Science.gov

Sample records for precision current transformer

  1. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  2. 60. VIEW OF THE CURRENT TRANSFORMER VAULT. THIS CURRENT TRANSFORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. VIEW OF THE CURRENT TRANSFORMER VAULT. THIS CURRENT TRANSFORMER WAS USED TO SENSE HIGH CURRENT BEING GENERATED ON GENERATOR NUMBER 3 AND REDUCE IT TO A LOWER, EXACT ANALOG VALUE THAT COULD BE SAFELY HANDLED AND MONITORED WITH THE CONTROL CIRCUITRY. THE CURRENT TRANSFORMER IS LOCATED IN THE CENTER OF THE PHOTOGRAPH. THE CONNECTING BUS ABOVE THE TRANSFORMER WAS REMOVED FOR SALVAGE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  3. [Precision stomatology: current status and challenges].

    PubMed

    Xu, Xin; Zheng, Xin; Zheng, Liwei; Cheng, Lei; Zhou, Xuedong

    2015-06-01

    The completion of human genome project and the progress in medical practice have inevitably lead to the development of precision medicine, which is a medical model that proposes the customization of medical care including medical decisions, practices, and/or medical products with patient's genetic background, environmental factors and life behavior being taken into account. The current work proposed precision stomatology for the first time, and by integrating data reported in recent literature, we described the current practice of precision stomatology in multiple disciplines in modem dentistry. The clinical significance of precision stomatology and its future challenges have also been discussed. PMID:26281265

  4. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  5. Electronic voltage and current transformers testing device.

    PubMed

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware. PMID:22368510

  6. Solid-state current transformer

    NASA Technical Reports Server (NTRS)

    Farnsworth, D. L. (Inventor)

    1976-01-01

    A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.

  7. Dual current readout for precision plating

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1970-01-01

    Bistable amplifier prevents damage in the low range circuitry of a dual scale ammeter. It senses the current and switches automatically to the high range circuitry as the current rises above a preset level.

  8. PRECISION INTEGRATOR FOR MINUTE ELECTRIC CURRENTS

    DOEpatents

    Hemmendinger, A.; Helmer, R.J.

    1961-10-24

    An integrator is described for measuring the value of integrated minute electrical currents. The device consists of a source capacitor connected in series with the source of such electrical currents, a second capacitor of accurately known capacitance and a source of accurately known and constant potential, means responsive to the potentials developed across the source capacitor for reversibly connecting the second capacitor in series with the source of known potential and with the source capacitor and at a rate proportional to the potential across the source capacitor to maintain the magnitude of the potential across the source capacitor at approximately zero. (AEC)

  9. Transforming Cancer Prevention through Precision Medicine and Immune-oncology.

    PubMed

    Kensler, Thomas W; Spira, Avrum; Garber, Judy E; Szabo, Eva; Lee, J Jack; Dong, Zigang; Dannenberg, Andrew J; Hait, William N; Blackburn, Elizabeth; Davidson, Nancy E; Foti, Margaret; Lippman, Scott M

    2016-01-01

    We have entered a transformative period in cancer prevention (including early detection). Remarkable progress in precision medicine and immune-oncology, driven by extraordinary recent advances in genome-wide sequencing, big-data analytics, blood-based technologies, and deep understanding of the tumor immune microenvironment (TME), has provided unprecedented possibilities to study the biology of premalignancy. The pace of research and discovery in precision medicine and immunoprevention has been astonishing and includes the following clinical firsts reported in 2015: driver mutations detected in circulating cell-free DNA in patients with premalignant lesions (lung); clonal hematopoiesis shown to be a premalignant state; molecular selection in chemoprevention randomized controlled trial (RCT; oral); striking efficacy in RCT of combination chemoprevention targeting signaling pathway alterations mechanistically linked to germline mutation (duodenum); molecular markers for early detection validated for lung cancer and showing promise for pancreatic, liver, and ovarian cancer. Identification of HPV as the essential cause of a major global cancer burden, including HPV16 as the single driver of an epidemic of oropharyngeal cancer in men, provides unique opportunities for the dissemination and implementation of public health interventions. Important to immunoprevention beyond viral vaccines, genetic drivers of premalignant progression were associated with increasing immunosuppressive TME; and Kras vaccine efficacy in pancreas genetically engineered mouse (GEM) model required an inhibitory adjuvant (Treg depletion). In addition to developing new (e.g., epigenetic) TME regulators, recent mechanistic studies of repurposed drugs (aspirin, metformin, and tamoxifen) have identified potent immune activity. Just as precision medicine and immune-oncology are revolutionizing cancer therapy, these approaches are transforming cancer prevention. Here, we set out a brief agenda for the

  10. DC-Compensated Current Transformer

    PubMed Central

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  11. Precision intercomparison of beam current monitors at CEBAF

    SciTech Connect

    Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, r.; Liang, C.; Sinclair, C.; Mamosser, J.

    1995-12-31

    The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 {mu}A. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward to verify the high efficiency of the Faraday cups, and the Unser monitor included a wire through it to permit an absolute calibration. The cavity intensity monitors have proven capable of stable, high precision monitoring of the beam current.

  12. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  13. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  14. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  15. Saturation current spikes eliminated in saturable core transformers

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Unsaturating composite magnetic core transformer, consisting of two separate parallel cores designed so impending core saturation causes signal generation, terminates high current spike in converter primary circuit. Simplified waveform, demonstrates transformer effectiveness in eliminating current spikes.

  16. A new high-precision current supply for magnets

    SciTech Connect

    Wisnivesky, D. |; Lira, A.C.

    1995-08-01

    A new, high-precision, low-ripple current power supply (CPS) for magnets, based on a combination of an SCR converter and a single transistor switched mode power supply (SMPS) is described. The load power is primarily supplied by the SCR converter. The SMPS handles only a small fraction of the load power, and also, what is more significant, a very small part of the load current. In this paper, the topology and operating principle of the new power supply is discussed. A CPS, rated at 200 A at 45 V, was constructed and tested. The power supply energizes a family of quadrupole magnets at the Brazilian Synchrotron Light Source--LNLS. Making use of the current limit modulation (CLM) control method, magnetic field variations at full current are 5 ppm, with only 8 A passing through the switching transistor. The design and performance of the power supply under different operating conditions ar described. Variations of the proposed topology, suitable for high-current and high-voltage loads, are also discussed.

  17. 59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. VIEW OF FUSES AND A CURRENT TRANSFORMER LOCATED IN THE SIGNAL POWER CONDITIONING ROOM. THE CURRENT TRANSFORMER (UPPER RIGHT) IS AN INDUCTION COUPLED SENSOR WHICH IS USED TO REDUCE HIGH CURRENT TO ANALOGOUS LOW VALUES SAFE TO USE IN CONTROL ROOM CIRCUITRY. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  18. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  19. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  20. Direct-Current Monitor With Flux-Reset Transformer Coupling

    NASA Technical Reports Server (NTRS)

    Canter, Stanley

    1993-01-01

    Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.

  1. Transformation of spin current by antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasil S.; Slavin, Andrei N.; Ivanov, Boris A.

    2016-06-01

    It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can effectively conduct spin current through the excitation of a pair of evanescent AFM spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and the AFM lattice and, depending on the excitation conditions, can be either attenuated or enhanced. When the phase difference between the excited evanescent modes is close to π /2 , there is an optimum AFM thickness for which the output spin current reaches a maximum, which can significantly exceed the magnitude of the input spin current. The spin current transfer through the AFM depends on the ambient temperature and increases substantially when temperature approaches the Néel temperature of the AFM layer.

  2. Elimination of inrush current of transformers and distribution lines

    SciTech Connect

    Asghar, M.S.J.

    1995-12-31

    Repeated switching of distribution transformers take place due to poor generation and load shading. The transformer mounted on electric locomotive is also regularly reswitched after crossing each buffer zone between two substations. The steady-state magnetizing current of a transformer is about 5% of the full load current.But the transient inrush current may be as high as ten times the full-load current. The switching instant decides the nature and magnitude of the switching current and it is used here to control the inrush current. Another method is adopted by placing a capacitor at the secondary side of the unloaded transformer connected at the sending or receiving end of the distribution line. Third method is proposed using the distribution line as a low-pass filter. In case of a three-phase transformer, when it is switched, inrush current flows in either one or two phase windings. Instead of a simultaneous switching of all the phases (windings), each winding of transformer is switched at predetermined switching instants sequentially. Thus inrush currents are contained to steady-state level using an instant-controlled switching circuit. Switching of all phases completes within 1/3 or 1/4 of the power-cycle depending upon the mode of transformer configuration and the switching strategy. The switching current is found same as the steady-state no-load current. These schemes are useful for traction transformer as well as for poorly supplied and poorly maintained distribution lines including traction line which are subjected to repeated switching.

  3. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  4. A superconducting transformer system for high current cable testing.

    PubMed

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples. PMID:20370213

  5. Development of Large Current High Precision Pulse Power Supply

    NASA Astrophysics Data System (ADS)

    Takayanagi, Tomohiro; Koseki, Shoichiro; Kubo, Hiroshi; Katoh, Shuji; Ogawa, Shinichi

    JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV synchrotron. Its injection bump magnets, especially horizontal paint bump magnets, are excited by large pulse currents. Their rated currents are over 10kA and pulse widths are about 1ms. Tracking errors are required to be less than 1%. Multiple connected two-quadrant IGBT choppers are adopted for their power supplies. Their output currents are controlled by feedback control with minor loop voltage control (m-AVR). When output current of a chopper intermits at small current, its output voltage rises up and current control becomes difficult. In this paper response of m-AVR and output voltage characteristics at current intermittent region are studied and an improved control scheme is proposed. The performance is confirmed by a test.

  6. Precise spectrum reconstruction of the Fourier transforms imaging spectrometer based on polarization beam splitters.

    PubMed

    Ren, Wenyi; Zhang, Chunmin; Jia, Chenling; Mu, Tingkui; Li, Qiwei; Zhang, Lin

    2013-04-15

    A method was proposed to precisely reconstruct the spectrum from the interferogram taken by the Fourier transform imaging spectrometer (FTIS) based on the polarization beam splitters. Taken the FTISs based on the Savart polariscope and Wollaston prism as examples, the distorted spectrums were corrected via the proposed method effectively. The feasibility of the method was verified via simulation. The distorted spectrum, recovered from the interferogram taken by the polarization imaging spectrometer developed by us, was corrected. PMID:23595463

  7. Wave Transformation and Breaking on a Sheared Current

    NASA Astrophysics Data System (ADS)

    Zippel, S.; Thomson, J. M.; Rusch, C.

    2014-12-01

    Waves shoaling against tidal currents at river inlets have long been a hazard to navigation. We present measurements of waves, currents, and turbulence from SWIFT drifters at the Columbia River Mouth to diagnose wave transformation, breaking, and the resulting turbulence. In particular, down-looking velocity profiles, measured onboard the drifters, allow for evaluation of wave transformation on a vertically sheared current, for which theory exists but few in situ measurements are available. One consequence of wave transformation is steepening and breaking, which is identified using visual images, increased near surface turbulence, and gradients in wave energy flux. Vertical turbulent dissipation profiles measured during breaking are compared to existing scalings developed for deep and shallow water and expanded to the intermediate depth conditions common at the Columbia River Mouth. The analysis is intended to improve hydrodynamic models, especially two-way coupled wave-current models, and to aid navigation by better predicting dangerous wave conditions.

  8. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  9. Current Technologies and Related Issues for Mushroom Transformation

    PubMed Central

    Kim, Sinil; Ha, Byeong-Suk

    2015-01-01

    Mushroom transformation requires a series of experimental steps, including generation of host strains with a desirable selective marker, design of vector DNA, removal of host cell wall, introduction of foreign DNA across the cell membrane, and integration into host genomic DNA or maintenance of an autonomous vector DNA inside the host cell. This review introduces limitations and obstacles related to transformation technologies along with possible solutions. Current methods for cell wall removal and cell membrane permeabilization are summarized together with details of two popular technologies, Agrobacterium tumefaciens-mediated transformation and restriction enzyme-mediated integration. PMID:25892908

  10. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, R.L.; Guilford, R.P.; Stichman, J.H.

    1987-06-29

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.

  11. Transformer coupling for transmitting direct current through a barrier

    DOEpatents

    Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.

    1988-01-01

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.

  12. HOTB: High precision parallel code for calculation of four-particle harmonic oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.

    2014-11-01

    This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more

  13. A High Precision Scanning Control System For A VUV Fourier Transform Spectrometer

    SciTech Connect

    De Oliveira, N.; Nahon, L.; Polack, F.; Joyeux, D.; Phalippou, D.; Rodier, J. C.; Vervloeet, M.

    2007-01-19

    A VUV Fourier transform spectrometer based on a wavefront division interferometer has been built. Our ultimate goal is to provide a high resolution absorption spectrometer in the 140 - 40 nm range using the new third generation French synchrotron source Soleil as the background continuum. Here, we present the design and latest performance of the instrument scanning control system. It is based on multiple reflections of a monomode, frequency-stabilized HeNe laser between two plane mirrors allowing the required sensitivity on the displacement of the interferometer mobile arm. The experimental results on the sampling precision show an rms error below 5 nm for a travel length of 7.5 mm.

  14. Amplification of S-1 Spheromak current by an inductive current transformer

    SciTech Connect

    Jardin, S.C.; Janos, A.; Yamada, M.

    1985-11-01

    We attempt to predict the consequences of adding an inductive current transformer (OH Transformer) to the present S-1 Spheromak experiment. Axisymmetric modeling with only classical dissipation shows an increase of toroidal current and a shrinking and hollowing of the current channel, conserving toroidal flux. These unstable profiles will undergo helical reconnection, conserving helicity K = ..integral.. A-vector x B-vector d tau while increasing the toroidal flux and decreasing the poloidal flux so that the plasma relaxes toward the Taylor state. This flux rearrangement is modeled by a new current viscosity term in the mean-field Ohm's law which conserves helicity and dissipates energy.

  15. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  16. An accurate continuous calibration system for high voltage current transformer.

    PubMed

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site. PMID:21361633

  17. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOEpatents

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  18. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  19. Precise major component determinations in deep-sea sediments using Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Herbert, Timothy D.; Tom, Brian A.; Burnett, Chris

    1992-04-01

    Experiments using Fourier Transform Infrared Spectroscopy (FTIR) on a set of powdered deep-sea sediment samples show that it is an efficient method of quantifying the relative abundances of quartz, clay, and calcite. Ratios of absorption bands characteristic of different minerals are precise and reproducible to a relative error of about 1 % provided that samples are ground to <2 μm. FTIR results, calibrated to geochemical measurements, therefore offer a more rapid means of producing sedimentary time series data than do elemental or phase-specific extractions. Calibration of results to absolute amounts of sedimentary phases is possible for minerals with unique absorption bands. Highly IR-absorbant minerals such as quartz and calcite are quantitatively detectable in amounts as low as 5% in a mixture. In addition, FTIR measurements complement elemental analyses by allowing the accurate partitioning of elements, such as Si, which may occur in several phases.

  20. A transmission-loss monitor using current transformers

    SciTech Connect

    Power, J.F.; Gilpatrick, J.D.; Jason, A.J.

    1993-12-01

    A system for measuring the amount of beam-charge loss in a linear-accelerator structure has been developed that uses a pair of beam-current transformers, otherwise used to monitor the linac beam current. This system is necessary to enable the Ground Test Accelerator (GTA) fast-protect system to shut off the accelerated beam in the event of a beam loss that would deposit sufficient energy to damage the accelerator structure. The present GTA accelerator consists of a 2.5-MeV, H{sup {minus}} RFQ, an intermediate matching section (IMS) and a single DTL cavity with an output energy of 3.2-MeV and transmitted current of 35 mA. Based on the RFQ output beam, melting of the copper structures will occur when about 40 nC of beam is deposited in a point loss. For a grazing angle of 30 mrad, up to 640 nC may be tolerated. The beam-current-transmission-loss monitor (BCTLM) system in conjunction with the fast-protect system measures the amount of beam loss between two toroidal beam-current monitors and automatically terminates the macropulse when the integrated loss reaches a predetermined set point. The design and operation of the BCTLM system used in the IMS and DTL section of the accelerator is described.

  1. Evaluation of conductor stresses in a pulsed high-current toroidal transformer

    SciTech Connect

    Turchi, Peter J; Rousculp, Chritopher L; Reass, William A; Oro, David M; Merrill, Frank E; Greigo, Jeffery R; Reinovsky, Robert E

    2009-01-01

    The Precision, High-Energy Density, Liner Implosion Experiment (PHELIX) pulsed power driver is currently under development at Los Alamos National Laboratory. When operational PHELIX will provide 5-10 MAmps of peak current with pulse rise-time of {approx} 5-10 ms. Crucial to the performance of PHELIX is a multi-turn primary, single-turn secondary, current step-up toroidal transformer, R{sub major} {approx} 30 cm, R{sub minor} {approx} 10 cm. The transformer lifetime should exceed 100 shots. Therefore it is essential that the design be robust enough to survive the magnetic stresses produced by high currents. In order to evaluate their design, two methods have been utilized. First, an analytical evaluation has been performed. By identifying the magnetic forces as J{sub 1}{sup 2}/2 {del}L{sub 1} + J{sub 1}J{sub 2}{del}M{sub 12}, where J{sub 1} and J{sub 2} are currents in two circuits, coupled by mutual inductance M{sub 12} and L{sub 1} is the self-inductance of the circuit carrying current J{sub 1}, analytical estimates of stress can be obtained. These results are then compared to a computational MHD model of the same system and to a full finite-element, electromagnetic simulation.

  2. Learning Precise Spike Train-to-Spike Train Transformations in Multilayer Feedforward Neuronal Networks.

    PubMed

    Banerjee, Arunava

    2016-05-01

    We derive a synaptic weight update rule for learning temporally precise spike train-to-spike train transformations in multilayer feedforward networks of spiking neurons. The framework, aimed at seamlessly generalizing error backpropagation to the deterministic spiking neuron setting, is based strictly on spike timing and avoids invoking concepts pertaining to spike rates or probabilistic models of spiking. The derivation is founded on two innovations. First, an error functional is proposed that compares the spike train emitted by the output neuron of the network to the desired spike train by way of their putative impact on a virtual postsynaptic neuron. This formulation sidesteps the need for spike alignment and leads to closed-form solutions for all quantities of interest. Second, virtual assignment of weights to spikes rather than synapses enables a perturbation analysis of individual spike times and synaptic weights of the output, as well as all intermediate neurons in the network, which yields the gradients of the error functional with respect to the said entities. Learning proceeds via a gradient descent mechanism that leverages these quantities. Simulation experiments demonstrate the efficacy of the proposed learning framework. The experiments also highlight asymmetries between synapses on excitatory and inhibitory neurons. PMID:26942750

  3. Experimental study on superconducting fault current limiting transformer for fault current suppression and system stability improvement

    NASA Astrophysics Data System (ADS)

    Kagawa, H.; Hayakawa, N.; Kashima, N.; Nagaya, S.; Okubo, H.

    2002-08-01

    We have been developing a superconducting fault current limiting transformer (SFCLT) with 3-phase, 500/275 kV, 625 MVA and optimized the main parameters by EMTP simulation. In this paper, we designed and fabricated an experimental scale-down model of SFCLT with 3-phase, 275/105 V, 6.25 kVA, using NbTi superconducting wire. We introduced the experimental model SFCLT into a transient network analyzer consisted of synchronous generators, transformers, transmission lines, circuit breakers and an infinite bus. It was revealed that experimental model had effective function-parameters as was simulated and experimental results clarified the effectiveness of SFCLT having both functions of the fault current suppression and the system stability improvement in a future superconducting power system.

  4. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  5. A high-current calibration system based on indirect comparison of current transformer and Rogowski coil

    NASA Astrophysics Data System (ADS)

    Luo, Pandian; Li, Zhenhua; Li, Hongbin; Li, Hongfeng

    2013-12-01

    The calibration of the protective current transformer (CT) is of particular importance, since its accuracy at high currents is crucial to the correct operation of the subsequent relay protection devices. Conventional calibration methods have been using an electromagnetic CT which contains an iron core as the standard CT. The iron core is big and difficult to manufacture for high-current measurement, and the serious residual magnetism of the iron core at high currents can lead to excessive measurement errors. This paper proposes a calibration system based on indirect comparison of CT and Rogowski coil, i.e. using an iron-core CT to correct the error of the Rogowski coil at low currents, which may be caused by the position of the current-carrying conductor and so on, and then using the calibrated Rogowski coil as the standard transformer at high currents for its good linearity and wide dynamic range, and there is no magnetic saturation. Since the output of the Rogowski coil needs to be integrated, an improved digital integrator based on direct current (dc) negative feedback is adopted, which can effectively eliminate the influences of temperature drift, time drift and dc offset caused by the analogue circuit. The measurement errors of each part of the calibration system have also been discussed, and the test results show that the accuracy of the system can reach up to the 0.05S Class and the uncertainties are 0.038% for ratio and 0.68‧ for phase in the range 500 A to 50 kA.

  6. Comparative effectiveness research in cancer genomics and precision medicine: current landscape and future prospects.

    PubMed

    Simonds, Naoko I; Khoury, Muin J; Schully, Sheri D; Armstrong, Katrina; Cohn, Wendy F; Fenstermacher, David A; Ginsburg, Geoffrey S; Goddard, Katrina A B; Knaus, William A; Lyman, Gary H; Ramsey, Scott D; Xu, Jianfeng; Freedman, Andrew N

    2013-07-01

    A major promise of genomic research is information that can transform health care and public health through earlier diagnosis, more effective prevention and treatment of disease, and avoidance of drug side effects. Although there is interest in the early adoption of emerging genomic applications in cancer prevention and treatment, there are substantial evidence gaps that are further compounded by the difficulties of designing adequately powered studies to generate this evidence, thus limiting the uptake of these tools into clinical practice. Comparative effectiveness research (CER) is intended to generate evidence on the "real-world" effectiveness compared with existing standards of care so informed decisions can be made to improve health care. Capitalizing on funding opportunities from the American Recovery and Reinvestment Act of 2009, the National Cancer Institute funded seven research teams to conduct CER in genomic and precision medicine and sponsored a workshop on CER on May 30, 2012, in Bethesda, Maryland. This report highlights research findings from those research teams, challenges to conducting CER, the barriers to implementation in clinical practice, and research priorities and opportunities in CER in genomic and precision medicine. Workshop participants strongly emphasized the need for conducting CER for promising molecularly targeted therapies, developing and supporting an integrated clinical network for open-access resources, supporting bioinformatics and computer science research, providing training and education programs in CER, and conducting research in economic and decision modeling. PMID:23661804

  7. A new method to calculate the beam charge for an integrating current transformer

    SciTech Connect

    Wu Yuchi; Han Dan; Zhu Bin; Dong Kegong; Tan Fang; Gu Yuqiu

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.

  8. Graphic overlays in high-precision teleoperation: Current and future work at JPL

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Venema, Steven C.

    1989-01-01

    In space teleoperation additional problems arise, including signal transmission time delays. These can greatly reduce operator performance. Recent advances in graphics open new possibilities for addressing these and other problems. Currently a multi-camera system with normal 3-D TV and video graphics capabilities is being developed. Trained and untrained operators will be tested for high precision performance using two force reflecting hand controllers and a voice recognition system to control two robot arms and up to 5 movable stereo or non-stereo TV cameras. A number of new techniques of integrating TV and video graphics displays to improve operator training and performance in teleoperation and supervised automation are evaluated.

  9. Technologies for precision manufacture of current and future windows and domes

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Shorey, Aric

    2009-05-01

    The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.

  10. Precision high-value resistance scaling with a two-terminal cryogenic current comparator

    NASA Astrophysics Data System (ADS)

    Hernandez-Marquez, F. L.; Bierzychudek, M. E.; Jones, G. R.; Elmquist, R. E.

    2014-04-01

    We describe a cryogenic two-terminal high-resistance bridge and its application in precision resistance scaling from the quantized Hall resistance (QHR) at RH = RK/2 = 12 906.4035 Ω to decade resistance standards with values between 1 MΩ and 1 GΩ. The design minimizes lead resistance errors with multiterminal connections to the QHR device. A single variable voltage source and resistive ratio windings are utilized to achieve excellent dynamic stability, which is not readily obtained in low-current measurements with conventional cryogenic current comparators (CCCs). Prototypes of this bridge have been verified by a successful international comparison of high-resistance scaling using two-terminal CCCs in the national metrology institutes of Argentina, Mexico, and the United States.

  11. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  12. Mixed eccentricity diagnosis in Inverter-Fed Induction Motors via the Adaptive Slope Transform of transient stator currents

    NASA Astrophysics Data System (ADS)

    Pons-Llinares, J.; Antonino-Daviu, J.; Roger-Folch, J.; Moríñigo-Sotelo, D.; Duque-Pérez, O.

    2014-10-01

    This paper researches the detection of mixed eccentricity in Inverter-Fed Induction Motors. The classic FFT method cannot be applied when the stator current captured is not in steady state, which is very common in these motors. Therefore, a transform able to detect the time-frequency evolutions of the components present in the transient signal captured must be applied. In order to optimize the result, a method to calculate the theoretical time-frequency evolution of the stator current components is presented, using only the captured current. This previously obtained information enables the use of the proposed transform: the Adaptive Slope Transform, based on appropriately choosing the atom slope in each point analyzed. Thanks to its adaptive characteristics, the time-frequency evolution of the main components in a stator transient current is traced precisely and with high detail in the 2D time-frequency plot obtained. As a consequence, the time-frequency plane characteristic patterns produced by the Eccentricity Related Harmonics are easily and clearly identified enabling a reliable diagnosis. Moreover, the problem of quantifying the presence of the fault is solved presenting a simple and easy to apply method. The transform capabilities have been shown successfully diagnosing an Inverter-Fed Induction Motor with mixed eccentricity during a startup, a decrease in the assigned frequency, and a load variation with and without slip compensation.

  13. [High precision all-reflection Fourier transform imaging spectrometer spectral calibration using homogeneous broadening of the wave number model].

    PubMed

    Cui, De-qi; Liao, Ning-fang; Cao, Wei-liang; Tan, Bo-neng; Tian, Li-xun

    2011-07-01

    All-reflection Fourier transform imaging spectrometer (ARFTIS) is a novel imaging spectrometer. The specialty is not only high spectrum resolution, but also wide band and non-chromatism. It is good for remote sensing field of wide band imaging. Single spectrum calibration, average calibration and weighted average calibration are three common calibration methods. However, they all are limited. Because they cannot meet the demand on both convenience and high precision. In the present paper, the authors propose a novel model for spectrum calibration. It can work in high precision with single spectrum calibration. At the same time, the method is steady, and the average error is less than 5% with multi-bands calibration. It provides a convenient way for the non-professional calibration situation and outer simply calibration work. PMID:21942019

  14. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  15. Performance analyses for fast variable optical attenuator-based optical current transformer

    NASA Astrophysics Data System (ADS)

    Wei, Pu; Chen, Chen; Wang, Xuefeng; Shan, Xuekang; Sun, Xiaohan

    2014-06-01

    In this paper, we analyze the performance of the electro-optic hybrid optical current transformer (HOCT) proposed by ourselves for high-voltage metering and protective relaying application. The transformer makes use of a fast variable optical attenuator (FVOA) to modulate the lightwave according to the voltage from the primary current sensor, such as low-power current transformer (LPCT). In order to improve the performance of the transformer, we use an optic-electro feedback loop with the PID control algorithm to compensate the nonlinearity of the FVOA. The linearity and accuracy of the transformer were analyzed and tested. The results indicate that the nonlinearity of the FVOA is completely compensated by the loop and the ratio and phase errors are under 0.07% and 5 minutes respectively, under the working power of less than 1 mW power. The transformer can be immune to the polarization and wavelength drift, and also robust against the environmental interference.

  16. Transform methods for precision continuum and control models of flexible space structures

    NASA Technical Reports Server (NTRS)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  17. Precise measurement of the resolution in light microscopy using Fourier transform.

    PubMed

    Vainrub, Arnold

    2008-04-01

    The resolution power of light microscope has been accurately measured (+/-5%) by Fourier transform of various object images and further evaluation of the highest spatial frequency in Fourier spectrum. Any unknown shape plane object with a shape feature's size smaller than the resolution to be measured was shown to provide a reliable resolution test. This simple method gives a direct measurement of the resolution power as defined by Abbe [Archiv. F. Mikroskopische Anat. 9, 413 (1873)]. The results have been justified by comparison to a standard resolution measurement by using calibrated periodic line patterns. Notably, the approach is applicable in super-resolution light microscopy (transmission, reflection, and fluorescence), where calibrated resolution targets do not occur. It was conveniently implemented by using a compact disk as a test object and free IMAGEJ imaging software. PMID:18447570

  18. Precise measurement of the resolution in light microscopy using Fourier transform

    SciTech Connect

    Vainrub, Arnold

    2008-04-15

    The resolution power of light microscope has been accurately measured ({+-}5%) by Fourier transform of various object images and further evaluation of the highest spatial frequency in Fourier spectrum. Any unknown shape plane object with a shape feature's size smaller than the resolution to be measured was shown to provide a reliable resolution test. This simple method gives a direct measurement of the resolution power as defined by Abbe [Archiv. F. Mikroskopische Anat. 9, 413 (1873)]. The results have been justified by comparison to a standard resolution measurement by using calibrated periodic line patterns. Notably, the approach is applicable in super-resolution light microscopy (transmission, reflection, and fluorescence), where calibrated resolution targets do not occur. It was conveniently implemented by using a compact disk as a test object and free IMAGEJ imaging software.

  19. Transformation and Transformational Leadership: A Review of the Current and Relevant Literature for Academic Radiologists.

    PubMed

    Thomson, Norman B; Rawson, James V; Slade, Catherine P; Bledsoe, Martin

    2016-05-01

    With the US healthcare system on an unsustainable course, change is inevitable. Changes in the healthcare landscape impacting radiology include changing payment models, rapid adoption of digital technology, changes in radiology resident certifying exams, and the rise of consumerism in health care. Academic Radiology will be part of that change with none of its missions spared. What matters is not that change is coming but how Academic Radiology responds to change. Do we ignore, adapt, adopt others' practices, or lead change? Change management or transformation is a management skill set that can be learned and developed. Transformational leadership is a leadership style defined by the relationships between the leaders and the followers and the results they are able to achieve together to meet organizational goals. In this paper, we provide a review of key change management theories, as well as practical advice for self-reflection and development of leadership behaviors that promote effective change management and organizational transformation, particularly in a complex industry like Academic Radiology. PMID:26971043

  20. Drug policy in China. Transformations, current status and future prospects.

    PubMed

    Liu, X; Li, S

    1997-07-01

    The pharmaceutical sector in China developed rapidly with the implementation of the market-oriented economic reforms, which began at the end of the 1970s. From 1980 to 1988 the production of drugs quadrupled, subsequently increasing at an annual rate of 20%, and consumption of drugs correspondingly increased. The increase in drug production was largely a result of the increase in the number of pharmaceutical companies, particularly the number of private joint ventures, of which there were none in 1980 and 1900 in 1994, accounting for 37% of the total number of pharmaceutical companies. With the transformation of the Chinese pharmaceutical market, some new problems have appeared. The low efficiency of pharmaceutical companies, poor-quality drugs, unfair competition and misuse of drugs have been of great concern to the Chinese government. Some countermeasures have been taken, but the problems remain. Increases in the age of the Chinese population, increases in income and changes in disease patterns, together with membership of the World Trade Organization will promote the development of the pharmaceutical market. However, health-insurance reform, an essential drug list, the separation of drugs from services, and controls on the increases in hospital revenue will reduce the demand for drugs. Pharmaceutical companies in China face both opportunities and challenges. The trend in development of the pharmaceutical market depends on the outcome of the interaction between the factors that increase, and those that decrease, the demand for drugs. While the general trend is towards an increase in the demand for drugs and the expansion of the pharmaceutical market, downward fluctuation is inevitable if effective health reforms of cost control are introduced nationwide. PMID:10169383

  1. Elimination of the induced current error in magnetometers using superconducting flux transformers

    SciTech Connect

    Dummer, D.; Weyhmann, W.

    1987-10-01

    The changing magnetization of a sample in a superconducting flux transformer coupled magnetometer induces a current in the transformer which in turn changes the field at the sample. This ''image'' field and the error caused by it can be eliminated by sensing the current in the loop and nulling it by feedback through a mutual inductance. We have tested the technique on the superconducting transition of indium in an applied magnetic field and shown that the observed width of the transition is greatly reduced by maintaining zero current in the flux transformer.

  2. Determination of Vapor Pressure-Temperature Relationships of Current Use Pesticides and Transformation Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sub-cooled liquid vapor pressures of current use organochlorine and organophosphate pesticides (chlorothalonil, chlorpyrifos methyl, diazinon, fipronil) and selected transformation products (chlorpyrifos oxon, heptachlor epoxide, oxychlordane, 3,5,6-trichloro-2-pyridinol) were determined at multiple...

  3. CURRENT STATUS AND FUTURE DIRECTIONS OF PRECISION AGRICULTURE IN THE USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From the development of the first viable variable-rate fertilizer systems in the upper Midwest USA, precision agriculture is now about two decades old. In that time, new technologies have come into play, but the overall goal of using spatial information to target inputs more effectively remains the ...

  4. Current status and future directions of precision agriculture for aerial application in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision aerial application in the USA is less than a decade old since the development of the first variable-rate aerial application system. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management. Variable-rate aerial application provides...

  5. Transformer-rectifier flux pump using inductive current transfer and thermally controlled Nb(3)Sn cryotrons.

    PubMed

    Atherton, D L; Davies, R

    1979-10-01

    Transformer-rectifier flux pumps using thermally switched Nb(3)Sn cryotrons are being investigated as a loss make-up device for the proposed isochorically operated (sealed) superconducting magnets for the Canadian Maglev vehicle. High currents (1000 A) were obtained in an experimental flux pump using inductive current transfer and operating at 2 Hz. PMID:18699368

  6. Transforming nursing education: a review of current curricular practices in relation to Benner's latest work.

    PubMed

    Handwerker, Sarah M

    2012-01-01

    Current societal and healthcare system trends highlight the need to transform nursing education to prepare nurses capable of outstanding practice in the 21st century. Patricia Benner and colleagues urged nurse educators to transform their practice in the 2010 publication Educating Nurses, A Call to Radical Transformation. Frequently utilized pedagogical frameworks in nursing education include behaviorism and constructivism. Much of the structure and basis for instruction and evaluation can be found rooted in these philosophies. By first exploring both behaviorism and constructivism and then relating their use in nursing education to the call to transform, educators can be encourage to examine current practice and possibly modify aspects to include more rich experiential learning. PMID:23092804

  7. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  8. Precision of dosimetry-related measurements obtained on current multidetector computed tomography scanners

    SciTech Connect

    Mathieu, Kelsey B.; McNitt-Gray, Michael F.; Zhang, Di; Kim, Hyun J.; Cody, Dianna D.

    2010-08-15

    Purpose: Computed tomography (CT) intrascanner and interscanner variability has not been well characterized. Thus, the purpose of this study was to examine the within-run, between-run, and between-scanner precision of physical dosimetry-related measurements collected over the course of 1 yr on three different makes and models of multidetector row CT (MDCT) scanners. Methods: Physical measurements were collected using nine CT scanners (three scanners each of GE VCT, GE LightSpeed 16, and Siemens Sensation 64 CT). Measurements were made using various combinations of technical factors, including kVp, type of bowtie filter, and x-ray beam collimation, for several dosimetry-related quantities, including (a) free-in-air CT dose index (CTDI{sub 100,air}); (b) calculated half-value layers and quarter-value layers; and (c) weighted CT dose index (CTDI{sub w}) calculated from exposure measurements collected in both a 16 and 32 cm diameter CTDI phantom. Data collection was repeated at several different time intervals, ranging from seconds (for CTDI{sub 100,air} values) to weekly for 3 weeks and then quarterly or triannually for 1 yr. Precision of the data was quantified by the percent coefficient of variation (%CV). Results: The maximum relative precision error (maximum %CV value) across all dosimetry metrics, time periods, and scanners included in this study was 4.33%. The median observed %CV values for CTDI{sub 100,air} ranged from 0.05% to 0.19% over several seconds, 0.12%-0.52% over 1 week, and 0.58%-2.31% over 3-4 months. For CTDI{sub w} for a 16 and 32 cm CTDI phantom, respectively, the range of median %CVs was 0.38%-1.14% and 0.62%-1.23% in data gathered weekly for 3 weeks and 1.32%-2.79% and 0.84%-2.47% in data gathered quarterly or triannually for 1 yr. Conclusions: From a dosimetry perspective, the MDCT scanners tested in this study demonstrated a high degree of within-run, between-run, and between-scanner precision (with relative precision errors typically well

  9. Analytical Analysis and Case Study of Transient Behavior of Inrush Current in Power Transformer for Designing of Efficient Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Harmanpreet, Singh, Sukhwinder; Kumar, Ashok; Kaur, Parneet

    2010-11-01

    Stability & security are main aspects in electrical power systems. Transformer protection is major issue of concern to system operation. There are many mall-trip cases of transformer protection are caused by inrush current problems. The phenomenon of transformer inrush current has been discussed in many papers since 1958. In this paper analytical analysis of inrush current in a transformer switched on dc and ac supply has been done. This analysis will help in design aspects of circuit breakers for better performance.

  10. Impact of quasi-dc currents on three-phase distribution transformer installations

    SciTech Connect

    McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Schafer, D.A. )

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This smoking neutral'' results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  11. Electromagnetic characterization of current transformer with toroidal core under sinusoidal conditions

    NASA Astrophysics Data System (ADS)

    Koprivica, Branko; Milovanovic, Alenka

    2016-04-01

    The aim of this paper is to present a new procedure for the electromagnetic analysis of a measuring current transformer under sinusoidal conditions in its electrical and magnetic circuit. The influence of the magnetic hysteresis has been taken into account using the measured inverse magnetization curve and phase lag between the time waveforms of the magnetic field and the magnetic induction. Using the proposed analysis, ratio and phase errors of the current transformer have been calculated. The results of the calculation have been compared with experimental results and a good agreement has been found.

  12. Ultrashort pulse lasers for precise processing: overview on a current German research initiative

    NASA Astrophysics Data System (ADS)

    Nolte, S.

    2014-03-01

    Ultrashort laser pulses provide a powerful means of processing a wide variety of materials with highest precision and minimal damage. In order to exploit the full potential of this technology, the German Federal Ministry of Education and Research has launched an initiative with 20 Million EUR funding about two years ago. Within 9 joint research projects, different aspects from novel concepts for robust and powerful laser sources to reliable components with high damage thresholds and dynamic beam shaping and steering are investigated. Applications include eye surgery as well as the processing of semiconductors, carbon fiber reinforced plastics and metals. The paper provides an overview on the different projects and highlights first results.

  13. Site-specific recombination for precise and clean transgene integration in plant genome. In: Touraev, A., Citovsky, V., Tzfira, T., Editors of book. Plant Transformation Technologies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integr...

  14. The Current Status of Precision Superallowed Fermi {beta}-Decay Measurements at TRIUMF-ISAC

    SciTech Connect

    Leach, K. G.

    2011-06-28

    Recent experimental work at the TRIUMF-ISAC radioactive ion-beam facility in Vancouver Canada, has produced several new results related to precise experimental tests of fundamental symmetries. The nature of these programs range from campaigns using existing setups, to the development of new apparats to further the experimental reach. One of the primary goals has been the investigation of superallowed Fermi {beta}-decay, and its relation to Standard Model tests of CVC and CKM unitarity The extraction of experimental {beta}-decay ft values requires the measurement of three quantities: the half-life, the superallowed branching ratio, and the parent-daughter mass difference. TRIUMF-ISAC has the ability to measure each of these values with very high precision, using a gas-proportional-counter, the 8{pi}{gamma}-ray spectrometer, and TITAN, respectively. This report focuses on the recent experimental progress of the superallowed program, as well as highlighting some results from the successful halo-nucleus mass-measurement program at TITAN.

  15. High-Precision Half-Life Measurements for the Superallowed β+ Emitter 10C: Implications for Weak Scalar Currents

    NASA Astrophysics Data System (ADS)

    Dunlop, M. R.; Svensson, C. E.; Ball, G. C.; Grinyer, G. F.; Leslie, J. R.; Andreoiu, C.; Austin, R. A. E.; Ballast, T.; Bender, P. C.; Bildstein, V.; Diaz Varela, A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Laffoley, A. T.; MacLean, A. D.; Miller, D. M.; Mills, W. J.; Park, J.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Unsworth, C.; Valencik, A.; Wang, Z. M.; Zganjar, E. F.

    2016-04-01

    Precision measurements of superallowed Fermi β -decay transitions, particularly for the lightest superallowed emitters 10C and 14O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the 10C half-life is addressed through two high-precision half-life measurements, via γ -ray photopeak and β counting, that yield consistent results for the 10C half-life of T1 /2=19.2969 ±0.0074 s and T1 /2=19.3009 ±0.0017 s , respectively. The latter is the most precise superallowed β -decay half-life measurement reported to date and the first to achieve a relative precision below 10-4 . A fit to the world superallowed β -decay data including the 10C half-life measurements reported here yields bF=-0.0018 ±0.0021 (68% C.L.) for the Fierz interference term and CS/CV=+0.0009 ±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.

  16. High-Precision Half-Life Measurements for the Superallowed β^{+} Emitter ^{10}C: Implications for Weak Scalar Currents.

    PubMed

    Dunlop, M R; Svensson, C E; Ball, G C; Grinyer, G F; Leslie, J R; Andreoiu, C; Austin, R A E; Ballast, T; Bender, P C; Bildstein, V; Diaz Varela, A; Dunlop, R; Garnsworthy, A B; Garrett, P E; Hackman, G; Hadinia, B; Jamieson, D S; Laffoley, A T; MacLean, A D; Miller, D M; Mills, W J; Park, J; Radich, A J; Rajabali, M M; Rand, E T; Unsworth, C; Valencik, A; Wang, Z M; Zganjar, E F

    2016-04-29

    Precision measurements of superallowed Fermi β-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and β counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074  s and T_{1/2}=19.3009±0.0017  s, respectively. The latter is the most precise superallowed β-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed β-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos. PMID:27176517

  17. An integrating current transformer for fast extraction from the HIRFL-CSR main ring

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Xia; Zheng, Jian-Hua; Zhao, Tie-Cheng; Mao, Rui-Shi; Yin, Yan; Yuan, You-Jin; Yang, Jian-Cheng

    2010-01-01

    For any experiment that uses the beam of an accelerator, monitoring the beam intensity is always an important concern. It is particularly useful if one can continuously measure the beam current without disturbing the beam. We report here on test experiments for an Integrating Current Transformer (ICT) used to measure fast extraction beams from the HIRFL-CSR main ring (CSRm). The laboratory tests and beam intensity measurement results are presented in this paper. The influence of the kicker noise is also analyzed.

  18. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  19. Imaging the local forward current density of solar cells by dynamical precision contact thermography

    SciTech Connect

    Breitenstein, O.; Eberhardt, W.; Iwig, K.

    1994-12-31

    In spite of many techniques of measuring the local lifetime or the local short circuit current, no non-destructive technique has been available for imaging the local forward current density, which determines the open circuit voltage and the fill factor of solar cells. The authors demonstrate the application of a new analyzing technique, enabling non-destructive shunt hunting in forward direction. A periodical forward current is applied to the cell, and only the dynamical temperature response is measured in contact mode with a resolution below 10 {micro}K. Mechanical scanning of the T-sensor position yields a thermogram with a spatial resolution well below 1 mm and a current density resolution well below 1 mA/cm{sup 2}. First results show that both the edges of solar cells and their interior may have sites of a locally increased forward current. Hot spots measured in reverse bias direction only occasionally coincide with these warm spots measured in forward direction.

  20. Hilbert versus Concordia transform for three-phase machine stator current time-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Trajin, Baptiste; Chabert, Marie; Regnier, Jérémi; Faucher, Jean

    2009-11-01

    This paper deals with mechanical fault diagnosis in three-phase induction machines from stator current measurements. According to machine models, mechanical faults lead to amplitude and/or phase modulations of the measured stator current with possibly time varying carrier frequency. The modulation diagnosis requires a univocal definition of the instantaneous phase and amplitude. This is performed by associating a complex signal to the real measured one. For a convenient separate modulation diagnosis, the complex signal instantaneous phase and amplitude are expected to carry, respectively, information about the phase and amplitude modulations. The complex signal is classically obtained through the Hilbert transform. Under Bedrosian conditions, the so-called analytic signal allows a separate modulation diagnosis. However, mechanical faults may also produce fast modulations violating the Bedrosian conditions. This study proposes an alternative complex signal representation which takes advantage of the three stator current measurements available in a three-phase machine. From two stator current measurements, the Concordia transform builds a complex vector, the so-called space vector, which unconditionally allows separate modulation diagnosis. This paper applies and compares the Hilbert and Concordia transforms, theoretically and in case of simulated and experimental signals with various modulation frequency ranges.

  1. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    NASA Astrophysics Data System (ADS)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-12-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.

  2. Control and readout of current-induced magnetic flux quantization in a superconducting transformer

    NASA Astrophysics Data System (ADS)

    Kerner, C.; Hackens, B.; Golubović, D. S.; Poli, S.; Faniel, S.; Magnus, W.; Schoenmaker, W.; Bayot, V.; Maes, H.

    2009-02-01

    We demonstrate a simple and robust method for inducing and detecting changes of magnetic flux quantization in the absence of an externally applied magnetic field. In our device, an isolated ring is interconnected with two access loops via permalloy cores, forming a superconducting transformer. By applying and tuning a direct current at the first access loop, the number of flux quanta trapped in the isolated ring is modified without the aid of an external field. The flux state of the isolated ring is simply detected by recording the evolution of the critical current of the second access loop.

  3. Type of visual feedback during practice influences the precision of the acquired internal model of a complex visuo-motor transformation.

    PubMed

    Sülzenbrück, Sandra; Heuer, Herbert

    2011-01-01

    This study investigated the influence of the type of visual feedback during practice with a complex visuo-motor transformation of a sliding two-sided lever on the acquisition of an internal model of the transformation. Three groups of participants, who practised with different types of visual feedback, were compared with regard to movement accuracy, curvature and movement time. One group had continuous visual feedback during practice and two groups were presented terminal visual feedback, either only the end position of the movement or the end position together with the trajectory of the cursor. Results showed that continuous visual feedback led to more precise movement end positions during practice than terminal visual feedback, but to less precise movements during open-loop tests. This finding indicates that terminal visual feedback supports the development of a precise internal model of a new visuo-motor transformation. However, even terminal feedback of the cursor trajectory during practice did not result in an internal model, which includes appropriate curvatures of hand movements. STATEMENT OF RELEVANCE: This paper presents results on the influence of type of visual feedback on learning the complex motor skill of controlling a sliding lever. These findings contribute to the conceptual basis of optimised training procedures for the acquisition of sensori-motor skills required for the mastery of instruments utilised in minimally invasive surgery. PMID:21181587

  4. Analysis of misoperation of the differential current relay applied in a Y-Y-Y-{Delta} transformer

    SciTech Connect

    Wang, F.; Tang, J.

    1995-09-01

    Transformers play an important role in power transmission and distribution systems. For the operation of transformers, the differential current relay is the most important kind of relay in transformer protective relays in present power system.s In principle, a differential current relay may safely and quickly remove the internal fault occurring inside a transformer and in the feeder between the transformer and the busbar within the range of protection. When an external fault happens outside of the transformer, the relay should be reliably locked to ensure that the protected transformer can normally operate. However, because transformers have many different structures and winding connections forms, especially some specially winding-connected transformers, misconnection of the differential current relay may happen in some circumstances. When an external fault occurs, the relay connected in the incorrect way may cause misoperation of the relay, enlarging the range of the system fault. This paper illustrates a misoperation of a set of differential relays applied in a special multi-winding transformer, with triple-Y-connected windings and an additional delta-connected winding, due to the misconnection of the relays in field. An analysis of the difference of the equivalent circuits between the triple-Y-connected winding transformer and the triple-Y-connected winding with an additional delta-connected winding transformer is presented. Some measures to prevent those mistakes are discussed in this paper.

  5. Research on small signal detection of optical voltage/current transformer

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Guoqing; Cai, Xingguo; Guo, Zhizhong; Yu, Wenbin; Huo, Guangyu

    2013-08-01

    This paper researches the signal conditioning program of optical voltage/current transformer and the imbalance during the transmission of dual optical path, gives a brief introduction to the basic principle of optical voltage transformer based on electro-optic Pockels effect and optical current transformer based on Faraday Magnetic-optical Effect, and induces a general expression form of output light intensities This paper research on the signal modulation methods for the system: AC and DC modulations. What is more, the advantages and disadvantages of both modulations in the system will be analyzed. Considering the characteristics that the systematic noise and signal have the spectrum overlapping and that when there is any fault, the fact that in the small signal detection system the output SNR of AC modulation is better than that of DC modulation will be proved. For the parameter changes caused by the environment factors, the feedback control linked by the DSP is imported, it automatically adjusts the balance of the two branch parameters, acquires the measured component in the condition of the two branch unbalance parameters. Furthermore, this paper researches on the influence of imbalance of the dual optical path on the signal detection system. It analyzes the error characteristics due to different kinds of losses and to component matching disorders and other intrinsic factors and then put forward the method to calculate balancing factors by means of the RMS of 50Hz signal. The result proves that using this method can improve the output SNR of optical voltage/current transformer to some extent.

  6. The application of the model of coordinate S-transformation for stability analysis of datum points in high-precision GPS deformation monitoring networks

    NASA Astrophysics Data System (ADS)

    Guo, Jiming; Zhou, Mingduan; Wang, Chao; Mei, Lianhui

    2012-11-01

    Based on the model of coordinate S-transformation, a novel method of stability analysis of datum points in high-precision GPS deformation monitoring networks is proposed. The model of coordinate S-transformation is used to calculate seven transformation parameters in adjacent two measurement stages, in order to confirm the stability of stations by coordinate differences. To judge the stability of stations, in comparison to the traditional method by a fixed the same datum point, the "threshold approach" and "statistical test approach" have been developed and applied to evaluate the stability of datum points of a first-order GPS deformation monitoring network of a hydropower station located in the West Region of China.

  7. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  8. Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders.

    PubMed

    Hess, Gregory P; Fonseca, Eileen; Scott, Rachel; Fagerness, Jesen

    2015-01-01

    Pharmacogenetic/pharmacogenomic (PGx) testing is currently available for a wide range of health problems including cardiovascular disease, cancer, diabetes, autoimmune disorders, mental health disorders and infectious diseases. PGx contributes important information to the field of precision medicine by clarifying appropriate treatments for specific disease subtypes. Tangible benefits to patients including improved outcomes and reduced total health care costs have been observed. However, PGx-guided therapy faces many barriers to full integration into clinical practice and acceptance by stakeholders, whether practitioner, patient or payer. Each stakeholder has a unique perspective on the role of PGx testing, although all are similarly challenged with demonstrating or appraising its cost-to-benefit value. Coverage by insurers is a critical step in achieving widespread adoption of PGx testing. The acceleration of adoption of precision medicine in general and for PGx testing in particular will be determined by how quickly robust evidence can be accumulated that shows a return on investment for payers in terms of real dollars, for clinicians in terms of patient clinical responses, and for patients in terms of economic, health and quality of life outcomes. Trends in PGx testing utilization and uptake by payers in real-world practice are discussed; the role of pharmacoeconomics in assessing cost-effectiveness is highlighted using a case study in psychiatric care, and several issues that will affect adoption of PGx testing in the United States (US) over the next few years are reviewed. PMID:26030725

  9. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  10. Controlling precise magnetic field configuration around electron cyclotron resonance zone for enhancing plasma parameters and beam current

    SciTech Connect

    Yano, Keisuke Kurisu, Yosuke; Nozaki, Dai; Kimura, Daiju; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    Multi-charged ion source which has wide operating conditions is required in various application fields. We have constructed tandem type ECR ion source (ECRIS); one of the features of its main stage is an additional coil for controlling magnetic field distribution around the mirror bottom precisely. Here the effect of magnetic field variation caused by the additional coil is experimentally considered in terms of plasma parameters and beam current as the first investigation of the main stage plasma. Furthermore, behavior of magnetic lines of force flowing from the ECR zone is calculated, and is compared with measurement results aiming for better understanding of interrelationship between plasma production and ion beam generation on the ECRIS.

  11. Curvilinear parabolic approximation for surface wave transformation with wave current interaction

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.

    2005-04-01

    The direct coordinate transformation method, which only transforms independent variables and retains Cartesian dependent variables, may not be an appropriate method for the purpose of simplifying the curvilinear parabolic approximation of the vector form of the wave-current equation given by Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. In this paper, the covariant-contravariant tensor method is used for the curvilinear parabolic approximation. We use the covariant components of the wave number vector and contravariant components of the current velocity vector so that the derivation of the curvilinear equation closely follows the higher-order approximation in rectangular Cartesian coordinates in Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. The resulting curvilinear equation can be easily implemented using the existing model structure and numerical schemes adopted in the Cartesian parabolic wave model [J.T. Kirby, R.A. Dalrymple, F. Shi, Combined Refraction/Diffraction Model REF/DIF 1, Version 2.6. Documentation and User's Manual, Research Report, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, 2004]. Several examples of wave simulations in curvilinear coordinate systems, including a case with wave-current interaction, are shown with comparisons to theoretical solutions or measurement data.

  12. Precision improvement of chlorophyll-a remote sensing inversion by data transformation in turbidity water under low concentration: a case of Taihu Lake, China

    NASA Astrophysics Data System (ADS)

    Wei, Yuchun; Cheng, Chunmei; Wang, Lei; Zhang, Jing

    2010-10-01

    Estimation and monitoring Chlorophyll-a concentration (CHLA), especially low CHLA in lake using remote sensing data is very important for early warning of blue-green algal bloom. In spite of better overall goodness fit in three-band CHLA inversion model of turbidity water proposed by Gitelson, the estimation errors of samples with low CHLA are often higher, and this kind of error has great influence on the evaluation of lake nutritional status. In this paper, two methods of data transformation-logarithm of CHLA and continuum removal of spectrum-were used to decrease model error. Data set includes the routine monitoring sampling data collected from June to September, 2004 in Taihu Lake and field data in March, 2010 in Meiliangwan of Taihu Lake. Water surface spectrum data were measured in situ by ASD FieldPro. Comparative analysis showed that both logarithm transformation (LT) and continuum removal transformation (CRT) can increase model's accuracy. For all sample data, the average relative accuracy of model built by data after LT increased by 30%, and that of model built by data after LT and CRT increased by 35%. For the samples with CHLA lower than 50μg/L, the average relative error decreased from 76% of model built by data without transformation to 36% of LT and 27% of LT and CRT. The paper concluded that data transform is a simple and effective method to increase precision of CHLA remote sensing inversion.

  13. NIST measurement services: Calibration service for current transformers. Special pub. (Final)

    SciTech Connect

    Ramboz, J.D.; Petersons, O.

    1991-06-01

    A calibration service at the National Institute of Standards and Technology (NIST) for laboratory-quality current transformers is described. The service provides measurements of the current ratio and the phase angle between the secondary and primary currents. In the Report of Calibration or Test, the measured ratio is reported as the product of the marked (nominal) ratio and the ratio correction factor. The measured phase angle is reported directly in milliradians (mrad) and is positive if the secondary current leads the primary. The range of primary-to-secondary current ratios that can be measured with the equipment at NIST extends from 0.25 A:5 A to 12000 A:5 A. The maximum current at the present time is about 20000 A. Estimates of calibration uncertainties, including their sources, are given and quality control procedures are described. For routine calibrations, uncertainties of + or - 0.01% for the ratio and + or - 0.1 mrad for the phase angle are quoted. However, lower uncertainties--to + or - 0.0005% or 5 parts per million (ppm) for ratio and + or - 0.005 mrad or 5 microrads for phase angle--are possible under the provisions of Special Tests.

  14. High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael G.; Fowler, William E.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Rogowski, Sonrisa T.; Sharpe, Robin A.; McDaniel, Dillon H.; Olson, Craig L.; Porter, John L.; Struve, Kenneth W.; Stygar, William A.; Woodworth, Joseph R.

    2009-05-01

    The linear transformer driver (LTD) is a new method for constructing high current, high-voltage pulsed accelerators. The salient feature of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. Sandia National Laboratories are actively pursuing the development of a new class of accelerator based on the LTD technology. Presently, the high current LTD experimental research is concentrated on two aspects: first, to study the repetition rate capabilities, reliability, reproducibility of the output pulses, switch prefires, jitter, electrical power and energy efficiency, and lifetime measurements of the cavity active components; second, to study how a multicavity linear array performs in a voltage adder configuration relative to current transmission, energy and power addition, and wall plug to output pulse electrical efficiency. Here we report the repetition rate and lifetime studies performed in the Sandia High Current LTD Laboratory. We first utilized the prototype ˜0.4-MA, LTD I cavity which could be reliably operated up to ±90-kV capacitor charging. Later we obtained an improved 0.5-MA, LTD II version that can be operated at ±100kV maximum charging voltage. The experimental results presented here were obtained with both cavities and pertain to evaluating the maximum achievable repetition rate and LTD cavity performance. The voltage adder experiments with a series of double sized cavities (1 MA, ±100kV) will be reported in future publications.

  15. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.

    SciTech Connect

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. , Tomsk, Russia); Kim, Alexandre A. , Tomsk, RUSSIA); Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-04-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  16. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  17. An investigation of electrical current induced phase transformations in the NiPtSi/polysilicon system

    NASA Astrophysics Data System (ADS)

    Kim, Deok-kee; Domenicucci, Anthony; Iyer, Subramanian S.

    2008-04-01

    We studied phase transformations and microstructural changes of NiPtSi/polysilicon fuses programmed with three different current densities (under, optimal, and over programming). Electromigration of NiPt toward the anode occurred in all three cases studied. Achieving high resistance after the fuse programming strongly depends on the kinetics of the electromigration and dopant diffusion processes which operate during the fuse blow. A thick silicide region was formed after electrically programmable fuse programming by the reaction of the electromigrated NiPt with the polysilicon layer underneath. The low tails of the underprogrammed fuses seemed to result from the incomplete electromigration and the incomplete dopant depletion due to the insufficient programming current density, while the depletion of the implanted dopants due to the sufficiently elevated temperature seemed to make the postresistance of the optimally programmed fuse higher. In the overprogrammed fuse, the newly formed silicide seemed to have further electromigrated due to the sufficiently high temperature during programming, which caused voids and hillocks. The high temperature caused melting of the polysilicon and the surrounding nitride layer, and their reaction as well. The conduction paths created by the unremoved silicide in fuse link caused the postprogramming resistance of the overprogrammed fuse to be low.

  18. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    SciTech Connect

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2009-10-15

    We derive the leading two-pion-exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  19. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

    PubMed

    Alam, Mahtab; Truong, Dennis Q; Khadka, Niranjan; Bikson, Marom

    2016-06-21

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability-enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm(2)) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring's diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation ([Formula: see text] · (σ [Formula: see text] V)  =  0) was solved for cortical electric field, which was interpreted using physiological assumptions to correlate with stimulation and modulation. Cortical field intensity was predicted to increase with increasing ring diameter at the cost of focality while uni-directionality decreased. Additional surrounding ring electrodes increased uni-directionality while lowering cortical field intensity and increasing focality; though, this effect saturated and more than 4 surround electrode would not be justified. Using a range of concentric HD-tDCS montages, we showed that cortical region of influence can be

  20. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  1. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class. PMID:23902112

  2. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  3. Application of Hilbert-Huang transform for defect recognition in pulsed eddy current testing

    NASA Astrophysics Data System (ADS)

    Liu, Baoling; Huang, Pingjie; Hou, Dibo; Chen, Xiao; Zhang, Guangxin

    2015-07-01

    Defect recognition plays an important role in the structure integrity and health monitor of in-service equipment. However, it is difficult to recognise deep-layer defect or small-size defect in conductive structure during pulsed eddy current (PEC) testing. Aiming at the issue, this article proposes a method based on Hilbert-Huang transform which consists of two modules: data processing and defect recognition. In the data processing module, the PEC response signal is decomposed into a few of intrinsic mode functions (IMFs) using ensemble empirical mode decomposition method. The IMFs whose variance contribution rates are bigger than 1% are chosen to reconstruct signal in order to remove noise. In the defect recognition module, the features based on specific frequency components of marginal spectrum (MS) of the reconstructed signals are extracted to discriminate those defects in surface and subsurface. Furthermore, the normalisation MS energy ratio is proposed to quantify defects which cannot be distinguished using peak value in time domain. Experiments show that the proposed method can achieve better de-noising effect and defect evaluation, which contributes to the recognition of those complicated defects such as deep-layered and small-sized defect.

  4. Impact of quasi-dc currents on three-phase distribution transformer installations. Power Systems Technology Program

    SciTech Connect

    McConnell, B.W.; Barnes, P.R.; Tesche, F.M.; Schafer, D.A.

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This ``smoking neutral`` results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  5. Transient analysis and control of bias magnetic state in the transformer of on-line pulse-width-modulation switching full bridge direct current-direct current converter

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxin; Guo, Youguang; Zhu, Jianguo; Wei Lin, Zhi

    2012-04-01

    This paper presents a finite element analysis (FEA) based method for analyzing and controlling the bias magnetic state of the transformer of a pulse-width-modulation (PWM) switching full bridge dc-dc converter. A field-circuit indirect coupling method for predicting the transient bias magnetic state is introduced first. To increase flexibility of the proposed method, a novel transformer model which can address not only its basic input-output characteristic, but also the nonlinear magnetizing inductance, is proposed. Both the asymmetric characteristic and the variable laws of the current flowing through the two secondary windings during the period of PWM switching-off state are highlighted. Finally, the peak magnetizing current controlled method based on the on-line magnetizing current computation is introduced. Analysis results show that this method can address the magnetic saturation at winding ends, and hence many previous difficulties, such as the start-up process and asymmetry of power electronics, can be easily controlled.

  6. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  7. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  8. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    NASA Astrophysics Data System (ADS)

    Steig, E. J.; Gkinis, V.; Schauer, A. J.; Schoenemann, S. W.; Samek, K.; Hoffnagle, J.; Dennis, K. J.; Tan, S. M.

    2014-08-01

    High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O), a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS). We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS) with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  9. Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier

    SciTech Connect

    Hiemstra, D.M.

    1999-12-01

    The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.

  10. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  11. Current status and perspectives in atomic force microscopy-based identification of cellular transformation

    PubMed Central

    Dong, Chenbo; Hu, Xiao; Dinu, Cerasela Zoica

    2016-01-01

    Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, as well as how the transforming potential of a tissue from a benign to a cancerous one is related to the dynamics of both the cell and its surroundings, holds promise for the development of targeted translational therapies. This review provides a comprehensive overview of atomic force microscopy-based technology and its applications for identification of cellular progression to a cancerous phenotype. The review also offers insights into the advancements that are required for the next user-controlled tool to allow for the identification of early cell transformation and thus potentially lead to improved therapeutic outcomes. PMID:27274238

  12. SUPPLEMENTARY COMPARISON: Final report EURAMET.EM-S30 on EURAMET Project 1081: Supplementary comparison of measurements of current transformers

    NASA Astrophysics Data System (ADS)

    Dimitrov, Emil; Kumanova, Ginka; Styblíková, Renata; Draxler, Karel; Dierikx, Erik

    2010-01-01

    The supplementary comparison was carried out between CMI, Czech Republic and BIM, NCM Bulgaria in the field of current transformer ratio measurements. The current errors and phase displacement of the traveling standards, current transformers: Tettex 4720, CLA 2.2, CLA 2.2, CLA 3.2, CLB 10, I 523 were determined at 50 Hz, 5 VA burden at unity power factor at ratios: primary (4000, 2000, 1000, 500, 100, 5, 1 and 0.5) A/secondary 5 A. Both participants used their own standard measurement method. The obtained results show good agreement for all of the current ratio error measurements (except for the measurements at 2 kA) and for the current phase displacement measurements (the agreement on several measurement points is marginal). The aim of the comparison was to demonstrate the improvement and extension of the calibration and measurement capabilities (CMCs) of BIM in this working field and to support the improved CMCs in Appendix C of the CIPM Mutual Recognition Arrangement (MRA). Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  13. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    NASA Astrophysics Data System (ADS)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  14. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  15. The coordinate transformation method for design of polarizers on HL-2A electron cyclotron resonance heating and current drive systems

    SciTech Connect

    Xia, D. H.; Huang, M.; Zhou, J.; Rao, J.; Zhuang, G.

    2013-10-15

    Polarizers are widely used to change the polarization of millimeter waves on the electron cyclotron resonance heating and current drive (ECRH and CD) systems. A new method based on the coordinate transformation and the Fourier expansion (the so-called C-method) has been developed for design of polarizers on the HL-2A ECRH and CD systems. This method transforms the grating problem to an eigenvalue problem, making it easy and clear to understand and solve. The comparison between the C-method, the integral method, and the low power test results is presented. It indicates that the C-method can be considered as a rigorous numerical method for the design of polarizers. Finally, two polarizers were designed based on the C-method which can be used together to achieve almost arbitrary polarization.

  16. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    NASA Astrophysics Data System (ADS)

    Pervikov, A. V.

    2016-06-01

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 107 A/cm2 results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  17. Wavelet transform-based fault diagnosis and line selection method of small current grounding system

    NASA Astrophysics Data System (ADS)

    Yang, Ni; Zhang, Shuqing; Zhang, Liguo; Zhang, Kexin; Sun, Lingyun

    2008-12-01

    Small current grounding system is the system that the neutral point doesn't ground or grounds across the arc suppressing coils, which has been applied commonly in distribution system of many countries. As the grounding fault occurs, current is the one caused by capacity of circuit to ground only and it is rather small. The status of fault is complexity, e.g., the electromagnet interferes together with the amplified impact of zero-order loops to high-order singularity waves and various temporary variables. All these result in the lower ratio of the fault element signal to noise caused by zero-order current. In this paper, the position of signal singularity and the magnitude of the singularity degree are analyzed based on the variable focus character of wavelet, and the time fault occurs is then determined. The series db wavelet with close sustain is adopted, and the line selection is according to the zero-order voltage of the generatrix and the current of various outlet line. It is proved by the experiment that the fault circuit diagnosis method based on wavelet analysis to the character of temporary status of single-phase grounding fault plays an important role to a finer line selection.

  18. First results and current development of SpIOMM: an imaging Fourier transform spectrometer for astronomy

    NASA Astrophysics Data System (ADS)

    Bernier, A.-P.; Grandmont, F.; Rochon, J.-F.; Charlebois, M.; Drissen, L.

    2006-06-01

    We present an overview of SpIOMM, an Imaging Fourier Transform Spectrometer (IFTS) for astronomy developed at University Laval in collaboration with ABB, INO and the Canadian Space Agency. SpIOMM, attached to the 1.6 meter (f/8) telescope at the Observatoire du mont Megantic in Quebec. It is a Michelson-type interferometer capable of obtaining the visible spectrum (from 350 nm to 900 nm) of every light source within its 12 arcminute circular field of view. This design will allow the correction of variable sky transmission. It consists of a dual output port and the total throughput is exploited by two CCDs used as detectors. We present the concept and design of this unique instrument. A metrology system combined with a dynamic alignment assures a good sampling and mirror alignment during the entire acquisition sequence. This particular servo control is explained and demonstrated and its capabilities and performance are discussed. We introduce the use of specific bandpass filters centered on the most important groups of emission lines which, when combined with spectral folding algorithms, allows us to reach high spectral resolution (R = 25 000, or 1 cm -1). Astronomical data collected by SpIOMM in 2004-2005 are also presented.

  19. Real space mapping of oxygen vacancy diffusion and electrochemical transformations by hysteretic current reversal curve measurements

    DOEpatents

    Kalinin, Sergei V.; Balke, Nina; Borisevich, Albina Y.; Jesse, Stephen; Maksymovych, Petro; Kim, Yunseok; Strelcov, Evgheni

    2014-06-10

    An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.

  20. Study of a piezoelectric transformer-based DC/DC converter with a cooling system and current-doubler rectifier

    NASA Astrophysics Data System (ADS)

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Costa, Francois; Wu, Wen-Jong; Lee, Chuih-Kung

    2013-09-01

    The objective of this study was to increase the output current and power in a piezoelectric transformer (PT)-based DC/DC converter by using a cooling system. It is known that the output current of a PT is limited by temperature build-up because of losses, especially when driving at high vibration velocity. Although connecting different inductive circuits at the PT secondary terminal can increase the output current, the root cause of the temperature build-up problem has not yet been solved. This paper presents a study of a PT with cooling system in a DC/DC converter with a commonly used full-bridge rectifier and current-doubler rectifier. The advantages and disadvantages of the proposed technique were investigated. A theoretical-phenomenological model was developed to explain the relationship between the losses and the temperature rise. It will be shown that the vibration velocity as well as heat generation increases the losses. In our design, the maximum output current capacity can increase by 100% when the temperature of operation of the PT is kept below 55 ° C. The study comprises a theoretical part and experimental proof-of-concept demonstration of the proposed design method.

  1. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    NASA Astrophysics Data System (ADS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  2. Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing

    PubMed Central

    Barreiro, Amelia; Börrnert, Felix; Avdoshenko, Stanislav M.; Rellinghaus, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H.; Vandersypen, Lieven M. K.

    2013-01-01

    We shed light on the catalyst-free growth of graphene from amorphous carbon (a–C) by current-induced annealing by witnessing the mechanism both with in-situ transmission electron microscopy and with molecular dynamics simulations. Both in experiment and in simulation, we observe that small a–C clusters on top of a graphene substrate rearrange and crystallize into graphene patches. The process is aided by the high temperatures involved and by the van der Waals interactions with the substrate. Furthermore, in the presence of a–C, graphene can grow from the borders of holes and form a seamless graphene sheet, a novel finding that has not been reported before and that is reproduced by the simulations as well. These findings open up new avenues for bottom-up engineering of graphene-based devices.

  3. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz. PMID:18232363

  4. Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress

    NASA Astrophysics Data System (ADS)

    Yi, H. L.

    2014-09-01

    Novel alloys with high aluminum addition, so-called δ-transformation-induced plasticity (TRIP), have been developed recently for the third generation of advanced high strength steels for automotive applications, which are promising owing to the potential weldability as well as the combination of strength and ductility. In addition, the high aluminum addition results in a density reduction of approximately 5% in these δ-TRIP alloys without sacrificing the Young's modulus in uniaxial tensile tests. The origin of δ-TRIP concept is introduced first with a review of the published work on δ-TRIP alloys. This review will include methodology for retention of δ-ferrite in casting, rolling and welding conditions, microstructure evolution by austempering, as well as microstructures-properties relationship involving the roles of blocky and lath retained austenite. In addition, currently unresolved problems will be discussed regarding the fundamentals of materials design, automotive application, and industrial manufacturing.

  5. Superallowed 0+→0+ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.; Towner, I. S.

    2009-05-01

    A new critical survey is presented of all half-life, decay-energy, and branching-ratio measurements related to 20 superallowed 0+→0+β decays. Compared with our last review, there are numerous improvements: First, we have added 27 recently published measurements and eliminated 9 references, either because they have been superseded by much more precise modern results or because there are now reasons to consider them fatally flawed; of particular importance, the new data include a number of high-precision Penning-trap measurements of decay energies. Second, we have used the recently improved isospin symmetry-breaking corrections, which were motivated by these new Penning-trap results. Third, our calculation of the statistical rate function f now accounts for possible excitation in the daughter atom, a small effect but one that merits inclusion at the present level of experimental precision. Finally, we have re-examined the systematic uncertainty associated with the isospin symmetry-breaking corrections by evaluating the radial-overlap correction using Hartree-Fock radial wave functions and comparing the results with our earlier calculations, which used Saxon-Woods wave functions; the provision for systematic uncertainty has been changed as a consequence. The new “corrected” Ft values are impressively constant and their average, when combined with the muon lifetime, yields the up-down quark-mixing element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Vud=0.97425±0.00022. The unitarity test on the top row of the matrix becomes |Vud|2+|Vus|2+|Vub|2=0.99995±0.00061. Both Vud and the unitarity sum have significantly reduced uncertainties compared with our previous survey, although the new value of Vud is statistically consistent with the old one. From these data we also set limits on the possible existence of scalar interactions, right-hand currents, and extra Z bosons. Finally, we discuss the priorities for future theoretical and experimental work with the goal

  6. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  7. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI.

    SciTech Connect

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. , Tomsk, Russia); Kim, Alexandre A. , Tomsk, Russia); Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-09-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  8. Use of the Syrian hamster embryo cell transformation assay for carcinogenicity prediction of chemical currently being tested by the National Toxicology Program in rodent bioassays

    SciTech Connect

    Kerckaert, G.A.; LeBoeuf, R.A.; Isfort, R.J.; Brauninger, R.

    1996-10-01

    The Syrian hamster embryo (SHE) cell transformation assay was used to predict the carcinogenicity of 26 chemicals currently being tested in the rodent bioassay by the National Toxicology Program as part of its program titled {open_quotes}Strategies for Predicting Chemical Carcinogenesis in Rodents.{close_quotes} Of these 26 chemicals, 17 were found to be positive in the SHE cell transformation assay while 9 were negative. Carcinogenicity predictions were made for these chemicals, based upon the SHE cell transformation assay results. Our predictions will be compared with the rodent bioassay results as they become available. 11 refs., 2 tabs.

  9. Transformation of a series of saturated isomeric steroidal diols by Aspergillus tamarii KITA reveals a precise stereochemical requirement for entrance into the lactonization pathway.

    PubMed

    Hunter, A Christy; Collins, Catherine; Dodd, Howard T; Dedi, Cinzia; Koussoroplis, Salomé-Juliette

    2010-11-01

    Four isomers of 5α-androstan-3,17-diol have been transformed by the filamentous fungus Aspergillus tamarii, an organism which has the ability to convert progesterone to testololactone in high yield through an endogenous four step enzymatic pathway. The only diol handled within the lactonization pathway was 5α-androstan-3α,17β-diol which, uniquely underwent oxidation of the 17β-alcohol to the 17-ketone prior to its Baeyer-Villiger oxidation and the subsequent production of 3α-hydroxy-17a-oxa-D-homo-5α-androstan-17-one. This demonstrated highly specific stereochemical requirements of the 17β-hydroxysteroid dehydrogenase for oxidation of this specific steroidal diol to occur. In contrast, the other three diols were transformed within the hydroxylation pathway resulting in functionalization at C-11β. Only 5α-androstan-3β,17α-diol could bind to the hydroxylase in multiple binding modes undergoing monohydroxylation in 6β and 7β positions. Evidence from this study has indicated that hydroxylation of saturated steroidal lactones may occur following binding of ring-D in its open form in which an α-alcohol is generated with close spatial parity to the C-17α hydroxyl position. All metabolites were isolated by column chromatography and were identified by (1)H, (13)C NMR and DEPT analysis and further characterized using infra-red, elemental analysis and accurate mass measurement. PMID:20832471

  10. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  11. SUPPLEMENTARY COMPARISON: Final report EUROMET.EM-S11 on EUROMET Projects 473 and 612: Comparison of the measurement of current transformers (CTs)

    NASA Astrophysics Data System (ADS)

    Harmon, Stuart; Henderson, Lesley

    2009-01-01

    The Euromet comparison entitled 'Comparison of the measurement of current transformers' was carried out over two projects with NPL as pilot laboratory and thirteen other participating European National Measurement Institutes (NMI). Current transformer measurements made by the participating NMIs support a large number of measurements made in the electrical generation, supply and distribution industries in their own countries. They also support many transformer manufacturers who rely on national standards as a source of traceability. The current (ratio) errors and phase displacement of each ratio of the uncompensated current transformer transfer standard were determined at a defined frequency, burden and power factor, using each participant's standard measuring method and equipment. The results supplied by each participant generally show good agreement but with a few exceptions over the whole range of measured values. Deviations from the comparison reference value were mostly within the quoted uncertainties, but again with a few exceptions. A summary of outlying results compared to laboratories' declared Calibration and Measurement Capabilities (CMC) is given in the conclusion. In several cases participants have been making current transformer measurements with new measurement systems and techniques, and in one case for the first time; therefore a large amount of experience in the measurement and interpretation of results has been obtained from this comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. RAPID COMMUNICATION: Large improvement in high-field critical current densities of Nb3Al conductors by the transformation-heat-based up-quenching method

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Banno, N.; Fukuzaki, T.; Wada, H.

    2000-10-01

    The bcc supersaturated solid solution Nb(Al)ss obtained by rapid heating and quenching of a multifilamentary Nb/Al composite wire has shown a crystal structure change from a disordered to an ordered structure before transforming to the A15 Nb3Al phase. Such ordering of the bcc phase seems to be responsible for the A15 phase stacking faults that depress the critical temperature (Tc), the upper critical magnetic field (Bc2) and, hence, the critical current density (Jc) of Nb3Al in high fields. A heat treatment around 1000 °C, higher than conventional transformation temperatures by about 200 °C, suppresses the ordering and yields a new phenomenon termed the `transformation-heat-based up-quenching' (TRUQ). TRUQ is characterized by the self-heating of the bcc phase by the transformation heat, which propagates through the whole length of a composite wire and transforms it to Nb3Al. A subsequent annealing at 800 °C enhances the long-range ordering of the Nb3Al phase and drastically improves the high-field critical current densities of the Nb3Al conductors.

  13. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  14. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  15. Effects of aging on the structural, mechanical, and thermal properties of the silicone rubber current transformer insulation bushing for a 500 kV substation.

    PubMed

    Wang, Zhigao; Zhang, Xinghai; Wang, Fangqiang; Lan, Xinsheng; Zhou, Yiqian

    2016-01-01

    In order to analyze the cracking and aging reason of the silicone rubber current transformer (CT) insulation bushing used for 8 years from a 500 kV alternating current substation, characteristics including Fourier transform infrared (FTIR) spectroscopy, mechanical properties analysis, hardness, and thermo gravimetric analysis have been carried out. The FTIR results indicated that the external surface of the silicone rubber CT insulation bushing suffered from more serious aging than the internal part, fracture of side chain Si-C bond was much more than the backbone. Mechanical properties and thermal stability results illustrated that the main aging reasons were the breakage of side chain Si-C bond and the excessive cross-linking reaction of the backbone. This study can provide valuable basis for evaluating degradation mechanism and aging state of the silicone rubber insulation bushing in electric power field. PMID:27390631

  16. Recharging of the ohmic-heating transformer by means of lower-hybrid current drive in the ASDEX tokamak

    NASA Astrophysics Data System (ADS)

    Leuterer, F.; Eckhartt, D.; Söldner, F.; Becker, G.; Bernhardi, K.; Brambilla, M.; Brinkschulte, H.; Derfler, H.; Ditte, U.; Eberhagen, A.; Fussman, G.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Kissel, S.; Klüber, O.; Kornherr, M.; Lisitano, G.; Magne, R.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Münich, M.; Murmann, H.; Poschenrieder, W.; Rapp, H.; Ryter, F.; Schmitter, K. H.; Schneider, F.; Siller, G.; Smeulders, P.; Steuer, K. H.; Vien, T.; Wagner, F.; Woyna, F. V.; Zouhar, M.

    1985-07-01

    Recharging of the Ohmic-heating transformer of a tokamak by means of lower-hybrid waves is demonstrated experimentally in ASDEX. The results are analyzed on the basis of a simple transformer circuit. A recharging efficiency is defined and found to depend on rf power, plasma density, and plasma resistivity modified by the applied rf power. Up to now, we achieved in our recharging experiments in ASDEX a flux swing of FİOHMdt=0.24 V sec, at an rf power of PRF=690 kW, with a pulse duration of 1 sec, while maintaining a plasma with n¯e=4×1012 cm-3 and Ip=290 kA.

  17. Current Geoid Studies in Turkey and the need for Local High-Precision Astrogeodetic Geoid Determination Using CCD/Zenith Cameras

    NASA Astrophysics Data System (ADS)

    Halicioglu, K.; Ozener, H.; Deniz, R.

    2008-12-01

    During the last few years, the development of CCD image sensors at a reasonable price made the instruments of astrogeodetic observation possible to use for local high-precision astrogeodetic geoid and gravity field determination. Generally, the geoids of most European countries are in centimeter level accuracy except in mountainous regions. Turkish geoid also has accuracy problems in mountainous regions especially in the eastern parts of Anatolia and around boundaries of Marmara Sea. Studies performed in Europe in last decade indicate that, to reach the centimeter level accuracy in mountainous areas, astrogeodetic vertical deflections are more effective than gravimetric and other geoid determination methods. Turkey had started the geoid determination studies in 1976 with 13 absolute gravity points. Turkish National Fundamental Gravity Network (TNFGRN), densificated with 1st and 2nd order 66245 gravity points in Potsdam Gravity datum. TG03 has a final internal precision of 1 cm at the observation points and the external accuracy is within decimeter level. High precision in astrogeodetic geoid determination techniques are scarcely published by some universities around Europe using CCD/Zenith cameras. There are various zenith camera systems developed as state-of- art instrumentations using both CCD sensors for imaging stellar objects and GPS receivers for ellipsoidal coordinates, in order to determine the direction of the plumb line. These systems are designed and tested where conventional techniques are not sufficient. In this study, increasing accuracy of Turkish geoid is subjected to using CCD/Zenith cameras in the province of Istanbul. The planning test area is going to use the data available on the GPS/Leveling geoid of Istanbul and produce astrogeodetic data on a profile starting from the north shore of Marmara region, passing through the Marmara Sea to the south. The astrogeodetic instruments will be designed for engineering studies that are needed to determine

  18. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  19. Precision physics at LHC

    SciTech Connect

    Hinchliffe, I.

    1997-05-01

    In this talk the author gives a brief survey of some physics topics that will be addressed by the Large Hadron Collider currently under construction at CERN. Instead of discussing the reach of this machine for new physics, the author gives examples of the types of precision measurements that might be made if new physics is discovered.

  20. Laser and electrical current induced phase transformation of In2Se3 semiconductor thin film on Si(111)

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Yuan; Shamberger, Patrick J.; Yitamben, Esmeralda N.; Beck, Kenneth M.; Joly, Alan G.; Olmstead, Marjorie A.; Ohuchi, Fumio S.

    2008-10-01

    Phase transformation of thin film (˜30 nm)In2Se3/Si(111) (amorphous→crystalline) was performed by resistive annealing and the reverse transformation (crystalline→amorphous) was performed by nanosecond laser annealing. As an intrinsic-vacancy, binary chalcogenide semiconductor, In2Se3 is of interest for non-volatile phase-change memory. Amorphous In x Se y was deposited at room temperature on Si(111) after pre-deposition of a crystalline In2Se3 buffer layer (0.64 nm). Upon resistive annealing to 380°C, the film was transformed into a γ-In2Se3 single crystal with its {0001} planes parallel to the Si(111) substrate and (11bar{2}0) parallel to Si (1bar{1}0) , as evidenced by scanning tunneling microscopy, low energy electron diffraction, and X-ray diffraction. Laser annealing with 20-ns pulses (0.1 millijoules/pulse, fluence≤50 mJ/cm2) re-amorphized the region exposed to the laser beam, as observed with photoemission electron microscopy (PEEM). The amorphous phase in PEEM appears dark, likely due to abundant defect levels inhibiting electron emission from the amorphous In x Se y film.

  1. Problems, challenges and promises: perspectives on precision medicine.

    PubMed

    Duffy, David J

    2016-05-01

    The 'precision medicine (systems medicine)' concept promises to achieve a shift to future healthcare systems with a more proactive and predictive approach to medicine, where the emphasis is on disease prevention rather than the treatment of symptoms. The individualization of treatment for each patient will be at the centre of this approach, with all of a patient's medical data being computationally integrated and accessible. Precision medicine is being rapidly embraced by biomedical researchers, pioneering clinicians and scientific funding programmes in both the European Union (EU) and USA. Precision medicine is a key component of both Horizon 2020 (the EU Framework Programme for Research and Innovation) and the White House's Precision Medicine Initiative. Precision medicine promises to revolutionize patient care and treatment decisions. However, the participants in precision medicine are faced with a considerable central challenge. Greater volumes of data from a wider variety of sources are being generated and analysed than ever before; yet, this heterogeneous information must be integrated and incorporated into personalized predictive models, the output of which must be intelligible to non-computationally trained clinicians. Drawing primarily from the field of 'oncology', this article will introduce key concepts and challenges of precision medicine and some of the approaches currently being implemented to overcome these challenges. Finally, this article also covers the criticisms of precision medicine overpromising on its potential to transform patient care. PMID:26249224

  2. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    PubMed

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current. PMID:18595805

  3. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  4. Structural and chemical transformations on zirconium surface during machining and electrotechnological treatment with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomina, Marina A.; Fomin, Aleksandr A.; Koshuro, Vladimir A.; Rodionov, Igor V.; Fedoseev, Maksim E.; Voyko, Aleksey V.; Palkanov, Pavel A.; Atkin, Vsevolod S.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.

    2016-04-01

    Research results on the chemical composition and surface morphological characteristics of zirconium products after machining and treatment with high-frequency currents are described. It was established that at the temperature range from 600 to 1200 °C and duration of heat treatment from 30 to 300 seconds oxide coatings consisting of nano-grains are formed.

  5. Transforming dielectric coated tungsten and platinum wires to gaseous state using negative nanosecond-pulsed-current in vacuum

    SciTech Connect

    Wu, Jian; Li, Xingwen Wang, Kun; Yang, Zefeng; Shi, Zongqian; Jia, Shenli; Qiu, Aici; Li, Zhenghong

    2014-11-15

    With the help of thin dielectric coatings, corona free explosions were achieved in the region of about half a wire length (2 cm) for tungsten wires and nearly the whole wire length for platinum wires under a fast rising (46–170 A/ns) negative polarity current in vacuum. Expansion velocity of the tungsten gas was over 10 km/s. Current waveforms from exploding coated wires were similar to those from bare wires in the air including a current pause stage. Coated wires with different coating parameters had a similar joule energy deposition before voltage collapsed, but a quite different scenario in the region near the electrodes. The axial field under negative current was the main reason for the axial inhomogeneity of coated tungsten wires. Tungsten or platinum gases in the vaporized region were tightly encompassed by the dielectric coating, while gaps or probably low density gases, were observed between the coating and the edge of the dense wire core in the core-corona structure region.

  6. General linear chirplet transform

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Zhou, Yiqi

    2016-03-01

    Time-frequency (TF) analysis (TFA) method is an effective tool to characterize the time-varying feature of a signal, which has drawn many attentions in a fairly long period. With the development of TFA, many advanced methods are proposed, which can provide more precise TF results. However, some restrictions are introduced inevitably. In this paper, we introduce a novel TFA method, termed as general linear chirplet transform (GLCT), which can overcome some limitations existed in current TFA methods. In numerical and experimental validations, by comparing with current TFA methods, some advantages of GLCT are demonstrated, which consist of well-characterizing the signal of multi-component with distinct non-linear features, being independent to the mathematical model and initial TFA method, allowing for the reconstruction of the interested component, and being non-sensitivity to noise.

  7. Surge Across the Chambo: Entrainment, topographical influences, and flow transformation of pyroclastic density currents using a combined field and multiphase modeling approach

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Geist, D.; Harpp, K. S.

    2011-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute 'surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We have conducted high resolution

  8. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  9. High Precision Electon Beam Polarimetry

    NASA Astrophysics Data System (ADS)

    Dutta, D.

    2016-02-01

    Over the last three decades high precision electron beam polarimetry has been at the fore-front of progress made in leveraging the spin degrees of freedom in nuclear and particle physics experiments. We review the three main types of polarimeters, Compton, Møller and Mott, that are typically used in experiments. We discuss some of the recent results in high precision electron polarimetry and some of the new ideas that are being explored for future application at current and proposed accelerators.

  10. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  11. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  12. Precision Medicine, Cardiovascular Disease and Hunting Elephants.

    PubMed

    Joyner, Michael J

    2016-01-01

    Precision medicine postulates improved prediction, prevention, diagnosis and treatment of disease based on patient specific factors especially DNA sequence (i.e., gene) variants. Ideas related to precision medicine stem from the much anticipated "genetic revolution in medicine" arising seamlessly from the human genome project (HGP). In this essay I deconstruct the concept of precision medicine and raise questions about the validity of the paradigm in general and its application to cardiovascular disease. Thus far precision medicine has underperformed based on the vision promulgated by enthusiasts. While niche successes for precision medicine are likely, the promises of broad based transformation should be viewed with skepticism. Open discussion and debate related to precision medicine are urgently needed to avoid misapplication of resources, hype, iatrogenic interventions, and distraction from established approaches with ongoing utility. Failure to engage in such debate will lead to negative unintended consequences from a revolution that might never come. PMID:26902518

  13. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  14. Spin and precision electroweak physics

    SciTech Connect

    Marciano, W.J.

    1993-12-31

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for ``new physics`` is described.

  15. Magnetically Controlled Variable Transformer

    NASA Technical Reports Server (NTRS)

    Kleiner, Charles T.

    1994-01-01

    Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.

  16. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  17. "Precision" drug development?

    PubMed

    Woodcock, J

    2016-02-01

    The concept of precision medicine has entered broad public consciousness, spurred by a string of targeted drug approvals, highlighted by the availability of personal gene sequences, and accompanied by some remarkable claims about the future of medicine. It is likely that precision medicines will require precision drug development programs. What might such programs look like? PMID:26331240

  18. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  19. ELECTROWEAK PHYSICS AND PRECISION STUDIES.

    SciTech Connect

    MARCIANO, W.

    2005-10-24

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current values of m{sub W}, sin{sup 2} {theta}{sub W}(m{sub Z}){sub {ovr MS}} and m{sub t} imply a relatively light Higgs which is below the direct experimental bound but possibly consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a 2{sigma} discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.

  20. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  1. Advanced irrigation engineering: Precision and Precise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation advances in precision irrigation (PI) or site-specific irrigation (SSI) have been considerable in research; however commercialization lags. A primary necessity for it is variability in soil texture that affects soil water holding capacity and crop yield. Basically, SSI/PI uses variable ra...

  2. Advanced irrigation engineering: Precision and Precise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation advances in precision irrigation (PI) or site specific irrigation (SSI) have been considerable in research; however commercialization lags. A primary necessity for PI/SSI is variability in soil texture that affects soil water holding capacity and crop yield. Basically, SSI/PI uses variabl...

  3. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  4. Ultra-precision processes for optics manufacturing

    NASA Technical Reports Server (NTRS)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  5. Precision Polarimetry for Cold Neutrons

    NASA Astrophysics Data System (ADS)

    Barron-Palos, Libertad; Bowman, J. David; Chupp, Timothy E.; Crawford, Christopher; Danagoulian, Areg; Gentile, Thomas R.; Jones, Gordon; Klein, Andreas; Penttila, Seppo I.; Salas-Bacci, Americo; Sharma, Monisha; Wilburn, W. Scott

    2007-10-01

    The abBA and PANDA experiments, currently under development, aim to measure the correlation coefficients in the polarized free neutron beta decay at the FnPB in SNS. The polarization of the neutron beam, polarized with a ^3He spin filter, has to be known with high precision in order to achieve the goal accuracy of these experiments. In the NPDGamma experiment, where a ^3He spin filter was used, it was observed that backgrounds play an important role in the precision to which the polarization can be determined. An experiment that focuses in the reduction of background sources to establish techniques and find the upper limit for the polarization accuracy with these spin filters is currently in progress at LANSCE. A description of the measurement and results will be presented.

  6. Electrosurgery with cellular precision.

    PubMed

    Palanker, Daniel V; Vankov, Alexander; Huie, Philip

    2008-02-01

    Electrosurgery, one of the most-often used surgical tools, is a robust but somewhat crude technology that has changed surprisingly little since its invention almost a century ago. Continuous radiofrequency is still used for tissue cutting, with thermal damage extending to hundreds of micrometers. In contrast, lasers developed 70 years later, have been constantly perfected, and the laser-tissue interactions explored in great detail, which has allowed tissue ablation with cellular precision in many laser applications. We discuss mechanisms of tissue damage by electric field, and demonstrate that electrosurgery with properly optimized waveforms and microelectrodes can rival many advanced lasers. Pulsed electric waveforms with burst durations ranging from 10 to 100 micros applied via insulated planar electrodes with 12 microm wide exposed edges produced plasma-mediated dissection of tissues with the collateral damage zone ranging from 2 to 10 microm. Length of the electrodes can vary from micrometers to centimeters and all types of soft tissues-from membranes to cartilage and skin could be dissected in liquid medium and in a dry field. This technology may allow for major improvements in outcomes of the current surgical procedures and development of much more refined surgical techniques. PMID:18270030

  7. MODELING OF CHEMICAL TRANSFORMATIONS OF SO(X) AND NO(X) IN THE POLLUTED ATMOSPHERE. AN OVERVIEW OF APPROACHES AND CURRENT STATUS

    EPA Science Inventory

    Two principal approaches are identified in the modeling of chemical transformations of SOx and NOx in the polluted atmosphere. The fundamental approach involves simulation of the detailed chemical kinetics of the SOx-NOx-HC system; in the empirical approach, relatively simple par...

  8. Improving the precision matrix for precision cosmology

    NASA Astrophysics Data System (ADS)

    Paz, Dante J.; Sánchez, Ariel G.

    2015-12-01

    The estimation of cosmological constraints from observations of the large-scale structure of the Universe, such as the power spectrum or the correlation function, requires the knowledge of the inverse of the associated covariance matrix, namely the precision matrix, Ψ . In most analyses, Ψ is estimated from a limited set of mock catalogues. Depending on how many mocks are used, this estimation has an associated error which must be propagated into the final cosmological constraints. For future surveys such as Euclid and Dark Energy Spectroscopic Instrument, the control of this additional uncertainty requires a prohibitively large number of mock catalogues. In this work, we test a novel technique for the estimation of the precision matrix, the covariance tapering method, in the context of baryon acoustic oscillation measurements. Even though this technique was originally devised as a way to speed up maximum likelihood estimations, our results show that it also reduces the impact of noisy precision matrix estimates on the derived confidence intervals, without introducing biases on the target parameters. The application of this technique can help future surveys to reach their true constraining power using a significantly smaller number of mock catalogues.

  9. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

  10. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function: IMPLICATION OF AN EPOXIDE HYDROLASE IN THE TRANSFORMATIONS OF LINOLEATE.

    PubMed

    Chiba, Takahito; Thomas, Christopher P; Calcutt, M Wade; Boeglin, William E; O'Donnell, Valerie B; Brash, Alan R

    2016-07-01

    Creation of an intact skin water barrier, a prerequisite for life on dry land, requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate, which is esterified to the ω-hydroxyl of an epidermis-specific ceramide. Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for covalent binding to protein, thus forming the corneocyte lipid envelope, a key component of the epidermal barrier. Herein, we report the transformations of esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol synthesis catalyzed by the consecutive actions of 12R-LOX and epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy derivative, formed with a specificity that implicates participation of an epoxide hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses, we identify and quantify specifically 9R,10S,13R-trihydroxy-11E-octadecenoate as the single major triol esterified in porcine epidermis and the same isomer with lesser amounts of its 10R diastereomer in human epidermis. The 9R,10S,13R-triol is formed by SN2 hydrolysis of the 9R,10R-epoxy-13R-hydroxy-octadecenoate product of the LOX enzymes, a reaction specificity characteristic of epoxide hydrolase. The high polarity of triol over the primary linoleate products enhances the concept that the oxidations disrupt corneocyte membrane lipids, promoting release of free ω-hydroxyceramide for covalent binding to protein and sealing of the waterproof barrier. PMID:27151221

  11. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  12. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  13. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  14. Martensitic transformation in zirconia

    SciTech Connect

    Deville, Sylvain . E-mail: sylvain.deville@insa-lyon.fr; Guenin, Gerard; Chevalier, Jerome

    2004-11-08

    We investigate by atomic force microscopy (AFM) the surface relief resulting from martensitic tetragonal to monoclinic phase transformation induced by low temperature autoclave aging in ceria-stabilized zirconia. AFM appears as a very powerful tool to investigate martensite relief quantitatively and with a great precision. The crystallographic phenomenological theory is used to predict the expected relief induced by the transformation, for the particular case of lattice correspondence ABC1, where tetragonal c axis becomes the monoclinic c axis. A model for variants spatial arrangement for this lattice correspondence is proposed and validated by the experimental observations. An excellent agreement is found between the quantitative calculations outputs and the experimental measurements at nanometer scale yielded by AFM. All the observed features are explained fully quantitatively by the calculations, with discrepancies between calculations and quantitative experimental measurements within the measurements and calculations precision range. In particular, the crystallographic orientation of the transformed grains is determined from the local characteristics of transformation induced relief. It is finally demonstrated that the strain energy is the controlling factor of the surface transformation induced by low temperature autoclave treatments in this material.

  15. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  16. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  17. Precision Higgs Physics

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja

    2015-04-01

    The future of the high energy physics program will increasingly rely upon precision studies looking for deviations from the Standard Model. Run I of the Large Hadron Collider (LHC) triumphantly discovered the long-awaited Higgs boson, and there is great hope in the particle physics community that this new state will open a portal onto a new theory of Nature at the smallest scales. A precision study of Higgs boson properties is needed in order to test whether this belief is true. New theoretical ideas and high-precision QCD tools are crucial to fulfill this goal. They become even more important as larger data sets from LHC Run II further reduce the experimental errors and theoretical uncertainties begin to dominate. In this talk, I will review recent progress in understanding Higgs properties,including the calculation of precision predictions needed to identify possible physics beyond the Standard Model in the Higgs sector. New ideas for measuring the Higgs couplings to light quarks as well as bounding the Higgs width in a model-independent way will be discussed. Precision predictions for Higgs production in association with jets and ongoing efforts to calculate the inclusive N3LO cross section will be reviewed.

  18. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-05-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  19. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  20. The Magsat precision vector magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1980-01-01

    This paper examines the Magsat precision vector magnetometer which is designed to measure projections of the ambient field in three orthogonal directions. The system contains a highly stable and linear triaxial fluxgate magnetometer with a dynamic range of + or - 2000 nT (1 nT = 10 to the -9 weber per sq m). The magnetometer electronics, analog-to-digital converter, and digitally controlled current sources are implemented with redundant designs to avoid a loss of data in case of failures. Measurements are carried out with an accuracy of + or - 1 part in 64,000 in magnitude and 5 arcsec in orientation (1 arcsec = 0.00028 deg).

  1. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  2. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  3. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  4. Work Requirements in Transformation, Competence for the Future: A Critical Look at the Consequences of Current Positions. IAB Labour Market Research Topics No. 45.

    ERIC Educational Resources Information Center

    Plath, Hans-Eberhard

    In Germany and elsewhere, the literature on current and future work requirements rarely discusses the effects of globalization, internationalization, computerization, and other factors from the point of view of workers. Some have suggested that a blurring of limits will be one of the main changes in work in the future. This blurring will involve…

  5. Precision Nova operations

    NASA Astrophysics Data System (ADS)

    Ehrlich, Robert B.; Miller, John L.; Saunders, Rodney L.; Thompson, Calvin E.; Weiland, Timothy L.; Laumann, Curt W.

    1995-12-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations include routine precision power balance to within 10% rms in the 'foot' and 5% rms in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 micrometer rms. We have also added a 'fail-safe chirp' system to avoid stimulated Brillouin scattering (SBS) in optical components during high energy shots.

  6. Precision Nova operations

    SciTech Connect

    Ehrlich, R.B.; Miller, J.L.; Saunders, R.L.; Thompson, C.E.; Weiland, T.L.; Laumann, C.W.

    1995-09-01

    To improve the symmetry of x-ray drive on indirectly driven ICF capsules, we have increased the accuracy of operating procedures and diagnostics on the Nova laser. Precision Nova operations includes routine precision power balance to within 10% rms in the ``foot`` and 5% nns in the peak of shaped pulses, beam synchronization to within 10 ps rms, and pointing of the beams onto targets to within 35 {mu}m rms. We have also added a ``fail-safe chirp`` system to avoid Stimulated Brillouin Scattering (SBS) in optical components during high energy shots.

  7. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  8. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  9. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  10. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  11. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  12. Spatiotemporal Evolution of the Current and the Integral and Spectral Emission Characteristics of a Negative Corona in Nitrogen during Its Transformation into a Spark

    SciTech Connect

    Akishev, Yu.S.; Aponin, G.I.; Karal'nik, V.B.; Monich, A.E.; Trushkin, N.I.

    2004-11-15

    Results are presented from experimental studies of the conversion of a steady-state negative corona into a spark. It is found that a spark in a negative corona in nitrogen and air is formed in the absence of fast primary streamers. It is shown that, in atmospheric-pressure nitrogen, the conversion of a corona into a spark begins with the propagation of a plasma channel (secondary streamer) from the point electrode (cathode) to the plane electrode (anode). In contrast, the plasma channel in air originates near the plane electrode and then propagates towards the point electrode. The propagation velocity of the secondary streamer is very low, V = 10{sup 3}-10{sup 4} cm/s. Two possible scenarios of the formation of the spark channel in a negative corona in nitrogen are described on the basis of the concept of a contracted volume glow discharge. Results are presented from time-resolved spectral measurements of plasma emission from different regions of the corona during its transformation into a spark.

  13. Precision metal molding

    NASA Technical Reports Server (NTRS)

    Townhill, A.

    1967-01-01

    Method provides precise alignment for metal-forming dies while permitting minimal thermal expansion without die warpage or cavity space restriction. The interfacing dowel bars and die side facings are arranged so the dies are restrained in one orthogonal angle and permitted to thermally expand in the opposite orthogonal angle.

  14. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  15. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  16. Precision in Stereochemical Terminology

    ERIC Educational Resources Information Center

    Wade, Leroy G., Jr.

    2006-01-01

    An analysis of relatively new terminology that has given multiple definitions often resulting in students learning principles that are actually false is presented with an example of the new term stereogenic atom introduced by Mislow and Siegel. The Mislow terminology would be useful in some cases if it were used precisely and correctly, but it is…

  17. Fourier Transform Ultraviolet Spectroscopy of the A Pi-2(3/2) Direct Current X Pi-2(3/2) Transition of BrO

    NASA Technical Reports Server (NTRS)

    Wilmouth, David M.; Hanisco, Thomas F.; Donahue, Neil M.; Anderson, James G.

    1999-01-01

    The first spectra of the A (2)Pi(sub 3/2) from X (2)Pi(sub 3/2) electronic transition of BrO using Fourier transform ultraviolet spectroscopy are obtained. Broadband vibrational spectra acquired at 298 +/- 2 K and 228 +/- 5 K, as well as high-resolution rotational spectra of the A from X 7,0 and 12,0 vibrational bands are presented. Wavenumber positions for the spectra are obtained with high accuracy, and cross section assignments are made, incorporating the existing literature. With 35 cm(exp -1) (0.40 nm) resolution the absolute cross section at the peak of the 7,0 band is determined to be (1.58 +/- 0.12) x 10(exp -17) sq cm/molecule at 298 +/- 2 K and (1.97 +/- 0.15) x 10(exp -17) sq cm/molecule at 228 +/- 5 K. BrO dissociation energies are determined with a graphical Birge-Sponer technique, using Le Roy-Bernstein theory to place an upper limit on the extrapolation. From the ground-state dissociation energy, D(sub o)" = 231.0 +/- 1.7 kJ/mol, the heat of formation of BrO(g) is calculated, del(sub f)H(0 K) = 133.7 +/- 1.7 kJ/mol and del(sub f)H(298.15 K) = 126.2 +/- 1.7 kJ/mol. Cross sections for the high-resolution 7,0 and 12,0 rotational peaks are the first to be reported. The band structures are modeled, and improved band origins, rotational constants, centrifugal distortion constants, and linewidths are determined. In particular, J-dependent linewidths and lifetimes are observed for the both the 7,0 and 12,0 bands.

  18. Precision Measurements in 37K

    NASA Astrophysics Data System (ADS)

    Anholm, Melissa; Ashery, Daniel; Behling, Spencer; Fenker, Benjamin; Melconian, Dan; Mehlman, Michael; Behr, John; Gorelov, Alexandre; Olchanski, Konstantin; Preston, Claire; Warner, Claire; Gwinner, Gerald

    2015-10-01

    We have performed precision measurements of the kinematics of the daughter particles in the decay of 37K. This isotope decays by β+ emission in a mixed Fermi/Gamow-Teller transition to its isobaric analog, 37Ar. Because the higher-order standard model corrections to this decay process are well understood, it is an ideal candidate for for improving constraints on interactions beyond the standard model. Our setup utilizes a magneto-optical trap to confine and cool samples of 37K, which are then spin-polarized by optical pumping. This allows us to perform measurements on both polarized and unpolarized nuclei, which is valuable for a complete understanding of systematic effects. Precision measurements of this decay are expected to be sensitive to the presence of right-handed vector currents, as well as a linear combination of scalar and tensor currents. Progress towards a final result is presented here. Support provided by: NSERC, NRC through TRIUMF, DOE ER40773, Early Career ER41747, Israel Science Foundation.

  19. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  20. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  1. Precision Electroweak Physics at the LHC

    NASA Astrophysics Data System (ADS)

    Freitas, Ayres

    2015-04-01

    The current status of precision tests of the electroweak Standard Model is summarized, and a short review of the theory input from higher-order loop corrections is given. The most constraining quantities are the masses and couplings of the W and Z bosons, and it is shown how these put strong bounds on various examples of new physics. Furthermore, the impact of current and future LHC data on electroweak precision tests is described in some detail. It is also briefly discussed how measurements of anomalous gauge boson couplings provide complementary information about the electroweak theory.

  2. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1976-01-01

    Material was presented to assist transformer designers in the transition from long-used English units to the less familiar metric equivalents. A coordination between the area product numbers ap (product of window and core cross-section areas) and current density J was developed for a given regulation and temperature rise. Straight-line relationships for Ap and Volume, Ap and surface area At and, Ap and weight were developed. These relationships can now be used as new tools to simplify and standardize the process of transformer design. They also made it possible to design transformers of small bulk and volume or to optimize efficiency.

  3. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  4. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  5. Towards precision medicine.

    PubMed

    Ashley, Euan A

    2016-08-16

    There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery - including DNA-sequencing technologies and analysis algorithms - need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision. PMID:27528417

  6. Precision Polarization of Neutrons

    NASA Astrophysics Data System (ADS)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  7. A passion for precision

    ScienceCinema

    None

    2011-10-06

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  8. Precision disablement aiming system

    DOEpatents

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  9. Precise linear sun sensor

    NASA Technical Reports Server (NTRS)

    Johnston, D. D.

    1972-01-01

    An evaluation of the precise linear sun sensor relating to future mission applications was performed. The test procedures, data, and results of the dual-axis, solid-state system are included. Brief descriptions of the sensing head and of the system's operational characteristics are presented. A unique feature of the system is that multiple sensor heads with various fields of view may be used with the same electronics.

  10. Precision laser aiming system

    SciTech Connect

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  11. New methods for precision Møller polarimetry

    SciTech Connect

    D. Gaskell; D.G. Meekins; C. Yan

    2007-07-01

    Precision electron beam polarimetry is becoming increasingly important as parity violation experiments attempt to probe the frontiers of the standard model. In the few GeV regime, Møller polarimetry is well suited to high-precision measurements, however is generally limited to use at relatively low beam currents (< 10 μA). We present a novel technique that will enable precision Møller polarimetry at very large currents, up to 100μA.

  12. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  13. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  14. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  15. Precision experiments in electroweak interactions

    SciTech Connect

    Swartz, M.L.

    1990-03-01

    The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become one of the twin pillars upon which our understanding of all particle physics phenomena rests. It is a brilliant achievement that qualitatively and quantitatively describes all of the vast quantity of experimental data that have been accumulated over some forty years. Note that the word quantitatively must be qualified. The low energy limiting cases of the GWS theory, Quantum Electrodynamics and the V-A Theory of Weak Interactions, have withstood rigorous testing. The high energy synthesis of these ideas, the GWS theory, has not yet been subjected to comparably precise scrutiny. The recent operation of a new generation of proton-antiproton (p{bar p}) and electron-positron (e{sup +}e{sup {minus}}) colliders has made it possible to produce and study large samples of the electroweak gauge bosons W{sup {plus minus}} and Z{sup 0}. We expect that these facilities will enable very precise tests of the GWS theory to be performed in the near future. In keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, these lectures will explore the current status and the near-future prospects of these experiments.

  16. Toward precision medicine in primary biliary cholangitis.

    PubMed

    Carbone, Marco; Ronca, Vincenzo; Bruno, Savino; Invernizzi, Pietro; Mells, George F

    2016-08-01

    Primary biliary cholangitis is a chronic, cholestatic liver disease characterized by a heterogeneous presentation, symptomatology, disease progression and response to therapy. In contrast, clinical management and treatment of PBC is homogeneous with a 'one size fits all' approach. The evolving research landscape, with the emergence of the -omics field and the availability of large patient cohorts are creating a unique opportunity of translational epidemiology. Furthermore, several novel disease and symptom-modifying agents for PBC are currently in development. The time is therefore ripe for precision medicine in PBC. In this manuscript we describe the concept of precision medicine; review current approaches to risk-stratification in PBC, and speculate how precision medicine in PBC might develop in the near future. PMID:27324985

  17. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  18. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  19. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2010-09-01

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  20. Precision mass measurements

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Borys, M.

    2009-12-01

    Mass as a physical quantity and its measurement are described. After some historical remarks, a short summary of the concept of mass in classical and modern physics is given. Principles and methods of mass measurements, for example as energy measurement or as measurement of weight forces and forces caused by acceleration, are discussed. Precision mass measurement by comparing mass standards using balances is described in detail. Measurement of atomic masses related to 12C is briefly reviewed as well as experiments and recent discussions for a future new definition of the kilogram, the SI unit of mass.

  1. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  2. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  3. Lightweight transformer

    SciTech Connect

    Swallom, D.W.; Enos, G.

    1990-05-01

    The technical effort described in this report relates to the program that was performed to design, fabricate, and test a lightweight transformer for Strategic Defense Initiative Organization (SDIO) mission requirements. The objectives of this program were two-fold: (1) design and fabricate a lightweight transformer using liquid hydrogen as the coolant; and (2) test the completed transformer assembly with a low voltage, dc power source. Although the full power testing with liquid helium was not completed, the program demonstrated the viability of the design approach. The lightweight transformer was designed and fabricated, and low and moderate power testing was completed. The transformer is a liquid hydrogen cooled air core transformer that uses thin copper for its primary and secondary windings. The winding mass was approximately 12 kg, or 0.03 kg/kW. Further refinements of the design to a partial air core transformer could potentially reduce the winding mass to as low as 4 or 5 kg, or 0.0125 kg/kW. No attempt was made on this program to reduce the mass of the related structural components or cryogenic container. 8 refs., 39 figs., 2 tabs.

  4. System for precise position registration

    DOEpatents

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  5. Current limiting performance test of 3-phase tri-axial transformer-type SFCL with re-wound structure at 3-line-to-ground fault in lab-scale transmission system

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Noda, Sho; Yamabe, Kenta; Hattori, Keisuke; Baba, Jumpei; Kobayashi, Shinichi; Sato, Kenichi

    2013-01-01

    We have proposed a transformer-type SFCL of a re-wound structure, which can produce a limiting reactance (L-limiting) for smaller fault current and, for larger one, additively give a limiting resistance (L + R limiting). The single-phase proposed model SFCL had been tested and shown good limiting characteristics and excellent recovery performance. A 3-phase tri-axial SFCL of the proposed type had been designed and made using BSCCO2223. This paper describes demonstration tests of the model SFCL carried out using a lab-scale one-machine infinite bus transmission model system. The experimental results on the current limiting performance of the SFCL at the 3-line-to-ground (3LG) fault were shown and discussed. The peak fault current 560 A without SFCL was reduced to 230 A with SFCL immediately. The 3-phase SFCL successfully worked without large inter-phase interaction. The SFCL recovered to the stand-by mode under a typical Circuit Breaker (CB) operation sequence.

  6. Precision Machining Technology. Technical Committee Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in precision machining technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and…

  7. Precision measurements of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    de Bernardis, Paolo; Masi, Silvia; Wuensche, Carlos Alexandre

    2015-12-01

    Precision measurements of the Cosmic Microwave Background (CMB) sample the entire history of the Universe. In this paper we give a short review, from the experimentalist point of view, of the current status and of what can still be done, using this extraordinary tool, to investigate cosmology and fundamental physics.

  8. Precision measurements in supersymmetry

    SciTech Connect

    Feng, J.L.

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  9. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  10. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  11. Progressive Precision Surface Design

    SciTech Connect

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on an underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.

  12. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  13. Precision oncology: origins, optimism, and potential.

    PubMed

    Prasad, Vinay; Fojo, Tito; Brada, Michael

    2016-02-01

    Imatinib, the first and arguably the best targeted therapy, became the springboard for developing drugs aimed at molecular targets deemed crucial to tumours. As this development unfolded, a revolution in the speed and cost of genetic sequencing occurred. The result-an armamentarium of drugs and an array of molecular targets-set the stage for precision oncology, a hypothesis that cancer treatment could be markedly improved if therapies were guided by a tumour's genomic alterations. Drawing lessons from the biological basis of cancer and recent empirical investigations, we take a more measured view of precision oncology's promise. Ultimately, the promise is not our concern, but the threshold at which we declare success. We review reports of precision oncology alongside those of precision diagnostics and novel radiotherapy approaches. Although confirmatory evidence is scarce, these interventions have been widely endorsed. We conclude that the current path will probably not be successful or, at a minimum, will have to undergo substantive adjustments before it can be successful. For the sake of patients with cancer, we hope one form of precision oncology will deliver on its promise. However, until confirmatory studies are completed, precision oncology remains unproven, and as such, a hypothesis in need of rigorous testing. PMID:26868357

  14. Triple transformation

    NASA Astrophysics Data System (ADS)

    Khan, Farrukh I.; Schinn, Dustin S.

    2013-08-01

    A new business plan that enables policy transformation and resource mobilization at the national and international level, while improving access to resources, will allow the Green Climate Fund to integrate development goals and action on climate change.

  15. Covariant Transform

    NASA Astrophysics Data System (ADS)

    Kisil, Vladimir V.

    2011-03-01

    Dedicated to the memory of Cora Sadosky The paper develops theory of covariant transform, which is inspired by the wavelet construction. It was observed that many interesting types of wavelets (or coherent states) arise from group representations which are not square integrable or vacuum vectors which are not admissible. Covariant transform extends an applicability of the popular wavelets construction to classic examples like the Hardy space H2, Banach spaces, covariant functional calculus and many others.

  16. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  17. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  18. DC current monitor

    NASA Technical Reports Server (NTRS)

    Canter, Stanley (Inventor)

    1991-01-01

    A non-intrusive DC current monitor is presented which emulates the theoretical operation of an AC transformer. A conductor, carrying the current to be measured, acts as the primary of a DC current transformer. This current is passed through the center of a secondary coil, and core positioned thereabout, and produces a magnetic flux which induces a current in the secondary proportional to the current flowing in the primary. Means are provided to periodically reset the transformer core such that the measurement inaccuracies associated with core saturation are obviated. A reset current is caused to periodically flow through the secondary coil which produces a magnetic flux oppositely polarized to the flux created by the current in the primary, thus allowing ongoing measurements to be made.

  19. PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS.

    SciTech Connect

    MARCIANO, W.J.

    2004-08-02

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m{sub w} and sin{sup 2} {theta}{sub w} (m{sub z}){sub {ovr MS}} imply a relatively light Higgs {approx}< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.

  20. Precision pointing mechanism for intersatellite optical communication

    NASA Astrophysics Data System (ADS)

    Hicks, T.; O'Sullivan, B.; Russell, J.; Scholl, L.

    1989-09-01

    The SILEX project is an experimental communication system aimed at demonstrating, in orbit, the feasibility of intersatellite optical communications using semiconductor lasers. As part of this project, a precision mechanism has been developed to point the transmitted beam ahead of the current receiving satellite position. This is necessary due to the relative motion of the satellites, the narrow beam, and the finite velocity of light. The design and construction of a prototype of this device is discussed along with measurements of performance. The technique as described can be used in many applications requiring precision beam steering or rotation control.

  1. Precise Applications Of The Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1992-01-01

    Report represents overview of Global Positioning System (GPS). Emphasizes those aspects of theory, history, and status of GPS pertaining to potential utility for highly precise scientific measurements. Current and anticipated applications include measurements of crustal motions in seismically active regions of Earth, measurements of rate of rotation of Earth and orientation of poles, tracking of non-GPS spacecraft in orbit around Earth, surveying, measurements of radio-signal-propagation delays, determinations of coordinates of ground stations, and transfer of precise time signals worldwide.

  2. Project: Transformation

    ERIC Educational Resources Information Center

    Danko, James M.

    2010-01-01

    "Commerce" and "finance" are not the broadest or most dynamic words in the lexicon of business. And yet, when this author became dean of the business school at Villanova University in 2005, that was precisely the language the school was using to advertise itself to the world. The Villanova College of Commerce & Finance, as it was known then, had…

  3. [Application of precision medicine in obesity and metabolic disease surgery].

    PubMed

    Wang, Cunchuan; Gao, Zhiguang

    2016-01-01

    The U. S. A. president Obama called for a new initiative to fund precision medicine during his State of Union Address on January 20th, 2015, which meant that the human medicine enters a new era. The meaning of "precision medicine" is significantly similar to the concept of precision obesity and metabolic disease surgery, which was proposed by the author in early August 2011. Nowadays, obesity and metabolic disease surgery has been transformed from open surgery to laparoscopic surgery, the extensive mode to the precision mode. The key value concept is to minimize postoperative complication, minimize postoperative hospital stay and obtain the best effect of weight loss by accurate preoperative assessment, delicate operation, excellent postoperative management and scientific follow-up. The precision obesity and metabolic disease surgery has more development space in the future. PMID:26797833

  4. SHARP transformation

    NASA Astrophysics Data System (ADS)

    Wyatt, Stephan

    2004-08-01

    The U.S. Navy"s SHAred Reconnaissance Pod (SHARP) employs the Recon/Optical, Inc. (ROI) CA-279 dual spectral band (visible/IR) digital cameras operating from an F-18E/F aircraft to perform low-to-high altitude reconnaissance missions. SHARP has proven itself combat worthy, with a rapid transition from development to operational deployment culminating in a highly reliable and effective reconnaissance capability for joint forces operating in Operation Iraqi Freedom (OIF). The U.S. Navy"s intelligence, surveillance and reconnaissance (ISR) roadmap transforms the SHARP system from being solely an independent reconnaissance sensor to a node in the growing Joint ISR network. ROI and the U.S. Navy have combined their resources to ensure the system"s transformation continues to follow the ISR road map. Pre-planned product improvements (P3I) for the CA-270 camera systems will lead the way in that transformation.

  5. The Seasat Precision Orbit Determination Experiment

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Born, G. H.

    1980-01-01

    The objectives and conclusions reached during the Seasat Precision Orbit Determination Experiment are discussed. It is noted that the activities of the experiment team included extensive software calibration and validation and an intense effort to validate and improve the dynamic models which describe the satellite's motion. Significant improvement in the gravitational model was obtained during the experiment, and it is pointed out that the current accuracy of the Seasat altitude ephemeris is 1.5 m rms. An altitude ephemeris for the Seasat spacecraft with an accuracy of 0.5 m rms is seen as possible with further improvements in the geopotential, atmospheric drag, and solar radiation pressure models. It is concluded that since altimetry missions with a 2-cm precision altimeter are contemplated, the precision orbit determination effort initiated under the Seasat Project must be continued and expanded.

  6. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  7. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  8. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  9. Two Alternative Methods for Height Transformation

    NASA Astrophysics Data System (ADS)

    Kollo, Karin

    2008-03-01

    Geodesists have always been dealing with coordinate transformations. There exist various kinds of transformations, like three-dimensional (spatial datum) transformations, two-dimensional (horizontal datum) transformations and one-dimensional (eg, height) transformations. In this article we discuss height transformations. Height data is usually obtained by levelling. The problematic side of levelling is that this technique is very labour intensive and costly. Nowadays as well GPS measurements can be used, which are much faster and cheaper, but in order to use GPS measurements for height determination, we need a precise geoid model to transform GPS heights to heights above sea level. In this article two different approaches to this transformation are presented. At first, the affine transformation is discussed. The method is by nature linear, and employs the barycentric coordinates of the point, the height of which is going to be computed. Secondly, the method of fuzzy modelling is used. By these methods, the transformation surface is determined and the heights of desired points can be determined. As the input data, height information from the precise levelling campaign in Estonia is used. The computed values are tested against height information, gathered from the reference geoid model. The objectives of this research are acquiring insight into using alternative methods for height transformation as well as to statistically characterise the suitability of the proposed methods.

  10. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  11. Precision and manufacturing at the Lawrence Livermore National Laboratory

    SciTech Connect

    Saito, T.T.; Wasley, R.J.; Stowers, I.F.; Donaldson, R.R.; Thompson, D.C.

    1993-11-01

    Precision Engineering is one of Lawrence Livermore National Laboratory`s core strengths. This paper discusses the past and present current technology transfer efforts of LLNL`s Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machining Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  12. Bilayer graphene formed by passage of current through graphite: evidence for a three-dimensional structure.

    PubMed

    Harris, Peter J F; Slater, Thomas J A; Haigh, Sarah J; Hage, Fredrik S; Kepaptsoglou, Despoina M; Ramasse, Quentin M; Brydson, Rik

    2014-11-21

    The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure. Here we describe detailed studies of carbon produced by the passage of a current through graphite which provide strong evidence that the transformed carbon is indeed three-dimensional. The evidence comes primarily from images obtained in the scanning transmission electron microscope using the technique of high-angle annular dark-field imaging, and from a detailed analysis of electron energy loss spectra. We discuss the possible mechanism of the transformation, and consider potential applications of 'three-dimensional bilayer graphene'. PMID:25354780

  13. A DC Transformer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  14. Precision medicine for advanced prostate cancer

    PubMed Central

    Mullane, Stephanie A.; Van Allen, Eliezer M.

    2016-01-01

    Purpose of review Precision cancer medicine, the use of genomic profiling of patient tumors at the point-of-care to inform treatment decisions, is rapidly changing treatment strategies across cancer types. Precision medicine for advanced prostate cancer may identify new treatment strategies and change clinical practice. In this review, we discuss the potential and challenges of precision medicine in advanced prostate cancer. Recent findings Although primary prostate cancers do not harbor highly recurrent targetable genomic alterations, recent reports on the genomics of metastatic castration-resistant prostate cancer has shown multiple targetable alterations in castration-resistant prostate cancer metastatic biopsies. Therapeutic implications include targeting prevalent DNA repair pathway alterations with PARP-1 inhibition in genomically defined subsets of patients, among other genomically stratified targets. In addition, multiple recent efforts have demonstrated the promise of liquid tumor profiling (e.g., profiling circulating tumor cells or cell-free tumor DNA) and highlighted the necessary steps to scale these approaches in prostate cancer. Summary Although still in the initial phase of precision medicine for prostate cancer, there is extraordinary potential for clinical impact. Efforts to overcome current scientific and clinical barriers will enable widespread use of precision medicine approaches for advanced prostate cancer patients. PMID:26909474

  15. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  16. Precision medicine in myasthenia graves: begin from the data precision

    PubMed Central

    Hong, Yu; Xie, Yanchen; Hao, Hong-Jun; Sun, Ren-Cheng

    2016-01-01

    Myasthenia gravis (MG) is a prototypic autoimmune disease with overt clinical and immunological heterogeneity. The data of MG is far from individually precise now, partially due to the rarity and heterogeneity of this disease. In this review, we provide the basic insights of MG data precision, including onset age, presenting symptoms, generalization, thymus status, pathogenic autoantibodies, muscle involvement, severity and response to treatment based on references and our previous studies. Subgroups and quantitative traits of MG are discussed in the sense of data precision. The role of disease registries and scientific bases of precise analysis are also discussed to ensure better collection and analysis of MG data. PMID:27127759

  17. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  18. Transformation Time

    ERIC Educational Resources Information Center

    Berry, John N., III

    2007-01-01

    The program for the march by librarians on America's capital for the American Library Association (ALA) conference is predictably loaded with lobbying, legislation, and DC tours. It also abounds with professional opportunity and reflects the impact of Leslie Burger, one of the most activist ALA presidents in recent history. Her "Transformation"…

  19. Transformation & Metamorphosis

    ERIC Educational Resources Information Center

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  20. Transforming Schools.

    ERIC Educational Resources Information Center

    Cookson, Peter W., Jr., Ed.; Schneider, Barbara, Ed.

    The authors in this book address the issues that relate to the crisis in American education and review some of the proposed solutions. To transform education, schools must be examined as social systems that are interrelated with families, communities, and the world of work. Following the introduction, section 1, "Conditions for Educational…

  1. High precision laser sclerostomy

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Urich, A.; McIntosh, L.; Carter, R. M.; Wilson, C. G.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-03-01

    Ultrafast lasers offer a possibility of removing soft ophthalmic tissue without introducing collateral damage at the ablation site or in the surrounding tissue. The potential for using ultrashort pico- and femtosecond pulse lasers for modification of ophthalmic tissue has been reported elsewhere and has resulted in the introduction of new, minimally invasive procedures into clinical practice. Our research aims to define the most efficient parameters to allow for the modification of scleral tissue without introducing collateral damage. Our experiments were carried out on hydrated porcine sclera in vitro. Porcine sclera, which has similar collagen organization, histology and water content (~70%) to human tissue was used. Supporting this work we present a 2D finite element blow-off model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. Use of a beam steering scan head allows flexibility in designing complicated scanning patterns. In this study we have demonstrated that picosecond pulses are capable of removing scleral tissue without introducing any major thermal damage which offers a possible route for minimally invasive sclerostomy. In assessing this we have tested several different scanning patterns including single line ablation, square and circular cavity removal.

  2. The ABB transformer monitoring system

    SciTech Connect

    Claiborne, C.; Gorman, M.; Petrie, E.M.

    1996-03-01

    ABB is currently developing a transformer monitoring system that will continuously perform multiple gas-in-oil and partial discharge analyses. The new monitoring system is designed to be simple and reliable. It can be applied to new units or easily retrofitted to existing transformers. The parameters that are monitored are those that are most commonly evaluated when diagnosing the condition of a power transformer. A multiple gas monitor can selectively detect and measure hydrogen, carbon monoxide, and the combination of methane and ethane. The partial discharge monitor employs an electrical method to detect partial discharges that originate from sources only within the transformer. Prototype systems will be field tested in 1995.

  3. Medical data transformation using rewriting

    PubMed Central

    Ashish, Naveen; Toga, Arthur W.

    2015-01-01

    This paper presents a system for declaratively transforming medical subjects' data into a common data model representation. Our work is part of the “GAAIN” project on Alzheimer's disease data federation across multiple data providers. We present a general purpose data transformation system that we have developed by leveraging the existing state-of-the-art in data integration and query rewriting. In this work we have further extended the current technology with new formalisms that facilitate expressing a broader range of data transformation tasks, plus new execution methodologies to ensure efficient data transformation for disease datasets. PMID:25750622

  4. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  5. Precision bridge circuit using a temperature sensor

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor)

    1992-01-01

    A precision bridge measurement circuit connected to a current source providing a linear output voltage versus resistance change of a variable resistance (resistance temperature transducer) including a voltage follower in one branch of the bridge so that the zero setting of the transducer resistance does not depend upon the current source or upon an excitation voltage. The zero setting depends only on the precision and stability of the three resistances. By connecting the output of an instrumentation amplifier to a feedback resistor and then to the output of the voltage follower, minor nonlinearities in the resistance-vs-temperature output of a resistance-temperature transducer, such as a platinum temperature sensor, may be corrected. Sensors which have nonlinearity opposite in polarity to platinum, such as nickel-iron sensors, may be linearized by inserting an inverting amplifier into the feedback loop.

  6. Mapped Landmark Algorithm for Precision Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Ansar, Adnan; Matthies, Larry

    2007-01-01

    A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.

  7. The Age of Precision Cosmology

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  8. Centroid precision and orientation precision of planar localization microscopy.

    PubMed

    McGray, C; Copeland, C R; Stavis, S M; Geist, J

    2016-09-01

    The concept of localization precision, which is essential to localization microscopy, is formally extended from optical point sources to microscopic rigid bodies. Measurement functions are presented to calculate the planar pose and motion of microscopic rigid bodies from localization microscopy data. Physical lower bounds on the associated uncertainties - termed centroid precision and orientation precision - are derived analytically in terms of the characteristics of the optical measurement system and validated numerically by Monte Carlo simulations. The practical utility of these expressions is demonstrated experimentally by an analysis of the motion of a microelectromechanical goniometer indicated by a sparse constellation of fluorescent nanoparticles. Centroid precision and orientation precision, as developed here, are useful concepts due to the generality of the expressions and the widespread interest in localization microscopy for super-resolution imaging and particle tracking. PMID:26970565

  9. RF transformer

    DOEpatents

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  10. Influence of local topography on precision irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  11. Precision control of multiple quantum cascade lasers for calibration systems

    NASA Astrophysics Data System (ADS)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-01

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1-2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby, and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  12. Precision control of multiple quantum cascade lasers for calibration systems

    SciTech Connect

    Taubman, Matthew S. Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby, and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  13. Density Variations Observable by Precision Satellite Orbits

    NASA Astrophysics Data System (ADS)

    McLaughlin, C. A.; Lechtenberg, T.; Hiatt, A.

    2008-12-01

    This research uses precision satellite orbits from the Challenging Minisatellite Payload (CHAMP) satellite to produce a new data source for studying density changes that occur on time scales less than a day. Precision orbit derived density is compared to accelerometer derived density. In addition, the precision orbit derived densities are used to examine density variations that have been observed with accelerometer data to see if they are observable. In particular, the research will examine the observability of geomagnetic storm time changes and polar cusp features that have been observed in accelerometer data. Currently highly accurate density data is available from three satellites with accelerometers and much lower accuracy data is available from hundreds of satellites for which two-line element sets are available from the Air Force. This paper explores a new data source that is more accurate and has better temporal resolution than the two-line element sets, and provides better spatial coverage than satellites with accelerometers. This data source will be valuable for studying atmospheric phenomena over short periods, for long term studies of the atmosphere, and for validating and improving complex coupled models that include neutral density. The precision orbit derived densities are very similar to the accelerometer derived densities, but the accelerometer can observe features with shorter temporal variations. This research will quantify the time scales observable by precision orbit derived density. The technique for estimating density is optimal orbit determination. The estimates are optimal in the least squares or minimum variance sense. Precision orbit data from CHAMP is used as measurements in a sequential measurement processing and filtering scheme. The atmospheric density is estimated as a correction to an atmospheric model.

  14. FFTLog: Fast Fourier or Hankel transform

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2015-12-01

    FFTLog is a set of Fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a periodic sequence of logarithmically spaced points. FFTLog can be regarded as a natural analogue to the standard Fast Fourier Transform (FFT), in the sense that, just as the normal FFT gives the exact (to machine precision) Fourier transform of a linearly spaced periodic sequence, so also FFTLog gives the exact Fourier or Hankel transform, of arbitrary order m, of a logarithmically spaced periodic sequence.

  15. PRECISION FARMING FOR NITROGEN MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approaches to precision nitrogen management vary from region to region depending on crop, soils, landscape, and climate yet all strategies essentially attempt to estimate crop nitrogen demand or plant available nitrogen. In this chapter, we provide case studies that illustrate precision nitrogen ma...

  16. Precise-Conductance Valve Insert

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Hoyt, R. F.

    1986-01-01

    Valve modification provides two operating modes fully open and small, precise leak. Copper insert with radially oriented holes allows small, controllable, precise effusion rate when valve closed or nearly unobstructed flow when valve open. Numerous applications in surface physics, vacuum physics, materials science, gas kinetics, thin films, and other areas of research requiring measured flows of gas into or out of system.

  17. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  18. Study of the precision guided communication of digital television

    NASA Astrophysics Data System (ADS)

    Liu, Lun

    2012-04-01

    Along with the progress and development of the digital technology, there produced the transmission of the new media by medium of such as the network, mobile phones and the digital television, while among them digital TV has the superiority of other media. The appearance and development of digital TV will induce a profound change in the broadcasting and television industry chain. This paper started with discussing the transformation of digital television in profit model, mode of operation and mode of transmission to construct the precision-guided communication theory; And then analyzes the properties and marketing nature of the precision-guided communication to make the construction of the precision-guided communication marketing mode; And put forward the implementing of the precision-guided communication marketing strategies and concrete steps; At the end of the article the author summarized four conclusions.

  19. Precise Indoor Localization for Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kaijaluoto, R.; Hyyppä, A.

    2015-05-01

    Accurate 3D data is of high importance for indoor modeling for various applications in construction, engineering and cultural heritage documentation. For the lack of GNSS signals hampers use of kinematic platforms indoors, TLS is currently the most accurate and precise method for collecting such a data. Due to its static single view point data collection, excessive time and data redundancy are needed for integrity and coverage of data. However, localization methods with affordable scanners are used for solving mobile platform pose problem. The aim of this study was to investigate what level of trajectory accuracies can be achieved with high quality sensors and freely available state of the art planar SLAM algorithms, and how well this trajectory translates to a point cloud collected with a secondary scanner. In this study high precision laser scanners were used with a novel way to combine the strengths of two SLAM algorithms into functional method for precise localization. We collected five datasets using Slammer platform with two laser scanners, and processed them with altogether 20 different parameter sets. The results were validated against TLS reference. The results show increasing scan frequency improves the trajectory, reaching 20 mm RMSE levels for the best performing parameter sets. Further analysis of the 3D point cloud showed good agreement with TLS reference with 17 mm positional RMSE. With precision scanners the obtained point cloud allows for high level of detail data for indoor modeling with accuracies close to TLS at best with vastly improved data collection efficiency.

  20. Fundamental Limits of Scintillation Detector Timing Precision

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A−1/2 more than any other factor, we tabulated the parameter B, where R = BA−1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons/ns. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons/ns. PMID:24874216

  1. Fundamental limits of scintillation detector timing precision.

    PubMed

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2014-07-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A(-1/2) more than any other factor, we tabulated the parameter B, where R = BA(-1/2). An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons ns(-1). A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons ns(-1). PMID:24874216

  2. Hamlet's Transformation.

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    1997-12-01

    William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in 1571, contains the first technical use of the word "transformation." At age thirty, Thomas Digges went on to propose his Perfit Description, as alluded to in Act Five where Hamlet's age is given as thirty. In Act Five as well, the words "bore" and "arms" refer to Thomas' vocation as muster-master and his scientific interest in ballistics. England's leading astronomer was also the father of the poet whose encomium introduced the First Folio of 1623. His oldest child Dudley became a member of the Virginia Company and facilitated the writing of The Tempest. Taken as a whole, such manifold connections to Thomas Digges support Hotson's contention that Shakespeare knew the Digges family. Rosencrantz and Guildenstern in Hamlet bear Danish names because they personify the Danish model, while the king's name is latinized like that of Claudius Ptolemaeus. The reason Shakespeare anglicized "Amleth" to "Hamlet" was because he saw a parallel between Book Three of Saxo Grammaticus and the eventual triumph of the Diggesian model. But Shakespeare eschewed Book Four, creating this particular ending from an infinity of other possibilities because it "suited his purpose," viz. to celebrate the concept of a boundless universe of stars like the Sun.

  3. TRANSFORMER APPARATUS

    DOEpatents

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  4. Rotary Transformer

    NASA Technical Reports Server (NTRS)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  5. Corn transformed

    SciTech Connect

    Moffat, A.S.

    1990-08-10

    Researchers have produced fertile corn transformed with a foreign gene that makes the plants resistant to the herbicide bialaphos. This achievement, is the first report of fertile transgenic corn in the reviewed literature, and it is the capstone of almost a decade's efforts to genetically engineer this country's most important crop. The only other major crop to be so manipulated is rice. The ability produce transgenic corn gives biologists a valuable tool to probe the whys and hows of gene expression and regulation. It may also give plant breeders a way to develop new corn varieties with a speed and predictability that would be impossible with classical breeding techniques.

  6. Precision envelope detector and linear rectifier circuitry

    DOEpatents

    Davis, Thomas J.

    1980-01-01

    Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

  7. From "~" to Precision Science: Cosmology from 1995 to 2025

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc; Spergel, David N.

    2016-01-01

    Over the past decade and a half, astronomical measurements, primarily of fluctuations in the cosmic microwave background, have transformed cosmology from an order-of-magnitude game into a paragon of precision science. From these measurements has emerged a 6-parameter cosmological "standard model": a flat universe filled with dark matter and dark energy and seeded by a nearly scale-invariant spectrum of Gaussian random-phase density perturbations. The striking resemblance between these perturbations and those expected from inflation motivates the search for a unique "B-mode" signature of inflation in the polarization of the cosmic microwave background. While the fluctuation spectrum is close to scale invariant, WMAP, Planck and ground-based CMB experiments now have strong evidence for a departure from scale invariance in primordial perturbations. This suggests, in simple models of inflation that these B modes should be within striking distance within the next 5-10 years. The advent of a new generation of galaxy surveys will, over similar timescales, shed additional light not only on the physics of inflation, but also the nature of the dark matter and dark energy required by the current cosmological standard model, and perhaps on the new physics that determines the baryon density.

  8. Transformational leadership.

    PubMed

    Marlow, D L

    1996-01-01

    In these uncertain times in the healthcare industry, administrators are asked to do more with less time and resources. Because of the extended roles they are playing in today's organizations, radiology administrators are looked upon as agents of change. What leadership skills do they need in this turbulent and uncertain healthcare environment? What are the trait's of tomorrow's leaders? The transformational leader is the one who will guide us through this changing healthcare environment. Several behavioral patterns emerge as important traits for tomorrow's leaders to have-individual consideration, intellectual stimulation and charisma. Tomorrow's leader must view each person as an individual, showing genuine concern and belief in each person's ability to perform. Transformational leaders stimulate others by encouraging them to be curious and try new ideas. The final characteristic, charisma, is the ability to inspire others. Luckily, leaders are made, not born: today's leaders can learn to be responsive, to draw out new ideas from employees, and to communicate self-esteem, energy and enthusiasm. PMID:10163135

  9. High precision anatomy for MEG.

    PubMed

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-02-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  10. High precision anatomy for MEG☆

    PubMed Central

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-01-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1 mm. Estimates of relative co-registration error were < 1.5 mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6 month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5 mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  11. Needs and challenges in precision wear measurement

    SciTech Connect

    Blau, P.J.

    1996-01-10

    Accurate, precise wear measurements are a key element in solving both current wear problems and in basic wear research. Applications range from assessing durability of micro-scale components to accurate screening of surface treatments and thin solid films. Need to distinguish small differences in wear tate presents formidable problems to those who are developing new materials and surface treatments. Methods for measuring wear in ASTM standard test methods are discussed. Errors in using alterate methods of wear measurement on the same test specimen are also described. Human judgemental factors are a concern in common methods for wear measurement, and an experiment involving measurement of a wear scar by ten different people is described. Precision in wear measurement is limited both by the capabilities of the measuring instruments and by the nonuniformity of the wear process. A method of measuring wear using nano-scale indentations is discussed. Current and future prospects for incorporating advanced, higher-precision wear measurement methods into standards are considered.

  12. Pico-coulomb charge measured at BELLA to percent-level precision using a Turbo-ICT

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Mittelberger, D. E.; Gonsalves, A. J.; Daniels, J.; Mao, H.-S.; Stulle, F.; Bergoz, J.; Leemans, W. P.

    2016-03-01

    Precise diagnostics of picocoulomb level particle bunches produced by laser plasma accelerators (LPAs) can be a significant challenge. Without proper care, the small signals associated with such bunches can be dominated by a background generated by laser, target, laser-plasma interaction and particle induced radiation. In this paper, we report on first charge measurements using the newly developed Turbo-ICT for LPAs. We outline the Turbo-ICT working principle, which allows precise sub-picocoulomb measurements even in the presence of significant background signals. A comparison of the Turbo-ICT, a conventional integrating current transformer (ICT) and a scintillating screen (Lanex) was carried out at the Berkeley Lab Laser Accelerator. Results show that the Turbo-ICT can measure sub-picocoulomb charge accurately and has significantly improved noise immunity compared to the ICT.

  13. Gain-assisted transformation optics.

    PubMed

    Han, Tiancheng; Qiu, Cheng-Wei; Hao, Jiaming; Tang, Xiaohong; Zouhdi, Said

    2011-04-25

    Loss severely degrades the cloaking effect of the device designed by traditional transformation. In this letter, we propose gain-assisted transformation optics to overcome the loss problem by introducing gain media into a spherical cloak. The gain media, which can amplify the electromagnetic fields, is controlled precisely to compensate the inherent loss in experimental realization of cloaks. We discuss the significance of controlling embedded gain materials in the context of the inverse design mechanism, which allows us to wisely select realizable materials with constant gain and loss along the radius. For practical realizations, isotropic spherical gain-assisted cloak is designed. Full-wave simulations validate the proposed design concept, which can be utilized to alleviate the inevitable loss problem in transformational optical devices. PMID:21643112

  14. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  15. Precise radial velocities in the near infrared

    NASA Astrophysics Data System (ADS)

    Redman, Stephen L.

    Since the first detection of a planet outside our Solar System byWolszczan & Frail (1992), over 500 exoplanets have been found to date2, none of which resemble the Earth. Most of these planets were discovered by measuring the radial velocity (hereafter, RV) of the host star, which wobbles under the gravitational influence of any existing planetary companions. However, this method has yet to achieve the sub-m/s precision necessary to detect an Earth-mass planet in the Habitable Zone (the region around a star that can support liquid water; hereafter, HZ) (Kasting et al. 1993) around a Solar-type star. Even though Kepler (Borucki et al. 2010) has announced several Earth-sized HZ candidates, these targets will be exceptionally difficult to confirm with current astrophysical spectrographs (Borucki et al. 2011). The fastest way to discover and confirm potentiallyhabitable Earth-mass planets is to observe stars with lower masses - in particular, late M dwarfs. While M dwarfs are readily abundant, comprising some 70% of the local stellar population, their low optical luminosity presents a formidable challenge to current optical RV instruments. By observing in the near-infrared (hereafter, NIR), where the flux from M dwarfs peaks, we can potentially reach low RV precisions with significantly less telescope time than would be required by a comparable optical instrument. However, NIR precision RV measurements are a relatively new idea and replete with challenges: IR arrays, unlike CCDs, are sensitive to the thermal background; modal noise is a bigger issue in the NIR than in the optical; and the NIR currently lacks the calibration sources like the very successful thorium-argon (hereafter, ThAr) hollow-cathode lamp and Iodine gas cell of the optical. The PSU Pathfinder (hereafter, Pathfinder) was designed to explore these technical issues with the intention of mitigating these problems for future NIR high-resolution spectrographs, such as the Habitable-Zone Planet Finder (HZPF

  16. Circle Works: Transforming Eurocentric Consciousness.

    ERIC Educational Resources Information Center

    Graveline, Fyre Jean

    This book documents an effort to interrupt current Aboriginal/European power relations and transform "business as usual" by altering prevailing social relations in a Canadian college classroom. The foundations of currently dominant Western educational models emphasize individual adaptation and skill development in response to the demands of the…

  17. Magnetic bead detection using nano-transformers.

    PubMed

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level. PMID:20972313

  18. Fiber Scrambling for High Precision Spectrographs

    NASA Astrophysics Data System (ADS)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  19. Student-Friendly Precision Pendulum.

    ERIC Educational Resources Information Center

    Peters, Randall D.

    1999-01-01

    Provides information to help students easily measure gravitational field strength to a few parts in 10,000, a degree of precision 1-2 orders of magnitude better than can be achieved with the simple pendulum. (CCM)

  20. Watch the Children: Precision Referring

    ERIC Educational Resources Information Center

    Hiltbrunner, Curtis L.; Vasa, Stanley F.

    1974-01-01

    The Precision Referral Form (PRF) is described as a quick, accurate and easy instrument that enables teachers to communicate learning and behavior problems of students to resource or ancillary personnel and to pinpoint students' behaviors. (GW)

  1. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  2. Improved precision-guaranteed quantum tomography

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takanori

    Quantum tomography is one of the standard tool in current quantum information experiments for verifying that a state/process/measurement prepared in the lab is close to an ideal target. Precision-guaranteed quantum tomography (Sugiyama, Turner, Murao, PRL 111, 160406 2013) gives rigorous error bars on a result estimated from arbitrary finite data sets from any given informationally complete tomography experiments. The rigorous error bars were derived with a real-valued concentration inequality called Hoeffding's inequality. In this talk, with a vector-valued concentration inequality, we provide an improved version of the error bars of precision-guaranteed quantum tomography. We examine the new error bars for specific cases of multi-qubit systems and numerically show that the degree of improvement becomes large as the dimension of the system increases. Supported by JSPS Research Fellowships for Young Scientists H27-276 and JSPS Postdoctoral Fellowships for Research Abroad H25-32.

  3. Assessing the Accuracy of the Precise Point Positioning Technique

    NASA Astrophysics Data System (ADS)

    Bisnath, S. B.; Collins, P.; Seepersad, G.

    2012-12-01

    The Precise Point Positioning (PPP) GPS data processing technique has developed over the past 15 years to become a standard method for growing categories of positioning and navigation applications. The technique relies on single receiver point positioning combined with the use of precise satellite orbit and clock information and high-fidelity error modelling. The research presented here uniquely addresses the current accuracy of the technique, explains the limits of performance, and defines paths to improvements. For geodetic purposes, performance refers to daily static position accuracy. PPP processing of over 80 IGS stations over one week results in few millimetre positioning rms error in the north and east components and few centimetres in the vertical (all one sigma values). Larger error statistics for real-time and kinematic processing are also given. GPS PPP with ambiguity resolution processing is also carried out, producing slight improvements over the float solution results. These results are categorised into quality classes in order to analyse the root error causes of the resultant accuracies: "best", "worst", multipath, site displacement effects, satellite availability and geometry, etc. Also of interest in PPP performance is solution convergence period. Static, conventional solutions are slow to converge, with approximately 35 minutes required for 95% of solutions to reach the 20 cm or better horizontal accuracy. Ambiguity resolution can significantly reduce this period without biasing solutions. The definition of a PPP error budget is a complex task even with the resulting numerical assessment, as unlike the epoch-by-epoch processing in the Standard Position Service, PPP processing involving filtering. An attempt is made here to 1) define the magnitude of each error source in terms of range, 2) transform ranging error to position error via Dilution Of Precision (DOP), and 3) scale the DOP through the filtering process. The result is a deeper

  4. Precision agriculture suitability to improve the terroir management in vineyard

    NASA Astrophysics Data System (ADS)

    María Terrón López, Jose; Blanco gallego, Jorge; Jesús Moral García, Francisco; Mancha Ramírez, Luis Alberto; Uriarte Hernández, David; Rafael Marques da Silva, Jose

    2014-05-01

    Precision agriculture is a useful tool to assess plant growth and development in vineyards. Traditional technics of crop management may be not enough to keep a certain level of crop yield or quality in grapes. Vegetation indices and soil based measurements, such as apparent electrical conductivity (ECa), can estimate the variability of the terroir within a specific water treatment toward the control of grapevine canopy properties. The current study focused on establishing the variability, spatial and temporal, in the vegetative development of a traditional management vineyard through to technics related to the precision agriculture. The study was carry out in a vineyard in the southwest of Spain during 2012 and 2013 growing seasons with two irrigations treatments, with four plots of each one, by one hand vines irrigated at 100% of crop evapotranspiration (ETc) and by other hand a dry farmed wines. Variations of soil properties across the assay were measured in each year at flowering stage by means of ECa, up to 80 cm. of soil depth, using mobile electrical contact sensors. Normalized difference vegetation index (NDVI) was determined in a concept of proximal sensing. In fact, the measures were made by multispectral sensors mounted in a terrestrial vehicle, in vertical positioning, at different stages during the ripening in both growing seasons. All measured data were statistically transformed to a behavior modeling pattern using principal component analisys (PCA) and compared by ordinary least square (OLS). NDVI showed a well-established pattern of vegetative development in both growing season for all the treatments at any irrigation treatment, let us appreciate the differences among the vegetative development of each plot within a specific irrigation treatment derived from the high soil variation that the ECa measures reflected. In this way, the local terroir of each plot and irrigation treatment influenced the vegetative growth showing that soil variations had a

  5. KamLAND's precision neutrino oscillation measurements

    NASA Astrophysics Data System (ADS)

    Decowski, M. P.

    2016-07-01

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δ m212 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν‾e). The collaboration also reported on a variety of other topics related to particle and astroparticle physics.

  6. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  7. Herbicide Transformation

    PubMed Central

    Lanzilotta, R. P.; Pramer, David

    1970-01-01

    A strain of Fusarium solani isolated from soil by enrichment techniques used propanil (3′, 4′-dichloropropionanilide) as a sole source of organic carbon and energy for growth in pure culture. The primary product of the transformation of propanil by F. solani was isolated and identified as 3,4-dichloroaniline (DCA). This compound accumulated in the medium to a level (80 μg/ml) which stopped further herbicide utilization. Herbicide utilization by F. solani was influenced by various environmental and nutritional factors. It was more sensitive to acid than alkaline pH. Added glucose and yeast extract increased the rate of propanil decomposition, and the reduced aeration retarded growth of the fungus and herbicide utilization. The growth of F. solani on propionate was inhibited by added DCA. Images PMID:5437305

  8. The GBT precision telescope control system

    NASA Astrophysics Data System (ADS)

    Prestage, Richard M.; Constantikes, Kim T.; Balser, Dana S.; Condon, James J.

    2004-10-01

    The NRAO Robert C. Byrd Green Bank Telescope (GBT) is a 100m diameter advanced single dish radio telescope designed for a wide range of astronomical projects with special emphasis on precision imaging. Open-loop adjustments of the active surface, and real-time corrections to pointing and focus on the basis of structural temperatures already allow observations at frequencies up to 50GHz. Our ultimate goal is to extend the observing frequency limit up to 115GHz; this will require a two dimensional tracking error better than 1.3", and an rms surface accuracy better than 210μm. The Precision Telescope Control System project has two main components. One aspect is the continued deployment of appropriate metrology systems, including temperature sensors, inclinometers, laser rangefinders and other devices. An improved control system architecture will harness this measurement capability with the existing servo systems, to deliver the precision operation required. The second aspect is the execution of a series of experiments to identify, understand and correct the residual pointing and surface accuracy errors. These can have multiple causes, many of which depend on variable environmental conditions. A particularly novel approach is to solve simultaneously for gravitational, thermal and wind effects in the development of the telescope pointing and focus tracking models. Our precision temperature sensor system has already allowed us to compensate for thermal gradients in the antenna, which were previously responsible for the largest "non-repeatable" pointing and focus tracking errors. We are currently targetting the effects of wind as the next, currently uncompensated, source of error.

  9. Single Mode, Extreme Precision Doppler Spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  10. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1996-06-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

  11. LANSCE beam current limiter

    SciTech Connect

    Gallegos, F.R.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the beam current limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beamline below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described. {copyright} {ital 1997 American Institute of Physics.}

  12. High precision kinematic surveying with laser scanners

    NASA Astrophysics Data System (ADS)

    Gräfe, Gunnar

    2007-12-01

    The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.

  13. Dynamically tunable transformation thermodynamics

    NASA Astrophysics Data System (ADS)

    García-Meca, Carlos; Barceló, Carlos

    2016-04-01

    Recently, the introduction of transformation thermodynamics has provided a way to design thermal media that alter the flow of heat according to any spatial deformation, enabling the construction of novel devices such as thermal cloaks or concentrators. However, in its current version, this technique only allows static deformations of space. Here, we develop a space–time theory of transformation thermodynamics that incorporates the possibility of performing time-varying deformations. This extra freedom greatly widens the range of achievable effects, providing an additional degree of control for heat management applications. As an example, we design a reconfigurable thermal cloak that can be opened and closed dynamically, therefore being able to gradually adjust the temperature distribution of a given region.

  14. Precise excision of plastid DNA by the large serine recombinase Bxb1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To elucidate the precise excision of transgene, tobacco plastid genome was transformed with a vector (pTCH-BxbPB) that contains a stuffer DNA fragment flanked by directly oriented attB and attP recognition sites for the Bxb1 recombinase. The transformed plastid genomes containing the recognition si...

  15. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    SciTech Connect

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasers during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  16. High-precision thermal and electrical characterization of thermoelectric modules

    SciTech Connect

    Kolodner, Paul

    2014-05-15

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0–10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  17. Precision Event Simulation for Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Hoeche, Stefan

    2016-03-01

    Hadron colliders are workhorses of particle physics, enabling scientific breakthroughs such as the discovery of the Higgs boson. Hadron beams reach the highest energies, but they also produce very complex collisions. Studying the underlying dynamics requires involved multi-particle calculations. Over the past decades Monte-Carlo simulation programs were developed to tackle this task. They have by now evolved into precision tools for theorists and experimenters alike. This talk will give an introduction to event generators and discuss the current status of development.

  18. Precision Fiber Optic Sensor Market Forecast

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeff D.; Glasco, Jon; Dixon, Frank W.

    1986-01-01

    The worldwide market for precision fiber optic sensors is forecasted, 1984-1994. The forecast is based upon o Analysis of fiber optic sensor and related component current technology, and a forecast of technology advancement o Review and projection of demand for precision sensing, and the penetration which fiber optics will make into this market The analysis and projections are based mainly on interviews conducted worldwide with research teams, government agencies, systems contractors, medical and industrial laboratories, component suppliers and others. The worldwide market for precision (interferometric) fiber optic sensing systems is forecasted to exceed $0.8 billion by 1994. The forecast is segmented by geographical region (Europe, Japan and North America) and by function; o Gyroscope o Sonar o Gradiometer/Magnetometer o Other - Chemical Composition - Atmospheric Acoustic - Temperature - Position - Pressure Requirements for components are reviewed. These include special fiber, emitters and detectors, modulators, couplers, switches, integrated optical circuits and integrated optoelectronics. The advancement in component performance is forecasted. The major driving forces creating fiber optic sensor markets are reviewed. These include fiber optic sensor technical and economic advantages, increasingly stringent operational requirements, and technology evolution. The leading fiber optic sensor and related component development programs are reviewed. Component sources are listed. Funding sources for sensor and component development are outlined, and trends forecasted.

  19. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  20. A precision mechanical nerve stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1988-01-01

    An electromechanical device, used to apply and monitor stimulating pulses to a mammalian motor nerve, has been successfully developed at NASA Langley Research Center. Two existing force transducers, a flight skin friction balance and a miniature skin friction balance which were designed for making aerodynamic drag measurements, were modified and incorporated to form this precision instrument. The nerve stimulator is a type one servomechanism capable of applying and monitoring stimulating pulses of 0 to 10 grams with a precision of better than +/- 0.05 grams. Additionally, the device can be independently used to apply stimulating pulses by displacing the nerve from 0 to 0.25 mm with a precision of better than +/- 0.001 mm while measuring the level of the load applied.

  1. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.

  2. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  3. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  4. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  5. TURNING PRECISION AGRICULTURE INFORMATION INTO PRECISION CONSERVATION DECISIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For over a decade (1991-2003), precision agriculture methods were used to intensively monitor crop, soil, and water quality information on a typical claypan-soil field in Missouri. Many field properties were found to vary greatly within this somewhat flat, uniform-looking field, including grain yiel...

  6. Workshop on Precision Measurements of $\\alpha_s$

    SciTech Connect

    Bethke, Siegfried; Hoang, Andre H.; Kluth, Stefan; Schieck, Jochen; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

    2011-10-01

    These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

  7. Light leptonic new physics at the precision frontier

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias

    2016-06-01

    Precision probes of new physics are often interpreted through their indirect sensitivity to short-distance scales. In this proceedings contribution, we focus on the question of which precision observables, at current sensitivity levels, allow for an interpretation via either short-distance new physics or consistent models of long-distance new physics, weakly coupled to the Standard Model. The electroweak scale is chosen to set the dividing line between these scenarios. In particular, we find that inverse see-saw models of neutrino mass allow for light new physics interpretations of most precision leptonic observables, such as lepton universality, lepton flavor violation, but not for the electron EDM.

  8. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  9. Precision protection through indirect correlations

    NASA Astrophysics Data System (ADS)

    Jin, Yao

    2016-04-01

    The dynamics of the quantum Fisher information of the parameters of the initial atomic state is studied, in the framework of open quantum systems, for a pair of static two-level atoms coupled to a bath of fluctuating vacuum scalar fields. Our results show that the correlations between the two atoms as well as the precision limit in quantum metrology are determined by the separation between the two atoms. Remarkably, when the separation between the two atoms approaches zero, the quantum Fisher information, thus the precision limit of the estimation of the parameters of the initial atomic state will be survived from the vacuum fluctuations after long time evolution.

  10. PRECISION RADIAL VELOCITIES WITH CSHELL

    SciTech Connect

    Crockett, Christopher J.; Prato, L.; Mahmud, Naved I.; Johns-Krull, Christopher M.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: lprato@lowell.edu E-mail: cmj@rice.edu

    2011-07-10

    Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.

  11. Universal precision sine bar attachment

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D. (Inventor)

    1989-01-01

    This invention relates to an attachment for a sine bar which can be used to perform measurements during lathe operations or other types of machining operations. The attachment can be used for setting precision angles on vises, dividing heads, rotary tables and angle plates. It can also be used in the inspection of machined parts, when close tolerances are required, and in the layout of precision hardware. The novelty of the invention is believed to reside in a specific versatile sine bar attachment for measuring a variety of angles on a number of different types of equipment.

  12. Top Compositeness and Precision Unification

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Contino, Roberto; Sundrum, Raman

    2005-10-01

    The evolution of standard model gauge couplings is studied in a nonsupersymmetric scenario in which the hierarchy problem is resolved by Higgs compositeness above the weak scale. It is argued that massiveness of the top quark combined with precision tests of the bottom quark imply that the right-handed top must also be composite. If, further, the standard model gauge symmetry is embedded into a simple subgroup of the unbroken composite-sector flavor symmetry, then precision coupling unification is shown to occur at ˜1015GeV, to a degree comparable to supersymmetric unification.

  13. Microbiopsy/precision cutting devices

    DOEpatents

    Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.

    1999-07-27

    Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.

  14. Microbiopsy/precision cutting devices

    DOEpatents

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    1999-01-01

    Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.

  15. Ultrafast Fourier-transform parallel processor

    SciTech Connect

    Greenberg, W.L.

    1980-04-01

    A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.

  16. Improving the Precision of Astrometry for Space Debris

    NASA Astrophysics Data System (ADS)

    Sun, Rongyu; Zhao, Changyin; Zhang, Xiaoxiang

    2014-03-01

    The data reduction method for optical space debris observations has many similarities with the one adopted for surveying near-Earth objects; however, due to several specific issues, the image degradation is particularly critical, which makes it difficult to obtain precise astrometry. An automatic image reconstruction method was developed to improve the astrometry precision for space debris, based on the mathematical morphology operator. Variable structural elements along multiple directions are adopted for image transformation, and then all the resultant images are stacked to obtain a final result. To investigate its efficiency, trial observations are made with Global Positioning System satellites and the astrometry accuracy improvement is obtained by comparison with the reference positions. The results of our experiments indicate that the influence of degradation in astrometric CCD images is reduced, and the position accuracy of both objects and stellar stars is improved distinctly. Our technique will contribute significantly to optical data reduction and high-order precision astrometry for space debris.

  17. Improving the precision of astrometry for space debris

    SciTech Connect

    Sun, Rongyu; Zhao, Changyin; Zhang, Xiaoxiang

    2014-03-01

    The data reduction method for optical space debris observations has many similarities with the one adopted for surveying near-Earth objects; however, due to several specific issues, the image degradation is particularly critical, which makes it difficult to obtain precise astrometry. An automatic image reconstruction method was developed to improve the astrometry precision for space debris, based on the mathematical morphology operator. Variable structural elements along multiple directions are adopted for image transformation, and then all the resultant images are stacked to obtain a final result. To investigate its efficiency, trial observations are made with Global Positioning System satellites and the astrometry accuracy improvement is obtained by comparison with the reference positions. The results of our experiments indicate that the influence of degradation in astrometric CCD images is reduced, and the position accuracy of both objects and stellar stars is improved distinctly. Our technique will contribute significantly to optical data reduction and high-order precision astrometry for space debris.

  18. Precision luminosity measurements at LHCb

    NASA Astrophysics Data System (ADS)

    The LHCb Collaboration

    2014-12-01

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider.

  19. Precision Machining Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This curriculum guide was developed from a Technical Committee Report prepared with the assistance of industry personnel and containing a Task List which is the basis of the guide. It presents competency-based program standards for courses in precision machining technology and is part of the Idaho Vocational Curriculum Guide Project, a cooperative…

  20. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  1. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The emphasis of this grant was focused on precision ephemerides for the Global Positioning System (GPS) satellites for geodynamics applications. During the period of this grant, major activities were in the areas of thermal force modeling, numerical integration accuracy improvement for eclipsing satellites, analysis of GIG '91 campaign data, and the Southwest Pacific campaign data analysis.

  2. Precision Efficacy Analysis for Regression.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.

    When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…

  3. Sensor fusion for precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information-based management of crop production systems known as precision agriculture relies on different sensor technologies aimed at characterization of spatial heterogeneity of a cropping environment. Remote and proximal sensing systems have been deployed to obtain high-resolution data pertainin...

  4. Precision Agriculture and Nutrient Cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture (PA) refers to the practice of managing agronomic inputs according to specific needs across the landscape. The major impediment to implement the adoption of PA is the development of decision-support systems. One way to achieve this objective is to integrate crop simulation mode...

  5. Precision orbit computations for Starlette

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Williamson, R. G.

    1976-01-01

    The Starlette satellite, launched in February 1975 by the French Centre National d'Etudes Spatiales, was designed to minimize the effects of nongravitational forces and to obtain the highest possible accuracy for laser range measurements. Analyses of the first four months of global laser tracking data confirmed the stability of the orbit and the precision to which the satellite's position is established.

  6. Ground test validation for precision structures

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Garba, John A.; Fanson, James L.

    1991-01-01

    Future proposed NASA missions will require large precision truss type structures that are deployed or assembled in space. To date, space structures that are important to missions success have been ground tested to validate their performance. Evaluation of the performance requirements of future systems has shown that using current and projected design and test approaches, the structure cannot be adequately validated by ground test. A problem exists since it is believed that unless important structure systems can be validated by ground tests, they will never be adopted for future missions. New design or ground test approaches are necessary to enable future missions. The inability of current approaches to validate future structural systems is discussed.

  7. Fourier-transform optical microsystems

    NASA Technical Reports Server (NTRS)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  8. Transformation optics, curvature and beyond (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McCall, Martin W.

    2016-04-01

    Although the transformation algorithm is very well established and implemented, some intriguing questions remain unanswered. 1) In what precise mathematical sense is the transformation optics algorithm `exact'? The invariance of Maxwell's equations is well understood, but in what sense does the same principle not apply to acoustics (say)? 2) Even if the fields are transformed in a way that apparently mimic vacuum perfectly, it is easy to construct very simple examples where the impedance of the transformed medium is no longer isotropic and homogeneous. This would seem to imply a fundamental shortcoming in any claim that electromagnetic cloaking has been reduced to technology. 3) Transformations are known to exist that introduce a discrepancy between the Poynting vector and the wave-vector. Does this distinction carry any physical significance? We have worked extensively on understanding a commonality between transformation theories that operates at the level of rays - being interpreted as geodesics of an appropriate manifold. At this level we now understand that the *key* problem underlying all attempts to unify the transformational approach to disparate areas of physics is how to relate the transformation of the base metric (be it Euclidean for spatial transformation optics, or Minkowskian for spacetime transformation optics) to the medium parameters of a given physical domain (e.g. constitutive parameters for electromagnetism, bulk modulus and mass density for acoustics, diffusion constant and number density for diffusion physics). Another misconception we will seek to address is the notion of the relationship between transformation optics and curvature. Many have indicated that transformation optics evinces similarities with Einstein's curvature of spacetime. Here we will show emphatically that transformation optics cannot induce curvature. Inducing curvature in an electromagnetic medium requires the equivalent of a gravitational source. We will propose a scheme

  9. Module Ten: Transformers; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module introduces a very important electrical device, the transformer. The module is divided into six lessons: transformer construction, transformer theory and operation, turns and voltage ratios, power and current, transformer efficiency, and semiconductor rectifiers. Each lesson consists of an overview, a list of study resources, lesson…

  10. Transforming Lives, Transforming Communities: Conceptual Framework for Further Education Curriculum.

    ERIC Educational Resources Information Center

    Bradshaw, Delia

    A new conceptual framework for further education has been developed as part of the reforms currently being undertaken by Australia's Adult, Community, and Further Education Board. Four key principles underpin the curriculum framework: multiplicity, connectedness, critical intelligence, and transformation. According to the framework, educational…

  11. Environment-Assisted Precision Measurement

    SciTech Connect

    Goldstein, G.; Maze, J. R.; Lukin, M. D.; Cappellaro, P.; Hodges, J. S.; Jiang, L.; Soerensen, A. S.

    2011-04-08

    We describe a method to enhance the sensitivity of precision measurements that takes advantage of the environment of a quantum sensor to amplify the response of the sensor to weak external perturbations. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas that are coupled strongly to the sensor qubit; it does not depend on the exact values of the coupling strengths and is resilient to many forms of decoherence. The method achieves nearly Heisenberg-limited precision measurement, using a novel class of entangled states. We discuss specific applications to improve clock sensitivity using trapped ions and magnetic sensing based on electronic spins in diamond.

  12. Environment-assisted precision measurement.

    PubMed

    Goldstein, G; Cappellaro, P; Maze, J R; Hodges, J S; Jiang, L; Sørensen, A S; Lukin, M D

    2011-04-01

    We describe a method to enhance the sensitivity of precision measurements that takes advantage of the environment of a quantum sensor to amplify the response of the sensor to weak external perturbations. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas that are coupled strongly to the sensor qubit; it does not depend on the exact values of the coupling strengths and is resilient to many forms of decoherence. The method achieves nearly Heisenberg-limited precision measurement, using a novel class of entangled states. We discuss specific applications to improve clock sensitivity using trapped ions and magnetic sensing based on electronic spins in diamond. PMID:21561175

  13. High Precision CCD Imaging Polarimetry

    NASA Astrophysics Data System (ADS)

    Magalhaes, A. M.; Rodrigues, C. V.; Margoniner, V. E.; Pereyra, A.; Heathcote, S.; Coyne, G. V.

    1994-12-01

    We describe a recent modification to the direct CCD Cameras at CTIO and LNA (Brazil) observatories in order to allow for high precision optical polarimetry. We make use of a rotating achromatic half-wave plate as a retarder and a Savart plate as analyser. Cancellation of sky polarization and independence of the CCD flat field correction are among the advantages of the arrangement. We show preliminary data that indicate the high polarimetric precision achievable with the method for non-extended sources. We give a brief description of the on-going observational programs employing the technique. Polarimetry of extended objects can be performed by using a Polaroid sheet in place of the Savart plate. Use of the Savart plate with such fields can also be valuable in the reduction, and analysis, of the extended source images as it provides polarization data on the non-extended objects in the field.

  14. Toward precision medicine in Parkinson’s disease

    PubMed Central

    Bu, Lu-Lu; Yang, Ke; Xiong, Wei-Xi; Liu, Feng-Tao; Anderson, Boyd; Wang, Ye

    2016-01-01

    Precision medicine refers to an innovative approach selected for disease prevention and health promotion according to the individual characteristics of each patient. The goal of precision medicine is to formulate prevention and treatment strategies based on each individual with novel physiological and pathological insights into a certain disease. A multidimensional data-driven approach is about to upgrade “precision medicine” to a higher level of greater individualization in healthcare, a shift towards the treatment of individual patients rather than treating a certain disease including Parkinson’s disease (PD). As one of the most common neurodegenerative diseases, PD is a lifelong chronic disease with clinical and pathophysiologic complexity, currently it is treatable but neither preventable nor curable. At its advanced stage, PD is associated with devastating chronic complications including both motor dysfunction and non-motor symptoms which impose an immense burden on the life quality of patients. Advances in computational approaches provide opportunity to establish the patient’s personalized disease data at the multidimensional levels, which finally meeting the need for the current concept of precision medicine via achieving the minimal side effects and maximal benefits individually. Hence, in this review, we focus on highlighting the perspectives of precision medicine in PD based on multi-dimensional information about OMICS, molecular imaging, deep brain stimulation (DBS) and wearable sensors. Precision medicine in PD is expected to integrate the best evidence-based knowledge to individualize optimal management in future health care for those with PD. PMID:26889479

  15. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the

  16. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  17. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  18. Method for grinding precision components

    DOEpatents

    Ramanath, Srinivasan; Kuo, Shih Yee; Williston, William H.; Buljan, Sergej-Tomislav

    2000-01-01

    A method for precision cylindrical grinding of hard brittle materials, such as ceramics or glass and composites comprising ceramics or glass, provides material removal rates as high as 19-380 cm.sup.3 /min/cm. The abrasive tools used in the method comprise a strong, light weight wheel core bonded to a continuous rim of abrasive segments containing superabrasive grain in a dense metal bond matrix.

  19. Opportunities for the Cardiovascular Community in the Precision Medicine Initiative.

    PubMed

    Shah, Svati H; Arnett, Donna; Houser, Steven R; Ginsburg, Geoffrey S; MacRae, Calum; Mital, Seema; Loscalzo, Joseph; Hall, Jennifer L

    2016-01-12

    The Precision Medicine Initiative recently announced by President Barack Obama seeks to move the field of precision medicine more rapidly into clinical care. Precision medicine revolves around the concept of integrating individual-level data including genomics, biomarkers, lifestyle and other environmental factors, wearable device physiological data, and information from electronic health records to ultimately provide better clinical care to individual patients. The Precision Medicine Initiative as currently structured will primarily fund efforts in cancer genomics with longer-term goals of advancing precision medicine to all areas of health, and will be supported through creation of a 1 million person cohort study across the United States. This focused effort on precision medicine provides scientists, clinicians, and patients within the cardiovascular community an opportunity to work together boldly to advance clinical care; the community needs to be aware and engaged in the process as it progresses. This article provides a framework for potential involvement of the cardiovascular community in the Precision Medicine Initiative, while highlighting significant challenges for its successful implementation. PMID:27028435

  20. Precision optical metrology without lasers

    NASA Astrophysics Data System (ADS)

    Bergmann, Ralf B.; Burke, Jan; Falldorf, Claas

    2015-07-01

    Optical metrology is a key technique when it comes to precise and fast measurement with a resolution down to the micrometer or even nanometer regime. The choice of a particular optical metrology technique and the quality of results depends on sample parameters such as size, geometry and surface roughness as well as user requirements such as resolution, measurement time and robustness. Interferometry-based techniques are well known for their low measurement uncertainty in the nm range, but usually require careful isolation against vibration and a laser source that often needs shielding for reasons of eye-safety. In this paper, we concentrate on high precision optical metrology without lasers by using the gradient based measurement technique of deflectometry and the finite difference based technique of shear interferometry. Careful calibration of deflectometry systems allows one to investigate virtually all kinds of reflecting surfaces including aspheres or free-form surfaces with measurement uncertainties below the μm level. Computational Shear Interferometry (CoSI) allows us to combine interferometric accuracy and the possibility to use cheap and eye-safe low-brilliance light sources such as e.g. fiber coupled LEDs or even liquid crystal displays. We use CoSI e.g. for quantitative phase contrast imaging in microscopy. We highlight the advantages of both methods, discuss their transfer functions and present results on the precision of both techniques.

  1. Queering Transformation in Higher Education

    ERIC Educational Resources Information Center

    Msibi, Thabo

    2013-01-01

    Transformation in higher education has tended to focus on race and sex, at the expense of other forms of discrimination. This article addresses the silencing of "queer" issues in higher education. Using queer theory as a framework, and drawing on current literature, popular media reports, two personal critical incidents and a project…

  2. Plasma Gradient Piston: a new approach to precision pulse shaping

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.

    2011-10-01

    We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

  3. Precise charge measurement for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim

    2011-10-01

    A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and

  5. WAVEMOTH-FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION

    SciTech Connect

    Seljebotn, D. S.

    2012-03-01

    We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L{sup 2}log{sup 2} L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L {approx} 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.

  6. Precision Subsampling System for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Paulsen, G.; Mellerowicz, B.; ten Kate, I. L.; Conrad, P.; Corrigan, C. M.; Li, X.

    2012-01-01

    The ability to analyze heterogeneous rock samples at fine spatial scales would represent a powerful addition to our planetary in situ analytical toolbox. This is particularly true for Mars, where the signatures of past environments and, potentially, habitability are preserved in chemical and morphological variations across sedimentary layers and among mineral pr.ases in a given rock specimen. On Earth, microbial life often associates with surfaces at the interface of chemical nutrients, and ultimately retains sub-millimeter to millimeter-scale layer confinement in fossilization. On Mars, and possibly other bodies, trace chemical markers (elemental, organic/molecular, isotopic, chiral, etc.) and fine-scale morphological markers (e.g., micro-fossils) may he too subtle, degraded, or ambiguous to be detected, using miniaturized instrumentation, without some concentration or isolation. This is because (i) instrument sensitivity may not be high enough to detect trace markers in bulk averages; and (ii) instrument slectiviry may not be sufficient to distinguish such markers from interfering/counteracting signals from the bulk. Moreover from a fundamental chemostratigraphic perspective there would be a great benefit to assessing specific chemical and stable isotopic gradients, over millimeter-to-centimeter scales and beyond, with higher precision than currently possible in situ. We have developed a precision subsampling system (PSS) that addresses this need while remaining relatively flexible to a variety of instruments that may take advantage of the capability on future missions. The PSS is relevant to a number of possible lander/rover missions, especially Mars Sample Return. Our specific PSS prototype is undergoing testing under Mars ambient conditions, on a variety of natural analog rocks and rock drill cores, using a set of complementary flight-compatible measurement techniques. The system is available for testing with other contact instruments that may benefit from

  7. New High Precision Linelist of H_3^+

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Perry, Adam J.; Markus, Charles; Jenkins, Paul A., II; Kocheril, G. Stephen; McCall, Benjamin J.

    2014-06-01

    As the simplest polyatomic molecule, H_3^+ serves as an ideal benchmark for theoretical predictions of rovibrational energy levels. By strictly ab initio methods, the current accuracy of theoretical predictions is limited to an impressive one hundredth of a wavenumber, which has been accomplished by consideration of relativistic, adiabatic, and non-adiabatic corrections to the Born-Oppenheimer PES. More accurate predictions rely on a treatment of quantum electrodynamic effects, which have improved the accuracies of vibrational transitions in molecular hydrogen to a few MHz. High precision spectroscopy is of the utmost importance for extending the frontiers of ab initio calculations, as improved precision and accuracy enable more rigorous testing of calculations. Additionally, measuring rovibrational transitions of H_3^+ can be used to predict its forbidden rotational spectrum. Though the existing data can be used to determine rotational transition frequencies, the uncertainties are prohibitively large. Acquisition of rovibrational spectra with smaller experimental uncertainty would enable a spectroscopic search for the rotational transitions. The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS has been previously used to precisely and accurately measure transitions of H_3^+, CH_5^+, and HCO^+ to sub-MHz uncertainty. A second module for our optical parametric oscillator has extended our instrument's frequency coverage from 3.2-3.9 μm to 2.5-3.9 μm. With extended coverage, we have improved our previous linelist by measuring additional transitions. O. L. Polyansky, et al. Phil. Trans. R. Soc. A (2012), 370, 5014--5027. J. Komasa, et al. J. Chem. Theor. Comp. (2011), 7, 3105--3115. C. M. Lindsay, B. J. McCall, J. Mol. Spectrosc. (2001), 210, 66--83. J. N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201.

  8. Practice Transformation: Professional Development Is Personal.

    PubMed

    Ruddy, Meaghan P; Thomas-Hemak, Linda; Meade, Lauren

    2016-05-01

    Current efforts to achieve practice transformation in our health care delivery system are, for good reason, primarily focused on technical change. Such efforts include meaningful use, population health metrics reporting, and the creation and sustaining of team-based patient-centered medical home delivery sites. If practice transformation is meant to ultimately and fundamentally transform the health care system and its culture to achieve the quadruple aim of better health, better care, affordability, and satisfaction of patients and providers, these technical changes are necessary but not sufficient. Systemic transformation is contingent on the transformation of the individuals who make up the systems. Therefore, if the goal is to authentically transform medical practice in the United States, transformation of those who practice it is also required. PMID:26717503

  9. Precise orbit computation and sea surface modeling

    NASA Technical Reports Server (NTRS)

    Wakker, Karel F.; Ambrosius, B. A. C.; Rummel, R.; Vermaat, E.; Deruijter, W. P. M.; Vandermade, J. W.; Zimmerman, J. T. F.

    1991-01-01

    The research project described below is part of a long-term program at Delft University of Technology aiming at the application of European Remote Sensing satellite (ERS-1) and TOPEX/POSEIDON altimeter measurements for geophysical purposes. This program started in 1980 with the processing of Seasat laser range and altimeter height measurements and concentrates today on the analysis of Geosat altimeter data. The objectives of the TOPEX/POSEIDON research project are the tracking of the satellite by the Dutch mobile laser tracking system MTLRS-2, the computation of precise TOPEX/POSEIDON orbits, the analysis of the spatial and temporal distribution of the orbit errors, the improvement of ERS-1 orbits through the information obtained from the altimeter crossover difference residuals for crossing ERS-1 and TOPEX/POSEIDON tracks, the combination of ERS-1 and TOPEX/POSEIDON altimeter data into a single high-precision data set, and the application of this data set to model the sea surface. The latter application will focus on the determination of detailed regional mean sea surfaces, sea surface variability, ocean topography, and ocean currents in the North Atlantic, the North Sea, the seas around Indonesia, the West Pacific, and the oceans around South Africa.

  10. Structurally uniform and atomically precise carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Segawa, Yasutomo; Ito, Hideto; Itami, Kenichiro

    2016-01-01

    Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

  11. Accelerometers for Precise GNSS Orbit Determination

    NASA Astrophysics Data System (ADS)

    Hugentobler, Urs; Schlicht, Anja

    2016-07-01

    The solar radiation pressure is the largest non-gravitational acceleration on GNSS satellites limiting the accuracy of precise orbit models. Other non-gravitational accelerations may be thrusts for station keeping maneuvers. Accelerometers measure the motion of a test mass that is shielded against satellite surface forces with respect to a cage that is rigidly connected to the satellite. They can thus be used to measure these difficult-to-model non-gravitational accelerations. Accelerometers however typically show correlated noise as well as a drift of the scaling factors converting measured voltages to accelerations. The scaling thus needs to be regularly calibrated. The presented study is based on several simulated scenarios including orbit determination of accelerometer-equipped Galileo satellites. It shall evaluate different options on how to accommodate accelerometer measurements in the orbit integrator, indicate to what extent currently available accelerometers can be used to improve the modeling of non-gravitational accelerations on GNSS satellites for precise orbit determination, and assess the necessary requirements for an accelerometer that can serve this purpose.

  12. Compact, Precise Inertial Rotation Sensors for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rosing, David; Oseas, Jeffrey; Korechoff, Robert

    2006-01-01

    A document describes a concept for an inertial sensor for measuring the rotation of an inertially stable spacecraft around its center of gravity to within 100 microarcseconds or possibly even higher precision. Whereas a current proposal for a spacecraft-rotation sensor of this accuracy requires one spacecraft dimension on the order of ten meters, a sensor according to this proposal could fit within a package smaller than 1 meter and would have less than a tenth of the mass. According to the concept, an inertial mass and an apparatus for monitoring the mass would be placed at some known distance from the center of gravity so that any rotation of the spacecraft would cause relative motion between the mass and the spacecraft. The relative motion would be measured and, once the displacement of the mass exceeded a prescribed range, a precisely monitored restoring force would be applied to return the mass to a predetermined position. Measurements of the relative motion and restoring force would provide information on changes in the attitude of the spacecraft. A history of relative motion and restoring-force measurements could be kept, enabling determination of the cumulative change in attitude during the observation time.

  13. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  14. Axion Bounds from Precision Cosmology

    SciTech Connect

    Raffelt, G. G.; Hamann, J.; Hannestad, S.; Mirizzi, A.; Wong, Y. Y. Y.

    2010-08-30

    Depending on their mass, axions produced in the early universe can leave different imprints in cosmic structures. If axions have masses in the eV-range, they contribute a hot dark matter fraction, allowing one to constrain m{sub a} in analogy to neutrinos. In the more favored scenario where axions play the role of cold dark matter and if reheating after inflation does not restore the Peccei-Quinn symmetry, the axion field provides isocurvature fluctuations that are severely constrained by precision cosmology. There remains a small sliver in parameter space where isocurvature fluctuations could still show up in future probes.

  15. An Arbitrary Precision Computation Package

    Energy Science and Technology Software Center (ESTSC)

    2003-06-14

    This package permits a scientist to perform computations using an arbitrarily high level of numeric precision (the equivalent of hundreds or even thousands of digits), by making only minor changes to conventional C++ or Fortran-90 soruce code. This software takes advantage of certain properties of IEEE floating-point arithmetic, together with advanced numeric algorithms, custom data types and operator overloading. Also included in this package is the "Experimental Mathematician's Toolkit", which incorporates many of these facilitiesmore » into an easy-to-use interactive program.« less

  16. Precision Measurement Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Macri, Timothy F.; Telfair, William B.; Bennett, Peter S.; Martin, Clifford A.; Warner, John W.

    1989-05-01

    We describe a new electro-optical device being developed to provide precise measurements of the three-dimensional topography of the human cornea. This device, called a digital keratoscope, is intended primarily for use in preparing for and determining the effect of corneal surgery procedures such as laser refractive keratectomy, radial keratotomy or corneal transplant on the refractive power of the cornea. It also may serve as an aid in prescribing contact lenses. The basic design features of the hardware and of the associated computer software are discussed, the means for alignment and calibration are described and typical results are given.

  17. Precision Drilling Of Sugar Beet

    NASA Astrophysics Data System (ADS)

    Kalina, Jaroslav

    1983-03-01

    The paper describes the features of the precision drilling of sugar beet, methods of measurements, mathematical relations, procedure and results. The use of a high-speed camera and of a computer with an investigation of the drilling mechanisms enabled to achieve the shortening of the procedure by one half, an accurate assessment of the principles of drilling mechanisms without implication of other influences arising in field tests and the availability of more data for decision making. The result of the experiments was a considerably simpler assessment of the principles of drill mechanisms.

  18. Constraining supersymmetry with precision data

    SciTech Connect

    Pierce, Damien M.; Erler, Jens

    1997-06-15

    We discuss the results of a global fit to precision data in supersymmetric models. We consider both gravity- and gauge-mediated models. As the superpartner spectrum becomes light, the global fit to the data typically results in larger values of {chi}{sup 2}. We indicate the regions of parameter space which are excluded by the data. We discuss the additional effect of the B(B{yields}X{sub s}{gamma}) measurement. Our analysis excludes chargino masses below M{sub Z} in the simplest gauge-mediated model with {mu}>0, with stronger constraints for larger values of tan {beta}.

  19. Transforming Education: For the Love of Learning

    ERIC Educational Resources Information Center

    Warren, Glen; Manthey, George

    2011-01-01

    In this article, the authors talk about transforming education that is more than just improving the current educational model. The difference between improving education and transforming it revolves around something that seems too often missing in today's schools: a love of and passion for learning and what can be done with what one learns. The…

  20. The Cognitive Spectrum of Transformative Learning

    ERIC Educational Resources Information Center

    Dix, Michael

    2016-01-01

    Although different transformative learning theories have been described in the literature, a detailed integrative theory is yet to emerge. I argue that unduly intellectualist assumptions regarding cognition have hampered current understandings and have obscured transformative learning's cognitive and metacognitive essence. Firstly, Mezirow's…

  1. Precision fast kickers for kiloampere electron beams

    SciTech Connect

    Caporaso, G.J.; Chen, Y.J.; Weir, J.T.

    1999-10-06

    These kickers will be used to make fast dipoles and quadrupoles which are driven by sharp risetime pulsers to provide precision beam manipulations for high current kA electron beams. This technology will be used on the 2nd axis of the DARHT linac at LANL. It will be used to provide 4 micropulses of pulse width 20 to 120 nsec. selected from a 2 {micro}sec., 2kA, 20MeV macropulse. The fast pulsers will have amplitude modulation capability to compensate for beam-induced steering effects and other slow beam centroid motion to within the bandwidth of the kicker system. Scaling laws derived from theory will be presented along with extensive experimental data obtained on the test bed ETA-II.

  2. Precision Probes of a Leptophobic Z' Boson

    SciTech Connect

    Buckley, Matthew R.; Ramsey-Musolf, Michael J.

    2012-03-01

    Extensions of the Standard Model that contain leptophobic Z' gauge bosons are theoretically interesting but difficult to probe directly in high-energy hadron colliders. However, precision measurements of Standard Model neutral current processes can provide powerful indirect tests. We demonstrate that parity-violating deep inelastic scattering of polarized electrons off of deuterium offer a unique probe leptophobic Z' bosons with axial quark couplings and masses above 100 GeV. In addition to covering a wide range of previously uncharted parameter space, planned measurements of the deep inelastic parity-violating eD asymmetry would be capable of testing leptophobic Z' scenarios proposed to explain the CDF W plus dijet anomaly.

  3. Precise leveling, space geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Reilinger, R.

    1981-01-01

    The implications of currently available leveling data on understanding the crustal dynamics of the continental United States are investigated. Neotectonic deformation, near surface movements, systematic errors in releveling measurements, and the implications of this information for earthquake prediction are described. Vertical crustal movements in the vicinity of the 1931 Valentine, Texas, earthquake which may represent coseismic deformation are investigated. The detection of vertical fault displacements by precise leveling in western Kentucky is reported. An empirical basis for defining releveling anomalies and its implications for crustal deformation in southern California is presented. Releveling measurements in the eastern United States and their meaning in the context of possible crustal deformation, including uplift of the Appalachian Mountains, eastward tilting of the Atlantic Coastal Plain, and apparent movements associated with a number of structural features along the east coast, are reported.

  4. Precision Laser Annealing of Focal Plane Arrays

    SciTech Connect

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea; Verley, Jason C.; Jenkins, Mark W.

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  5. Improvements of a Beam Current Monitor by using a High Tc Current Sensor and SQUID at the RIBF

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Fukunishi, N.; Kase, M.; Kamigaito, O.; Inamori, S.; Kon, K.

    2014-05-01

    To measure a beam current non-destructively, a conventional DC current transformer (DCCT) has been used at accelerator facilities. However, the current resolution of the DCCT is worse than 1μA. This current resolution is sufficient for electron and proton accelerators in which the beam intensity is high, but it is not sufficient for lower intensity heavy-ion beams. Thus, superconducting technology has been applied to the precise measurement of the beam current. In particular, to measure the DC current of high-energy heavy-ion beams non-destructively at high resolution, a high critical temperature (HTc) superconducting quantum interference device (SQUID) beam current monitor (HTc SQUID monitor) has been developed for use in the radioactive isotope beam factory (RIBF) at RIKEN in Japan. Beginning this year, the magnetic shielding system has been greatly reinforced. The measurement resolution is determined by the signal to noise ratio, that is improved by attenuating the external magnetic noise and is mainly produced by the distribution and transmission lines from the high current power supplies. The new strong magnetic shielding system can attenuate the external magnetic noise to 10-10.

  6. A piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  7. Precision Strike Training in Lean Manufacturing: A Workplace Literacy Guidebook [and] Final Report on Precision Strike Workplace Literacy Training at CertainTeed Corporation.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    CertainTeed's Precision Strike training program was designed to close the gaps between the current status of its workplace and where that work force needed to be to compete successfully in global markets. Precision Strike included Skills and Knowledge in Lifelong Learning (SKILL) customized, computerized lessons in basic skills, one-on-one…

  8. Superconducting current transducer

    SciTech Connect

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs.

  9. Precision robotic control of agricultural vehicles on realistic farm trajectories

    NASA Astrophysics Data System (ADS)

    Bell, Thomas

    High-precision "autofarming", or precise agricultural vehicle guidance, is rapidly becoming a reality thanks to increasing computing power and carrier-phase differential GPS ("CPDGPS") position and attitude sensors. Realistic farm trajectories will include not only rows but also arcs created by smoothly joining rows or path-planning algorithms, spirals for farming center-pivot irrigated fields, and curved trajectories dictated by nonlinear field boundaries. In addition, fields are often sloped, and accurate control may be required either on linear trajectories or on curved contours. A three-dimensional vehicle model which adapts to changing vehicle and ground conditions was created, and a low-order model for controller synthesis was extracted based on nominal conditions. The model was extended to include a towed implement. Experimentation showed that an extended Kalman filter could identify the vehicle's state in real-time. An approximation was derived for the additional positional uncertainty introduced by the noisy "lever-arm correction" necessary to translate the GPS position measurement at the roof antenna to the vehicle's control point on the ground; this approximation was then used to support the assertion that attitude measurement accuracy was as important to control point position measurement as the original position measurement accuracy at the GPS antenna. The low-order vehicle control model was transformed to polar coordinates for control on arcs and spirals. Experimental data showed that the tractor's control, point tracked an arc to within a -0.3 cm mean and a 3.4 cm standard deviation and a spiral to within a -0.2 cm mean and a 5.3 cm standard deviation. Cubic splines were used to describe curve trajectories, and a general expression for the time-rate-of-change of curve-related parameters was derived. Four vehicle control algorithms were derived for curve tracking: linear local-error control based on linearizing the vehicle about the curve's radius of

  10. Analysis of parametric transformer with rectifier load

    SciTech Connect

    Ichinokura, O.; Jinzenji, T. ); Tajima, K. )

    1993-03-01

    This paper describes a push-pull parametric transformer constructed using a pair of orthogonal-cores. The operating characteristics of the parametric transformer with a rectifier load were analyzed based on SPICE simulations. The analysis results show good agreement with experiment. It was found that the input surge current of the full-wave rectifier circuit with a smoothing capacitor can be compensated by the parametric transformer. Use of the parametric transformer as a power stabilizer is anticipated owing to its various functions such as for voltage regulation and overload protection.

  11. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation

  12. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  13. Transform approach to electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Mittra, R.; Ko, W. L.; Rahmat-Samii, Y.

    1979-01-01

    In this paper, a comprehensive review of the Fourier transform technique as applied to the problem of high-frequency scattering is presented and the concepts of the spectral theory of diffraction (STD) are introduced. In contrast to the more commonly employed ray-optical method for high-frequency scattering, the STD approach interprets the scattered field as the spectrum, or the Fourier transform of the induced current on the scatterer. Such an interpretation offers several important advantages: uniform nature of representation, capacity to improve and extend the ray-optical formulas in a systematic manner, and convenient accuracy tests for the results. Methods for combining integral equation methods with the Galerkin procedure and asymptotic techniques in the transform domain are described, and representative examples illustrating the application of the spectral approach are included.

  14. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  15. Transforming the Way We Teach Function Transformations

    ERIC Educational Resources Information Center

    Faulkenberry, Eileen Durand; Faulkenberry, Thomas J.

    2010-01-01

    In this article, the authors discuss "function," a well-defined rule that relates inputs to outputs. They have found that by using the input-output definition of "function," they can examine transformations of functions simply by looking at changes to input or output and the respective changes to the graph. Applying transformations to the input…

  16. Assembling Precise Truss Structures With Minimal Stresses

    NASA Technical Reports Server (NTRS)

    Sword, Lee F.

    1996-01-01

    Improved method of assembling precise truss structures involves use of simple devices. Tapered pins that fit in tapered holes indicate deviations from prescribed lengths. Method both helps to ensure precision of finished structures and minimizes residual stresses within structures.

  17. Role of telecommunications in precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture has been made possible by the confluence of several technologies: geographic positioning systems, geographic information systems, image analysis software, low-cost microcomputer-based variable rate controller/recorders, and precision tractor guidance systems. While these techn...

  18. Using hyperspectral data in precision farming applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision farming practices such as variable rate applications of fertilizer and agricultural chemicals require accurate field variability mapping. This chapter investigated the value of hyperspectral remote sensing in providing useful information for five applications of precision farming: (a) Soil...

  19. Novel linear piezoelectric motor for precision position stage

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan

    2016-03-01

    Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.

  20. Precise Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    Adatom chains on an atomically regulated substrate will be building components in future precise nanoelectronics. Adatoms need to be secured with chemical bonding, but then electronic isolation between the adatom and substrate systems is not guaranteed. A one-dimensional model shows that good isolation with existence of surface states is expected on an s-p crossing substrate such as Si, Ge, or GaAs, reflecting the bulk nature of the substrate. Isolation is better if adatoms are electronically similar to the substrate atoms, and can be manipulated by hydrogenation. Chain structures with group IV adatoms with two chemical bonds, or group III adatoms with one chemical bond, are semiconducting, reflecting the surface nature of the substrate. These structures are unintentionally doped due to the charge transfer across the chemical bonds. Physical properties of adatom chains have to be determined for the unified adatom-substrate system.

  1. Precision Spectroscopy of Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Beyer, A.; Parthey, Ch G.; Kolachevsky, N.; Alnis, J.; Khabarova, K.; Pohl, R.; Peters, E.; Yost, D. C.; Matveev, A.; Predehl, K.; Droste, S.; Wilken, T.; Holzwarth, R.; Hänsch, T. W.; Abgrall, M.; Rovera, D.; Salomon, Ch; Laurent, Ph; Udem, Th

    2013-12-01

    Precise determinations of transition frequencies of simple atomic systems are required for a number of fundamental applications such as tests of quantum electrodynamics (QED), the determination of fundamental constants and nuclear charge radii. The sharpest transition in atomic hydrogen occurs between the metastable 2S state and the 1S ground state. Its transition frequency has now been measured with almost 15 digits accuracy using an optical frequency comb and a cesium atomic clock as a reference [1]. A recent measurement of the 2S - 2P3/2 transition frequency in muonic hydrogen is in significant contradiction to the hydrogen data if QED calculations are assumed to be correct [2, 3]. We hope to contribute to this so-called "proton size puzzle" by providing additional experimental input from hydrogen spectroscopy.

  2. False precision and population science.

    PubMed

    Weigel, G

    1994-09-01

    The author compares proponents of reducing population growth to alchemists and astrologers, thereby whole-heartedly dismissing the validity of the field of population science. His vitriolic essay argues thus: population science cannot predict the growth rate of human populations over long periods of time, population science can determine neither when nor how fertility rates will decline, only 10% of developing country populations are covered by reliable vital statistic registration systems, and population science has no scientifically precise definition of overpopulation. The images of disease, hunger, and overcrowding evoked by the notion overpopulation are instead due to poverty and material deprivation. Were delegates to the 1994 UN International Conference on Population and Development to address these real, latter issues, positive social change may result. Since conference attendees are, however, committed to a narrowly focused and flawed agenda, the world should dismiss conference policies as the nonsense that they are. PMID:12345660

  3. Navy precision optical interferometer database

    NASA Astrophysics Data System (ADS)

    Ryan, K. K.; Jorgensen, A. M.; Hall, T.; Armstrong, J. T.; Hutter, D.; Mozurkewich, D.

    2012-07-01

    The Navy Precision Optical Interferometer (NPOI) has now been recording astronomical observations for the better part of two decades. During that time period hundreds of thousands of observations have been obtained, with a total data volume of multiple terabytes. Additionally, in the next few years the data rate from the NPOI is expected to increase significantly. To make it easier for NPOI users to search the NPOI observations and to make it easier for them to obtain data, we have constructed a easily accessible and searchable database of observations. The database is based on a MySQL server and uses standard query language (SQL). In this paper we will describe the database table layout and show examples of possible database queries.

  4. Precision cosmology and the landscape

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael

    2006-10-01

    After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.

  5. Precision moisture generation and measurement.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Irwin, Adriane Nadine

    2010-03-01

    In many industrial processes, gaseous moisture is undesirable as it can lead to metal corrosion, polymer degradation, and other materials aging processes. However, generating and measuring precise moisture concentrations is challenging due to the need to cover a broad concentration range (parts-per-billion to percent) and the affinity of moisture to a wide range surfaces and materials. This document will discuss the techniques employed by the Mass Spectrometry Laboratory of the Materials Reliability Department at Sandia National Laboratories to generate and measure known gaseous moisture concentrations. This document highlights the use of a chilled mirror and primary standard humidity generator for the characterization of aluminum oxide moisture sensors. The data presented shows an excellent correlation in frost point measured between the two instruments, and thus provides an accurate and reliable platform for characterizing moisture sensors and performing other moisture related experiments.

  6. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  7. Symplectic wavelet transformation.

    PubMed

    Fan, Hong-Yi; Lu, Hai-Liang

    2006-12-01

    Usually a wavelet transform is based on dilated-translated wavelets. We propose a symplectic-transformed-translated wavelet family psi(*)(r,s)(z-kappa) (r,s are the symplectic transform parameters, |s|(2)-|r|(2)=1, kappa is a translation parameter) generated from the mother wavelet psi and the corresponding wavelet transformation W(psi)f(r,s;kappa)=integral(infinity)(-infinity)(d(2)z/pi)f(z)psi(*)(r,s)(z-kappa). This new transform possesses well-behaved properties and is related to the optical Fresnel transform in quantum mechanical version. PMID:17099740

  8. Making Precise Antenna Reflectors For Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1994-01-01

    In improved method of fabrication of precise, lightweight antenna reflectors for millimeter wavelengths, required precise contours of reflecting surfaces obtained by computer numberically controlled machining of surface layers bonded to lightweight, rigid structures. Achievable precision greater than that of older, more-expensive fabrication method involving multiple steps of low- and high-temperature molding, in which some accuracy lost at each step.

  9. Precision Farming and Conservation Advances Agricultural Sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To many, Precision Farming, more formally termed Precision Agriculture, seems like an oxymoron. Yet site-specific management makes sense to an exponentially growing number of farmers. So where is Precision Farming headed? The short answer is that it is being extended from a focus on crop productio...

  10. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  11. A fast multipole transformation for global climate calculations

    SciTech Connect

    Holmes, J.A.; Wang, Z.; Drake, J.B.; Lyon, B.F.; Chen, W.T.

    1996-01-01

    A fast multipole transformation is adapted to the evaluation of summations that occur in global climate calculations when transforming between spatial and spherical harmonic representations. For each summation, the timing of the fast multipole transformation scales linearly with the number of latitude gridpoints, but the timing for direct evaluations scales quadratically. In spite of a larger computational overhead, this scaling advantage renders the fast multipole method faster than direct evaluation for transformations involving greater than approximately 300 to 500 gridpoints. Convergence of the fast multipole transformation is accurate to machine precision. As the resolution in global climate calculations continues to increase, an increasingly large fraction of the computational work involves the transformation between spatial and spherical harmonic representations. The fast multipole transformation offers a significant reduction in computational time for these high-resolution cases.

  12. Clinical Next Generation Sequencing for Precision Medicine in Cancer

    PubMed Central

    Dong, Ling; Wang, Wanheng; Li, Alvin; Kansal, Rina; Chen, Yuhan; Chen, Hong; Li, Xinmin

    2015-01-01

    Rapid adoption of next generation sequencing (NGS) in genomic medicine has been driven by low cost, high throughput sequencing and rapid advances in our understanding of the genetic bases of human diseases. Today, the NGS method has dominated sequencing space in genomic research, and quickly entered clinical practice. Because unique features of NGS perfectly meet the clinical reality (need to do more with less), the NGS technology is becoming a driving force to realize the dream of precision medicine. This article describes the strengths of NGS, NGS panels used in precision medicine, current applications of NGS in cytology, and its challenges and future directions for routine clinical use. PMID:27006629

  13. Clinical Next Generation Sequencing for Precision Medicine in Cancer.

    PubMed

    Dong, Ling; Wang, Wanheng; Li, Alvin; Kansal, Rina; Chen, Yuhan; Chen, Hong; Li, Xinmin

    2015-08-01

    Rapid adoption of next generation sequencing (NGS) in genomic medicine has been driven by low cost, high throughput sequencing and rapid advances in our understanding of the genetic bases of human diseases. Today, the NGS method has dominated sequencing space in genomic research, and quickly entered clinical practice. Because unique features of NGS perfectly meet the clinical reality (need to do more with less), the NGS technology is becoming a driving force to realize the dream of precision medicine. This article describes the strengths of NGS, NGS panels used in precision medicine, current applications of NGS in cytology, and its challenges and future directions for routine clinical use. PMID:27006629

  14. Precision Penning Trap Mass Spectrometry of S, Kr and Xe

    NASA Astrophysics Data System (ADS)

    Redshaw, Matthew

    2005-04-01

    Using a phase coherent technique to measure the cyclotron frequency of single ions in a Penning trap [1], we have performed mass measurements on ^32S and the two most abundant krypton and xenon isotopes ^84Kr, ^86Kr, ^ 129Xe and ^132Xe, to relative precisions of 0.1 ppb. This is a factor of ˜10-100 improvement in precision over current values [2]. [1] M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, and D.E. Pritchard, PRL 83, 4510 (1999). [2] G. Audi, A.H. Wapstra, and C. Thibault, Nucl Phys A729, 337 (2003).

  15. Computer-controlled high-precision Michelson wavemeter

    NASA Astrophysics Data System (ADS)

    Pedregosa-Gutierrez, J.; Guyomarc'h, D.; Vedel, M.; Champenois, C.; Knoop, M.

    2014-09-01

    The Michelson wavemeter is a popular instrument in many experiments where the high-precision measurement of a cw laser wavelength is required. In this paper, we describe a simple and inexpensive way to obtain high-precision measurements with this classical physicist's tool. We exploit the time stamp provided by the high-frequency clock present in modern data acquisition cards to measure the fractional uncertainty of the interference signal. The resulting relative uncertainty value for our current set-up is of the order of 10-8 and can be potentially improved by a factor of 100.

  16. Precision high energy liner implosion experiments PHELIX [1

    SciTech Connect

    Reass, William A; Baca, David M; Griego, Jeffrey R; Reinovsky, Robert E; Rousculp, Christopher L; Turchi, Peter J

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  17. Automated cloud tracking using precisely aligned digital ATS pictures.

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Phillips, D. R.

    1972-01-01

    Discussion of the interactive man-computer system (WIMDCO) for measuring cloud motion from ATS pictures. The multipicture model of ATS navigation is used for consecutive ATS digital picture alignment to provide the required precision in cloud motion measurements by automated tracking techniques. Cloud motion is measured by tracking clouds between two digital pictures with the aid of two-dimensional cross correlation analysis. The fast Fourier transform method and other programming techniques are used for time and cost minimization. Cloud motion vectors were computed over three time intervals in July, 1969. The EW and NS components were reproducible within roughly 2 knots.

  18. Mechanical fabrication of precision microlenses on optical fiber endfaces

    NASA Astrophysics Data System (ADS)

    Milton, Gareth; Gharbia, Yousef A.; Katupitiya, Jayantha

    2005-12-01

    We present a purely mechanical means of producing highly concentric spherical lenses at the endfaces of optical fibers. The production process has two stages. First, conical lenses are produced in a grinding process that ensures excellent concentricity. Then, the conical lenses are transformed to spherical lenses using a novel process called loose abrasive blasting. The cone grinding is carried out on a microgrinding machine, which has a sophisticated control system that enables the production of precision conical lenses. The blasting is carried out on a diamond blasting machine. Plots showing automatic centering performance of the microgrinding machine and scanning electron microscopy images of the conical and spherical lenses are presented.

  19. High precision beam alignment of electromagnetic wigglers

    SciTech Connect

    Ben-Zvi, I.; Qiu, X.Z.

    1993-01-01

    The performance of Free-Electron Lasers depends critically on the quality of the alignment of the electron beam to the wiggler's magnetic axis and the deviation of this axis from a straight fine. The measurement of the electron beam position requires numerous beam position monitors in the wiggler, where space is at premium. The beam position measurement is used to set beam steerers for an orbit correction in the wiggler. The authors propose an alternative high precision alignment method in which one or two external Beam Position Monitors (BPM) are used. In this technique, the field in the electro-wiggler is modulated section by section and the beam position movement at the external BPM is detected in synchronism with the modulation. A beam offset at the modulated beam section will produce a modulation of the beam position at the detector that is a function of the of the beam offset and the absolute value of the modulation current. The wiggler errors produce a modulation that is a function of the modulation current. It will be shown that this method allows the detection and correction of the beam position at each section in the presence of wiggler errors with a good resolution. Furthermore, it allows one to measure the first and second integrals of the wiggler error over each wiggler section. Lastly, provided that wiggler sections can be degaussed effectively, one can test the deviation of the wiggler's magnetic axis from a straight line.

  20. Precision medical communication to optimize stakeholder information exchange: a '4M-Quadrant' approach.

    PubMed

    Ashkenazy, Rebecca

    2016-07-01

    Personalized and precision medicine concepts have transformed the healthcare delivery environment from research and development to commercialization. Precision medical communication (PMC) represents a strategy to maximize personalized healthcare elements in medical-related exchanges to optimize value from the activity for the associated stakeholders. It is a discipline of developing the right message through the right mechanism at the right moment to the right healthcare member. PMC enhances the value of information exchange among stakeholders because it integrates data, analytics, and environmental and medical insights to efficiently disseminate more precise content to specified audiences in a balanced and compliant manner. PMID:27032622

  1. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  2. Chemical Transformation Simulator

    EPA Science Inventory

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  3. Transformation of Pasteurella novicida

    PubMed Central

    Tyeryar, Franklin J.; Lawton, William D.

    1969-01-01

    Deoxyribonucleic acid from a streptomycin-resistant mutant of Pasteurella novicida transformed portions of P. novicida streptomycin-sensitive populations to streptomycin-resistant. Similarly, mutants auxotrophic for tryptophan or purine biosynthesis were also transformed to nutritional independence. PMID:5359612

  4. Shiftable multiscale transforms

    NASA Technical Reports Server (NTRS)

    Simoncelli, Eero P.; Freeman, William T.; Adelson, Edward H.; Heeger, David J.

    1992-01-01

    A type of translational invariance, referred to as shiftability, is defined for wavelet transforms. The property of shiftability is first discussed with respect to individual parameters: spatial position, orientation, and scale. The discussion then focuses on transformations that are simultaneously shiftable with respect to subsets of these parameters. It is shown that the critical sampling condition on the wavelet transforms must be relaxed to achieve shiftability. Two example transforms are implemented and applied to several signal and image processing problems.

  5. Single-frequency precise point positioning: an analytical approach

    NASA Astrophysics Data System (ADS)

    Sterle, Oskar; Stopar, Bojan; Pavlovčič Prešeren, Polona

    2015-08-01

    An analytical approach to single-frequency precise point positioning (PPP) is discussed in this paper. To obtain highest precision results, all biases must be eliminated or modelled to centimetre level. The use of the GRAPHIC ionosphere-free linear combination that is based on single-frequency phase and code observations eliminates the ionosphere bias; however, the rank deficient Gauss-Markov model is obtained. We explicitly determine rank deficiency of a Gauss-Markov model as a number of all ambiguity clusters, each of them defined as a set of all ambiguities overlapping in time. On the basis of S-transformation we prove that the single-frequency PPP represents an unbiased estimator for station coordinates and troposphere parameters, while it presents a biased estimator for ambiguities and receiver-clock error parameters. Additionally we describe the estimable parameters in each ambiguity cluster as the differences between ambiguity parameters and the sum of receiver-clock parameters with one of the ambiguities. We also show that any other particular solution on the basis of S-transformation is obtained only when the common least-squares estimation in single step is applied. The recursive least-squares estimation with parameter pre-elimination only determines the vector of unknowns as possible to transform through S-transformation, whereas the same does not hold for the cofactor matrix of unknowns. For a case study, we present our method on GPS data from 19 permanent stations (14 IGS and 5 EPN) in Europe, for 89 consecutive days in the beginning of 2013. The static case study revealed the precision of daily coordinates as 7.6, 11.7 and 19.6 mm for , and , respectively. The accuracies of the , and components were determined as 6.9, 13.5 and 31.4 mm, respectively, and were calculated using the Helmert transformation of weighted-mean daily single-frequency PPP and IGb08 coordinates. The estimated convergence times were relatively diverse, expanding from 1.75 h (CAGL

  6. Precise atomic mass measurements by deflection mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barber, R. C.; Sharma, K. S.

    2003-05-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  7. Motion and gravity effects in the precision of quantum clocks

    PubMed Central

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-01-01

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions. PMID:25988238

  8. High-precision spectroscopy of hydrogen molecular ions

    NASA Astrophysics Data System (ADS)

    Zhong, Zhen-Xiang; Tong, Xin; Yan, Zong-Chao; Shi, Ting-Yun

    2015-05-01

    In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions ( and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrodynamic corrections. In combination with high-precision measurements, it is feasible to precisely determine a molecular-based value of the proton-to-electron mass ratio. An experimental scheme is presented for measuring the rovibrational transition frequency (v,L) : (0,0) → (6,1) in HD+, which is currently underway at the Wuhan Institute of Physics and Mathematics. Project supported by the National Natural Science Foundation of China (Grants Nos. 11474316, 11004221, 10974224, and 11274348), the “Hundred Talent Program” of Chinese Academy of Sciences. Yan Zong-Chao was supported by NSERC, SHARCnet, ACEnet of Canada, and the CAS/SAFEA International Partnership Program for Creative Research Teams.

  9. A method to improve the precision of measuring focusing system

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoliang; An, Tao; Chen, Ke

    2015-10-01

    Most of the telescope focusing systems adopt the measuring distance method to focus the quick-moving target because the imaging position of moving target is constantly changing. The focusing system calculates the focal position, controls the motor according to the distance of the target. This focusing method has a faster focusing and a better real-time performance compared to the image focusing method based on the image quality. But restricted by the external environment, the precision of instruments and technical level, Distance measuring focus system(DMFS) generally have low precision, higher dynamic adjusting delay problem. This paper mainly analyses the main error sources affecting the accuracy of DMFS, aiming at the existing defects of commonly used current speed compensation method, put forward a kind of solution path delay lag method predicted method measuring focusing system, and then simulate it, the result shows that this method can greatly improve the precision of DMFS.

  10. Motion and gravity effects in the precision of quantum clocks.

    PubMed

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-01-01

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions. PMID:25988238

  11. Achieving Perspective Transformation.

    ERIC Educational Resources Information Center

    Nowak, Jens

    Perspective transformation is a consciously achieved state in which the individual's perspective on life is transformed. The new perspective serves as a vantage point for life's actions and interactions, affecting the way life is lived. Three conditions are basic to achieving perspective transformation: (1) "feeling" experience, i.e., getting in…

  12. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  13. Precision conformal optics technology program

    NASA Astrophysics Data System (ADS)

    Trotta, Patrick A.

    2001-09-01

    Conformal optics are defined as optics that deviate from conventional form to best satisfy the contour and shape needs of system platforms. Precision Conformal Optics Technology (PCOT), a comprehensive 48 month program funded by the Defense Advanced Research Program Agency (DARPA) and the U. S. Army Missile Research, Development, and Engineering Center (MRDEC), assessed the potential benefits achieved by use of conformal optics on a variety of U.S. weapon systems. Also addressed were all barriers impeding conformal optics use. The PCOT program was executed by a consortium of organizations ranging from major U.S. defense prime contractors, to small businesses, and academia. The diversity of organizations encouraged synergy across a broad array of skills and perspectives. Smooth team interaction was made possible by the 845 contractual structure of the program. Benefits identified by the PCOT consortium included major reductions in aerodynamic drag (by as much as 50%), reduced time-to-targets (by as much as 60%), and reduced weapon signatures. Impediments addressed included inadequacies in optical design tools, optical manufacturing methods and equipment, optical testing, and system integration. The PCOT program was successfully completed with a demonstration of a highly contoured missile dome, which reduced overall missile drag by 25%, and led to a predicted twofold increase in missile range.

  14. Precision Photometric Redshifts Of Clusters

    NASA Astrophysics Data System (ADS)

    Holden, L.; Annis, J.

    2006-06-01

    Clusters of galaxies provide a means to achieve more precise photometric redshifts than achievable using individual galaxies simply because of the numbers of galaxies available in clusters. Here we examine the expectation that one can achieve root-N improvement using the N galaxies in a cluster. We extracted from a maxBCG SDSS cluster catalog 28,000 clusters and used SDSS DR4 spectra to find spectroscopic redshifts for the cluster. We examined both using the brightest cluster galaxy redshift as the proxy for the cluster and using the mean of a collection of galaxies within a given angular diameter and redshift (about the cluster photo-z) range. We find that the BCG provides a better estimate of the cluster redshift, to be understood in the context of a handful of spectra in the neighborhood of the cluster. We find that the cluster photo-z has an approximate root-N scaling behavior with the normalization for maxBCG techniques being 0.07. We predict what ``afterburner photo-z'' techniques, which use individual galaxy photo-z's good to 0.03-0.05, can achieve for cluster catalogs and for cluster cosmology.

  15. Developments in precision asphere manufacturing

    NASA Astrophysics Data System (ADS)

    Tierson, Jay; Fess, Ed; Matthews, Greg

    2015-10-01

    The increased use of aspheres in today's optical systems has led to specialized manufacturing equipment and processes that are needed to meet component specifications. Due to their sub-aperture nature, each stage of these processes can leave behind a signature that could adversely affect the asphere's overall performance. Utilizing a variety of grinding and polishing techniques can help minimize residual artifacts that are left in an asphere. OptiPro has performed extensive process development work to understand how to grind and polish aspheres at production speeds with minimized process signatures. For example, the amount of stock removed from a substrate using a sub aperture polishing process can increase the amount of mid-spacial frequencies that can be detected. Through precise grind control, sub aperture, and mid-aperture polishing process research, OptiPro developed a detailed knowledge of asphere process control. One of the outcomes of this work has led OptiPro to develop an asphere polishing head for their 160A polishing platform which allows more process flexibility and control.

  16. Ultra-precision positioning assembly

    DOEpatents

    Montesanti, Richard C.; Locke, Stanley F.; Thompson, Samuel L.

    2002-01-01

    An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.

  17. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  18. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  19. Stabilized Lasers and Precision Measurements.

    ERIC Educational Resources Information Center

    Hall, J. L.

    1978-01-01

    Traces the development of stabilized lasers from the Massachusetts Institute of Technology passive-stabilization experiments of the early 1960s up through the current epoch of highly stabilized helium-neon and carbon dioxide and continuous wave dye lasers. (Author/HM)

  20. Molecular Pathogenesis and Current Therapy in Intrahepatic Cholangiocarcinoma.

    PubMed

    Høgdall, Dan; O'Rourke, Colm J; Taranta, Andrzej; Oliveira, Douglas V N P; Andersen, Jesper B

    2016-01-01

    Intrahepatic cholangiocarcinoma (iCCA) comprises one of the most rapidly evolving cancer types. An underlying chronic inflammatory liver disease that precedes liver cancer development for several decades and creates a pro-oncogenic microenvironment frequently impairs progress in therapeutic approaches. Depending on the cellular target of malignant transformation, a large spectrum of molecular and morphological patterns is observed. As such, it is crucial to advance our existing understanding of the molecular pathogenesis of iCCA, particularly its genomic heterogeneity, to improve current clinical strategies and patient outcome. This was achieved for other cancers, such as breast carcinoma, facilitated by the delineation of patient subsets and of precision therapies. In iCCA, many questions persevere as to the evolutionary process and cellular origin of the initial transforming event, the context of tumor plasticity and the causative features driving the disease. Molecular profiling and pathological techniques have begun to underline persistent alterations that may trigger inherited drug resistance (a hallmark of hepatobiliary and pancreatic cancers), metastasis and disease recurrence. In this review, we will focus on the key molecular achievements that are currently advancing the characterization and stratification of iCCA. We will discuss current clinical practice and how genomic achievements may advance diagnosis and therapy as well as ultimately improve patient outcome. PMID:27170400

  1. Pattern Transformation with DNA Circuits

    PubMed Central

    Chirieleison, Steven M.; Allen, Peter B.; Simpson, Zack B.; Ellington, Andrew D.; Chen, Xi

    2014-01-01

    Readily programmable chemical networks are important tools as the scope of chemistry expands from individual molecules to larger molecular systems. While many complex systems have been constructed using conventional organic and inorganic chemistry, the programmability of biological molecules such as nucleic acids allows for precise, high-throughput, and automated design, as well as simple, rapid, and robust implementation. Here we show that systematic and quantitative control over the diffusivity and reactivity of DNA molecules yields highly programmable chemical reaction networks (CRNs) that execute at the macroscale. In particular, we design and implement non-enzymatic DNA circuits capable of performing pattern transformation algorithms such as edge detection. We also show that it is possible to fine-tune and multiplex such circuits. We believe these strategies will provide programmable platforms for prototyping CRNs, for discovering bottom-up construction principles, and for generating patterns in materials. PMID:24256862

  2. Precision Imaging: more descriptive, predictive and integrative imaging.

    PubMed

    Frangi, Alejandro F; Taylor, Zeike A; Gooya, Ali

    2016-10-01

    Medical image analysis has grown into a matured field challenged by progress made across all medical imaging technologies and more recent breakthroughs in biological imaging. The cross-fertilisation between medical image analysis, biomedical imaging physics and technology, and domain knowledge from medicine and biology has spurred a truly interdisciplinary effort that stretched outside the original boundaries of the disciplines that gave birth to this field and created stimulating and enriching synergies. Consideration on how the field has evolved and the experience of the work carried out over the last 15 years in our centre, has led us to envision a future emphasis of medical imaging in Precision Imaging. Precision Imaging is not a new discipline but rather a distinct emphasis in medical imaging borne at the cross-roads between, and unifying the efforts behind mechanistic and phenomenological model-based imaging. It captures three main directions in the effort to deal with the information deluge in imaging sciences, and thus achieve wisdom from data, information, and knowledge. Precision Imaging is finally characterised by being descriptive, predictive and integrative about the imaged object. This paper provides a brief and personal perspective on how the field has evolved, summarises and formalises our vision of Precision Imaging for Precision Medicine, and highlights some connections with past research and current trends in the field. PMID:27373145

  3. Injection molded high precision freeform optics for high volume applications

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2012-03-01

    Injection molding offers a cost-efficient method for manufacturing high precision plastic optics for high-volume applications. Optical surfaces such as flats, spheres and also aspheres are meanwhile state-of-the-art in the field of plastic optics. The demand for surfaces without symmetric properties, commonly referred to as freeform surfaces, continues to rise. Currently, new mathematical approaches are under consideration which allow for new complex optical designs. Such novel optical designs strongly encourage development of new manufacturing methods. Specifically, new surface descriptions without an axis of symmetry, new ultra precision machining methods and non-symmetrical shrinkage compensation strategies have to be developed to produce freeform optical surfaces with high precision for high-volume applications. This paper will illustrate a deterministic and efficient way for the manufacturing of ultra precision injection molding tool inserts with submicron precision and show the manufacturing of replicated freeform surfaces with micrometer range shape accuracy at diameters up to 40 mm with a surface roughness of approximately 2 nm.

  4. Note: Tesla transformer damping

    NASA Astrophysics Data System (ADS)

    Reed, J. L.

    2012-07-01

    Unexpected heavy damping in the two winding Tesla pulse transformer is shown to be due to small primary inductances. A small primary inductance is a necessary condition of operability, but is also a refractory inefficiency. A 30% performance loss is demonstrated using a typical "spiral strip" transformer. The loss is investigated by examining damping terms added to the transformer's governing equations. A significant alteration of the transformer's architecture is suggested to mitigate these losses. Experimental and simulated data comparing the 2 and 3 winding transformers are cited to support the suggestion.

  5. Leading Transformative Change in a Large Urban School District

    ERIC Educational Resources Information Center

    Brinks, Leslie J.

    2012-01-01

    This abstract reflects the findings of the understanding of the skills necessary to lead transformative change in a non-affluent neighborhood in a large urban district. Current research and understandings of transformative leadership has been limited to traits and organizational concepts rather than the work associated with transforming schools.…

  6. Transformation pathways of liposomes.

    PubMed

    Hotani, H

    1984-09-01

    Liposomes undergoing transformation were observed by dark-field light microscopy in order to study the role of lipid in morphogenesis of biological vesicular structures. Liposomes were found to transform sequentially in a well-defined manner through one of several transformation pathways. A circular biconcave form was an initial shape in all the pathways and it transformed into a stable thin flexible filament or small spheres via a variety of regularly shaped vesicles which possessed geometrical symmetry. The transformation was reversible up to a certain point in each pathway. Osmotic pressure was found to be the driving force for the transformations. Biological membrane vesicles such as trypsinized red cell ghosts also transformed by similar pathways. PMID:6548263

  7. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star. PMID:20048888

  8. Evaluating the smoothness of color transformations

    NASA Astrophysics Data System (ADS)

    Aristova, Anna; Wang, Zhaohui; Hardeberg, Jon Y.

    2011-01-01

    Multi-dimensional look up tables (LUTs) are widely employed for color transformations due to its high accuracy and general applicability. Using the LUT model generally involves the color measurement of a large number of samples. The precision and uncertainty of the color measurement will be mainly represented in the LUTs, and will affect the smoothness of the color transformation. This, in turn, strongly influences the quality of the reproduced color images. To achieve high quality color image reproduction, the color transformation is required to be relatively smooth. In this study, we have investigated the inherent characteristics of LUTs' transformation from color measurement and their effects on the quality of reproduced images. We propose an algorithm to evaluate the smoothness of 3D LUT based color transformations quantitatively, which is based on the analysis of 3D LUTs transformation from RGB to CIELAB and the second derivative of the differences between adjacent points in vertical and horizontal ramps of each LUT entry. The performance of the proposed algorithm was compared with a those proposed in two recent studies on smoothness, and a better performance is reached by the proposed method.

  9. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  10. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  11. Development of Toroidal Core Transformers

    SciTech Connect

    Leon, Francisco

    2014-05-31

    The original objective of this project was to design, build and test a few prototypes of singlephase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014.The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  12. Precise determination of critical exponents and equation of state by field theory methods

    NASA Astrophysics Data System (ADS)

    Zinn-Justin, J. Z.

    2001-04-01

    Renormalization group, and in particular its quantum field theory implementation has provided us with essential tools for the description of the phase transitions and critical phenomena beyond mean field theory. We therefore review the methods, based on renormalized φ34 quantum field theory and renormalization group, which have led to a precise determination of critical exponents of the N-vector model (Le Guillou and Zinn-Justin, Phys. Rev. Lett. 39 (1977) 95; Phys. Rev. B 21 (1980) 3976; Guida and Zinn-Justin, J. Phys. A 31 (1998) 8103; cond-mat/9803240) and of the equation of state of the 3D Ising model (Guida and Zinn-Justin, Nucl. Phys. B 489 [FS] (1997) 626, hep-th/9610223). These results are among the most precise available probing field theory in a non-perturbative regime. Precise calculations first require enough terms of the perturbative expansion. However perturbation series are known to be divergent. The divergence has been characterized by relating it to instanton contributions. The information about large-order behaviour of perturbation series has then allowed to develop efficient “summation” techniques, based on Borel transformation and conformal mapping (Le Guillou and Zinn-Justin (Eds.), Large Order Behaviour of Perturbation Theory, Current Physics, vol. 7, North-Holland, Amsterdam, 1990). We first discuss exponents and describe our recent results (Guida and Zinn-Justin, 1998). Compared to exponents, the determination of the scaling equation of state of the 3D Ising model involves a few additional (non-trivial) technical steps, like the use of the parametric representation, and the order dependent mapping method. From the knowledge of the equation of state a number of ratio of critical amplitudes can also be derived. Finally we emphasize that few physical quantities which are predicted by renormalization group to be universal have been determined precisely, and much work remains to be done. Considering the steady increase in the available

  13. Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS)

    SciTech Connect

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Lee, F.D.

    1995-05-10

    Lawrence Livermore National Laboratory is currently operating a hyperspectral imager, the Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS). This instrument is capable of operating throughout the infrared spectrum from 3 to 12.5 {mu}m with controllable spectral resolution. In this presentation we report on it`s operating characteristics, current capabilities, data throughput and calibration issues.

  14. Genetic transformation in Aspergilli: tools of the trade.

    PubMed

    Prabha, V Lakshmi; Punekar, N S

    2004-10-01

    DNA-mediated transformation is a powerful tool that allows the introduction of specific genetic changes in an organism. Transformation of Aspergilli, acclaimed for their wide use in the industry, has been possible for about two decades now. Several basic and applied problems related to fungal biology have been addressed using this technique. Nonetheless, new markers and strategies for transformation are still being developed for these filamentous fungi. Different methods and markers that are currently available for the transformation of Aspergilli are summarized here. The review also brings out the importance of these transformation systems in analyzing fungal gene function. Aspects of Aspergillus niger transformation are selectively emphasized. PMID:22900275

  15. The computation of relative motion with increased precision. [of two orbiting space vehicles

    NASA Technical Reports Server (NTRS)

    Nacozy, P.; Szebehely, V.

    1976-01-01

    Encke's method as modified by Potter to increase the accuracy of orbit computations of gravitationally interacting bodies is applied to the problem of relative motion of non-interacting space vehicles. This technique is then combined with a simple transformation of the independent variable to arrive at a system of equations from which the relative motion may be determined with increased precision.

  16. Precise laboratory measurements of methanol rotational transition frequencies in the 5 to 13 GHz region

    NASA Astrophysics Data System (ADS)

    Breckenridge, S. M.; Kukolich, S. G.

    1995-01-01

    Rotational transitions for CH3OH were measured in the 5-13 GHz range with a precision and accuracy of a few kilohertz or less using a Flygare-Balle type pulsed-beam Fourier transform microwave spectrometer. The accurate center frequencies measured should be useful in determining accurate Doppler shifts and making positive molecule identification in radio astronomy.

  17. Interactions between science and precision engineering

    NASA Astrophysics Data System (ADS)

    Atkinson, D. P.; McClure, E. R.; Saito, T. T.

    1987-11-01

    The history of scientific progress is intertwined intimately with precision engineering. Precision engineering and science have synergistically interacted in stimulating each other to significant advances. Furthermore, tangible benefits to the quality of human life, through often unexpected industrial applications, occur. High energy lasers, astrophysical telescopes, and anamorphic optics, along with developments in ultraprecision machining and measurement, are discussed as examples of evolution in science and precision engineering. Possibilities for ultimate by-products for mankind's welfare are explored.

  18. Millimeter-wave ICs for precision guided weapons

    NASA Astrophysics Data System (ADS)

    Seashore, C. R.; Singh, D. R.

    1983-06-01

    Attention is given to the possibility to add precision guided weapons (PGW) with autonomous, all-weather capabilities based on millimeter wave sensors to the NATO forces within the next decade. Millimeter wave radar and radiometer sensors with capabilities for penetrating fog, clouds, haze, dust, and smoke are currently under development. It is pointed out that the central issue is not whether millimeter wave sensors will work in a tactical environment, but whether they can be produced in an affordable and timely fashion. It is believed that the sensor quantity and cost objectives will be satisfied. The needs and approaches for millimeter wave integrated circuit components and subassemblies for use in current precision guided weapon systems are discussed. The two main integrated circuit techniques include the hybrid and monolithic. In a production transceiver configuration, a mix between hybrid and monolithic appears to yield the best performance and seems to be most cost-effective.

  19. Shuttle Program. Euler angles, quaternions, and transformation matrices working relationships

    NASA Technical Reports Server (NTRS)

    Henderson, D. M.

    1977-01-01

    A brief mathematical development of the relationship between the Euler angles and the transformation matrix, the quaternion and the transformation matrix, and the Euler angles and the quaternion is presented. The analysis and equations presented apply directly to current space shuttle problems. The twelve three-axis Euler transformation matrices are given as functions of the Euler angles, the equations for the quaternion as a funtion of the Euler angles, and the Euler angles as a function of the transformation matrix elements.

  20. Design of Janus Nanoparticles with Atomic Precision

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Wang, Qian; Jena, Puru; Kawazoe, Yoshi

    2008-03-01

    Janus nanoparticles, characterized by their anisotropic structure and interactions have added a new dimension to nanoscience because of their potential applications in biomedicine, sensors, catalysis and assembled materials. The technological applications of these nanoparticles, however, have been limited as the current chemical, physical, and biosynthetic methods lack sufficient size and shape selectivity. We report a technique where gold clusters doped with tungsten can serve as a seed that facilitates the natural growth of anisotropic nanostructures whose size and shape can be controlled with atomic precision. Using ab initio simulated annealing and molecular dynamics calculations on AunW (n>12) clusters, we discovered that the W@Au12 cage cluster forms a very stable core with the remaining Au atoms forming patchy structures on its surface. The anisotropic geometry gives rise to anisotropies in vibrational spectra, charge distributions, electronic structures, and reactivity, thus making it useful to have dual functionalities. In particular, the core-patch structure is shown to possess a hydrophilic head and a hydrophobic tail. The W@Au12 clusters can also be used as building blocks of a nano-ring with novel properties.

  1. Precise Orbit Determination for Altimeter Satellites

    NASA Astrophysics Data System (ADS)

    Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Beckley, B. B.; Wang, Y.; Chinn, D. S.

    2002-05-01

    Orbit error remains a critical component in the error budget for all radar altimeter missions. This paper describes the ongoing work at GSFC to improve orbits for three radar altimeter satellites: TOPEX/POSEIDON (T/P), Jason, and Geosat Follow-On (GFO). T/P has demonstrated that, the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits (2-3 cm radially) produced at GSFC. Jason, the T/P follow-on, is intended to continue measurement of the ocean surface with the same, if not better accuracy. Reaching the Jason centimeter accuracy orbit goal would greatly benefit the knowledge of ocean circulation. Several new POD strategies which promise significant improvement to the current T/P orbit are evaluated over one year of data. Also, preliminary, but very promising Jason POD results are presented. Orbit improvement for GFO has been dramatic, and has allowed this mission to provide a POESEIDON class altimeter product. The GFO Precise Orbit Ephemeris (POE) orbits are based on satellite laser ranging (SLR) tracking supplemented with GFO/GFO altimeter crossover data. The accuracy of these orbits were evaluated using several tests, including independent TOPEX/GFO altimeter crossover data. The orbit improvements are shown over the years 2000 and 2001 for which the POEs have been completed.

  2. Precision medicine: The future in diabetes care?

    PubMed

    Scheen, André J

    2016-07-01

    Personalized medicine aims at better targeting therapeutic intervention to the individual to maximize benefit and minimize harm. Type 2 diabetes (T2D) is a heterogeneous disease from a genetic, pathophysiological and clinical point of view. Thus, the response to any antidiabetic medication may considerably vary between individuals. Numerous glucose-lowering agents, with different mechanisms of action, have been developed, a diversified armamentarium that offers the possibility of a patient-centred therapeutic approach. In the current clinical practice, a personalized approach is only based upon phenotype, taking into account patient and disease individual characteristics. If this approach may help increase both efficacy and safety outcomes, there remains considerable room for improvement. In recent years, many efforts were taken to identify genetic and genotype SNP's (Single Nucleotide Polymorphism's) variants that influence the pharmacokinetics, pharmacodynamics, and ultimately the therapeutic response of oral glucose-lowering drugs. This approach mainly concerns metformin, sulphonylureas, meglitinides and thiazolidinediones, with only scarce data concerning gliptins and gliflozins yet. However, the contribution of pharmacogenetics and pharmacogenomics to personalized therapy still needs to mature greatly before routine clinical implementation is possible. This review discusses both opportunities and challenges of precision medicine and how this new paradigm may lead to a better individualized treatment of T2D. PMID:27329017

  3. Spark gap device for precise switching

    DOEpatents

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  4. Spark gap device for precise switching

    DOEpatents

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  5. Advances in precision mirror figure metrology (abstract)

    SciTech Connect

    Takacs, P.Z.; Furenlid, K. ); Church, E.L. )

    1992-01-01

    New developments in optical measurement techniques have made it possible to test the surface quality on grazing incidence optics with extreme precision and accuracy. An instrument developed at Brookhaven, the Long Trace Profiler (LTP), measures the figure of large (up to 1 m long) cylindrical aspheres with nanometer accuracy. The LTP optical system is based around a common-path interferometer design belonging to the class of slope measuring interferometers and, as such, it is very robust, stable, and vibration insensitive. A unique error correction technique removes the effect of tilt errors in the optical head as it traverses the air bearing, thus allowing one to accurately measure the absolute surface profile and radius of curvature. This is of critical importance to the manufacture of long-radius spherical optics used in high-resolution soft x-ray monochromators and in the testing of mirror bending systems. This talk will review the principle of operation of the LTP, probe the factors limiting the performance of the system, and will examine the current state of the art in synchrotron radiation mirror manufacturing quality (as viewed by our metrology techniques). This research was supported by the U.S. Department of Energy Contract No. DE-AC02-76CH00016.

  6. Precision solid liner experiments on Pegasus II

    SciTech Connect

    Bowers, R.L.; Brownell, J.H.; Lee, H.

    1995-09-01

    Pulsed power systems have been used in the past to drive solid liner implosions for a variety of applications. In combination with a variety of target configurations, solid liner drivers can be used to compress working fluids, produce shock waves, and study material properties in convergent geometry. The utility of such a driver depends in part on how well-characterized the drive conditions are. This, in part, requires a pulsed power system with a well-characterized current wave form and well understood electrical parameters. At Los Alamos, the authors have developed a capacitively driven, inductive store pulsed power machine, Pegasus, which meets these needs. They have also developed an extensive suite of diagnostics which are capable of characterizing the performance of the system and of the imploding liners. Pegasus consists of a 4.3 MJ capacitor bank, with a capacitance of 850 {micro}f fired with a typical initial bank voltage of 90 kV or less. The bank resistance is about 0.5 m{Omega}, and bank plus power flow channel has a total inductance of about 24 nH. In this paper the authors consider the theory and modeling of the first precision solid liner driver fielded on the LANL Pegasus pulsed power facility.

  7. Charged particle beam current monitoring tutorial

    SciTech Connect

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

  8. Biomarkers in precision therapy in colorectal cancer

    PubMed Central

    Reimers, Marlies S.; Zeestraten, Eliane C.M.; Kuppen, Peter J.K.; Liefers, Gerrit Jan; van de Velde, Cornelis J.H.

    2013-01-01

    Colorectal cancer (CRC) is the most commonly diagnosed cancer in Europe. Because CRC is also a major cause of cancer-related deaths worldwide, a lot of research has been focused on the discovery and development of biomarkers to improve the diagnostic process and to predict treatment outcomes. Up till now only a few biomarkers are recommended by expert panels. Current TNM criteria, however, cause substantial under- and overtreatment of CRC patients. Consequently, there is a growing need for new and efficient biomarkers to ensure optimal treatment allocation. An ideal biomarker should be easily translated into clinical practice, to identify patients who can be spared from treatment or benefit from therapy, ultimately resulting in precision medicine in the future. In this review we aim to provide an overview of a number of frequently studied biomarkers in CRC and, at the same time, we will emphasize the challenges and controversies that withhold the clinical introduction of these biomarkers. We will discuss both prognostic and predictive markers of chemotherapy, aspirin therapy as well as overall therapy toxicity. Currently, only mutant KRAS, mutant BRAF, MSI and the Oncotype DX® Colon Cancer Assay are used in clinical practice. Other biomarker studies showed insufficient evidence to be introduced into clinical practice. Divergent patient selection criteria, absence of validation studies and a large number of single biomarker studies are possibly responsible. We therefore recommend that future studies focus on combining key markers, rather than analysing single markers, standardizing study protocols, and validate the results in independent study cohorts, followed by prospective clinical trials. PMID:24759962

  9. Precision absolute value amplifier for a precision voltmeter

    SciTech Connect

    Hearn, W. E.; Rondeau, D. J.

    1985-05-21

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  10. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  11. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  12. Catalytic coherence transformations

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  13. Precision manipulation with a dextrous robot hand

    NASA Astrophysics Data System (ADS)

    Michelman, Paul

    1994-01-01

    In this thesis, we discuss a framework for describing and synthesizing precision manipulation tasks with a robot hand. Precision manipulations are those in which the motions of grasped objects are caused by finger motions alone (as distinct from arm or wrist motion). Experiments demonstrating the capabilities of the Utah-MIT hand are presented. This work begins by examining current research on biological motor control to raise a number of questions. For example, is the control centralized and organized by a central processor? Or is the control distributed throughout the nervous system? Motor control research on manipulation has focused on developing classifications of hand motions, concentrating solely on finger motions, while neglecting grasp stability and interaction forces that occur in manipulation. In addition, these taxonomies have not been explicitly functional. This thesis defines and analyzes a basic set of manipulation strategies that includes both position and force trajectories. The fundamental purposes of the manipulations are: (1) rectilinear and rotational motion of grasped objects of different geometries; and (2) the application of forces and moments against the environment by the grasped objects. First, task partitioning is described to allocate the fingers their roles in the task. Second, for each strategy, the mechanics and workspace of the tasks are analyzed geometrically to determine the gross finger trajectories required to achieve the tasks. Techniques illustrating the combination of simple manipulations into complex, multiple degree-of-freedom tasks are presented. There is a discussion of several tasks that use multiple elementary strategies. The tasks described are removing the top of a childproof medicine bottle, putting the top back on, rotating and regrasping a block and a cylinder within the grasp. Finally, experimental results are presented. The experimental setup at Columbia University's Center for Research in Intelligent Systems and

  14. Tunable features of magnetoelectric transformers.

    PubMed

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5 current-to-voltage conversion of -2000 transformer features can be attributed to large changes in the piezomagnetic coefficient and permeability of the magnetostrictive phase under H(dc). PMID:19574118

  15. Department of Defense Precise Time and Time Interval program improvement plan

    NASA Technical Reports Server (NTRS)

    Bowser, J. R.

    1981-01-01

    The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.

  16. What can we expect from precision asteroseismology?

    NASA Astrophysics Data System (ADS)

    Handler, G.

    2014-02-01

    Precision asteroseismology is the determination of accurate stellar parameters from oscillation data. At first successful for pulsating white dwarf stars, it is now applied to more and more types of stars. We give a number of selected examples where precision asteroseismology, but also asteroseismology based on few observables may lead to considerable improvement of stellar astrophysics in the near future.

  17. 21 CFR 872.3165 - Precision attachment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Precision attachment. 872.3165 Section 872.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3165 Precision attachment. (a) Identification....

  18. Remote sensing applications to precision farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional mechanized agriculture treats large fields with uniform agronomic practices. Precision agriculture/precision farming brings a new concept to manage in-field variability with variable rate application of fertilizers and pesticides, site-specific water management, as well as planting, etc....

  19. Visual thread quality for precision miniature mechanisms

    SciTech Connect

    Gillespie, L.K.

    1981-04-01

    Threaded features have eight visual appearance factors which can affect their function in precision miniature mechanisms. The Bendix practice in deburring, finishing, and accepting these conditions on miniature threads is described as is their impact in assemblies of precision miniature electromechanical assemblies.

  20. An aberrant precision account of autism

    PubMed Central

    Lawson, Rebecca P.; Rees, Geraint; Friston, Karl J.

    2014-01-01

    Autism is a neurodevelopmental disorder characterized by problems with social-communication, restricted interests and repetitive behavior. A recent and thought-provoking article presented a normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012). In response, we suggested that when Bayesian inference is grounded in its neural instantiation—namely, predictive coding—many features of autistic perception can be attributed to aberrant precision (or beliefs about precision) within the context of hierarchical message passing in the brain (Friston et al., 2013). Here, we unpack the aberrant precision account of autism. Specifically, we consider how empirical findings—that speak directly or indirectly to neurobiological mechanisms—are consistent with the aberrant encoding of precision in autism; in particular, an imbalance of the precision ascribed to sensory evidence relative to prior beliefs. PMID:24860482

  1. Model based analysis of piezoelectric transformers.

    PubMed

    Hemsel, T; Priya, S

    2006-12-22

    Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components. PMID:16808951

  2. Characteristics of Mitochondrial Transformation into Human Cells

    PubMed Central

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  3. Micro Machining Enhances Precision Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.

  4. Precision fiducialization of transport components

    SciTech Connect

    Fischer, G.E.; Bressler, V.E.; Cobb, J.K.; Jensen, D.R.; Ruland, R.E.; Walz, H.V.; Williams, S.H.

    1992-03-01

    The Final Focus Test Beam (FFTB) is a transport line designed to test both concept and advanced technology for application to future linear colliders. It is currently under construction at SLAC in the central beam line. Most of the quadrupoles of the FFTB have ab initio alignment tolerances of less than 30 microns, if the planned for beam based alignment tuning procedure is to converge. For such placement tolerances to have any meaning requires that the coordinates of the effective centers, seen by the beam particles, be tansferred to tooling (that can be reached by mechanical or optical alignment methods) located on the outside of the components to comparable or better values. We have constructed an apparatus that simultaneously locates to micron tolerances, the effective magnetic center of fussing lenses, as well as the electrical center of beam position monitors (BPM) imbedded therein, and once located, for transferring these coordinates to specially mounted tooling frames that supported the external retroreflectors used in a laser tracker based alignment of the beam line. Details of construction as well as experimental results from the method are presented.

  5. NIH Precision Medicine Initiative | NIH MedlinePlus the Magazine

    MedlinePlus

    ... page please turn JavaScript on. Feature: NIH Precision Medicine Initiative NIH Precision Medicine Initiative Past Issues / Fall 2015 Table of Contents Connections to Precision Medicine Precision medicine is already saving lives. Read the ...

  6. Face Pose Recognition Based on Monocular Digital Imagery and Stereo-Based Estimation of its Precision

    NASA Astrophysics Data System (ADS)

    Gorbatsevich, V.; Vizilter, Yu.; Knyaz, V.; Zheltov, S.

    2014-06-01

    A technique for automated face detection and its pose estimation using single image is developed. The algorithm includes: face detection, facial features localization, face/background segmentation, face pose estimation, image transformation to frontal view. Automatic face/background segmentation is performed by original graph-cut technique based on detected feature points. The precision of face orientation estimation based on monocular digital imagery is addressed. The approach for precision estimation is developed based on comparison of synthesized facial 2D images and scanned face 3D model. The software for modelling and measurement is developed. The special system for non-contact measurements is created. Required set of 3D real face models and colour facial textures is obtained using this system. The precision estimation results demonstrate the precision of face pose estimation enough for further successful face recognition.

  7. The emergence of precision therapeutics: New challenges and opportunities for Canada's health leaders.

    PubMed

    Slater, Jim; Shields, Laura; Racette, Ray J; Juzwishin, Donald; Coppes, Max

    2015-11-01

    In the era of personalized and precision medicine, the approach to healthcare is quickly changing. Genetic and other molecular information are being increasingly demanded by clinicians and expected by patients for prevention, screening, diagnosis, prognosis, health promotion, and treatment of an increasing number of conditions. As a result of these developments, Canadian health leaders must understand and be prepared to lead the necessary changes associated with these disruptive technologies. This article focuses on precision therapeutics but also provides background on the concepts and terminology related to personalized and precision medicine and explores Canadian health leadership and system issues that may pose barriers to their implementation. The article is intended to inspire, educate, and mobilize Canadian health leaders to initiate dialogue around the transformative changes necessary to ready the healthcare system to realize the benefits of precision therapeutics. PMID:26487734

  8. Precision medicine: opportunities, possibilities, and challenges for patients and providers.

    PubMed

    Adams, Samantha A; Petersen, Carolyn

    2016-07-01

    Precision medicine approaches disease treatment and prevention by taking patients' individual variability in genes, environment, and lifestyle into account. Although the ideas underlying precision medicine are not new, opportunities for its more widespread use in practice have been enhanced by the development of large-scale databases, new methods for categorizing and representing patients, and computational tools for analyzing large datasets. New research methods may create uncertainty for both healthcare professionals and patients. In such situations, frameworks that address ethical, legal, and social challenges can be instrumental for facilitating trust between patients and providers, but must protect patients while not stifling progress or overburdening healthcare professionals. In this perspective, we outline several ethical, legal, and social issues related to the Precision Medicine Initiative's proposed changes to current institutions, values, and frameworks. This piece is not an exhaustive overview, but is intended to highlight areas meriting further study and action, so that precision medicine's goal of facilitating systematic learning and research at the point of care does not overshadow healthcare's goal of providing care to patients. PMID:26977101

  9. Improving the Precision of the Half Life of 34Ar

    NASA Astrophysics Data System (ADS)

    Iacob, V. E.; Hardy, J. C.; Bencomo, M.; Chen, L.; Horvat, V.; Nica, N.; Park, H. I.

    2016-03-01

    Currently, precise ft-values measured for superallowed 0+ -->0+ β transitions provide the most accurate value for Vud, the up-down quark mixing element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This enables the most demanding test of CKM unitarity, one of the pillars of the Standard Model. Further improvements in precision are possible if the ft values for pairs of mirror 0+ -->0+ transitions can be measured with 0.1% precision or better. The decays of 34Ar and 34Cl are members of such a mirror pair, but so far the former is not known with sufficient precision. Since our 2006 publication of the half-life of 34Ar, we have improved significantly our acquisition and analysis techniques, adding refinements that have led to increased accuracy. The 34Cl half-life is about twice that of 34Ar. This obscures the 34Ar contribution to the decay in measurements such as ours, which detected the decay positrons and was thus unable to differentiate between the parent and daughter decays. We report here two experiments aiming to improve the half-life of 34Ar: The first detected positrons as in but with improved controls; the second measured γ rays in coincidence with positrons, thus achieving a clear separation of 34Ar decay from 34Cl.

  10. Concepts, analysis and development for precision deployable space structures

    NASA Technical Reports Server (NTRS)

    Miller, Richard K.; Thomson, Mark; Hedgepeth, John M.

    1991-01-01

    Several issues surrounding the development of large Precision Segmented Reflector (PSR) designs are investigated. The concerns include nonlinear dynamics of large unruly masses such as the multi-layer thermal insulation of sunshades for instruments such as the precision pointing 20-m-diameter Large Deployable Reflector (LDR). A study of the residual oscillations after bang-bang reorientation maneuvers of a rigid satellite with a string appendage is presented. Application is made to the design of a sunshade (thermal blanket) for the LDE satellite. Another concern is the development of a deployable truss that has minimum structural redundancy (such as the tetrahedral truss) and that can be configured with planar and doubly curved geometries. A kinematically synchronized articulation scheme for a deployable tetrahedral truss is presented. Called the Tetrapac, this truss is currently limited to a planar configuration that has two rings. The final concern is the development and demonstration of hardware that enables astronauts to attach large, cumbersome, and fragile precision reflector segments to an erectable truss structure. This task must be accomplished with a high degree of precision and with relative ease. A design for a Panel Attachment Device (PAD) was developed and manufactured for neutral buoyancy simulations to be performed by LaRC.

  11. Allergen Immunotherapy (AIT): a prototype of Precision Medicine.

    PubMed

    Canonica, G W; Bachert, C; Hellings, P; Ryan, D; Valovirta, E; Wickman, M; De Beaumont, O; Bousquet, J

    2015-01-01

    Precision medicine is a medical model aiming to deliver customised healthcare - with medical decisions, practices, and/or products tailored to the individual patient informed but not directed by guidelines. Allergen immunotherapy has unique immunological rationale, since the approach is tailored to the specific IgE spectrum of an individual and modifies the natural course of the disease as it has a persistent efficacy after completion of treatment. In this perspective Allergen Immunotherapy - AIT has to be presently considered a prototype of Precision Medicine. Precise information and biomarkers provided by systems medicine and network medicine will address the discovery of Allergen immunotherapy biomarkers for (i) identification of the causes, (ii) stratification of eligible patients for AIT and (iii) the assessment of AIT efficacy. This area of medical technology is evolving rapidly and, compelemented by e-health, will change the way we practice medicine. It will help to monitor patients' disease control and data for (i) patient stratification, (ii) clinical trials, (iii) monitoring the efficacy and safety of targeted therapies which are critical for reaching an appropriate reimbursement. Biomarkers associated with e-health combined with a clinical decision support system (CDSS) will change the scope of Allergen immunotherapy. The cost/effectiveness of Allergen immunotherapy is a key issue for successful implementation. It should include the long-term benefits in the pharmaco-economic evaluation, since no other allergy treatment has this specific characteristic. AIT is the prototype of current and future precision medicine. PMID:26594303

  12. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    Technical memorandum includes transformer area product numbers, which are used to summarize dimensional and electrical properties of C-cores, pot cores, lamination, powder cores, and tape-wound cores. To aid in core selection, comparison of five common core materials is presented to indicate their influence on overall transformer efficiency and weight.

  13. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  14. Deployment & Market Transformation (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  15. Genetic Transformation of Bacteria.

    ERIC Educational Resources Information Center

    Moss, Robert.

    1991-01-01

    An activity in which students transform an ampicillin-sensitive strain of E. coli with a plasmid containing a gene for ampicillin resistance is described. The procedure for the preparation of competent cells and the transformation of competent E. coli is provided. (KR)

  16. Support Principals, Transform Schools

    ERIC Educational Resources Information Center

    Aguilar, Elena; Goldwasser, Davina; Tank-Crestetto, Kristina

    2011-01-01

    The Transformational Coaching Team in Oakland Unified School District provides differentiated, sustained, job-embedded support to the district's school leaders. In this article, members of the team describe how they work with principals to transform the culture of schools. Student achievement data show above-average improvement in schools in which…

  17. Two Different Squeeze Transformations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.

    1996-01-01

    Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.

  18. A Transformation Called "Twist"

    ERIC Educational Resources Information Center

    Hwang, Daniel

    2010-01-01

    The transformations found in secondary mathematics curriculum are typically limited to stretches and translations (e.g., ACARA, 2010). Advanced students may find the transformation, twist, to be of further interest. As most available resources are written for professional-level readers, this article is intended to be an introduction accessible to…

  19. Disc piezoelectric ceramic transformers.

    PubMed

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power. PMID:25004532

  20. Transformative Learning and Identity

    ERIC Educational Resources Information Center

    Illeris, Knud

    2014-01-01

    Transformative learning has usually been defined as transformations of meaning perspectives, frames of reference, and habits of mind--as proposed initially by Jack Mezirow. However, several authors have found this definition too narrow and too cognitively oriented, and Mezirow has later emphasized that emotional and social conditions are also…