) is possible and can be realized. Extra-terrestrial (cold, solid phase) scenarios of the origin of life seem to be more promising from that point of view than terrestrial (warm) scenarios. Within a scheme of five main stages of prebiological evolution some problems important for further investigation are briefly discussed. {copyright} {ital 1996 American Institute of Physics.}

  5. Lentil (Lens culinaris L.): A prebiotic carbohydrate-rich whole food legume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying l...

  6. Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization.

    PubMed

    Silva, Eric Keven; Zabot, Giovani L; Bargas, Matheus A; Meireles, M Angela A

    2016-11-01

    This paper presents novel outcomes about the effect of degree of inulin polymerization (DP) on the technological properties of annatto seed oil powder obtained by freeze-drying. Inulins with two DP's were evaluated: GR-inulin (DP≥10) and HP-inulin (DP≥23). Micrographs obtained by confocal microscopy were analyzed to confirm the encapsulation of bioactive compounds using both inulins, especially the encapsulation of the natural fluorescent substance δ-tocotrienol. Microparticles formed with both inulins presented the same capacity for geranylgeraniol retention (77%). Glass transitions of microparticles formed with GR-inulin and HP-inulin succeeded at 144°C and 169°C, respectively. Regarding water adsorption isotherms, microparticles formed with HP-inulin and GR-inulin presented behaviors of Types II (sigmoidal) and III (non-sigmoidal), respectively. Reduction of water adsorption capacity in the matrix at high relative moistures (>70%) was presented when HP-inulin was used. At low relative moistures (<30%), the opposite behavior was observed. PMID:27516329

  7. Asymmetric spatiotemporal evolution of prebiotic homochirality.

    PubMed

    Gleiser, Marcelo

    2007-06-01

    The role of asymmetry on the evolution of prebiotic homochirality is investigated in the context of autocatalytic polymerization reaction networks. A model featuring enantiometric cross-inhibition and chiral bias is used to study the diffusion equations controlling the spatiotemporal development of left and right-handed domains. Bounds on the chiral bias are obtained based on present-day constraints on the emergence of life on early Earth. The viability of biasing mechanisms such as weak neutral currents and circularly polarized UV light is discussed. The results can be applied to any hypothetical planetary platform. PMID:17131085

  8. Antibiotics, probiotics and prebiotics in IBD.

    PubMed

    Bernstein, Charles N

    2014-01-01

    The dysbiosis theory of inflammatory bowel disease (IBD) posits that there is an alteration in the gut microbiome as an important underpinning of disease etiology. It stands to reason then, that administering agents that could impact on the balance of microbes on the gut could be impactful on the course of IBD. Herein is a review of the controlled trials undertaken to assess the use of antibiotics that would kill or suppress potentially injurious microbes, probiotics that would overpopulate the gut with potentially beneficial microbes or prebiotics that provide a metabolic substrate that enhances the growth of potentially beneficial microbes. With regard to antibiotics, the best data are for the use of nitroimadoles postoperatively in Crohn's disease (CD) to prevent disease recurrence. Otherwise, the data are limited with the regard to any lasting benefit of antibiotics sustaining remission in either CD or ulcerative colitis (UC). A recent meta-analysis concluded that antibiotics are superior to placebo at inducing remission in CD or UC, although the meta-analysis grouped a variety of antibiotics with different spectra of activity. Despite the absence of robust clinical trial data, antibiotics are widely used to treat perineal fistulizing CD and acute and chronic pouchitis. Probiotics have not been shown to have a beneficial role in CD. However, Escherichia coli Nissle 1917 has comparable effects to low doses of mesalamine in maintaining remission in UC. VSL#3, a combination of 8 microbes, has been shown to have an effect in inducing remission in UC and preventing pouchitis. Prebiotics have yet to be shown to have an effect in any form of IBD, but to date controlled trials have been small. The use of antibiotics should be balanced against the risks they pose. Even probiotics may pose some risk and should not be assumed to be innocuous especially when ingested by persons with a compromised epithelial barrier. Prebiotics may not be harmful but may cause

  9. What do we need for prebiotic chemistry?

    NASA Astrophysics Data System (ADS)

    Danger, G.; Duvernay, F.; Borget, F.; Theule, P.; Chiavassa, T.; le Sergeant d'Hendecourt, L.; Robert, P.

    2014-04-01

    Since the Miller Urey experiment, the prebiotic chemistry has been mainly focused on the search of organic matter formation (e.g. amino acids, nucleic bases) that can take a part in the emergence of living organisms. However, fewer researches have been performed on the specific processes that have to develop for obtaining an evolution of these organic matter toward living organisms. In this contribution, by taking the example of amino acids, we will try to understand what could be these processes and in which conditions they could emerge.

  10. Prebiotic chemistry and nucleic acid replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Lohrmann, R.

    1974-01-01

    Recent work is reviewed on some reactions that could have occurred on the primitive earth and that could have played a part in the evolution of a self-replicating system. The transition from the primitive atmosphere to the simplest replicating molecules is considered in four stages: (1) the formation of a 'prebiotic soup' of organic precursors, including the purine and pyrimidine bases and the pentose sugars; (2) the condensation of these precursors and inorganic phosphate to form monomeric nucleotides and activated nucleotide derivatives; (3) the polymerization of nucleotide derivatives to oligonucleotides; and (4) the complementary replication of oligonucleotides in a template-directed process that depends on Watson-Crick base pairing.

  11. Initialization of metabolism in prebiotic petroleum

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    The theoretical and bibliographical work on the geochemical origin of life, which I present here, it works on the assumption that: "The class of more complex molecules of life that can have a geochemical and abiotic origin is the class of fatty acid with long aliphatic chain". This idea comes from the controversy over the abiotic oil industry, and the first measurements of abiotic oil at mid-ocean ridges (Charlou J.L. et al. 2002, Proskurowski G. et al. 2008). To go further and propose a comprehensive experimentation on the origin of life, I propose in this article the idea that the prebiotic soup or prebiotic petroleum would stem from the diagenesis of the gas clathrates/sediments mixture. Gas, H2S H2 N2 CH4 CO2, are produced at mid-ocean ridges, and at large-scale at the seafloor, by serpentinization. Sediments contain hydrogenophosphates as a source of phosphate and minerals to the surface catalysis. Extreme conditions experienced by some prokaryotes and pressures and temperatures of submarine oilfields of fossil petroleum are close. The hydrostatic pressure is around 1.5 kbar and the temperature is below 150 °C. This experiment I propose is quite feasible today since these conditions are used: In research and exploration of fossil petroleum; In the field of organic chemistry called "green chemistry" and where temperatures remain low and the pressure can reach 10 kbar; to study the biology of prokaryotes living in the fossil petroleum of industrial interest, these studies are quite comparable to experiment with prebiotic oil; Finally, this experiment can be based on research on abiotic CH4 on Mars and abiotic hydrocarbons on Titan. The next step in the theoretical research of the origin of life is the abiotic synthesis of liposomes. Abiotic synthesis liposomes just requires synthesis of glycerol and ethanolamine (or serine) esterifying the phosphate and fatty acid. The state of research on the abiotic synthesis of these molecules shows that synthesis of

  12. Mechanistic possibilities in prebiotic thiophosphate chemistry

    NASA Technical Reports Server (NTRS)

    Kapovits, I.; Nagyvary, J.

    1978-01-01

    The two types of thiophosphate reactivities were studied in a system that involves reactions of 5'-substituted adenosine derivatives. In this system, both nucleophilic displacement on carbon and P-S cleavage are possible. The products and possible mechanisms of cyclization experiments involving different leaving groups are reported. The data indicate superior reactivity of the 3'-OH of the ribonucleoside, although in most other systems the 2'-OH is found to show superior reactivity. It is suggested that thiophosphates might play a role in prebiotic activation and phosphorylation reactions.

  13. Organizing multivalency in carbohydrate recognition.

    PubMed

    Müller, Christian; Despras, Guillaume; Lindhorst, Thisbe K

    2016-06-01

    The interactions of cell surface carbohydrates as well as of soluble glycoconjugates with their receptor proteins rule fundamental processes in cell biology. One of the supramolecular principles underlying and regulating carbohydrate recognition is multivalency. Many multivalent glycoconjugates have therefore been synthesized to study multivalency effects operative in glycobiology. This review is focused on smaller multivalent structures such as glycoclusters emphasizing carbohydrate-centered and heteromultivalent glycoconjugates. We are discussing primary, secondary and tertiary structural aspects including approaches to organize multivalency. PMID:27146554

  14. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    ERIC Educational Resources Information Center

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  15. CARBOHYDRATE NUTRITION AND MANURE SCORING. PART I: CARBOHYDRATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are elements of ration formulation for which we have no hard and fast rules. Carbohydrate supplementation is one of them. The 2001 Dairy NRC has done the best job to date in offering guidelines regarding the balance between forage & neutral detergent fiber (NDF) and nonfiber carbohydrates (N...

  16. A Critical Look at Prebiotics Within the Dietary Fiber Concept.

    PubMed

    Verspreet, Joran; Damen, Bram; Broekaert, Willem F; Verbeke, Kristin; Delcour, Jan A; Courtin, Christophe M

    2016-01-01

    This article reviews the current knowledge of the health effects of dietary fiber and prebiotics and establishes the position of prebiotics within the broader context of dietary fiber. Although the positive health effects of specific fibers on defecation, reduction of postprandial glycemic response, and maintenance of normal blood cholesterol levels are generally accepted, other presumed health benefits of dietary fibers are still debated. There is evidence that specific dietary fibers improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, reduce the risk of developing colorectal cancer, increase mineral absorption, and have a positive impact on the immune system, but these effects are neither generally acknowledged nor completely understood. Many of the latter effects are thought to be particularly elicited by prebiotics. Although the prebiotic concept evolved significantly during the past two decades, the line between prebiotics and nonprebiotic dietary fiber remains vague. Nevertheless, scientific evidence demonstrating the health-promoting potential of prebiotics continues to accumulate and suggests that prebiotic fibers have their rightful place in a healthy diet. PMID:26735801

  17. Which role for prebiotics at weaning?

    PubMed

    Fanaro, Silvia; Vigi, Vittorio

    2008-09-01

    It is now generally recognized that the intestinal microflora plays a key role for human health and well being. In fact, the gut ecosystem is involved in a number of biologic functions, such as direct and indirect antipathogen activity (nutritive competition, reduction of pH, production of short-chain fatty acids, maturation and protection of the mucosal barrier, etc), synthesis of vitamins, detoxification of potentially harmful substances, and maturation and regulation of the immune system. Weaning represents a crucial step in the development of the intestinal flora and, at the same time, corresponds to a very delicate phase of immunologic maturation. A safe and effective way to beneficially influence the intestinal microflora is the administration of prebiotics, which selectively promote the growth and/or activity of beneficial bacteria, such as bifidobacteria. Some of the studies, which investigated the microbiologic and clinical effectiveness of prebiotics have been conducted at weaning, reporting interesting results. Anyway, many of the promising beneficial effects evidenced still need to be confirmed by further large randomized trials. PMID:18685502

  18. How to Manipulate the Microbiota: Prebiotics.

    PubMed

    Louis, Petra; Flint, Harry J; Michel, Catherine

    2016-01-01

    During the last century, human nutrition has evolved from the definition of our nutritional needs and the identification of ways to meet them, to the identification of food components that can optimise our physiological and psychological functions. This development, which aims to ensure the welfare, health and reduced susceptibility to disease during life, gave birth to the concept of "functional foods". In this context, there is an increasing interest in the physiological effects induced by the dense and diverse microbiota which inhabits the human colon and whose development depends on the fermentation of undigested food residues. Thus, much research aims at identifying ways to guide these impacts in order to benefit the health of the host. It is in this context that the concept of "prebiotics" was developed in the 1990s. Since then, prebiotics have stimulated extensive work in order to clarify their definition, their nature and their physiological properties in accordance with the evolution of knowledge on the intestinal microbiota. However many questions remain open about their specificities, their mechanism(s) of action and therefore the relevance of their current categorisation. PMID:27161355

  19. Is formamide a geochemically plausible prebiotic solvent?

    PubMed

    Bada, Jeffrey L; Chalmers, John H; Cleaves, H James

    2016-07-27

    From a geochemical perspective, significant amounts of pure formamide (HCONH2) would have likely been rare on the early Earth. There may have been mixed formamide-water solutions, but even in the presence of catalyst, solutions with >20 weight% water in formamide would not have produced significant amounts of prebiotic compounds. It might be feasible to produce relatively pure formamide by a rare occurrence of freezing formamide/water mixtures at temperatures lower than formamide's freezing point (2.55 °C) but greater than the freezing point of water. Because of the high density of formamide ice it would have sunk and accumulated at the bottom of the solution. If the remaining water froze on the surface of this ice, and was then removed by a sublimation-ablation process, a small amount of pure formamide ice might have been produced. In addition a recent report suggested that ∼85 weight% formamide could be prepared by a geochemical type of fractional distillation process, offering another possible route for prebiotic formamide production. PMID:27253848

  20. Dietary carbohydrates and endurance exercise.

    PubMed

    Evans, W J; Hughes, V A

    1985-05-01

    Antecedent diet can greatly influence both substrate utilization during exercise and exercise performance itself. A number of studies have convincingly demonstrated that short-term (three to seven days) adaptation to a low carbohydrate diet results in greatly reduced liver and muscle glycogen stores. While carbohydrate utilization after such a diet is reduced, the limited glycogen stores can severely limit endurance exercise performance. High carbohydrate diets on the other hand expand carbohydrate stores which can limit performance. However, long-term adaptation to a low carbohydrate diet can greatly alter muscle and whole body energy metabolism to drastically limit the oxidation of limited carbohydrate stores with no adverse effect on performance. Glycogen loading techniques can result in supercompensation of muscle stores. Exercise induced depletion of muscle glycogen is the most important single factor in this phenomenon. Following the exercise a low carbohydrate diet for two to three days after which a high carbohydrate diet is eaten seemingly has the same effect on increasing muscle glycogen stores as simply eating a high carbohydrate diet. The form of the dietary carbohydrate during glycogen loading should be high in complex carbohydrates; however, the type of dietary starch that effects the greatest rate of resynthesis has not been investigated. Rapid resynthesis of glycogen following exercise is at least in part due to increased insulin sensitivity. The enhanced glucose transport caused by the increased sensitivity provides substrate for glycogen synthase. How rapidly this enhanced sensitivity returns to pre-exercise levels in humans is uncertain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3993621

  1. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Technical Reports Server (NTRS)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  2. The International Scientific Conference on Probiotics and Prebiotics.

    PubMed

    Madsen, Karen

    2011-10-01

    The 5th International Scientific Conference on Probiotics and Prebiotics was held in the Doubletree Hotel in Kosice, Slovakia, and highlighted current advances in the research and use of probiotics and prebiotics in both animal and human health. The conference attracted academic and industry representatives from over 35 countries and facilitated networking between research scientists and industry. A poster session was on display throughout the entire meeting. Over the course of the 3-day symposium, 12 sessions addressed issues related to the use of probiotics and prebiotics in the prevention and treatment of chronic and infectious diseases, their effects on host immune function and how they may modulate existing gut microbes. PMID:21910573

  3. Stereochemical Control in Carbohydrate Chemistry

    ERIC Educational Resources Information Center

    Batchelor, Rhys; Northcote, Peter T.; Harvey, Joanne E.; Dangerfield, Emma M.; Stocker, Bridget L.

    2008-01-01

    Carbohydrates, in the form of glycoconjugates, have recently been shown to control a wide range of cellular processes. Accordingly, students interested in the study of organic chemistry and biomedical sciences should be exposed to carbohydrate chemistry. To this end, we have developed a sequence of experiments that leads the student from the…

  4. METHODOLOGICAL CHALLENGES IN CARBOHYDRATE ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates can provide up to 80% of the dry matter in animal diets, yet their specific evaluation for research and diet formulation is only now becoming a focus in the animal sciences. Partitioning of dietary carbohydrates for nutritional purposes should reflect differences in digestion and ferm...

  5. Carbohydrate Elimination or Adaptation Diet for Symptoms of Intestinal Discomfort in IBD: Rationales for “Gibsons' Conundrum”

    PubMed Central

    Fung, Q. Manyan; Szilagyi, Andrew

    2012-01-01

    Therapeutic use of carbohydrates in inflammatory bowel diseases (IBDs) is discussed from two theoretical, apparent diametrically opposite perspectives: regular ingestion of prebiotics or withdrawal of virtually all carbohydrate components. Pathogenesis of IBD is discussed connecting microbial flora, host immunity, and genetic interactions. The best studied genetic example, NOD2 in Crohn's disease, is highlighted as a model which encompasses these interactions and has been shown to depend on butyrate for normal function. The role of these opposing concepts in management of irritable bowel syndrome (IBS) is contrasted with what is known in IBD. The conclusion reached is that, while both approaches may alleviate symptoms in both IBS and IBD, there is insufficient data yet to determine whether both approaches lead to equivalent bacterial effects in mollifying the immune system. This is particularly relevant in IBD. As such, caution is urged to use long-term carbohydrate withdrawal in IBD in remission to control IBS-like symptoms. PMID:22518336

  6. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform.

    PubMed

    Park, Si Hong; Lee, Sang In; Ricke, Steven C

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer's yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds. PMID:26992104

  7. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform

    PubMed Central

    Park, Si Hong; Lee, Sang In; Ricke, Steven C.

    2016-01-01

    Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer’s yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds. PMID:26992104

  8. Abuse potential of carbohydrates for overweight carbohydrate cravers

    PubMed Central

    Spring, Bonnie; Schneider, Kristin; Smith, Malaina; Kendzor, Darla; Appelhans, Bradley; Hedeker, Donald; Pagoto, Sherry

    2010-01-01

    Rationale The long-rejected construct of food addiction is undergoing re-examination. Objectives . To evaluate whether a novel carbohydrate food shows abuse potential for rigorously defined carbohydrate cravers, as evidenced by selective self-administration and mood enhancement during double-blind discrimination testing. Methods Discrete trials choice testing was performed with 61 overweight (BMI m=27.64, SD=2.59) women (ages 18–45; 19.70% African American) whose diet records showed >4 weekly afternoon/evening emotional eating episodes confined to snacks with carbohydrate:protein ≥ 6:1. After being induced into a sad mood, participants were exposed, double-blind and in counterbalanced order, to taste-matched carbohydrate and protein beverages. They were asked to choose and self-administer the drink that made them feel better. Results Women overwhelmingly chose the carbohydrate beverage, even though blinded. Mixed-effects regression modeling, controlling for beverage order, revealed greater liking and greater reduction in dysphoria following the carbohydrate beverage compared to the protein beverage, but no differential effect on vigor. Conclusion For women who crave them, carbohydrates appear to display abuse potential, plausibly contributing to overconsumption and overweight. PMID:18273603

  9. A possible route to prebiotic vesicle reproduction.

    PubMed

    Luisi, Pier Luigi; Rasi, Pasquale Stano Silvia; Mavelli, Fabio

    2004-01-01

    Spherical bounded structures such as those formed by surfactant aggregates (mostly micelles and vesicles), with an inside that is chemically and physically different from the outside medium, can be seen as primitive cell models. As such, they are fundamental structures for the theory of autopoiesis as originally formulated by Varela and Maturana. In particular, since self-reproduction is a very important feature of minimal cellular life, the study of self-reproduction of micelles and vesicles represents a quite challenging bio-mimetic approach. Our laboratory has put much effort in recent years into implementing self-reproduction of vesicles as models for self-reproduction of cellular bounded structures, and this article is a further contribution in this direction. In particular, we deal with the so-called matrix effect of vesicles, related to the fact that when fresh surfactant is added to an aqueous solution containing preformed vesicles of a very narrow size distribution, the newly formed vesicles (instead of being polydisperse, as is usually the case) have dimensions very close to those of the preformed ones. In practice, this corresponds to a mechanism of reproduction of vesicles of the same size. In this article, the matrix effect is re-elaborated in the perspective of the origin of life, and in particular in terms of the prebiotic mechanisms that might permit the growth and reproduction of vesicles. The data are analyzed by dynamic light scattering with a new program that permits the calculation of the number-weighted size distribution. It is shown that, on adding a stoichiometric amount of oleate micelles to preformed oleate vesicles extruded at 50 and 100 nm, the final distribution contains about twice the initial number of particles, centered around 50 and 100 nm. The same holds when oleate is added to preformed phospholipid liposomes. By contrast, when the same amount of oleate is added to an aqueous solution (as a control experiment), a very broad

  10. Stability of Lactobacillus rhamnosus GG in prebiotic edible films

    PubMed Central

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D.

    2014-01-01

    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillusrhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG. PMID:24767059

  11. Stability of Lactobacillus rhamnosus GG in prebiotic edible films.

    PubMed

    Soukoulis, Christos; Behboudi-Jobbehdar, Solmaz; Yonekura, Lina; Parmenter, Christopher; Fisk, Ian D

    2014-09-15

    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillus rhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG. PMID:24767059

  12. Prebiotics from Marine Macroalgae for Human and Animal Health Applications

    PubMed Central

    O’Sullivan, Laurie; Murphy, Brian; McLoughlin, Peter; Duggan, Patrick; Lawlor, Peadar G.; Hughes, Helen; Gardiner, Gillian E.

    2010-01-01

    The marine environment is an untapped source of bioactive compounds. Specifically, marine macroalgae (seaweeds) are rich in polysaccharides that could potentially be exploited as prebiotic functional ingredients for both human and animal health applications. Prebiotics are non-digestible, selectively fermented compounds that stimulate the growth and/or activity of beneficial gut microbiota which, in turn, confer health benefits on the host. This review will introduce the concept and potential applications of prebiotics, followed by an outline of the chemistry of seaweed polysaccharides. Their potential for use as prebiotics for both humans and animals will be highlighted by reviewing data from both in vitro and in vivo studies conducted to date. PMID:20714423

  13. Photoaffinity probes for studying carbohydrate biology

    PubMed Central

    Yu, Seok-Ho; Wands, Amberlyn M.; Kohler, Jennifer J.

    2012-01-01

    Carbohydrates and carbohydrate-containing biomolecules engage in binding events that underlie many essential biological processes. Yet these carbohydrate-mediated interactions are often poorly characterized, due to their low affinities and heterogenous natures. The use of photocrosslinking functional groups offers a way to photochemically capture carbohydrate-containing complexes, which can be isolated for further analysis. Here we survey progress in the synthesis and use of carbohydrate-based photoprobes, reagents that incorporate carbohydrates or their analogs, photocrosslinking moieties, and affinity purification handles. Carbohydrate photoprobes, used in combination with modern mass spectrometry methods, can provide important new insights into the cellular roles of carbohydrates and glycosylated molecules. PMID:23239902

  14. The cometary contribution to prebiotic chemistry

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.; Lazcano, A.

    1992-01-01

    The chemical composition of cometary nuclei is examined to estimate the potential contribution of volatiles to the prebiotic earth from cometary collisions. Observations of cometary nuclei are reviewed to describe the chemical evolution of the objects and their theoretical potential for affecting the terrestrial environment. Specific attention is given to the plausibility of the single-impact formation of the earth-moon system, and experiments are proposed for testing the present theories. It is proposed that significant contributions of biogenic elements such as C, H, N, O, P, and S resulted from these nuclei colliding with the earth. Observations of the solar atmosphere and of the circumstellar shells of C-rich stars indicate that compounds such as CO, C2, and H2O were not pyrolyzed as a result of collision events. The compounds are theorized to have established the foundation for the abiotic synthesis of key biochemical molecules.

  15. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  16. Atmospheric aerosols as prebiotic chemical reactors

    PubMed Central

    Dobson, Christopher M.; Ellison, G. Barney; Tuck, Adrian F.; Vaida, Veronica

    2000-01-01

    Aerosol particles in the atmosphere have recently been found to contain a large number of chemical elements and a high content of organic material. The latter property is explicable by an inverted micelle model. The aerosol sizes with significant atmospheric lifetimes are the same as those of single-celled organisms, and they are predicted by the interplay of aerodynamic drag, surface tension, and gravity. We propose that large populations of such aerosols could have afforded an environment, by means of their ability to concentrate molecules in a wide variety of physical conditions, for key chemical transformations in the prebiotic world. We also suggest that aerosols could have been precursors to life, since it is generally agreed that the common ancestor of terrestrial life was a single-celled organism. The early steps in some of these initial transformations should be accessible to experimental investigation. PMID:11035775

  17. The evolution of the prebiotic atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1984-01-01

    One-dimensional radiative-convective and photochemical models are used to estimate the vertical temperature structure and composition of the earth's prebiotic atmosphere. Greatly enhanced CO2 levels (100-1000 times present) are required to keep the mean surface temperature above freezing in the face of decreased solar luminosity during the earth's early history. Such high CO2 partial pressures would have affected the atmospheric oxidation state by facilitating the photochemical production of soluble species including H2O2 and H2CO. Oxidation of ferrous iron in the oceans by H2O2 dissolved in rainwater should have kept the atmospheric H2 mixing ratio above 0.0002, and the ground-level O2 mixing ratio below 10 to the -11th, regardless of the magnitude of the rate of volcanic release of reduced gases.

  18. Prebiotic syntheses of purines and pyrimidines

    NASA Technical Reports Server (NTRS)

    Basile, B.; Oro, J.; Lazcano, A.

    1984-01-01

    The results of experimental and theoretical investigations of the prebiotic synthesis of purines and pyramidines are surveyed. Topics examined include the synthesis of purines from HCN via 4,5-disubstituted imidazole derivatives in aqueous solutions or liquid NH3, simultaneous formation of amino acids and purines by electron irradiation of CH4-NH3-H2O mixtures, synthesis of pyrimadines from cynoacetylene, energetics, formation of bases under anhydrous or concentrated conditions, formation of bases under dilute conditions, Fischer-Tropsch-type reactions, and the role of activated intermediates. It is pointed out that the precursor compounds have been detected in the interstellar medium, on Titan, and in other solar-system bodies, and that solar-nebula HCN concentrations of the order of 1-10 mM have been estimated on the basis of meteorite measurements.

  19. Metabolism and motility in prebiotic structures

    PubMed Central

    Hanczyc, Martin M.

    2011-01-01

    Easily accessible, primitive chemical structures produced by self-assembly of hydrophobic substances into oil droplets may result in self-moving agents able to sense their environment and move to avoid equilibrium. These structures would constitute very primitive examples of life on the Earth, even more primitive than simple bilayer vesicle structures. A few examples of simple chemical systems are presented that self-organize to produce oil droplets capable of movement, environment remodelling and primitive chemotaxis. These chemical agents are powered by an internal chemical reaction based on the hydrolysis of an oleic anhydride precursor or on the hydrolysis of hydrogen cyanide (HCN) polymer, a plausible prebiotic chemistry. Results are presented on both the behaviour of such droplets and the surface-active properties of HCN polymer products. Such motile agents would be capable of finding resources while escaping equilibrium and sustaining themselves through an internal metabolism, thus providing a working chemical model for a possible origin of life. PMID:21930579

  20. Prebiotic phosphorylation of nucleosides in formamide

    NASA Technical Reports Server (NTRS)

    Schoffstall, A. M.

    1976-01-01

    Results are presented for an experimental study intended to assess phosphorylation under neither aqueous nor dry thermal conditions. Instead, phosphorylations were attempted in possible nonaqueous prebiotic solvents. Formamide appeared to be the most obvious candidate for phosphorylation studies. Three main classes of phosphorylated products were formed in formamide solution: adenosine monophosphates, cyclic adenosine phosphate, and adenosine diphosphates. Experiments were designed to investigate the extent of phosphorylation of nucleosides in formamide, the relative amounts of nucleoside monophosphate, diphosphates and cyclic phosphate formed and the relative effectiveness of different sources of phosphate as phosphorylating agents in formamide. Reaction variables were temperature, nature of the phosphate or condensed phosphate, nucleoside, concentration of reactants and possible effects of additives. Product identification was based on qualitative and quantitative thin layer chromatography.

  1. Recent advances on prebiotic lactulose production.

    PubMed

    Sitanggang, Azis Boing; Drews, Anja; Kraume, Matthias

    2016-09-01

    Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic. The production of lactulose is important in the dairy industry, as it is regarded as a high value-added derivative of whey or lactose. The industrial production of lactulose is still mainly done by chemical isomerization. Due to concerns on the environmental and tedious separation processes, the enzymatic-based lactulose synthesis has been regarded as an interesting alternative. This work aims at comparing chemical and enzyme-catalyzed lactulose synthesis. With an emphasis on the latter one, this review discusses the influences of the critical operating conditions and the suited operation mode on the transgalactosylation of lactulose using microbial enzymes. As an update and supplement to other previous reviews, this work also summarizes the recent reports that highlighted the enzymatic isomerization of lactose using cellobiose 2-epimerase to produce lactulose at elevated yields. PMID:27465854

  2. Prebiotic-like chemistry on Titan.

    PubMed

    Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice

    2012-08-21

    Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean. PMID:22481630

  3. Atmospheric Prebiotic Chemistry and Organic Hazes.

    PubMed

    Trainer, Melissa G

    2013-08-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  4. Atmospheric Prebiotic Chemistry and Organic Hazes

    PubMed Central

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  5. Endogenous Synthesis of Prebiotic Organic Molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1996-01-01

    The necessary condition for the synthesis of organic compounds on the primitive earth is the presence of reducing conditions. This means an atmosphere of CH4, CO, or CO2 + H2. The atmospheric nitrogen can be N2 with a trace of NH3, but NH4(+) is needed in the ocean at least for amino acid synthesis. Many attempts have been made to use CO2 + H2O atmospheres for prebiotic synthesis, but these give at best extremely low yields of organic compounds, except in the presence of H2. Even strong reducing agents such as FeS + H2S or the mineral assemblages of the submarine vents fail to give significant yields of organic compounds with CO2. There appears to be a high kinetic barrier to the non-biological reduction of CO2 at low temperatures using geological reducing agents. The most abundant source of energy for prebiotic synthesis is ultraviolet light followed by electric discharges, with electric discharges being more efficient, although it is not clear which was the important energy source. Photochemical process would also make significant contributions. In an atmosphere Of CO2, N2, and H2O with no H2, the production rates of HCN and H2CO would be very low, 0.001 or less than that of a relatively reducing atmosphere. The concentration of organic compounds under these non-reducing conditions would be so low that there is doubt whether the concentration mechanism would be adequate for further steps toward the origin of life. A number of workers have calculated the influx of comets and meteorites on the primitive earth as a source of organic compounds. We conclude that while some organic material was added to the earth from comets and meteorites the amount available from these sources at a given time was at best only a few percent of that from earth bases syntheses under reducing conditions.

  6. Decarbonylation and dehydrogenation of carbohydrates

    DOEpatents

    Andrews, Mark A.; Klaeren, Stephen A.

    1991-01-01

    Carbohydrates, especially aldose or ketose sugars, including those whose carbonyl group is masked by hemi-acetal or hemi-ketal formation, are decarbonylated by heating the feed carbohydrate together with a transition metal complex in a suitable solvent. Also, primary alcohols, including sugar alditols are simultaneously dehydrogenated and decarbonylated by heating a mixture of rhodium and ruthenium complexes and the alcohol and optionally a hydrogen acceptor in an acceptable solvent. Such defarbonylation and/or dehydrogenation of sugars provides a convenient procedure for the synthesis of certain carbohydrates and may provide a means for the conversion of biomass into useful products.

  7. Identification of a low digestibility δ-Conglutin in yellow lupin (Lupinus luteus L.) seed meal for atlantic salmon (Salmo salar L.) by coupling 2D-PAGE and mass spectrometry.

    PubMed

    Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J

    2013-01-01

    The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278

  8. Identification of a Low Digestibility δ-Conglutin in Yellow Lupin (Lupinus luteus L.) Seed Meal for Atlantic Salmon (Salmo salar L.) by Coupling 2D-PAGE and Mass Spectrometry

    PubMed Central

    Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J.

    2013-01-01

    The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278

  9. Carbohydrate drugs: current status and development prospect.

    PubMed

    Zhang, Yan; Wang, Fengshan

    2015-04-01

    In recent years, there has been a great effort devoted to the investigation of the roles of carbohydrates in various essential biological processes and the development of carbohydrates to therapeutic drugs. This review summarizes the carbohydrate drugs which have been recorded in several pharmacopoeias, marketed, and under development. A prospect of the future development of carbohydrate drugs is discussed as well. PMID:25994058

  10. Drivers of liking for yogurt drinks with prebiotics and probiotics.

    PubMed

    Allgeyer, L C; Miller, M J; Lee, S-Y

    2010-05-01

    Several studies have addressed the sensory properties of yogurt. However, as the market for yogurt continues to expand and new varieties of yogurt with novel ingredients emerge, additional sensory tests are needed to ensure the quality of the products. Three selected prebiotics, soluble corn fiber, polydextrose, and chicory inulin, were each added at an excellent source of fiber (5 g fiber/serving) or a good fiber source (2.5 g fiber/serving) levels into a yogurt drink base. Three additional yogurt drinks contained 5 g of each of the separate prebiotics along with a mixture of probiotics (Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus LA-5). A control sample with no prebiotics or probiotics was also included in the experimental design. Yogurt drinks were evaluated by 110 consumers for overall acceptance, acceptance of aroma, appearance, taste, and texture, and purchase intent. Demographic information pertaining to consumer knowledge of prebiotics and probiotics was collected. Consumer data were correlated with previously obtained descriptive analysis data to identify drivers of liking. Data were analyzed by analysis of variance (ANOVA), Fisher's least significant difference (LSD), cluster analysis, internal preference mapping, and external preference mapping. Total variance explained by the internal and external preference maps were 32.2% and 64.6%, respectively, which showed higher levels of the prebiotics with probiotics drove consumer liking compared to lower levels without probiotics. In terms of ingredients added, chicory inulin and polydextrose were preferred over soluble corn fiber. Yogurt drinks with these prebiotics included and probiotics were characterized by a medium level of sweetness and high viscosity. Development of new prebiotic and probiotic containing drinkable yogurts should strive for a medium level of sweetness and high viscosity for maximum consumer acceptance. PMID:20546424

  11. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique.

    PubMed

    Maathuis, Annet J H; van den Heuvel, Ellen G; Schoterman, Margriet H C; Venema, Koen

    2012-07-01

    Galacto-oligosaccharides (GOS) are considered to be prebiotic, although the contribution of specific members of the microbiota to GOS fermentation and the exact microbial metabolites that are produced upon GOS fermentation are largely unknown. We aimed to determine this using uniformly (13)C-labeled GOS. The normal (control) medium and unlabeled or (13)C-labeled GOS was added to a dynamic, validated, in vitro model of the large-intestine containing an adult-type microbiota. Liquid-chromatography MS was used to measure the incorporation of (13)C label into metabolites. 16S-rRNA stable isotope probing coupled to a phylogenetic micro-array was used to determine label incorporation in microbial biomass. The primary members within the complex microbiota that were directly involved in GOS fermentation were shown to be Bifidobacterium longum, B. bifidum, B. catenulatum, Lactobacillus gasseri, and L. salivarius, in line with the prebiotic effect of GOS, although some other species incorporated (13)C label also. GOS fermentation led to an increase in acetate (+49%) and lactate (+23%) compared with the control. Total organic acid production was 8.50 and 7.52 mmol/g of carbohydrate fed for the GOS and control experiments, respectively. At the same time, the cumulative production of putrefactive metabolites (branched-chain fatty acids and ammonia) was reduced by 55%. Cross-feeding of metabolites from primary GOS fermenters to other members of the microbiota was observed. Our findings support a prebiotic role for GOS and its potential to act as a synbiotic in combination with certain probiotic strains. PMID:22623395

  12. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    PubMed

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations. PMID:25632979

  13. Valle Agricola lentil, an unknown lentil (Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and prebiotic source.

    PubMed

    Landi, Nicola; Pacifico, Severina; Piccolella, Simona; Di Giuseppe, Antonella M A; Mezzacapo, Maria C; Ragucci, Sara; Iannuzzi, Federica; Zarrelli, Armando; Di Maro, Antimo

    2015-09-01

    In order to promote 'Valle Agricola' lentil, an autochthonous lentil of the Campania Region, a thorough investigation of its biochemical and nutritional properties has been carried out. The macronutrient content (proteins, carbohydrates and lipids), free and total amino acids, and unsaturated fatty acids were determined. The antioxidant capability of raw 'Valle Agricola' lentils, as well as of boiled ones, was estimated in terms of their total phenol content (TPC), ORAC value, and free radical scavenging capacities using DPPH and ABTS assays. The data obtained evidenced that the boiling process slightly decreased Valle Agricola lentil's antioxidant power. Furthermore, when trypsin and chymotrypsin inhibitory activities were measured, a large decrease of the levels of anti-nutritional factors was estimated. In order to have a phytochemical overview of this autochthonous lentil seed, LC-ESI-MS/MS analysis was applied to raw and boiled lentil extracts. Flavonol glycosides and free flavanols, as well as typical seed prebiotic saccharides, were the most representative constituents. PMID:26222801

  14. Prebiotic syntheses of purines and pyrimidines

    NASA Astrophysics Data System (ADS)

    Basile, B.; Lazcano, A.; Oró, J.

    The work done in many laboratories during the last two decades has confirmed that hydrogen cyanide and cyanoacetylene are the two major precursors for the prebiotic synthesis of purines and pyrimidines, respectively. Although several different pathways for the synthesis of purines have been described, they are all variations of the initial mechanism proposed by Oró and Kimball, where hydrogen cyanide leads first to the formation of a 4,5-disubstituted imidazole derivative, and then to the closing of the purine ring with a C1 compound. A number of experiments have shown that purines and pyrimidines can also be obtained from methane, ammonia (nitrogen), and water mixtures, provided an activating source of energy (radiation, electric discharges, etc.) is available. However, in this case the yields are lower by about two orders of magnitude because of the intermediate formation of hydrogen cyanide and cyanoacetylene. The latter two compounds have been found in interstellar space, Titan and other bodies of the solar system. They were probably present in the primordial parent bodies from the solar nebula in concentrations of 10-2 to 10-3 M as inferred from recent calculations by Miller and coworkers obtained for the Murchison meteorite. These concentrations should have been sufficient to generate relatively large amounts of purine and pyrimidine bases on the primitive Earth.

  15. Probiotics, Prebiotics, and Synbiotics: Gut and Beyond

    PubMed Central

    Vyas, Usha; Ranganathan, Natarajan

    2012-01-01

    The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical) studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management. PMID:23049548

  16. Cancer Vaccines and Carbohydrate Epitopes

    PubMed Central

    Heimburg-Molinaro, Jamie; Lum, Michelle; Vijay, Geraldine; Jain, Miten; Almogren, Adel; Rittenhouse-Olson, Kate

    2011-01-01

    Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related LewisY, Sialyl LewisX and Sialyl LewisA, and LewisX, (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described. PMID:21964054

  17. Synthesis of long Prebiotic Oligomers on Mineral Surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.

    1996-01-01

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  18. Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria.

    PubMed

    Endo, Akihito; Nakamura, Saki; Konishi, Kenta; Nakagawa, Junichi; Tochio, Takumi

    2016-01-01

    Prebiotic oligosaccharides confer health benefits on the host by modulating the gut microbiota. Intestinal lactic acid bacteria (LAB) are potential targets of prebiotics; however, the metabolism of oligosaccharides by LAB has not been fully characterized. Here, we studied the metabolism of eight oligosaccharides by 19 strains of intestinal LAB. Among the eight oligosaccharides used, 1-kestose, lactosucrose and galactooligosaccharides (GOSs) led to the greatest increases in the numbers of the strains tested. However, mono- and disaccharides accounted for more than half of the GOSs used, and several strains only metabolized the mono- and di-saccharides in GOSs. End product profiles indicated that the amounts of lactate produced were generally consistent with the bacterial growth recorded. Oligosaccharide profiling revealed the interesting metabolic manner in Lactobacillus paracasei strains, which metabolized all oligosaccharides, but left sucrose when cultured with fructooligosaccharides. The present study clearly indicated that the prebiotic potential of each oligosaccharide differs. PMID:26888650

  19. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  20. Novel probiotics and prebiotics: road to the market.

    PubMed

    Kumar, Himanshu; Salminen, Seppo; Verhagen, Hans; Rowland, Ian; Heimbach, Jim; Bañares, Silvia; Young, Tony; Nomoto, Koji; Lalonde, Mélanie

    2015-04-01

    Novel probiotics and prebiotics designed to manipulate the gut microbiota for improving health outcomes are in demand as the importance of the gut microbiota in human health is revealed. The regulations governing introduction of novel probiotics and prebiotics vary by geographical region. Novel foods and foods with health claims fall under specific regulations in several countries. The paper reviews the main requirements of the regulations in the EU, USA, Canada and Japan. We propose a number of areas that need to be addressed in any safety assessment of novel probiotics and prebiotics. These include publication of the genomic sequence, antibiotic resistance profiling, selection of appropriate in vivo model, toxicological studies (including toxin production) and definition of target population. PMID:25499742

  1. Challenges with nonfiber carbohydrate methods.

    PubMed

    Hall, M B

    2003-12-01

    Nonfiber carbohydrates (NFC) encompass a compositionally and nutritionally diverse group exclusive of those carbohydrates found in NDF. Their content in feeds has often been described as a single value estimated by difference as 100% of dry matter minus the percentages of CP, NDF (adjusted for CP in NDF), ether extract, and ash. A calculated value was used because of difficulties with assays for individual NFC, but it does not differentiate among nutritionally distinct NFC. Errors in NFC estimation can arise from not accounting for CP in NDF and when multipliers other than 6.25 are appropriate to estimate CP. Analyses that begin to distinguish among NFC are those for starch, soluble fiber (non-NDF, nonstarch polysaccharides), and low molecular weight carbohydrates (mono- and oligosaccharides). Many starch analyses quantify alpha-glucans through specific hydrolysis of alpha-(1 --> 4) and alpha-(1 --> 6) linkages in the glucan, and measurement of released glucose. Incomplete gelatinization and hydrolysis will lead to underestimation of starch content. Starch values are inflated by enzyme preparations that hydrolyze carbohydrates other than alpha-glucan, measurement of all released monosaccharides without specificity for glucose, and failure to exclude free glucose present in the unhydrolyzed sample. Soluble fiber analyses err in a fashion similar to NFC if estimation of CP requires multipliers other than 6.25, or if contaminants such as CP and starch have not been properly accounted. Depolymerization and incomplete precipitation can also decrease soluble fiber estimates. The low molecular weight carbohydrates have been defined as carbohydrates soluble in 78 to 80% ethanol, which separates them from polysaccharides. They can be measured in extracts using broad-spectrum colorimetric assays (phenol-sulfuric acid assay or reducing sugar analysis of acid hydrolyzed samples) or chromatographic methods. Limitations of the colorimetric assays include lack of differentiation

  2. New carbohydrate-based materials

    SciTech Connect

    Callstrom, M.R.

    1992-07-01

    We have prepared a series of new carbohydrate-based materials based on the use of carbohydrates as a template for the introduction of functionality to polymeric materials with complete regio- and stereochemical control. The synthesis of these new materials by the use of chemical and enzymatic methods allows for the rational design of new materials based on the properties of the monomeric subunit. These materials have potential applications that range from their use in enhanced oil recovery to biodegradable plastics to biological applications including targeted drug delivery and enzyme stabilization.

  3. Prebiotic effects of a novel combination of galactooligosaccharides and maltodextrins.

    PubMed

    Musilova, Sarka; Rada, Vojtech; Marounek, Milan; Nevoral, Jiri; Dušková, Dagmar; Bunesova, Vera; Vlkova, Eva; Zelenka, Richard

    2015-06-01

    Prebiotics are used for stimulating the growth of beneficial microorganisms in the gut. However, it is very difficult to find a suitable prebiotic mixture that exclusively supports the growth of beneficial microbes such as bifidobacteria and lactobacilli. We tested the effects of a prebiotic mixture in vitro by incubating it with fecal samples and in vivo by administration of the prebiotic supplement to healthy adult volunteers, followed by analysis of their fecal microbiota. The effect of the oligosaccharides on bacterial metabolism was studied by analyzing short-chain fatty acid (SCFA) production in vitro and the SCFA pattern for the stool samples of volunteers. In the in vitro test, a higher proportion of bifidobacteria (25.77%) was seen in the total bacterial population after cultivation on a prebiotic mixture than on the control medium (7.94%). The gram-negative anaerobe count significantly decreased from 8.70 to 6.40 log CFU/g (from 35.21% to 0.60%) and the Escherichia coli count decreased from 7.41 to 6.27 log CFU/g (from 1.78% to 0.44%). Administration of a prebiotic mixture in vivo (9 g of galactooligosaccharides [GOS]+1 g of maltodextrins; daily for 5 days) significantly increased the fecal bifidobacterial count from 9.45 to 9.83 log CFU/g (from 40.80% to 53.85% of total bacteria) and reduced the E. coli count from 7.23 to 6.28 log CFU/g (from 55.35% to 45.06% of total bacteria). The mixture comprising GOS and maltodextrins thus exhibited bifidogenic properties, promoting the performance of bifidobacteria by boosting their growth and inhibiting the growth of undesirable bacteria. PMID:25525835

  4. Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics

    PubMed Central

    Kim, Dojung; Paek, Seung-Ho

    2012-01-01

    Prebiotic oligosaccharides, with a degree of polymerization (DP) of mostly less than 10, exhibit diverse biological activities that contribute to human health. Currently available prebiotics are mostly derived from disaccharides and simple polysaccharides found in plants. Subtle differences in the structures of oligosaccharides can cause significant differences in their prebiotic proper-ties. Therefore, alternative substances supplying polysaccharides that have more diverse and complex structures are necessary for the development of novel oligosaccharides that have actions not present in existing prebiotics. In this review, we show that structural polysaccharides found in plant cell walls, such as xylans and pectins, are particularly potential resources supplying broadly diverse polysaccharides to produce new prebiotics. PMID:24009823

  5. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  6. The prebiotic synthesis of pyrimidines in frozen solution

    NASA Astrophysics Data System (ADS)

    Cleaves, H. James, II; Nelson, Kevin E.; Miller, Stanley L.

    2006-05-01

    Most prebiotic syntheses depend on the reaction of concentrated precursor compounds to produce bio-organic molecules. It is now believed that the early Earth’s atmosphere was not reducing enough to have permitted copious synthesis of precursor molecules. Freezing allows reaction to occur even from dilute solution. This reaction has been demonstrated for the purines but not for the pyrimidines. It is shown here that dilute solutions of simple prebiotic molecules produce the biological pyrimidines cytosine and uracil upon freezing. Cold environments may have allowed synthesis of all of the RNA bases even from low organic yielding atmospheres, such as those of the early Earth, Mars, Titan and Europa.

  7. Prebiotic Chemical Evolution in the Astrophysical Context

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Adande, G. R.; Edwards, J. L.; Schmidt, D. R.; Halfen, D. T.; Woolf, N. J.

    2015-06-01

    An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO+, and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces.

  8. Prebiotic chemical evolution in the astrophysical context.

    PubMed

    Ziurys, L M; Adande, G R; Edwards, J L; Schmidt, D R; Halfen, D T; Woolf, N J

    2015-06-01

    An ever increasing amount of molecular material is being discovered in the interstellar medium, associated with the birth and death of stars and planetary systems. Radio and millimeter-wave astronomical observations, made possible by high-resolution laboratory spectroscopy, uniquely trace the history of gas-phase molecules with biogenic elements. Using a combination of both disciplines, the full extent of the cycling of molecular matter, from circumstellar ejecta of dying stars - objects which expel large amounts of carbon - to nascent solar systems, has been investigated. Such stellar ejecta have been found to exhibit a rich and varied chemical content. Observations demonstrate that this molecular material is passed onto planetary nebulae, the final phase of stellar evolution. Here the star sheds almost its entire original mass, becoming an ultraviolet-emitting white dwarf. Molecules such as H2CO, HCN, HCO(+), and CCH are present in significant concentrations across the entire age span of such nebulae. These data suggest that gas-phase polyatomic, carbon-containing molecules survive the planetary nebula phase and subsequently are transported into the interstellar medium, seeding the chemistry of diffuse and then dense clouds. The extent of the chemical complexity in dense clouds is unknown, hindered by the high spectral line density. Organic species such as acetamide and methyl amine are present in such objects, and NH2CHO has a wide Galactic distribution. However, organophosphorus compounds have not yet been detected in dense clouds. Based on carbon and nitrogen isotope ratios, molecular material from the ISM appears to become incorporated into solar system planetesimals. It is therefore likely that interstellar synthesis influences prebiotic chemistry on planet surfaces. PMID:25894971

  9. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  10. Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modified Normal and Waxy Rice Starches and Its Structural Properties.

    PubMed

    Kim, Ji Hyung; Kim, Ha Ram; Choi, Seung Jun; Park, Cheon-Seok; Moon, Tae Wha

    2016-06-22

    We investigated dual modification of normal and waxy rice starch, focusing on digestibility. Amylosucrase (AS) was applied to maximize the slowly digestible and resistant starch fractions. AS-modified starches were adjusted to 25-40% moisture levels and heated at 100 °C for 40 min. AS-modified starches exhibited a B-type crystalline structure, and hydrothermal treatment (HTT) significantly (p < 0.05) increased the relative crystallinity with moisture level. The thermal transition properties of modified starches were also affected by the moisture level. The contents of rapidly digestible starch fraction in AS-modified normal and waxy starches (43.3 ± 3.9 and 18.1 ± 0.6%) decreased to 13.0 ± 1.0 and 0.3 ± 0.3% after HTT, accordingly increasing the low digestible fractions. Although the strengthened crystalline structures of AS-modified starches by HTT were not stable enough to maintain their rigidity under cooking, application of AS and HTT was more effective in waxy rice starch than normal rice starch when lowering digestibility. PMID:27228544

  11. Recent trends in carbohydrate modeling.

    PubMed

    Dyekjaer, Jane Dannow; Rasmussen, Kjeld

    2003-11-01

    The exploding activities in modeling of carbohydrates during the past few years is reviewed with emphasis on advances in improving force fields, coupling of NMR measurements with molecular dynamics simulations, direct calculation of thermodynamic properties, application of quantum chemical methods on a large scale, and web-access to modeling. PMID:14529512

  12. Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae)

    PubMed Central

    dos Santos, Raquel; Vergauwen, Rudy; Pacolet, Pieter; Lescrinier, Eveline; Van den Ende, Wim

    2013-01-01

    Background and Aims There is a great need to search for natural compounds with superior prebiotic, antioxidant and immunostimulatory properties for use in (food) applications. Raffinose family oligosaccharides (RFOs) show such properties. Moreover, they contribute to stress tolerance in plants, acting as putative membrane stabilizers, antioxidants and signalling agents. Methods A large-scale soluble carbohydrate screening was performed within the plant kingdom. An unknown compound accumulated to a high extent in early-spring red deadnettle (Lamium purpureum) but not in other RFO plants. The compound was purified and its structure was unravelled with NMR. Organs and organ parts of red deadnettle were carefully dissected and analysed for soluble sugars. Phloem sap content was analysed by a common EDTA-based method. Key Results Early-spring red deadnettle stems and roots accumulate high concentrations of the reducing trisaccharide manninotriose (Galα1,6Galα1,6Glc), a derivative of the non-reducing RFO stachyose (Galα1,6Galα1,6Glcα1,2βFru). Detailed soluble carbohydrate analyses on dissected stem and leaf sections, together with phloem sap analyses, strongly suggest that stachyose is the main transport compound, but extensive hydrolysis of stachyose to manninotriose seems to occur along the transport path. Based on the specificities of the observed carbohydrate dynamics, the putative physiological roles of manninotriose in red deadnettle are discussed. Conclusions It is demonstrated for the first time that manninotriose is a novel and important player in the RFO metabolism of red dead deadnettle. It is proposed that manninotriose represents a temporary storage carbohydrate in early-spring deadnettle, at the same time perhaps functioning as a membrane protector and/or as an antioxidant in the vicinity of membranes, as recently suggested for other RFOs and fructans. This novel finding urges further research on this peculiar carbohydrate on a broader array of RFO

  13. Carbohydrates - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Carbohydrates URL of this page: https://medlineplus.gov/languages/carbohydrates.html Other topics A-Z A B ...

  14. New Techniques for the Analysis of Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates are complex. In addition to the size/mass differences increasing from monosaccharides to oligosaccharides to polysaccharides, the carbohydrate analyst must also contend with which sugars are present (composition), how they are joined together (linkage), and their stereochemistry (conf...

  15. Carbohydrates - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Carbohydrates URL of this page: https://www.nlm.nih.gov/medlineplus/languages/carbohydrates.html Other topics A-Z A B ...

  16. Carbohydrate-based immune adjuvants

    PubMed Central

    Petrovsky, Nikolai; Cooper, Peter D

    2011-01-01

    The role for adjuvants in human vaccines has been a matter of vigorous scientific debate, with the field hindered by the fact that for over 80 years, aluminum salts were the only adjuvants approved for human use. To this day, alum-based adjuvants, alone or combined with additional immune activators, remain the only adjuvants approved for use in the USA. This situation has not been helped by the fact that the mechanism of action of most adjuvants has been poorly understood. A relative lack of resources and funding for adjuvant development has only helped to maintain alum’s relative monopoly. To seriously challenge alum’s supremacy a new adjuvant has many major hurdles to overcome, not least being alum’s simplicity, tolerability, safety record and minimal cost. Carbohydrate structures play critical roles in immune system function and carbohydrates also have the virtue of a strong safety and tolerability record. A number of carbohydrate compounds from plant, bacterial, yeast and synthetic sources have emerged as promising vaccine adjuvant candidates. Carbohydrates are readily biodegradable and therefore unlikely to cause problems of long-term tissue deposits seen with alum adjuvants. Above all, the Holy Grail of human adjuvant development is to identify a compound that combines potent vaccine enhancement with maximum tolerability and safety. This has proved to be a tough challenge for many adjuvant contenders. Nevertheless, carbohydrate-based compounds have many favorable properties that could place them in a unique position to challenge alum’s monopoly over human vaccine usage. PMID:21506649

  17. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro

    PubMed Central

    Johnson, Laura P.; Walton, Gemma E.; Psichas, Arianna; Frost, Gary S.; Gibson, Glenn R.; Barraclough, Timothy G.

    2015-01-01

    Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation—another method used to modulate gut composition and function—could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota. PMID:26053617

  18. Intestinal Sucrase as a Novel Target Contributing to the Regulation of Glycemia by Prebiotics

    PubMed Central

    Neyrinck, Audrey M.; Pachikian, Barbara; Taminiau, Bernard; Daube, Georges; Frédérick, Raphaël; Cani, Patrice D.; Bindels, Laure B.; Delzenne, Nathalie M.

    2016-01-01

    Inulin-type fructans (ITF) are known for their capacity to modulate gut microbiota, energy metabolism and to improve glycemia in several animal models of obesity, and in humans. The potential contribution of ITF as modulators of sugar digestion by host enzymes has not been evaluated yet. A sucrose challenge has been performed on naive mice fed a standard diet supplemented with or without native chicory inulin (Fibruline 5%) for 3 weeks. The area under the curve of glycemia as well as sucrase activity in the small intestine were lowered after inulin treatment. Pyrosequencing of the 16S rRNA gene confirmed important changes in gut microbiota (mostly in favor of Blautia genus) due to inulin extract supplementation. Interestingly, the suppressive effect of inulin extract on postprandial glycemia also occurred when inulin was directly added to the sucrose solution, suggesting that the effect on sucrose digestion did not require chronic inulin administration. In vitro tests confirmed a direct inhibition of sucrase enzyme by the inulin extract, thereby suggesting that native chicory inulin, in addition to its well-known prebiotic effect, is also able to decrease the digestibility of carbohydrates, a phenomenon that can contribute in the control of post prandial glycemia. We may not exclude that the sucrose escaping the digestion could also contribute to the changes in the gut microbiota after a chronic treatment with inulin. PMID:27532866

  19. Prebiotics Modulate the Effects of Antibiotics on Gut Microbial Diversity and Functioning in Vitro.

    PubMed

    Johnson, Laura P; Walton, Gemma E; Psichas, Arianna; Frost, Gary S; Gibson, Glenn R; Barraclough, Timothy G

    2015-06-01

    Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation--another method used to modulate gut composition and function--could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota. PMID:26053617

  20. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    NASA Astrophysics Data System (ADS)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  1. Prebiotic Organic Matter from the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Halfen, DeWayne; Ziurys, Lucy M.

    2016-06-01

    The origins of life on Earth must have begun with simple organic compounds. A plausible source of such prebiotic molecules was the interstellar medium (ISM). Of the over 160 molecules that have been identified in interstellar gas, about half have been discovered in one source, Sagittarius B2(N), located in the Galactic Center. This giant molecular cloud is also home to many large organic species observed in the ISM. How complex these species can become is unknown. In order to accurately establish an inventory of potentially, prebiotic organic molecules, we completed a continuous spectral-line survey of Sgr B2(N) at the confusion limit using the Arizona Radio Observatory facilities: the Kitt Peak 12 m and the Submillimeter Telescope. The survey covers the 1, 2, and 3 mm atmospheric windows in the range 68 - 280 GHz, and about 15,000 individual spectral lines have been observed. Seventy-four molecules have been identified in the data, including several potential prebiotic species, such as glycolaldehyde, acetamide, and methyl isocyanate. These molecules are relatively abundant in Sgr B2(N), with fractional abundances of f ~ 10-10 - 10-12 relative to H2. Current results of this survey will be presented, along with its implications for interstellar organic chemistry and prebiotic synthesis. A comparison with organics found in comets and meteorites will also be discussed.

  2. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation

    NASA Astrophysics Data System (ADS)

    Bowler, Frank R.; Chan, Christopher K. W.; Duffy, Colm D.; Gerland, Béatrice; Islam, Saidul; Powner, Matthew W.; Sutherland, John D.; Xu, Jianfeng

    2013-05-01

    The recent synthesis of pyrimidine ribonucleoside-2‧,3‧-cyclic phosphates under prebiotically plausible conditions has strengthened the case for the involvement of ribonucleic acid (RNA) at an early stage in the origin of life. However, a prebiotic conversion of these weakly activated monomers, and their purine counterparts, to the 3‧,5‧-linked RNA polymers of extant biochemistry has been lacking (previous attempts led only to short oligomers with mixed linkages). Here we show that the 2‧-hydroxyl group of oligoribonucleotide-3‧-phosphates can be chemoselectively acetylated in water under prebiotically credible conditions, which allows rapid and efficient template-directed ligation. The 2‧-O-acetyl group at the ligation junction of the product RNA strand can be removed under conditions that leave the internucleotide bonds intact. Remarkably, acetylation of mixed oligomers that possess either 2‧- or 3‧-terminal phosphates is selective for the 2‧-hydroxyl group of the latter. This newly discovered chemistry thus suggests a prebiotic route from ribonucleoside-2‧,3‧-cyclic phosphates to predominantly 3‧,5‧-linked RNA via partially 2‧-O-acetylated RNA.

  3. Structural and functional aspects of prebiotics used in infant nutrition.

    PubMed

    Boehm, Günther; Moro, Guido

    2008-09-01

    Breast-feeding is associated with several benefits. Among them, the balanced postnatal development of the immune system is 1 of the key functions of breast-feeding. Although this effect is of multifactorial origin, it is widely accepted that the entire intestinal microbiota of breast-fed infants represents an important stimulating factor of the postnatal development of the immune system. The effect of breast-feeding on the intestinal microbiota can not be attributed to a single compound, but there is accumulating evidence that human milk oligosaccharides play a crucial role. Because there is a broad consensus that the intestinal microbiota plays an important physiological role for the host, many attempts have been made to influence the intestinal flora by dietary interventions. This article summarizes results of intervention studies in which nonmilk oligosaccharides have been used to mimic the prebiotic effect of breast-feeding. A second focus has been related to the question of whether the prebiotic activity has beneficial effects on the postnatal development of the immune system. The data clearly demonstrate that prebiotics of nonmilk origin can mimic the prebiotic effect of breast-feeding, and this has positive consequences for the postnatal development of the immune system. PMID:18716193

  4. The potential for prebiotic synthesis in hydrothermal systems. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1994-01-01

    Contemporary hydrothermal systems provide a reducing environment where organic compounds are formed and may react to generate the molecules used in the first living systems. The organic compounds percolate through mineral assemblages at a variety of temperatures so the proposed synthetic reactions are driven by heat and catalyzed by minerals (Ferris, 1992). Some examples of potential prebiotic reactions are discussed.

  5. Proton-Induced Collisions on Potential Prebiotic Species

    NASA Astrophysics Data System (ADS)

    Bacchus-Montabonel, Marie-Christine

    2016-03-01

    With regard to the fascinating question of the origin of life, special interest has been devoted to potential prebiotic molecules which could drive the emergence of life. In the widely discussed hypothesis of a possible exogen apparition of life, the transport of those prebiotic species and their survival under spatial conditions is of strong interest. In particular their stability under solar radiation or in collisions with bare nucleus has to be considered. In that sense, taking account of the abundance of protons in ionized clouds of the interstellar medium, we have developed a detailed theoretical study of the charge transfer collision dynamics induced by impact of protons on a series of possible prebiotic compounds. Three main types of molecules have been considered: first of all the DNA and RNA building blocks with on a one hand the nucleobases uracil and thymine, and on the other hand the 2-deoxy-D-ribose sugar skeleton in its furanose and pyranose forms. The study has been extended to the 2-aminooxazole suggested to be a possible precursor of RNA nucleotides. The theoretical treatment involves ab-initio quantum chemistry molecular calculations followed by a semiclassical collision dynamics. Some qualitative trends may be suggested for the proton-induced damage of such prebiotic species.

  6. Probiotics and prebiotics: immunological and clinical effects in allergic disease.

    PubMed

    Tang, Mimi L K

    2009-01-01

    The intestinal microbiota plays an important role in immune development and may play a role in the development of allergic disorders. Manipulation of the intestinal microbiota may therefore offer an approach to the prevention or treatment of allergic diseases. Probiotics and prebiotics, used alone or together (synbiotics), can influence the intestinal microbiota and modulate immune responses in vitro and in vivo. Clinical studies suggest a potential role for selected probiotics (alone or in combination with prebiotics) in the prevention of atopic eczema. A prenatal component of treatment appears important for beneficial effects. Effects are dependent upon the specific bacteria and characteristics of the study population. One study reported beneficial effects for prebiotics in the prevention of eczema in high-risk infants, however, further studies are required to confirm this. The use of probiotics in the treatment of allergic disease is less promising. A Cochrane meta-analysis concluded that probiotics are not effective for the treatment of atopic dermatitis. Probiotic effects in the treatment of asthma and allergic rhinitis are conflicting. Probiotics, prebiotics and synbiotics offer potential treatments for the prevention of atopic eczema; however, there is currently insufficient evidence to recommend their use in clinical practice. Studies to clarify the optimal dose, bacterial species/strains, whether there is added benefit with synbiotics, the optimal timing for intervention, and the patient populations who would benefit most from such therapies are warranted. PMID:19710525

  7. Effect of Probiotics/Prebiotics on Cattle Health and Productivity

    PubMed Central

    Uyeno, Yutaka; Shigemori, Suguru; Shimosato, Takeshi

    2015-01-01

    Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scours caused by disruption of the normal intestinal environment. The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal. PMID:26004794

  8. Effects of prebiotics on mineral absorption: mechanisms of action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is extensive evidence in experimental animals that prebiotics, such as inulin-type fructans, can increase the absorption of a variety of minerals, including calcium, magnesium, iron, and zinc, and that they may act through several possible mechanisms. The purpose of this review is to discuss t...

  9. Fluorous-based carbohydrate quartz crystal microbalance.

    PubMed

    Chen, Lei; Sun, Pengfei; Chen, Guosong

    2015-03-20

    Fluorous chemistry has brought many applications from catalysis to separation science, from supramolecular materials to analytical chemistry. However, fluorous-based quartz crystal microbalance (QCM) has not been reported so far. In the current paper, fluorous interaction has been firstly utilized in QCM, and carbohydrate-protein interaction and carbohydrate-carbohydrate interaction have been detected afterward. PMID:25541017

  10. Accuracy of Carbohydrate Counting in Adults.

    PubMed

    Meade, Lisa T; Rushton, Wanda E

    2016-07-01

    In Brief This study investigates carbohydrate counting accuracy in patients using insulin through a multiple daily injection regimen or continuous subcutaneous insulin infusion. The average accuracy test score for all patients was 59%. The carbohydrate test in this study can be used to emphasize the importance of carbohydrate counting to patients and to provide ongoing education. PMID:27621531

  11. Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?

    PubMed Central

    Sheridan, Paul O; Bindels, Laure B; Saulnier, Delphine M; Reid, Gregor; Nova, Esther; Holmgren, Kerstin; O'Toole, Paul W; Bunn, James; Delzenne, Nathalie; Scott, Karen P

    2014-01-01

    It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations:   (1) The categories of malnourished individuals need to be differentiated To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations. (2) Define a baseline “healthy” gut microbiota for each category Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual. (3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment. (4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches

  12. Simulating the UV Environment For the Synthesis of Prebiotic Molecules

    NASA Astrophysics Data System (ADS)

    Ranjan, S.; Sasselov, D.

    2014-03-01

    UV radiation plays a key role in the era of biogenesis. The young Sun was more UV-active than the modern Sun (Ribas et al. 2010), and the Earth lacked an ozone layer, implying a larger UV flux both on Earth, as well as on asteroids/comets. Ultraviolet radiation can help drive prebiotic molecule synthesis (e.g., Chyba et al. 1992; Powner et al. 2009) or destroy biologically important molecules (e.g., Johns et al. 1967). These effects are wavelength dependent: they are sensitive to ionzation, bond, and ro-vibrational transition energies of biologically relevant molecules and their precursors. When simulating the environment at biogenesis it is therefore important to ensure realistic levels of UV input, in both magnitude and spectral shape. Many laboratory simulations of biomolecule synthesis under prebiotic conditions to date have been done with atomic lamps (e.g., Powner et al. 2007). These lamps are safe, stable, and affordable UV sources, well-suited for initial studies. However, their emission spectra are a poor match to prebiotic conditions: low-pressure lamps are characterized by line emission, while higher-pressure lamps do not well-reproduce the spectrum of the young Sun. In this paper, we present spectra that are more realistic approximations to prebiotic conditions. Using published opacity lists and atmospheric models, we compute the attenuation of the flux from a young Sunanalog due to water, and from the present-day Sun due to a planetary atmosphere. We compare these spectra to those emitted by lamps used in studies today, and explore the potential biological implications of the differences. We conclude by discussing possibilities for better simulating the prebiotic UV environment in lab setups.

  13. Carbohydrate metabolism of malarial parasites

    PubMed Central

    Homewood, C. A.

    1977-01-01

    The evidence for the pathways involved in the metabolism of carbohydrates by malarial parasites is critically reviewed. In all species studied, glucose is catabolized mainly by glycolysis with little participation of the pentose—phosphate pathway. It has not been proved conclusively that there is a functioning citric acid cycle in the intraerythrocytic stages of avian plasmodia, nor is it certain that these stages of any malarial parasites use oxygen. PMID:338181

  14. A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by in vitro fermentation in bacterial communities derived from humans.

    PubMed

    Sulek, Karolina; Vigsnaes, Louise Kristine; Schmidt, Line Rieck; Holck, Jesper; Frandsen, Henrik Lauritz; Smedsgaard, Jørn; Skov, Thomas Hjort; Meyer, Anne S; Licht, Tine Rask

    2014-08-01

    Prebiotic oligosaccharides are defined by their selective stimulation of growth and/or activity of bacteria in the digestive system in ways claimed to be beneficial for health. However, apart from the short chain fatty acids, little is known about bacterial metabolites created by fermentation of prebiotics, and the significance of the size of the oligosaccharides remains largely unstudied. By in vitro fermentations in human fecal microbial communities (derived from six different individuals), we studied the effects of high-mass (HA, >1 kDa), low-mass (LA, <1 kDa) and mixed (BA) sugar beet arabino-oligosaccharides (AOS) as carbohydrate sources. Fructo-oligosaccharides (FOS) were included as reference. The changes in bacterial communities and the metabolites produced in response to incubation with the different carbohydrates were analyzed by quantitative PCR (qPCR) and Liquid Chromatography-Mass Spectrometry (LC-MS), respectively. All tested carbohydrate sources resulted in a significant increase of Bifidobacterium spp. between 1.79 fold (HA) and 1.64 fold (FOS) in the microbial populations after fermentation, and LC-MS analysis suggested that the bifidobacteria contributed to decomposition of the arabino-oligosaccharide structures, most pronounced in the HA fraction, resulting in release of the essential amino acid phenylalanine. Abundance of Lactobacillus spp. correlated with the presence of a compound, most likely a flavonoid, indicating that lactobacilli contribute to release of such health-promoting substances from plant structures. Additionally, the combination of qPCR and LC-MS revealed a number of other putative interactions between intestinal microbes and the oligosaccharides, which contributes to the understanding of the mechanisms behind prebiotic impact on human health. PMID:24905430

  15. The significance of Mg in prebiotic geochemistry

    PubMed Central

    Holm, N G

    2012-01-01

    Magnesium plays a special role in biochemistry because of its ability to coordinate six oxygen atoms efficiently in its first coordination shell. Such oxygen atoms may be part of one or two charged oxyanions, which means that Mg2+ can, for instance, tie together two different phosphate groups that are located at distance from each other in a macromolecule, and in this way be responsible for the folding of molecules like RNA. This property of Mg2+ also helps the stabilization of diphosphate and triphosphate groups of nucleotides, as well as promoting the condensation of orthophosphate to oligophosphates, like pyrophosphate and trimetaphosphate. Borates, on the other hand, are known to promote the formation of nucleobases and carbohydrates, ribose in particular, which is yet another constituent of nucleotides. The oldest borate minerals that we find on Earth today are magnesium borates. Dissolved borate stabilizes pentose sugars by forming complexes with cis-hydroxyl groups. In the furanose form of ribose, the preferential binding occurs to the 2 and 3 carbon, leaving the 5 carbon free for phosphorylation. The central role of Mg2+ in the function of ribozymes and its ‘archaic’ position in ribosomes, and the fact that magnesium generally has coordination properties different from other cations, suggests that the inorganic chemistry of magnesium had a key position in the first chemical processes leading to the origin and early evolution of life. PMID:22429303

  16. Carbohydrates

    MedlinePlus

    ... Sugar occurs naturally in these nutrient-rich foods: Fruits Milk and milk products Some foods have added ... Heavy syrups, such as those added to canned fruit Refined foods with added sugar provide calories, but ...

  17. Carbohydrates

    MedlinePlus

    ... Look for terms such as: Corn sweetener Corn syrup High-fructose corn syrup Dextrose Fructose Glucose Lactose Maltose Sucrose Honey Sugar Brown sugar Invert sugar Molasses Malt syrup Syrup You also should limit the amount of ...

  18. Carbohydrates

    MedlinePlus

    ... syrup If you are thinking about using a sugar substitute, you may wonder if they are safe. The ... with nutrients, such as fruits and vegetables. Some sugar substitutes you can buy include: Aspartame (say: ASS-per- ...

  19. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals.

    PubMed

    Brownawell, Amy M; Caers, Wim; Gibson, Glenn R; Kendall, Cyril W C; Lewis, Kara D; Ringel, Yehuda; Slavin, Joanne L

    2012-05-01

    First defined in the mid-1990s, prebiotics, which alter the composition and activity of gastrointestinal (GI) microbiota to improve health and well-being, have generated scientific and consumer interest and regulatory debate. The Life Sciences Research Organization, Inc. (LSRO) held a workshop, Prebiotics and the Health Benefits of Fiber: Future Research and Goals, in February 2011 to assess the current state of the science and the international regulatory environment for prebiotics, identify research gaps, and create a strategy for future research. A developing body of evidence supports a role for prebiotics in reducing the risk and severity of GI infection and inflammation, including diarrhea, inflammatory bowel disease, and ulcerative colitis as well as bowel function disorders, including irritable bowel syndrome. Prebiotics also increase the bioavailability and uptake of minerals and data suggest that they reduce the risk of obesity by promoting satiety and weight loss. Additional research is needed to define the relationship between the consumption of different prebiotics and improvement of human health. New information derived from the characterization of the composition and function of different prebiotics as well as the interactions among and between gut microbiota and the human host would improve our understanding of the effects of prebiotics on health and disease and could assist in surmounting regulatory issues related to prebiotic use. PMID:22457389

  20. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health.

    PubMed

    Rastall, Robert A; Gibson, Glenn R

    2015-04-01

    Prebiotics are non-digestible food ingredients that have a specific stimulatory effect upon selected populations of gut bacteria. The usual target microorganisms for prebiotic approaches are bifidobacteria. Numerous human feeding studies have shown the prebiotic influences that galactans and fructans can exert. Other candidate prebiotics are under investigation. The field is now moving towards identifying the health aspect associated with their use. Many avenues of gut related health are being researched, including reduction of diarrhoea, immune stimulation, and improved mineral bioavailability. Most current emphasis appears to be towards various parameters associated with metabolic syndrome. These include markers of insulin resistance, appetite, satiety, blood lipids and inflammatory status. PMID:25448231

  1. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2003-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in the circumstellar environment of forming stars and planetary systems, while the laboratory work is focused on the complex species that characterize the pre-biotic chemistry of carbon. We outline below our results over the past year acquired, in part, with Exobiology support.

  2. Prebiotic organic syntheses and the origin of life

    NASA Technical Reports Server (NTRS)

    Chang, S.; Desmarais, D.; Mack, R.; Miller, S. L.; Strathearn, G. E.

    1983-01-01

    The outline of a modern paradigm for the origins of life on earth was first formulated by Oparin (1924). According to the considered hypothesis, living organisms arose naturally on the primitive earth through a lengthy process of chemical evolution of organic matter which began in the atmosphere and culminated in the primordial seas. Details regarding the chemical evolution paradigm are discussed, and chemical evolutionary processes formulated by principal contributors are reviewed in a historical context. Attention is given to the Oparin model of the prebiotic earth, the Urey model, the Rubey model, a multistage model for early atmospheric evolution, and other variations on the theme of prebiotic atmospheres. Evidence in support of the chemical evolution paradigm is considered along with modern models regarding the accretion of earth and the formation of its core, and problems and prospects for future studies.

  3. Application of the organic on water reactions to prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2012-10-01

    The old view that prebiotic reactions in water are hampered by the low solubility of the organic compounds in water is now being revised due to the discoveries of the reactions "on water". These reactions occur in the heterogeneous system comprising of the organic compounds and water. Unexpectedly, such reactions are extremely efficient; they often give quantitative yields, and are accelerated in the presence of water as compared to the organic solvents. These "on water" reactions are not the same as the "in water" reactions, which occur in solution, and are thus homogenous. Examples of the "on water" reactions include Diels-Alder, Claisen, Passerini and Ugi reactions, among many others. Some of these reactions are multicomponent, but give a single product. We survey a selected number of the "on water" reactions, which have a potential prebiotic applications.

  4. Shock-Synthesis of Prebiotic Compounds in Impacting Simple Ices

    NASA Astrophysics Data System (ADS)

    Goldman, N.

    2013-12-01

    How and when prebiotic organic material such as amino acids appeared on the primitive planet has been debated without resolution in the open literature for close to 60 years. Earlier studies have shown that the synthesis of life-building molecules such as amino acids, polypeptides, and DNA and RNA nucleobases is much more likely in a reducing environment, e.g., rich in H2 and CH4. However, the current viewpoint is that the composition of early Earth's atmosphere was more oxidizing, consisting mainly of CO2, with significantly lesser amounts of N2, H2S, HCl, and water vapor. The possibility exists that both prebiotic raw materials and the requisite energy for their synthesis may have been delivered to the Earth simultaneously by a comet impact. Cometary ices are predominantly water, containing many small molecules important to prebiotic aqueous chemistry, e.g., NH3, CH3OH, and an impact can provide an abundant supply of energy to drive chemical reactivity. The flux of organic matter to Earth via comets and asteroids during periods of heavy bombardment may have been as high as 1013 kg/yr, delivering up to several orders of magnitude greater mass of organics than what likely pre-existed on the planet. We have conducted simulations of the chemical reactivity within impacting icy materials to close to equilibrium using quantum molecular dynamics (MD) simulations. Here, we have simulated the thermodynamic conditions of the entire impacting event, including shock compression due to impact with the planetary surface, followed by expansion due to the rarefaction wave passing through the material, and cooling and equilibration to conditions extant on the planet. Our simulations show that shock compression induces the formation of extended C-C and C-N bonded networks, which break apart to form prebiotic material upon expansion and cooling. Impacts with peak thermodynamic conditions of 36 GPa (1 GPa = 10 kbar) and 2800 K yielded functionalized aromatic hydrocarbons upon

  5. Production of functional probiotic, prebiotic, and synbiotic ice creams.

    PubMed

    Di Criscio, T; Fratianni, A; Mignogna, R; Cinquanta, L; Coppola, R; Sorrentino, E; Panfili, G

    2010-10-01

    In this work, 3 types of ice cream were produced: a probiotic ice cream produced by adding potentially probiotic microorganisms such as Lactobacillus casei and Lactobacillus rhamnosus; a prebiotic ice cream produced by adding inulin, a prebiotic substrate; and a synbiotic ice cream produced by adding probiotic microorganisms and inulin in combination. In addition to microbial counts, pH, acidity, and physical and functional properties of the ice creams were evaluated. The experimental ice creams preserved the probiotic bacteria and had counts of viable lactic acid bacteria after frozen storage that met the minimum required to achieve probiotic effects. Moreover, most of the ice creams showed good nutritional and sensory properties, with the best results obtained with Lb. casei and 2.5% inulin. PMID:20854989

  6. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2002-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in star-forming molecular cloud cores, while the laboratory work is focused on the complex species that characterize the prebiotic chemistry of carbon. We outline below our results over the past two years acquired, in part, with Exobiology support.

  7. Beta structures of alternating polypeptides and their possible prebiotic significance

    NASA Technical Reports Server (NTRS)

    Brack, A.; Orgel, L. E.

    1975-01-01

    A survey of the commonest amino acids formed in prebiotic conditions suggests that the earliest form of genetic coding may have specified polypeptides with a strong tendency to form stable beta-sheet structures. Poly(Val-Lys), like other polypeptides in which hydrophobic and hydrophilic residues alternate, tends to form beta structures. It is shown that bilayers with a hydrophobic interior and a hydrophilic exterior may be present in aqueous solution.

  8. Evolutionary routes from a prebiotic ANA-world.

    PubMed

    Braun, Sebastian; Humphreys, Christine; Dale, Trevor C

    2012-03-01

    Recent experimental support has been generated for a model of prebiotic development that postulates a role for Amyloid-Nucleic Acid (ANA)-fibers as the earliest replicating entities capable of undergoing Darwinian evolution. Here, this new model is compared with existing RNA-world models with a particular focus on trajectories that lead to evolutionary-beneficial interactions between nucleic acid, protein and lipid components. This analysis suggests a number of new areas for fruitful experimental studies. PMID:22808333

  9. Evaluating experimental artifacts in hydrothermal prebiotic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Smirnov, Alexander; Schoonen, Martin A A.

    2003-01-01

    Control experiments with ultra pure deionized water were conducted to evaluate the organic contamination in hydrothermal prebiotic experiments. Different combinations of reaction vessel material, sampling tubing and stirring were tested and the amounts of organic contaminants determined. All tested types of polymer tubing were proven to introduce organic contaminants (formate, acetate and propionate ions) into the reacting solution. Stainless steel has a catalytic effect on the decomposition of formate, consistent with earlier work at high temperatures and pressures.

  10. Exploring the Fate of Nitrogen Heterocycles in Complex Prebiotic Mixtures

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Cleaves, Henderson J.; Dworkin, Jason P.; House, Christopher H.

    2011-01-01

    A long standing question in the field of prebiotic chemistry is the origin of the genetic macromolecules DNA and RNA. DNA and RNA have very complex structures with repeating subunits of nucleotides, which are composed of nucleobases (nitrogen heterocycles) connected to sugar-phosphate. Due to the instability of some nucleobases (e.g. cytosine), difficulty of synthesis and instability of D-ribose, and the likely scarcity of polyphosphates necessary for the modern nucleotides, alternative nucleotides have been proposed for constructing the first genetic material. Thus, we have begun to investigate the chemistry of nitrogen heterocycles in plausible, complex prebiotic mixtures in an effort to identify robust reactions and potential alternative nucleotides. We have taken a complex prebiotic mixture produced by a spark discharge acting on a gas mixture of N2, CO2, CH4, and H2, and reacted it with four nitrogen heterocycles: uracil, 5-hydroxymethyluracil, guanine, and isoxanthopterin (2-amino-4,7-dihydroxypteridine). The products of the reaction between the spark mixture and each nitrogen heterocycle were characterized by liquid chromatography coupled to UV spectroscopy and Orbitrap mass spectrometry. We found that the reaction between the spark mixtUl'e and isoxanthopterin formed one major product, which was a cyanide adduct. 5-hydroxymethyluracil also reacted with the spark mixture to form a cyanide adduct, uracil-5-acetonitrile, which has been synthesized previously by reacting HCN with S-hydroxymethyluracil. Unlike isoxanthopterin, the chromatogram of the 5-hydroxymethyluracil reaction was much more complex with multiple products including spark-modified dimers. Additionally, we observed that HMU readily self-polymerizes in solution to a variety of oligomers consistent with those suggested by Cleaves. Guanine and uracil, the biological nucleobases, did not react with the spark mixture, even at high temperature (100 C). This suggests that there are alternative

  11. Evaluating Experimental Artifacts in Hydrothermal Prebiotic Synthesis Experiments

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander; Schoonen, Martin A. A.

    2003-04-01

    Control experiments with ultra pure deionized water were conducted to evaluate the organic contamination in hydrothermal prebiotic experiments. Different combinations of reaction vessel material, sampling tubing and stirring were tested and the amounts of organic contaminants determined. All tested types of polymer tubing were proven to introduce organic contaminants (formate, acetate and propionate ions) into the reacting solution. Stainless steel has a catalytic effect on the decomposition of formate, consistent with earlier work at high temperatures and pressures.

  12. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease.

    PubMed

    Orel, Rok; Kamhi Trop, Tina

    2014-09-01

    It has been presumed that aberrant immune response to intestinal microorganisms in genetically predisposed individuals may play a major role in the pathogenesis of the inflammatory bowel disease, and there is a good deal of evidence supporting this hypothesis. Commensal enteric bacteria probably play a central role in pathogenesis, providing continuous antigenic stimulation that causes chronic intestinal injury. A strong biologic rationale supports the use of probiotics and prebiotics for inflammatory bowel disease therapy. Many probiotic strains exhibit anti-inflammatory properties through their effects on different immune cells, pro-inflammatory cytokine secretion depression, and the induction of anti-inflammatory cytokines. There is very strong evidence supporting the use of multispecies probiotic VSL#3 for the prevention or recurrence of postoperative pouchitis in patients. For treatment of active ulcerative colitis, as well as for maintenance therapy, the clinical evidence of efficacy is strongest for VSL#3 and Escherichia coli Nissle 1917. Moreover, some prebiotics, such as germinated barley foodstuff, Psyllium or oligofructose-enriched inulin, might provide some benefit in patients with active ulcerative colitis or ulcerative colitis in remission. The results of clinical trials in the treatment of active Crohn's disease or the maintenance of its remission with probiotics and prebiotics are disappointing and do not support their use in this disease. The only exception is weak evidence of advantageous use of Saccharomyces boulardii concomitantly with medical therapy in maintenance treatment. PMID:25206258

  13. Impact of prebiotics and probiotics on skin health.

    PubMed

    Al-Ghazzewi, F H; Tester, R F

    2014-06-01

    This review discusses the role of pre- and probiotics with respect to improving skin health by modulating the cutaneous microbiota. The skin ecosystem is a complex environment covered with a diverse microbiota community. These are classified as either transient or resident, where some are considered as beneficial, some essentially neutral and others pathogenic or at least have the capacity to be pathogenic. Colonisation varies between different parts of the body due to different environmental factors. Pre- and probiotic beneficial effects can be delivered topically or systemically (by ingestion). The pre- and probiotics have the capacity to optimise, maintain and restore the microbiota of the skin in different ways. Topical applications of probiotic bacteria have a direct effect at the site of application by enhancing the skin natural defence barriers. Probiotics as well as resident bacteria can produce antimicrobial peptides that benefit cutaneous immune responses and eliminate pathogens. In cosmetic formulations, prebiotics can be applied to the skin microbiota directly and increase selectively the activity and growth of beneficial 'normal' skin microbiota. Little is known about the efficacy of topically applied prebiotics. Nutritional products containing prebiotics and/or probiotics have a positive effect on skin by modulating the immune system and by providing therapeutic benefits for atopic diseases. This review underlines the potential use of pre- and probiotics for skin health. PMID:24583611

  14. Chili Peppers, Curcumins, and Prebiotics in Gastrointestinal Health and Disease.

    PubMed

    Patcharatrakul, Tanisa; Gonlachanvit, Sutep

    2016-04-01

    There is growing evidence for the role of several natural products as either useful agents or adjuncts in the management of functional GI disorders (FGIDs). In this review, we examine the medical evidence for three such compounds: chili, a culinary spice; curcumin, another spice and active derivative of a root bark; and prebiotics, which are nondigestible food products. Chili may affect the pathogenesis of abdominal pain especially in functional dyspepsia and cause other symptoms. It may have a therapeutic role in FGIDs through desensitization of transient receptor potential vanilloid-1 receptor. Curcumin, the active ingredient of turmeric rhizome, has been shown in several preclinical studies and uncontrolled clinical trials as having effects on gut inflammation, gut permeability and the brain-gut axis, especially in FGIDs. Prebiotics, the non-digestible food ingredients in dietary fiber, may serve as nutrients and selectively stimulate the growth and/or activity of certain colonic bacteria. The net effect of this change on colonic microbiota may lead to the production of acidic metabolites and other compounds that help to reduce the production of toxins and suppress the growth of harmful or disease-causing enteric pathogens. Although some clinical benefit in IBS has been shown, high dose intake of prebiotics may cause more bloating from bacterial fermentation. PMID:26973345

  15. Probiotics, prebiotics, and the host microbiome: the science of translation

    PubMed Central

    Petschow, Bryon; Doré, Joël; Hibberd, Patricia; Dinan, Timothy; Reid, Gregor; Blaser, Martin; Cani, Patrice D; Degnan, Fred H; Foster, Jane; Gibson, Glenn; Hutton, John; Klaenhammer, Todd R; Ley, Ruth; Nieuwdorp, Max; Pot, Bruno; Relman, David; Serazin, Andrew; Sanders, Mary Ellen

    2013-01-01

    Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions. PMID:24266656

  16. Probiotics, prebiotics, and the host microbiome: the science of translation.

    PubMed

    Petschow, Bryon; Doré, Joël; Hibberd, Patricia; Dinan, Timothy; Reid, Gregor; Blaser, Martin; Cani, Patrice D; Degnan, Fred H; Foster, Jane; Gibson, Glenn; Hutton, John; Klaenhammer, Todd R; Ley, Ruth; Nieuwdorp, Max; Pot, Bruno; Relman, David; Serazin, Andrew; Sanders, Mary Ellen

    2013-12-01

    Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions. PMID:24266656

  17. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease

    PubMed Central

    Orel, Rok; Kamhi Trop, Tina

    2014-01-01

    It has been presumed that aberrant immune response to intestinal microorganisms in genetically predisposed individuals may play a major role in the pathogenesis of the inflammatory bowel disease, and there is a good deal of evidence supporting this hypothesis. Commensal enteric bacteria probably play a central role in pathogenesis, providing continuous antigenic stimulation that causes chronic intestinal injury. A strong biologic rationale supports the use of probiotics and prebiotics for inflammatory bowel disease therapy. Many probiotic strains exhibit anti-inflammatory properties through their effects on different immune cells, pro-inflammatory cytokine secretion depression, and the induction of anti-inflammatory cytokines. There is very strong evidence supporting the use of multispecies probiotic VSL#3 for the prevention or recurrence of postoperative pouchitis in patients. For treatment of active ulcerative colitis, as well as for maintenance therapy, the clinical evidence of efficacy is strongest for VSL#3 and Escherichia coli Nissle 1917. Moreover, some prebiotics, such as germinated barley foodstuff, Psyllium or oligofructose-enriched inulin, might provide some benefit in patients with active ulcerative colitis or ulcerative colitis in remission. The results of clinical trials in the treatment of active Crohn’s disease or the maintenance of its remission with probiotics and prebiotics are disappointing and do not support their use in this disease. The only exception is weak evidence of advantageous use of Saccharomyces boulardii concomitantly with medical therapy in maintenance treatment. PMID:25206258

  18. Preoperative Oral Carbohydrate Loading in Pancreaticoduodenectomy

    PubMed Central

    Son, Kum-Hee; Kim, So-Young; Cho, Yeong-Ah; Han, Sung-Sik; Park, Sang-Jae

    2016-01-01

    Overnight fasting before elective surgery has been the routine to reduce the risk of pulmonary aspiration. Recently, several international guidelines for preoperative fasting recommend to intake carbohydrate-containing fluids up to 2 to 3 hours before the induction of anesthesia to improve postoperative recovery. Based on the recommendations, we developed a "preoperative carbohydrate diet" provided for the preoperative patients. The purpose of this case report is to share our experience of applying preoperative carbohydrate loading prior to surgery. PMID:27482525

  19. Glycosyltransferase engineering for carbohydrate synthesis.

    PubMed

    McArthur, John B; Chen, Xi

    2016-02-01

    Glycosyltransferases (GTs) are powerful tools for the synthesis of complex and biologically-important carbohydrates. Wild-type GTs may not have all the properties and functions that are desired for large-scale production of carbohydrates that exist in nature and those with non-natural modifications. With the increasing availability of crystal structures of GTs, especially those in the presence of donor and acceptor analogues, crystal structure-guided rational design has been quite successful in obtaining mutants with desired functionalities. With current limited understanding of the structure-activity relationship of GTs, directed evolution continues to be a useful approach for generating additional mutants with functionality that can be screened for in a high-throughput format. Mutating the amino acid residues constituting or close to the substrate-binding sites of GTs by structure-guided directed evolution (SGDE) further explores the biotechnological potential of GTs that can only be realized through enzyme engineering. This mini-review discusses the progress made towards GT engineering and the lessons learned for future engineering efforts and assay development. PMID:26862198

  20. Carbohydrate Metabolism in Spirochaeta stenostrepta

    PubMed Central

    Hespell, Robert B.; Canale-Parola, E.

    1970-01-01

    The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO2, and H2. Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from 14C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO2, and H2, without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B12 were either stimulatory or required for growth. PMID:5423371

  1. Carbohydrate metabolism in Spirochaeta stenostrepta.

    PubMed

    Hespell, R B; Canale-Parola, E

    1970-07-01

    The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO(2), and H(2). Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from (14)C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO(2), and H(2), without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B(12) were either stimulatory or required for growth. PMID:5423371

  2. An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly.

    PubMed

    Liu, Yue; Gibson, Glenn R; Walton, Gemma E

    2016-01-01

    The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters. PMID:27612304

  3. Effects of dietary Aspergillus meal prebiotic on turkey poults production parameters and bone qualities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of dietary Aspergillus meal (AM), a prebiotic on performance and bone parameters of neonatal turkey poults. Prebiotics are nondigestible food ingredients that beneficially affect the host and have been shown to stimulate calcium and magnesium a...

  4. Effect of prebiotic supplementation and calcium intake on body mass index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to assess the effects of a prebiotic supplement and usual calcium intake on body composition changes during pubertal growth. We measured anthropometry and body fat with dual-energy X-ray absorptionmetry in 97 young adolescents who were randomized to receive either a daily prebiotic...

  5. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    PubMed

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized. PMID:18272925

  6. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results. PMID:25669546

  7. [Carbohydrate-binding proteins of marine invertebrates].

    PubMed

    Luk'ianov, P A; Chernikov, O V; Kobelev, S S; Chikalovets, I V; Molchanova, V I; Li, W

    2007-01-01

    The information on the carbohydrate specificity and molecular organization of some carbohydrate-binding proteins (lectins) of marine invertebrates is reported. Antiviral activity of some of the lectins against human immunodeficiency virus has been studied. Lectins of marine invertebrates are promising tools for studying natural glycoconjugates and cell effectors in vitro. PMID:17375673

  8. Carbohydrates as synthetic tools in organic chemistry.

    PubMed

    Boysen, Mike M K

    2007-01-01

    While amino acids, terpenes and alkaloids have found broad application as tools in stereoselective organic synthesis, carbohydrates have only lately been recognised as versatile starting materials for chiral auxiliaries, reagents, ligands and organocatalysts. The structural diversity of carbohydrates and the high density of functional groups offer a wide variety of opportunities for derivatization and tailoring of synthetic tools to a specific problem. PMID:17712826

  9. Mammalian galectins: structure, carbohydrate specificity, and functions.

    PubMed

    Rapoport, E M; Kurmyshkina, O V; Bovin, N V

    2008-04-01

    Galectins are a family of beta-galactoside binding lectins, homological by a sequence of the carbohydrate-binding site. In this review literature data about structure and carbohydrate specificity of galectins are discussed. The role of galectins in the regulation of cell adhesion in immune response, inflammation, and cancer progression is considered. PMID:18457568

  10. Determining a carbohydrate profile for Hansenula polymorpha

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.

    1985-01-01

    The determination of the levels of carbohydrates in the yeast Hansenula polymorpha required the development of new analytical procedures. Existing fractionation and analytical methods were adapted to deal with the problems involved with the lysis of whole cells. Using these new procedures, the complete carbohydrate profiles of H. polymorpha and selected mutant strains were determined and shown to correlate favourably with previously published results.

  11. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  12. Ferrocene-containing carbohydrate dendrimers.

    PubMed

    Ashton, Peter R; Balzani, Vincenzo; Clemente-León, Miguel; Colonna, Barbara; Credi, Alberto; Jayaraman, Narayanaswamy; Raymo, Francisco M; Stoddart, J Fraser; Venturi, Margherita

    2002-02-01

    Aliphatic amines, incorporating one or three (branched) acylated beta-D-glucopyranosyl residues, were coupled with the acid chloride of ferrocenecarboxylic acid and with the diacid chloride of 1,1'-ferrocenedicarboxylic acid to afford four dendrimer-type, carbohydrate-coated ferrocene derivatives in good yields (54-92%). Deprotection of the peracylated beta-D-glucopyranosyl residues was achieved quantitatively by using Zemplén conditions, affording four water-soluble ferrocene derivatives. When only one of the two cyclopentadienyl rings of the ferrocene unit is substituted, strong complexes are formed with beta-cyclodextrin in H2O, as demonstrated by liquid secondary ion mass spectrometry (LSIMS), 1H NMR spectroscopy, electrochemical measurements, and circular dichroism spectroscopy. Molecular dynamics calculations showed that the unsubstituted cyclopentadienyl ring is inserted through the cavity of the toroidal host in these complexes. The electrochemical behavior of the protected and deprotected ferrocene-containing dendrimers was investigated in acetonitrile and water, respectively. The diffusion coefficient decreases with increasing molecular weight of the compound. The potential for oxidation of the ferrocene core, the rate constant of heterogeneous electron transfer, and the rate constant for the energy-transfer reaction with the luminescent excited state of the [Ru(bpy)3]2+ complex (bpy = 2,2'-bipyridine) are strongly affected by the number (one or two) of substituents and by the number (one or three) of carbohydrate branches present in the substituents. These effects are assigned to shielding of the ferrocene core by the dendritic branches. Electrochemical evidence for the existence of different conformers for one of the dendrimers in aqueous solution was obtained. PMID:11855715

  13. Low-carbohydrate diets: an update on current research.

    PubMed

    Wylie-Rosett, Judith; Davis, Nichola J

    2009-10-01

    The diabetes and obesity epidemics have stimulated research to assess the benefits and potential risks of low-carbohydrate diets. Carbohydrate comprises less than 45% of calories in carbohydrate-restricted diets, but very low carbohydrate ketogenic diets may restrict carbohydrate to 20 g initially with variability in the carbohydrate level subsequently. Some research suggests that low-carbohydrate diets may achieve better early weight loss than comparison diets higher in carbohydrate. Studies of up to 1 year suggest that weight loss on low-carbohydrate diet is comparable with fat-restricted diets with higher carbohydrate content. Limited research has been conducted to evaluate low-carbohydrate diets in managing type 2 diabetes. Although science continues to advance in this field, current research suggests that low-carbohydrate diets can be a viable option for achieving weight loss and may have beneficial effects on glycemic control, triglyceride levels, and high-density lipoprotein cholesterol levels in some patients. PMID:19793510

  14. What I Need to Know about Carbohydrate Counting and Diabetes

    MedlinePlus

    ... URL Español What I need to know about Carbohydrate Counting and Diabetes Page Content On this page: ... counting? Points to Remember Clinical Trials What is carbohydrate counting? Carbohydrate * counting, also called carb counting, is ...

  15. Phenol-Sulfuric Acid Method for Total Carbohydrates

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The phenol-sulfuric acid method is a simple and rapid colorimetric method to determine total carbohydrates in a sample. The method detects virtually all classes of carbohydrates, including mono-, di-, oligo-, and polysaccharides. Although the method detects almost all carbohydrates, the absorptivity of the different carbohydrates varies. Thus, unless a sample is known to contain only one carbohydrate, the results must be expressed arbitrarily in terms of one carbohydrate.

  16. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria.

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1972-01-01

    Four previously unrecognized strains of extremely halophilic bacteria that utilize carbohydrates have been isolated. Gas production proved an unreliable index of carbohydrate metabolism; therefore, carbohydrate utilization was measured by determining acid formation and sugar disappearance during growth. By these procedures, carbohydrate utilization was readily detected. The results suggest that carbohydrate dissimilation by extremely halophilic bacteria may be more common than previously thought and that the apparent rarity of carbohydrate-metabolizing halophiles may be an artifact of the isolation procedures used.

  17. The Role of Probiotics and Prebiotics in Inducing Gut Immunity

    PubMed Central

    Vieira, Angélica T.; Teixeira, Mauro M.; Martins, Flaviano S.

    2013-01-01

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host. PMID:24376446

  18. Prebiotic effect of Agave fourcroydes fructans: an animal model.

    PubMed

    García-Curbelo, Yanelys; Bocourt, Ramón; Savón, Lourdes L; García-Vieyra, Maria Isabel; López, Mercedes G

    2015-09-01

    The use of prebiotics such as fructans has increased in human and animal nutrition because of their productive performance and health benefits. Agave fourcroydes has shown high concentrations of fructans in their stems; however, there is no information on new products derived from this plant that might enhance its added value. Therefore, we evaluated the prebiotic effect of Agave fourcroydes fructans in an animal model. Male mice (C57BL/6J) were fed on parallel form with a standard diet or diets supplemented with 10% of fructans from Cichorium intybus (Raftilose P95) and Agave fourcroydes from Cuba for 35 days. The body weight, food intake, blood glucose, triglycerides and cholesterol, gastrointestinal organ weights, fermentation indicators in cecal and colon contents and mineral content in femurs were determined. The body weight and food intake of mice were not significantly modified by any treatment. However, serum glucose, cholesterol and triglycerides decreased (P < 0.01) in the fructans groups with respect to the standard diet group; this decrement was higher in the A. fourcroydes group with respect to the Raftilose P95 group. Mice groups supplemented with fructans exhibited increased (P < 0.01) total and wall cecal and colon weights. The fermentation indicators, short-chain fatty acids (SCFAs) and pH decreased (P < 0.001) in the groups that consumed fructans in their diets with respect to the standard diet. The diets supplemented with fructans also increased the mineral concentrations of calcium (P < 0.01) and magnesium (P < 0.05) in the right femurs. In conclusion, the inclusion of fructans from Agave fourcroydes in the mice diet induced a prebiotic response, similar to or greater than the commercial product (Raftilose P95) and this constitutes a promising alternative with potential use not only in animal but also in human diets. PMID:26237650

  19. The role of probiotics and prebiotics in inducing gut immunity.

    PubMed

    Vieira, Angélica T; Teixeira, Mauro M; Martins, Flaviano S

    2013-01-01

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host. PMID:24376446

  20. Prebiotic phosphate ester syntheses in a deep eutectic solvent.

    PubMed

    Gull, Maheen; Zhou, Manshui; Fernández, Facundo M; Pasek, Matthew A

    2014-02-01

    We report a route to synthesize a wide range of organophosphates of biological significance in a deep eutectic solvent (2:1 urea and choline chloride), utilizing various orthophosphate sources. Heating an organic alcohol in the solvent along with a soluble phosphorus source yields phosphorus esters of choline as well as that of the added organic in yields between 15 to 99 %. In addition, phosphite analogs of biological phosphates and peptides were also formed by the simple mixing of reagents and heating at 60-70 °C in the deep eutectic solvent. The presented dehydration reactions are relevant to prebiotic and green chemistry in alternative solvents. PMID:24368625

  1. Cyanogen induced phosphorylation of D-fructose. [prebiotic modeling

    NASA Technical Reports Server (NTRS)

    Degani, CH.; Kawatsuji, M.; Halmann, M.

    1975-01-01

    It has been demonstrated that a phosphorylated sugar, identified as alpha-D-fructopyranose, can be formed as the result of cyanogen-induced phosphorylation of D-fructose at pH 8.8. The product was isolated from barium and cyclohexylammonium salts and identified on the basis of its chromatographic and electrophoretic properties, its lability to hydrolysis by alkaline phosphatase, the rate of its acid-catalyzed hydrolysis, and the results of periodate oxidation and optical rotatory measurements. These results support the suggestion that the cyanogen-induced phosphorylation of free sugars could be a possible process for formation of sugar phosphates under prebiotic conditions (Halman et al., 1969).

  2. Formation of the imidazolides of dinucleotides under potentially prebiotic conditions

    NASA Technical Reports Server (NTRS)

    Sleeper, H. L.; Lohrmann, R.; Orgel, L. E.

    1978-01-01

    Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as p(n)ApA in excellent yield (greater than or equal to 80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5'-phosphorimidazolides.

  3. Rotational spectroscopy and observational astronomy of prebiotic molecules

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna Leigh

    It is now widely believed that prebiotic molecules were delivered to the early Earth by planetesimals and their associated interplanetary dust particles. Yet the formation pathways for these molecules are not clear. Amino acids and sugars have been found in carbonaceous chondrites, but only much simpler species have been detected in the interstellar medium (ISM). Prebiotic organics could have formed in the ISM and been directly incorporated into planetesimals, or simpler species could have: formed in the ISM and then been incorporated into planetesimals, undergone further processing, and been delivered to Earth. Limits on interstellar chemistry must therefore be established through observational astronomy before potential prebiotic formation pathways can be assessed. These observations require laboratory spectroscopic investigation of the species of interest. This thesis is an interdisciplinary study involving laboratory rotational spectroscopy and astronomical observations of several key prebiotic molecules. The laboratory work has focused on obtaining the rotational spectra of the simplest three-carbon ketose sugar, 1,3-dihydroxyacetone, and its structural isomers methyl glycolate and dimethyl carbonate, as well as aminoethanol, the predicted interstellar precursor to alanine. The pure rotational spectral analysis of the low-lying torsional states of the simplest a-hydroxy aldehyde, glycolaldehyde, has also been completed. The original Balle-Flygare Fourier transform microwave spectrometer was used to obtain the microwave spectra, while both the Jet Propulsion Laboratory and Caltech direct absorption flow cell spectrometers were used for additional direct absorption millimeter and submillimeter studies. The results of these laboratory experiments were used to guide observational searches with the Caltech Submillimeter Observatory, the Owens Valley Millimeter Array; and the Green Bank Telascope toward the hot core sources Sgr B2(N-LMH), Orion Hot Core

  4. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  5. Carbohydrate polymers for nonviral nucleic acid delivery.

    PubMed

    Sizovs, Antons; McLendon, Patrick M; Srinivasachari, Sathya; Reineke, Theresa M

    2010-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  6. Characterizing carbohydrate-protein interactions by NMR

    PubMed Central

    Bewley, Carole A.; Shahzad-ul-Hussan, Syed

    2013-01-01

    Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792

  7. Reductive opening of carbohydrate phenylsulfonylethylidene (PSE) acetals.

    PubMed

    Chéry, Florence; Cabianca, Elena; Tatibouët, Arnaud; De Lucchi, Ottorino; Lindhorst, Thisbe K; Rollin, Patrick

    2015-11-19

    The phenylsulfonylethylidene (PSE) acetal is a relatively new protecting group in carbohydrate chemistry. However, carbohydrate-derived phenylsulfonylethylidene (PSE) acetals show a different behavior in reductive desulfonylation than simple symmetrical acetals. Here we have investigated various SET-type reaction conditions in order to open PSE acetals regioselectively and to produce chiral ω-hydroxyethenyl ethers. Whereas sodium amalgam leads to a mixture of regioisomeric vinyl ethers besides the ethylidene acetal, samarium iodide is suited for regioselective ring opening. This is shown with seven different carbohydrate PSE acetals, both of the 1,3-dioxane and the 1,3-dioxolane type. PMID:26469209

  8. Utilization of carbohydrates by radiation processing

    NASA Astrophysics Data System (ADS)

    Kume, T.; Nagasawa, N.; Yoshii, F.

    2002-03-01

    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use.

  9. Tofu Whey Permeate Is an Efficient Source To Enzymatically Produce Prebiotic Fructooligosaccharides and Novel Fructosylated α-Galactosides.

    PubMed

    Corzo-Martínez, Marta; García-Campos, Gema; Montilla, Antonia; Moreno, F Javier

    2016-06-01

    This work addresses a novel and efficient bioconversion method for the utilization of tofu whey permeate (TWP), an important byproduct from the soybean industry, as a precursor of high value-added ingredients such as prebiotic fructooligosaccharides and novel fructosylated α-galactosides. This process is based on the high capacity of the commercial enzyme preparation Pectinex Ultra SP-L to transfructosylate the main carbohydrates present in TWP as sucrose, raffinose, and stachyose to produce up to a maximum of 164.2 g L(-1) (equivalent to 57% with respect to initial sucrose, raffinose, and stachyose contents in TWP) of fructooligosaccharides and fructosylated α-galactosides in a balanced proportion. Raffinose- and stachyose-derived oligosaccharides were formed by elongation from the nonreducing terminal fructose residue up to three fructosyl groups bound by β-(2→1) linkages. These results could provide new findings on the valorization and upgrading of the management of TWP and an alternative use of raw material for the production of FOS and derivatives. PMID:27156348

  10. Current status of the prebiotic synthesis of small molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1986-01-01

    Experiments designed to simulate conditions on the primitive earth and to demonstrate how the organic compounds that made up the first living organisms were synthesized are described. Simulated atmospheres with CH4, N2, NH3, and H2O were found to be most effective for synthesis of small prebiotic molecules, although atmospheres with H2, CO, N2, and H2O, and with H2, CO2, N2, and H2O also give good yields of organic compounds provided the H2/CO and H2/CO2 ratios are above 1 and 2, respectively. The spark discharge (which is a good source of HCN) and UV light are also important. Reasonable prebiotic syntheses were worked out for the amino acids that occur in proteins (with the exception of lysine, arginine, and histidine), and for purines, pyrimidines, sugars, and nicotinic acid. Many of the molecules that have been produced in these simulated primitive-earth experiments are found in carbonaceous chondrites.

  11. Radioactivity as a significant energy source in prebiotic synthesis.

    PubMed

    Garzón, L; Garzón, M L

    2001-01-01

    Radioactivity in the continental crust (due mainly to the isotopes 238U, 235U, 232Th and 40K), as a energy source for chemical evolution in the early Archean (between 3.5 and approximately 4 Ga bp), is reviewed. The most important radioactive source in the continental crust is due to the production and accumulation of radioactive gases within the crust voids (porosity). The study of such mechanism has allowed us to reach a deeper understanding about the nature of the radioactive source and to describe its behavior, particularly with regard to prebiotic chemical evolution. An effective total energy of 3 x 10(18) Ja-1 has been obtained for a depth of 1 km, 4 Ga ago. If a depth of 30 km is taken, the obtained value is almost equal to the UV solar energy radiation (lambda < 150 nm). Within the voids the radioactive source of the continental crust played a relevant role in prebiotic synthesis. In uranium deposits of the same age, the role of radioactivity must have been even more relevant in favoring chemical evolution. PMID:11296523

  12. Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences

    PubMed Central

    Derr, Julien; Manapat, Michael L.; Rajamani, Sudha; Leu, Kevin; Xulvi-Brunet, Ramon; Joseph, Isaac; Nowak, Martin A.; Chen, Irene A.

    2012-01-01

    During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life. PMID:22319215

  13. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE PAGESBeta

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  14. Sunlight-Driven, Water-Mediated Generation of Prebiotic Complexity

    NASA Astrophysics Data System (ADS)

    Rapf, R.; Griffith, E. C.; Perkins, R. J.; Vaida, V.

    2014-12-01

    Formation of chemically complex biomolecules from simple, organic molecules under prebiotic conditions is both a thermodynamic and kinetic challenge. Synthesis of such molecules and their subsequent self-assembly into ordered structures requires a favorable source of energy as well as a favorable entropic environment. Our approach couples two such auspicious conditions, using sunlight as the energetic driver and air-water interfaces as the reaction medium. The Sun provides a large, prebiotically relevant source of energy to fuel synthetic photochemistry. Air-water interfaces are widely prevalent on oceans, lakes, and atmospheric aerosols and provide unique reaction environments that ameliorate some of the thermodynamic challenges of the aqueous bulk. Using these experimental principles, we demonstrate the ability to generate chemical complexity via in situ observation of non-enzymatic peptide bond synthesis at the surface of water. Additionally, we will discuss the photochemical formation of a double-tailed membrane component in aqueous solution, which subsequently self-assembles into ordered, three-dimensional structures.

  15. Selective derivatization and sequestration of ribose from a prebiotic mix.

    PubMed

    Springsteen, Greg; Joyce, Gerald F

    2004-08-11

    Observations regarding the catalytic potential of RNA and the role of RNA in biology have formed the basis for the "RNA world" hypothesis, which suggests that a genetic system based on self-replicating polyribonucleotides preceded modern biology. However, attempts to devise a realistic prebiotic synthesis of nucleic acids from simple starting materials have been plagued by problems of poor chemical selectivity, lack of stereo- and regiospecificity, and similar rates of formation and degradation of some of the key intermediates. For example, ribose would have been only a small component of a highly complex mix of sugars resulting from the condensation of formaldehyde in a prebiotic world. In addition, ribose is more reactive and degrades more rapidly compared with most other monosaccharides. This study demonstrates an approach for the preferential sequestration of ribose relative to other sugars that takes advantage of its greater reactivity. Cyanamide reacts especially rapidly with ribose to form a stable bicyclic adduct. This product crystallizes spontaneously in aqueous solution, whereas the corresponding products derived from threose, galactose, glucose, mannose, and each of the other pentoses do not. Furthermore, when employing a racemic mixture of d- and l-ribose, enantiomerically twinned crystals are formed that contain discrete homochiral domains. PMID:15291561

  16. Understanding Organics in Meteorites and the Pre-Biotic Environment

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    2003-01-01

    (1) Refinement of the analytic capabilities of our experiment via characterization of molecule-specific response and the effects upon analysis of the type of sample under investigation; (2) Measurement of polycyclic aromatic hydrocarbons (PAHs) with high sensitivity and spatial resolution within extraterrestrial samples; (3) Investigation of the interstellar reactions of PAHs via the analysis of species formed in systems modeling dust grains and ices; (4) Investigations into the potential role of PAHs in prebiotic and early biotic chemistry via photoreactions of PAHs under simulated prebiotic Earth conditions. To meet these objectives, we use microprobe laser-desorption, laser-ionization mass spectrometry (MuL(exp 2)MS), which is a sensitive, selective, and spatially resolved technique for detection of aromatic compounds. Appendix A presents a description of the MuL(exp 2)MS technique. The initial grant proposal was for a three-year funding period, while the award was given for a one-year interim period. Because of this change in time period, emphasis was shifted from the first research goal, which was more development-oriented, in order to focus more on the other analysis-oriented goals. The progress made on each of the four research areas is given below.

  17. Spatial Models of Prebiotic Evolution: Soup Before Pizza?

    NASA Astrophysics Data System (ADS)

    Scheuring, István; Czárán, Tamás; Szabó, Péter; Károlyi, György; Toroczkai, Zoltán

    2003-10-01

    The problem of information integration and resistance to the invasion of parasitic mutants in prebiotic replicator systems is a notorious issue of research on the origin of life. Almost all theoretical studies published so far have demonstrated that some kind of spatial structure is indispensable for the persistence and/or the parasite resistance of any feasible replicator system. Based on a detailed critical survey of spatial models on prebiotic information integration, we suggest a possible scenario for replicator system evolution leading to the emergence of the first protocells capable of independent life. We show that even the spatial versions of the hypercycle model are vulnerable to selfish parasites in heterogeneous habitats. Contrary, the metabolic system remains persistent and coexistent with its parasites both on heterogeneous surfaces and in chaotically mixing flowing media. Persistent metabolic parasites can be converted to metabolic cooperators, or they can gradually obtain replicase activity. Our simulations show that, once replicase activity emerged, a gradual and simultaneous evolutionary improvement of replicase functionality (speed and fidelity) and template efficiency is possible only on a surface that constrains the mobility of macromolecule replicators. Based on the results of the models reviewed, we suggest that open chaotic flows (`soup') and surface dynamics (`pizza') both played key roles in the sequence of evolutionary events ultimately concluding in the appearance of the first living cell on Earth.

  18. Probiotics and prebiotics and health in ageing populations.

    PubMed

    Duncan, Sylvia H; Flint, Harry J

    2013-05-01

    In healthy adults microbial communities that colonise different regions of the human colon contribute nutrients and energy to the host via the fermentation of non-digestible dietary components in the large intestine. A delicate balance of microbial species is required to maintain healthy metabolism and immune function. Disturbance in this microbial balance can have negative consequences for health resulting in elevated inflammation and infection, that are contributory factors in diabetes and cancer. There is a growing awareness that the microbial balance in the colon may become increasingly perturbed with aging and therefore hasten the onset of certain diseases. Societal and dietary factors influence microbial community composition both in the short and long term in the elderly (>65 years old) whilst immunosenescence may also be linked to a perturbed distal gut microbiota and frailty in the elderly. Significant progress has been made in defining some of the dominant members of the microbial community in the healthy large intestine and in identifying their roles in metabolism. There is therefore an urgent need for better awareness of the impact of diet, prebiotic and probiotic strategies in driving human colonic microbial composition in order to understand the possibilities for maintaining healthy gut function and well-being in an increasingly elderly population. Here we review gut microbial changes associated with aging and how diet, prebiotics and probiotics may modulate the gut microbiota to maintain health in the elderly. PMID:23489554

  19. Prebiotic synthesis of protobiopolymers under alkaline ocean conditions.

    PubMed

    Ruiz-Bermejo, Marta; Rivas, Luis A; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH(4). At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life. PMID:21161385

  20. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    SciTech Connect

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  1. Atmospheric production of glycolaldehyde under hazy prebiotic conditions.

    PubMed

    Harman, Chester E; Kasting, James F; Wolf, Eric T

    2013-04-01

    The early Earth's atmosphere, with extremely low levels of molecular oxygen and an appreciable abiotic flux of methane, could have been a source of organic compounds necessary for prebiotic chemistry. Here, we investigate the formation of a key RNA precursor, glycolaldehyde (2-hydroxyacetaldehyde, or GA) using a 1-dimensional photochemical model. Maximum atmospheric production of GA occurs when the CH4:CO2 ratio is close to 0.02. The total atmospheric production rate of GA remains small, only 1 × 10(7) mol yr(-1). Somewhat greater amounts of GA production, up to 2 × 10(8) mol yr(-1), could have been provided by the formose reaction or by direct delivery from space. Even with these additional production mechanisms, open ocean GA concentrations would have remained at or below ~1 μM, much smaller than the 1-2 M concentrations required for prebiotic synthesis routes like those proposed by Powner et al. (Nature 459:239-242, 2009). Additional production or concentration mechanisms for GA, or alternative formation mechanisms for RNA, are needed, if this was indeed how life originated on the early Earth. PMID:23695543

  2. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Koziol, Lucas

    2015-06-01

    We present results of prebiotic organic synthesis in shock compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium time-scales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impact on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon and nitrogen bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding for hydrocarbon impact synthesis on early Earth and its role in producing life building molecules from simple starting materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Comets as a possible source of prebiotic molecules

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.; Boice, D. C.

    1992-01-01

    Prebiotic molecules derive from abiotic organic molecules, radicals, and ions that pervade the universe at temperatures as high as several 1000 K. Here we review the role of organic molecules that condensed at low temperatures before or during comet formation in the early history of the Solar System. Recent spacecraft encounters and ground-based observations of carbon-rich volatile and dust components of comet comae provide a broad database for the investigation of these organic molecules. New laboratory data for some potential cometary organics are presented. Probable icy organic constituents of the nucleus and CHON particles as likely candidates for the distributed sources of gas-phase organic species in the coma are discussed. There is broad agreement that many organic molecules observed in the coma originate from the dust that must have existed in the solar nebula at the time and place of comet formation. We conclude that complex organic molecules found in comets may be a source of prebiotic molecules that led to the origins of life.

  4. Prebiotic Hydrocarbon Synthesis in Impacting Reduced Astrophysical Icy Mixtures

    NASA Astrophysics Data System (ADS)

    Koziol, Lucas; Goldman, Nir

    2015-04-01

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  5. A comparative study of prebiotic and present day translational models

    NASA Technical Reports Server (NTRS)

    Rein, R.; Raghunathan, G.; Mcdonald, J.; Shibata, M.; Srinivasan, S.

    1986-01-01

    It is generally recognized that the understanding of the molecular basis of primitive translation is a fundamental step in developing a theory of the origin of life. However, even in modern molecular biology, the mechanism for the decoding of messenger RNA triplet codons into an amino acid sequence of a protein on the ribosome is understood incompletely. Most of the proposed models for prebiotic translation lack, not only experimental support, but also a careful theoretical scrutiny of their compatibility with well understood stereochemical and energetic principles of nucleic acid structure, molecular recognition principles, and the chemistry of peptide bond formation. Present studies are concerned with comparative structural modelling and mechanistic simulation of the decoding apparatus ranging from those proposed for prebiotic conditions to the ones involved in modern biology. Any primitive decoding machinery based on nucleic acids and proteins, and most likely the modern day system, has to satisfy certain geometrical constraints. The charged amino acyl and the peptidyl termini of successive adaptors have to be adjacent in space in order to satisfy the stereochemical requirements for amide bond formation. Simultaneously, the same adaptors have to recognize successive codons on the messenger. This translational complex has to be realized by components that obey nucleic acid conformational principles, stabilities, and specificities. This generalized condition greatly restricts the number of acceptable adaptor structures.

  6. Enantioselective autocatalysis. Spontaneous resolution and the prebiotic generation of chirality

    NASA Astrophysics Data System (ADS)

    Bonner, William A.

    1994-02-01

    Theoretical and experimental models for autocatalytic systems leading to the prebiotic origin of chiralityvia the spontaneous symmetry breaking (resolution) of racemic substrates are reviewed. Of the experimental models so far studied, only 2nd order assymetric transformations during crystallization of optically labile enantiometers, leading to their spontaneous resolution under racemizing conditions (SRURC) have been successful. Our objective was to investigate in further detail the most promising of these systems from the point of view of its overall efficiency and its potential viability as a mechanism for the spontaneous generation of molecular chirality on the prebiotic Earth. To this end the 1,4-benzo-diazepinooxazole derivative XI, having a single asymmetric carbon atom, has been synthesized. We here confirm a report in the literature that (±)-XI undergoes SRURC in methanol, both on crystallization and as a slurry. The ‘total spontaneous resolution’ of (±)-XI has been achieved in a yield of 99%, of which 80% had an optical purity ofca. 93%. Arguments are presented that SRURC of racemic substrates, while thus demonstrably effective in laboratory experiments, was probably not of major importance for the origin or amplification of molecular chirality on the primitive earth.

  7. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  8. Influence of prebiotics, probiotics and protein ingredients on mycotoxin bioaccessibility.

    PubMed

    Ferrer, M; Manyes, L; Mañes, J; Meca, G

    2015-03-01

    The aim of this study was to investigate the influence of prebiotic compounds (cellulose and inulin), food ingredients (milk whey, β-lactoglobulin and calcium caseinate) and several probiotic microorganisms on the bioaccessibility of beauvericin (BEA), enniatins (ENs A, A1, B, B1), deoxynivalenol (DON) and zearalenone (ZEA) present in wheat crispy bread produced with wheat flour previously fermented with F. tricinctum, F. culmorum and G. zeae. The bioaccessibility of mycotoxins was determined by a dynamic simulated gastrointestinal digestion system, imitating the human digestive physiological conditions of the gastrointestinal tract. Mycotoxins were determined in the simulated intestinal fluids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). EN bioaccessibility ranged from 15.1 to 30.6%, whereas the values evidenced for BEA ranged from 12 to 19%. DON showed bioaccessibility data ranging from 0.8 to 5.6% whereas for ZEA the data evidenced ranged from 26 to 44%. The bioaccessibility reduction evidenced using probiotic microorganisms for the mycotoxins studied ranged from 21 to 27.1% for ENs, from 29 to 39.7% for DON, from 41 to 57% for ZEA and from 6.6 to 10.5% for BEA. The addition of prebiotic and bioactive microorganisms decreased the bioaccessibility of mycotoxins, with a concentration-dependent behavior, thus being a potential strategy for reducing human exposure to these minor mycotoxins. PMID:25673154

  9. Electrostatic activation of prebiotic chemistry in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2014-04-01

    Charged dust grains in the atmospheres of exoplanets may play a key role in the formation of prebiotic molecules, necessary to the origin of life. Dust grains submerged in an atmospheric plasma become negatively charged and attract a flux of ions that are accelerated from the plasma. The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classical, thermal excitation. As a result, prebiotic molecules or their precursors could be synthesized on the surface of dust grains that form clouds in exoplanetary atmospheres. This paper investigates the energization of the plasma ions, and the dependence on the plasma electron temperature, in the atmospheres of substellar objects such as gas giant planets. Calculations show that modest electron temperatures of ~1 eV (~104 K) are enough to accelerate ions to sufficient energies that exceed the activation energies required for the formation of formaldehyde, ammonia, hydrogen cyanide and the amino acid glycine.

  10. Workshop to establish databases of carbohydrate spectra

    SciTech Connect

    1995-12-31

    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  11. Stereoselective synthesis: Molecular editing of carbohydrates

    NASA Astrophysics Data System (ADS)

    McNally, Andrew

    2015-07-01

    Deoxygenation reactions have been used to convert biomass-derived carbohydrates into useful platform chemicals. Now, a method has been described that can selectively excise C-O bonds to produce valuable chiral synthons.

  12. Modelling the effect of solvents on carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates are polar molecules and their conformational and anomeric equilibrium can be strongly influenced by solvents. This review provides examples of studies addressing different issues of glycochemistry, such as anomeric equilibrium, conformational changes in rings, modelling of inter-residu...

  13. ILSI Brazil International Workshop on Functional Foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health.

    PubMed

    Latulippe, Marie E; Meheust, Agnès; Augustin, Livia; Benton, David; Berčík, Přemysl; Birkett, Anne; Eldridge, Alison L; Faintuch, Joel; Hoffmann, Christian; Jones, Julie Miller; Kendall, Cyril; Lajolo, Franco; Perdigon, Gabriela; Prieto, Pedro Antonio; Rastall, Robert A; Sievenpiper, John L; Slavin, Joanne; de Menezes, Elizabete Wenzel

    2013-01-01

    To stimulate discussion around the topic of 'carbohydrates' and health, the Brazilian branch of the International Life Sciences Institute held the 11th International Functional Foods Workshop (1-2 December 2011) in which consolidated knowledge and recent scientific advances specific to the relationship between carbohydrates and health were presented. As part of this meeting, several key points related to dietary fiber, glycemic response, fructose, and impacts on satiety, cognition, mood, and gut microbiota were realized: 1) there is a need for global harmonization of a science-based fiber definition; 2) low-glycemic index foods can be used to modulate the postprandial glycemic response and may affect diabetes and cardiovascular outcomes; 3) carbohydrate type may influence satiety and satiation; glycemic load and glycemic index show links to memory, mood, and concentration; 4) validated biomarkers are needed to demonstrate the known prebiotic effect of carbohydrates; 5) negative effects of fructose are not evident when human data are systematically reviewed; 6) new research indicates that diet strongly influences the microbiome; and 7) there is mounting evidence that the intestinal microbiota has the ability to impact the gut-brain axis. Overall, there is much promise for development of functional foods that impact the microbiome and other factors relevant to health, including glycemic response (glycemic index/glycemic load), satiety, mood, cognition, and weight management. PMID:23399638

  14. Carbohydrate Nutrition and Team Sport Performance.

    PubMed

    Williams, Clyde; Rollo, Ian

    2015-11-01

    The common pattern of play in 'team sports' is 'stop and go', i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2-4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores. PMID:26553494

  15. Dietary Carbohydrates and Childhood Functional Abdominal Pain.

    PubMed

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-01-01

    Childhood functional gastrointestinal disorders (FGIDs) affect a large number of children throughout the world. Carbohydrates (which provide the majority of calories consumed in the Western diet) have been implicated both as culprits for the etiology of symptoms and as potential therapeutic agents (e.g., fiber) in childhood FGIDs. In this review, we detail how carbohydrate malabsorption may cause gastrointestinal symptoms (e.g., bloating) via the physiologic effects of both increased osmotic activity and increased gas production from bacterial fermentation. Several factors may play a role, including: (1) the amount of carbohydrate ingested; (2) whether ingestion is accompanied by a meal or other food; (3) the rate of gastric emptying (how quickly the meal enters the small intestine); (4) small intestinal transit time (the time it takes for a meal to enter the large intestine after first entering the small intestine); (5) whether the meal contains bacteria with enzymes capable of breaking down the carbohydrate; (6) colonic bacterial adaptation to one's diet, and (7) host factors such as the presence or absence of visceral hypersensitivity. By detailing controlled and uncontrolled trials, we describe how there is a general lack of strong evidence supporting restriction of individual carbohydrates (e.g., lactose, fructose) for childhood FGIDs. We review emerging evidence suggesting that a more comprehensive restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) may be effective. Finally, we review how soluble fiber (a complex carbohydrate) supplementation via randomized controlled intervention trials in childhood functional gastrointestinal disorders has demonstrated efficacy. PMID:27355647

  16. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.

    PubMed Central

    Postma, P W; Lengeler, J W; Jacobson, G R

    1993-01-01

    Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the

  17. Prebiotic Polymer Synthesis and the Origin of Glycolytic Metabolism

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1998-01-01

    Our research resulted in several discoveries which contributed to understanding the origin and operation of life. (1) Most importantly, we discovered a new pathway of prebiotic amino acid synthesis in which formaldehyde and glycolaldehyde (formose reaction substrates) react with ammonia to give alanine and homoserine in the presence of thiol catalysts. The thiol-dependent synthesis of amino acids undoubtedly occurs via amino acid thioester intermediates capable of forming peptides. This 'one-pot' reaction system operates under mild aqueous conditions, and like modern amino acid biosynthesis, uses sugar intermediates which are converted to amino acids by energy-yielding redox disproportionation. Preliminary evidence suggests that this type of process can be "evolved" by a serial transfer methods that lead to enrichment of autocatalytic molecules. (2) We established that prebiotic peptide polymers can be made by condensation of amino acid thioesters (homocysteine thiolactone and S-(N-beta-orotidyl- diaminopropionic acid) ethanethiol), and that prebiotic polydisulfide polymers can be generated by oxidation of dithiols with iron(III) in minerals. (3) In our analysis of metabolism we discovered the primary energy source of biosynthesis -- chemical energy made available by the redox disproportionation of substrate carbon groups. We concluded that the energy and reactivity of sugars make them the optimal substrate for the origin and operation of terrestrial (or extraterrestrial) life. (4) Since it is likely that the use of optimal sugar substrates in biosynthesis sets the average oxidation number of functional biocarbon throughout the Universe near 0.0 (the reduction level of formaldehyde), we proposed that a line(s) in the microwave spectrum of formaldehyde could be rationally selected as a frequency for interstellar communication that symbolizes life. (5) Finally, in preparation for the analysis of Martian meteorite samples, we upgraded our HPLC system to one femtomole

  18. Carbohydrate markers of organism purity and growth environment

    SciTech Connect

    Wunschel, David S.; Fox, Alvin

    2012-01-01

    Recent experience with Bacillus spore characterization has demonstrated that carbohydrate content can provide potentially vital bioforensic information. Like other metabolites, the carbohydrate profiles of samples reflect variations in cellular structures as well as presence of residual carbohydrates from the medium found as trace components. The presence and characteristics of residual carbohydrates, such as agar, represent strong indicators of culturing method. The methods to detect residual carbohydrates can be extended to other compounds used in processing and preservation of microbes in a dry form.

  19. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity.

    PubMed

    Dwivedi, Mitesh; Kumar, Prasant; Laddha, Naresh C; Kemp, E Helen

    2016-04-01

    Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs. PMID:26774011

  20. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway.

    PubMed

    Becker, Sidney; Thoma, Ines; Deutsch, Amrei; Gehrke, Tim; Mayer, Peter; Zipse, Hendrik; Carell, Thomas

    2016-05-13

    The origin of life is believed to have started with prebiotic molecules reacting along unidentified pathways to produce key molecules such as nucleosides. To date, a single prebiotic pathway to purine nucleosides had been proposed. It is considered to be inefficient due to missing regioselectivity and low yields. We report that the condensation of formamidopyrimidines (FaPys) with sugars provides the natural N-9 nucleosides with extreme regioselectivity and in good yields (60%). The FaPys are available from formic acid and aminopyrimidines, which are in turn available from prebiotic molecules that were also detected during the Rosetta comet mission. This nucleoside formation pathway can be fused to sugar-forming reactions to produce pentosides, providing a plausible scenario of how purine nucleosides may have formed under prebiotic conditions. PMID:27174989

  1. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli.

    PubMed

    Nagpal, Ravinder; Kaur, Anmol

    2011-01-01

    In the present study, five Lactobacillus strains were evaluated for their viability in presence of different prebiotics viz. inulin, oligofructose, lactulose, raftilose, and honey. The viability of lactobacilli was observed before and after 5 weeks of refrigerated storage. The doubling time varied from 5.2 hrs to 9.6 hrs. The lowest doubling time was for Lactobacillus plantarum M5 followed by L. plantarum Ch1 with inulin. Viability of lactobacilli was greatest with inulin. The growth and viability in presence of prebiotics were found to be strain-specific. Hence, it could be concluded that the addition of prebiotics have a significant effect on probiotics, and hence, a combination of suitable Lactobacillus strain(s) with a specific prebiotic could be a viable probiotic-based functional food approach in administering the beneficial bacteria in-vivo. PMID:21888588

  2. Intestinal infections and prebiotics: the roles of oligosaccharides in promoting health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prebiotic oligosaccharides exert activity against pathogens partly by stimulating the growth and/or activity of commensal bacteria that provide health benefits (lower pH, bacteriocin production, immune system modulation, competitive exclusion). This review describes alternative mechanisms of action...

  3. Prebiotic syntheses of vitamin coenzymes: I. Cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M)

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    The reaction of NH3 and SO3(2-) with ethylene sulfide is shown to be a prebiotic synthesis of cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). A similar reaction with ethylene imine would give cysteamine and taurine. Ethylene oxide would react with NH3 and N(CH3)3 to give the phospholipid components ethanolamine and choline. The prebiotic sources of ethylene sulfide, ethylene imine and ethylene oxide are discussed. Cysteamine itself is not a suitable thioester for metabolic processes because of acyl transfer to the amino group, but this can be prevented by using an amide of cysteamine. The use of cysteamine in coenzyme A may have been due to its prebiotic abundance. The facile prebiotic synthesis of both cysteamine and coenzyme M suggests that they were involved in very early metabolic pathways.

  4. Influence of different prebiotics and mode of their administration on broiler chicken performance.

    PubMed

    Bednarczyk, M; Stadnicka, K; Kozłowska, I; Abiuso, C; Tavaniello, S; Dankowiakowska, A; Sławińska, A; Maiorano, G

    2016-08-01

    In the post-antibiotics era, prebiotics are proposed as alternatives to antibiotic growth promoters in poultry production. The goal of this study was to compare in ovo method of prebiotic delivery with in-water supplementation and with both methods combined (in ovo+in-water) in broiler chickens. Two trials were conducted. Trial 1 was carried out to optimize the doses of two prebiotics, DN (DiNovo®, extract of beta-glucans) and BI (Bi2tos, trans-galactooligosaccharides), for in ovo delivery. The estimated parameters were hatchability and bacteriological status of the newly hatched chicks. Prebiotics were dissolved in 0.2 ml of physiological saline, at the doses: 0.18, 0.88, 3.5 and 7.0 mg/embryo; control group (C) was injected in ovo with 0.2 ml of physiological saline. Trial 2 was conducted to evaluate effects of different prebiotics (DN, BI and raffinose family oligosaccharides (RFO)) delivered in ovo, in-water and in a combined way (in ovo+in-water) on broiler chickens performance. The results of the Trial 1 indicated that the optimal dose of DN and BI prebiotics delivered in ovo, that did not reduce chicks' hatchability, was 0.88 mg/embryo (DN) and 3.5 mg/embryo (BI). Both prebiotics numerically increased number of lactobacilli and bifidobacteria in chicken feces (P>0.05). In Trial 2, all prebiotics (DN, BI and RFO) significantly increased BW gain compared with the C group (P<0.05), especially during the first 21 days of life. However, feed intake and feed conversion ratio were increased upon prebiotics delivery irrespective of method used. Injection of prebiotics in ovo combined with in-water supplementation did not express synergistic effects on broilers performance compared with in ovo injection only. Taken together, those results confirm that single in ovo prebiotics injection into the chicken embryo can successfully replace prolonged in-water supplementation post hatching. PMID:26936310

  5. Effect of carbohydrate ingestion subsequent to carbohydrate supercompensation on endurance performance.

    PubMed

    Kang, J; Robertson, R J; Denys, B G; DaSilva, S G; Visich, P; Suminski, R R; Utter, A C; Goss, F L; Metz, K F

    1995-12-01

    This investigation determined whether carbohydrate ingestion during prolonged moderate-intensity exercise enhanced endurance performance when the exercise was preceded by carbohydrate supercompensation. Seven male trained cyclists performed two trials at an initial power output corresponding to 71 +/- 1% of their peak oxygen consumption. During the trials, subjects ingested either a 6% glucose/sucrose (C) solution or an equal volume of artificially flavored and sweetened placebo (P) every 20 min throughout exercise. Both C and P were preceded by a 6-day carbohydrate supercompensation procedure in which subjects undertook a depletion-taper exercise sequence in conjunction with a moderate- and high-carbohydrate diet regimen. Statistical analysis of time to exhaustion, plasma glucose concentration, carbohydrate oxidation rate, fat oxidation rate, and plasma glycerol concentration indicated that in spite of a carbohydrate supercompensation procedure administered prior to exercise, carbohydrate ingestion during exercise can exert an additional ergogenic effect by preventing a decline in blood glucose levels and maintaining carbohydrate oxidation during the later stages of moderate-intensity exercise. PMID:8605519

  6. Use of probiotics and prebiotics in infant feeding.

    PubMed

    Bertelsen, Randi J; Jensen, Elizabeth T; Ringel-Kulka, Tamar

    2016-02-01

    Gut colonization by beneficial bacteria in early life is necessary for establishing the gut mucosal barrier, maturation of the immune system and preventing infections with enteric pathogens. Mode of delivery, prematurity, breastfeeding, and use of antibiotics are some of many factors that have been described to influence early life colonization. Dysbiosis, the absence of normal colonization, is associated with many disease conditions. Pre- and probiotics are commonly used as supplementation in infant formula, such as prebiotic oligosaccharides for stimulation of Bifidobacterium growth aiming to mimic the high levels of these commensal bacteria in the gut of breastfed infants. Studies suggest that probiotic supplementation may be beneficial in prevention and management of disease (e.g., reducing the risk of necrotizing enterocolitis in preterm infants and treatment of acute gastroenteritis in children). Although these studies show promising beneficial effects, the long-term risks or health benefits of pre- and probiotic supplementation are not clear. PMID:27048895

  7. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    PubMed

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures. PMID:27511635

  8. Prebiotic synthesis of simple sugars by photoredox systems chemistry

    NASA Astrophysics Data System (ADS)

    Ritson, Dougal; Sutherland, John D.

    2012-11-01

    A recent synthesis of activated pyrimidine ribonucleotides under prebiotically plausible conditions relied on mixed oxygenous and nitrogenous systems chemistry. As it stands, this synthesis provides support for the involvement of RNA in the origin of life, but such support would be considerably strengthened if the sugar building blocks for the synthesis—glycolaldehyde and glyceraldehyde—could be shown to derive from one carbon feedstock molecules using similarly mixed oxygenous and nitrogenous systems chemistry. Here, we show that these sugars can be formed from hydrogen cyanide by ultraviolet irradiation in the presence of cyanometallates in a remarkable systems chemistry process. Using copper cyanide complexes, the process operates catalytically to disproportionate hydrogen cyanide, first generating the sugars and then sequestering them as simple derivatives.

  9. Stereoselective Syntheses of Pentose Sugars Under Realistic Prebiotic Conditions

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Weber, Arthur L.

    2010-02-01

    Glycolaldehyde and dl-glyceraldehyde reacted in a water-buffered solution under mildly acidic conditions and in the presence of chiral dipeptide catalysts produced pentose sugars whose configuration is affected by the chirality of the catalyst. The chiral effect was found to vary between catalysts and to be largest for di-valine. Lyxose, arabinose, ribose and xylose are formed in different amounts, whose relative proportions do not change significantly with the varying of conditions. With LL-peptide catalysts, ribose was the only pentose sugar to have a significant D-enantiomeric excess ( ee) (≤44%), lyxose displayed an L- ee of ≤66%, arabinose a smaller L- ee of ≤8%, and xylose was about racemic. These data expand our previous findings for tetrose sugars and further substantiate the suggestion that interactions between simple molecules of prebiotic relevance on the early Earth might have included the transfer of chiral asymmetry and advanced molecular evolution.

  10. Prebiotic materials from on and off the early Earth

    NASA Technical Reports Server (NTRS)

    Bernstein, Max

    2006-01-01

    One of the great puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in compounds made mostly of carbon, the kind of which we are currently composed. Where did these organic molecules come from? In this talk I will review proposed contributions to pre-biotic organic chemistry from both terrestrial processes (i.e., hydrothermal vents, Miller-Urey syntheses) and also from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, and there is a growing consensus among scientists that molecules from space played an important role in making the Earth habitable, and perhaps even provided specific compounds that were directly related to the origin of life.

  11. Prebiotic synthesis and reactions of nucleosides and nucleotides

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1983-01-01

    The potential of diiminosuccinonitrile (DISN) as a prebiotic phosphorylating agent is studied. This compound is formed readily by the oxidation of diaminomaleonitrile, a tetramer of HCN. DISN is shown to produce the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 40 percent yield. The DISN-mediated phosphorylation of uridine to uridine monophosphate is determined not to proceed efficiently in aqueous solution. The reaction of DISN and BrCN with uridine-5'-phosphate and uridine is found to result in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides, respectively, and other reaction products resulting from an initial reaction at the 2' and 3'-hydroxyl groups. Homoionic montmorillonites were employed to study the clay mineral catalysis of the cyclization of adenosine-3'-phosphate.

  12. Structural studies on HCN oligomers. [catalysts for prebiotic processes

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Edelson, E. H.; Auyeung, J. M.; Joshi, P. C.

    1981-01-01

    NMR spectral studies on the HCN oligomers suggest the presence of carboxamide and urea groupings. The release of CO2, H2O, HCN, CH3CN, HCONH2 and pyridine on pyrolysis is consistent with the presence of these groupings as well as carboxylic acid groups. No basic primary amine groupings could be detected with fluorescamine. Hydrazinolysis of the HCN oligomers releases 10% of the amino acids normally released by acid hydrolysis. The oligomers give a positive biuret test but this is not due to the presence of peptide bonds. There is no conclusive evidence for the presence of peptide bonds in the HCN oligomers. No diglycine was detected on partial hydrolysis of the HCN oligomers at pH 8.5 suggesting that HCN oligomers were not a source of prebiotic peptides.

  13. Infrared laser photolysis - A new tool for the study of prebiotic chemistry

    NASA Technical Reports Server (NTRS)

    Davis, D. D.; Smith, G. R.; Guillory, W. A.

    1980-01-01

    Infrared laser induced dielectric breakdown and multiphoton absorption experiments on CH4/NH3 'atmospheres' are described. It is found that HCN, a central intermediate in prebiotic chemistry, is a principal product. This, combined with the fact that dielectric breakdown appears to have much in common with ordinary electric sparks, suggests that the laser could be a useful tool in studies of prebiotic chemistry. Several possible experiments in this vein are suggested.

  14. Probiotics, prebiotics and the gastrointestinal tract in health and disease.

    PubMed

    Vitetta, Luis; Briskey, David; Alford, Hollie; Hall, Sean; Coulson, Samantha

    2014-06-01

    The microbiome located in the human gastrointestinal tract (GIT) comprises the largest community (diverse and dense) of bacteria, and in conjunction with a conducive internal milieu, promotes the development of regulated pro- and anti-inflammatory signals within the GIT that promotes immunological and metabolic tolerance. In addition, host-microbial interactions govern GIT inflammation and provide cues for upholding metabolic regulation in both the host and microbes. Failure to regulate inflammatory responses can increase the risk of developing inflammatory conditions in the GIT. Here, we review clinical studies regarding the efficacy of probiotics/prebiotics and the role they may have in restoring host metabolic homeostasis by rescuing the inflammatory response. The clinical studies reviewed included functional constipation, antibiotic-associated diarrhoea, Clostridium difficile diarrhoea, infectious diarrhoea/gastroenteritis, irritable bowel syndrome, inflammatory bowel diseases and necrotizing enterocolitis. We have demonstrated that there was an overall reduction in risk when probiotics were administered over placebo in the majority of GIT inflammatory conditions. The effect size of a cumulative reduction in relative risk for the GIT conditions/diseases investigated was 0.65 (0.61-0.70) (z = 13.3); p < 0.0001 that is an average reduction in risk of 35 % in favour of probiotics. We also progress a hypothesis that the GIT comprises numerous micro-axes (e.g. mucus secretion, Th1/Th2 balance) that are in operational homeostasis; hence probiotics and prebiotics may have a significant pharmacobiotic regulatory role in maintaining host GIT homeostasis in disease states partially through reactive oxygen species signalling. PMID:24633989

  15. Hydrothermal Systems of Kamchatka are Models of the Prebiotic Environment

    NASA Astrophysics Data System (ADS)

    Kompanichenko, V. N.; Poturay, V. A.; Shlufman, K. V.

    2015-06-01

    The composition of organic matter and fluctuations of thermodynamic parameters were investigated in the hydrothermal systems of the Kamchatka peninsula in the context of the origin of life. Organics were analyzed by gas-chromatography/mass spectrometry, and 111 organic compounds belonging to 14 homologous series (aromatic hydrocarbons, alkanes and isoalkanes, halogenated aromatic hydrocarbons, carboxylic acids, esters, etc.) were found in hot springs inhabited by Archaeal and Bacterial thermophiles. The organics detected in the sterile condensate of water-steam mixture taken from deep boreholes (temperature 108-175 °C) consisted of 69 compounds of 11 homologous series, with aromatic hydrocarbons and alkanes being prevalent. The organic material included important prebiotic components such as nitrogen-containing compounds and lipid precursors. A separate organic phase (oil) was discovered in the Uzon Caldera. A biogenic origin is supported by the presence of sterane and hopane biomarkers and the δ13C value of the bulk oil; its age determined by 14C measurements was 1030 ± 40 years. Multilevel fluctuations of thermodynamic parameters proposed to be required for the origin of life were determined in the Mutnovsky and Pauzhetsky hydrothermal systems. The low-frequency component of the hydrothermal fluid pressure varied by up to 2 bars over periods of hours to days, while mid-frequency variations had regular micro-oscillations with periods of about 20 min; the high-frequency component displayed sharp changes of pressure and microfluctuations with periods less than 5 min. The correlation coefficient between pressure and temperature ranges from 0.89 to 0.99 (average 0.96). The natural regimes of pressure and temperature fluctuations in Kamchatka hydrothermal systems can guide future experiments on prebiotic chemistry under oscillating conditions.

  16. Prebiotic organic synthesis under hydrothermal conditions: an overview

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.

    Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150 °C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100 to 400 °C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250 °C. The compounds range from C6 to >C33, including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a

  17. Hydrothermal Systems of Kamchatka are Models of the Prebiotic Environment.

    PubMed

    Kompanichenko, V N; Poturay, V A; Shlufman, K V

    2015-06-01

    The composition of organic matter and fluctuations of thermodynamic parameters were investigated in the hydrothermal systems of the Kamchatka peninsula in the context of the origin of life. Organics were analyzed by gas-chromatography/mass spectrometry, and 111 organic compounds belonging to 14 homologous series (aromatic hydrocarbons, alkanes and isoalkanes, halogenated aromatic hydrocarbons, carboxylic acids, esters, etc.) were found in hot springs inhabited by Archaeal and Bacterial thermophiles. The organics detected in the sterile condensate of water-steam mixture taken from deep boreholes (temperature 108-175 °C) consisted of 69 compounds of 11 homologous series, with aromatic hydrocarbons and alkanes being prevalent. The organic material included important prebiotic components such as nitrogen-containing compounds and lipid precursors. A separate organic phase (oil) was discovered in the Uzon Caldera. A biogenic origin is supported by the presence of sterane and hopane biomarkers and the δ(13)C value of the bulk oil; its age determined by (14)C measurements was 1030 ± 40 years. Multilevel fluctuations of thermodynamic parameters proposed to be required for the origin of life were determined in the Mutnovsky and Pauzhetsky hydrothermal systems. The low-frequency component of the hydrothermal fluid pressure varied by up to 2 bars over periods of hours to days, while mid-frequency variations had regular micro-oscillations with periods of about 20 min; the high-frequency component displayed sharp changes of pressure and microfluctuations with periods less than 5 min. The correlation coefficient between pressure and temperature ranges from 0.89 to 0.99 (average 0.96). The natural regimes of pressure and temperature fluctuations in Kamchatka hydrothermal systems can guide future experiments on prebiotic chemistry under oscillating conditions. PMID:25796393

  18. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth

    PubMed Central

    Fiore, Michele; Strazewski, Peter

    2016-01-01

    It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles. PMID:27043635

  19. Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth.

    PubMed

    Fiore, Michele; Strazewski, Peter

    2016-01-01

    It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles. PMID:27043635

  20. Potential effect of ultrasound on carbohydrates.

    PubMed

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. PMID:25954862

  1. Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora

    PubMed Central

    Samanta, A.K.; Jayapal, Natasha; Senani, S.; Kolte, A.P.; Sridhar, Manpal

    2013-01-01

    In recent years, there has been a growing appreciation on the relevance of gastrointestinal microflora in both ruminants and non-ruminants owing to revelation of their role in several physiological functions including digestion, nutrient utilization, pathogen exclusion, gastrointestinal development, immunity system, gut gene expression and quality of animal products. The ban imposed on the use of antibiotics and hormones in feed has compelled animal researchers in finding an alternative which could overcome the issues of conventional feed additives. Though the concept of prebiotic was evolved keeping in mind the gastrointestinal flora of human beings, presently animal researchers are exploring the efficiency of prebiotic (inulin) for modulating the gut ecosystem of both ruminants and non-ruminants. It was revealed that prebiotic inulin is found to exhibit desirable changes in the gut of non-ruminants like poultry, swine, rabbit etc for augmenting gut health and improvement of product quality. Similarly, in ruminants the prebiotic reduces rumen ammonia nitrogen, methane production, increase microbial protein synthesis and live weight gains in calves. Unlike other feed additives, prebiotic exhibits its effect in multipronged ways for overall increase in the performances of the animals. In coming days, it is expected that prebiotics could be the part of diets in both ruminants and non-ruminants for enabling modulation of gut microflora vis a vis animals productivity in ecological ways. PMID:24159277

  2. The use of prebiotics during the first year of life for atopy prevention and treatment

    PubMed Central

    de Moura, Priscilla Negrão; Rosário Filho, Nelson Augusto

    2013-01-01

    The incidence of allergic diseases has increased in recent decades. Therefore, the aim of this systematic review was to assess the efficacy of prebiotics for the prevention and treatment of allergic manifestations in children. We sought to conduct a systematic review of the effectiveness of prebiotics in the prevention and treatment of allergic diseases in children. We searched the MEDLINE, EMBASE, Cochrane Library, LILACS, SciELO, IBECS, Web of Science and Clinical Trials databases as well as Google Scholar and the references of the articles identified. Randomised clinical trials, in which one of the treatments was performed with prebiotics and the control group was treated with placebo, were included in the review. The data selection were performed by two reviewers, and the study quality was evaluated according to the Consolidated Standards of Reporting Trials (CONSORT) items, according to the recommendations for improving the quality of reports of randomised clinical trials. The selected studies showed heterogeneity with regard to the participants, albeit with similar outcomes. The treatment group size ranged from 134 to 259 children, and the studies compared prebiotic to placebo treatment in each group. In general, these articles showed a trend toward less allergic reactions in the groups receiving active therapy with prebiotics. Although there was a trend for reduced allergic symptoms following the administration of prebiotics, there was not sufficient evidence to establish that such treatment is effective for the prevention of allergies in children. PMID:25400918

  3. Innate immune response of pullets fed diets supplemented with prebiotics and synbiotics.

    PubMed

    Yitbarek, A; Echeverry, H; Munyaka, P; Rodriguez-Lecompte, J C

    2015-08-01

    Prebiotics and synbiotics are considered to be among the most promising replacements for in-feed antibiotic growth promoters (AGP) in poultry feed. The current study was designed to study the effect of Bacitracin methylene disalicylate (BMD) (Control), yeast-derived carbohydrates (YDC), and a blend of YDC and probiotics [Lactobacillus acidophilus, Lactobacillus casei, Streptococcus faecium, Bacillus subtilis, and YDC] (SNB) in the performance and innate immune response of pullets. Feed intake and BW were measured on a weekly basis. At the end of the study (d 21), 10 birds/treatment were sacrificed by cervical dislocation and ileum, cecal tonsil, and spleen samples were collected for gene expression analysis. No significant difference (P > 0.05) in feed intake and G:F was observed among treatments. In the second and third wk age, higher BW gain was observed in SNB treatment compared to control and both control and YDC treatments, respectively. Expression of TLR2b was upregulated in YDC and SNB in the ileum, and in SNB in the spleen (P < 0.05). Expression of TLR4 was downregulated in SNB in the cecal tonsil. Expression of TLR21 was downregulated in YDC in the ileum, while it was upregulated in SNB in the spleen (P < 0.05). In the ileum, YDC resulted in downregulated IL-12p35, CxCLi2, and IL-13, and SNB resulted in upregulated IL-6, interferon (IFN)-γ, and IL-4 (P < 0.05). In the cecal tonsil, YDC resulted in upregulated IL-12p35, IL-2, IL-13 and IL-10, and SNB resulted in downregulated IL-2 and upregulated IL-13 and IL-10 (P < 0.05). In the spleen, YDC resulted in dowregulated IL-2 and CxCLi2, and SNB resulted in upregulated IL-6, IFN-γ, IL-4, and IL-10 (P < 0.05). In conclusion, no change in performance was observed. Innate immune response analysis showed SNB with a more potent effect compared to YDC where the former showed a balanced T-helper (Th)-1/Th-2 response locally and a more Th-2-dependent response systemically; SNB might provide a more beneficial immune

  4. Nutraceutical and pharmacological implications of marine carbohydrates.

    PubMed

    Pallela, Ramjee

    2014-01-01

    Current day's research has been focusing much on the potential pharmacological or nutraceutical agents of selective health benefits with less toxicity. As a consequence of increased demand of nutritional supplements of great medicinal values, development of therapeutic agents from natural sources, in particular, marine environment are being considered much important. A diverse array of marine natural products containing medicinally useful nutritional substances, i.e., marine nutraceuticals have been focused to the benefit of mankind. Carbohydrates, by being constituted in considerable amount of many marine organisms display several nutraceutical and pharmaceutical behavior to defend from various diseases. Moreover, the carbohydrates from algae as well as from shellfish wastes, like chitosan and its derivatives, showed tremendous applications in biology and biomedicine. In the current chapter, several of marine carbohydrates from various marine flora and fauna have been covered with their applications and prospects in the development of nutraceuticals and pharmaceuticals. PMID:25300547

  5. Investigation of Carbohydrate Recognition via Computer Simulation

    SciTech Connect

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.

  6. Investigation of Carbohydrate Recognition via Computer Simulation

    DOE PAGESBeta

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; Shen, Tongye

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We reviewmore » the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.« less

  7. Heterogeneously-Catalyzed Conversion of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Vigier, Karine De Oliveira; Jérôme, François

    Polyfunctionality of carbohydrates and their low solubility in conventional organic solvents make rather complex their conversion to higher value added chemicals. Therefore, innovative processes are now strongly needed in order to increase the selectivity of these reactions. Here, we report an overview of the different heterogeneously-catalyzed processes described in the literature. In particular, hydrolysis, dehydration, oxidation, esterification, and etherification of carbohydrates are presented. We shall discuss the main structural parameters that need to be controlled and that permit the conversion of carbohydrates to bioproducts with good selectivity. The conversion of monosaccharides and disaccharides over solid catalysts, as well as recent advances in the heterogeneously-catalyzed conversion of cellulose, will be presented.

  8. Preparation of nanoparticles bearing high density carbohydrate chains using carbohydrate-carrying polymers as emulsifier.

    PubMed

    Maruyama, A; Ishihara, T; Adachi, N; Akaike, T

    1994-10-01

    A novel method of preparing nanoparticles bearing high density carbohydrate chains on their surface is described. Carbohydrate-bearing nanoparticles of poly(lactic acid) or polystyrene were prepared by the solvent evaporation method using a carbohydrate-carrying polystyrene derivative which served as both an emulsifier and a surface coating. The diameter of the obtained nanoparticles ranged from 80 to 300 nm depending on the concentration of the polystyrene derivative. As the concentration of the polystyrene derivatives increased the nanoparticle diameter decreased, indicating that the polystyrene derivatives worked as an emulsifier. The obtained particles were specifically aggregated by carbohydrate-specific lectin, showing that the polystyrene derivative was retained on the particle surfaces and expressed carbohydrate residues. The density of carbohydrates on the particle surfaces was determined to be 3-5 molecules per square nanometre. The particles prepared by the present method were stably dispersed and hardly aggregated in aqueous media during storage and centrifugal treatment compared with the post-coated particles that were prepared by adsorbing polystyrene particles with the polystyrene derivative. In vitro study with isolated rat hepatocytes revealed that surface carbohydrate chains were recognized by hepatocytes. PMID:7888573

  9. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    SciTech Connect

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  10. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted.

    PubMed

    Kasper, Andreas M; Cocking, Scott; Cockayne, Molly; Barnard, Marcus; Tench, Jake; Parker, Liam; McAndrew, John; Langan-Evans, Carl; Close, Graeme L; Morton, James P

    2016-08-01

    We tested the hypothesis that carbohydrate mouth rinsing, alone or in combination with caffeine, augments high-intensity interval (HIT) running capacity undertaken in a carbohydrate-restricted state. Carbohydrate restriction was achieved by performing high-intensity running to volitional exhaustion in the evening prior to the main experimental trials and further refraining from carbohydrate intake in the post-exercise and overnight period. On the subsequent morning, eight males performed 45-min steady-state (SS) exercise (65% [Formula: see text]) followed by HIT running to exhaustion (1-min at 80% [Formula: see text]interspersed with 1-min walking at 6 km/h). Subjects completed 3 trials consisting of placebo capsules (administered immediately prior to SS and immediately before HIT) and placebo mouth rinse at 4-min intervals during HIT (PLACEBO), placebo capsules but 10% carbohydrate mouth rinse (CMR) at corresponding time-points or finally, caffeine capsules (200 mg per dose) plus 10% carbohydrate mouth rinse (CAFF + CMR) at corresponding time-points. Heart rate, capillary glucose, lactate, glycerol and NEFA were not different at exhaustion during HIT (P > 0.05). However, HIT capacity was different (P < 0.05) between all pair-wise comparisons such that CAFF + CMR (65 ± 26 min) was superior to CMR (52 ± 23 min) and PLACEBO (36 ± 22 min). We conclude that carbohydrate mouth rinsing and caffeine ingestion improves exercise capacity undertaken in carbohydrate-restricted states. Such nutritional strategies may be advantageous for those athletes who deliberately incorporate elements of training in carbohydrate-restricted states (i.e. the train-low paradigm) into their overall training programme in an attempt to strategically enhance mitochondrial adaptations of skeletal muscle. PMID:26035740

  11. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome

    PubMed Central

    2011-01-01

    The gut microbiota is increasingly considered as a symbiotic partner for the maintenance of health. The homeostasis of the gut microbiota is dependent on host characteristics (age, gender, genetic background…), environmental conditions (stress, drugs, gastrointestinal surgery, infectious and toxic agents…). Moreover, it is dependent on the day-to-day dietary changes. Experimental data in animals, but also observational studies in obese patients, suggest that the composition of the gut microbiota is a factor characterizing obese versus lean individuals, diabetic versus non diabetic patients, or patients presenting hepatic diseases such as non alcoholic steatohepatitis. Interestingly, the changes in the gut microbes can be reversed by dieting and related weight loss. The qualitative and quantitative changes in the intake of specific food components (fatty acids, carbohydrates, micronutrients, prebiotics, probiotics), have not only consequences on the gut microbiota composition, but may modulate the expression of genes in host tissues such as the liver, adipose tissue, intestine, muscle. This in turn may drive or lessen the development of fat mass and metabolic disturbances associated with the gut barrier function and the systemic immunity. The relevance of the prebiotic or probiotic approaches in the management of obesity in humans is supported by few intervention studies in humans up to now, but the experimental data obtained with those compounds help to elucidate novel potential molecular targets relating diet with gut microbes. The metagenomic and integrative metabolomic approaches could help elucidate which bacteria, among the trillions in human gut, or more specifically which activities/genes, could participate to the control of host energy metabolism, and could be relevant for future therapeutic developments. PMID:21995448

  12. Complex carbohydrates as a possible source of high energy to formulate functional feeds.

    PubMed

    Ochoa, Leonel; Paniagua Michel, José de Jesús; Olmos-Soto, Jorge

    2014-01-01

    Carbohydrates (CHOs) are the most abundant organic compounds found in living organisms and are a great source of metabolic energy, both for plants and animals. Besides of CHOs great potential to solve animal's energy requirements and diminishing high feed cost, we first must to understand its digestibility and assimilation to avoid several inconvenients. Today, CHOs feed animal inclusions are of great concern about cost-benefits, animal's health status, and environmental pollution. In this chapter, we make a brief description about sugars (DP1-2), oligosaccharides (DP3-9), polysaccharides (DP ≥10), and their essential characteristics to understand the role of marine and terrestrial CHOs in animal nutrition. Subsequently, we talk about basic concepts, CHOs functional benefits, suggestions about their application and successful cases. This information will contribute to produce a new generation of high-quality and energetic functional feed formulations for livestock and aquaculture farms; which must be of low cost, healthy, and environmentally friendly, with the inclusion of prebiotics and probiotics. PMID:25300550

  13. Chemical and enzymatic approaches to carbohydrate-derived spiroketals: di-D-fructose dianhydrides (DFAs).

    PubMed

    García-Moreno, M Isabel; Benito, Juan M; Mellet, Carmen Ortiz; Fernández, José M García

    2008-01-01

    Di-D-fructose dianhydrides (DFAs) comprise a unique family of stereoisomeric spiro-tricyclic disaccharides formed upon thermal and/or acidic activation of sucrose- and/ or D-fructose-rich materials. The recent discovery of the presence of DFAs in food products and their remarkable nutritional features has attracted considerable interest from the food industry. DFAs behave as low-caloric sweeteners and have proven to exert beneficial prebiotic nutritional functions, favouring the growth of Bifidobacterium spp. In the era of functional foods, investigation of the beneficial properties of DFAs has become an important issue. However, the complexity of the DFA mixtures formed during caramelization or roasting of carbohydrates by traditional procedures (up to 14 diastereomeric spiroketal cores) makes evaluation of their individual properties a difficult challenge. Great effort has gone into the development of efficient procedures to obtain DFAs in pure form at laboratory and industrial scale. This paper is devoted to review the recent advances in the stereoselective synthesis of DFAs by means of chemical and enzymatic approaches, their scope, limitations, and complementarities. PMID:18794777

  14. Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin.

    PubMed

    Hobden, Mark R; Guérin-Deremaux, Laetitia; Rowland, Ian; Gibson, Glenn R; Kennedy, Orla B

    2015-08-01

    Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology. PMID:25721052

  15. Influence of the UV Environment on the Synthesis of Prebiotic Molecules.

    PubMed

    Ranjan, Sukrit; Sasselov, Dimitar D

    2016-01-01

    Ultraviolet radiation is common to most planetary environments and could play a key role in the chemistry of molecules relevant to abiogenesis (prebiotic chemistry). In this work, we explore the impact of UV light on prebiotic chemistry that might occur in liquid water on the surface of a planet with an atmosphere. We consider effects including atmospheric absorption, attenuation by water, and stellar variability to constrain the UV input as a function of wavelength. We conclude that the UV environment would be characterized by broadband input, and wavelengths below 204 nm and 168 nm would be shielded out by atmospheric CO2 and water, respectively. We compare this broadband prebiotic UV input to the narrowband UV sources (e.g., mercury lamps) often used in laboratory studies of prebiotic chemistry and explore the implications for the conclusions drawn from these experiments. We consider as case studies the ribonucleotide synthesis pathway of Powner et al. (2009) and the sugar synthesis pathway of Ritson and Sutherland (2012). Irradiation by narrowband UV light from a mercury lamp formed an integral component of these studies; we quantitatively explore the impact of more realistic UV input on the conclusions that can be drawn from these experiments. Finally, we explore the constraints solar UV input places on the buildup of prebiotically important feedstock gasses like CH4 and HCN. Our results demonstrate the importance of characterizing the wavelength dependence (action spectra) of prebiotic synthesis pathways to determine how pathways derived under laboratory irradiation conditions will function under planetary prebiotic conditions. PMID:26789356

  16. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment.

    PubMed

    Solis de los Santos, F; Farnell, M B; Téllez, G; Balog, J M; Anthony, N B; Torres-Rodriguez, A; Higgins, S; Hargis, B M; Donoghue, A M

    2005-07-01

    Modern broilers have been genetically selected for an increased growth rate and improved feed conversion, but they are also more susceptible to ascites. Ascites occurs when there is an imbalance between available oxygen and the oxygen demand of the broiler. We hypothesized that promoting neonatal gut development with a prebiotic, such as Aspergillus meal (Prebiotic-AM), would enhance gut efficiency, decrease the oxygen demand of the gut, and reduce ascites incidence. In this study, we compared the effect of Prebiotic-AM on ascites incidence and gut development in commercial broilers reared at a local altitude (390 m above sea level) and a simulated high altitude (2,900 m above sea level). Half of the birds received a National Research Council recommended corn-soybean ration, and the other half received the same ration supplemented with 0.2% Prebiotic-AM. These 2 groups were further divided into a local altitude group and a simulated high altitude group for a total of 4 treatment combinations. Tissues were collected on d 1, 3, 7, 14, and 21 from the duodenum and lower ileum and placed in 10% buffered formalin for morphometric analysis. At a simulated high altitude, ascites incidence was 68% for birds fed the Prebiotic-AM supplement compared with 92% ascites incidence in birds given the control feed. The simulated high altitude decreased (P < 0.05) gut development, but prebiotic-treated birds reared in hypoxic conditions had similar gut development to control birds reared at local altitude. These data suggest that a feed ration supplemented with Prebiotic-AM may reduce the effect of hypoxia on broiler gut development and ascites incidence. PMID:16050126

  17. The diagenesis of carbohydrates by hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    1983-08-01

    Carbohydrates react with hydrogen sulfide under low temperature (100° to 200°C) yielding a variety of organosulfur compounds including thiophenes, thiols, sulfides and sulfones. A polymer is also produced, whose elemental composition is within the range of natural coals. When reductive dehydration is carried out in the presence of hydrocarbon, organosulfur compounds are formed in the carbon number range of the hydrocarbon used. In these processes, an active hydrogen transfer catalyst is produced which facilitates the passage of hydrogen between normal paraffins and saccharide units, distributing sulfur between these two families primarily in the form of thiophene rings. The simplicity of these systems - H 2S, carbohydrates, H 2O, hydrocarbon - and the facility of the chemistry would suggest that the carbohydrates and hydrogen sulfide may be important agents in the diagenetic processes leading to petroleum and coal. Carbohydrate reduction by hydrogen sulfide may constitute an important route through which certain organosulfur compounds found in petroleum and coal entered these materials in early diagenesis.

  18. Permethylation Linkage Analysis Techniques for Residual Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permethylation analysis is the classic approach to establishing the position of glycosidic linkages between sugar residues. Typically, the carbohydrate is derivatized to form acid-stable methyl ethers, hydrolyzed, peracetylated, and analyzed by gas chromatography-mass spectrometry (GC-MS). The pos...

  19. The clinical impact of carbohydrate malabsorption.

    PubMed

    Born, Peter

    2011-03-01

    Malabsorption of carbohydrates such as fructose, lactose or sorbitol can often be detected among patients suffering from so-called non specific abdominal complaints. Sometimes the differential diagnosis may be difficult. So far successful treatment consists of dietary interventions only. Nevertheless, many questions are remaining still unanswered. PMID:21429446

  20. Separation and quantification of microalgal carbohydrates.

    PubMed

    Templeton, David W; Quinn, Matthew; Van Wychen, Stefanie; Hyman, Deborah; Laurens, Lieve M L

    2012-12-28

    Structural carbohydrates can constitute a large fraction of the dry weight of algal biomass and thus accurate identification and quantification is important for summative mass closure. Two limitations to the accurate characterization of microalgal carbohydrates are the lack of a robust analytical procedure to hydrolyze polymeric carbohydrates to their respective monomers and the subsequent identification and quantification of those monosaccharides. We address the second limitation, chromatographic separation of monosaccharides, here by identifying optimum conditions for the resolution of a synthetic mixture of 13 microalgae-specific monosaccharides, comprised of 8 neutral, 2 amino sugars, 2 uronic acids and 1 alditol (myo-inositol as an internal standard). The synthetic 13-carbohydrate mix showed incomplete resolution across 11 traditional high performance liquid chromatography (HPLC) methods, but showed improved resolution and accurate quantification using anion exchange chromatography (HPAEC) as well as alditol acetate derivatization followed by gas chromatography (for the neutral- and amino-sugars only). We demonstrate the application of monosaccharide quantification using optimized chromatography conditions after sulfuric acid analytical hydrolysis for three model algae strains and compare the quantification and complexity of monosaccharides in analytical hydrolysates relative to a typical terrestrial feedstock, sugarcane bagasse. PMID:23177152

  1. DIETARY CARBOHYDRATE IMPACT ON MILK COMPONENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates have long been recognized as the primary source of energy in dairy cattle diets, however, their effects on milk production beyond their energy values have not been well explored. There is basic recognition that fiber with its important role in maintaining rumen function can influence ...

  2. General Properties, Occurrence, and Preparation of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Robyt, John F.

    D-Glucose and its derivatives and analogues, N-acetyl-D-glucosamine, N-acetyl-D-muramic acid, D-glucopyranosyl uronic acid, and D-glucitol represent 99.9% of the carbohydrates on the earth. D-Glucose is found in the free state in human blood and in the combined state in disaccharides, sucrose, lactose, and α,α-trehalose, in cyclic dextrins, and in polysaccharides, starch, glycogen, cellulose, dextrans; N-acetyl-D-glucosamine and an analogue N-acetyl-D-muramic acid are found in bacterial cell wall polysaccharide, murein, along with teichoic acids made up of poly-glycerol or -ribitol phosphodiesters. Other carbohydrates, D-mannose, D-mannuronic acid, D-galactose, N-acetyl-D-galactosamine, D-galacturonic acid, D-iduronic acid, L-guluronic acid, L-rhamnose, L-fucose, D-xylose, and N-acetyl-D-neuraminic acid are found in glycoproteins, hemicelluloses, glycosaminoglycans, and polysaccharides of plant exudates, bacterial capsules, alginates, and heparin. D-Ribofuranose-5-phosphate is found in many coenzymes and is the backbone of RNAs (ribonucleic acid), and 2-deoxy-D-ribofuranose-5-phosphate is the backbone of DNA (deoxyribonucleic acid). D-Fructofuranose is found in sucrose, inulin, and levan. The general properties and occurrence of these carbohydrates and general methods of isolation and preparation of carbohydrates are presented.

  3. Indicators of normal carbohydrate digestion in children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More research is needed to determine the nutritional and clinical significance of the intermediate values of low but not deficient duodenal disaccharidase activities, but the Dahlqvist-method biopsy assay of activity serves as a gnomon of carbohydrate digestion, in the sense that Anaximander used a ...

  4. New Insights into Prebiotic Chemistry from Old Archived Miller Extracts

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael P.; Aubrey, Andrew D.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Following the discovery of an archived set of samples from Stanley Miller's early experiments, analyses were undertaken to better understand the diversity of compounds produced from electric discharges acting on reducing gas mixtures. The paper chromatography methods that Miller used in the 1950s were only capable of detecting a few amino acids and were unable to provide substantial quantitative data relative to today's techniques. Current analytical techniques are much more sensitive and selective, and are capable of precisely quantifying a much larger range of amino acids and their enantiomeric abundances. In one study, preserved dried samples produced by Miller using a lesser-known volcanic apparatus which differed from Miller's classic apparatus in that it utilized an aspirator that injected steam into the electric discharge chamber, simulating a volcanic eruption. The volcanic apparatus produced a wider variety of amino acids than the classic configuration. Prebiotic compounds synthesized in these environments may have locally accumulated where they could have undergone further processing. An additional preserved set of samples from an experiment conducted in 1958 were also found in Miller's archived collection. These samples which had been generated using a mixture of CH4, NH3, H2S and CO2 were collected, catalogued, and stored by Miller, but for unknown reasons were never studied. In our analyses a total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of amino butyric acid, are the highest ever found in a spark discharge experiment

  5. High Carbohydrate-Fiber Nutrition for Running and Health.

    ERIC Educational Resources Information Center

    Battinelli, Thomas

    1983-01-01

    The roles of carbohydrates, fats, proteins, and fiber in producing energy for health and exercise are discussed. Long-distance runners should have a high intake of complex carbohydrates and fiber. (PP)

  6. ILSI Brazil International Workshop on Functional Foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health

    PubMed Central

    Meheust, Agnès; Augustin, Livia; Benton, David; Berčík, Přemysl; Birkett, Anne; Eldridge, Alison L.; Faintuch, Joel; Hoffmann, Christian; Jones, Julie Miller; Kendall, Cyril; Lajolo, Franco; Perdigon, Gabriela; Prieto, Pedro Antonio; Rastall, Robert A.; Sievenpiper, John L.; Slavin, Joanne; de Menezes, Elizabete Wenzel

    2013-01-01

    To stimulate discussion around the topic of ‘carbohydrates’ and health, the Brazilian branch of the International Life Sciences Institute held the 11th International Functional Foods Workshop (1–2 December 2011) in which consolidated knowledge and recent scientific advances specific to the relationship between carbohydrates and health were presented. As part of this meeting, several key points related to dietary fiber, glycemic response, fructose, and impacts on satiety, cognition, mood, and gut microbiota were realized: 1) there is a need for global harmonization of a science-based fiber definition; 2) low-glycemic index foods can be used to modulate the postprandial glycemic response and may affect diabetes and cardiovascular outcomes; 3) carbohydrate type may influence satiety and satiation; glycemic load and glycemic index show links to memory, mood, and concentration; 4) validated biomarkers are needed to demonstrate the known prebiotic effect of carbohydrates; 5) negative effects of fructose are not evident when human data are systematically reviewed; 6) new research indicates that diet strongly influences the microbiome; and 7) there is mounting evidence that the intestinal microbiota has the ability to impact the gut–brain axis. Overall, there is much promise for development of functional foods that impact the microbiome and other factors relevant to health, including glycemic response (glycemic index/glycemic load), satiety, mood, cognition, and weight management. PMID:23399638

  7. Probiotics, prebiotics infant formula use in preterm or low birth weight infants: a systematic review

    PubMed Central

    2012-01-01

    Background Previous reviews (2005 to 2009) on preterm infants given probiotics or prebiotics with breast milk or mixed feeds focused on prevention of Necrotizing Enterocolitis, sepsis and diarrhea. This review assessed if probiotics, prebiotics led to improved growth and clinical outcomes in formula fed preterm infants. Methods Cochrane methodology was followed using randomized controlled trials (RCTs) which compared preterm formula containing probiotic(s) or prebiotic(s) to conventional preterm formula in preterm infants. The mean difference (MD) and corresponding 95% confidence intervals (CI) were reported for continuous outcomes, risk ratio (RR) and corresponding 95% CI for dichotomous outcomes. Heterogeneity was assessed by visual inspection of forest plots and a chi2 test. An I2 test assessed inconsistencies across studies. I2> 50% represented substantial heterogeneity. Results Four probiotics studies (N=212), 4 prebiotics studies (N=126) were included. Probiotics: There were no significant differences in weight gain (MD 1.96, 95% CI: -2.64 to 6.56, 2 studies, n=34) or in maximal enteral feed (MD 35.20, 95% CI: -7.61 to 78.02, 2 studies, n=34), number of stools per day increased significantly in probiotic group (MD 1.60, 95% CI: 1.20 to 2.00, 1 study, n=20). Prebiotics: Galacto-oligosaccharide / Fructo-oligosaccharide (GOS/FOS) yielded no significant difference in weight gain (MD 0.04, 95% CI: -2.65 to 2.73, 2 studies, n=50), GOS/FOS yielded no significant differences in length gain (MD 0.01, 95% CI: -0.03 to 0.04, 2 studies, n=50). There were no significant differences in head growth (MD −0.01, 95% CI: -0.02 to 0.00, 2 studies, n=76) or age at full enteral feed (MD −0.79, 95% CI: -2.20 to 0.61, 2 studies, n=86). Stool frequency increased significantly in prebiotic group (MD 0.80, 95% CI: 0.48 to 1.1, 2 studies, n=86). GOS/FOS and FOS yielded higher bifidobacteria counts in prebiotics group (MD 2.10, 95% CI: 0.96 to 3.24, n=27) and (MD 0.48, 95% CI: 0

  8. Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet.

    PubMed

    Staudacher, Heidi M; Whelan, Kevin

    2016-08-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder characterised by abdominal pain or discomfort with disordered defecation. This review describes the role of the gastrointestinal (GI) microbiota in the pathogenesis of IBS and how dietary strategies to manage symptoms impact on the microbial community. Evidence suggests a dysbiosis of the luminal and mucosal colonic microbiota in IBS, frequently characterised by a reduction in species of Bifidobacteria which has been associated with worse symptom profile. Probiotic supplementation trials suggest intentional modulation of the GI microbiota may be effective in treating IBS. A smaller number of prebiotic supplementation studies have also demonstrated effectiveness in IBS whilst increasing Bifidobacteria. In contrast, a novel method of managing IBS symptoms is the restriction of short-chain fermentable carbohydrates (low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet). Studies consistently demonstrate clinical effectiveness of the low FODMAP diet in patients with IBS. However, one unintentional consequence of this dietary intervention is its impact on the microbiota. This leads to an interesting paradox; namely, increasing luminal Bifidobacteria through probiotic supplementation is associated with a reduction in IBS symptoms while in direct conflict to this, the low FODMAP diet has clinical efficacy but markedly reduces luminal Bifidobacteria concentration. Given the multifactorial aetiology of IBS, the heterogeneity of symptoms and the complex and diverse nature of the microbiome, it is probable that both interventions are effective in patient subgroups. However combination treatment has never been explored and as such, presents an exciting opportunity for optimising clinical management, whilst preventing potentially deleterious effects on the GI microbiota. PMID:26908093

  9. Self-Assembly of Phosphate Amphiphiles in Mixtures of Prebiotically Plausible Surfactants

    PubMed Central

    Albertsen, A.N.; Duffy, C.D.; Sutherland, J.D.

    2014-01-01

    Abstract The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks. Key Words: Vesicles—Alkyl phosphate—Prebiotic synthesis—Amphiphile mixtures. Astrobiology 14, 462–472. PMID:24885934

  10. In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota.

    PubMed

    Pérez-López, E; Cela, D; Costabile, A; Mateos-Aparicio, I; Rupérez, P

    2016-09-01

    At present, there is a huge interest in finding new prebiotics from agrofood industrial waste, such as the soyabean by-product Okara, rich in insoluble dietary fibre. A previous treatment of Okara with high hydrostatic pressure assisted by the food-grade enzyme Ultraflo ® L achieved a 58·2 % increment in its soluble dietary fibre (SDF) contents. Therefore, potential prebiotic effect of both treated and native Okara was assayed using 48 h, pH-controlled, anaerobic batch cultures inoculated with human faecal slurries, which simulate the human gut. Changes in faecal microbiota were evaluated using 16S rRNA-based fluorescence in situ hybridisation, whereas release of SCFA and lactic acid was assessed by HPLC. Both Okara samples exhibited potential prebiotic effects but Okara treated to maximise its SDF content showed higher SCFA plus lactic acid, better growth promotion of beneficial bacteria, including bifidobacteria after 4 and 48 h and lactobacilli after 4 h of fermentation, and a greater inhibition of potentially harmful bacterial groups such as clostridia and Bacteroides. Differences found between fructo-oligosaccharides and Okara substrates could be attributed to the great complexity of Okara's cell wall, which would need longer times to be fermented than other easily digested molecules, thus allowing an extended potential prebiotic effect. These results support an in vitro potential prebiotic effect of Okara. PMID:27469454

  11. Prebiotic Alternatives to Proteins: Structure and Function of Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Mamajanov, Irena; Callahan, Michael P.; Dworkin, Jason P.; Cody, George D.

    2015-06-01

    Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins' three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.

  12. Molecular Asymmetry in Prebiotic Chemistry: An Account from Meteorites.

    PubMed

    Pizzarello, Sandra

    2016-01-01

    Carbonaceous Chondrite (CC) meteorites are fragments of asteroids, solar planetesimals that never became large enough to separate matter by their density, like terrestrial planets. CC contains various amounts of organic carbon and carry a record of chemical evolution as it came to be in the Solar System, at the time the Earth was formed and before the origins of life. We review this record as it pertains to the chiral asymmetry determined for several organic compounds in CC, which reaches a broad molecular distribution and enantiomeric excesses of up to 50%-60%. Because homochirality is an indispensable attribute of extant polymers and these meteoritic enantiomeric excesses are still, to date, the only case of chiral asymmetry in organic molecules measured outside the biosphere, the possibility of an exogenous delivery of primed prebiotic compounds to early Earth from meteorites is often proposed. Whether this exogenous delivery held a chiral advantage in molecular evolution remains an open question, as many others regarding the origins of life are. PMID:27089368

  13. Inulin Potential for Enzymatic Obtaining of Prebiotic Oligosaccharides.

    PubMed

    Flores, Adriana C; Morlett, Jesús A; Rodríguez, Raúl

    2016-08-17

    Oligosaccharides have been marketed since the 80s as low-calorie agents and recently have gained interest in the pharmaceutical and food industry as functional sweeteners and prebiotic enriching population of Bifidobacteria. Currently, they have an approximated value of $200 per kg and recently, inulin has been proposed as a feedstock for production of oligosaccharides through selective hydrolysis by action of endoinulinase. High optimum temperature (60°C) and thermostability are two important criteria that determine suitability of this enzyme for industrial applications as well as enzyme cost, a major limiting factor. Significant reduction in cost can be achieved by employing low-value and abundant inulin-rich plants as Jerusalem artichoke, dahlia, yacon, garlic, and onion, among others. In general, the early harvested tubers of these plants contain a greater amount of highly polymerized sugar fractions, which offer more industrial value than late-harvested tubers or those after storage. Also, development of recombinant microorganisms could be useful to reduce the cost of enzyme technology for large-scale production of oligosaccharides. In the case of fungal inulinases, several studies of cloning and modification have been made to achieve greater efficiency. The present paper reviews inulin from vegetable sources as feedstock for oligosaccharides production through the action of inulinases, the impact of polymerization degree of inulin and its availability, and some strategies to increase oligosaccharide production. PMID:25746219

  14. Prebiotic materials from on and off the early Earth

    PubMed Central

    Bernstein, Max

    2006-01-01

    One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller–Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System. PMID:17008210

  15. [Infant formulas supplemented with prebiotics: intestinal microbiota and immune responses].

    PubMed

    Fanaro, S; Vigi, V

    2008-06-01

    It is well known that the type of feeding influences the composition of the gut microflora after birth. Human milk favours the growth of a ''bifidus flora'' which, according to several evidences, may activate the immune system and defend from pathogens. Breast milk oligosaccharides, which are involved in many functional effects both at local and systemic level, are thought to stimulate the growth of health promoting microbes, such as bifidobacteria, and may ultimately influence the immune system. In accordance with this current working hypothesis, dietary modulation of the gut microbiota to obtain a ''bifidus flora'' also in bottle-fed infants may be a useful way to stimulate immunological functions and to harbour a biological barrier against pathogens. In several clinical trials prebiotic oligosaccharides have been used to mimic the beneficial effects of breast milk oligosaccharides. A mixture of oligosaccharides has shown its efficacy in stimulating the establishment of a ''bifidus flora'', with stools closer to those found in breast-fed infants. Several experimental data also indicate that oligosaccharides might modulate the immune system and contribute to the improvement of the protective properties of infant formulas. PMID:18487978

  16. An efficient prebiotic synthesis of cytosine and uracil

    NASA Astrophysics Data System (ADS)

    Robertson, Michael P.; Miller, Stanley L.

    1995-06-01

    IN contrast to the purines1 3, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyano-acetylene and cyanate4,5; the former precursor is produced from a spark discharge in a CH4/N2 mixture4,5 and is an abundant interstellar molecule6. But this reaction requires relatively high concentrations of cyanate (>0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored7 is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene8) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine7. Here we show that in concentrated urea solution-such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth-cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world9.

  17. Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks.

    PubMed

    Peretó, Juli

    2012-08-21

    The origin of life on Earth was a chemical affair. So how did primitive biochemical systems originate from geochemical and cosmochemical processes on the young planet? Contemporary research into the origins of life subscribes to the Darwinian principle of material causes operating in an evolutionary context, as advocated by A. I. Oparin and J. B. S. Haldane in the 1920s. In its simplest form (e.g., a bacterial cell) extant biological complexity relies on the functional integration of metabolic networks and replicative genomes inside a lipid boundary. Different research programmes have explored the prebiotic plausibility of each of these autocatalytic subsystems and combinations thereof: self-maintained networks of small molecules, template chemistry, and self-reproductive vesicles. This tutorial review focuses on the debates surrounding the origin of metabolism and offers a brief overview of current studies on the evolution of metabolic networks. I suggest that a leitmotif in the origin and evolution of metabolism is the role played by catalysers' substrate ambiguity and multifunctionality. PMID:22508108

  18. Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease.

    PubMed

    Callaway, T R; Edrington, T S; Anderson, R C; Harvey, R B; Genovese, K J; Kennedy, C N; Venn, D W; Nisbet, D J

    2008-12-01

    The microbial population of the intestinal tract is a complex natural resource that can be utilized in an effort to reduce the impact of pathogenic bacteria that affect animal production and efficiency, as well as the safety of food products. Strategies have been devised to reduce the populations of food-borne pathogenic bacteria in animals at the on-farm stage. Many of these techniques rely on harnessing the natural competitive nature of bacteria to eliminate pathogens that negatively impact animal production or food safety. Thus feed products that are classified as probiotics, prebiotics and competitive exclusion cultures have been utilized as pathogen reduction strategies in food animals with varying degrees of success. The efficacy of these products is often due to specific microbial ecological factors that alter the competitive pressures experienced by the microbial population of the gut. A few products have been shown to be effective under field conditions and many have shown indications of effectiveness under experimental conditions and as a result probiotic products are widely used in all animal species and nearly all production systems. This review explores the ecology behind the efficacy of these products against pathogens found in food animals, including those that enter the food chain and impact human consumers. PMID:19102792

  19. Molecular Asymmetry in Prebiotic Chemistry: An Account from Meteorites

    PubMed Central

    Pizzarello, Sandra

    2016-01-01

    Carbonaceous Chondrite (CC) meteorites are fragments of asteroids, solar planetesimals that never became large enough to separate matter by their density, like terrestrial planets. CC contains various amounts of organic carbon and carry a record of chemical evolution as it came to be in the Solar System, at the time the Earth was formed and before the origins of life. We review this record as it pertains to the chiral asymmetry determined for several organic compounds in CC, which reaches a broad molecular distribution and enantiomeric excesses of up to 50%–60%. Because homochirality is an indispensable attribute of extant polymers and these meteoritic enantiomeric excesses are still, to date, the only case of chiral asymmetry in organic molecules measured outside the biosphere, the possibility of an exogenous delivery of primed prebiotic compounds to early Earth from meteorites is often proposed. Whether this exogenous delivery held a chiral advantage in molecular evolution remains an open question, as many others regarding the origins of life are. PMID:27089368

  20. [Use of probiotics and prebiotics in primary care].

    PubMed

    Álvarez Calatayud, Guillermo; Azpiroz, Fernando

    2015-01-01

    Probiotics are used in a great number of both paediatric and adult diseases, mainly in gastrointestinal disorders, like diarrhoea. Nevertheless, their beneficial effect on immune alterations, such as atopic dermatitis and, more recently, in women related diseases such as vulvovaginitis and mastitis have also been observed. However, the use of probiotics is not completely implemented into the routine clinical practice for primary care physicians. There is still a great controversy with scarce scientific evidence, due to the diversity in the designs thereof which justifies the variability in the efficacy results. This outcome leads to difficulties in developing definitive treatment guidelines although there are exceptions, for example, WGO. The aim of this workshop, held at the VI Congress of the Spanish Society of Probiotics and Prebiotics is the training of primary care physicians, both paediatricians and general practitioners in the clinical applications of these nutritional preparations in different diseases: acute diarrhoea; antibiotic associated diarrhoea, necrotizing enterocolitis, employment in infant milk formulas, infant colic, irritable bowel syndrome and inflammatory bowel disease, as well as vulvovaginitis and mastitis. PMID:25659055

  1. Cool Stars May Have Different Prebiotic Chemical Mix

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Spitzer Space Telescope detected a prebiotic, or potentially life-forming, molecule called hydrogen cyanide (HCN) in the planet-forming disks around yellow stars like our sun, but not in the disks around cooler, reddish stars.

    The observations are plotted in this graph, called a spectrum, in which light from the gas in the disks around the stars has been split up into its basic components, or wavelengths. Data from stars like our sun are yellow, and data from cool stars are orange. Light wavelengths are shown on the X-axis, and the relative brightness of disk emission is shown on the Y-axis. The signature of a baseline molecule, called acetylene (C2H2), was seen for both types of stars, but hydrogen cyanide was seen only around stars like our sun.

    Hydrogen cyanide is an organic, nitrogen-containing molecule. Five hydrogen cyanide molecules can link up to form adenine, one of the four chemical bases of DNA.

  2. Dynamical Study of Prebiotic Processing by Comet Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; McKay, Christopher P.; Borucki, William J.

    2003-01-01

    Comets and meteoroids that bombarded the Earth, other planets and moons are considered possible deliverers of prebiotic materials manufactured in space. Simultaneously, chemical processing can be initiated by the large kinetic energy imparted to the planetary atmosphere during comet/meteoroid entry. The efficiency of organic synthesis and the diversity of products by impact shock are known to decrease as the reducing power of the atmosphere decreases. It is generally accepted that rich organic products are produced in a methane atmosphere whereas a carbon dioxide atmosphere is reported to yield a dearth of products In order to understand the details of impact chemistry and how it depends on the atmospheric composition, we carried out simulations of the chemistry initiated by comet/meteoroid impact upon a planetary atmosphere using different atmospheric compositions. The simulations were done by solving the set of coupled equations for mass, momentum, and energy conservations, chemical kinetics, and transport, that describe a high-energy impact shock, subsequent expansion and cooling of the hot shocked gas by mixing with the ambient gas, and the eventual steady state composition.

  3. Isotopic characterisation of prebiotic synthesis of organic material

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Chang, S.

    1986-01-01

    Many primitive meteorites contain an insoluble organic material, much like terrestrial kerogen, whose mode of origin is currently unknown. When sujbected to stepwise decomposition, this material, unlike its terrestrial counterpart, reveals characteristic release patterns for the stable isotopes of carbon, hydrogen and nitrogen as a function of fractional release of each element. The purpose of this study is to try to match those release patterns using organic matter synthesised in the laboratory under controlled conditions. If successful, such a study would shed light on the origin of kerogen-like organic matter in the early solar system and, by extension, on prebiotic organic synthesis in general. The range of possible syntheses, starting materials and reaction conditions to be investigated is considerable. Samples analysed to date include: a heavy oil produced by Fischer-Tropsch-type catalysis of CO + H2; a solid residue generated by a plasma discharge in CO + H2 + N2; a solid deposited on the electrodes of a Miller-Urey synthesis operating on CH4 + H2O + N2; and a solid residue formed by polymerization of light hydrocarbons procured by a Miller-Urey discharge acting on CH4. Significant structure is observed in the release patterns for the carbon and hydrogen isotopes from the synthetic samples, though there is little evidence for isotopic fractionation during the analysis itself.

  4. Functional food concept and its application to prebiotics.

    PubMed

    Roberfroid, M

    2002-09-01

    A food can be regarded as functional if it is satisfactorily demonstrated to affect beneficially one or more target functions in the body, beyond adequate nutritional effects, in a way which is relevant to either the state of wellbeing and health or the reduction of the risk of a disease. A food can be made functional by increasing the concentration, adding or improving the bioavailability of a particular component. Functional food science will serve to establish claims based either on enhanced function or disease risk reduction. Inulin and oligofructose are functional food ingredients present in miscellaneous edible plants. They are non-digestible oligosaccharides classified as dietary fibres. The target for their functional effects is the colonic microflora that ferment them and for which they serve as selective "fertilizers"; the gastrointestinal physiology; the immune functions; the bioavailability of minerals; the metabolism of lipids; and colonic carcinogenesis. The scientific data available on the nutritional effects of inulin and oligofructose provide strong evidence for a prebiotic effect (i.e., selective stimulation of growth of bifidobacteria in colonic microbiota), improvement of bowel habit (both stool frequency and stool weight) and improved calcium bioavailability. PMID:12408452

  5. Sugar-Driven Prebiotic Synthesis of Ammonia from Nitrite

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2010-03-01

    Reaction of 3-5 carbon sugars, glycolaldehyde, and α-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible α-hydroxycarbonyl group or an α-dicarbonyl group. Small amounts of aqueous Fe+3 catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia’s reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species.

  6. Sugar-driven prebiotic synthesis of ammonia from nitrite.

    PubMed

    Weber, Arthur L

    2010-06-01

    Reaction of 3-5 carbon sugars, glycolaldehyde, and alpha-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible alpha-hydroxycarbonyl group or an alpha-dicarbonyl group. Small amounts of aqueous Fe(+3) catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia's reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species. PMID:20213158

  7. Nonequilibrium Steady States in Models of Prebiotic Evolution

    NASA Astrophysics Data System (ADS)

    Halley, J. W.; Wynveen, A.

    2014-12-01

    We report computational results from a model for prebiotic evolution.The model is schematic, but contains a correct description of thebasic statistical problem associated with understanding how the initiation of life can occur given the strong entropic barriers (sometimesknown as 'Eigen's paradox' and appearing in experiments as the 'tar problem'). The model is similar to one of the modelsintroduced years ago by Kauffman and coworkers. The important innovationwhich we introduce is imposition of the requirement that, to qualifyas a lifelike dynamical chemical system, the system must not be inchemical equilibrium. That constraint turns out to have major qualitativeeffects on the conclusions. In particular, very sparse chemical networksturn out to be the most favorable ones for generating autocatalyticnonequilibrium states. This suggests qualitatively that deserts might bebetter than ponds for initiating life. Some details of the models andsimulations will be described, including recent results in which weintroduce spatial diffusion and a proxy for temperature into the description ofthe model chemistry. Results on growth rates, convergence and theoverall probability of generation of lifelike states as a function ofparameters of the chemical network model will be presented.

  8. An efficient prebiotic synthesis of cytosine and uracil

    NASA Technical Reports Server (NTRS)

    Robertson, M. P.; Miller, S. L.

    1995-01-01

    In contrast to the purines, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyanoacetylene and cyanate; the former precursor is produced from a spark discharge in a CH4/N2 mixture and is an abundant interstellar molecule. But this reaction requires relatively high concentrations of cyanate (> 0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine. Here we show that in concentrated urea solution--such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth--cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world.

  9. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  10. Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus

    2013-06-01

    Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.

  11. Prebiotic materials from on and off the early Earth.

    PubMed

    Bernstein, Max

    2006-10-29

    One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System. PMID:17008210

  12. Intrinsic selectivity in some prebiotic reactions of urazole with sugars

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Colloton, Patricia A.

    2004-02-01

    Urazole (1,2,4-triazolidine-3,5-dione) (1), 4-methylurazole (12), and its carbon analog, 4,4-dimethylpyrazolidine-3,5-dione (18), react with 2-deoxy-D-ribose (2-deoxy-D-erythro-pentose; 6) in an aqueous solution at room temperature in a regioselective manner (a single substitution on a hydrazidic nitrogen, no reaction on the imide nitrogen) to give a mixture of four nucleosides. These are α and β pyranosides (p) and α and β furanosides (f). The α p forms in a stereoselective manner. A crystalline precipitate is formed in each of the above reactions, which is an exclusive enantiospecific product, 1R, 2R α p. 1 with 2-deoxy-L-ribose (10) gives a precipitate with the exclusive 1S, 2S α p stereochemistry. With 2-deoxy-D-glucose (2-deoxy-D-arabino-hexose; 7) the reaction with 1 is stereospecific, since only one isomer, β p, forms in the solution. Causes of enhanced reactivity of 1 with sugars were also studied. It was found that cyclic hydrazide analogs of 1, such as 12 and 18, are reactive, but open-chain analogs, 1,2,-diacetylhydrazine (21) and 1,2-dicarbethoxyhydrazine (22), are not. Although this reactivity assessment was done qualitatively and under restrictive reaction conditions, it still may be valuable for understanding α -effect of hydrazide nucleophiles. The prebiotic significance of our results is discussed.

  13. Prebiotic supplementation and adequate calcium intake have beneficial effects on body mass index changes during early adolescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prebiotics have been shown to enhance bone and gastrointestinal health. Recent data suggest a benefit to weight maintenance as well. However, few data are available in children or adolescents. The interactive effects of prebiotic intake and calcium intake on weight maintenance are unknown. Our objec...

  14. Effects of the prebiotics GroBiotic-A and inulin on the intestinal microbiota of red drum, Sciaenops ocellatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate feeding trials examined the effects of dietary supplementation of the prebiotics GroBiotic®-A and inulin on growth performance and gastrointestinal tract microbiota of the red drum Sciaenops ocellatus. In the first feeding trial, fishmeal-based diets without prebiotics or supplemented ...

  15. Characterization and prebiotic activity of aqueous extract and indigestible polysaccharide from Anoectochilus formosanus.

    PubMed

    Yang, Li-Chan; Lin, Wen-Chuan; Lu, Ting-Jang

    2012-09-01

    Anoectochilus formosanus (Orchidaceae) is a folk medicine in Asia. This study investigated the in vivo and in vitro prebiotic effects of an aqueous extract of A. formosanus (SAEAF) and of an indigestible polysaccharide (AFP) isolated from SAEAF. Chemical analyses showed AFP was mainly composed of arabinogalactan type II (AG-II), with an average molecular weight of 29 kDa. Following 4 weeks of oral administration to rats, SAEAF exhibited prebiotic effects including a decrease in cecum pH and increases of calcium absorption and fecal bifidobacteria. Furthermore, through a bioactivity-guided separation strategy, AFP was proven to be a bifidogenic component in vitro fecal strains fermentation and in vivo administration to mice. In RT-PCR analysis of Bifidobacterium , AFP increased the expression of ABC transporter related to nutrient uptake. Thus, AFP, a polysaccharide from A. formosanus, was demonstrated to be a prebiotic that has a positive health effect on gut microbiota. PMID:22793881

  16. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water.

    PubMed

    Cafferty, Brian J; Fialho, David M; Khanam, Jaheda; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-01-01

    The RNA World hypothesis presupposes that abiotic reactions originally produced nucleotides, the monomers of RNA and universal constituents of metabolism. However, compatible prebiotic reactions for the synthesis of complementary (that is, base pairing) nucleotides and mechanisms for their mutual selection within a complex chemical environment have not been reported. Here we show that two plausible prebiotic heterocycles, melamine and barbituric acid, form glycosidic linkages with ribose and ribose-5-phosphate in water to produce nucleosides and nucleotides in good yields. Even without purification, these nucleotides base pair in aqueous solution to create linear supramolecular assemblies containing thousands of ordered nucleotides. Nucleotide anomerization and supramolecular assemblies favour the biologically relevant β-anomer form of these ribonucleotides, revealing abiotic mechanisms by which nucleotide structure and configuration could have been originally favoured. These findings indicate that nucleotide formation and selection may have been robust processes on the prebiotic Earth, if other nucleobases preceded those of extant life. PMID:27108699

  17. Prebiotics: A Potential Treatment Strategy for the Chemotherapy-damaged Gut?

    PubMed

    Wang, Hanru; Geier, Mark S; Howarth, Gordon S

    2016-04-25

    Mucositis, characterized by ulcerative lesions along the alimentary tract, is a common consequence of many chemotherapy regimens. Chemotherapy negatively disrupts the intestinal microbiota, resulting in increased numbers of potentially pathogenic bacteria, such as Clostridia and Enterobacteriaceae, and decreased numbers of "beneficial" bacteria, such as Lactobacilli and Bifidobacteria. Agents capable of restoring homeostasis in the bowel microbiota could, therefore, be applicable to mucositis. Prebiotics are indigestible compounds, commonly oligosaccharides, that seek to reverse chemotherapy-induced intestinal dysbiosis through selective colonization of the intestinal microbiota by probiotic bacteria. In addition, evidence is emerging that certain prebiotics contribute to nutrient digestibility and absorption, modulate intestinal barrier function through effects on mucin expression, and also modify mucosal immune responses, possibly via inflammasome-mediated processes. This review examines the known mechanisms of prebiotic action, and explores their potential for reducing the severity of chemotherapy-induced mucositis in the intestine. PMID:25162145

  18. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    PubMed

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment. PMID:24467635

  19. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water

    PubMed Central

    Cafferty, Brian J.; Fialho, David M.; Khanam, Jaheda; Krishnamurthy, Ramanarayanan; Hud, Nicholas V.

    2016-01-01

    The RNA World hypothesis presupposes that abiotic reactions originally produced nucleotides, the monomers of RNA and universal constituents of metabolism. However, compatible prebiotic reactions for the synthesis of complementary (that is, base pairing) nucleotides and mechanisms for their mutual selection within a complex chemical environment have not been reported. Here we show that two plausible prebiotic heterocycles, melamine and barbituric acid, form glycosidic linkages with ribose and ribose-5-phosphate in water to produce nucleosides and nucleotides in good yields. Even without purification, these nucleotides base pair in aqueous solution to create linear supramolecular assemblies containing thousands of ordered nucleotides. Nucleotide anomerization and supramolecular assemblies favour the biologically relevant β-anomer form of these ribonucleotides, revealing abiotic mechanisms by which nucleotide structure and configuration could have been originally favoured. These findings indicate that nucleotide formation and selection may have been robust processes on the prebiotic Earth, if other nucleobases preceded those of extant life. PMID:27108699

  20. Fine carbohydrate recognition of Euphorbia milii lectin.

    PubMed

    Irazoqui, Fernando J; Vozari-Hampe, Magdolna M; Lardone, Ricardo D; Villarreal, Marcos A; Sendra, Victor G; Montich, Guillermo G; Trindade, Vera M; Clausen, Henrik; Nores, Gustavo A

    2005-10-14

    Glycans are key structures involved in biological processes such as cell attachment, migration, and invasion. Information coded on cell-surface glycans is frequently deciphered by proteins, as lectins, that recognize specific carbohydrate topology. Here, we describe the fine carbohydrate specificity of Euphorbia milii lectin (EML). Competitive assays using various sugars showed that GalNAc was the strongest inhibitor, and that the hydroxyl axial position of C4 and acetamido on C2 of GalNAc are critical points of EML recognition. A hydrophobic locus adjacent to GalNAc is also an important region for EML binding. Direct binding assays of EML revealed a stereochemical requirement for a structure adjacent to terminal GalNAc, showing that GalNAc residue is a necessary but not sufficient condition for EML interaction. The capacity of EML to bind epithelial tumor cells makes it a potentially useful tool for study of some over-expressed GalNAc glycoconjugates. PMID:16122701

  1. Carbohydrate Engineered Cells for Regenerative Medicine

    PubMed Central

    Du, Jian; Yarema, Kevin J.

    2010-01-01

    Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a “sugar code” that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering – a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx – is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine. PMID:20117158

  2. Pre-operative nutrition and carbohydrate loading.

    PubMed

    Kratzing, Caroline

    2011-08-01

    An optimal nutritional state is an important consideration in providing successful operative outcomes. Unfortunately, many aspects of surgery are not constructive to providing this. In addition, the metabolic and immune response to injury induces a catabolic state and insulin resistance, a known risk factor of post-operative complications. Aggressive insulin therapy post-operatively has been shown to reduce morbidity and mortality but similar results can be achieved when insulin resistance is lessened by the use of pre-operative carbohydrate loading. Consuming carbohydrate-containing drinks up to 2 h before surgery has been found to be an effective way to attenuate insulin resistance, minimise protein losses, reduce hospital stays and improve patient comfort without adversely affecting gastric emptying. Enhanced recovery programmes have employed carbohydrate loading as one of several strategies aimed at reducing post-operative stress and improving the recovery process. Studies examining the benefits of these programmes have demonstrated significantly shorter post-operative hospital stays, faster return to normal functions and lower occurrences of surgical complications. As a consequence of the favourable evidence they are now being implemented in many surgical units. Further benefit to post-operative recovery may be found with the use of immune-enhancing diets, i.e. supplementation with n-3 fatty acids, arginine, glutamine and/or nucleotides. These have the potential to boost the immune system, improve wound healing and reduce inflammatory markers. Research exploring the benefits of immunonutrition and solidifying the use of carbohydrate loading is ongoing; however, there is strong evidence to link good pre-operative nutrition and improved surgical outcomes. PMID:21781358

  3. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    PubMed

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  4. Effect of in ovo-delivered prebiotics and synbiotics on lymphoid-organs' morphology in chickens.

    PubMed

    Madej, J P; Stefaniak, T; Bednarczyk, M

    2015-06-01

    Prebiotics and probiotics, either alone or together (synbiotics), can influence the intestinal microbiota and modulate the immune response. We aimed to investigate the effects of prebiotic and synbiotic administration during the early stage of development on the histological structures of central (bursa of Fabricius and thymus) and peripheral (spleen) lymphatic organs in broilers. We used 800 hatching eggs from meat-type hens (Ross 308). Prebiotics and synbiotics were administered in ovo into the air chamber of chicken eggs at d 12 incubation, as follows: prebiotic inulin (Pre1), Bi2tos (Pre2), a synbiotic composed of inulin and Lactococcus lactis subsp. lactis IBB SL1 (Syn1), a synbiotic composed of Bi2tos and L. lactis subsp. cremoris IBB SC1 (Syn2), or physiological saline (control group, C). In ovo delivery of prebiotics and synbiotics had no adverse effect on the development of the immune system in exposed chickens. Administration of Bi2tos with L. lactis subsp. cremoris (Syn2) decreased the cortex/medulla ratio in the thymus and slowed the development of the cortex in bursal follicles on d 21 posthatching, with consequent impacts on the primary lymphatic organs. The above treatment also stimulated germinal centers' formation in the spleens of 21- and 35-day-old chickens, indicating enhanced B-cell proliferation in secondary lymphatic organs. Syn2 also caused an age-dependent increase in the spleen/bursa of Fabricius ratio. In conclusion, the in ovo administration of pre- and synbiotics at d 12 incubation can modulate the central and peripheral lymphatic organ development in broilers. This effect is more pronounced after synbiotic treatment than in prebiotic-treated groups. PMID:25877410

  5. Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling.

    PubMed

    Depraetere, Orily; Pierre, Guillaume; Deschoenmaeker, Frédéric; Badri, Hanène; Foubert, Imogen; Leys, Natalie; Markou, Giorgos; Wattiez, Ruddy; Michaud, Philippe; Muylaert, Koenraad

    2015-03-01

    The filamentous cyanobacterium Arthrospira platensis is an attractive feedstock for carbohydrate-based biofuels because it accumulated up to 74% of carbohydrates when nitrogen stressed. Nitrogen stressed A. platensis also settled spontaneously, and this occurred simultaneously with carbohydrates accumulation, suggesting a link between both phenomena. The increased settling velocity was neither due to production of extracellular carbohydrates, nor due to degradation of gas vacuoles, but was caused by an increase in the specific density of the filaments as a result of accumulation of carbohydrates under the form of glycogen. Settling velocities of carbohydrate-rich A. platensis reached 0.64mh(-1), which allowed the biomass to be harvested using a lamella separator. The biomass could be concentrated at least 15 times, allowing removal of 94% of the water using gravity settling, thus offering a potential application as a low-cost and high-throughput method for primary dewatering of carbohydrate-rich A. platensis. PMID:25585253

  6. Analysis and validation of carbohydrate three-dimensional structures

    SciTech Connect

    Lütteke, Thomas

    2009-02-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.

  7. Hearing Loss, Dizziness, and Carbohydrate Metabolism

    PubMed Central

    Albernaz, Pedro L. Mangabeira

    2015-01-01

    Introduction  Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. Objectives  To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an early diagnosis of metabolic disorders and diabetes. Methods  Retrospective study of 376 patients with inner ear symptoms suggestive of disturbances of carbohydrate metabolism. The authors present patientś clinical symptoms and clinical evaluations, with emphasis on the glucose and insulin essays. Results  Authors based their conclusions on otolaryngological findings, diagnostic procedures and treatment principles. They found that auditory and vestibular symptoms usually occur prior to other manifestations of metabolic changes, leading to an early diagnosis of hyperinsulinemia, intestinal sugar malabsorption or diabetes. Previously undiagnosed diabetes mellitus type II was found in 39 patients. Conclusions  The identification of carbohydrate metabolism disturbances is important not only to minimize the patients' clinical symptoms, but also to help maintain their general health. PMID:27413410

  8. Prebiotic organic matter - Possible pathways for synthesis in a geological context

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1982-01-01

    Models for the accretion of the earth, core formation, differentiation of the planet into core, mantle, crust, and atmosphere, and prebiotic synthesis of organic materials are reviewed. The development of the Haldane-Oparin and Urey models is traced, and the effect of accretion time on the outgassing process and the composition of the consequent atmosphere is examined. Model prebiotic atmospheres are calculated, the extent of equilibration of the primitive atmosphere is studied and the evolution of the atmosphere prior to organic chemical evolution is reviewed. Finally, experimental progress in synthesis of biological monomers and polymers under presumed early earth conditions is covered.

  9. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    PubMed Central

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046

  10. Renewable Hydrogen Carrier Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    SciTech Connect

    Zhang, Y.-H. Percival; Mielenz, Jonathan R

    2011-01-01

    Abstract The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology called cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms cannot complete, for example, C6H10O5 (aq) + 7 H2O (l) 12 H2 (g) + 6 CO2 (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from PEM fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  11. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    NASA Astrophysics Data System (ADS)

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C6-C10 fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  12. Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components.

    PubMed

    Groen, Joost; Deamer, David W; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C(6)-C(10) fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane. PMID:22798228

  13. The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masahiko; Ptaszek, Marcin; Chandrashaker, Vanampally; Lindsey, Jonathan S.

    2016-05-01

    Attempts to develop a credible prebiotic route to tetrapyrroles have relied on enzyme-free recapitulation of the extant biosynthesis, but this process has foundered from the inability to form the pyrrole porphobilinogen (PBG) in good yield by self-condensation of the precursor δ-aminolevulinic acid (ALA). PBG undergoes robust oligomerization in aqueous solution to give uroporphyrinogen (4 isomers) in good yield. ALA, PBG, and uroporphyrinogen III are universal precursors to all known tetrapyrrole macrocycles. The enzymic formation of PBG entails carbon-carbon bond formation between the less stable enolate/enamine of one ALA molecule (3-position) and the carbonyl/imine (4-position) of the second ALA molecule; without enzymes, the first ALA reacts at the more stable enolate/enamine (5-position) and gives the pyrrole pseudo-PBG. pseudo-PBG cannot self-condense, yet has one open α-pyrrole position and is proposed to be a terminator of oligopyrromethane chain-growth from PBG. Here, 23 analogues of ALA have been subjected to density functional theoretical (DFT) calculations, but no motif has been identified that directs reaction at the 3-position. Deuteriation experiments suggested 5-(phosphonooxy)levulinic acid would react preferentially at the 3- versus 5-position, but a hybrid condensation with ALA gave no observable uroporphyrin. The results suggest efforts toward a biomimetic, enzyme-free route to tetrapyrroles from ALA should turn away from structure-directed reactions and focus on catalysts that orient the two aminoketones to form PBG in a kinetically controlled process, thereby avoiding formation of pseudo-PBG.

  14. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    NASA Astrophysics Data System (ADS)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  15. Multivalent interaction based carbohydrate biosensors for signal amplification

    PubMed Central

    Wang, Yanyan; Chalagalla, Srinivas; Li, Tiehai; Sun, Xue-long; Zhao, Wei; Wang, Peng; Zeng, Xiangqun

    2010-01-01

    Multivalent interaction between boronic acids immobilized on Quartz Crystal Microbalance (QCM) sensor surface and the carbohydrates modified Au - nanoparticle (AuNP) has been demonstrated for the development of a sensitive carbohydrate biosensor. Briefly, a boronic acid - containing polymer (boropolymer) as multivalent carbohydrate receptor was oriented immobilized on the cysteamine coated electrode through isourea bond formation. Carbohydrates were conjugated to AuNPs to generate a multivalent carbohydrates moiety to amplify the response signal. Thus, the binding of the carbohydrate conjugated AuNPs to the boropolymer surface are multivalent which could simultaneously increase the binding affinity and specificity. We systematically studied the binding between five carbohydrate conjugated AuNPs and the boropolymer. Our studies show that the associate constant (Ka) was in the order of fucose < glucose < mannose < galactose < maltose. A linear response in the range from 23 µM to 3.83 mM was observed for mannose conjugated AuNPs and the boropolymer recognition elements, with the lower detection limit of 1.5 µM for the carbohydrate analytes. Furthermore, the multivalent binding between carbohydrates and boronic acids are reversible and allow the regeneration of boropolymer surface by using 1M acetic acid so as to sequentially capture and release the carbohydrate analytes. PMID:20863680

  16. Exposure to a galactooligosaccharides/inulin prebiotic mix at different developmental time points differentially modulates immune responses in mice.

    PubMed

    Gourbeyre, Pascal; Desbuards, Nicolas; Grémy, Guilaine; Le Gall, Sophie; Champ, Martine; Denery-Papini, Sandra; Bodinier, Marie

    2012-12-01

    Prebiotics constitute emerging tools to alleviate immune pathologies. This study aimed to evaluate the effect of prebiotic exposure during perinatal and postweaning periods on immune and gut regulations. Mice were fed either a galactooligosaccharides/inulin prebiotic mix-enriched diet or a control diet during the perinatal and/or postweaning periods. Biomarkers related to gut barrier function (SCFA, heat shock proteins, zonula occludens protein-1, and mucin-2) and immune mechanisms (IgA, IgE, IgG1, IgG2a, IL-10, TGF-β, IL-4, IL-17A, and IFN-γ) were analyzed. The milk of dams fed the prebiotic diet was more concentrated in both IgA and TGF-β when prebiotics were introduced during both the perinatal and postweaning periods; IL-10, IgA, and IgG2a were increased in pups; and expression of intestinal markers was more pronounced. Postweaning exposure to prebiotics alone induced higher INF-γ and TGF-β levels, whereas IgA levels fell. Combined exposure periods (perinatal/postweaning) to prebiotics increased tolerance-related immunoglobulins in pups and reinforced gut barrier functions. PMID:23145871

  17. The enhancement activities of histidyl-histidine in some prebiotic reactions

    NASA Technical Reports Server (NTRS)

    Shen, C.; Lazcano, A.; Oro, J.

    1990-01-01

    The prebiotic synthesis of His and its dimer has led us to study the possible catalytic properties of His-His. The enhancing effect of His-His has been tested in the dephosphorylation of dAMP, the hydrolysis of oligo(A)12, and the oligomerization of 2'3'-cAMP.

  18. Gut Microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics and postbiotics on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidisciplinary approaches enabled a better understanding of the connection between human gut microbes and health. This knowledge is rapidly changing how we think about probiotics and related –biotics (prebiotics, synbiotics, pharmabiotics and postbiotics). Functional –omics approaches are very im...

  19. Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants.

    PubMed

    Albertsen, A N; Duffy, C D; Sutherland, J D; Monnard, P-A

    2014-06-01

    The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks. PMID:24885934

  20. The prebiotic synthesis of deoxythymidine oligonucleotides. II - Comparison of condensing agents

    NASA Technical Reports Server (NTRS)

    Odom, D. G.; Brady, J. T.

    1975-01-01

    A reaction which oligomerizes nucleotides under possible prebiotic conditions has been characterized. Nucleoside monophosphate in the presence of cyanamide at acid pH condenses to form dithymidine pyrophosphate and phosphodiester bonded compounds. Imidazole compounds and activated precursors such as nucleoside triphosphate are not necessary for this oligomerization reaction which produces primarily cyclic oligonucleotides.

  1. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein.

    PubMed

    Longo, Liam M; Lee, Jihun; Blaber, Michael

    2013-02-01

    A compendium of different types of abiotic chemical syntheses identifies a consensus set of 10 "prebiotic" α-amino acids. Before the emergence of biosynthetic pathways, this set is the most plausible resource for protein formation (i.e., proteogenesis) within the overall process of abiogenesis. An essential unsolved question regarding this prebiotic set is whether it defines a "foldable set"--that is, does it contain sufficient chemical information to permit cooperatively folding polypeptides? If so, what (if any) characteristic properties might such polypeptides exhibit? To investigate these questions, two "primitive" versions of an extant protein fold (the β-trefoil) were produced by top-down symmetric deconstruction, resulting in a reduced alphabet size of 12 or 13 amino acids and a percentage of prebiotic amino acids approaching 80%. These proteins show a substantial acidification of pI and require high salt concentrations for cooperative folding. The results suggest that the prebiotic amino acids do comprise a foldable set within the halophile environment. PMID:23341608

  2. Processing, cooking, and cooling affect prebiotic concentrations in lentil (Lens culinaris Medikus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil is an important staple food crop in many regions world-wide and is a good source of protein (20-30%) and various micronutrients. Lentil contains raffinose-family oligosaccharides (RFO), resistant starch (RS), and other prebiotic compounds essential for maintenance of healthy gastrointestinal ...

  3. Gut microbiota: Ganoderma lucidum, a new prebiotic agent to treat obesity?

    PubMed

    Delzenne, Nathalie M; Bindels, Laure B

    2015-10-01

    Modulation of the gut microbiota is one of the promising tools to tackle obesity. Chang and colleagues have recently shown that an extract of the mushroom Ganoderma lucidum, a traditional remedy in Asia, can reduce obesity in mice by modulating the gut microbiota, thereby exerting a prebiotic effect. PMID:26284561

  4. A simple model of the thermal prebiotic oligomerization of amino acids.

    PubMed

    Mosqueira, F G; Ramos-Bernal, S; Negrón-Mendoza, A

    2000-07-01

    We construct a probabilistic model with the aid of the Markov chain formalism to describe and give a physico-chemical justification to an oligomerization process of a set of amino acids under certain prebiotic conditions. Such chemical process shows a remarkable bias in the polymer products that our model can explain. Some predictions and limitations are also discussed. PMID:11004386

  5. Effect of Lactose as a Prebiotic on Turkey Body Weight Under Commercial Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of a commercially available lactic acid bacteria (LAB) probiotic alone and supplemented with lactose as prebiotic, was evaluated for effects on turkey body weight during the brooding and grow out phases under commercial conditions in two experiments. Turkey poults were given the probioti...

  6. Similar calcium status is present in infants fed formula with and without prebiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prebiotic oligosaccharides can increase calcium absorption in adolescents and adults. Whether they affect calcium absorption in infants has not been assessed. Few data are available to compare the calcium status of infants fed modern infant formulas to that of breast fed infants. To evaluate calcium...

  7. Carbohydrate Recognition Properties of Human Ficolins

    PubMed Central

    Gout, Evelyne; Garlatti, Virginie; Smith, David F.; Lacroix, Monique; Dumestre-Pérard, Chantal; Lunardi, Thomas; Martin, Lydie; Cesbron, Jean-Yves; Arlaud, Gérard J.; Gaboriaud, Christine; Thielens, Nicole M.

    2010-01-01

    Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr271 in this respect. PMID:20032467

  8. Carbohydrates/nucleosides/RNA-DNA-ligand interactions

    SciTech Connect

    Kaptein, R.; McConnell, B.; Serianni, A.S.; Silks, L.A. III

    1994-12-01

    Carbohydrate and nucleotide structural determination using modern spectroscopic techniques is dependent on our ability to label oligonucleotides and oligosaccharides with stable isotopes. Uniform Carbon 13 and Nitrogen 15 labeling of oligonucleotides is important to present-day efforts, which are focused on determining the structure of relatively small oligosaccharides and oligonucleotides, which form the elements of larger structures. Because of the relatively recent interest in three-dimensional structure, the development of techniques used to label them has lagged behind parallel techniques used to label peptides and proteins. Therefore, this group`s discussion focused primarily on problems faced today in obtaining oligonucleotides labeled uniformly with carbon 13 and nitrogen 15.

  9. Light period regulation of carbohydrate partitioning

    NASA Technical Reports Server (NTRS)

    Janes, Harry W.

    1994-01-01

    We have shown that the photosynthetic period is important in regulating carbon partitioning. Even when the same amount of carbon is fixed over a 24h period considerably more is translocated out of the leaf under the longer photosynthetic period. This is extremely important when parts of the plant other than the leaves are to be sold. It is also important to notice the amount of carbon respired in the short photosynthetic period. The light period effect on carbohydrate fixation, dark respiration, and translocation is shown in this report.

  10. Multimodal CARS microscopy of structured carbohydrate biopolymers

    PubMed Central

    Slepkov, Aaron D.; Ridsdale, Andrew; Pegoraro, Adrian F.; Moffatt, Douglas J.; Stolow, Albert

    2010-01-01

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the commonly-measured C-H stretch (2750 cm−1–2970 cm−1) and SHG provide potentially important structural information and contrast in these materials. PMID:21258555

  11. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    NASA Technical Reports Server (NTRS)

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  12. A carbohydrate-anion recognition system in aprotic solvents.

    PubMed

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. PMID:24616327

  13. Polycyclic aromatic hydrocarbons: primitive pigment systems in the prebiotic environment.

    PubMed

    Deamer, D W

    1992-01-01

    Polycyclic aromatic hydrocarbons (PAH) in the form of polymerized derivatives represent over 90% of the organic material of carbonaceous chondrites. It now appears likely that there was substantial survival of the organic content of meteoritic and cometary infall during late accretion, so that PAH would presumably be major components of the organic inventory present on the prebiotic Earth. An important question relative to chemical evolution and energy transduction is the nature of pigments which could be available to make light energy available to the earliest cellular forms of life. PAH and their derivatives all absorb light in the near UV and blue wavelengths, and are candidates for primitive pigments. We have explored this possibility in a model system consisting of mixtures of pyrene, fluoranthene and pyrene derivatives with hexadecane, dispersed in dilute salt solutions. Upon illumination, photochemical oxidation of the hexadecane occurs, with long-chain amphiphiles such as 2-hexadecanone and 2-hexadecanol as products. Because the reaction proceeds under strictly anaerobic conditions, the source of oxygen is apparently water. We also observed acid pH shifts during illumination. Photochemical production of hydrogen ion is significant, in that chemiosmotic proton gradients across membranes are used by all contemporary cells as a source of energy for ATP synthesis and nutrient transport. To test whether the protons could be used to transduce light energy into a useful form, PAH derivatives were included in lipid bilayer membranes (liposomes). Upon illumination, protons (or acidic products) were produced and accumulated inside the vesicles, so that substantial pH gradients were established across the membranes, acid inside. We conclude that PAH dissolved in aliphatic hydrocarbons absorb light energy and use it to oxidize the hydrocarbon to long-chain amphiphilic molecules. The oxidation is accompanied by release of protons. If PAH derivatives are included in the

  14. Optimum conditions for prebiotic evolution in extraterrestrial environments

    NASA Astrophysics Data System (ADS)

    Abbas, Ousama H.

    The overall goal of the dissertation was to devise synthetic pathways leading to the production of peptides and amino acids from smaller organic precursors. To this end, eight different zeolites were tested in order to determine their catalytic potential in the conversion of amino acids to peptides. The zeolites tested were either synthetic or naturally occurring. Acidic solutions of amino acids were prepared with or without zeolites and their reactivity was monitored over a four-week time interval. The kinetics and feasibility of peptide synthesis from selected amino acid combinations was investigated via the paper chromatography technique. Nine different amino acids were tested. The nature and extent of product were measured at constant time intervals. It was found that two ZSM-5 synthetic zeolites as well as the Fisher Scientific zeolite mix without alumina salts may have a catalytic potential in the conversion of amino acids to peptides. The conversion was verified by matching the paper chromatogram of the experimental product with that of a known peptide. The experimental results demonstrate that the optimum solvent system for paper chromatographic analysis of the zeolite-catalyzed self-assembly of the amino acids L-aspartic acid, L- asparagine, L-histidine, and L-serine is a 50:50 mixture of 1-butanol and acetone by volume. For the amino acids L-alanine, L-glycine, and L-valine, the optimum solvent was found to be a 30:70 mixture of ammonia and propanol by volume. A mathematical model describing the distance traveled (spot position) versus reaction time was constructed for the zeolite-catalyzed conversion of L- leucine and L-tyrosine and was found to approximately follow the function f(t) = 25 ln t. Two case studies for prebiotic synthesis leading to the production of amino acids or peptides in extraterrestrial environments were discussed: one involving Saturn's moon Titan, and the other involving Jupiter's moon Europa. In the Titan study, it was determined

  15. Impact Delivery of Prebiotic Organic Matter to Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Chyba, C. F.

    Organic compounds, liquid water, and a source of energy are necessary requirements for life as we know it. Few places in the solar system appear to satisfy these requirements. Besides Earth, Mars and Europa may have provided at some point during their history the most promising environments for the origin of life. Here we address the role of impacts as a mechanism for the delivery of organic compounds to Earth, Mars, Europa, and the Moon through high-resolution hydrocode simulations. The results suggest that on the Earth some amino acids (such as aspartic acid and glutamic acid) could survive large cometary impacts at the percent level, enough to equal or exceed concentrations due to Miller-Urey synthesis in a CO2-rich atmosphere. In particular, a grazing impact could have delivered to early Earth amounts of certain amino acids comparable to the background steady-state production. Substantial survival of some amino acids occurs in cometary impacts for Mars as well. Analogous to the situation on Earth, asteroid impacts on Mars do not seem to result in signi.cant survival, even if lower impact velocities increase the survival of amino acids. In cometary impacts, however, the increased amino acid survival in part counteracts the e.ect of the lower Martian escape velocity (5 km/s for Mars versus 11.2 km/s for the Earth) that causes some projectile material to escape Mars gravity and be lost to space. Projectile escape becomes dominant in grazing impacts, which are thus not a signi.cant source of organics on Mars. Projectile escape is dominant on Europa (escape velocity of 2 km/s); as a result, cometary impacts provide a negligible contribution to Europa's prebiotic organic inventory. However, as models of the circum-Jovian nebula suggest that Europa might have formed largely bereft of some biogenic elements, cometary impacts could be the primary source of some of Europa's biogenic elements. Finally, although subject to an impact history similar to that of the Earth and

  16. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation

    PubMed Central

    2011-01-01

    Background Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI)-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. Results We report the annotation of carbohydrate active enzymes (CAZymes) of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. Conclusions CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut. PMID:21892951

  17. Carbohydrate secretion by phototrophic communities in tidal sediments

    NASA Astrophysics Data System (ADS)

    de Winder, B.; Staats, N.; Stal, L. J.; Paterson, D. M.

    1999-09-01

    Two different benthic phototrophic communities on tidal flats were investigated for their carbohydrate content and distribution. Carbohydrates were analysed as two operationally defined fractions, related to the difficulty of extraction from the sediment matrix. Water-soluble (colloidal) and EDTA-extractable (capsular) carbohydrates were measured in a cyanobacterial mat and a diatom biofilm. The chlorophyll-specific carbohydrate content of the two communities was very different. The diatom biofilm contained up to 100 times more colloidal carbohydrate than the cyanobacterial mat. The concentrations of colloidal carbohydrates in the diatom biofilm correlated with biomass (chlorophyll-a), but this was not the case with the carbohydrate in the EDTA extract. It is proposed that the capsular carbohydrates were probably recalcitrant to mineralisation and therefore accumulated in the sediment. Neither colloidal nor EDTA-extractable carbohydrate in the cyanobacterial mat correlated with chlorophyll-a. This was probably an artefact caused by the fact that approximately 50% of the chlorophyll-a in the mat was attributed to diatoms. The characteristics of extracellular polysaccharides were investigated in laboratory cultures of the dominant organisms. Extracellular polysaccharides of the cyanobacterium Microcoleus chthonoplastes and of the diatom Navicula menisculus did not contain uronic acids. However, carboxylated sugars were found in large quantities in the capsular polysaccharides of the cyanobacterium and were present in equal ratios in the extracellular and capsular carbohydrate of the diatom Cylindrotheca closterium. Both in laboratory model systems of diatom biofilms and in situ, enhanced colloidal carbohydrate production was observed in the light. No light-dependent increase in carbohydrate concentration was found for the cyanobacterial mat. The cyanobacteria formed a mat in which the filamentous organisms entangled sand grains and attached firmly to the substratum

  18. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial

    PubMed Central

    Buigues, Cristina; Fernández-Garrido, Julio; Pruimboom, Leo; Hoogland, Aldert J.; Navarro-Martínez, Rut; Martínez-Martínez, Mary; Verdejo, Yolanda; Mascarós, Mari Carmen; Peris, Carlos; Cauli, Omar

    2016-01-01

    Aging can result in major changes in the composition and metabolic activities of bacterial populations in the gastrointestinal system and result in impaired function of the immune system. We assessed the efficacy of prebiotic Darmocare Pre® (Bonusan Besloten Vennootschap (BV), Numansdorp, The Netherlands) to evaluate whether the regular intake of this product can improve frailty criteria, functional status and response of the immune system in elderly people affected by the frailty syndrome. The study was a placebo-controlled, randomized, double blind design in sixty older participants aged 65 and over. The prebiotic product was composed of a mixture of inulin plus fructooligosaccharides and was compared with placebo (maltodextrin). Participants were randomized to a parallel group intervention of 13 weeks’ duration with a daily intake of Darmocare Pre® or placebo. Either prebiotic or placebo were administered after breakfast (between 9–10 a.m.) dissolved in a glass of water carefully stirred just before drinking. The primary outcome was to study the effect on frailty syndrome. The secondary outcomes were effect on functional and cognitive behavior and sleep quality. Moreover, we evaluated whether prebiotic administration alters blood parameters (haemogram and biochemical analysis). The overall rate of frailty was not significantly modified by Darmocare Pre® administration. Nevertheless, prebiotic administration compared with placebo significantly improved two frailty criteria, e.g., exhaustion and handgrip strength (p < 0.01 and p < 0.05, respectively). No significant effects were observed in functional and cognitive behavior or sleep quality. The use of novel therapeutic approaches influencing the gut microbiota–muscle–brain axis could be considered for treatment of the frailty syndrome. PMID:27314331

  19. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial.

    PubMed

    Buigues, Cristina; Fernández-Garrido, Julio; Pruimboom, Leo; Hoogland, Aldert J; Navarro-Martínez, Rut; Martínez-Martínez, Mary; Verdejo, Yolanda; Mascarós, Mari Carmen; Peris, Carlos; Cauli, Omar

    2016-01-01

    Aging can result in major changes in the composition and metabolic activities of bacterial populations in the gastrointestinal system and result in impaired function of the immune system. We assessed the efficacy of prebiotic Darmocare Pre(®) (Bonusan Besloten Vennootschap (BV), Numansdorp, The Netherlands) to evaluate whether the regular intake of this product can improve frailty criteria, functional status and response of the immune system in elderly people affected by the frailty syndrome. The study was a placebo-controlled, randomized, double blind design in sixty older participants aged 65 and over. The prebiotic product was composed of a mixture of inulin plus fructooligosaccharides and was compared with placebo (maltodextrin). Participants were randomized to a parallel group intervention of 13 weeks' duration with a daily intake of Darmocare Pre(®) or placebo. Either prebiotic or placebo were administered after breakfast (between 9-10 a.m.) dissolved in a glass of water carefully stirred just before drinking. The primary outcome was to study the effect on frailty syndrome. The secondary outcomes were effect on functional and cognitive behavior and sleep quality. Moreover, we evaluated whether prebiotic administration alters blood parameters (haemogram and biochemical analysis). The overall rate of frailty was not significantly modified by Darmocare Pre(®) administration. Nevertheless, prebiotic administration compared with placebo significantly improved two frailty criteria, e.g., exhaustion and handgrip strength (p < 0.01 and p < 0.05, respectively). No significant effects were observed in functional and cognitive behavior or sleep quality. The use of novel therapeutic approaches influencing the gut microbiota-muscle-brain axis could be considered for treatment of the frailty syndrome. PMID:27314331

  20. De novo synthesis and functional study of primitive polypeptides in the prebiotic protein world

    NASA Astrophysics Data System (ADS)

    Fujishima, Kosuke; Wang, Kendrick; Ferreira, Raphael; Rothschild, Lynn

    DNA, RNA and proteins within a lipid-bound membrane are the core components of life, but the order of their appearance during the origin and evolution of life is still under debate. The widely accepted “RNA World” hypothesis states that RNA likely emerged prior to proteins and DNA since RNA can serve both replicative and catalytic roles. While biochemists have reproduced the synthesis, polymerization, and replication of nucleotides/RNA under controlled prebiotic conditions, such complex organic molecules were not present in significant amounts on the prebiotic Earth. In contrast, amino acids are naturally abundant in various prebiotic contexts such as carbonaceous chondrites and Urey-Miller type experiments, and many studies have demonstrated plausible prebiotic conditions that could condense/polymerize amino acids to give rise to short peptides. These findings support the basis of a “Protein World” hypothesis for life, however little has been done to study the functions of such primitive peptides. Here, we present a novel synthetic biology-based approach to the de novo synthesis of over billions of primitive peptides/proteins derived from a limited set of naturally abundant proteinogenic amino acids. Of these peptides, ones with divalent metal-binding capability are of particular interest and will be screened and identified. Certain divalent metals are likely present in prebiotic environments and both coordinate well with amino acids and catalyze reactions, which are difficult to achieve in organic chemistry. Furthermore, since D-chiral and non-proteinogenic amino acids are also abundant in the universe and may provide insight into the pathway by which life developed, the methods to analyze primitive peptides consisting of these amino acids will be discussed. By understanding this natural pathway, we will be able to better understand how life developed here on Earth and the probability of life arising elsewhere.

  1. Carbohydrate Recognition by Boronolectins, Small Molecules, and Lectins

    PubMed Central

    Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe

    2009-01-01

    Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of “binders” capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and “binders/receptors,” and their applications. The focus is on discoveries during the last five years. PMID:19291708

  2. Carbohydrate Analysis: Can We Control the Ripening of Bananas?

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.

    2002-04-01

    We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.

  3. Impact of Dietary Polyphenols on Carbohydrate Metabolism

    PubMed Central

    Hanhineva, Kati; Törrönen, Riitta; Bondia-Pons, Isabel; Pekkinen, Jenna; Kolehmainen, Marjukka; Mykkänen, Hannu; Poutanen, Kaisa

    2010-01-01

    Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic β–cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed. PMID:20480025

  4. Postexercise recovery period: carbohydrate and protein metabolism.

    PubMed

    Viru, A

    1996-02-01

    The essence of the postexercise recovery period is normalization of function and homeostatic equilibrium, and replenishment of energy resources and accomplishment of the reconstructive function. The repletion of energy stores is actualized in a certain sequence and followed by a transitory supercompensation. The main substrate for repletion of the muscle glycogen store is blood glucose derived from hepatic glucose output as well as from consumption of carbohydrates during the postexercise period. The repletion of liver glycogen is realized less rapidly. It depends to a certain extent on hepatic gluconeogenesis but mainly on supply with exogenous carbohydrates. The constructive function is founded on elevated protein turnover and adaptive protein synthesis. Whereas during and shortly after endurance exercise intensive protein breakdown was found in less active fast-twitch glycolytic fibers, during the later course of the recovery period the protein degradation rate increased together with intensification of protein synthesis rate in more active fast-twitch glycolytic oxidative and slow-twitch oxidative fibers. PMID:8680938

  5. Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions

    PubMed Central

    Cruz-Cárdenas, Carlos I.; Miranda-Ham, María L.; Castro-Concha, Lizbeth A.; Ku-Cauich, José R.; Vergauwen, Rudy; Reijnders, Timmy; Van den Ende, Wim; Escobedo-GraciaMedrano, Rosa M.

    2015-01-01

    The water soluble carbohydrates (WSC) glucose, fructose, and sucrose are well-known to the great public, but fructans represent another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS) was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of 11 accessions (I to XI), including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD) showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose) fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP) inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA) identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfill across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water) provides a new avenue to boost future work on structure-function relationships on these enzymes, potentially leading to

  6. Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions.

    PubMed

    Cruz-Cárdenas, Carlos I; Miranda-Ham, María L; Castro-Concha, Lizbeth A; Ku-Cauich, José R; Vergauwen, Rudy; Reijnders, Timmy; Van den Ende, Wim; Escobedo-GraciaMedrano, Rosa M

    2015-01-01

    The water soluble carbohydrates (WSC) glucose, fructose, and sucrose are well-known to the great public, but fructans represent another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS) was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of 11 accessions (I to XI), including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD) showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose) fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP) inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA) identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfill across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water) provides a new avenue to boost future work on structure-function relationships on these enzymes, potentially leading to

  7. Expanding the evaluation of probiotics and prebiotics for aquafeeds: perspectives on the limitations and needs for surrogate measures of effectiveness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probiotics (live or inactivated beneficial microorganisms) and prebiotics (indigestible nutrients for beneficial microorganisms) have been used as additives to aquafeeds as a means to improve production (immunity and growth) in intensively-reared finfish species. The research literature has document...

  8. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to investigate the growth promoting effects of supplementing different sources and concentrations of prebiotic yeast cell wall (YCW) products containing mannanoligosaccharides in starter broilers under an immune stress and Clostridium perfringens challenge. Through a series ...

  9. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance.

    PubMed

    Baker, Lindsay B; Rollo, Ian; Stein, Kimberly W; Jeukendrup, Asker E

    2015-07-01

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1-2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30-60 g/h in the form of a 6%-7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game

  10. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    PubMed Central

    Baker, Lindsay B.; Rollo, Ian; Stein, Kimberly W.; Jeukendrup, Asker E.

    2015-01-01

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a

  11. Effects of disturbance regime on carbohydrate reserves in meadow plants

    PubMed Central

    Janeček, Štěpán; Bartušková, Alena; Bartoš, Michael; Altman, Jan; de Bello, Francesco; Doležal, Jiří; Latzel, Vít; Lanta, Vojtěch; Lepš, Jan; Klimešová, Jitka

    2015-01-01

    Carbohydrate storage enables plants to tolerate both seasonally unfavourable conditions and recover from disturbance. Although short-term changes in storage levels due to disturbance are fairly well known, less is known about long-term changes in storage levels, especially in response to cessation of repeated disturbance. Additionally, whereas it is presumably the total amount (pool) of storage carbohydrate reserves that is of importance, typically carbohydrate concentrations are measured instead, as a proxy. We assessed changes in carbohydrate concentrations and pools in storage organs and changes in above- versus belowground biomass in response to mowing cessation in nine herbs from two meadows (dry and wet) at the (June) peak of vegetation development and the (October) growing season end 1 and 3 years after the change in the disturbance regime. We tested three hypotheses: (1) storage will increase with abandonment of mowing only in the first year after disturbance cessation, but not further increase subsequently, as high storage would hinder competitive ability; (2) storage will increase towards the end of the season in both disturbed and undisturbed plants; and (3) changes in carbohydrate concentrations are accurate predictors of changes in pools. Although species-specific changes in carbohydrate reserves occurred in the wet meadow, more general trends appeared in the dry meadow. There, plants accumulated higher carbohydrate reserves at the end of the season, especially in unmown plots. However, the reserves for plants in both disturbance regimes were the same at the growing season peak (June) in both examined years. The increase in storage of carbohydrates on unmown plots in October was manifested by increases of both storage organ biomass and carbohydrate concentration, whereas in mown plots, it was due only to increased carbohydrate concentration. Although concentrations and pools represent different aspects of plant carbohydrate economy, concentrations will

  12. Effect of seasonal changes on content and profile of soluble carbohydrates in tubers of different varieties of Jerusalem artichoke (Helianthus tuberosus L.).

    PubMed

    Kocsis, Laura; Liebhard, Peter; Praznik, Werner

    2007-11-14

    A high content (60-65% of dry mass DM) of water soluble carbohydrates was found in early harvested varieties (Bella and Bianka) and middle early varieties (Topstar and Gigant) harvested 22-25 weeks after plantation. In late varieties (Waldspindel, Violet de Rennes, Rote Zonenkugel) a similar amount was obtained (55-60% of DM) when harvested 29-33 weeks after planting. There was a distinctive impact on maturing process as well as frost period alterations which resulted in conversion of high polymer inulin to low polymer inulin as well as to sucrose. In early/middle early varieties a correlation between sucrose and inulin level (r = - 0.952**) with a linear regression of y = - 1.35x + 62.32 was observed, whereas the dpn of inulin decreased from 12-14 to 6-8. In late cultivars this correlation was not as exact (r = - 0.502**); dpn of inulin decreased from 12-16 to 7-10. This knowledge about carbohydrate profiles for different varieties of Jerusalem artichoke offers the possibility of selecting suitable cultivars and deciding the appropriate harvest time for an optimum processing of tubers for their application as prebiotic and novel food component. PMID:17941691

  13. Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax.

    PubMed

    Carbone, Donatella; Faggio, Caterina

    2016-07-01

    Infectious diseases in fish represent a major problem for the aquaculture field as they produce extensive damages and loss. Over the last few years, with increased development of the aquaculture industry, different methods have been used to contrast these pathologies. Common interest has led to the use of components (as additives in diets) that could contrast diseases without causing any negative impact on the environment. These components are represented by prebiotics, probiotics, and plant extracts. In this review, the effects of prebiotics are described. Prebiotics are indigestible fibres fermented by gut enzymes and commensal bacteria, whose beneficial effects are due to the by-products generated from fermentation. The influence of pre-biotics on the immune system of fish is called immunosaccharides. Mannanoligosaccharides (MOS), Fructooligosaccharides (FOS) and Inulin act at different levels in the innate immune response. For example, through phagocytosis, lysozyme activity, and the complement system activity, an increase in fish growth and an amelioration of their health status is brought about. In this review, the use of prebiotics in aquaculture, such as immunostimulants, has been highlighted: particularly in two teleost fish species, Sparus aurata and Dicentrarchus labrax. The results demonstrate that the road is still long and further studies are required, but the use of prebiotics, individually or coupled together, can open the doors to pioneering a new model of alternative components to antimicrobial agents. PMID:27074444

  14. Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems

    PubMed Central

    Long, Wenmin; Xue, Zhengsheng; Zhang, Qianpeng; Feng, Zhou; Bridgewater, Laura; Wang, Linghua; Zhao, Liping; Pang, Xiaoyan

    2015-01-01

    The same prebiotics have produced inconsistent effects on microbiota when evaluated in different batch fermentation studies. To understand the reasons behind these discrepancies, we compared impact of one prebiotic formula on the same inoculated fecal microbiota in two frequently used batch systems: phosphate-buffered saline (PBS, oligotrophic) and basal culture medium (BCM, eutrophic). The microbiota was monitored using 454 pyrosequencing. Negative controls (no prebiotic) of both systems showed significant shifts in the microbiota during fermentation, although their pH remained relatively stable, especially in BCM, with increases in Bilophila and Escherichia/Shigella but a decrease in Faecalibacterium. We identified prebiotic responders via redundancy analysis by including both baseline and negative controls. The key positive and negative responders in the two systems were very different, with only 8 consistently modulated OTUs (7 of the 28 positive responders and 1 of the 35 negative responders). Moreover, some OTUs within the same genus responded to the prebiotic in opposite ways. Therefore, to obtain a complete in vitro evaluation of the modulatory effects of a prebiotic on microbiota, it is necessary to use both oligotrophic and eutrophic systems, compare treatment groups with both baseline and negative controls, and analyze the microbiota changes down to the OTU level. PMID:26305380

  15. Comparing Low-Fat and Low-Carbohydrate Diets

    MedlinePlus

    ... of Internal Medicine Summaries for Patients Comparing Low-Fat and Low-Carbohydrate Diets The full report is titled “Effects of Low-Carbohydrate and Low-Fat Diets. A Randomized Trial.” It is in the ...

  16. Preserving water soluble carbohydrate in hay and silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water soluble carbohydrate (WSC) content of forage may be manipulated by harvest timing within a 24-hour period to take advantage of the diurnal cycle. However, increases in carbohydrate may be lost during the haymaking or ensiling process. Rapid drying and dry storage is necessary to prevent lo...

  17. Reinforcement effect of soy protein and carbohydrates in polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The modulus of soft polymer material can be increased by filler reinforcement. A review of using soy protein and carbohydrates as alternative renewable reinforcement material is presented here. Dry soy protein and carbohydrates are rigid and can form strong filler networks through hydrogen-bonding...

  18. Preoperative gastric emptying. Effects of anxiety and oral carbohydrate administration.

    PubMed Central

    Nygren, J; Thorell, A; Jacobsson, H; Larsson, S; Schnell, P O; Hylén, L; Ljungqvist, O

    1995-01-01

    BACKGROUND: Overnight fasting is routine before elective surgery. This may not be the optimal way to prepare for surgical stress, however, because intravenous carbohydrate supplementation instead of fasting has recently been shown to reduce postoperative insulin resistance. In the current study, gastric emptying of a carbohydrate-rich drink was investigated before elective surgery and in a control situation. METHODS: Twelve patients scheduled for elective surgery were randomly given 400 mL of either a carbohydrate-rich drink (285 mOsm/kg, 12.0% carbohydrates, n = 6) or water 4 hours before being anesthetized. Gastric emptying was measured (gamma camera, 99Tcm). Each patient repeated the protocol postoperatively as a control. All values were presented as the mean +/- SEM by means of a nonparametric statistical evaluation. RESULTS: Despite the increased anxiety experienced by patients before surgery (p < 0.005), gastric emptying did not differ between the experimental and control situations. Initially, water emptied more rapidly than carbohydrate. However, after 90 minutes, the stomach was emptied regardless of the solution administered (3.2 +/- 1.1% [mean +/- SEM] remaining in the stomach in the carbohydrate group versus 2.3 +/- 1.2% remaining in the stomach in the water group). CONCLUSIONS: Preoperative anxiety does not prolong gastric emptying. The stomach had been emptied 90 minutes after ingestion of both the carbohydrate-rick drink and water, thereby indicating the possibility of allowing an intake of iso-osmolar carbohydrate-rich fluids before surgery. PMID:8526579

  19. [Determination of the total quantity of carbohydrates in dried yeast].

    PubMed

    Maksimenko, O A; Ziukova, L A; Fedorovich, R M

    1975-01-01

    Different colourimetric methods for measuring carbohydrates in yeast have been compared. A method using 5% phenol aqueous solution in the presence of concentrated sulphuric acid has been developed to quantitate carbohydrates. The method has been described as applied to an analysis of dry yeast. PMID:1129224

  20. Carbohydrate and fat: considerations for energy and more

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, carbohydrates and fats were valued on their caloric contributions to diets. Feeding recommendations for these feed fractions now address inclusion levels, as well as consideration of the positive and negative effects of specific types of these nutrients. Feed carbohydrate characterizat...

  1. Why use DFT methods in the study of carbohydrates?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent advances in density functional theory (DFT) and computer technology allow us to study systems with more than 100 atoms routinely. This makes it feasible to study large carbohydrate molecules via quantum mechanical methods, whereas in the past, studies of carbohydrates were restricted to ...

  2. Carbohydrate-responsive gene expression in adipose tissue of rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although obesity is often associated with high fat diets, it can develop from a variety of meal patterns. Excessive intake of simple carbohydrates is one consistent eating behavior leading to obesity. However, the impact of over-consumption of diets with high carbohydrate-to-fat ratios (C/F) on body...

  3. Soil amino compound and carbohydrate contents influenced by organic amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino compounds (i. e. amino acids and sugars), and carbohydrates are labile organic components and contribute to the improvement of soil fertility and quality. Animal manure and other organic soil amendments are rich in both amino compounds and carbohydrates, hence organic soil amendments might af...

  4. [Carbohydrate component of immunoglobulin G in cattle suffering from leukosis].

    PubMed

    Meged', E F; Korotkoruchko, V P; Radionov, N T

    1982-01-01

    No essential differences are found in the composition and total amount of carbohydrates in the studied preparations of the immunoglobulin G subfraction in cattle suffering from leucosis and of the immunoglobulin G subfraction, identical in evolution, in healthy animals. It is shown that the main mass of carbohydrates is connected with Fc-fragment and heavy chains of the protein under study. PMID:7135515

  5. Structural and Functional Studies of Peptide-Carbohydrate Mimicry

    NASA Astrophysics Data System (ADS)

    Johnson, Margaret A.; Pinto, B. Mario

    Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognized by carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processing enzymes, and lectins have been identified. These peptides are potentially useful as vaccines and therapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthen or modify immune responses induced by carbohydrate antigens. However, peptides that bind specifically to carbohydrate-binding proteins may not necessarily show the corresponding biological activity, and further selection based on biochemical studies is always required. The degree of structural mimicry required to generate the desired biological activity is therefore an interesting question. This review will discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy, X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studies provide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimetic compounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the design of new therapeutic compounds will also be presented.

  6. Genetic Analyses of Soluble Carbohydrate Concentrations in Onion Bulbs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are the primary soluble carbohydrate in onion (Allium cepa L.) bulbs and show significant correlations with dry weights and pungency. In this research, we estimated the genetic effects and interactions between two chromosome regions associated with higher amounts of soluble carbohydrates i...

  7. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  8. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  9. Genome of Bifidobacteria and Carbohydrate Metabolism

    PubMed Central

    2015-01-01

    In recent years, the knowledge about bifidobacteria has considerably evolved thanks to recent progress in molecular biology. The analysis of the whole genome sequences of 48 taxa of bifidobacteria offers new perspectives for their classification, especially to set up limit between two species. Indeed, several species are presenting a high homology and should be reclassified. On the other hand, some subspecies are presenting a low homology and should therefore be reclassified into different species. In addition, a better knowledge of the genome of bifidobacteria allows a better understanding of the mechanisms involved in complex carbohydrate metabolism. The genome of some species of bifidobacteria from human but also from animal origin demonstrates high presence in genes involved in the metabolism of complex oligosaccharides. Those species should be further tested to confirm their potential to metabolize complex oligosaccharides in vitro and in vivo. PMID:26761794

  10. Carbohydrate loading in the preoperative setting.

    PubMed

    Hill, L T; Miller, M G A

    2015-03-01

    Nutrition support is an evolving field, and modern clinical nutrition practice should actively incorporate strategies to enhance various clinical outcomes. In surgical patients, clinical benefits can be maximised by nutritional support protocols that minimise and manage the perioperative fasting period. This approach, which includes the perioperative provision of clear carbohydrate-containing fluids, has been shown to be safe, is evidence based, and is supported by many professional societies. Such a strategy has been shown to aid the anaesthetic process and maintain an optimal metabolic state, including improved insulin sensitivity and blunted muscle catabolic activity. Some important consequences of this improved metabolic control include shorter hospital stay and fewer postoperative complications. A proactive multidisciplinary team approach is essential to use this nutrition support strategy with success across a hospital's surgical service. PMID:26294840

  11. Biophysical characterization of laforin-carbohydrate interaction.

    PubMed

    Dias, David M; Furtado, Joana; Wasielewski, Emeric; Cruz, Rui; Costello, Bernard; Cole, Lindsay; Faria, Tiago Q; Baaske, Philipp; Brito, Rui M M; Ciulli, Alessio; Simões, Isaura; Macedo-Ribeiro, Sandra; Faro, Carlos; Geraldes, Carlos F G C; Castanheira, Pedro

    2016-02-01

    Laforin is a human dual-specificity phosphatase (DSP) involved in glycogen metabolism regulation containing a carbohydrate-binding module (CBM). Mutations in the gene coding for laforin are responsible for the development of Lafora disease, a progressive fatal myoclonus epilepsy with early onset, characterized by the intracellular deposition of abnormally branched, hyperphosphorylated insoluble glycogen-like polymers, called Lafora bodies. Despite the known importance of the CBM domain of laforin in the regulation of glycogen metabolism, the molecular mechanism of laforin-glycogen interaction is still poorly understood. Recently, the structure of laforin with bound maltohexaose was determined and despite the importance of such breakthrough, some molecular interaction details remained missing. We herein report a thorough biophysical characterization of laforin-carbohydrate interaction using soluble glycans. We demonstrated an increased preference of laforin for the interaction with glycans with higher order of polymerization and confirmed the importance of tryptophan residues for glycan interaction. Moreover, and in line with what has been described for other CBMs and lectins, our results confirmed that laforin-glycan interactions occur with a favourable enthalpic contribution counter-balanced by an unfavourable entropic contribution. The analysis of laforin-glycan interaction through the glycan side by saturation transfer difference (STD)-NMR has shown that the CBM-binding site can accommodate between 5 and 6 sugar units, which is in line with the recently obtained crystal structure of laforin. Overall, the work in the present study complements the structural characterization of laforin and sheds light on the molecular mechanism of laforin-glycan interaction, which is a pivotal requisite to understand the physiological and pathological roles of laforin. PMID:26578817

  12. Single cell profiling of surface carbohydrates on Bacillus cereus.

    PubMed

    Wang, Congzhou; Ehrhardt, Christopher J; Yadavalli, Vamsi K

    2015-02-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based 'recognition force mapping' as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  13. Sensitive LC MS quantitative analysis of carbohydrates by Cs+ attachment.

    PubMed

    Rogatsky, Eduard; Jayatillake, Harsha; Goswami, Gayotri; Tomuta, Vlad; Stein, Daniel

    2005-11-01

    The development of a sensitive assay for the quantitative analysis of carbohydrates from human plasma using LC/MS/MS is described in this paper. After sample preparation, carbohydrates were cationized by Cs(+) after their separation by normal phase liquid chromatography on an amino based column. Cesium is capable of forming a quasi-molecular ion [M + Cs](+) with neutral carbohydrate molecules in the positive ion mode of electrospray ionization mass spectrometry. The mass spectrometer was operated in multiple reaction monitoring mode, and transitions [M + 133] --> 133 were monitored (M, carbohydrate molecular weight). The new method is robust, highly sensitive, rapid, and does not require postcolumn addition or derivatization. It is useful in clinical research for measurement of carbohydrate molecules by isotope dilution assay. PMID:16182559

  14. Single cell profiling of surface carbohydrates on Bacillus cereus

    PubMed Central

    Wang, Congzhou; Ehrhardt, Christopher J.; Yadavalli, Vamsi K.

    2015-01-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based ‘recognition force mapping’ as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  15. Carbohydrate CuAAC click chemistry for therapy and diagnosis.

    PubMed

    He, Xiao-Peng; Zeng, Ya-Li; Zang, Yi; Li, Jia; Field, Robert A; Chen, Guo-Rong

    2016-06-24

    Carbohydrates are important as signaling molecules and for cellular recognition events, therefore offering scope for the development of carbohydrate-mimetic diagnostics and drug candidates. As a consequence, the construction of carbohydrate-based bioactive compounds and sensors has become an active research area. While the advent of click chemistry has greatly accelerated the progress of medicinal chemistry and chemical biology, recent literature has seen an extensive use of such approaches to construct functionally diverse carbohydrate derivatives. Here we summarize some of the progress, covering the period 2010 to mid-2015, in Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition CuAAC "click chemistry" of carbohydrate derivatives, in the context of potential therapeutic and diagnostic tool development. PMID:27085906

  16. Metabolic response to high-carbohydrate and low-carbohydrate meals in a nonhuman primate model.

    PubMed

    Fabbrini, Elisa; Higgins, Paul B; Magkos, Faidon; Bastarrachea, Raul A; Voruganti, V Saroja; Comuzzie, Anthony G; Shade, Robert E; Gastaldelli, Amalia; Horton, Jay D; Omodei, Daniela; Patterson, Bruce W; Klein, Samuel

    2013-02-15

    We established a model of chronic portal vein catheterization in an awake nonhuman primate to provide a comprehensive evaluation of the metabolic response to low-carbohydrate/high-fat (LCHF; 20% carbohydrate and 65% fat) and high-carbohydrate/low-fat (HCLF; 65% carbohydrate and 20% fat) meal ingestion. Each meal was given 1 wk apart to five young adult (7.8 ± 1.3 yr old) male baboons. A [U-¹³C]glucose tracer was added to the meal, and a [6,6-²H₂]glucose tracer was infused systemically to assess glucose kinetics. Plasma areas under the curve (AUCs) of glucose, insulin, and C-peptide in the femoral artery and of glucose and insulin in the portal vein were higher (P ≤ 0.05) after ingestion of the HCLF compared with the LCHF meal. Compared with the LCHF meal, the rate of appearance of ingested glucose into the portal vein and the systemic circulation was greater after the HCLF meal (P < 0.05). Endogenous glucose production decreased by ∼40% after ingestion of the HCLF meal but was not affected by the LCHF meal (P < 0.05). Portal vein blood flow increased (P < 0.001) to a similar extent after consumption of either meal. In conclusion, a LCHF diet causes minimal changes in the rate of glucose appearance in both portal and systemic circulations, does not affect the rate of endogenous glucose production, and causes minimal stimulation of C-peptide and insulin. These observations demonstrate that LCHF diets cause minimal perturbations in glucose homeostasis and pancreatic β-cell activity. PMID:23269412

  17. Relationship of carbohydrate molecular spectroscopic features in combined feeds to carbohydrate utilization and availability in ruminants

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Yu, Peiqiang

    To date, there is no study on the relationship between carbohydrate (CHO) molecular structures and nutrient availability of combined feeds in ruminants. The objective of this study was to use molecular spectroscopy to reveal the relationship between CHO molecular spectral profiles (in terms of functional groups (biomolecular, biopolymer) spectral peak area and height intensity) and CHO chemical profiles, CHO subfractions, energy values, and CHO rumen degradation kinetics of combined feeds of hulless barley with pure wheat dried distillers grains with solubles (DDGS) at five different combination ratios (hulless barley to pure wheat DDGS: 100:0, 75:25, 50:50, 25:75, 0:100). The molecular spectroscopic parameters assessed included: lignin biopolymer molecular spectra profile (peak area and height, region and baseline: ca. 1539-1504 cm-1); structural carbohydrate (STCHO, peaks area region and baseline: ca. 1485-1186 cm-1) mainly associated with hemi- and cellulosic compounds; cellulosic materials peak area (centered at ca. 1240 cm-1 with region and baseline: ca. 1272-1186 cm-1); total carbohydrate (CHO, peaks area region and baseline: ca. 1186-946 cm-1). The results showed that the functional groups (biomolecular, biopolymer) in the combined feeds are sensitive to the changes of carbohydrate chemical and nutrient profiles. The changes of the CHO molecular spectroscopic features in the combined feeds were highly correlated with CHO chemical profiles, CHO subfractions, in situ CHO rumen degradation kinetics and fermentable organic matter supply. Further study is needed to investigate possibility of using CHO molecular spectral features as a predictor to estimate nutrient availability in combined feeds for animals and quantify their relationship.

  18. Blood Triglycerides Levels and Dietary Carbohydrate Indices in Healthy Koreans

    PubMed Central

    Kang, Ji Yeon

    2016-01-01

    Objectives: Previous studies have obtained conflicting findings regarding possible associations between indices measuring carbohydrate intake and dyslipidemia, which is an established risk factor of coronary heart disease. In the present study, we examined cross-sectional associations between carbohydrate indices, including the dietary glycemic index (GI), glycemic load (GL), total amount of carbohydrates, and the percentage of energy from carbohydrates, and a range of blood lipid parameters. Methods: This study included 1530 participants (554 men and 976 women) from 246 families within the Healthy Twin Study. We analyzed the associations using a generalized linear mixed model to control for familial relationships. Results: Levels of the Apo B were inversely associated with dietary GI, GL, and the amount of carbohydrate intake for men, but these relationships were not significant when fat-adjusted values of the carbohydrate indices were used. Triglyceride levels were positively associated with dietary GI and GL in women, and this pattern was more notable in overweight participants (body mass index [BMI] ≥25 kg/m2). However, total, low-density lipoprotein and high-density lipoprotein cholesterol levels were not significantly related with carbohydrate intake overall. Conclusions: Of the blood lipid parameters we investigated, only triglyceride levels were positively related with dietary carbohydrate indices among women participants in the Healthy Twin Study, with an interactive role observed for BMI. However, these associations were not observed in men, suggesting that the association between blood lipid levels and carbohydrate intake depends on the type of lipid, specific carbohydrate indices, gender, and BMI. PMID:27255074

  19. Carbohydrate Content in the GDM Diet: Two Views: View 1: Nutrition Therapy in Gestational Diabetes: The Case for Complex Carbohydrates.

    PubMed

    Hernandez, Teri L

    2016-05-01

    IN BRIEF Restriction of dietary carbohydrate has been the cornerstone for treatment of gestational diabetes mellitus (GDM). However, there is evidence that a balanced liberalization of complex carbohydrate as part of an overall eating plan in GDM meets treatment goals and may mitigate maternal adipose tissue insulin resistance, both of which may promote optimal metabolic outcomes for mother and offspring. PMID:27182176

  20. [Performance enhancement by carbohydrate intake during sport: effects of carbohydrates during and after high-intensity exercise].

    PubMed

    Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C

    2015-01-01

    Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h). PMID:25970669

  1. Chilled milk-based desserts as emerging probiotic and prebiotic products.

    PubMed

    Buriti, Flávia C A; Saad, Susana M I

    2014-01-01

    Nowadays, food companies are endeavoring to differentiate their products through creative segmentation and positioning strategies based on superior functionality and quality. Some kinds of dairy desserts have shown a great market potential, as a function of consumers interested in healthier and functional products with fine taste and mouthfeel. In this context, chilled dairy desserts are emerging as attractive options for the incorporation of probiotic cultures and prebiotic ingredients, as seen in the previous launches from the food industry, as well as in the growing number of scientific studies dealing with this subject published in the last years. The main aspects involved in the development of probiotic and/or prebiotic dairy desserts for storage under refrigerated conditions are presented in this review. PMID:24188264

  2. Prebiotic effect of diosgenin, an immunoactive steroidal sapogenin of the Chinese yam.

    PubMed

    Huang, Chung-Hsiung; Cheng, Jin-Yi; Deng, Ming-Chung; Chou, Chung-Hsi; Jan, Tong-Rong

    2012-05-01

    This study investigated the effect of diosgenin, a yam-derived phytochemical, on the growth of enteric lactic acid bacteria (LAB). The in vivo effect of diosgenin on the density of intestinal flora was examined in a murine model of food allergy. Oral administration with diosgenin markedly restored the diminished density of faecal LAB associated with allergic reactions. The direct effect of diosgenin and several structure-related steroidal compounds on the growth of faecal anaerobes isolated from diosgenin-administered mice was also investigated. The presence of diosgenin significantly enhanced the growth of Lactobacillus murinus and Lactobacillus reuteri, but not enterococci. Structure-activity relationship analysis showed that the prebiotic activity of steroidal sapogenins might require structural elements of the C5-C6 double bond and intact E- and F-rings. Collectively, these results indicate that steroidal sapogenins may be a novel class of prebiotics to LAB. PMID:26434311

  3. Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation

    PubMed Central

    Andermann, Tessa M.; Rezvani, Andrew; Bhatt, Ami S.

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a potentially life-saving therapy that often comes at the cost of complications such as graft-versus-host disease and post-transplant infections. With improved technology to under-stand the ecosystem of microorganisms (viruses, bacteria, fungi, and microeukaryotes) that make up the gut microbiota, there is increasing evidence of the microbiota’s contribution to the development of post-transplant complications. Antibiotics have traditionally been the mainstay of microbiota-altering therapies available to physicians. Recently, interest is increasing in the use of prebiotics and probiotics to support the development and sustainability of a healthier microbiota. In this review, we will describe the evidence for the use of prebiotics and probiotics in combating microbiota dysbiosis and explore the ways in which they may be used in future research to potentially improve clinical outcomes and decrease rates of graft-versus-host disease (GVHD) and post-transplant infection. PMID:26780719

  4. Synthesis of Glycine and Other Prebiotic Compounds in the Interstellar Medium - An Example of Radiation Chemistry.

    NASA Astrophysics Data System (ADS)

    Mason, N. J.; Sivaraman, B.; Jeetha, S.; Dawes, A.; Hunniford, A.; McCullough, R. W.

    2007-08-01

    To understand how life can begin on a habitable planet such as the Earth, it is essential to know what organic compounds were likely to have been available, and how they interacted with the planetary environment. Therefore an understanding of the mechanisms by which organic chemical compounds are formed (so called /prebiotic chemistry/) is essential. Recent data from space based telescopes are revealing the interstellar medium as a rich 'chemical factory' in which many hydrocarbon speices are present (e.g. formic and acetic acid, alcohols and esters). Whether larger more complex species such as amino acids can form remains unknown since they can not, at present, be detected. However laboratory experiments that recreate the conditions of the ISM and the conditions under which stars and planets evolve have recently shown that such 'prebiotic compounds' may be formed through radiation induced chemistry. Details of these experiments will be discussed with the example of glycine formation used as an exemplar for such molecular synthesis.

  5. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro.

    PubMed

    Wang, Xiao; Huang, Meiying; Yang, Fan; Sun, Hanju; Zhou, Xianxuan; Guo, Ying; Wang, Xiaoli; Zhang, Manli

    2015-07-10

    In vitro digestibility, prebiotic activity and chemical composition of polysaccharides from rapeseed were deliberately studied in this paper. After preliminary treatments, two fractions of polysaccharides (RP1 and RP2) were obtained after purification by DEAE-cellulose and Sephadex G-100. Their primary structural feature and molecule weights were characterized. Furthermore, their digestibility was also evaluated by artificial gastric juice and α-amylase. Finally, their proliferative effect on bifidobacteria and lactobacilli and acid production of the resulting probiotics in vitro were investigated. The results showed that RP1 and RP2 were homogeneously protein-bound polysaccharides with molecular weights of 28.51 and 6.55 kDa, respectively. They were resistant to hydrolysis by artificial gastric juice and α-amylase. Moreover, they could also significantly stimulate the tested probiotics to proliferate and produce organic acids. These findings clearly suggest the polysaccharides from rapeseed are potential to be exploited as novel prebiotics. PMID:25857979

  6. Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation.

    PubMed

    Andermann, Tessa M; Rezvani, Andrew; Bhatt, Ami S

    2016-02-01

    Hematopoietic stem cell transplantation (HSCT) is a potentially life-saving therapy that often comes at the cost of complications such as graft-versus-host disease and post-transplant infections. With improved technology to understand the ecosystem of microorganisms (viruses, bacteria, fungi, and microeukaryotes) that make up the gut microbiota, there is increasing evidence of the microbiota's contribution to the development of post-transplant complications. Antibiotics have traditionally been the mainstay of microbiota-altering therapies available to physicians. Recently, interest is increasing in the use of prebiotics and probiotics to support the development and sustainability of a healthier microbiota. In this review, we will describe the evidence for the use of prebiotics and probiotics in combating microbiota dysbiosis and explore the ways in which they may be used in future research to potentially improve clinical outcomes and decrease rates of graft-versus-host disease (GVHD) and post-transplant infection. PMID:26780719

  7. Probiotics and Prebiotics for Prevention of Food Allergy: Indications and Recommendations by Societies and Institutions.

    PubMed

    Koletzko, Sibylle

    2016-07-01

    Probiotics are defined as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host". Unfortunately, misuse of the term probiotic is very common. According to the regulation of the European food safety authority (EFSA) health claims on pre- and probiotics are not judged as favorable. Scientific societies should give guidance to the consumers and health care professionals on the use of probiotics and prebiotics for prevention and disease management. There is currently no positive recommendation from international scientific medical societies to use prebiotics or probiotics for treatment of food allergy or other allergic manifestations and for prevention of food allergy, allergic rhinitis, and asthma. Discrepant recommendations exist for probiotics for prevention of eczema in high risk infants. PMID:27380601

  8. Therapeutic Use of Prebiotics, Probiotics, and Postbiotics to Prevent Necrotizing Enterocolitis: What is the Current Evidence?

    PubMed Central

    Patel, Ravi Mangal; Denning, Patricia Wei

    2013-01-01

    Synopsis Necrotizing enterocolitis (NEC) is a leading cause of neonatal morbidity and mortality and preventative therapies that are both effective and safe are urgently needed. Current evidence from therapeutic trials suggests that probiotics are effective in decreasing NEC in preterm infants and probiotics are currently the most promising therapy on the horizon for this devastating disease. However, concerns regarding safety and optimal dosing have limited the widespread adoption of routine clinical use of probiotics in preterm infants. In addition, prebiotics and postbiotics may be potential alternatives or adjunctive therapies to the administration of live microorganisms, although studies demonstrating their clinical efficacy in preventing NEC are lacking. This review summarizes the current evidence regarding the use of probiotics, prebiotics and postbiotics in the preterm infant, including its therapeutic role in preventing NEC. PMID:23415261

  9. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation

    PubMed Central

    Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N.; Rozanov, Alexei Y.; Krasavin, Eugene; Di Mauro, Ernesto

    2015-01-01

    Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy–based prebiotic scenarios and their possible boundary conditions, as discussed. PMID:25870268

  10. Is There an Optimal Level of Open-Endedness in Prebiotic Evolution?

    NASA Astrophysics Data System (ADS)

    Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio

    2012-10-01

    In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study - under a unified and concise prebiotic evolutionary framework - both a variety of initial conditions of the universe and the OEE of species that evolve from them.

  11. Is there an optimal level of open-endedness in prebiotic evolution?

    PubMed

    Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio

    2012-10-01

    In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study--under a unified and concise prebiotic evolutionary framework--both a variety of initial conditions of the universe and the OEE of species that evolve from them. PMID:23114973

  12. Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Materese, Christopher; Nuevo, Michel

    2012-01-01

    Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.

  13. Prebiotics Do Not Influence the Severity of Atopic Dermatitis in Infants: A Randomised Controlled Trial

    PubMed Central

    Hill, Martin; Skýba, Tomáš

    2015-01-01

    The objective was to evaluate the effects of a hypoallergenic (HA) formula supplemented with prebiotic galacto-oligosaccharides on the severity of atopic manifestations. A randomised clinical trial was conducted. The control group was infants, fed with hypoallergenic formula and without supplementation. The duration of the study was six months. The primary outcome of the study was a difference in the severity of atopic dermatitis measured using SCORAD (Scoring Atopic Dermatitis) criteria. Secondary outcomes were anthropometry (length, weight, and head circumference), together with the tolerance and incidence of infections. Both groups showed a decrease of average SCORAD values, but no statistically significant difference between the evaluated groups was observed. There were no statistically significant differences in anthropometry, or the tolerance or incidence of infections. Although there is no evidence, that consumption of a hypoallergenic infant formula enriched with prebiotic galacto-oligosaccharides had any effect on SCORAD, it was safe and well tolerated. Trial Registration www.clinicaltrials.gov NCT 02077088 PMID:26571488

  14. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation.

    PubMed

    Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N; Rozanov, Alexei Y; Krasavin, Eugene; Di Mauro, Ernesto

    2015-05-26

    Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy-based prebiotic scenarios and their possible boundary conditions, as discussed. PMID:25870268

  15. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  16. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  17. The possible roles of water in the prebiotic chemical evolution of DNA.

    PubMed

    Cui, Shuxun

    2010-09-21

    There is no doubt that water is pivotal to life. Yet, as the emergence of life is still a big challenge in science, the detailed involvement of water in that process is not well recognized. Following the clues provided by recent single-molecule studies on DNA, we attempt to elucidate the possible roles of water in the prebiotic chemical evolution. Water has long been recognized as an important reactant in the Miller-Urey experiment and then as the only solvent of the primitive soup. Besides that, water also played a vital role in the prebiotic chemical evolution: water is the important criterion in the combinatorial library screening for self-assembling macromolecules. With this notion, the uniformity of biochemistry for all terrestrial life may be explained. A possible roadmap from the inorganic world to the origin of life is also discussed. PMID:20577681

  18. The catalysis of nucleotide polymerization by compounds of divalent lead. [prebiotic synthesis

    NASA Technical Reports Server (NTRS)

    Sleeper, H. L.; Orgel, L. E.

    1979-01-01

    The nonenzymatic, nontemplate catalysis of nucleotide polymerization by Pb(2+) ions, a possible prebiotic catalyst, is reported. Adenosine and uridine phosphoimidazoles were reacted in buffered solutions of lead salts and products were analyzed by means of paper chromatography and electrophoresis. In the presence of Pb(2+) ion at pH 8.0 and 7.0 the reaction is found to progress rapidly with excellent yields of oligomers, with optimal yields observed at pH 8.0. Little temperature dependence in the range 0 to 30 C is observed, however hydrolysis of the reaction products is minimal when the reaction is carried out at 0 C. Results show that the yield of oligomers is insensitive to mixing or the source of lead ions, indicating that naturally occurring minerals or precipitates could be a source of Pb(2+) ions under prebiotic conditions.

  19. Catalytic role of Manganese oxides in prebiotic Nucleobases synthesis from Formamide

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij

    2012-07-01

    The evolution of living cell from chemicals is more complicated reaction which could be studied in multistep. A study of prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide under catalytic condition with different oxides of manganese reveals a significant role. Manganese oxides are highly efficient in the conversion of formamide into different nucleobases. Neat formamide is converted to the purine, 9-(hydroxyacetyl) purine, cytosine, 4(3H)-pyrimidinone, thymine and adenine in good yield. Metal oxides have provided their surfaces and catalyzed the reactions from simple molecules to more complex bio-organic molecules. Our results show that probably prebiotic reactions might have occured on the sea floor where the existence of manganese oxide is second to iron transition metal minerals.

  20. The prebiotic synthesis of modified purines and their potential role in the RNA world

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Modified purines are found in all organisms in the tRNA, rRNA, and even DNA, raising the possibility of an early role for these compounds in the evolution of life. These include N6-methyladenine, 1-methyladenine, N6,N6-dimethyladenine, 1-methylhypoxanthine, 1-methylguanine, and N2-methylguanine. We find that these bases as well as a number of nonbiological modified purines can be synthesized from adenine and guanine by the simple reaction of an amine or an amino group with adenine and guanine under the concentrated conditions of the drying-lagoon or drying-beach model of prebiotic synthesis with yields as high as 50%. These compounds are therefore as prebiotic as adenine and guanine and could have played an important role in the RNA world by providing additional functional groups in ribozymes, especially for the construction of hydrophobic binding pockets.