Science.gov

Sample records for precision current transformer

  1. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  2. 60. VIEW OF THE CURRENT TRANSFORMER VAULT. THIS CURRENT TRANSFORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. VIEW OF THE CURRENT TRANSFORMER VAULT. THIS CURRENT TRANSFORMER WAS USED TO SENSE HIGH CURRENT BEING GENERATED ON GENERATOR NUMBER 3 AND REDUCE IT TO A LOWER, EXACT ANALOG VALUE THAT COULD BE SAFELY HANDLED AND MONITORED WITH THE CONTROL CIRCUITRY. THE CURRENT TRANSFORMER IS LOCATED IN THE CENTER OF THE PHOTOGRAPH. THE CONNECTING BUS ABOVE THE TRANSFORMER WAS REMOVED FOR SALVAGE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  3. [Precision stomatology: current status and challenges].

    PubMed

    Xu, Xin; Zheng, Xin; Zheng, Liwei; Cheng, Lei; Zhou, Xuedong

    2015-06-01

    The completion of human genome project and the progress in medical practice have inevitably lead to the development of precision medicine, which is a medical model that proposes the customization of medical care including medical decisions, practices, and/or medical products with patient's genetic background, environmental factors and life behavior being taken into account. The current work proposed precision stomatology for the first time, and by integrating data reported in recent literature, we described the current practice of precision stomatology in multiple disciplines in modem dentistry. The clinical significance of precision stomatology and its future challenges have also been discussed. PMID:26281265

  4. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  5. Electronic voltage and current transformers testing device.

    PubMed

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware. PMID:22368510

  6. Solid-state current transformer

    NASA Technical Reports Server (NTRS)

    Farnsworth, D. L. (Inventor)

    1976-01-01

    A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.

  7. Dual current readout for precision plating

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1970-01-01

    Bistable amplifier prevents damage in the low range circuitry of a dual scale ammeter. It senses the current and switches automatically to the high range circuitry as the current rises above a preset level.

  8. PRECISION INTEGRATOR FOR MINUTE ELECTRIC CURRENTS

    DOEpatents

    Hemmendinger, A.; Helmer, R.J.

    1961-10-24

    An integrator is described for measuring the value of integrated minute electrical currents. The device consists of a source capacitor connected in series with the source of such electrical currents, a second capacitor of accurately known capacitance and a source of accurately known and constant potential, means responsive to the potentials developed across the source capacitor for reversibly connecting the second capacitor in series with the source of known potential and with the source capacitor and at a rate proportional to the potential across the source capacitor to maintain the magnitude of the potential across the source capacitor at approximately zero. (AEC)

  9. Transforming Cancer Prevention through Precision Medicine and Immune-oncology.

    PubMed

    Kensler, Thomas W; Spira, Avrum; Garber, Judy E; Szabo, Eva; Lee, J Jack; Dong, Zigang; Dannenberg, Andrew J; Hait, William N; Blackburn, Elizabeth; Davidson, Nancy E; Foti, Margaret; Lippman, Scott M

    2016-01-01

    We have entered a transformative period in cancer prevention (including early detection). Remarkable progress in precision medicine and immune-oncology, driven by extraordinary recent advances in genome-wide sequencing, big-data analytics, blood-based technologies, and deep understanding of the tumor immune microenvironment (TME), has provided unprecedented possibilities to study the biology of premalignancy. The pace of research and discovery in precision medicine and immunoprevention has been astonishing and includes the following clinical firsts reported in 2015: driver mutations detected in circulating cell-free DNA in patients with premalignant lesions (lung); clonal hematopoiesis shown to be a premalignant state; molecular selection in chemoprevention randomized controlled trial (RCT; oral); striking efficacy in RCT of combination chemoprevention targeting signaling pathway alterations mechanistically linked to germline mutation (duodenum); molecular markers for early detection validated for lung cancer and showing promise for pancreatic, liver, and ovarian cancer. Identification of HPV as the essential cause of a major global cancer burden, including HPV16 as the single driver of an epidemic of oropharyngeal cancer in men, provides unique opportunities for the dissemination and implementation of public health interventions. Important to immunoprevention beyond viral vaccines, genetic drivers of premalignant progression were associated with increasing immunosuppressive TME; and Kras vaccine efficacy in pancreas genetically engineered mouse (GEM) model required an inhibitory adjuvant (Treg depletion). In addition to developing new (e.g., epigenetic) TME regulators, recent mechanistic studies of repurposed drugs (aspirin, metformin, and tamoxifen) have identified potent immune activity. Just as precision medicine and immune-oncology are revolutionizing cancer therapy, these approaches are transforming cancer prevention. Here, we set out a brief agenda for the

  10. DC-Compensated Current Transformer

    PubMed Central

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  11. Precision intercomparison of beam current monitors at CEBAF

    SciTech Connect

    Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, r.; Liang, C.; Sinclair, C.; Mamosser, J.

    1995-12-31

    The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 {mu}A. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward to verify the high efficiency of the Faraday cups, and the Unser monitor included a wire through it to permit an absolute calibration. The cavity intensity monitors have proven capable of stable, high precision monitoring of the beam current.

  12. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  13. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  14. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  15. Saturation current spikes eliminated in saturable core transformers

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Unsaturating composite magnetic core transformer, consisting of two separate parallel cores designed so impending core saturation causes signal generation, terminates high current spike in converter primary circuit. Simplified waveform, demonstrates transformer effectiveness in eliminating current spikes.

  16. A new high-precision current supply for magnets

    SciTech Connect

    Wisnivesky, D. |; Lira, A.C.

    1995-08-01

    A new, high-precision, low-ripple current power supply (CPS) for magnets, based on a combination of an SCR converter and a single transistor switched mode power supply (SMPS) is described. The load power is primarily supplied by the SCR converter. The SMPS handles only a small fraction of the load power, and also, what is more significant, a very small part of the load current. In this paper, the topology and operating principle of the new power supply is discussed. A CPS, rated at 200 A at 45 V, was constructed and tested. The power supply energizes a family of quadrupole magnets at the Brazilian Synchrotron Light Source--LNLS. Making use of the current limit modulation (CLM) control method, magnetic field variations at full current are 5 ppm, with only 8 A passing through the switching transistor. The design and performance of the power supply under different operating conditions ar described. Variations of the proposed topology, suitable for high-current and high-voltage loads, are also discussed.

  17. 59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN THE SIGNAL POWER CONDITIONING ROOM. THE CURRENT TRANSFORMER (UPPER RIGHT) IS AN INDUCTION COUPLED SENSOR WHICH IS USED TO REDUCE HIGH CURRENT TO ANALOGOUS LOW VALUES SAFE TO USE IN CONTROL ROOM CIRCUITRY. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  18. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  19. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  20. Direct-Current Monitor With Flux-Reset Transformer Coupling

    NASA Technical Reports Server (NTRS)

    Canter, Stanley

    1993-01-01

    Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.

  1. Transformation of spin current by antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasil S.; Slavin, Andrei N.; Ivanov, Boris A.

    2016-06-01

    It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can effectively conduct spin current through the excitation of a pair of evanescent AFM spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and the AFM lattice and, depending on the excitation conditions, can be either attenuated or enhanced. When the phase difference between the excited evanescent modes is close to π /2 , there is an optimum AFM thickness for which the output spin current reaches a maximum, which can significantly exceed the magnitude of the input spin current. The spin current transfer through the AFM depends on the ambient temperature and increases substantially when temperature approaches the Néel temperature of the AFM layer.

  2. Elimination of inrush current of transformers and distribution lines

    SciTech Connect

    Asghar, M.S.J.

    1995-12-31

    Repeated switching of distribution transformers take place due to poor generation and load shading. The transformer mounted on electric locomotive is also regularly reswitched after crossing each buffer zone between two substations. The steady-state magnetizing current of a transformer is about 5% of the full load current.But the transient inrush current may be as high as ten times the full-load current. The switching instant decides the nature and magnitude of the switching current and it is used here to control the inrush current. Another method is adopted by placing a capacitor at the secondary side of the unloaded transformer connected at the sending or receiving end of the distribution line. Third method is proposed using the distribution line as a low-pass filter. In case of a three-phase transformer, when it is switched, inrush current flows in either one or two phase windings. Instead of a simultaneous switching of all the phases (windings), each winding of transformer is switched at predetermined switching instants sequentially. Thus inrush currents are contained to steady-state level using an instant-controlled switching circuit. Switching of all phases completes within 1/3 or 1/4 of the power-cycle depending upon the mode of transformer configuration and the switching strategy. The switching current is found same as the steady-state no-load current. These schemes are useful for traction transformer as well as for poorly supplied and poorly maintained distribution lines including traction line which are subjected to repeated switching.

  3. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  4. A superconducting transformer system for high current cable testing.

    PubMed

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples. PMID:20370213

  5. Development of Large Current High Precision Pulse Power Supply

    NASA Astrophysics Data System (ADS)

    Takayanagi, Tomohiro; Koseki, Shoichiro; Kubo, Hiroshi; Katoh, Shuji; Ogawa, Shinichi

    JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV synchrotron. Its injection bump magnets, especially horizontal paint bump magnets, are excited by large pulse currents. Their rated currents are over 10kA and pulse widths are about 1ms. Tracking errors are required to be less than 1%. Multiple connected two-quadrant IGBT choppers are adopted for their power supplies. Their output currents are controlled by feedback control with minor loop voltage control (m-AVR). When output current of a chopper intermits at small current, its output voltage rises up and current control becomes difficult. In this paper response of m-AVR and output voltage characteristics at current intermittent region are studied and an improved control scheme is proposed. The performance is confirmed by a test.

  6. Precise spectrum reconstruction of the Fourier transforms imaging spectrometer based on polarization beam splitters.

    PubMed

    Ren, Wenyi; Zhang, Chunmin; Jia, Chenling; Mu, Tingkui; Li, Qiwei; Zhang, Lin

    2013-04-15

    A method was proposed to precisely reconstruct the spectrum from the interferogram taken by the Fourier transform imaging spectrometer (FTIS) based on the polarization beam splitters. Taken the FTISs based on the Savart polariscope and Wollaston prism as examples, the distorted spectrums were corrected via the proposed method effectively. The feasibility of the method was verified via simulation. The distorted spectrum, recovered from the interferogram taken by the polarization imaging spectrometer developed by us, was corrected. PMID:23595463

  7. Wave Transformation and Breaking on a Sheared Current

    NASA Astrophysics Data System (ADS)

    Zippel, S.; Thomson, J. M.; Rusch, C.

    2014-12-01

    Waves shoaling against tidal currents at river inlets have long been a hazard to navigation. We present measurements of waves, currents, and turbulence from SWIFT drifters at the Columbia River Mouth to diagnose wave transformation, breaking, and the resulting turbulence. In particular, down-looking velocity profiles, measured onboard the drifters, allow for evaluation of wave transformation on a vertically sheared current, for which theory exists but few in situ measurements are available. One consequence of wave transformation is steepening and breaking, which is identified using visual images, increased near surface turbulence, and gradients in wave energy flux. Vertical turbulent dissipation profiles measured during breaking are compared to existing scalings developed for deep and shallow water and expanded to the intermediate depth conditions common at the Columbia River Mouth. The analysis is intended to improve hydrodynamic models, especially two-way coupled wave-current models, and to aid navigation by better predicting dangerous wave conditions.

  8. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  9. Current Technologies and Related Issues for Mushroom Transformation

    PubMed Central

    Kim, Sinil; Ha, Byeong-Suk

    2015-01-01

    Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration. PMID:25892908

  10. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, R.L.; Guilford, R.P.; Stichman, J.H.

    1987-06-29

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.

  11. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.

    1988-01-01

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.

  12. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  13. A High Precision Scanning Control System For A VUV Fourier Transform Spectrometer

    SciTech Connect

    De Oliveira, N.; Nahon, L.; Polack, F.; Joyeux, D.; Phalippou, D.; Rodier, J. C.; Vervloeet, M.

    2007-01-19

    A VUV Fourier transform spectrometer based on a wavefront division interferometer has been built. Our ultimate goal is to provide a high resolution absorption spectrometer in the 140 - 40 nm range using the new third generation French synchrotron source Soleil as the background continuum. Here, we present the design and latest performance of the instrument scanning control system. It is based on multiple reflections of a monomode, frequency-stabilized HeNe laser between two plane mirrors allowing the required sensitivity on the displacement of the interferometer mobile arm. The experimental results on the sampling precision show an rms error below 5 nm for a travel length of 7.5 mm.

  14. Amplification of S-1 Spheromak current by an inductive current transformer

    SciTech Connect

    Jardin, S.C.; Janos, A.; Yamada, M.

    1985-11-01

    We attempt to predict the consequences of adding an inductive current transformer (OH Transformer) to the present S-1 Spheromak experiment. Axisymmetric modeling with only classical dissipation shows an increase of toroidal current and a shrinking and hollowing of the current channel, conserving toroidal flux. These unstable profiles will undergo helical reconnection, conserving helicity K = ..integral.. A-vector x B-vector d tau while increasing the toroidal flux and decreasing the poloidal flux so that the plasma relaxes toward the Taylor state. This flux rearrangement is modeled by a new current viscosity term in the mean-field Ohm's law which conserves helicity and dissipates energy.

  15. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  16. An accurate continuous calibration system for high voltage current transformer.

    PubMed

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site. PMID:21361633

  17. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOEpatents

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  18. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  19. Precise major component determinations in deep-sea sediments using Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Herbert, Timothy D.; Tom, Brian A.; Burnett, Chris

    1992-04-01

    Experiments using Fourier Transform Infrared Spectroscopy (FTIR) on a set of powdered deep-sea sediment samples show that it is an efficient method of quantifying the relative abundances of quartz, clay, and calcite. Ratios of absorption bands characteristic of different minerals are precise and reproducible to a relative error of about 1 % provided that samples are ground to <2 μm. FTIR results, calibrated to geochemical measurements, therefore offer a more rapid means of producing sedimentary time series data than do elemental or phase-specific extractions. Calibration of results to absolute amounts of sedimentary phases is possible for minerals with unique absorption bands. Highly IR-absorbant minerals such as quartz and calcite are quantitatively detectable in amounts as low as 5% in a mixture. In addition, FTIR measurements complement elemental analyses by allowing the accurate partitioning of elements, such as Si, which may occur in several phases.

  20. A transmission-loss monitor using current transformers

    SciTech Connect

    Power, J.F.; Gilpatrick, J.D.; Jason, A.J.

    1993-12-01

    A system for measuring the amount of beam-charge loss in a linear-accelerator structure has been developed that uses a pair of beam-current transformers, otherwise used to monitor the linac beam current. This system is necessary to enable the Ground Test Accelerator (GTA) fast-protect system to shut off the accelerated beam in the event of a beam loss that would deposit sufficient energy to damage the accelerator structure. The present GTA accelerator consists of a 2.5-MeV, H{sup {minus}} RFQ, an intermediate matching section (IMS) and a single DTL cavity with an output energy of 3.2-MeV and transmitted current of 35 mA. Based on the RFQ output beam, melting of the copper structures will occur when about 40 nC of beam is deposited in a point loss. For a grazing angle of 30 mrad, up to 640 nC may be tolerated. The beam-current-transmission-loss monitor (BCTLM) system in conjunction with the fast-protect system measures the amount of beam loss between two toroidal beam-current monitors and automatically terminates the macropulse when the integrated loss reaches a predetermined set point. The design and operation of the BCTLM system used in the IMS and DTL section of the accelerator is described.

  1. Evaluation of conductor stresses in a pulsed high-current toroidal transformer

    SciTech Connect

    Turchi, Peter J; Rousculp, Chritopher L; Reass, William A; Oro, David M; Merrill, Frank E; Greigo, Jeffery R; Reinovsky, Robert E

    2009-01-01

    The Precision, High-Energy Density, Liner Implosion Experiment (PHELIX) pulsed power driver is currently under development at Los Alamos National Laboratory. When operational PHELIX will provide 5-10 MAmps of peak current with pulse rise-time of {approx} 5-10 ms. Crucial to the performance of PHELIX is a multi-turn primary, single-turn secondary, current step-up toroidal transformer, R{sub major} {approx} 30 cm, R{sub minor} {approx} 10 cm. The transformer lifetime should exceed 100 shots. Therefore it is essential that the design be robust enough to survive the magnetic stresses produced by high currents. In order to evaluate their design, two methods have been utilized. First, an analytical evaluation has been performed. By identifying the magnetic forces as J{sub 1}{sup 2}/2 {del}L{sub 1} + J{sub 1}J{sub 2}{del}M{sub 12}, where J{sub 1} and J{sub 2} are currents in two circuits, coupled by mutual inductance M{sub 12} and L{sub 1} is the self-inductance of the circuit carrying current J{sub 1}, analytical estimates of stress can be obtained. These results are then compared to a computational MHD model of the same system and to a full finite-element, electromagnetic simulation.

  2. Learning Precise Spike Train-to-Spike Train Transformations in Multilayer Feedforward Neuronal Networks.

    PubMed

    Banerjee, Arunava

    2016-05-01

    We derive a synaptic weight update rule for learning temporally precise spike train-to-spike train transformations in multilayer feedforward networks of spiking neurons. The framework, aimed at seamlessly generalizing error backpropagation to the deterministic spiking neuron setting, is based strictly on spike timing and avoids invoking concepts pertaining to spike rates or probabilistic models of spiking. The derivation is founded on two innovations. First, an error functional is proposed that compares the spike train emitted by the output neuron of the network to the desired spike train by way of their putative impact on a virtual postsynaptic neuron. This formulation sidesteps the need for spike alignment and leads to closed-form solutions for all quantities of interest. Second, virtual assignment of weights to spikes rather than synapses enables a perturbation analysis of individual spike times and synaptic weights of the output, as well as all intermediate neurons in the network, which yields the gradients of the error functional with respect to the said entities. Learning proceeds via a gradient descent mechanism that leverages these quantities. Simulation experiments demonstrate the efficacy of the proposed learning framework. The experiments also highlight asymmetries between synapses on excitatory and inhibitory neurons. PMID:26942750

  3. Experimental study on superconducting fault current limiting transformer for fault current suppression and system stability improvement

    NASA Astrophysics Data System (ADS)

    Kagawa, H.; Hayakawa, N.; Kashima, N.; Nagaya, S.; Okubo, H.

    2002-08-01

    We have been developing a superconducting fault current limiting transformer (SFCLT) with 3-phase, 500/275 kV, 625 MVA and optimized the main parameters by EMTP simulation. In this paper, we designed and fabricated an experimental scale-down model of SFCLT with 3-phase, 275/105 V, 6.25 kVA, using NbTi superconducting wire. We introduced the experimental model SFCLT into a transient network analyzer consisted of synchronous generators, transformers, transmission lines, circuit breakers and an infinite bus. It was revealed that experimental model had effective function-parameters as was simulated and experimental results clarified the effectiveness of SFCLT having both functions of the fault current suppression and the system stability improvement in a future superconducting power system.

  4. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  5. A high-current calibration system based on indirect comparison of current transformer and Rogowski coil

    NASA Astrophysics Data System (ADS)

    Luo, Pandian; Li, Zhenhua; Li, Hongbin; Li, Hongfeng

    2013-12-01

    The calibration of the protective current transformer (CT) is of particular importance, since its accuracy at high currents is crucial to the correct operation of the subsequent relay protection devices. Conventional calibration methods have been using an electromagnetic CT which contains an iron core as the standard CT. The iron core is big and difficult to manufacture for high-current measurement, and the serious residual magnetism of the iron core at high currents can lead to excessive measurement errors. This paper proposes a calibration system based on indirect comparison of CT and Rogowski coil, i.e. using an iron-core CT to correct the error of the Rogowski coil at low currents, which may be caused by the position of the current-carrying conductor and so on, and then using the calibrated Rogowski coil as the standard transformer at high currents for its good linearity and wide dynamic range, and there is no magnetic saturation. Since the output of the Rogowski coil needs to be integrated, an improved digital integrator based on direct current (dc) negative feedback is adopted, which can effectively eliminate the influences of temperature drift, time drift and dc offset caused by the analogue circuit. The measurement errors of each part of the calibration system have also been discussed, and the test results show that the accuracy of the system can reach up to the 0.05S Class and the uncertainties are 0.038% for ratio and 0.68‧ for phase in the range 500 A to 50 kA.

  6. Comparative effectiveness research in cancer genomics and precision medicine: current landscape and future prospects.

    PubMed

    Simonds, Naoko I; Khoury, Muin J; Schully, Sheri D; Armstrong, Katrina; Cohn, Wendy F; Fenstermacher, David A; Ginsburg, Geoffrey S; Goddard, Katrina A B; Knaus, William A; Lyman, Gary H; Ramsey, Scott D; Xu, Jianfeng; Freedman, Andrew N

    2013-07-01

    A major promise of genomic research is information that can transform health care and public health through earlier diagnosis, more effective prevention and treatment of disease, and avoidance of drug side effects. Although there is interest in the early adoption of emerging genomic applications in cancer prevention and treatment, there are substantial evidence gaps that are further compounded by the difficulties of designing adequately powered studies to generate this evidence, thus limiting the uptake of these tools into clinical practice. Comparative effectiveness research (CER) is intended to generate evidence on the "real-world" effectiveness compared with existing standards of care so informed decisions can be made to improve health care. Capitalizing on funding opportunities from the American Recovery and Reinvestment Act of 2009, the National Cancer Institute funded seven research teams to conduct CER in genomic and precision medicine and sponsored a workshop on CER on May 30, 2012, in Bethesda, Maryland. This report highlights research findings from those research teams, challenges to conducting CER, the barriers to implementation in clinical practice, and research priorities and opportunities in CER in genomic and precision medicine. Workshop participants strongly emphasized the need for conducting CER for promising molecularly targeted therapies, developing and supporting an integrated clinical network for open-access resources, supporting bioinformatics and computer science research, providing training and education programs in CER, and conducting research in economic and decision modeling. PMID:23661804

  7. A new method to calculate the beam charge for an integrating current transformer

    SciTech Connect

    Wu Yuchi; Han Dan; Zhu Bin; Dong Kegong; Tan Fang; Gu Yuqiu

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.

  8. Graphic overlays in high-precision teleoperation: Current and future work at JPL

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Venema, Steven C.

    1989-01-01

    In space teleoperation additional problems arise, including signal transmission time delays. These can greatly reduce operator performance. Recent advances in graphics open new possibilities for addressing these and other problems. Currently a multi-camera system with normal 3-D TV and video graphics capabilities is being developed. Trained and untrained operators will be tested for high precision performance using two force reflecting hand controllers and a voice recognition system to control two robot arms and up to 5 movable stereo or non-stereo TV cameras. A number of new techniques of integrating TV and video graphics displays to improve operator training and performance in teleoperation and supervised automation are evaluated.

  9. Technologies for precision manufacture of current and future windows and domes

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Shorey, Aric

    2009-05-01

    The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.

  10. Precision high-value resistance scaling with a two-terminal cryogenic current comparator

    NASA Astrophysics Data System (ADS)

    Hernandez-Marquez, F. L.; Bierzychudek, M. E.; Jones, G. R.; Elmquist, R. E.

    2014-04-01

    We describe a cryogenic two-terminal high-resistance bridge and its application in precision resistance scaling from the quantized Hall resistance (QHR) at RH = RK/2 = 12 906.4035 Ω to decade resistance standards with values between 1 MΩ and 1 GΩ. The design minimizes lead resistance errors with multiterminal connections to the QHR device. A single variable voltage source and resistive ratio windings are utilized to achieve excellent dynamic stability, which is not readily obtained in low-current measurements with conventional cryogenic current comparators (CCCs). Prototypes of this bridge have been verified by a successful international comparison of high-resistance scaling using two-terminal CCCs in the national metrology institutes of Argentina, Mexico, and the United States.

  11. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  12. Mixed eccentricity diagnosis in Inverter-Fed Induction Motors via the Adaptive Slope Transform of transient stator currents

    NASA Astrophysics Data System (ADS)

    Pons-Llinares, J.; Antonino-Daviu, J.; Roger-Folch, J.; Moríñigo-Sotelo, D.; Duque-Pérez, O.

    2014-10-01

    This paper researches the detection of mixed eccentricity in Inverter-Fed Induction Motors. The classic FFT method cannot be applied when the stator current captured is not in steady state, which is very common in these motors. Therefore, a transform able to detect the time-frequency evolutions of the components present in the transient signal captured must be applied. In order to optimize the result, a method to calculate the theoretical time-frequency evolution of the stator current components is presented, using only the captured current. This previously obtained information enables the use of the proposed transform: the Adaptive Slope Transform, based on appropriately choosing the atom slope in each point analyzed. Thanks to its adaptive characteristics, the time-frequency evolution of the main components in a stator transient current is traced precisely and with high detail in the 2D time-frequency plot obtained. As a consequence, the time-frequency plane characteristic patterns produced by the Eccentricity Related Harmonics are easily and clearly identified enabling a reliable diagnosis. Moreover, the problem of quantifying the presence of the fault is solved presenting a simple and easy to apply method. The transform capabilities have been shown successfully diagnosing an Inverter-Fed Induction Motor with mixed eccentricity during a startup, a decrease in the assigned frequency, and a load variation with and without slip compensation.

  13. [High precision all-reflection Fourier transform imaging spectrometer spectral calibration using homogeneous broadening of the wave number model].

    PubMed

    Cui, De-qi; Liao, Ning-fang; Cao, Wei-liang; Tan, Bo-neng; Tian, Li-xun

    2011-07-01

    All-reflection Fourier transform imaging spectrometer (ARFTIS) is a novel imaging spectrometer. The specialty is not only high spectrum resolution, but also wide band and non-chromatism. It is good for remote sensing field of wide band imaging. Single spectrum calibration, average calibration and weighted average calibration are three common calibration methods. However, they all are limited. Because they cannot meet the demand on both convenience and high precision. In the present paper, the authors propose a novel model for spectrum calibration. It can work in high precision with single spectrum calibration. At the same time, the method is steady, and the average error is less than 5% with multi-bands calibration. It provides a convenient way for the non-professional calibration situation and outer simply calibration work. PMID:21942019

  14. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  15. Performance analyses for fast variable optical attenuator-based optical current transformer

    NASA Astrophysics Data System (ADS)

    Wei, Pu; Chen, Chen; Wang, Xuefeng; Shan, Xuekang; Sun, Xiaohan

    2014-06-01

    In this paper, we analyze the performance of the electro-optic hybrid optical current transformer (HOCT) proposed by ourselves for high-voltage metering and protective relaying application. The transformer makes use of a fast variable optical attenuator (FVOA) to modulate the lightwave according to the voltage from the primary current sensor, such as low-power current transformer (LPCT). In order to improve the performance of the transformer, we use an optic-electro feedback loop with the PID control algorithm to compensate the nonlinearity of the FVOA. The linearity and accuracy of the transformer were analyzed and tested. The results indicate that the nonlinearity of the FVOA is completely compensated by the loop and the ratio and phase errors are under 0.07% and 5 minutes respectively, under the working power of less than 1 mW power. The transformer can be immune to the polarization and wavelength drift, and also robust against the environmental interference.

  16. Transform methods for precision continuum and control models of flexible space structures

    NASA Technical Reports Server (NTRS)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  17. Precise measurement of the resolution in light microscopy using Fourier transform

    SciTech Connect

    Vainrub, Arnold

    2008-04-15

    The resolution power of light microscope has been accurately measured ({+-}5%) by Fourier transform of various object images and further evaluation of the highest spatial frequency in Fourier spectrum. Any unknown shape plane object with a shape feature's size smaller than the resolution to be measured was shown to provide a reliable resolution test. This simple method gives a direct measurement of the resolution power as defined by Abbe [Archiv. F. Mikroskopische Anat. 9, 413 (1873)]. The results have been justified by comparison to a standard resolution measurement by using calibrated periodic line patterns. Notably, the approach is applicable in super-resolution light microscopy (transmission, reflection, and fluorescence), where calibrated resolution targets do not occur. It was conveniently implemented by using a compact disk as a test object and free IMAGEJ imaging software.

  18. Precise measurement of the resolution in light microscopy using Fourier transform.

    PubMed

    Vainrub, Arnold

    2008-04-01

    The resolution power of light microscope has been accurately measured (+/-5%) by Fourier transform of various object images and further evaluation of the highest spatial frequency in Fourier spectrum. Any unknown shape plane object with a shape feature's size smaller than the resolution to be measured was shown to provide a reliable resolution test. This simple method gives a direct measurement of the resolution power as defined by Abbe [Archiv. F. Mikroskopische Anat. 9, 413 (1873)]. The results have been justified by comparison to a standard resolution measurement by using calibrated periodic line patterns. Notably, the approach is applicable in super-resolution light microscopy (transmission, reflection, and fluorescence), where calibrated resolution targets do not occur. It was conveniently implemented by using a compact disk as a test object and free IMAGEJ imaging software. PMID:18447570

  19. Transformation and Transformational Leadership: A Review of the Current and Relevant Literature for Academic Radiologists.

    PubMed

    Thomson, Norman B; Rawson, James V; Slade, Catherine P; Bledsoe, Martin

    2016-05-01

    With the US healthcare system on an unsustainable course, change is inevitable. Changes in the healthcare landscape impacting radiology include changing payment models, rapid adoption of digital technology, changes in radiology resident certifying exams, and the rise of consumerism in health care. Academic Radiology will be part of that change with none of its missions spared. What matters is not that change is coming but how Academic Radiology responds to change. Do we ignore, adapt, adopt others' practices, or lead change? Change management or transformation is a management skill set that can be learned and developed. Transformational leadership is a leadership style defined by the relationships between the leaders and the followers and the results they are able to achieve together to meet organizational goals. In this paper, we provide a review of key change management theories, as well as practical advice for self-reflection and development of leadership behaviors that promote effective change management and organizational transformation, particularly in a complex industry like Academic Radiology. PMID:26971043

  20. Drug policy in China. Transformations, current status and future prospects.

    PubMed

    Liu, X; Li, S

    1997-07-01

    The pharmaceutical sector in China developed rapidly with the implementation of the market-oriented economic reforms, which began at the end of the 1970s. From 1980 to 1988 the production of drugs quadrupled, subsequently increasing at an annual rate of 20%, and consumption of drugs correspondingly increased. The increase in drug production was largely a result of the increase in the number of pharmaceutical companies, particularly the number of private joint ventures, of which there were none in 1980 and 1900 in 1994, accounting for 37% of the total number of pharmaceutical companies. With the transformation of the Chinese pharmaceutical market, some new problems have appeared. The low efficiency of pharmaceutical companies, poor-quality drugs, unfair competition and misuse of drugs have been of great concern to the Chinese government. Some countermeasures have been taken, but the problems remain. Increases in the age of the Chinese population, increases in income and changes in disease patterns, together with membership of the World Trade Organization will promote the development of the pharmaceutical market. However, health-insurance reform, an essential drug list, the separation of drugs from services, and controls on the increases in hospital revenue will reduce the demand for drugs. Pharmaceutical companies in China face both opportunities and challenges. The trend in development of the pharmaceutical market depends on the outcome of the interaction between the factors that increase, and those that decrease, the demand for drugs. While the general trend is towards an increase in the demand for drugs and the expansion of the pharmaceutical market, downward fluctuation is inevitable if effective health reforms of cost control are introduced nationwide. PMID:10169383

  1. Elimination of the induced current error in magnetometers using superconducting flux transformers

    SciTech Connect

    Dummer, D.; Weyhmann, W.

    1987-10-01

    The changing magnetization of a sample in a superconducting flux transformer coupled magnetometer induces a current in the transformer which in turn changes the field at the sample. This ''image'' field and the error caused by it can be eliminated by sensing the current in the loop and nulling it by feedback through a mutual inductance. We have tested the technique on the superconducting transition of indium in an applied magnetic field and shown that the observed width of the transition is greatly reduced by maintaining zero current in the flux transformer.

  2. Determination of Vapor Pressure-Temperature Relationships of Current Use Pesticides and Transformation Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sub-cooled liquid vapor pressures of current use organochlorine and organophosphate pesticides (chlorothalonil, chlorpyrifos methyl, diazinon, fipronil) and selected transformation products (chlorpyrifos oxon, heptachlor epoxide, oxychlordane, 3,5,6-trichloro-2-pyridinol) were determined at multiple...

  3. CURRENT STATUS AND FUTURE DIRECTIONS OF PRECISION AGRICULTURE IN THE USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From the development of the first viable variable-rate fertilizer systems in the upper Midwest USA, precision agriculture is now about two decades old. In that time, new technologies have come into play, but the overall goal of using spatial information to target inputs more effectively remains the ...

  4. Current status and future directions of precision agriculture for aerial application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision aerial application in the USA is less than a decade old since the development of the first variable-rate aerial application system. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management. Variable-rate aerial application provides...

  5. Transformer-rectifier flux pump using inductive current transfer and thermally controlled Nb(3)Sn cryotrons.

    PubMed

    Atherton, D L; Davies, R

    1979-10-01

    Transformer-rectifier flux pumps using thermally switched Nb(3)Sn cryotrons are being investigated as a loss make-up device for the proposed isochorically operated (sealed) superconducting magnets for the Canadian Maglev vehicle. High currents (1000 A) were obtained in an experimental flux pump using inductive current transfer and operating at 2 Hz. PMID:18699368

  6. Transforming nursing education: a review of current curricular practices in relation to Benner's latest work.

    PubMed

    Handwerker, Sarah M

    2012-01-01

    Current societal and healthcare system trends highlight the need to transform nursing education to prepare nurses capable of outstanding practice in the 21st century. Patricia Benner and colleagues urged nurse educators to transform their practice in the 2010 publication Educating Nurses, A Call to Radical Transformation. Frequently utilized pedagogical frameworks in nursing education include behaviorism and constructivism. Much of the structure and basis for instruction and evaluation can be found rooted in these philosophies. By first exploring both behaviorism and constructivism and then relating their use in nursing education to the call to transform, educators can be encourage to examine current practice and possibly modify aspects to include more rich experiential learning. PMID:23092804

  7. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  8. Precision of dosimetry-related measurements obtained on current multidetector computed tomography scanners

    SciTech Connect

    Mathieu, Kelsey B.; McNitt-Gray, Michael F.; Zhang, Di; Kim, Hyun J.; Cody, Dianna D.

    2010-08-15

    Purpose: Computed tomography (CT) intrascanner and interscanner variability has not been well characterized. Thus, the purpose of this study was to examine the within-run, between-run, and between-scanner precision of physical dosimetry-related measurements collected over the course of 1 yr on three different makes and models of multidetector row CT (MDCT) scanners. Methods: Physical measurements were collected using nine CT scanners (three scanners each of GE VCT, GE LightSpeed 16, and Siemens Sensation 64 CT). Measurements were made using various combinations of technical factors, including kVp, type of bowtie filter, and x-ray beam collimation, for several dosimetry-related quantities, including (a) free-in-air CT dose index (CTDI{sub 100,air}); (b) calculated half-value layers and quarter-value layers; and (c) weighted CT dose index (CTDI{sub w}) calculated from exposure measurements collected in both a 16 and 32 cm diameter CTDI phantom. Data collection was repeated at several different time intervals, ranging from seconds (for CTDI{sub 100,air} values) to weekly for 3 weeks and then quarterly or triannually for 1 yr. Precision of the data was quantified by the percent coefficient of variation (%CV). Results: The maximum relative precision error (maximum %CV value) across all dosimetry metrics, time periods, and scanners included in this study was 4.33%. The median observed %CV values for CTDI{sub 100,air} ranged from 0.05% to 0.19% over several seconds, 0.12%-0.52% over 1 week, and 0.58%-2.31% over 3-4 months. For CTDI{sub w} for a 16 and 32 cm CTDI phantom, respectively, the range of median %CVs was 0.38%-1.14% and 0.62%-1.23% in data gathered weekly for 3 weeks and 1.32%-2.79% and 0.84%-2.47% in data gathered quarterly or triannually for 1 yr. Conclusions: From a dosimetry perspective, the MDCT scanners tested in this study demonstrated a high degree of within-run, between-run, and between-scanner precision (with relative precision errors typically well

  9. Analytical Analysis and Case Study of Transient Behavior of Inrush Current in Power Transformer for Designing of Efficient Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Harmanpreet, Singh, Sukhwinder; Kumar, Ashok; Kaur, Parneet

    2010-11-01

    Stability & security are main aspects in electrical power systems. Transformer protection is major issue of concern to system operation. There are many mall-trip cases of transformer protection are caused by inrush current problems. The phenomenon of transformer inrush current has been discussed in many papers since 1958. In this paper analytical analysis of inrush current in a transformer switched on dc and ac supply has been done. This analysis will help in design aspects of circuit breakers for better performance.

  10. Impact of quasi-dc currents on three-phase distribution transformer installations

    SciTech Connect

    McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Schafer, D.A. )

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This smoking neutral'' results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  11. Electromagnetic characterization of current transformer with toroidal core under sinusoidal conditions

    NASA Astrophysics Data System (ADS)

    Koprivica, Branko; Milovanovic, Alenka

    2016-04-01

    The aim of this paper is to present a new procedure for the electromagnetic analysis of a measuring current transformer under sinusoidal conditions in its electrical and magnetic circuit. The influence of the magnetic hysteresis has been taken into account using the measured inverse magnetization curve and phase lag between the time waveforms of the magnetic field and the magnetic induction. Using the proposed analysis, ratio and phase errors of the current transformer have been calculated. The results of the calculation have been compared with experimental results and a good agreement has been found.

  12. Ultrashort pulse lasers for precise processing: overview on a current German research initiative

    NASA Astrophysics Data System (ADS)

    Nolte, S.

    2014-03-01

    Ultrashort laser pulses provide a powerful means of processing a wide variety of materials with highest precision and minimal damage. In order to exploit the full potential of this technology, the German Federal Ministry of Education and Research has launched an initiative with 20 Million EUR funding about two years ago. Within 9 joint research projects, different aspects from novel concepts for robust and powerful laser sources to reliable components with high damage thresholds and dynamic beam shaping and steering are investigated. Applications include eye surgery as well as the processing of semiconductors, carbon fiber reinforced plastics and metals. The paper provides an overview on the different projects and highlights first results.

  13. Site-specific recombination for precise and clean transgene integration in plant genome. In: Touraev, A., Citovsky, V., Tzfira, T., Editors of book. Plant Transformation Technologies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integr...

  14. The Current Status of Precision Superallowed Fermi {beta}-Decay Measurements at TRIUMF-ISAC

    SciTech Connect

    Leach, K. G.

    2011-06-28

    Recent experimental work at the TRIUMF-ISAC radioactive ion-beam facility in Vancouver Canada, has produced several new results related to precise experimental tests of fundamental symmetries. The nature of these programs range from campaigns using existing setups, to the development of new apparats to further the experimental reach. One of the primary goals has been the investigation of superallowed Fermi {beta}-decay, and its relation to Standard Model tests of CVC and CKM unitarity The extraction of experimental {beta}-decay ft values requires the measurement of three quantities: the half-life, the superallowed branching ratio, and the parent-daughter mass difference. TRIUMF-ISAC has the ability to measure each of these values with very high precision, using a gas-proportional-counter, the 8{pi}{gamma}-ray spectrometer, and TITAN, respectively. This report focuses on the recent experimental progress of the superallowed program, as well as highlighting some results from the successful halo-nucleus mass-measurement program at TITAN.

  15. High-Precision Half-Life Measurements for the Superallowed β^{+} Emitter ^{10}C: Implications for Weak Scalar Currents.

    PubMed

    Dunlop, M R; Svensson, C E; Ball, G C; Grinyer, G F; Leslie, J R; Andreoiu, C; Austin, R A E; Ballast, T; Bender, P C; Bildstein, V; Diaz Varela, A; Dunlop, R; Garnsworthy, A B; Garrett, P E; Hackman, G; Hadinia, B; Jamieson, D S; Laffoley, A T; MacLean, A D; Miller, D M; Mills, W J; Park, J; Radich, A J; Rajabali, M M; Rand, E T; Unsworth, C; Valencik, A; Wang, Z M; Zganjar, E F

    2016-04-29

    Precision measurements of superallowed Fermi β-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and β counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074  s and T_{1/2}=19.3009±0.0017  s, respectively. The latter is the most precise superallowed β-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed β-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos. PMID:27176517

  16. High-Precision Half-Life Measurements for the Superallowed β+ Emitter 10C: Implications for Weak Scalar Currents

    NASA Astrophysics Data System (ADS)

    Dunlop, M. R.; Svensson, C. E.; Ball, G. C.; Grinyer, G. F.; Leslie, J. R.; Andreoiu, C.; Austin, R. A. E.; Ballast, T.; Bender, P. C.; Bildstein, V.; Diaz Varela, A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Laffoley, A. T.; MacLean, A. D.; Miller, D. M.; Mills, W. J.; Park, J.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Unsworth, C.; Valencik, A.; Wang, Z. M.; Zganjar, E. F.

    2016-04-01

    Precision measurements of superallowed Fermi β -decay transitions, particularly for the lightest superallowed emitters 10C and 14O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the 10C half-life is addressed through two high-precision half-life measurements, via γ -ray photopeak and β counting, that yield consistent results for the 10C half-life of T1 /2=19.2969 ±0.0074 s and T1 /2=19.3009 ±0.0017 s , respectively. The latter is the most precise superallowed β -decay half-life measurement reported to date and the first to achieve a relative precision below 10-4 . A fit to the world superallowed β -decay data including the 10C half-life measurements reported here yields bF=-0.0018 ±0.0021 (68% C.L.) for the Fierz interference term and CS/CV=+0.0009 ±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.

  17. An integrating current transformer for fast extraction from the HIRFL-CSR main ring

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Xia; Zheng, Jian-Hua; Zhao, Tie-Cheng; Mao, Rui-Shi; Yin, Yan; Yuan, You-Jin; Yang, Jian-Cheng

    2010-01-01

    For any experiment that uses the beam of an accelerator, monitoring the beam intensity is always an important concern. It is particularly useful if one can continuously measure the beam current without disturbing the beam. We report here on test experiments for an Integrating Current Transformer (ICT) used to measure fast extraction beams from the HIRFL-CSR main ring (CSRm). The laboratory tests and beam intensity measurement results are presented in this paper. The influence of the kicker noise is also analyzed.

  18. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  19. Imaging the local forward current density of solar cells by dynamical precision contact thermography

    SciTech Connect

    Breitenstein, O.; Eberhardt, W.; Iwig, K.

    1994-12-31

    In spite of many techniques of measuring the local lifetime or the local short circuit current, no non-destructive technique has been available for imaging the local forward current density, which determines the open circuit voltage and the fill factor of solar cells. The authors demonstrate the application of a new analyzing technique, enabling non-destructive shunt hunting in forward direction. A periodical forward current is applied to the cell, and only the dynamical temperature response is measured in contact mode with a resolution below 10 {micro}K. Mechanical scanning of the T-sensor position yields a thermogram with a spatial resolution well below 1 mm and a current density resolution well below 1 mA/cm{sup 2}. First results show that both the edges of solar cells and their interior may have sites of a locally increased forward current. Hot spots measured in reverse bias direction only occasionally coincide with these warm spots measured in forward direction.

  20. Hilbert versus Concordia transform for three-phase machine stator current time-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Trajin, Baptiste; Chabert, Marie; Regnier, Jérémi; Faucher, Jean

    2009-11-01

    This paper deals with mechanical fault diagnosis in three-phase induction machines from stator current measurements. According to machine models, mechanical faults lead to amplitude and/or phase modulations of the measured stator current with possibly time varying carrier frequency. The modulation diagnosis requires a univocal definition of the instantaneous phase and amplitude. This is performed by associating a complex signal to the real measured one. For a convenient separate modulation diagnosis, the complex signal instantaneous phase and amplitude are expected to carry, respectively, information about the phase and amplitude modulations. The complex signal is classically obtained through the Hilbert transform. Under Bedrosian conditions, the so-called analytic signal allows a separate modulation diagnosis. However, mechanical faults may also produce fast modulations violating the Bedrosian conditions. This study proposes an alternative complex signal representation which takes advantage of the three stator current measurements available in a three-phase machine. From two stator current measurements, the Concordia transform builds a complex vector, the so-called space vector, which unconditionally allows separate modulation diagnosis. This paper applies and compares the Hilbert and Concordia transforms, theoretically and in case of simulated and experimental signals with various modulation frequency ranges.

  1. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    NASA Astrophysics Data System (ADS)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-12-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.

  2. Control and readout of current-induced magnetic flux quantization in a superconducting transformer

    NASA Astrophysics Data System (ADS)

    Kerner, C.; Hackens, B.; Golubović, D. S.; Poli, S.; Faniel, S.; Magnus, W.; Schoenmaker, W.; Bayot, V.; Maes, H.

    2009-02-01

    We demonstrate a simple and robust method for inducing and detecting changes of magnetic flux quantization in the absence of an externally applied magnetic field. In our device, an isolated ring is interconnected with two access loops via permalloy cores, forming a superconducting transformer. By applying and tuning a direct current at the first access loop, the number of flux quanta trapped in the isolated ring is modified without the aid of an external field. The flux state of the isolated ring is simply detected by recording the evolution of the critical current of the second access loop.

  3. Type of visual feedback during practice influences the precision of the acquired internal model of a complex visuo-motor transformation.

    PubMed

    Sülzenbrück, Sandra; Heuer, Herbert

    2011-01-01

    This study investigated the influence of the type of visual feedback during practice with a complex visuo-motor transformation of a sliding two-sided lever on the acquisition of an internal model of the transformation. Three groups of participants, who practised with different types of visual feedback, were compared with regard to movement accuracy, curvature and movement time. One group had continuous visual feedback during practice and two groups were presented terminal visual feedback, either only the end position of the movement or the end position together with the trajectory of the cursor. Results showed that continuous visual feedback led to more precise movement end positions during practice than terminal visual feedback, but to less precise movements during open-loop tests. This finding indicates that terminal visual feedback supports the development of a precise internal model of a new visuo-motor transformation. However, even terminal feedback of the cursor trajectory during practice did not result in an internal model, which includes appropriate curvatures of hand movements. STATEMENT OF RELEVANCE: This paper presents results on the influence of type of visual feedback on learning the complex motor skill of controlling a sliding lever. These findings contribute to the conceptual basis of optimised training procedures for the acquisition of sensori-motor skills required for the mastery of instruments utilised in minimally invasive surgery. PMID:21181587

  4. Analysis of misoperation of the differential current relay applied in a Y-Y-Y-{Delta} transformer

    SciTech Connect

    Wang, F.; Tang, J.

    1995-09-01

    Transformers play an important role in power transmission and distribution systems. For the operation of transformers, the differential current relay is the most important kind of relay in transformer protective relays in present power system.s In principle, a differential current relay may safely and quickly remove the internal fault occurring inside a transformer and in the feeder between the transformer and the busbar within the range of protection. When an external fault happens outside of the transformer, the relay should be reliably locked to ensure that the protected transformer can normally operate. However, because transformers have many different structures and winding connections forms, especially some specially winding-connected transformers, misconnection of the differential current relay may happen in some circumstances. When an external fault occurs, the relay connected in the incorrect way may cause misoperation of the relay, enlarging the range of the system fault. This paper illustrates a misoperation of a set of differential relays applied in a special multi-winding transformer, with triple-Y-connected windings and an additional delta-connected winding, due to the misconnection of the relays in field. An analysis of the difference of the equivalent circuits between the triple-Y-connected winding transformer and the triple-Y-connected winding with an additional delta-connected winding transformer is presented. Some measures to prevent those mistakes are discussed in this paper.

  5. Research on small signal detection of optical voltage/current transformer

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Guoqing; Cai, Xingguo; Guo, Zhizhong; Yu, Wenbin; Huo, Guangyu

    2013-08-01

    This paper researches the signal conditioning program of optical voltage/current transformer and the imbalance during the transmission of dual optical path, gives a brief introduction to the basic principle of optical voltage transformer based on electro-optic Pockels effect and optical current transformer based on Faraday Magnetic-optical Effect, and induces a general expression form of output light intensities This paper research on the signal modulation methods for the system: AC and DC modulations. What is more, the advantages and disadvantages of both modulations in the system will be analyzed. Considering the characteristics that the systematic noise and signal have the spectrum overlapping and that when there is any fault, the fact that in the small signal detection system the output SNR of AC modulation is better than that of DC modulation will be proved. For the parameter changes caused by the environment factors, the feedback control linked by the DSP is imported, it automatically adjusts the balance of the two branch parameters, acquires the measured component in the condition of the two branch unbalance parameters. Furthermore, this paper researches on the influence of imbalance of the dual optical path on the signal detection system. It analyzes the error characteristics due to different kinds of losses and to component matching disorders and other intrinsic factors and then put forward the method to calculate balancing factors by means of the RMS of 50Hz signal. The result proves that using this method can improve the output SNR of optical voltage/current transformer to some extent.

  6. The application of the model of coordinate S-transformation for stability analysis of datum points in high-precision GPS deformation monitoring networks

    NASA Astrophysics Data System (ADS)

    Guo, Jiming; Zhou, Mingduan; Wang, Chao; Mei, Lianhui

    2012-11-01

    Based on the model of coordinate S-transformation, a novel method of stability analysis of datum points in high-precision GPS deformation monitoring networks is proposed. The model of coordinate S-transformation is used to calculate seven transformation parameters in adjacent two measurement stages, in order to confirm the stability of stations by coordinate differences. To judge the stability of stations, in comparison to the traditional method by a fixed the same datum point, the "threshold approach" and "statistical test approach" have been developed and applied to evaluate the stability of datum points of a first-order GPS deformation monitoring network of a hydropower station located in the West Region of China.

  7. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  8. Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders.

    PubMed

    Hess, Gregory P; Fonseca, Eileen; Scott, Rachel; Fagerness, Jesen

    2015-01-01

    Pharmacogenetic/pharmacogenomic (PGx) testing is currently available for a wide range of health problems including cardiovascular disease, cancer, diabetes, autoimmune disorders, mental health disorders and infectious diseases. PGx contributes important information to the field of precision medicine by clarifying appropriate treatments for specific disease subtypes. Tangible benefits to patients including improved outcomes and reduced total health care costs have been observed. However, PGx-guided therapy faces many barriers to full integration into clinical practice and acceptance by stakeholders, whether practitioner, patient or payer. Each stakeholder has a unique perspective on the role of PGx testing, although all are similarly challenged with demonstrating or appraising its cost-to-benefit value. Coverage by insurers is a critical step in achieving widespread adoption of PGx testing. The acceleration of adoption of precision medicine in general and for PGx testing in particular will be determined by how quickly robust evidence can be accumulated that shows a return on investment for payers in terms of real dollars, for clinicians in terms of patient clinical responses, and for patients in terms of economic, health and quality of life outcomes. Trends in PGx testing utilization and uptake by payers in real-world practice are discussed; the role of pharmacoeconomics in assessing cost-effectiveness is highlighted using a case study in psychiatric care, and several issues that will affect adoption of PGx testing in the United States (US) over the next few years are reviewed. PMID:26030725

  9. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  10. Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current

    SciTech Connect

    Yano, Keisuke Kurisu, Yosuke; Nozaki, Dai; Kimura, Daiju; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    Multi-charged ion source which has wide operating conditions is required in various application fields. We have constructed tandem type ECR ion source (ECRIS); one of the features of its main stage is an additional coil for controlling magnetic field distribution around the mirror bottom precisely. Here the effect of magnetic field variation caused by the additional coil is experimentally considered in terms of plasma parameters and beam current as the first investigation of the main stage plasma. Furthermore, behavior of magnetic lines of force flowing from the ECR zone is calculated, and is compared with measurement results aiming for better understanding of interrelationship between plasma production and ion beam generation on the ECRIS.

  11. Curvilinear parabolic approximation for surface wave transformation with wave current interaction

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.

    2005-04-01

    The direct coordinate transformation method, which only transforms independent variables and retains Cartesian dependent variables, may not be an appropriate method for the purpose of simplifying the curvilinear parabolic approximation of the vector form of the wave-current equation given by Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. In this paper, the covariant-contravariant tensor method is used for the curvilinear parabolic approximation. We use the covariant components of the wave number vector and contravariant components of the current velocity vector so that the derivation of the curvilinear equation closely follows the higher-order approximation in rectangular Cartesian coordinates in Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. The resulting curvilinear equation can be easily implemented using the existing model structure and numerical schemes adopted in the Cartesian parabolic wave model [J.T. Kirby, R.A. Dalrymple, F. Shi, Combined Refraction/Diffraction Model REF/DIF 1, Version 2.6. Documentation and User's Manual, Research Report, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, 2004]. Several examples of wave simulations in curvilinear coordinate systems, including a case with wave-current interaction, are shown with comparisons to theoretical solutions or measurement data.

  12. Precision improvement of chlorophyll-a remote sensing inversion by data transformation in turbidity water under low concentration: a case of Taihu Lake, China

    NASA Astrophysics Data System (ADS)

    Wei, Yuchun; Cheng, Chunmei; Wang, Lei; Zhang, Jing

    2010-10-01

    Estimation and monitoring Chlorophyll-a concentration (CHLA), especially low CHLA in lake using remote sensing data is very important for early warning of blue-green algal bloom. In spite of better overall goodness fit in three-band CHLA inversion model of turbidity water proposed by Gitelson, the estimation errors of samples with low CHLA are often higher, and this kind of error has great influence on the evaluation of lake nutritional status. In this paper, two methods of data transformation-logarithm of CHLA and continuum removal of spectrum-were used to decrease model error. Data set includes the routine monitoring sampling data collected from June to September, 2004 in Taihu Lake and field data in March, 2010 in Meiliangwan of Taihu Lake. Water surface spectrum data were measured in situ by ASD FieldPro. Comparative analysis showed that both logarithm transformation (LT) and continuum removal transformation (CRT) can increase model's accuracy. For all sample data, the average relative accuracy of model built by data after LT increased by 30%, and that of model built by data after LT and CRT increased by 35%. For the samples with CHLA lower than 50μg/L, the average relative error decreased from 76% of model built by data without transformation to 36% of LT and 27% of LT and CRT. The paper concluded that data transform is a simple and effective method to increase precision of CHLA remote sensing inversion.

  13. NIST measurement services: Calibration service for current transformers. Special pub. (Final)

    SciTech Connect

    Ramboz, J.D.; Petersons, O.

    1991-06-01

    A calibration service at the National Institute of Standards and Technology (NIST) for laboratory-quality current transformers is described. The service provides measurements of the current ratio and the phase angle between the secondary and primary currents. In the Report of Calibration or Test, the measured ratio is reported as the product of the marked (nominal) ratio and the ratio correction factor. The measured phase angle is reported directly in milliradians (mrad) and is positive if the secondary current leads the primary. The range of primary-to-secondary current ratios that can be measured with the equipment at NIST extends from 0.25 A:5 A to 12000 A:5 A. The maximum current at the present time is about 20000 A. Estimates of calibration uncertainties, including their sources, are given and quality control procedures are described. For routine calibrations, uncertainties of + or - 0.01% for the ratio and + or - 0.1 mrad for the phase angle are quoted. However, lower uncertainties--to + or - 0.0005% or 5 parts per million (ppm) for ratio and + or - 0.005 mrad or 5 microrads for phase angle--are possible under the provisions of Special Tests.

  14. High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael G.; Fowler, William E.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Rogowski, Sonrisa T.; Sharpe, Robin A.; McDaniel, Dillon H.; Olson, Craig L.; Porter, John L.; Struve, Kenneth W.; Stygar, William A.; Woodworth, Joseph R.

    2009-05-01

    The linear transformer driver (LTD) is a new method for constructing high current, high-voltage pulsed accelerators. The salient feature of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. Sandia National Laboratories are actively pursuing the development of a new class of accelerator based on the LTD technology. Presently, the high current LTD experimental research is concentrated on two aspects: first, to study the repetition rate capabilities, reliability, reproducibility of the output pulses, switch prefires, jitter, electrical power and energy efficiency, and lifetime measurements of the cavity active components; second, to study how a multicavity linear array performs in a voltage adder configuration relative to current transmission, energy and power addition, and wall plug to output pulse electrical efficiency. Here we report the repetition rate and lifetime studies performed in the Sandia High Current LTD Laboratory. We first utilized the prototype ˜0.4-MA, LTD I cavity which could be reliably operated up to ±90-kV capacitor charging. Later we obtained an improved 0.5-MA, LTD II version that can be operated at ±100kV maximum charging voltage. The experimental results presented here were obtained with both cavities and pertain to evaluating the maximum achievable repetition rate and LTD cavity performance. The voltage adder experiments with a series of double sized cavities (1 MA, ±100kV) will be reported in future publications.

  15. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.

    SciTech Connect

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. , Tomsk, Russia); Kim, Alexandre A. , Tomsk, RUSSIA); Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-04-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  16. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  17. An investigation of electrical current induced phase transformations in the NiPtSi/polysilicon system

    NASA Astrophysics Data System (ADS)

    Kim, Deok-kee; Domenicucci, Anthony; Iyer, Subramanian S.

    2008-04-01

    We studied phase transformations and microstructural changes of NiPtSi/polysilicon fuses programmed with three different current densities (under, optimal, and over programming). Electromigration of NiPt toward the anode occurred in all three cases studied. Achieving high resistance after the fuse programming strongly depends on the kinetics of the electromigration and dopant diffusion processes which operate during the fuse blow. A thick silicide region was formed after electrically programmable fuse programming by the reaction of the electromigrated NiPt with the polysilicon layer underneath. The low tails of the underprogrammed fuses seemed to result from the incomplete electromigration and the incomplete dopant depletion due to the insufficient programming current density, while the depletion of the implanted dopants due to the sufficiently elevated temperature seemed to make the postresistance of the optimally programmed fuse higher. In the overprogrammed fuse, the newly formed silicide seemed to have further electromigrated due to the sufficiently high temperature during programming, which caused voids and hillocks. The high temperature caused melting of the polysilicon and the surrounding nitride layer, and their reaction as well. The conduction paths created by the unremoved silicide in fuse link caused the postprogramming resistance of the overprogrammed fuse to be low.

  18. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    SciTech Connect

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2009-10-15

    We derive the leading two-pion-exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  19. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

    PubMed

    Alam, Mahtab; Truong, Dennis Q; Khadka, Niranjan; Bikson, Marom

    2016-06-21

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability-enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm(2)) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring's diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation ([Formula: see text] · (σ [Formula: see text] V)  =  0) was solved for cortical electric field, which was interpreted using physiological assumptions to correlate with stimulation and modulation. Cortical field intensity was predicted to increase with increasing ring diameter at the cost of focality while uni-directionality decreased. Additional surrounding ring electrodes increased uni-directionality while lowering cortical field intensity and increasing focality; though, this effect saturated and more than 4 surround electrode would not be justified. Using a range of concentric HD-tDCS montages, we showed that cortical region of influence can be

  20. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  1. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class. PMID:23902112

  2. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  3. Application of Hilbert-Huang transform for defect recognition in pulsed eddy current testing

    NASA Astrophysics Data System (ADS)

    Liu, Baoling; Huang, Pingjie; Hou, Dibo; Chen, Xiao; Zhang, Guangxin

    2015-07-01

    Defect recognition plays an important role in the structure integrity and health monitor of in-service equipment. However, it is difficult to recognise deep-layer defect or small-size defect in conductive structure during pulsed eddy current (PEC) testing. Aiming at the issue, this article proposes a method based on Hilbert-Huang transform which consists of two modules: data processing and defect recognition. In the data processing module, the PEC response signal is decomposed into a few of intrinsic mode functions (IMFs) using ensemble empirical mode decomposition method. The IMFs whose variance contribution rates are bigger than 1% are chosen to reconstruct signal in order to remove noise. In the defect recognition module, the features based on specific frequency components of marginal spectrum (MS) of the reconstructed signals are extracted to discriminate those defects in surface and subsurface. Furthermore, the normalisation MS energy ratio is proposed to quantify defects which cannot be distinguished using peak value in time domain. Experiments show that the proposed method can achieve better de-noising effect and defect evaluation, which contributes to the recognition of those complicated defects such as deep-layered and small-sized defect.

  4. Impact of quasi-dc currents on three-phase distribution transformer installations. Power Systems Technology Program

    SciTech Connect

    McConnell, B.W.; Barnes, P.R.; Tesche, F.M.; Schafer, D.A.

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This ``smoking neutral`` results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  5. Transient analysis and control of bias magnetic state in the transformer of on-line pulse-width-modulation switching full bridge direct current-direct current converter

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxin; Guo, Youguang; Zhu, Jianguo; Wei Lin, Zhi

    2012-04-01

    This paper presents a finite element analysis (FEA) based method for analyzing and controlling the bias magnetic state of the transformer of a pulse-width-modulation (PWM) switching full bridge dc-dc converter. A field-circuit indirect coupling method for predicting the transient bias magnetic state is introduced first. To increase flexibility of the proposed method, a novel transformer model which can address not only its basic input-output characteristic, but also the nonlinear magnetizing inductance, is proposed. Both the asymmetric characteristic and the variable laws of the current flowing through the two secondary windings during the period of PWM switching-off state are highlighted. Finally, the peak magnetizing current controlled method based on the on-line magnetizing current computation is introduced. Analysis results show that this method can address the magnetic saturation at winding ends, and hence many previous difficulties, such as the start-up process and asymmetry of power electronics, can be easily controlled.

  6. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  7. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  8. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    NASA Astrophysics Data System (ADS)

    Steig, E. J.; Gkinis, V.; Schauer, A. J.; Schoenemann, S. W.; Samek, K.; Hoffnagle, J.; Dennis, K. J.; Tan, S. M.

    2014-08-01

    High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O), a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS). We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS) with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  9. Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier

    SciTech Connect

    Hiemstra, D.M.

    1999-12-01

    The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.

  10. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  11. Current status and perspectives in atomic force microscopy-based identification of cellular transformation

    PubMed Central

    Dong, Chenbo; Hu, Xiao; Dinu, Cerasela Zoica

    2016-01-01

    Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, as well as how the transforming potential of a tissue from a benign to a cancerous one is related to the dynamics of both the cell and its surroundings, holds promise for the development of targeted translational therapies. This review provides a comprehensive overview of atomic force microscopy-based technology and its applications for identification of cellular progression to a cancerous phenotype. The review also offers insights into the advancements that are required for the next user-controlled tool to allow for the identification of early cell transformation and thus potentially lead to improved therapeutic outcomes. PMID:27274238

  12. SUPPLEMENTARY COMPARISON: Final report EURAMET.EM-S30 on EURAMET Project 1081: Supplementary comparison of measurements of current transformers

    NASA Astrophysics Data System (ADS)

    Dimitrov, Emil; Kumanova, Ginka; Styblíková, Renata; Draxler, Karel; Dierikx, Erik

    2010-01-01

    The supplementary comparison was carried out between CMI, Czech Republic and BIM, NCM Bulgaria in the field of current transformer ratio measurements. The current errors and phase displacement of the traveling standards, current transformers: Tettex 4720, CLA 2.2, CLA 2.2, CLA 3.2, CLB 10, I 523 were determined at 50 Hz, 5 VA burden at unity power factor at ratios: primary (4000, 2000, 1000, 500, 100, 5, 1 and 0.5) A/secondary 5 A. Both participants used their own standard measurement method. The obtained results show good agreement for all of the current ratio error measurements (except for the measurements at 2 kA) and for the current phase displacement measurements (the agreement on several measurement points is marginal). The aim of the comparison was to demonstrate the improvement and extension of the calibration and measurement capabilities (CMCs) of BIM in this working field and to support the improved CMCs in Appendix C of the CIPM Mutual Recognition Arrangement (MRA). Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    NASA Astrophysics Data System (ADS)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  14. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  15. The coordinate transformation method for design of polarizers on HL-2A electron cyclotron resonance heating and current drive systems

    SciTech Connect

    Xia, D. H.; Huang, M.; Zhou, J.; Rao, J.; Zhuang, G.

    2013-10-15

    Polarizers are widely used to change the polarization of millimeter waves on the electron cyclotron resonance heating and current drive (ECRH and CD) systems. A new method based on the coordinate transformation and the Fourier expansion (the so-called C-method) has been developed for design of polarizers on the HL-2A ECRH and CD systems. This method transforms the grating problem to an eigenvalue problem, making it easy and clear to understand and solve. The comparison between the C-method, the integral method, and the low power test results is presented. It indicates that the C-method can be considered as a rigorous numerical method for the design of polarizers. Finally, two polarizers were designed based on the C-method which can be used together to achieve almost arbitrary polarization.

  16. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    NASA Astrophysics Data System (ADS)

    Pervikov, A. V.

    2016-06-01

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 107 A/cm2 results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  17. Wavelet transform-based fault diagnosis and line selection method of small current grounding system

    NASA Astrophysics Data System (ADS)

    Yang, Ni; Zhang, Shuqing; Zhang, Liguo; Zhang, Kexin; Sun, Lingyun

    2008-12-01

    Small current grounding system is the system that the neutral point doesn't ground or grounds across the arc suppressing coils, which has been applied commonly in distribution system of many countries. As the grounding fault occurs, current is the one caused by capacity of circuit to ground only and it is rather small. The status of fault is complexity, e.g., the electromagnet interferes together with the amplified impact of zero-order loops to high-order singularity waves and various temporary variables. All these result in the lower ratio of the fault element signal to noise caused by zero-order current. In this paper, the position of signal singularity and the magnitude of the singularity degree are analyzed based on the variable focus character of wavelet, and the time fault occurs is then determined. The series db wavelet with close sustain is adopted, and the line selection is according to the zero-order voltage of the generatrix and the current of various outlet line. It is proved by the experiment that the fault circuit diagnosis method based on wavelet analysis to the character of temporary status of single-phase grounding fault plays an important role to a finer line selection.

  18. First results and current development of SpIOMM: an imaging Fourier transform spectrometer for astronomy

    NASA Astrophysics Data System (ADS)

    Bernier, A.-P.; Grandmont, F.; Rochon, J.-F.; Charlebois, M.; Drissen, L.

    2006-06-01

    We present an overview of SpIOMM, an Imaging Fourier Transform Spectrometer (IFTS) for astronomy developed at University Laval in collaboration with ABB, INO and the Canadian Space Agency. SpIOMM, attached to the 1.6 meter (f/8) telescope at the Observatoire du mont Megantic in Quebec. It is a Michelson-type interferometer capable of obtaining the visible spectrum (from 350 nm to 900 nm) of every light source within its 12 arcminute circular field of view. This design will allow the correction of variable sky transmission. It consists of a dual output port and the total throughput is exploited by two CCDs used as detectors. We present the concept and design of this unique instrument. A metrology system combined with a dynamic alignment assures a good sampling and mirror alignment during the entire acquisition sequence. This particular servo control is explained and demonstrated and its capabilities and performance are discussed. We introduce the use of specific bandpass filters centered on the most important groups of emission lines which, when combined with spectral folding algorithms, allows us to reach high spectral resolution (R = 25 000, or 1 cm -1). Astronomical data collected by SpIOMM in 2004-2005 are also presented.

  19. Real space mapping of oxygen vacancy diffusion and electrochemical transformations by hysteretic current reversal curve measurements

    DOEpatents

    Kalinin, Sergei V.; Balke, Nina; Borisevich, Albina Y.; Jesse, Stephen; Maksymovych, Petro; Kim, Yunseok; Strelcov, Evgheni

    2014-06-10

    An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.

  20. Study of a piezoelectric transformer-based DC/DC converter with a cooling system and current-doubler rectifier

    NASA Astrophysics Data System (ADS)

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Costa, Francois; Wu, Wen-Jong; Lee, Chuih-Kung

    2013-09-01

    The objective of this study was to increase the output current and power in a piezoelectric transformer (PT)-based DC/DC converter by using a cooling system. It is known that the output current of a PT is limited by temperature build-up because of losses, especially when driving at high vibration velocity. Although connecting different inductive circuits at the PT secondary terminal can increase the output current, the root cause of the temperature build-up problem has not yet been solved. This paper presents a study of a PT with cooling system in a DC/DC converter with a commonly used full-bridge rectifier and current-doubler rectifier. The advantages and disadvantages of the proposed technique were investigated. A theoretical-phenomenological model was developed to explain the relationship between the losses and the temperature rise. It will be shown that the vibration velocity as well as heat generation increases the losses. In our design, the maximum output current capacity can increase by 100% when the temperature of operation of the PT is kept below 55 ° C. The study comprises a theoretical part and experimental proof-of-concept demonstration of the proposed design method.

  1. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    NASA Astrophysics Data System (ADS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  2. Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing

    PubMed Central

    Barreiro, Amelia; Börrnert, Felix; Avdoshenko, Stanislav M.; Rellinghaus, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H.; Vandersypen, Lieven M. K.

    2013-01-01

    We shed light on the catalyst-free growth of graphene from amorphous carbon (a–C) by current-induced annealing by witnessing the mechanism both with in-situ transmission electron microscopy and with molecular dynamics simulations. Both in experiment and in simulation, we observe that small a–C clusters on top of a graphene substrate rearrange and crystallize into graphene patches. The process is aided by the high temperatures involved and by the van der Waals interactions with the substrate. Furthermore, in the presence of a–C, graphene can grow from the borders of holes and form a seamless graphene sheet, a novel finding that has not been reported before and that is reproduced by the simulations as well. These findings open up new avenues for bottom-up engineering of graphene-based devices.

  3. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz. PMID:18232363

  4. Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress

    NASA Astrophysics Data System (ADS)

    Yi, H. L.

    2014-09-01

    Novel alloys with high aluminum addition, so-called δ-transformation-induced plasticity (TRIP), have been developed recently for the third generation of advanced high strength steels for automotive applications, which are promising owing to the potential weldability as well as the combination of strength and ductility. In addition, the high aluminum addition results in a density reduction of approximately 5% in these δ-TRIP alloys without sacrificing the Young's modulus in uniaxial tensile tests. The origin of δ-TRIP concept is introduced first with a review of the published work on δ-TRIP alloys. This review will include methodology for retention of δ-ferrite in casting, rolling and welding conditions, microstructure evolution by austempering, as well as microstructures-properties relationship involving the roles of blocky and lath retained austenite. In addition, currently unresolved problems will be discussed regarding the fundamentals of materials design, automotive application, and industrial manufacturing.

  5. Superallowed 0+→0+ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.; Towner, I. S.

    2009-05-01

    A new critical survey is presented of all half-life, decay-energy, and branching-ratio measurements related to 20 superallowed 0+→0+β decays. Compared with our last review, there are numerous improvements: First, we have added 27 recently published measurements and eliminated 9 references, either because they have been superseded by much more precise modern results or because there are now reasons to consider them fatally flawed; of particular importance, the new data include a number of high-precision Penning-trap measurements of decay energies. Second, we have used the recently improved isospin symmetry-breaking corrections, which were motivated by these new Penning-trap results. Third, our calculation of the statistical rate function f now accounts for possible excitation in the daughter atom, a small effect but one that merits inclusion at the present level of experimental precision. Finally, we have re-examined the systematic uncertainty associated with the isospin symmetry-breaking corrections by evaluating the radial-overlap correction using Hartree-Fock radial wave functions and comparing the results with our earlier calculations, which used Saxon-Woods wave functions; the provision for systematic uncertainty has been changed as a consequence. The new “corrected” Ft values are impressively constant and their average, when combined with the muon lifetime, yields the up-down quark-mixing element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Vud=0.97425±0.00022. The unitarity test on the top row of the matrix becomes |Vud|2+|Vus|2+|Vub|2=0.99995±0.00061. Both Vud and the unitarity sum have significantly reduced uncertainties compared with our previous survey, although the new value of Vud is statistically consistent with the old one. From these data we also set limits on the possible existence of scalar interactions, right-hand currents, and extra Z bosons. Finally, we discuss the priorities for future theoretical and experimental work with the goal

  6. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  7. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI.

    SciTech Connect

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. , Tomsk, Russia); Kim, Alexandre A. , Tomsk, Russia); Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-09-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  8. Use of the Syrian hamster embryo cell transformation assay for carcinogenicity prediction of chemical currently being tested by the National Toxicology Program in rodent bioassays

    SciTech Connect

    Kerckaert, G.A.; LeBoeuf, R.A.; Isfort, R.J.; Brauninger, R.

    1996-10-01

    The Syrian hamster embryo (SHE) cell transformation assay was used to predict the carcinogenicity of 26 chemicals currently being tested in the rodent bioassay by the National Toxicology Program as part of its program titled {open_quotes}Strategies for Predicting Chemical Carcinogenesis in Rodents.{close_quotes} Of these 26 chemicals, 17 were found to be positive in the SHE cell transformation assay while 9 were negative. Carcinogenicity predictions were made for these chemicals, based upon the SHE cell transformation assay results. Our predictions will be compared with the rodent bioassay results as they become available. 11 refs., 2 tabs.

  9. Transformation of a series of saturated isomeric steroidal diols by Aspergillus tamarii KITA reveals a precise stereochemical requirement for entrance into the lactonization pathway.

    PubMed

    Hunter, A Christy; Collins, Catherine; Dodd, Howard T; Dedi, Cinzia; Koussoroplis, Salomé-Juliette

    2010-11-01

    Four isomers of 5α-androstan-3,17-diol have been transformed by the filamentous fungus Aspergillus tamarii, an organism which has the ability to convert progesterone to testololactone in high yield through an endogenous four step enzymatic pathway. The only diol handled within the lactonization pathway was 5α-androstan-3α,17β-diol which, uniquely underwent oxidation of the 17β-alcohol to the 17-ketone prior to its Baeyer-Villiger oxidation and the subsequent production of 3α-hydroxy-17a-oxa-D-homo-5α-androstan-17-one. This demonstrated highly specific stereochemical requirements of the 17β-hydroxysteroid dehydrogenase for oxidation of this specific steroidal diol to occur. In contrast, the other three diols were transformed within the hydroxylation pathway resulting in functionalization at C-11β. Only 5α-androstan-3β,17α-diol could bind to the hydroxylase in multiple binding modes undergoing monohydroxylation in 6β and 7β positions. Evidence from this study has indicated that hydroxylation of saturated steroidal lactones may occur following binding of ring-D in its open form in which an α-alcohol is generated with close spatial parity to the C-17α hydroxyl position. All metabolites were isolated by column chromatography and were identified by (1)H, (13)C NMR and DEPT analysis and further characterized using infra-red, elemental analysis and accurate mass measurement. PMID:20832471

  10. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  11. SUPPLEMENTARY COMPARISON: Final report EUROMET.EM-S11 on EUROMET Projects 473 and 612: Comparison of the measurement of current transformers (CTs)

    NASA Astrophysics Data System (ADS)

    Harmon, Stuart; Henderson, Lesley

    2009-01-01

    The Euromet comparison entitled 'Comparison of the measurement of current transformers' was carried out over two projects with NPL as pilot laboratory and thirteen other participating European National Measurement Institutes (NMI). Current transformer measurements made by the participating NMIs support a large number of measurements made in the electrical generation, supply and distribution industries in their own countries. They also support many transformer manufacturers who rely on national standards as a source of traceability. The current (ratio) errors and phase displacement of each ratio of the uncompensated current transformer transfer standard were determined at a defined frequency, burden and power factor, using each participant's standard measuring method and equipment. The results supplied by each participant generally show good agreement but with a few exceptions over the whole range of measured values. Deviations from the comparison reference value were mostly within the quoted uncertainties, but again with a few exceptions. A summary of outlying results compared to laboratories' declared Calibration and Measurement Capabilities (CMC) is given in the conclusion. In several cases participants have been making current transformer measurements with new measurement systems and techniques, and in one case for the first time; therefore a large amount of experience in the measurement and interpretation of results has been obtained from this comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. RAPID COMMUNICATION: Large improvement in high-field critical current densities of Nb3Al conductors by the transformation-heat-based up-quenching method

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Banno, N.; Fukuzaki, T.; Wada, H.

    2000-10-01

    The bcc supersaturated solid solution Nb(Al)ss obtained by rapid heating and quenching of a multifilamentary Nb/Al composite wire has shown a crystal structure change from a disordered to an ordered structure before transforming to the A15 Nb3Al phase. Such ordering of the bcc phase seems to be responsible for the A15 phase stacking faults that depress the critical temperature (Tc), the upper critical magnetic field (Bc2) and, hence, the critical current density (Jc) of Nb3Al in high fields. A heat treatment around 1000 °C, higher than conventional transformation temperatures by about 200 °C, suppresses the ordering and yields a new phenomenon termed the `transformation-heat-based up-quenching' (TRUQ). TRUQ is characterized by the self-heating of the bcc phase by the transformation heat, which propagates through the whole length of a composite wire and transforms it to Nb3Al. A subsequent annealing at 800 °C enhances the long-range ordering of the Nb3Al phase and drastically improves the high-field critical current densities of the Nb3Al conductors.

  13. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  14. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  15. Effects of aging on the structural, mechanical, and thermal properties of the silicone rubber current transformer insulation bushing for a 500 kV substation.

    PubMed

    Wang, Zhigao; Zhang, Xinghai; Wang, Fangqiang; Lan, Xinsheng; Zhou, Yiqian

    2016-01-01

    In order to analyze the cracking and aging reason of the silicone rubber current transformer (CT) insulation bushing used for 8 years from a 500 kV alternating current substation, characteristics including Fourier transform infrared (FTIR) spectroscopy, mechanical properties analysis, hardness, and thermo gravimetric analysis have been carried out. The FTIR results indicated that the external surface of the silicone rubber CT insulation bushing suffered from more serious aging than the internal part, fracture of side chain Si-C bond was much more than the backbone. Mechanical properties and thermal stability results illustrated that the main aging reasons were the breakage of side chain Si-C bond and the excessive cross-linking reaction of the backbone. This study can provide valuable basis for evaluating degradation mechanism and aging state of the silicone rubber insulation bushing in electric power field. PMID:27390631

  16. Recharging of the ohmic-heating transformer by means of lower-hybrid current drive in the ASDEX tokamak

    NASA Astrophysics Data System (ADS)

    Leuterer, F.; Eckhartt, D.; Söldner, F.; Becker, G.; Bernhardi, K.; Brambilla, M.; Brinkschulte, H.; Derfler, H.; Ditte, U.; Eberhagen, A.; Fussman, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Kissel, S.; Klüber, O.; Kornherr, M.; Lisitano, G.; Magne, R.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Münich, M.; Murmann, H.; Poschenrieder, W.; Rapp, H.; Ryter, F.; Schmitter, K. H.; Schneider, F.; Siller, G.; Smeulders, P.; Steuer, K. H.; Vien, T.; Wagner, F.; Woyna, F. V.; Zouhar, M.

    1985-07-01

    Recharging of the Ohmic-heating transformer of a tokamak by means of lower-hybrid waves is demonstrated experimentally in ASDEX. The results are analyzed on the basis of a simple transformer circuit. A recharging efficiency is defined and found to depend on rf power, plasma density, and plasma resistivity modified by the applied rf power. Up to now, we achieved in our recharging experiments in ASDEX a flux swing of FİOHMdt=0.24 V sec, at an rf power of PRF=690 kW, with a pulse duration of 1 sec, while maintaining a plasma with n¯e=4×1012 cm-3 and Ip=290 kA.

  17. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  18. Precision physics at LHC

    SciTech Connect

    Hinchliffe, I.

    1997-05-01

    In this talk the author gives a brief survey of some physics topics that will be addressed by the Large Hadron Collider currently under construction at CERN. Instead of discussing the reach of this machine for new physics, the author gives examples of the types of precision measurements that might be made if new physics is discovered.

  19. Current Geoid Studies in Turkey and the need for Local High-Precision Astrogeodetic Geoid Determination Using CCD/Zenith Cameras

    NASA Astrophysics Data System (ADS)

    Halicioglu, K.; Ozener, H.; Deniz, R.

    2008-12-01

    During the last few years, the development of CCD image sensors at a reasonable price made the instruments of astrogeodetic observation possible to use for local high-precision astrogeodetic geoid and gravity field determination. Generally, the geoids of most European countries are in centimeter level accuracy except in mountainous regions. Turkish geoid also has accuracy problems in mountainous regions especially in the eastern parts of Anatolia and around boundaries of Marmara Sea. Studies performed in Europe in last decade indicate that, to reach the centimeter level accuracy in mountainous areas, astrogeodetic vertical deflections are more effective than gravimetric and other geoid determination methods. Turkey had started the geoid determination studies in 1976 with 13 absolute gravity points. Turkish National Fundamental Gravity Network (TNFGRN), densificated with 1st and 2nd order 66245 gravity points in Potsdam Gravity datum. TG03 has a final internal precision of 1 cm at the observation points and the external accuracy is within decimeter level. High precision in astrogeodetic geoid determination techniques are scarcely published by some universities around Europe using CCD/Zenith cameras. There are various zenith camera systems developed as state-of- art instrumentations using both CCD sensors for imaging stellar objects and GPS receivers for ellipsoidal coordinates, in order to determine the direction of the plumb line. These systems are designed and tested where conventional techniques are not sufficient. In this study, increasing accuracy of Turkish geoid is subjected to using CCD/Zenith cameras in the province of Istanbul. The planning test area is going to use the data available on the GPS/Leveling geoid of Istanbul and produce astrogeodetic data on a profile starting from the north shore of Marmara region, passing through the Marmara Sea to the south. The astrogeodetic instruments will be designed for engineering studies that are needed to determine

  20. Laser and electrical current induced phase transformation of In2Se3 semiconductor thin film on Si(111)

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Yuan; Shamberger, Patrick J.; Yitamben, Esmeralda N.; Beck, Kenneth M.; Joly, Alan G.; Olmstead, Marjorie A.; Ohuchi, Fumio S.

    2008-10-01

    Phase transformation of thin film (˜30 nm)In2Se3/Si(111) (amorphous→crystalline) was performed by resistive annealing and the reverse transformation (crystalline→amorphous) was performed by nanosecond laser annealing. As an intrinsic-vacancy, binary chalcogenide semiconductor, In2Se3 is of interest for non-volatile phase-change memory. Amorphous In x Se y was deposited at room temperature on Si(111) after pre-deposition of a crystalline In2Se3 buffer layer (0.64 nm). Upon resistive annealing to 380°C, the film was transformed into a γ-In2Se3 single crystal with its {0001} planes parallel to the Si(111) substrate and (11bar{2}0) parallel to Si (1bar{1}0) , as evidenced by scanning tunneling microscopy, low energy electron diffraction, and X-ray diffraction. Laser annealing with 20-ns pulses (0.1 millijoules/pulse, fluence≤50 mJ/cm2) re-amorphized the region exposed to the laser beam, as observed with photoemission electron microscopy (PEEM). The amorphous phase in PEEM appears dark, likely due to abundant defect levels inhibiting electron emission from the amorphous In x Se y film.

  1. Problems, challenges and promises: perspectives on precision medicine.

    PubMed

    Duffy, David J

    2016-05-01

    The 'precision medicine (systems medicine)' concept promises to achieve a shift to future healthcare systems with a more proactive and predictive approach to medicine, where the emphasis is on disease prevention rather than the treatment of symptoms. The individualization of treatment for each patient will be at the centre of this approach, with all of a patient's medical data being computationally integrated and accessible. Precision medicine is being rapidly embraced by biomedical researchers, pioneering clinicians and scientific funding programmes in both the European Union (EU) and USA. Precision medicine is a key component of both Horizon 2020 (the EU Framework Programme for Research and Innovation) and the White House's Precision Medicine Initiative. Precision medicine promises to revolutionize patient care and treatment decisions. However, the participants in precision medicine are faced with a considerable central challenge. Greater volumes of data from a wider variety of sources are being generated and analysed than ever before; yet, this heterogeneous information must be integrated and incorporated into personalized predictive models, the output of which must be intelligible to non-computationally trained clinicians. Drawing primarily from the field of 'oncology', this article will introduce key concepts and challenges of precision medicine and some of the approaches currently being implemented to overcome these challenges. Finally, this article also covers the criticisms of precision medicine overpromising on its potential to transform patient care. PMID:26249224

  2. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    PubMed

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current. PMID:18595805

  3. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  4. Transforming dielectric coated tungsten and platinum wires to gaseous state using negative nanosecond-pulsed-current in vacuum

    SciTech Connect

    Wu, Jian; Li, Xingwen Wang, Kun; Yang, Zefeng; Shi, Zongqian; Jia, Shenli; Qiu, Aici; Li, Zhenghong

    2014-11-15

    With the help of thin dielectric coatings, corona free explosions were achieved in the region of about half a wire length (2 cm) for tungsten wires and nearly the whole wire length for platinum wires under a fast rising (46–170 A/ns) negative polarity current in vacuum. Expansion velocity of the tungsten gas was over 10 km/s. Current waveforms from exploding coated wires were similar to those from bare wires in the air including a current pause stage. Coated wires with different coating parameters had a similar joule energy deposition before voltage collapsed, but a quite different scenario in the region near the electrodes. The axial field under negative current was the main reason for the axial inhomogeneity of coated tungsten wires. Tungsten or platinum gases in the vaporized region were tightly encompassed by the dielectric coating, while gaps or probably low density gases, were observed between the coating and the edge of the dense wire core in the core-corona structure region.

  5. Structural and chemical transformations on zirconium surface during machining and electrotechnological treatment with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomina, Marina A.; Fomin, Aleksandr A.; Koshuro, Vladimir A.; Rodionov, Igor V.; Fedoseev, Maksim E.; Voyko, Aleksey V.; Palkanov, Pavel A.; Atkin, Vsevolod S.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.

    2016-04-01

    Research results on the chemical composition and surface morphological characteristics of zirconium products after machining and treatment with high-frequency currents are described. It was established that at the temperature range from 600 to 1200 °C and duration of heat treatment from 30 to 300 seconds oxide coatings consisting of nano-grains are formed.

  6. General linear chirplet transform

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Zhou, Yiqi

    2016-03-01

    Time-frequency (TF) analysis (TFA) method is an effective tool to characterize the time-varying feature of a signal, which has drawn many attentions in a fairly long period. With the development of TFA, many advanced methods are proposed, which can provide more precise TF results. However, some restrictions are introduced inevitably. In this paper, we introduce a novel TFA method, termed as general linear chirplet transform (GLCT), which can overcome some limitations existed in current TFA methods. In numerical and experimental validations, by comparing with current TFA methods, some advantages of GLCT are demonstrated, which consist of well-characterizing the signal of multi-component with distinct non-linear features, being independent to the mathematical model and initial TFA method, allowing for the reconstruction of the interested component, and being non-sensitivity to noise.

  7. Surge Across the Chambo: Entrainment, topographical influences, and flow transformation of pyroclastic density currents using a combined field and multiphase modeling approach

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Geist, D.; Harpp, K. S.

    2011-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute 'surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We have conducted high resolution

  8. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  9. High Precision Electon Beam Polarimetry

    NASA Astrophysics Data System (ADS)

    Dutta, D.

    2016-02-01

    Over the last three decades high precision electron beam polarimetry has been at the fore-front of progress made in leveraging the spin degrees of freedom in nuclear and particle physics experiments. We review the three main types of polarimeters, Compton, Møller and Mott, that are typically used in experiments. We discuss some of the recent results in high precision electron polarimetry and some of the new ideas that are being explored for future application at current and proposed accelerators.

  10. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  11. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  12. Precision Medicine, Cardiovascular Disease and Hunting Elephants.

    PubMed

    Joyner, Michael J

    2016-01-01

    Precision medicine postulates improved prediction, prevention, diagnosis and treatment of disease based on patient specific factors especially DNA sequence (i.e., gene) variants. Ideas related to precision medicine stem from the much anticipated "genetic revolution in medicine" arising seamlessly from the human genome project (HGP). In this essay I deconstruct the concept of precision medicine and raise questions about the validity of the paradigm in general and its application to cardiovascular disease. Thus far precision medicine has underperformed based on the vision promulgated by enthusiasts. While niche successes for precision medicine are likely, the promises of broad based transformation should be viewed with skepticism. Open discussion and debate related to precision medicine are urgently needed to avoid misapplication of resources, hype, iatrogenic interventions, and distraction from established approaches with ongoing utility. Failure to engage in such debate will lead to negative unintended consequences from a revolution that might never come. PMID:26902518

  13. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  14. Spin and precision electroweak physics

    SciTech Connect

    Marciano, W.J.

    1993-12-31

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for ``new physics`` is described.

  15. Magnetically Controlled Variable Transformer

    NASA Technical Reports Server (NTRS)

    Kleiner, Charles T.

    1994-01-01

    Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.

  16. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  17. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  18. "Precision" drug development?

    PubMed

    Woodcock, J

    2016-02-01

    The concept of precision medicine has entered broad public consciousness, spurred by a string of targeted drug approvals, highlighted by the availability of personal gene sequences, and accompanied by some remarkable claims about the future of medicine. It is likely that precision medicines will require precision drug development programs. What might such programs look like? PMID:26331240

  19. ELECTROWEAK PHYSICS AND PRECISION STUDIES.

    SciTech Connect

    MARCIANO, W.

    2005-10-24

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current values of m{sub W}, sin{sup 2} {theta}{sub W}(m{sub Z}){sub {ovr MS}} and m{sub t} imply a relatively light Higgs which is below the direct experimental bound but possibly consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a 2{sigma} discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.

  20. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  1. Advanced irrigation engineering: Precision and Precise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation advances in precision irrigation (PI) or site-specific irrigation (SSI) have been considerable in research; however commercialization lags. A primary necessity for it is variability in soil texture that affects soil water holding capacity and crop yield. Basically, SSI/PI uses variable ra...

  2. Advanced irrigation engineering: Precision and Precise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation advances in precision irrigation (PI) or site specific irrigation (SSI) have been considerable in research; however commercialization lags. A primary necessity for PI/SSI is variability in soil texture that affects soil water holding capacity and crop yield. Basically, SSI/PI uses variabl...

  3. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  4. Ultra-precision processes for optics manufacturing

    NASA Technical Reports Server (NTRS)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  5. Precision Polarimetry for Cold Neutrons

    NASA Astrophysics Data System (ADS)

    Barron-Palos, Libertad; Bowman, J. David; Chupp, Timothy E.; Crawford, Christopher; Danagoulian, Areg; Gentile, Thomas R.; Jones, Gordon; Klein, Andreas; Penttila, Seppo I.; Salas-Bacci, Americo; Sharma, Monisha; Wilburn, W. Scott

    2007-10-01

    The abBA and PANDA experiments, currently under development, aim to measure the correlation coefficients in the polarized free neutron beta decay at the FnPB in SNS. The polarization of the neutron beam, polarized with a ^3He spin filter, has to be known with high precision in order to achieve the goal accuracy of these experiments. In the NPDGamma experiment, where a ^3He spin filter was used, it was observed that backgrounds play an important role in the precision to which the polarization can be determined. An experiment that focuses in the reduction of background sources to establish techniques and find the upper limit for the polarization accuracy with these spin filters is currently in progress at LANSCE. A description of the measurement and results will be presented.

  6. Electrosurgery with cellular precision.

    PubMed

    Palanker, Daniel V; Vankov, Alexander; Huie, Philip

    2008-02-01

    Electrosurgery, one of the most-often used surgical tools, is a robust but somewhat crude technology that has changed surprisingly little since its invention almost a century ago. Continuous radiofrequency is still used for tissue cutting, with thermal damage extending to hundreds of micrometers. In contrast, lasers developed 70 years later, have been constantly perfected, and the laser-tissue interactions explored in great detail, which has allowed tissue ablation with cellular precision in many laser applications. We discuss mechanisms of tissue damage by electric field, and demonstrate that electrosurgery with properly optimized waveforms and microelectrodes can rival many advanced lasers. Pulsed electric waveforms with burst durations ranging from 10 to 100 micros applied via insulated planar electrodes with 12 microm wide exposed edges produced plasma-mediated dissection of tissues with the collateral damage zone ranging from 2 to 10 microm. Length of the electrodes can vary from micrometers to centimeters and all types of soft tissues-from membranes to cartilage and skin could be dissected in liquid medium and in a dry field. This technology may allow for major improvements in outcomes of the current surgical procedures and development of much more refined surgical techniques. PMID:18270030

  7. MODELING OF CHEMICAL TRANSFORMATIONS OF SO(X) AND NO(X) IN THE POLLUTED ATMOSPHERE. AN OVERVIEW OF APPROACHES AND CURRENT STATUS

    EPA Science Inventory

    Two principal approaches are identified in the modeling of chemical transformations of SOx and NOx in the polluted atmosphere. The fundamental approach involves simulation of the detailed chemical kinetics of the SOx-NOx-HC system; in the empirical approach, relatively simple par...

  8. Improving the precision matrix for precision cosmology

    NASA Astrophysics Data System (ADS)

    Paz, Dante J.; Sánchez, Ariel G.

    2015-12-01

    The estimation of cosmological constraints from observations of the large-scale structure of the Universe, such as the power spectrum or the correlation function, requires the knowledge of the inverse of the associated covariance matrix, namely the precision matrix, Ψ . In most analyses, Ψ is estimated from a limited set of mock catalogues. Depending on how many mocks are used, this estimation has an associated error which must be propagated into the final cosmological constraints. For future surveys such as Euclid and Dark Energy Spectroscopic Instrument, the control of this additional uncertainty requires a prohibitively large number of mock catalogues. In this work, we test a novel technique for the estimation of the precision matrix, the covariance tapering method, in the context of baryon acoustic oscillation measurements. Even though this technique was originally devised as a way to speed up maximum likelihood estimations, our results show that it also reduces the impact of noisy precision matrix estimates on the derived confidence intervals, without introducing biases on the target parameters. The application of this technique can help future surveys to reach their true constraining power using a significantly smaller number of mock catalogues.

  9. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

  10. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function: IMPLICATION OF AN EPOXIDE HYDROLASE IN THE TRANSFORMATIONS OF LINOLEATE.

    PubMed

    Chiba, Takahito; Thomas, Christopher P; Calcutt, M Wade; Boeglin, William E; O'Donnell, Valerie B; Brash, Alan R

    2016-07-01

    Creation of an intact skin water barrier, a prerequisite for life on dry land, requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate, which is esterified to the ω-hydroxyl of an epidermis-specific ceramide. Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for covalent binding to protein, thus forming the corneocyte lipid envelope, a key component of the epidermal barrier. Herein, we report the transformations of esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol synthesis catalyzed by the consecutive actions of 12R-LOX and epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy derivative, formed with a specificity that implicates participation of an epoxide hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses, we identify and quantify specifically 9R,10S,13R-trihydroxy-11E-octadecenoate as the single major triol esterified in porcine epidermis and the same isomer with lesser amounts of its 10R diastereomer in human epidermis. The 9R,10S,13R-triol is formed by SN2 hydrolysis of the 9R,10R-epoxy-13R-hydroxy-octadecenoate product of the LOX enzymes, a reaction specificity characteristic of epoxide hydrolase. The high polarity of triol over the primary linoleate products enhances the concept that the oxidations disrupt corneocyte membrane lipids, promoting release of free ω-hydroxyceramide for covalent binding to protein and sealing of the waterproof barrier. PMID:27151221

  11. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  12. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  13. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  14. Martensitic transformation in zirconia

    SciTech Connect

    Deville, Sylvain . E-mail: sylvain.deville@insa-lyon.fr; Guenin, Gerard; Chevalier, Jerome

    2004-11-08

    We investigate by atomic force microscopy (AFM) the surface relief resulting from martensitic tetragonal to monoclinic phase transformation induced by low temperature autoclave aging in ceria-stabilized zirconia. AFM appears as a very powerful tool to investigate martensite relief quantitatively and with a great precision. The crystallographic phenomenological theory is used to predict the expected relief induced by the transformation, for the particular case of lattice correspondence ABC1, where tetragonal c axis becomes the monoclinic c axis. A model for variants spatial arrangement for this lattice correspondence is proposed and validated by the experimental observations. An excellent agreement is found between the quantitative calculations outputs and the experimental measurements at nanometer scale yielded by AFM. All the observed features are explained fully quantitatively by the calculations, with discrepancies between calculations and quantitative experimental measurements within the measurements and calculations precision range. In particular, the crystallographic orientation of the transformed grains is determined from the local characteristics of transformation induced relief. It is finally demonstrated that the strain energy is the controlling factor of the surface transformation induced by low temperature autoclave treatments in this material.

  15. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  16. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  17. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-05-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  18. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  19. Precision Higgs Physics

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja

    2015-04-01

    The future of the high energy physics program will increasingly rely upon precision studies looking for deviations from the Standard Model. Run I of the Large Hadron Collider (LHC) triumphantly discovered the long-awaited Higgs boson, and there is great hope in the particle physics community that this new state will open a portal onto a new theory of Nature at the smallest scales. A precision study of Higgs boson properties is needed in order to test whether this belief is true. New theoretical ideas and high-precision QCD tools are crucial to fulfill this goal. They become even more important as larger data sets from LHC Run II further reduce the experimental errors and theoretical uncertainties begin to dominate. In this talk, I will review recent progress in understanding Higgs properties,including the calculation of precision predictions needed to identify possible physics beyond the Standard Model in the Higgs sector. New ideas for measuring the Higgs couplings to light quarks as well as bounding the Higgs width in a model-independent way will be discussed. Precision predictions for Higgs production in association with jets and ongoing efforts to calculate the inclusive N3LO cross section will be reviewed.

  20. The Magsat precision vector magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1980-01-01

    This paper examines the Magsat precision vector magnetometer which is designed to measure projections of the ambient field in three orthogonal directions. The system contains a highly stable and linear triaxial fluxgate magnetometer with a dynamic range of + or - 2000 nT (1 nT = 10 to the -9 weber per sq m). The magnetometer electronics, analog-to-digital converter, and digitally controlled current sources are implemented with redundant designs to avoid a loss of data in case of failures. Measurements are carried out with an accuracy of + or - 1 part in 64,000 in magnitude and 5 arcsec in orientation (1 arcsec = 0.00028 deg).

  1. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  2. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  3. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  4. Work Requirements in Transformation, Competence for the Future: A Critical Look at the Consequences of Current Positions. IAB Labour Market Research Topics No. 45.

    ERIC Educational Resources Information Center

    Plath, Hans-Eberhard

    In Germany and elsewhere, the literature on current and future work requirements rarely discusses the effects of globalization, internationalization, computerization, and other factors from the point of view of workers. Some have suggested that a blurring of limits will be one of the main changes in work in the future. This blurring will involve…

  5. Precision Nova operations

    SciTech Connect

    Ehrlich, R.B.; Miller, J.L.; Saunders, R.L.; Thompson, C.E.; Weiland, T.L.; Laumann, C.W.

    1995-09-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations includes routine precision power balance to within 10% rms in the ``foot`` and 5% nns in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 {mu}m rms. We have also added a ``fail-safe chirp`` system to avoid Stimulated Brillouin Scattering (SBS) in optical components during high energy shots.

  6. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  7. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  8. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  9. Precision Nova operations

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert B.; Miller, John L.; Saunders, Rodney L.; Thompson, Calvin E.; Weiland, Timothy L.; Laumann, Curt W.

    1995-12-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations include routine precision power balance to within 10% rms in the 'foot' and 5% rms in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 micrometer rms. We have also added a 'fail-safe chirp' system to avoid stimulated Brillouin scattering (SBS) in optical components during high energy shots.

  10. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  11. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  12. Spatiotemporal Evolution of the Current and the Integral and Spectral Emission Characteristics of a Negative Corona in Nitrogen during Its Transformation into a Spark

    SciTech Connect

    Akishev, Yu.S.; Aponin, G.I.; Karal'nik, V.B.; Monich, A.E.; Trushkin, N.I.

    2004-11-15

    Results are presented from experimental studies of the conversion of a steady-state negative corona into a spark. It is found that a spark in a negative corona in nitrogen and air is formed in the absence of fast primary streamers. It is shown that, in atmospheric-pressure nitrogen, the conversion of a corona into a spark begins with the propagation of a plasma channel (secondary streamer) from the point electrode (cathode) to the plane electrode (anode). In contrast, the plasma channel in air originates near the plane electrode and then propagates towards the point electrode. The propagation velocity of the secondary streamer is very low, V = 10{sup 3}-10{sup 4} cm/s. Two possible scenarios of the formation of the spark channel in a negative corona in nitrogen are described on the basis of the concept of a contracted volume glow discharge. Results are presented from time-resolved spectral measurements of plasma emission from different regions of the corona during its transformation into a spark.

  13. Precision in Stereochemical Terminology

    ERIC Educational Resources Information Center

    Wade, Leroy G., Jr.

    2006-01-01

    An analysis of relatively new terminology that has given multiple definitions often resulting in students learning principles that are actually false is presented with an example of the new term stereogenic atom introduced by Mislow and Siegel. The Mislow terminology would be useful in some cases if it were used precisely and correctly, but it is…

  14. Precision metal molding

    NASA Technical Reports Server (NTRS)

    Townhill, A.

    1967-01-01

    Method provides precise alignment for metal-forming dies while permitting minimal thermal expansion without die warpage or cavity space restriction. The interfacing dowel bars and die side facings are arranged so the dies are restrained in one orthogonal angle and permitted to thermally expand in the opposite orthogonal angle.

  15. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  16. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  17. Fourier Transform Ultraviolet Spectroscopy of the A Pi-2(3/2) Direct Current X Pi-2(3/2) Transition of BrO

    NASA Technical Reports Server (NTRS)

    Wilmouth, David M.; Hanisco, Thomas F.; Donahue, Neil M.; Anderson, James G.

    1999-01-01

    The first spectra of the A (2)Pi(sub 3/2) from X (2)Pi(sub 3/2) electronic transition of BrO using Fourier transform ultraviolet spectroscopy are obtained. Broadband vibrational spectra acquired at 298 +/- 2 K and 228 +/- 5 K, as well as high-resolution rotational spectra of the A from X 7,0 and 12,0 vibrational bands are presented. Wavenumber positions for the spectra are obtained with high accuracy, and cross section assignments are made, incorporating the existing literature. With 35 cm(exp -1) (0.40 nm) resolution the absolute cross section at the peak of the 7,0 band is determined to be (1.58 +/- 0.12) x 10(exp -17) sq cm/molecule at 298 +/- 2 K and (1.97 +/- 0.15) x 10(exp -17) sq cm/molecule at 228 +/- 5 K. BrO dissociation energies are determined with a graphical Birge-Sponer technique, using Le Roy-Bernstein theory to place an upper limit on the extrapolation. From the ground-state dissociation energy, D(sub o)" = 231.0 +/- 1.7 kJ/mol, the heat of formation of BrO(g) is calculated, del(sub f)H(0 K) = 133.7 +/- 1.7 kJ/mol and del(sub f)H(298.15 K) = 126.2 +/- 1.7 kJ/mol. Cross sections for the high-resolution 7,0 and 12,0 rotational peaks are the first to be reported. The band structures are modeled, and improved band origins, rotational constants, centrifugal distortion constants, and linewidths are determined. In particular, J-dependent linewidths and lifetimes are observed for the both the 7,0 and 12,0 bands.

  18. Precision Measurements in 37K

    NASA Astrophysics Data System (ADS)

    Anholm, Melissa; Ashery, Daniel; Behling, Spencer; Fenker, Benjamin; Melconian, Dan; Mehlman, Michael; Behr, John; Gorelov, Alexandre; Olchanski, Konstantin; Preston, Claire; Warner, Claire; Gwinner, Gerald

    2015-10-01

    We have performed precision measurements of the kinematics of the daughter particles in the decay of 37K. This isotope decays by β+ emission in a mixed Fermi/Gamow-Teller transition to its isobaric analog, 37Ar. Because the higher-order standard model corrections to this decay process are well understood, it is an ideal candidate for for improving constraints on interactions beyond the standard model. Our setup utilizes a magneto-optical trap to confine and cool samples of 37K, which are then spin-polarized by optical pumping. This allows us to perform measurements on both polarized and unpolarized nuclei, which is valuable for a complete understanding of systematic effects. Precision measurements of this decay are expected to be sensitive to the presence of right-handed vector currents, as well as a linear combination of scalar and tensor currents. Progress towards a final result is presented here. Support provided by: NSERC, NRC through TRIUMF, DOE ER40773, Early Career ER41747, Israel Science Foundation.

  19. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  20. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  1. Precision Electroweak Physics at the LHC

    NASA Astrophysics Data System (ADS)

    Freitas, Ayres

    2015-04-01

    The current status of precision tests of the electroweak Standard Model is summarized, and a short review of the theory input from higher-order loop corrections is given. The most constraining quantities are the masses and couplings of the W and Z bosons, and it is shown how these put strong bounds on various examples of new physics. Furthermore, the impact of current and future LHC data on electroweak precision tests is described in some detail. It is also briefly discussed how measurements of anomalous gauge boson couplings provide complementary information about the electroweak theory.

  2. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1976-01-01

    Material was presented to assist transformer designers in the transition from long-used English units to the less familiar metric equivalents. A coordination between the area product numbers ap (product of window and core cross-section areas) and current density J was developed for a given regulation and temperature rise. Straight-line relationships for Ap and Volume, Ap and surface area At and, Ap and weight were developed. These relationships can now be used as new tools to simplify and standardize the process of transformer design. They also made it possible to design transformers of small bulk and volume or to optimize efficiency.

  3. Precision Polarization of Neutrons

    NASA Astrophysics Data System (ADS)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  4. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  5. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  6. Towards precision medicine.

    PubMed

    Ashley, Euan A

    2016-08-16

    There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery - including DNA-sequencing technologies and analysis algorithms - need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision. PMID:27528417

  7. A passion for precision

    ScienceCinema

    None

    2011-10-06

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  8. Precision laser aiming system

    SciTech Connect

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  9. Precision disablement aiming system

    DOEpatents

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  10. Precise linear sun sensor

    NASA Technical Reports Server (NTRS)

    Johnston, D. D.

    1972-01-01

    An evaluation of the precise linear sun sensor relating to future mission applications was performed. The test procedures, data, and results of the dual-axis, solid-state system are included. Brief descriptions of the sensing head and of the system's operational characteristics are presented. A unique feature of the system is that multiple sensor heads with various fields of view may be used with the same electronics.

  11. New methods for precision Møller polarimetry

    SciTech Connect

    D. Gaskell; D.G. Meekins; C. Yan

    2007-07-01

    Precision electron beam polarimetry is becoming increasingly important as parity violation experiments attempt to probe the frontiers of the standard model. In the few GeV regime, Møller polarimetry is well suited to high-precision measurements, however is generally limited to use at relatively low beam currents (< 10 μA). We present a novel technique that will enable precision Møller polarimetry at very large currents, up to 100μA.

  12. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  13. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  14. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  15. Precision experiments in electroweak interactions

    SciTech Connect

    Swartz, M.L.

    1990-03-01

    The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become one of the twin pillars upon which our understanding of all particle physics phenomena rests. It is a brilliant achievement that qualitatively and quantitatively describes all of the vast quantity of experimental data that have been accumulated over some forty years. Note that the word quantitatively must be qualified. The low energy limiting cases of the GWS theory, Quantum Electrodynamics and the V-A Theory of Weak Interactions, have withstood rigorous testing. The high energy synthesis of these ideas, the GWS theory, has not yet been subjected to comparably precise scrutiny. The recent operation of a new generation of proton-antiproton (p{bar p}) and electron-positron (e{sup +}e{sup {minus}}) colliders has made it possible to produce and study large samples of the electroweak gauge bosons W{sup {plus minus}} and Z{sup 0}. We expect that these facilities will enable very precise tests of the GWS theory to be performed in the near future. In keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, these lectures will explore the current status and the near-future prospects of these experiments.

  16. Toward precision medicine in primary biliary cholangitis.

    PubMed

    Carbone, Marco; Ronca, Vincenzo; Bruno, Savino; Invernizzi, Pietro; Mells, George F

    2016-08-01

    Primary biliary cholangitis is a chronic, cholestatic liver disease characterized by a heterogeneous presentation, symptomatology, disease progression and response to therapy. In contrast, clinical management and treatment of PBC is homogeneous with a 'one size fits all' approach. The evolving research landscape, with the emergence of the -omics field and the availability of large patient cohorts are creating a unique opportunity of translational epidemiology. Furthermore, several novel disease and symptom-modifying agents for PBC are currently in development. The time is therefore ripe for precision medicine in PBC. In this manuscript we describe the concept of precision medicine; review current approaches to risk-stratification in PBC, and speculate how precision medicine in PBC might develop in the near future. PMID:27324985

  17. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  18. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2010-09-01

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  19. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  20. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  1. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  2. Precision mass measurements

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Borys, M.

    2009-12-01

    Mass as a physical quantity and its measurement are described. After some historical remarks, a short summary of the concept of mass in classical and modern physics is given. Principles and methods of mass measurements, for example as energy measurement or as measurement of weight forces and forces caused by acceleration, are discussed. Precision mass measurement by comparing mass standards using balances is described in detail. Measurement of atomic masses related to 12C is briefly reviewed as well as experiments and recent discussions for a future new definition of the kilogram, the SI unit of mass.

  3. System for precise position registration

    DOEpatents

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  4. Lightweight transformer

    SciTech Connect

    Swallom, D.W.; Enos, G.

    1990-05-01

    The technical effort described in this report relates to the program that was performed to design, fabricate, and test a lightweight transformer for Strategic Defense Initiative Organization (SDIO) mission requirements. The objectives of this program were two-fold: (1) design and fabricate a lightweight transformer using liquid hydrogen as the coolant; and (2) test the completed transformer assembly with a low voltage, dc power source. Although the full power testing with liquid helium was not completed, the program demonstrated the viability of the design approach. The lightweight transformer was designed and fabricated, and low and moderate power testing was completed. The transformer is a liquid hydrogen cooled air core transformer that uses thin copper for its primary and secondary windings. The winding mass was approximately 12 kg, or 0.03 kg/kW. Further refinements of the design to a partial air core transformer could potentially reduce the winding mass to as low as 4 or 5 kg, or 0.0125 kg/kW. No attempt was made on this program to reduce the mass of the related structural components or cryogenic container. 8 refs., 39 figs., 2 tabs.

  5. Current limiting performance test of 3-phase tri-axial transformer-type SFCL with re-wound structure at 3-line-to-ground fault in lab-scale transmission system

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Noda, Sho; Yamabe, Kenta; Hattori, Keisuke; Baba, Jumpei; Kobayashi, Shinichi; Sato, Kenichi

    2013-01-01

    We have proposed a transformer-type SFCL of a re-wound structure, which can produce a limiting reactance (L-limiting) for smaller fault current and, for larger one, additively give a limiting resistance (L + R limiting). The single-phase proposed model SFCL had been tested and shown good limiting characteristics and excellent recovery performance. A 3-phase tri-axial SFCL of the proposed type had been designed and made using BSCCO2223. This paper describes demonstration tests of the model SFCL carried out using a lab-scale one-machine infinite bus transmission model system. The experimental results on the current limiting performance of the SFCL at the 3-line-to-ground (3LG) fault were shown and discussed. The peak fault current 560 A without SFCL was reduced to 230 A with SFCL immediately. The 3-phase SFCL successfully worked without large inter-phase interaction. The SFCL recovered to the stand-by mode under a typical Circuit Breaker (CB) operation sequence.

  6. Precision Machining Technology. Technical Committee Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in precision machining technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and…

  7. Precision measurements of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    de Bernardis, Paolo; Masi, Silvia; Wuensche, Carlos Alexandre

    2015-12-01

    Precision measurements of the Cosmic Microwave Background (CMB) sample the entire history of the Universe. In this paper we give a short review, from the experimentalist point of view, of the current status and of what can still be done, using this extraordinary tool, to investigate cosmology and fundamental physics.

  8. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  9. Precision measurements in supersymmetry

    SciTech Connect

    Feng, J.L.

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  10. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  11. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  12. Progressive Precision Surface Design

    SciTech Connect

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on an underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.

  13. Precision oncology: origins, optimism, and potential.

    PubMed

    Prasad, Vinay; Fojo, Tito; Brada, Michael

    2016-02-01

    Imatinib, the first and arguably the best targeted therapy, became the springboard for developing drugs aimed at molecular targets deemed crucial to tumours. As this development unfolded, a revolution in the speed and cost of genetic sequencing occurred. The result-an armamentarium of drugs and an array of molecular targets-set the stage for precision oncology, a hypothesis that cancer treatment could be markedly improved if therapies were guided by a tumour's genomic alterations. Drawing lessons from the biological basis of cancer and recent empirical investigations, we take a more measured view of precision oncology's promise. Ultimately, the promise is not our concern, but the threshold at which we declare success. We review reports of precision oncology alongside those of precision diagnostics and novel radiotherapy approaches. Although confirmatory evidence is scarce, these interventions have been widely endorsed. We conclude that the current path will probably not be successful or, at a minimum, will have to undergo substantive adjustments before it can be successful. For the sake of patients with cancer, we hope one form of precision oncology will deliver on its promise. However, until confirmatory studies are completed, precision oncology remains unproven, and as such, a hypothesis in need of rigorous testing. PMID:26868357

  14. Triple transformation

    NASA Astrophysics Data System (ADS)

    Khan, Farrukh I.; Schinn, Dustin S.

    2013-08-01

    A new business plan that enables policy transformation and resource mobilization at the national and international level, while improving access to resources, will allow the Green Climate Fund to integrate development goals and action on climate change.

  15. Covariant Transform

    NASA Astrophysics Data System (ADS)

    Kisil, Vladimir V.

    2011-03-01

    Dedicated to the memory of Cora Sadosky The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H2, Banach spaces, covariant functional calculus and many others.

  16. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  17. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  18. DC current monitor

    NASA Technical Reports Server (NTRS)

    Canter, Stanley (Inventor)

    1991-01-01

    A non-intrusive DC current monitor is presented which emulates the theoretical operation of an AC transformer. A conductor, carrying the current to be measured, acts as the primary of a DC current transformer. This current is passed through the center of a secondary coil, and core positioned thereabout, and produces a magnetic flux which induces a current in the secondary proportional to the current flowing in the primary. Means are provided to periodically reset the transformer core such that the measurement inaccuracies associated with core saturation are obviated. A reset current is caused to periodically flow through the secondary coil which produces a magnetic flux oppositely polarized to the flux created by the current in the primary, thus allowing ongoing measurements to be made.

  19. Precision pointing mechanism for intersatellite optical communication

    NASA Astrophysics Data System (ADS)

    Hicks, T.; O'Sullivan, B.; Russell, J.; Scholl, L.

    1989-09-01

    The SILEX project is an experimental communication system aimed at demonstrating, in orbit, the feasibility of intersatellite optical communications using semiconductor lasers. As part of this project, a precision mechanism has been developed to point the transmitted beam ahead of the current receiving satellite position. This is necessary due to the relative motion of the satellites, the narrow beam, and the finite velocity of light. The design and construction of a prototype of this device is discussed along with measurements of performance. The technique as described can be used in many applications requiring precision beam steering or rotation control.

  20. PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS.

    SciTech Connect

    MARCIANO, W.J.

    2004-08-02

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m{sub w} and sin{sup 2} {theta}{sub w} (m{sub z}){sub {ovr MS}} imply a relatively light Higgs {approx}< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.

  1. Precise Applications Of The Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1992-01-01

    Report represents overview of Global Positioning System (GPS). Emphasizes those aspects of theory, history, and status of GPS pertaining to potential utility for highly precise scientific measurements. Current and anticipated applications include measurements of crustal motions in seismically active regions of Earth, measurements of rate of rotation of Earth and orientation of poles, tracking of non-GPS spacecraft in orbit around Earth, surveying, measurements of radio-signal-propagation delays, determinations of coordinates of ground stations, and transfer of precise time signals worldwide.

  2. Project: Transformation

    ERIC Educational Resources Information Center

    Danko, James M.

    2010-01-01

    "Commerce" and "finance" are not the broadest or most dynamic words in the lexicon of business. And yet, when this author became dean of the business school at Villanova University in 2005, that was precisely the language the school was using to advertise itself to the world. The Villanova College of Commerce & Finance, as it was known then, had…

  3. [Application of precision medicine in obesity and metabolic disease surgery].

    PubMed

    Wang, Cunchuan; Gao, Zhiguang

    2016-01-01

    The U. S. A. president Obama called for a new initiative to fund precision medicine during his State of Union Address on January 20th, 2015, which meant that the human medicine enters a new era. The meaning of "precision medicine" is significantly similar to the concept of precision obesity and metabolic disease surgery, which was proposed by the author in early August 2011. Nowadays, obesity and metabolic disease surgery has been transformed from open surgery to laparoscopic surgery, the extensive mode to the precision mode. The key value concept is to minimize postoperative complication, minimize postoperative hospital stay and obtain the best effect of weight loss by accurate preoperative assessment, delicate operation, excellent postoperative management and scientific follow-up. The precision obesity and metabolic disease surgery has more development space in the future. PMID:26797833

  4. The Seasat Precision Orbit Determination Experiment

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Born, G. H.

    1980-01-01

    The objectives and conclusions reached during the Seasat Precision Orbit Determination Experiment are discussed. It is noted that the activities of the experiment team included extensive software calibration and validation and an intense effort to validate and improve the dynamic models which describe the satellite's motion. Significant improvement in the gravitational model was obtained during the experiment, and it is pointed out that the current accuracy of the Seasat altitude ephemeris is 1.5 m rms. An altitude ephemeris for the Seasat spacecraft with an accuracy of 0.5 m rms is seen as possible with further improvements in the geopotential, atmospheric drag, and solar radiation pressure models. It is concluded that since altimetry missions with a 2-cm precision altimeter are contemplated, the precision orbit determination effort initiated under the Seasat Project must be continued and expanded.

  5. SHARP transformation

    NASA Astrophysics Data System (ADS)

    Wyatt, Stephan

    2004-08-01

    The U.S. Navy"s SHAred Reconnaissance Pod (SHARP) employs the Recon/Optical, Inc. (ROI) CA-279 dual spectral band (visible/IR) digital cameras operating from an F-18E/F aircraft to perform low-to-high altitude reconnaissance missions. SHARP has proven itself combat worthy, with a rapid transition from development to operational deployment culminating in a highly reliable and effective reconnaissance capability for joint forces operating in Operation Iraqi Freedom (OIF). The U.S. Navy"s intelligence, surveillance and reconnaissance (ISR) roadmap transforms the SHARP system from being solely an independent reconnaissance sensor to a node in the growing Joint ISR network. ROI and the U.S. Navy have combined their resources to ensure the system"s transformation continues to follow the ISR road map. Pre-planned product improvements (P3I) for the CA-270 camera systems will lead the way in that transformation.

  6. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  7. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  8. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  9. Two Alternative Methods for Height Transformation

    NASA Astrophysics Data System (ADS)

    Kollo, Karin

    2008-03-01

    Geodesists have always been dealing with coordinate transformations. There exist various kinds of transformations, like three-dimensional (spatial datum) transformations, two-dimensional (horizontal datum) transformations and one-dimensional (eg, height) transformations. In this article we discuss height transformations. Height data is usually obtained by levelling. The problematic side of levelling is that this technique is very labour intensive and costly. Nowadays as well GPS measurements can be used, which are much faster and cheaper, but in order to use GPS measurements for height determination, we need a precise geoid model to transform GPS heights to heights above sea level. In this article two different approaches to this transformation are presented. At first, the affine transformation is discussed. The method is by nature linear, and employs the barycentric coordinates of the point, the height of which is going to be computed. Secondly, the method of fuzzy modelling is used. By these methods, the transformation surface is determined and the heights of desired points can be determined. As the input data, height information from the precise levelling campaign in Estonia is used. The computed values are tested against height information, gathered from the reference geoid model. The objectives of this research are acquiring insight into using alternative methods for height transformation as well as to statistically characterise the suitability of the proposed methods.

  10. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.