Science.gov

Sample records for preclinical efficacy studies

  1. Application of population pharmacokinetics for preclinical safety and efficacy studies.

    PubMed

    Porzio, Stefano

    2013-08-01

    From the beginning of the 1980s, population PK has been primarily used in clinical development and only in the last decade has it been convincingly applied in a preclinical setting. Sparse sampling and covariate analyses are key features of preclinical popPK, useful for toxicology and efficacy studies in animals to assemble data obtained from different studies; for describing individual PK and PD; for building mechanistic models; and for performing interspecies scaling-up of disposition and efficacy. Application in disease models, mainly in behavioral and neurological models, allows the quantitative description of PK and PD without frequent blood sampling and recurrent physiological measurements, which are the critical and compromising perturbations of experimental systems. A preclinical population approach to PK and PD, by its versatility and possibility of simulating 'what if' scenarios, offers a unique and potent tool in the development of new drugs, in particular biologics. PMID:23937139

  2. Development of regional chemotherapies: feasibility, safety and efficacy in clinical use and preclinical studies

    PubMed Central

    Cai, Shuang; Bagby, Taryn R; Forrest, M Laird

    2011-01-01

    Conventional oral and intravenous chemotherapies permeate throughout the body, exposing healthy tissues to similar cytotoxic drug levels as tumors. This leads to significant dose-limiting toxicities that may prevent patients from receiving sufficient treatment to overcome cancers. Therefore, a number of locoregional drug-delivery strategies have been evaluated and implemented in preclinical studies, clinical trials and in practice, in the past decades to minimize systemic toxicities from chemotherapeutic agents and to improve treatment outcomes. Localized treatment is beneficial because many cancers, such as melanoma, peritoneal cancer and breast cancer, advance locally adjacent to the site of the primary tumors prior to their circulatory invasion. In this article, we will review the feasibility, safety and efficacy of multiple localized chemotherapies in clinical use and preclinical development. PMID:22229080

  3. Nonindustry-sponsored preclinical studies on statins yield greater efficacy estimates than industry-sponsored studies: a meta-analysis.

    PubMed

    Krauth, David; Anglemyer, Andrew; Philipps, Rose; Bero, Lisa

    2014-01-01

    Industry-sponsored clinical drug studies are associated with publication of outcomes that favor the sponsor, even when controlling for potential bias in the methods used. However, the influence of sponsorship bias has not been examined in preclinical animal studies. We performed a meta-analysis of preclinical statin studies to determine whether industry sponsorship is associated with either increased effect sizes of efficacy outcomes and/or risks of bias in a cohort of published preclinical statin studies. We searched Medline (January 1966-April 2012) and identified 63 studies evaluating the effects of statins on atherosclerosis outcomes in animals. Two coders independently extracted study design criteria aimed at reducing bias, results for all relevant outcomes, sponsorship source, and investigator financial ties. The I(2) statistic was used to examine heterogeneity. We calculated the standardized mean difference (SMD) for each outcome and pooled data across studies to estimate the pooled average SMD using random effects models. In a priori subgroup analyses, we assessed statin efficacy by outcome measured, sponsorship source, presence or absence of financial conflict information, use of an optimal time window for outcome assessment, accounting for all animals, inclusion criteria, blinding, and randomization. The effect of statins was significantly larger for studies sponsored by nonindustry sources (-1.99; 95% CI -2.68, -1.31) versus studies sponsored by industry (-0.73; 95% CI -1.00, -0.47) (p value<0.001). Statin efficacy did not differ by disclosure of financial conflict information, use of an optimal time window for outcome assessment, accounting for all animals, inclusion criteria, blinding, and randomization. Possible reasons for the differences between nonindustry- and industry-sponsored studies, such as selective reporting of outcomes, require further study. PMID:24465178

  4. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin.

    PubMed

    Petersen, Grant H; Alzghari, Saeed K; Chee, Wayne; Sankari, Sana S; La-Beck, Ninh M

    2016-06-28

    While liposome-mediated delivery of cytotoxic chemotherapy has been shown to significantly enhance drug tolerability in patients as compared to the conventional formulation, the fundamental question remains whether they also improve anticancer efficacy. Thus, we performed a systematic literature search for randomized clinical trials directly comparing efficacy of liposomal cytotoxic chemotherapy versus their equivalent conventional formulation. The search yielded 14 clinical trials (8 anthracycline, 4 cisplatin, 1 paclitaxel, 1 irinotecan) that meet inclusion criteria, with a total of 2589 patients. We found that efficacy in patients was not different between liposomal and conventional chemotherapy as assessed by objective response (odds ratio 1.03; 95% confidence interval [CI] 0.82-1.30), overall survival (hazard ratio [HR] 1.05; 95% CI 0.95-1.17), and progression free survival rates (HR 1.01; 95% CI, 0.92-1.11). Subgroup analyses of only the anthracycline trials also did not show any efficacy advantage for the liposomal formulation. Since pegylated liposomal doxorubicin (PLD) was the most prevalent formulation in these clinical trials, we also performed a meta-analysis of 11 preclinical studies comparing efficacy of PLD and conventional doxorubicin in tumor-bearing mice. In contrast with clinical results, animal studies showed significantly increased survival in mice treated with PLD compared to conventional doxorubicin (HR 0.39; 95% CI 0.27-0.56). We discuss the possible reasons why the pharmacological advantages of carrier-mediated chemotherapy did not translate into enhanced clinical efficacy including the role of the enhanced permeability and retention (EPR) effect and the tumor microenvironment, the optimal dosing regimen for carrier-mediated agents, and the lack of standardization in the conduct and reporting of preclinical studies evaluating anticancer efficacy of these agents. Our study shows that the full clinical potential of carrier-mediated drugs

  5. Allopregnanolone preclinical acute pharmacokinetic and pharmacodynamic studies to predict tolerability and efficacy for Alzheimer's disease.

    PubMed

    Irwin, Ronald W; Solinsky, Christine M; Loya, Carlos M; Salituro, Francesco G; Rodgers, Kathleen E; Bauer, Gerhard; Rogawski, Michael A; Brinton, Roberta Diaz

    2015-01-01

    MTD in human female is 0.37mg/kg. In male rats the NOAEL and MTD were less than those determined for female. Outcomes of these PK/PD studies predict a safe and efficacious dose range for initial clinical trials of allopregnanolone for Alzheimer's disease. These findings have translational relevance to multiple neurodegenerative conditions. PMID:26039057

  6. Chronic Electrical Stimulation with a Suprachoroidal Retinal Prosthesis: A Preclinical Safety and Efficacy Study

    PubMed Central

    Nayagam, David A. X.; Williams, Richard A.; Allen, Penelope J.; Shivdasani, Mohit N.; Luu, Chi D.; Salinas-LaRosa, Cesar M.; Finch, Sue; Ayton, Lauren N.; Saunders, Alexia L.; McPhedran, Michelle; McGowan, Ceara; Villalobos, Joel; Fallon, James B.; Wise, Andrew K.; Yeoh, Jonathan; Xu, Jin; Feng, Helen; Millard, Rodney; McWade, Melanie; Thien, Patrick C.; Williams, Chris E.; Shepherd, Robert K.

    2014-01-01

    electrode impedance remained stable for stimulation durations of up to 15 weeks. This study has demonstrated the safety and efficacy of suprachoroidal stimulation with charge balanced stimulus currents. PMID:24853376

  7. Preclinical Studies Evaluating Subacute Toxicity and Therapeutic Efficacy of LQB-118 in Experimental Visceral Leishmaniasis.

    PubMed

    Cunha-Júnior, Edézio Ferreira; Martins, Thiago Martino; Canto-Cavalheiro, Marilene Marcuzzo; Marques, Paulo Roberto; Portari, Elyzabeth Avvad; Coelho, Marsen Garcia Pinto; Netto, Chaquip Daher; Costa, Paulo Roberto Ribeiro; Sabino, Katia Costa de Carvalho; Torres-Santos, Eduardo Caio

    2016-06-01

    Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and is the second major cause of death by parasites, after malaria. The arsenal of drugs against leishmaniasis is small, and each has a disadvantage in terms of toxicity, efficacy, price, or treatment regimen. Our group has focused on studying new drug candidates as alternatives to current treatments. The pterocarpanquinone LQB-118 was designed and synthesized based on molecular hybridization, and it exhibited antiprotozoal and anti-leukemic cell line activities. Our previous work demonstrated that LQB-118 was an effective treatment for experimental cutaneous leishmaniasis. In this study, we observed that treatment with 10 mg/kg of body weight/day LQB-118 orally inhibited the development of hepatosplenomegaly with a 99% reduction in parasite load. An in vivo toxicological analysis showed no change in the clinical, biochemical, or hematological parameters. Histologically, all of the analyzed organs were normal, with the exception of the liver, where focal points of necrosis with leukocytic infiltration were observed at treatment doses 5 times higher than the therapeutic dose; however, these changes were not accompanied by an increase in transaminases. Our findings indicate that LQB-118 is effective at treating different clinical forms of leishmaniasis and presents no relevant signs of toxicity at therapeutic doses; thus, this framework is demonstrated suitable for developing promising drug candidates for the oral treatment of leishmaniasis. PMID:27067332

  8. Phase I study and preclinical efficacy evaluation of the mTOR inhibitor sirolimus plus gemcitabine in patients with advanced solid tumours

    PubMed Central

    Martin-Liberal, J; Gil-Martín, M; Sáinz-Jaspeado, M; Gonzalo, N; Rigo, R; Colom, H; Muñoz, C; Tirado, O M; García del Muro, X

    2014-01-01

    Background: We conducted a phase I study in patients with advanced solid tumours to identify the recommended dose, assess pharmacokinetics (PK), pharmacodynamic activity and preclinical antitumour efficacy of the combination of sirolimus and gemcitabine. Methods: Nineteen patients were treated with sirolimus 2 or 5 mg daily and gemcitabine 800 or 1000 mg m−2 on days 1 and 8. Dose escalation depended on dose-limiting toxicity (DLT) rate during the first 3-week period. Paired skin biopsies were evaluated for phosphorylated S6 (pS6) as marker of mTOR (mammalian target of rapamycin) inhibition. Pharmacokinetics and preclinical evaluation of efficacy using two different sarcoma cell lines and leiomyosarcoma xenografts were also conducted. Results: Three DLTs were observed: grade 3 transaminitis, grade 3 thrombocytopenia and grade 4 thrombocytopenia. Common treatment-related adverse events included anaemia, neutropenia, thrombocytopenia and transaminitis. Pharmacodynamic analyses demonstrated mTOR inhibition with sirolimus 5 mg and PK showed no influence of sirolimus concentrations on gemcitabine clearance. In vitro and in vivo studies suggested mTOR pathway hyperactivation by gemcitabine that was reversed by sirolimus. Tumour growth in leiomyosarcoma xenografts was dramatically inhibited by the treatment. Conclusions: Recommended dose was sirolimus 5 mg per 24 h plus gemcitabine 800 mg m−2. Antitumour activity in preclinical sarcoma models and mTOR signalling inhibition were observed. A phase II study is currently ongoing. PMID:25003665

  9. Efficacy of multiple exposure with low level He-Ne laser dose on acute wound healing: a pre-clinical study

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    Investigations on the use of Low Level Laser Therapy (LLLT) for wound healing especially with the red laser light have demonstrated its pro-healing potential on a variety of pre-clinical and surgical wounds. However, until now, in LLLT the effect of multiple exposure of low dose laser irradiation on acute wound healing on well-designed pre-clinical model is not much explored. The present study aimed to investigate the effect of multiple exposure of low dose Helium Neon laser on healing progression of full thickness excision wounds in Swiss albino mice. Further, the efficacy of the multiple exposure of low dose laser irradiation was compared with the single exposure of optimum dose. Full thickness excision wounds (circular) of 15 mm diameter were created, and subsequently illuminated with the multiple exposures (1, 2, 3, 4 and 5 exposure/ week until healing) of He-Ne (632.8 nm, 4.02 mWcm-2) laser at 0.5 Jcm-2 along with single exposure of optimum laser dose (2 J/cm-2) and un-illuminated controls. Classical biophysical parameters such as contraction kinetics, area under the curve and the mean healing time were documented as the assessment parameters to examine the efficacy of multiple exposures with low level laser dose. Experimental findings substantiated that either single or multiple exposures of 0.5 J/cm2 failed to produce any detectable alterations on wound contraction, area under the curve and mean healing time compared to single exposure of optimum dose (2 Jcm-2) and un-illuminated controls. Single exposure of optimum, laser dose was found to be ideal for acute wound healing.

  10. Allopregnanolone Preclinical Acute Pharmacokinetic and Pharmacodynamic Studies to Predict Tolerability and Efficacy for Alzheimer’s Disease

    PubMed Central

    Irwin, Ronald W.; Solinsky, Christine M.; Loya, Carlos M.; Salituro, Francesco G.; Rodgers, Kathleen E.; Bauer, Gerhard; Rogawski, Michael A.; Brinton, Roberta Diaz

    2015-01-01

    predicted MTD in human female is 0.37mg/kg. In male rats the NOAEL and MTD were less than those determined for female. Outcomes of these PK/PD studies predict a safe and efficacious dose range for initial clinical trials of allopregnanolone for Alzheimer’s disease. These findings have translational relevance to multiple neurodegenerative conditions. PMID:26039057

  11. Preclinical studies of low back pain

    PubMed Central

    2013-01-01

    Chronic low back pain is a major cause of disability and health care costs. Current treatments are inadequate for many patients. A number of preclinical models have been developed that attempt to mimic aspects of clinical conditions that contribute to low back pain. These involve application of nucleus pulposus material near the lumbar dorsal root ganglia (DRG), chronic compression of the DRG, or localized inflammation of the DRG. These models, which are primarily implemented in rats, have many common features including behavioral hypersensitivity of the hindpaw, enhanced excitability and spontaneous activity of sensory neurons, and locally elevated levels of inflammatory mediators including cytokines. Clinically, epidural injection of steroids (glucocorticoids) is commonly used when more conservative treatments fail, but clinical trials evaluating these treatments have yielded mixed results. There are relatively few preclinical studies of steroid effects in low back pain models. One preclinical study suggests that the mineralocorticoid receptor, also present in the DRG, may have pro-inflammatory effects that oppose the activation of the glucocorticoid receptor. Although the glucocorticoid receptor is the target of anti-inflammatory steroids, many clinically used steroids activate both receptors. This could be one explanation for the limited effects of epidural steroids in some patients. Additional preclinical research is needed to address other possible reasons for limited efficacy of steroids, such as central sensitization or presence of an ongoing inflammatory stimulus in some forms of low back pain. PMID:23537369

  12. A preclinical study demonstrating the efficacy of nilotinib in inhibiting the growth of pediatric high-grade glioma.

    PubMed

    Au, Karolyn; Singh, Sanjay K; Burrell, Kelly; Sabha, Nesrin; Hawkins, Cynthia; Huang, Annie; Zadeh, Gelareh

    2015-05-01

    Solid tumors arising from malignant transformation of glial cells are one of the leading causes of central nervous system tumor-related death in children. Recurrence in spite of rigorous surgical and chemoradiation therapies remains a major hurdle in management of these tumors. Here, we investigate the efficacy of the second-generation receptor tyrosine kinase inhibitor nilotinib as a therapeutic option for the management of pediatric gliomas. We have utilized two independent pediatric high-grade glioma cell lines with either high platelet-derived growth factor receptor alpha (PDGFRα) or high PDGFRβ expression in in vitro assays to investigate the specific downstream effects of nilotinib treatment. Using in vitro cell-based assays we show that nilotinib inhibits PDGF-BB-dependent activation of PDGFRα. We further show that nilotinib is able to decrease cell proliferation and anchorage-independent growth via suppression of AKT and ERK1/2 signaling pathways. Our results suggest that nilotinib may be effective for management of a PDGFRα-dependent group of pediatric gliomas. PMID:25732621

  13. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study

    PubMed Central

    Boccard, Sandra G.; Marand, Sandie V.; Geraci, Sandra; Pycroft, Laurie; Berger, François R.; Pelletier, Laurent A.

    2015-01-01

    Gliomas are the most common primary brain tumors. To date, therapies do not allow curing patients, and glioblastomas (GBMs) are associated with remarkably poor prognosis. This situation is at least partly due to intrinsic or acquired resistance to treatment, especially to chemotherapy. In 2005, temozolomide (TMZ) has become the first chemotherapeutic drug validated for GBM. Nevertheless TMZ efficacy depends on Mgmt status. While the methylation of Mgmt promoter was considered so far as a prognostic marker, its targeting is becoming an effective therapeutic opportunity. Thus, arrival of both TMZ and Mgmt illustrated that considerable progress can still be realized by optimizing adjuvant chemotherapy. A part of this progress could be accomplished in the future by overcoming residual resistance. The aim of the present study was to investigate the involvement of a set of other DNA-repair genes in glioma resistance to temozolomide. We focused on DNA-repair genes located in the commonly deleted chromosomal region in oligodendroglioma (1p/19q) highly correlated with patient response to chemotherapy. We measured effects of inhibition of ten DNA-repair genes expression using siRNAs on astrocytoma cell response to cisplatin (CDDP) and TMZ. SiRNAs targeting ercc1, ercc2, mutyh, and pnkp significantly sensitized cells to chemotherapy, increasing cell death by up to 25%. In vivo we observed a decrease of subcutaneous glioma tumor growth after injection of siRNA in conjunction with absorption of TMZ. We demonstrated in this pre-clinical study that targeting of DNA-repair genes such as Ercc1 could be used as an adjuvant chemosensitization treatment, similarly to Mgmt inhibition. PMID:26336131

  14. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study.

    PubMed

    Boccard, Sandra G; Marand, Sandie V; Geraci, Sandra; Pycroft, Laurie; Berger, François R; Pelletier, Laurent A

    2015-10-01

    Gliomas are the most common primary brain tumors. To date, therapies do not allow curing patients, and glioblastomas (GBMs) are associated with remarkably poor prognosis. This situation is at least partly due to intrinsic or acquired resistance to treatment, especially to chemotherapy. In 2005, temozolomide (TMZ) has become the first chemotherapeutic drug validated for GBM. Nevertheless TMZ efficacy depends on Mgmt status. While the methylation of Mgmt promoter was considered so far as a prognostic marker, its targeting is becoming an effective therapeutic opportunity. Thus, arrival of both TMZ and Mgmt illustrated that considerable progress can still be realized by optimizing adjuvant chemotherapy. A part of this progress could be accomplished in the future by overcoming residual resistance. The aim of the present study was to investigate the involvement of a set of other DNA-repair genes in glioma resistance to temozolomide. We focused on DNA-repair genes located in the commonly deleted chromosomal region in oligodendroglioma (1p/19q) highly correlated with patient response to chemotherapy. We measured effects of inhibition of ten DNA-repair genes expression using siRNAs on astrocytoma cell response to cisplatin (CDDP) and TMZ. SiRNAs targeting ercc1, ercc2, mutyh, and pnkp significantly sensitized cells to chemotherapy, increasing cell death by up to 25%. In vivo we observed a decrease of subcutaneous glioma tumor growth after injection of siRNA in conjunction with absorption of TMZ. We demonstrated in this pre-clinical study that targeting of DNA-repair genes such as Ercc1 could be used as an adjuvant chemosensitization treatment, similarly to Mgmt inhibition. PMID:26336131

  15. A Preclinical Study of the Safety and Efficacy of Occlusin Trade-Mark-Sign 500 Artificial Embolization Device in Sheep

    SciTech Connect

    Owen, Richard J.; Nation, Patrick N.; Polakowski, Robert; Biliske, Jennifer A.; Tiege, Paul B.

    2012-06-15

    Introduction: This study evaluated the safety, effectiveness, and biodegradation of a new embolic agent, Occlusin Trade-Mark-Sign 503 Artificial Embolization Device (OCL 503). The agent consists of biodegradable poly-lactic-co-glycolic acid microspheres (150-212 {mu}m) coated with type I bovine collagen and was compared with Embosphere{sup Registered-Sign} Microspheres (300-500 {mu}m) in this controlled study of uterine artery embolization (UAE) in sheep. Methods: Unilateral UAE was performed in 32 adult ewes randomly assigned. Vessels were embolized to effective stasis. The cohort was divided into four groups, which were sacrificed at 1, 3, 6, and 12 months. Results: Both agents were 100% effective in achieving stasis. At 6 months, all OCL 503-treated arteries were occluded, the microspheres degraded with time, and at 12 months all four animals examined demonstrated recanalization. OCL 503 was found in the untreated uterine artery in one animal with no other evidence of non target embolization. In the Embosphere-treated group, all vessels remained occluded and microspheres were detected in the contralateral uterine artery in 6 of 15 examined vessels and in 10 vaginal, 2 ovarian, and 1 vesical artery. No procedural-related complications were seen in either group. Conclusions: OCL 503 is as effective an embolic agent as Embosphere{sup Registered-Sign} Microspheres when embolizing ovine uterine arteries and resorbs with time, allowing recanalization of the treated arteries. No device-related issues or adverse events were observed.

  16. In-Vivo Efficacy of Compliant 3D Nano-Composite in Critical-Size Bone Defect Repair: a Six Month Preclinical Study in Rabbit

    PubMed Central

    Sagar, Nitin; Pandey, Alok K.; Gurbani, Deepak; Khan, Kainat; Singh, Dhirendra; Chaudhari, Bhushan P.; Soni, Vivek P.; Chattopadhyay, Naibedya; Dhawan, Alok; Bellare, Jayesh R.

    2013-01-01

    Bone defects above critical size do not heal completely by itself and thus represent major clinical challenge to reconstructive surgery. Numerous bone substitutes have already been used to promote bone regeneration, however their use, particularly for critical-sized bone defects along with their long term in vivo safety and efficacy remains a concern. The present study was designed to obtain a complete healing of critical-size defect made in the proximal tibia of New Zealand White rabbit, using nano-hydroxyapatite/gelatin and chemically carboxymethylated chitin (n-HA/gel/CMC) scaffold construct. The bone-implant interfaces and defect site healing was evaluated for a period up to 25 weeks using radiography, micro-computed tomography, fluorescence labeling, and histology and compared with respective SHAM (empty contra lateral control). The viscoelastic porous scaffold construct allows easy surgical insertion and post-operatively facilitate oxygenation and angiogenesis. Radiography of defect treated with scaffold construct suggested expedited healing at defect edges and within the defect site, unlike confined healing at edges of the SHAM sites. The architecture indices analyzed by micro-computed tomography showed a significant increase in percentage of bone volume fraction, resulted in reconciled cortico-trabecular bone formation at n-HA/gel/CMC constructs treated site (15.2% to 52.7%) when compared with respective SHAM (10.2% to 31.8%). Histological examination and fluorescence labeling revealed that the uniformly interconnected porous surface of scaffold construct enhanced osteoblasts’ activity and mineralization. These preclinical data suggest that, n-HA/gel/CMC construct exhibit stimulation of bone's innate regenerative capacity, thus underscoring their use in guided bone regeneration. PMID:24204879

  17. In-vivo efficacy of compliant 3D nano-composite in critical-size bone defect repair: a six month preclinical study in rabbit.

    PubMed

    Sagar, Nitin; Pandey, Alok K; Gurbani, Deepak; Khan, Kainat; Singh, Dhirendra; Chaudhari, Bhushan P; Soni, Vivek P; Chattopadhyay, Naibedya; Dhawan, Alok; Bellare, Jayesh R

    2013-01-01

    Bone defects above critical size do not heal completely by itself and thus represent major clinical challenge to reconstructive surgery. Numerous bone substitutes have already been used to promote bone regeneration, however their use, particularly for critical-sized bone defects along with their long term in vivo safety and efficacy remains a concern. The present study was designed to obtain a complete healing of critical-size defect made in the proximal tibia of New Zealand White rabbit, using nano-hydroxyapatite/gelatin and chemically carboxymethylated chitin (n-HA/gel/CMC) scaffold construct. The bone-implant interfaces and defect site healing was evaluated for a period up to 25 weeks using radiography, micro-computed tomography, fluorescence labeling, and histology and compared with respective SHAM (empty contra lateral control). The viscoelastic porous scaffold construct allows easy surgical insertion and post-operatively facilitate oxygenation and angiogenesis. Radiography of defect treated with scaffold construct suggested expedited healing at defect edges and within the defect site, unlike confined healing at edges of the SHAM sites. The architecture indices analyzed by micro-computed tomography showed a significant increase in percentage of bone volume fraction, resulted in reconciled cortico-trabecular bone formation at n-HA/gel/CMC constructs treated site (15.2% to 52.7%) when compared with respective SHAM (10.2% to 31.8%). Histological examination and fluorescence labeling revealed that the uniformly interconnected porous surface of scaffold construct enhanced osteoblasts' activity and mineralization. These preclinical data suggest that, n-HA/gel/CMC construct exhibit stimulation of bone's innate regenerative capacity, thus underscoring their use in guided bone regeneration. PMID:24204879

  18. [Preclinical study of noopept toxicity].

    PubMed

    Kovalenko, L P; Smol'nikova, N M; Alekseeva, S V; Nemova, E P; Sorokina, A V; Miramedova, M G; Kurapova, S P; Sidorina, E I; Kulakova, A V; Daugel'-Dauge, N O

    2002-01-01

    Within the framework of a preclinical investigation, the new nootrope drug noopept (N-phenyl-acetyl-L-propyl-glycine ethylate) was tested for chronic toxicity upon peroral administration in a dose of 10 or 100 mg/kg over 6 months in both male and female rabbits. The results of observations showed that noopept administered in this dose range induced no irreversible pathologic changes in the organs and systems studied and exhibited no allergenic, immunotoxic, and mutagen activity. The drug affected neither the generative function nor the antenatal or postnatal progeny development. Noopept produced a dose-dependent suppression of inflammation reaction to concanavalin A and stimulated the cellular and humoral immune response in mice. PMID:12025790

  19. Efficacy of Pimobendan in the Prevention of Congestive Heart Failure or Sudden Death in Doberman Pinschers with Preclinical Dilated Cardiomyopathy (The PROTECT Study)

    PubMed Central

    Summerfield, NJ; Boswood, A; O'Grady, MR; Gordon, SG; Dukes-McEwan, J; Oyama, MA; Smith, S; Patteson, M; French, AT; Culshaw, GJ; Braz-Ruivo, L; Estrada, A; O'Sullivan, ML; Loureiro, J; Willis, R; Watson, P

    2012-01-01

    Background The benefit of pimobendan in delaying the progression of preclinical dilated cardiomyopathy (DCM) in Dobermans is not reported. Hypothesis That chronic oral administration of pimobendan to Dobermans with preclinical DCM will delay the onset of CHF or sudden death and improve survival. Animals Seventy-six client-owned Dobermans recruited at 10 centers in the UK and North America. Methods The trial was a randomized, blinded, placebo-controlled, parallel group multicenter study. Dogs were allocated in a 1:1 ratio to receive pimobendan (Vetmedin capsules) or visually identical placebo. The composite primary endpoint was prospectively defined as either onset of CHF or sudden death. Time to death from all causes was a secondary endpoint. Results The proportion of dogs reaching the primary endpoint was not significantly different between groups (P = .1). The median time to the primary endpoint (onset of CHF or sudden death) was significantly longer in the pimobendan (718 days, IQR 441–1152 days) versus the placebo group (441 days, IQR 151–641 days) (log-rank P = 0.0088). The median survival time was significantly longer in the pimobendan (623 days, IQR 491–1531 days) versus the placebo group (466 days, IQR 236–710 days) (log-rank P = .034). Conclusion and Clinical Importance The administration of pimobendan to Dobermans with preclinical DCM prolongs the time to the onset of clinical signs and extends survival. Treatment of dogs in the preclinical phase of this common cardiovascular disorder with pimobendan can lead to improved outcome. PMID:23078651

  20. Pre-clinical studies of toxin-specific Nanobodies: Evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming

    SciTech Connect

    Hmila, Issam; Cosyns, Bernard; Tounsi, Hayfa; Roosens, Bram; Caveliers, Vicky; Abderrazek, Rahma Ben; Boubaker, Samir; Muyldermans, Serge; El Ayeb, Mohamed; Bouhaouala-Zahar, Balkiss; Lahoutte, Tony

    2012-10-15

    Scorpions represent a significant threat to humans and animals in various countries throughout the world. Recently, we introduced Nanobodies (Nbs) to combat more efficiently scorpion envenoming and demonstrated the performance of NbAahIF12 and NbAahII10 to neutralize scorpion toxins of Androctonus australis hector venom. A bispecific Nb construct (NbF12-10) comprising these two Nbs is far more protective than the classic Fab′{sub 2} based therapy and is the most efficient antivenom therapy against scorpion sting in preclinical studies. Now we investigate the biodistribution and pharmacokinetics of {sup 99m}Tc labeled Nbs by in vivo imaging in rodents and compared these data with those of the Fab′{sub 2} product (PAS). The pharmacodynamics of the Nbs was investigated in rats by in vivo echocardiography and it is shown that NbF12-10 prevents effectively the hemodynamic disturbances induced by a lethal dose of venom. Moreover, even a late injection of NbF12-10 restores the heart rate and brings the blood pressure to baseline values. Histology confirms that NbF12-10 prevents lung and heart lesions of treated mice after envenoming. In conjunction, in this preclinical study, we provide proof of concept that NbF12-10 prevents effectively the fatal disturbances induced by Androctonus venom, and that the Nanobody based therapeutic has a potential to substitute the classic Fab′{sub 2} based product as immunotherapeutic in scorpion envenoming. Further clinical study using larger cohorts of animals should be considered to confirm the full protecting potential of our NbF12-10. -- Highlights: ► Nanobody therapy prevents the hemodynamic disturbances induced by a lethal dose. ► Late injection of Nanobody restores hemodynamic parameters to baseline values. ► Nanobody therapy prevents lung and heart lesions of treated mice after envenoming. ► Labeled Nanobody and Fab’2 pharmacokinetics curves reach plateau in favour of Nanobody.

  1. Preclinical studies of amixicile, a systemic therapeutic developed for treatment of Clostridium difficile infections that also shows efficacy against Helicobacter pylori.

    PubMed

    Hoffman, Paul S; Bruce, Alexandra M; Olekhnovich, Igor; Warren, Cirle A; Burgess, Stacey L; Hontecillas, Raquel; Viladomiu, Monica; Bassaganya-Riera, Josep; Guerrant, Richard L; Macdonald, Timothy L

    2014-08-01

    Amixicile shows efficacy in the treatment of Clostridium difficile infections (CDI) in a mouse model, with no recurrence of CDI. Since amixicile selectively inhibits the action of a B vitamin (thiamine pyrophosphate) cofactor of pyruvate:ferredoxin oxidoreductase (PFOR), it may both escape mutation-based drug resistance and spare beneficial probiotic gut bacteria that do not express this enzyme. Amixicile is a water-soluble derivative of nitazoxanide (NTZ), an antiparasitic therapeutic that also shows efficacy against CDI in humans. In comparative studies, amixicile showed no toxicity to hepatocytes at 200 μM (NTZ was toxic above 10 μM); was not metabolized by human, dog, or rat liver microsomes; showed equivalence or superiority to NTZ in cytochrome P450 assays; and did not activate efflux pumps (breast cancer resistance protein, P glycoprotein). A maximum dose (300 mg/kg) of amixicile given by the oral or intraperitoneal route was well tolerated by mice and rats. Plasma exposure (rats) based on the area under the plasma concentration-time curve was 79.3 h · μg/ml (30 mg/kg dose) to 328 h · μg/ml (100 mg/kg dose), the maximum concentration of the drug in serum was 20 μg/ml, the time to the maximum concentration of the drug in serum was 0.5 to 1 h, and the half-life was 5.6 h. Amixicile did not concentrate in mouse feces or adversely affect gut populations of Bacteroides species, Firmicutes, segmented filamentous bacteria, or Lactobacillus species. Systemic bioavailability was demonstrated through eradication of Helicobacter pylori in a mouse infection model. In summary, the efficacy of amixicile in treating CDI and other infections, together with low toxicity, an absence of mutation-based drug resistance, and excellent drug metabolism and pharmacokinetic metrics, suggests a potential for broad application in the treatment of infections caused by PFOR-expressing microbial pathogens in addition to CDI. PMID:24890599

  2. Preclinical Studies of Amixicile, a Systemic Therapeutic Developed for Treatment of Clostridium difficile Infections That Also Shows Efficacy against Helicobacter pylori

    PubMed Central

    Bruce, Alexandra M.; Olekhnovich, Igor; Warren, Cirle A.; Burgess, Stacey L.; Hontecillas, Raquel; Viladomiu, Monica; Bassaganya-Riera, Josep; Guerrant, Richard L.; Macdonald, Timothy L.

    2014-01-01

    Amixicile shows efficacy in the treatment of Clostridium difficile infections (CDI) in a mouse model, with no recurrence of CDI. Since amixicile selectively inhibits the action of a B vitamin (thiamine pyrophosphate) cofactor of pyruvate:ferredoxin oxidoreductase (PFOR), it may both escape mutation-based drug resistance and spare beneficial probiotic gut bacteria that do not express this enzyme. Amixicile is a water-soluble derivative of nitazoxanide (NTZ), an antiparasitic therapeutic that also shows efficacy against CDI in humans. In comparative studies, amixicile showed no toxicity to hepatocytes at 200 μM (NTZ was toxic above 10 μM); was not metabolized by human, dog, or rat liver microsomes; showed equivalence or superiority to NTZ in cytochrome P450 assays; and did not activate efflux pumps (breast cancer resistance protein, P glycoprotein). A maximum dose (300 mg/kg) of amixicile given by the oral or intraperitoneal route was well tolerated by mice and rats. Plasma exposure (rats) based on the area under the plasma concentration-time curve was 79.3 h · μg/ml (30 mg/kg dose) to 328 h · μg/ml (100 mg/kg dose), the maximum concentration of the drug in serum was 20 μg/ml, the time to the maximum concentration of the drug in serum was 0.5 to 1 h, and the half-life was 5.6 h. Amixicile did not concentrate in mouse feces or adversely affect gut populations of Bacteroides species, Firmicutes, segmented filamentous bacteria, or Lactobacillus species. Systemic bioavailability was demonstrated through eradication of Helicobacter pylori in a mouse infection model. In summary, the efficacy of amixicile in treating CDI and other infections, together with low toxicity, an absence of mutation-based drug resistance, and excellent drug metabolism and pharmacokinetic metrics, suggests a potential for broad application in the treatment of infections caused by PFOR-expressing microbial pathogens in addition to CDI. PMID:24890599

  3. High efficacy of intravesical treatment of metformin on bladder cancer in preclinical model

    PubMed Central

    Peng, Mei; Su, Qiongli; Zeng, Qing; Li, Le; Liu, Zhihong; Xue, Lei; Cheng, Yan; Huang, Yanjun; Tao, Ting; Lv, Hongwei; Li, Xiaohui; Tao, Xiaojun; Guo, Peng; Chen, Alex F.; Yang, Xiaoping

    2016-01-01

    Anticancer potential of metformin has been extensively studied. However, its anticancer clinical use remains yet to be approved since sufficient concentration on target organs could not be achieved via conventional administration. To overcome this drawback, we aim to examine the efficiency of novel intravesical treatment of metformin on syngeneic orthotopic preclinical model. Three human and one murine bladder cancer cell lines were tested in vitro for inhibitory sensitivity by MTT and cologenic assays. AMPK pathway including AKT, Erk and S6K was examined by western blot and further explored by regulating activated levels using specific inhibitors. In vivo efficacy was determined by Kaplan-Meier survival curves and measurements of body and bladder weights plus tumor biomarkers. Lactic acid and metformin levels of plasma were measured by standard procedures. The results demonstrated that metformin activated AMPK and decreased phosphorylation of Akt and Erk. Furthermore, combinations of metformin with either Akt or Erk inhibitors synergistically diminished cancer proliferation, suggesting the involvement of Akt- and Erk- related pathways. Intravesical metformin 26 and 104 mg/kg, twice per week demonstrated a rapid elimination of the implanted tumor without any evidence of toxicity. In contrast, oral treatment at a dose of 800mg/kg/d exhibited little efficacy whereas severe toxicity existed if the dosage is higher. Collectively, intravesical metformin displays potent inhibition on bladder cancer in vitro and this preclinical study reveals the profound therapeutic application of metformin with durable tolerance via intravesical administration route. PMID:26802022

  4. Recommendations for Benchmarking Preclinical Studies of Nanomedicines.

    PubMed

    Dawidczyk, Charlene M; Russell, Luisa M; Searson, Peter C

    2015-10-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small-molecule drug therapy for cancer and to achieve both therapeutic and diagnostic functions in the same platform. Preclinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of preclinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of preclinical trials and propose a protocol for benchmarking that we recommend be included in in vivo preclinical studies of drug-delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. PMID:26249177

  5. USHERING IN THE STUDY AND TREATMENT OF PRECLINICAL ALZHEIMER DISEASE

    PubMed Central

    Langbaum, Jessica B.S.; Fleisher, Adam S.; Chen, Kewei; Ayutyanont, Napatkamon; Lopera, Francisco; Quiroz, Yakeel T.; Caselli, Richard J.; Tariot, Pierre N.; Reiman, Eric M.

    2014-01-01

    Researchers have begun to characterize the subtle biological and cognitive processes that precede the clinical onset of Alzheimer disease (AD), and to set the stage for accelerated evaluation of experimental treatments to delay the onset, reduce the risk of or completely prevent clinical decline. Here, we provide an overview of the experimental strategies, and brain imaging and cerebrospinal fluid biomarker measures that are used in early detection and tracking of AD, highlighting at-risk individuals who could be suitable for preclinical monitoring. We discuss how these advances have contributed to reconceptualization of AD as a sequence of biological changes that occur during progression from preclinical AD, to mild cognitive impairment and finally dementia, and we review recently proposed research criteria for preclinical AD. Advances in the study of preclinical AD have driven the recognition that efficacy of at least some AD therapies may depend on initiation of treatment before clinical manifestation of disease, leading to a new era of AD prevention research. PMID:23752908

  6. Neuroimaging in Alzheimer's disease: preclinical challenges toward clinical efficacy.

    PubMed

    Dustin, Derek; Hall, Benjamin M; Annapragada, Ananth; Pautler, Robia G

    2016-09-01

    The scope of this review focuses on recent applications in preclinical and clinical magnetic resonance imaging (MRI) toward accomplishing the goals of early detection and responses to therapy in animal models of Alzheimer's disease (AD). Driven by the outstanding efforts of the Alzheimer's Disease Neuroimaging Initiative (ADNI), a truly invaluable resource, the initial use of MRI in AD imaging has been to assess changes in brain anatomy, specifically assessing brain shrinkage and regional changes in white matter tractography using diffusion tensor imaging. However, advances in MRI have led to multiple efforts toward imaging amyloid beta plaques first without and then with the use of MRI contrast agents. These technological advancements have met with limited success and are not yet appropriate for the clinic. Recent developments in molecular imaging inclusive of high-power liposomal-based MRI contrast agents as well as fluorine 19 ((19)F) MRI and manganese enhanced MRI have begun to propel promising advances toward not only plaque imaging but also using MRI to detect perturbations in subcellular processes occurring within the neuron. This review concludes with a discussion about the necessity for the development of novel preclinical models of AD that better recapitulate human AD for the imaging to truly be meaningful and for substantive progress to be made toward understanding and effectively treating AD. Furthermore, the continued support of outstanding programs such as ADNI as well as the development of novel molecular imaging agents and MRI fast scanning sequences will also be requisite to effectively translate preclinical findings to the clinic. PMID:27033146

  7. Preclinical Childhood Sarcoma Models: Drug Efficacy Biomarker Identification and Validation

    PubMed Central

    Geier, Brian; Kurmashev, Dias; Kurmasheva, Raushan T.; Houghton, Peter J.

    2015-01-01

    Over the past 35 years, cure rates for pediatric cancers have increased dramatically. However, it is clear that further dose intensification using cytotoxic agents or radiation therapy is not possible without enhancing morbidity and long-term effects. Consequently, novel, less genotoxic, agents are being sought to complement existing treatments. Here, we discuss preclinical human tumor xenograft models of pediatric cancers that may be used practically to identify novel agents for soft tissue and bone sarcomas, and “omics” approaches to identifying biomarkers that may identify sensitive and resistant tumors to these agents. PMID:26380223

  8. Preclinical Childhood Sarcoma Models: Drug Efficacy Biomarker Identification and Validation.

    PubMed

    Geier, Brian; Kurmashev, Dias; Kurmasheva, Raushan T; Houghton, Peter J

    2015-01-01

    Over the past 35 years, cure rates for pediatric cancers have increased dramatically. However, it is clear that further dose intensification using cytotoxic agents or radiation therapy is not possible without enhancing morbidity and long-term effects. Consequently, novel, less genotoxic, agents are being sought to complement existing treatments. Here, we discuss preclinical human tumor xenograft models of pediatric cancers that may be used practically to identify novel agents for soft tissue and bone sarcomas, and "omics" approaches to identifying biomarkers that may identify sensitive and resistant tumors to these agents. PMID:26380223

  9. Efficacy and safety of mesenchymal stromal cells in preclinical models of acute lung injury: a systematic review protocol

    PubMed Central

    2014-01-01

    Background Acute respiratory distress syndrome (ARDS) in humans is caused by an unchecked proinflammatory response that results in diffuse and severe lung injury, and it is associated with a mortality rate of 35 to 45%. Mesenchymal stromal cells (MSCs; ‘adult stem cells’) could represent a promising new therapy for this syndrome, since preclinical evidence suggests that MSCs may ameliorate lung injury. Prior to a human clinical trial, our aim is to conduct a systematic review to compare the efficacy and safety of MSC therapy versus controls in preclinical models of acute lung injury that mimic some aspects of the human ARDS. Methods/Design We will include comparative preclinical studies (randomized and non-randomized) of acute lung injury in which MSCs were administered and outcomes compared to animals given a vehicle control. The primary outcome will be death. Secondary outcomes will include the four key features of preclinical acute lung injury as defined by the American Thoracic Society consensus conference (histologic evidence of lung injury, altered alveolar capillary barrier, lung inflammatory response, and physiological dysfunction) and pathogen clearance for acute lung injury models that are caused by infection. Electronic searches of MEDLINE, Embase, BIOSIS Previews, and Web of Science will be constructed and reviewed by the Peer Review of Electronic Search Strategies (PRESS) process. Search results will be screened independently and in duplicate. Data from eligible studies will be extracted, pooled, and analyzed using random effects models. Risk of bias will be assessed using the Cochrane risk of bias tool, and individual study reporting will be assessed according to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Discussion The results of this systematic review will comprehensively summarize the safety and efficacy of MSC therapy in preclinical models of acute lung injury. Our results will help translational scientists and

  10. Combination therapy for hepatocellular carcinoma: Additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib

    PubMed Central

    Lachenmayer, Anja; Toffanin, Sara; Cabellos, Laia; Alsinet, Clara; Hoshida, Yujin; Villanueva, Augusto; Minguez, Beatriz; Tsai, Hung-Wen; Ward, Stephen C.; Thung, Swan; Friedman, Scott L.; Llovet, Josep M.

    2012-01-01

    Background & Aims Hepatocellular carcinoma (HCC) is a heterogeneous cancer in which sorafenib is the only approved systemic therapy. Histone deacetylases (HDAC) are commonly dysregulated in cancer and therefore represent promising targets for therapies, however their role in HCC pathogenesis is still unknown. We analyzed the expression of 11 HDACs in human HCCs and assessed the efficacy of the pan-HDAC inhibitor panobinostat alone and in combination with sorafenib in preclinical models of liver cancer. Methods Gene expression and copy number changes were analyzed in a cohort of 334 human HCCs, while the effects of panobinostat and sorafenib were evaluated in 3 liver cancer cell lines and a murine xenograft model. Results Aberrant HDAC expression was identified and validated in 91 and 243 HCCs, respectively. Upregulation of HDAC3 and 5 mRNAs were significantly correlated with DNA copy number gains. Inhibiting HDACs with panobinostat led to strong anti-tumoral effects in vitro and vivo, enhanced by the addition of sorafenib. Cell viability and proliferation declined, while apoptosis and autophagy increased. Panobinostat increased Histone H3 and HSP90 acetylation, downregulated BIRC5 (survivin) and upregulated CDH1. Combination therapy with panobinostat and sorafenib significantly decreased vessel density, and most significantly decreased tumor volume and increased survival in HCC xenografts. Conclusions Aberrant expression of several HDACs and copy number gains of HDAC3 and HDAC5 occur in HCC. Treatment with panobinostat combined with sorafenib demonstrated the highest preclinical efficacy in HCC models, providing the rationale for clinical studies with this novel combination. PMID:22322234

  11. [Efficacy studies].

    PubMed

    Pedro-Botet, Juan; Flores-Le Roux, Juana A

    2014-07-01

    Pravafenix(®) is a fixed-dose combination of 40mg of pravastatin and 160 mg of fenofibrate. The rationale behind the use of Pravafenix(®) is based on the increased residual cardiovascular risk observed in high risk patients with hypertriglyceridemia and/or low HDL cholesterol levels despite treatment with statins in monotherapy. In this article, we review the available evidence on the clinical efficacy of Pravafenix(®), which shows complementary benefits in the overall lipid profile of high risk patients with mixed dyslipidemia not controlled with 40-mg pravastatin or 20-mg simvastatin. PMID:25043542

  12. Oncolysis by paramyxoviruses: preclinical and clinical studies

    PubMed Central

    Matveeva, Olga V; Guo, Zong S; Senin, Vyacheslav M; Senina, Anna V; Shabalina, Svetlana A; Chumakov, Peter M

    2015-01-01

    Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches. PMID:26640815

  13. Preclinical studies of alcohol binge drinking

    PubMed Central

    Crabbe, John C.; Harris, R. Adron; Koob, George F.

    2011-01-01

    Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans. PMID:21272009

  14. Dissolution DNP for in vivo preclinical studies

    NASA Astrophysics Data System (ADS)

    Comment, Arnaud

    2016-03-01

    The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future.

  15. Dissolution DNP for in vivo preclinical studies.

    PubMed

    Comment, Arnaud

    2016-03-01

    The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future. PMID:26920829

  16. Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review

    PubMed Central

    McIntyre, Lauralyn A.; Moher, David; Fergusson, Dean A.; Sullivan, Katrina J.; Mei, Shirley H. J.; Lalu, Manoj; Marshall, John; Mcleod, Malcolm; Griffin, Gilly; Grimshaw, Jeremy; Turgeon, Alexis; Avey, Marc T.; Rudnicki, Michael A.; Jazi, Mazen; Fishman, Jason; Stewart, Duncan J.

    2016-01-01

    The Acute Respiratory Distress Syndrome (ARDS) is a devastating clinical condition that is associated with a 30–40% risk of death, and significant long term morbidity for those who survive. Mesenchymal stromal cells (MSC) have emerged as a potential novel treatment as in pre-clinical models they have been shown to modulate inflammation (a major pathophysiological hallmark of ARDS) while enhancing bacterial clearance and reducing organ injury and death. A systematic search of MEDLINE, EMBASE, BIOSIS and Web of Science was performed to identify pre-clinical studies that examined the efficacy MSCs as compared to diseased controls for the treatment of Acute Lung Injury (ALI) (the pre-clinical correlate of human ARDS) on mortality, a clinically relevant outcome. We assessed study quality and pooled results using random effect meta-analysis. A total of 54 publications met our inclusion criteria of which 17 (21 experiments) reported mortality and were included in the meta-analysis. Treatment with MSCs, as compared to controls, significantly decreased the overall odds of death in animals with ALI (Odds Ratio 0.24, 95% Confidence Interval 0.18–0.34, I2 8%). Efficacy was maintained across different types of animal models and means of ALI induction; MSC origin, source, route of administration and preparation; and the clinical relevance of the model (timing of MSC administration, administration of fluids and or antibiotics). Reporting of standard MSC characterization for experiments that used human MSCs and risks of bias was generally poor, and although not statistically significant, a funnel plot analysis for overall mortality suggested the presence of publication bias. The results from our meta-analysis support that MSCs substantially reduce the odds of death in animal models of ALI but important reporting elements were sub optimal and limit the strength of our conclusions. PMID:26821255

  17. Validation of a preclinical model for assessment of drug efficacy in melanoma

    PubMed Central

    Delyon, Julie; Varna, Mariana; Feugeas, Jean-Paul; Sadoux, Aurélie; Yahiaoui, Saliha; Podgorniak, Marie-Pierre; Leclert, Geoffroy; Dorval, Sarra Mazouz; Dumaz, Nicolas; Janin, Anne

    2016-01-01

    The aim of personalized medicine is to improve our understanding of the disease at molecular level and to optimize therapeutic management. In this context, we have developed in vivo and ex vivo preclinical strategies evaluating the efficacy of innovative drugs in melanomas. Human melanomas (n = 17) of different genotypes (mutated BRAF, NRAS, amplified cKIT and wild type) were successfully engrafted in mice then amplified by successive transplantations. The exhaustive characterization of patient-derived xenografts (PDX) at genomic level (transcriptomic and CGH arrays) revealed a similar distribution pattern of genetic abnormalities throughout the successive transplantations compared to the initial patient tumor, enabling their use for mutation-specific therapy strategies. The reproducibility of their spontaneous metastatic potential in mice was assessed in 8 models. These PDXs were used for the development of histoculture drug response assays (ex vivo) for the evaluation of innovative drug efficacy (BRAF and MEK inhibitors). The pharmacological effects of BRAF and MEK inhibitors were similar between PDX-derived histocultures and their corresponding PDX, on 2 models of BRAF and NRAS-mutated melanomas. These models constitute a validated, effective tool for preclinical investigation of new therapeutic agents, and improve therapeutic strategies in the treatment of metastatic melanoma. PMID:26909610

  18. Intravital microscopy as a tool to study drug delivery in preclinical studies

    PubMed Central

    Amornphimoltham, Panomwat; Masedunskas, Andrius; Weigert, Roberto

    2010-01-01

    The technical developments in the field of non-linear microscopy have made intravital microscopy one of the most successful techniques for studying physiological and pathological processes in live animals. Intravital microscopy has been utilized to address many biological questions in basic research and is now a fundamental tool for preclinical studies, with an enormous potential for clinical applications. The ability to dynamically image cellular and subcellular structures combined with the possibility to perform longitudinal studies have empowered investigators to use this discipline to study the mechanisms of action of therapeutic agents and assess the efficacy on their targets in vivo. The goal of this review is to provide a general overview of the recent advances in intravital microscopy and to discuss some of its applications in preclinical studies. PMID:20933026

  19. Models for preclinical studies in aging-related disorders: One is not for all

    PubMed Central

    Santulli, Gaetano; Borras, Consuelo; Bousquet, Jean; Calzà, Laura; Cano, Antonio; Illario, Maddalena; Franceschi, Claudio; Liotta, Giuseppe; Maggio, Marcello; Molloy, William D.; Montuori, Nunzia; O’Caoimh, Rónán; Orfila, Francesc; Rauter, Amelia P.; Santoro, Aurelia; Iaccarino, Guido

    2015-01-01

    Preclinical studies are essentially based on animal models of a particular disease. The primary purpose of preclinical efficacy studies is to support generalization of treatment–effect relationships to human subjects. Researchers aim to demonstrate a causal relationship between an investigational agent and a disease-related phenotype in such models. Numerous factors can muddle reliable inferences about such cause-effect relationships, including biased outcome assessment due to experimenter expectations. For instance, responses in a particular inbred mouse might be specific to the strain, limiting generalizability. Selecting well-justified and widely acknowledged model systems represents the best start in designing preclinical studies, especially to overcome any potential bias related to the model itself. This is particularly true in the research that focuses on aging, which carries unique challenges, mainly attributable to the fact that our already long lifespan makes designing experiments that use people as subjects extremely difficult and largely impractical. PMID:27042427

  20. Preclinical Data on Efficacy of 10 Drug-Radiation Combinations: Evaluations, Concerns, and Recommendations1

    PubMed Central

    Stone, Helen B.; Bernhard, Eric J.; Coleman, C. Norman; Deye, James; Capala, Jacek; Mitchell, James B.; Brown, J. Martin

    2016-01-01

    BACKGROUND: Clinical testing of new therapeutic interventions requires comprehensive, high-quality preclinical data. Concerns regarding quality of preclinical data have been raised in recent reports. This report examines the data on the interaction of 10 drugs with radiation and provides recommendations for improving the quality, reproducibility, and utility of future studies. The drugs were AZD6244, bortezomib, 17-DMAG, erlotinib, gefitinib, lapatinib, oxaliplatin/Lipoxal, sunitinib (Pfizer, Corporate headquarters, New York, NY), thalidomide, and vorinostat. METHODS: In vitro and in vivo data were tabulated from 125 published papers, including methods, radiation and drug doses, schedules of administration, assays, measures of interaction, presentation and interpretation of data, dosimetry, and conclusions. RESULTS: In many instances, the studies contained inadequate or unclear information that would hamper efforts to replicate or intercompare the studies, and that weakened the evidence for designing and conducting clinical trials. The published reports on these drugs showed mixed results on enhancement of radiation response, except for sunitinib, which was ineffective. CONCLUSIONS: There is a need for improved experimental design, execution, and reporting of preclinical testing of agents that are candidates for clinical use in combination with radiation. A checklist is provided for authors and reviewers to ensure that preclinical studies of drug-radiation combinations meet standards of design, execution, and interpretation, and report necessary information to ensure high quality and reproducibility of studies. Improved design, execution, common measures of enhancement, and consistent interpretation of preclinical studies of drug-radiation interactions will provide rational guidance for prioritizing drugs for clinical radiotherapy trials and for the design of such trials. PMID:26947881

  1. Towards environmental construct validity in animal models of CNS disorders: optimizing translation of preclinical studies.

    PubMed

    Burrows, Emma L; Hannan, Anthony J

    2013-08-01

    There is an enormous demand for new therapeutic interventions for a range of major disorders. The majority of clinical trials in recent years have been unsuccessful despite highly promising preclinical data. Therefore, an urgent issue confronting both the academic and commercial medical research sectors is how to optimize translation of preclinical studies. The vast majority of preclinical studies are currently performed using laboratory mice and rats. We will discuss the various opportunities for optimization of animal models of CNS disorders. One limitation of current approaches is that most studies are conducted on sedentary, unstimulated animals with unlimited access to food in the home cage, thus leading to metabolic and physiological compromise. Environmental enrichment, which enhances sensory stimulation, cognitive activity and physical exercise, has been demonstrated to induce dramatic effects on brain and behavior in both wild-type and genetically modified rodent models, relative to standard-housed littermate controls. Environmental enrichment also exerts beneficial effects outside the CNS, such as a reduction in excess body fat. We propose that therapeutic interventions which are found to show promise in standard-housed preclinical models should be subsequently tested under conditions of greater environmental enrichment to identify therapeutics which continue to show efficacy in housing contexts of superior 'environmental construct validity'. Other possible approaches to optimize the quality, validity and reporting of preclinical studies in animal models are also discussed. PMID:23574171

  2. Preclinical Studies for Induced Pluripotent Stem Cell-based Therapeutics*

    PubMed Central

    Harding, John; Mirochnitchenko, Oleg

    2014-01-01

    Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions. PMID:24362021

  3. Preclinical Assessment of the Efficacy of Anti-Angiogenic Therapies in Hepatocellular Carcinoma.

    PubMed

    Barral, Matthias; Raballand, Annemilaï; Dohan, Anthony; Soyer, Philippe; Pocard, Marc; Bonnin, Philippe

    2016-02-01

    Diffuse hepatocellular carcinoma (HCC) is a complex affliction in which comorbidities can bias global outcome of cancer therapy. Better methods are thus warranted to directly assess effects of therapy on tumor angiogenesis and growth. As tumor angiogenesis is invariably associated with changes in local blood flow, we assessed the utility of ultrasound imaging in evaluation of the efficacy of anti-angiogenic therapy in a spontaneous transgenic mouse model of HCC. Blood flow velocities were measured monthly in the celiac trunk before and after administration of sorafenib or bevacizumab at doses corresponding to those currently used in clinical practice. Concordant with clinical experience, sorafenib, but not bevacizumab, reduced microvascular density and suppressed tumor growth relative to controls. Evolution of blood flow velocities correlated with microvascular density and with the evolution of tumor size. Ultrasound imaging thus provides a useful non-invasive tool for preclinical evaluation of new anti-angiogenic therapies for HCC. PMID:26626491

  4. Evaluating the Suitability of Using Rat Models for Preclinical Efficacy and Side Effects with Inhaled Corticosteroids Nanosuspension Formulations

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Hu, Yiding; Blom, Jason D.; Thompson, David C.

    2010-06-01

    Inhaled corticosteroids (ICS) are often prescribed as first-line therapy for patients with asthma Despite their efficacy and improved safety profile compared with oral corticosteroids, the potential for systemic side effects continues to cause concern. In order to reduce the potential for systemic side effects, the pharmaceutical industry has begun efforts to generate new drugs with pulmonary-targeted topical efficacy. One of the major challenges of this approach is to differentiate both efficacy and side effects (pulmonary vs. systemic) in a preclinical animal model. In this study, fluticasone and ciclesonide were used as tool compounds to explore the possibility of demonstrating both efficacy and side effects in a rat model using pulmonary delivery via intratracheal (IT) instillation with nanosuspension formulations. The inhibition of neutrophil infiltration into bronchoalveolar lavage fluid (BALF) and cytokine (TNFα) production were utilized to assess pulmonary efficacy, while adrenal and thymus involution as well as plasma corticosterone suppression was measured to assess systemic side effects. Based on neutrophil infiltration and cytokine production data, the ED50s for ciclesonide and fluticasone were calculated to be 0.1 and 0.03 mg, respectively. At the ED50, the average adrenal involution was 7.6 ± 5.3% for ciclesonide versus 16.6 ± 5.1% for fluticasone, while the average thymus involution was 41.0 ± 4.3% for ciclesonide versus 59.5 ± 5.8% for fluticasone. However, the differentiation became less significant when the dose was pushed to the EDmax (0.3 mg for ciclesonide, 0.1 mg for fluticasone). Overall, the efficacy and side effect profiles of the two compounds exhibited differentiation at low to mid doses (0.03-0.1 mg ciclesonide, 0.01-0.03 mg fluticasone), while this differentiation diminished at the maximum efficacious dose (0.3 mg ciclesonide, 0.1 mg fluticasone), likely due to overdosing in this model. We conclude that the rat LPS model using IT

  5. The Guinea pig as a preclinical model for demonstrating the efficacy and safety of statins.

    PubMed

    Madsen, Cort S; Janovitz, Evan; Zhang, Rongan; Nguyen-Tran, Van; Ryan, Carol S; Yin, Xiaohong; Monshizadegan, Hossain; Chang, Ming; D'Arienzo, Celia; Scheer, Susan; Setters, Robert; Search, Debra; Chen, Xing; Zhuang, Shaobin; Kunselman, Lori; Peters, Andrew; Harrity, Thomas; Apedo, Atsu; Huang, Christine; Cuff, Carolyn A; Kowala, Mark C; Blanar, Michael A; Sun, Chong-Qing; Robl, Jeffrey A; Stein, Philip D

    2008-02-01

    Statins, because of their excellent efficacy and manageable safety profile, represent a key component in the current armamentarium for the treatment of hypercholesterolemia. Nonetheless, myopathy remains a safety concern for this important drug class. Cerivastatin was withdrawn from the market for myotoxicity safety concerns. BMS-423526 [{(3R,5S)-7-[4-(4-fluorophenyl)-6,7-dihydro-2-(1-methylethyl)-5H-benzo[6,7]cyclohepta[1,2-b]pyridin-3-yl]-3,5-dihydroxy-heptenoic acid} sodium salt], similar to cerivastatin in potency and lipophilicity, was terminated in early clinical development due to an unacceptable myotoxicity profile. In this report, we describe the guinea pig as a model of statin-induced cholesterol lowering and myotoxicity and show that this model can distinguish statins with unacceptable myotoxicity profiles from statins with acceptable safety profiles. In our guinea pig model, both cerivastatin and BMS-423526 induced myotoxicity at doses near the ED(50) for total cholesterol (TC) lowering in plasma. In contrast, wide differences between myotoxic and TC-lowering doses were established for the currently marketed, more hydrophilic statins, pravastatin, rosuvastatin, and atorvastatin. This in vivo model compared favorably to an in vitro model, which used statin inhibition of cholesterol synthesis in rat hepatocytes and L6 myoblasts as surrogates of potential efficacy and toxicity, respectively. Our conclusion is that the guinea pig is a useful preclinical in vivo model for demonstrating whether a statin is likely to have an acceptable therapeutic safety margin. PMID:17986646

  6. Chemical and preclinical studies on Hedyotis diffusa with anticancer potential.

    PubMed

    Niu, Yu; Meng, Qiu-Xia

    2013-01-01

    This paper presents the chemical and preclinical anticancer research on Hedyotis diffusa Willd. in detail, one of the most renowned herbs often prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicine. Anthraquinones, flavonoids, and terpenoids constitute the majority of the 69 compounds that have been isolated and identified from H. diffusa. The anticancer effects of the methanolic, ethanolic, and aqueous extracts in various preclinical cancer models have been described. This review also summarized the anticancer activity of constituents of the herb and the mechanisms of action. All the studies suggest that H. diffusa has enormous potential in the therapy of cancer and warrants further chemical and pharmacological investigation. PMID:23600735

  7. Preclinical studies of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in pediatric brain tumors.

    PubMed

    Morfouace, Marie; Nimmervoll, Birgit; Boulos, Nidal; Patel, Yogesh T; Shelat, Anang; Freeman, Burgess B; Robinson, Giles W; Wright, Karen; Gajjar, Amar; Stewart, Clinton F; Gilbertson, Richard J; Roussel, Martine F

    2016-01-01

    Chemotherapies active in preclinical studies frequently fail in the clinic due to lack of efficacy, which limits progress for rare cancers since only small numbers of patients are available for clinical trials. Thus, a preclinical drug development pipeline was developed to prioritize potentially active regimens for pediatric brain tumors spanning from in vitro drug screening, through intracranial and intra-tumoral pharmacokinetics to in vivo efficacy studies. Here, as an example of the pipeline, data are presented for the combination of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in three pediatric brain tumor models. The in vitro activity of nine novel therapies was tested against tumor spheres derived from faithful mouse models of Group 3 medulloblastoma, ependymoma, and choroid plexus carcinoma. Agents with the greatest in vitro potency were then subjected to a comprehensive series of in vivo pharmacokinetic (PK) and pharmacodynamic (PD) studies culminating in preclinical efficacy trials in mice harboring brain tumors. The nucleoside analog 5-fluoro-2'-deoxycytidine (FdCyd) markedly reduced the proliferation in vitro of all three brain tumor cell types at nanomolar concentrations. Detailed intracranial PK studies confirmed that systemically administered FdCyd exceeded concentrations in brain tumors necessary to inhibit tumor cell proliferation, but no tumor displayed a significant in vivo therapeutic response. Despite promising in vitro activity and in vivo PK properties, FdCyd is unlikely to be an effective treatment of pediatric brain tumors, and therefore was deprioritized for the clinic. Our comprehensive and integrated preclinical drug development pipeline should reduce the attrition of drugs in clinical trials. PMID:26518542

  8. A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke.

    PubMed

    Maysami, Samaneh; Wong, Raymond; Pradillo, Jesus M; Denes, Adam; Dhungana, Hiramani; Malm, Tarja; Koistinaho, Jari; Orset, Cyrille; Rahman, Mahbubur; Rubio, Marina; Schwaninger, Markus; Vivien, Denis; Bath, Philip M; Rothwell, Nancy J; Allan, Stuart M

    2016-03-01

    Stroke represents a global challenge and is a leading cause of permanent disability worldwide. Despite much effort, translation of research findings to clinical benefit has not yet been successful. Failure of neuroprotection trials is considered, in part, due to the low quality of preclinical studies, low level of reproducibility across different laboratories and that stroke co-morbidities have not been fully considered in experimental models. More rigorous testing of new drug candidates in different experimental models of stroke and initiation of preclinical cross-laboratory studies have been suggested as ways to improve translation. However, to our knowledge, no drugs currently in clinical stroke trials have been investigated in preclinical cross-laboratory studies. The cytokine interleukin 1 is a key mediator of neuronal injury, and the naturally occurring interleukin 1 receptor antagonist has been reported as beneficial in experimental studies of stroke. In the present paper, we report on a preclinical cross-laboratory stroke trial designed to investigate the efficacy of interleukin 1 receptor antagonist in different research laboratories across Europe. Our results strongly support the therapeutic potential of interleukin 1 receptor antagonist in experimental stroke and provide further evidence that interleukin 1 receptor antagonist should be evaluated in more extensive clinical stroke trials. PMID:26661169

  9. Preclinical efficacy and mechanisms of mesenchymal stem cells in animal models of autoimmune diseases.

    PubMed

    Lee, Hong Kyung; Lim, Sang Hee; Chung, In Sung; Park, Yunsoo; Park, Mi Jeong; Kim, Ju Young; Kim, Yong Guk; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2014-04-01

    Mesenchymal stem cells (MSCs) are present in diverse tissues and organs, including bone marrow, umbilical cord, adipose tissue, and placenta. MSCs can expand easily in vitro and have regenerative stem cell properties and potent immunoregulatory activity. They inhibit the functions of dendritic cells, B cells, and T cells, but enhance those of regulatory T cells by producing immunoregulatory molecules such as transforming growth factor-β, hepatic growth factors, prostaglandin E2, interleukin-10, indolamine 2,3-dioxygenase, nitric oxide, heme oxygenase-1, and human leukocyte antigen-G. These properties make MSCs promising therapeutic candidates for the treatment of autoimmune diseases. Here, we review the preclinical studies of MSCs in animal models for systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, and experimental autoimmune encephalomyelitis, and summarize the underlying immunoregulatory mechanisms. PMID:24851097

  10. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate

    PubMed Central

    Plante, Kenneth S; Rossi, Shannan L.; Bergren, Nicholas A.; Seymour, Robert L.; Weaver, Scott C.

    2015-01-01

    We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing. PMID:26340754

  11. Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties.

    PubMed

    Luistro, Leopoldo; He, Wei; Smith, Melissa; Packman, Kathryn; Vilenchik, Maria; Carvajal, Daisy; Roberts, John; Cai, James; Berkofsky-Fessler, Windy; Hilton, Holly; Linn, Michael; Flohr, Alexander; Jakob-Røtne, Roland; Jacobsen, Helmut; Glenn, Kelli; Heimbrook, David; Boylan, John F

    2009-10-01

    Notch signaling is an area of great interest in oncology. RO4929097 is a potent and selective inhibitor of gamma-secretase, producing inhibitory activity of Notch signaling in tumor cells. The RO4929097 IC50 in cell-free and cellular assays is in the low nanomolar range with >100-fold selectivity with respect to 75 other proteins of various types (receptors, ion channels, and enzymes). RO4929097 inhibits Notch processing in tumor cells as measured by the reduction of intracellular Notch expression by Western blot. This leads to reduced expression of the Notch transcriptional target gene Hes1. RO4929097 does not block tumor cell proliferation or induce apoptosis but instead produces a less transformed, flattened, slower-growing phenotype. RO4929097 is active following oral dosing. Antitumor activity was shown in 7 of 8 xenografts tested on an intermittent or daily schedule in the absence of body weight loss or Notch-related toxicities. Importantly, efficacy is maintained after dosing is terminated. Angiogenesis reverse transcription-PCR array data show reduced expression of several key angiogenic genes. In addition, comparative microarray analysis suggests tumor cell differentiation as an additional mode of action. These preclinical results support evaluation of RO4929097 in clinical studies using an intermittent dosing schedule. A multicenter phase I dose escalation study in oncology is under way. PMID:19773430

  12. Pathology assessment is necessary to validate translational endpoints in preclinical aging studies

    PubMed Central

    Ladiges, Warren

    2016-01-01

    The Geropathology Research Network has established a plan to identify and use pathology-based surrogate endpoints for aging intervention in preclinical drug studies to provide a predictable and short-term anti-aging drug response in line with clinical trials. The plan involves pathological assessment of tissues and organs from strains of old mice, by independent pathology groups in a concurrent manner in order to characterize the changes in lesion incidence and severity in response to anti-aging drugs at specific time points. This approach allows for connection with translational endpoints of aging, such as serum factors and physiological parameters, between mice and humans. Preclinical drug testing is a critical component of the plan, designed to shorten testing times from lengthy lifespan studies by comparing lesion grades and composite scores in treated and placebo cohorts at cross-sectional time points. In conclusion, a geropathology-based preclinical testing program is a step toward assuring maximum utilization of translational resources and increasing predictability of efficacy of new or repurposed drugs for clinical aging intervention studies. PMID:27015829

  13. ChimeriVax-West Nile Virus Live-Attenuated Vaccine: Preclinical Evaluation of Safety, Immunogenicity, and Efficacy

    PubMed Central

    Arroyo, Juan; Miller, Chuck; Catalan, John; Myers, Gwendolyn A.; Ratterree, Marion S.; Trent, Dennis W.; Monath, Thomas P.

    2004-01-01

    The availability of ChimeriVax vaccine technology for delivery of flavivirus protective antigens at the time West Nile (WN) virus was first detected in North America in 1999 contributed to the rapid development of the vaccine candidate against WN virus described here. ChimeriVax-Japanese encephalitis (JE), the first live- attenuated vaccine developed with this technology has successfully undergone phase I and II clinical trials. The ChimeriVax technology utilizes yellow fever virus (YF) 17D vaccine strain capsid and nonstructural genes to deliver the envelope gene of other flaviviruses as live-attenuated chimeric viruses. Amino acid sequence homology between the envelope protein (E) of JE and WN viruses facilitated targeting attenuating mutation sites to develop the WN vaccine. Here we discuss preclinical studies with the ChimeriVax-WN virus in mice and macaques. ChimeriVax-WN virus vaccine is less neurovirulent than the commercial YF 17D vaccine in mice and nonhuman primates. Attenuation of the virus is determined by the chimeric nature of the construct containing attenuating mutations in the YF 17D virus backbone and three point mutations introduced to alter residues 107, 316, and 440 in the WN virus E protein gene. The safety, immunogenicity, and efficacy of the ChimeriVax-WN02 vaccine in the macaque model indicate the vaccine candidate is expected to be safe and immunogenic for humans. PMID:15507637

  14. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models.

    PubMed

    Hittinger, Marius; Juntke, Jenny; Kletting, Stephanie; Schneider-Daum, Nicole; de Souza Carvalho, Cristiane; Lehr, Claus-Michael

    2015-05-01

    New pharmaceutical formulations must be proven as safe and effective before entering clinical trials. Also in the context of pulmonary drug delivery, preclinical models allow testing of novel antimicrobials, reducing risks and costs during their development. Such models allow reducing the complexity of the human lung, but still need to reflect relevant (patho-) physiological features. This review focuses on preclinical pulmonary models, mainly in vitro models, to assess drug safety and efficacy of antimicrobials. Furthermore, approaches to investigate common infectious diseases of the respiratory tract, are emphasized. Pneumonia, tuberculosis and infections occurring due to cystic fibrosis are in focus of this review. We conclude that especially in vitro models offer the chance of an efficient and detailed analysis of new antimicrobials, but also draw attention to the advantages and limitations of such currently available models and critically discuss the necessary steps for their future development. PMID:25453270

  15. Optimized design and analysis of preclinical intervention studies in vivo

    PubMed Central

    Laajala, Teemu D.; Jumppanen, Mikael; Huhtaniemi, Riikka; Fey, Vidal; Kaur, Amanpreet; Knuuttila, Matias; Aho, Eija; Oksala, Riikka; Westermarck, Jukka; Mäkelä, Sari; Poutanen, Matti; Aittokallio, Tero

    2016-01-01

    Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions. PMID:27480578

  16. Optimized design and analysis of preclinical intervention studies in vivo.

    PubMed

    Laajala, Teemu D; Jumppanen, Mikael; Huhtaniemi, Riikka; Fey, Vidal; Kaur, Amanpreet; Knuuttila, Matias; Aho, Eija; Oksala, Riikka; Westermarck, Jukka; Mäkelä, Sari; Poutanen, Matti; Aittokallio, Tero

    2016-01-01

    Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions. PMID:27480578

  17. Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia.

    PubMed

    Cigana, Cristina; Bernardini, Francesca; Facchini, Marcella; Alcalá-Franco, Beatriz; Riva, Camilla; De Fino, Ida; Rossi, Alice; Ranucci, Serena; Misson, Pauline; Chevalier, Eric; Brodmann, Maj; Schmitt, Michel; Wach, Achim; Dale, Glenn E; Obrecht, Daniel; Bragonzi, Alessandra

    2016-08-01

    The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections. PMID:27297477

  18. Resveratrol: A review of preclinical studies for human cancer prevention

    SciTech Connect

    Athar, Mohammad; Back, Jung Ho; Tang Xiuwei; Kim, Kwang Ho; Kopelovich, Levy; Bickers, David R.; Kim, Arianna L.

    2007-11-01

    The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds one of which is resveratrol (trans-3,4',5-trihydroxystilbene), a phytoalexin derived from the skin of grapes and other fruits. Resveratrol is known to have potent anti-inflammatory and antioxidant effects and to inhibit platelet aggregation and the growth of a variety of cancer cells. Its potential chemopreventive and chemotherapeutic activities have been demonstrated in all three stages of carcinogenesis (initiation, promotion, and progression), in both chemically and UVB-induced skin carcinogenesis in mice, as well as in various murine models of human cancers. Evidence from numerous in vitro and in vivo studies has confirmed its ability to modulate various targets and signaling pathways. This review discusses the current preclinical and mechanistic data available and assesses resveratrol's anticancer effects to support its potential as an anticancer agent in human populations.

  19. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5 years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  20. Novel Epigenetic Target Therapy for Prostate Cancer: A Preclinical Study

    PubMed Central

    Gherardini, Lisa; Pelosi, Gualtiero; Viglione, Federica; Grimaldi, Settimio; Pani, Luca; Cinti, Caterina

    2014-01-01

    Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours. PMID:24851905

  1. A Preclinical Consortium Approach for Assessing the Efficacy of Combined Anti-CD3 Plus IL-1 Blockade in Reversing New-Onset Autoimmune Diabetes in NOD Mice.

    PubMed

    Gill, Ronald G; Pagni, Philippe P; Kupfer, Tinalyn; Wasserfall, Clive H; Deng, Songyan; Posgai, Amanda; Manenkova, Yulia; Bel Hani, Amira; Straub, Laura; Bernstein, Philip; Atkinson, Mark A; Herold, Kevan C; von Herrath, Matthias; Staeva, Teodora; Ehlers, Mario R; Nepom, Gerald T

    2016-05-01

    There is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet β-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D. Predicated on prior studies, this consortium conducted coordinated, prospective studies, using joint standard operating procedures, fixed criteria for study entry, and common reagents, to optimize combined anti-CD3 treatment plus interleukin-1 (IL-1) blockade to reverse new-onset disease in NOD mice. We did not find that IL-1 blockade with anti-IL-1β monoclonal antibody or IL-1trap provided additional benefit for reversing new-onset disease compared with anti-CD3 treatment alone. These results demonstrate the value of larger, multicenter preclinical studies for vetting and prioritizing therapeutics for future clinical use. PMID:26718498

  2. Electrochemotherapy in pancreatic adenocarcinoma treatment: pre-clinical and clinical studies

    PubMed Central

    Leongito, Maddalena; Granata, Vincenza; Barbieri, Antonio; del Vecchio, Vitale; Falco, Michela; Nasto, Aurelio; Albino, Vittorio; Piccirillo, Mauro; Palaia, Raffaele; Amore, Alfonso; Giacomo, Raimondo di; Lastoria, Secondo; Setola, Sergio Venanzio; Fusco, Roberta; Petrillo, Antonella; Izzo, Francesco

    2016-01-01

    Background Pancreatic adenocarcinoma is currently one of the deadliest cancers with high mortality rate. This disease leads to an aggressive local invasion and early metastases, and is poorly responsive to treatment with chemotherapy or chemo-radiotherapy. Radical resection is still the only curative treatment for pancreatic cancer, but it is generally accepted that a multimodality strategy is necessary for its management. Therefore, new alternative therapies have been considered for local treatment. Conclusions Chemotherapeutic resistance in pancreatic cancer is associated to a low penetration of drugs into tumour cells due to the presence of fibrotic stroma surrounding cells. In order to increase the uptake of chemotherapeutic drugs into tumour cells, electrochemotherapy can be used for treatment of pancreatic adenocarcinoma leading to an increased tumour response rate. This review will summarize the published papers reported in literature on the efficacy and safety of electrochemotherapy in pre-clinical and clinical studies on pancreatic cancer. PMID:27069445

  3. Tailored Pig Models for Preclinical Efficacy and Safety Testing of Targeted Therapies.

    PubMed

    Klymiuk, Nikolai; Seeliger, Frank; Bohlooly-Y, Mohammad; Blutke, Andreas; Rudmann, Daniel G; Wolf, Eckhard

    2016-04-01

    Despite enormous advances in translational biomedical research, there remains a growing demand for improved animal models of human disease. This is particularly true for diseases where rodent models do not reflect the human disease phenotype. Compared to rodents, pig anatomy and physiology are more similar to humans in cardiovascular, immune, respiratory, skeletal muscle, and metabolic systems. Importantly, efficient and precise techniques for genetic engineering of pigs are now available, facilitating the creation of tailored large animal models that mimic human disease mechanisms at the molecular level. In this article, the benefits of genetically engineered pigs for basic and translational research are exemplified by a novel pig model of Duchenne muscular dystrophy and by porcine models of cystic fibrosis. Particular emphasis is given to potential advantages of using these models for efficacy and safety testing of targeted therapies, such as exon skipping and gene editing, for example, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system. In general, genetically tailored pig models have the potential to bridge the gap between proof-of-concept studies in rodents and clinical trials in patients, thus supporting translational medicine. PMID:26511847

  4. Preclinical Development and In Vivo Efficacy of Ceftiofur-PLGA Microparticles

    PubMed Central

    Vilos, Cristian; Velasquez, Luis A.; Rodas, Paula I.; Zepeda, Katherine; Bong, Soung-Jae; Herrera, Natalia; Cantin, Mario; Simon, Felipe; Constandil, Luis

    2015-01-01

    Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef), a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5–2.2 μm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry. PMID:25915043

  5. Preclinical studies on new proteins as carrier for glycoconjugate vaccines.

    PubMed

    Tontini, M; Romano, M R; Proietti, D; Balducci, E; Micoli, F; Balocchi, C; Santini, L; Masignani, V; Berti, F; Costantino, P

    2016-07-29

    Glycoconjugate vaccines are made of carbohydrate antigens covalently bound to a carrier protein to enhance their immunogenicity. Among the different carrier proteins tested in preclinical and clinical studies, five have been used so far for licensed vaccines: Diphtheria and Tetanus toxoids, the non-toxic mutant of diphtheria toxin CRM197, the outer membrane protein complex of Neisseria meningitidis serogroup B and the Protein D derived from non-typeable Haemophilus influenzae. Availability of novel carriers might help to overcome immune interference in multi-valent vaccines containing several polysaccharide-conjugate antigens, and also to develop vaccines which target both protein as well saccharide epitopes of the same pathogen. Accordingly we have conducted a study to identify new potential carrier proteins. Twenty-eight proteins, derived from different bacteria, were conjugated to the model polysaccharide Laminarin and tested in mice for their ability in inducing antibodies against the carbohydrate antigen and eight of them were subsequently tested as carrier for serogroup meningococcal C oligosaccharides. Four out of these eight were able to elicit in mice satisfactory anti meningococcal serogroup C titers. Based on immunological evaluation, the Streptococcus pneumoniae protein spr96/2021 was successfully evaluated as carrier for serogroups A, C, W, Y and X meningococcal capsular saccharides. PMID:27317455

  6. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies.

    PubMed

    Wang, Raymond M; Christman, Karen L

    2016-01-15

    A variety of decellularized materials have been developed that have demonstrated potential for treating cardiovascular diseases and improving our understanding of cardiac development. Of these biomaterials, decellularized myocardial matrix hydrogels have shown great promise for creating cellular microenvironments representative of the native cardiac tissue and treating the heart after a myocardial infarction. Decellularized myocardial matrix hydrogels derived from porcine cardiac tissue form a nanofibrous hydrogel once thermally induced at physiological temperatures. Use of isolated cardiac extracellular matrix in 2D and 3D in vitro platforms has demonstrated the capability to provide tissue specific cues for cardiac cell growth and differentiation. Testing of the myocardial matrix hydrogel as a therapy after myocardial infarction in both small and large animal models has demonstrated improved left ventricular function, increased cardiac muscle, and cellular recruitment into the treated infarct. Based on these results, steps are currently being taken to translate these hydrogels into a clinically used injectable biomaterial therapy. In this review, we will focus on the basic science and preclinical studies that have accelerated the development of decellularized myocardial matrix hydrogels into an emerging novel therapy for treating the heart after a myocardial infarction. PMID:26056717

  7. A crowdsourcing model for creating preclinical medical education study tools.

    PubMed

    Bow, Hansen C; Dattilo, Jonathan R; Jonas, Andrea M; Lehmann, Christoph U

    2013-06-01

    During their preclinical course work, medical students must memorize and recall substantial amounts of information. Recent trends in medical education emphasize collaboration through team-based learning. In the technology world, the trend toward collaboration has been characterized by the crowdsourcing movement. In 2011, the authors developed an innovative approach to team-based learning that combined students' use of flashcards to master large volumes of content with a crowdsourcing model, using a simple informatics system to enable those students to share in the effort of generating concise, high-yield study materials. The authors used Google Drive and developed a simple Java software program that enabled students to simultaneously access and edit sets of questions and answers in the form of flashcards. Through this crowdsourcing model, medical students in the class of 2014 at the Johns Hopkins University School of Medicine created a database of over 16,000 questions that corresponded to the Genes to Society basic science curriculum. An analysis of exam scores revealed that students in the class of 2014 outperformed those in the class of 2013, who did not have access to the flashcard system, and a survey of students demonstrated that users were generally satisfied with the system and found it a valuable study tool. In this article, the authors describe the development and implementation of their crowdsourcing model for creating study materials, emphasize its simplicity and user-friendliness, describe its impact on students' exam performance, and discuss how students in any educational discipline could implement a similar model of collaborative learning. PMID:23619061

  8. Preclinical examination of clofarabine in pediatric ependymoma: intratumoral concentrations insufficient to warrant further study.

    PubMed

    Patel, Yogesh T; Jacus, Megan O; Boulos, Nidal; Dapper, Jason D; Davis, Abigail D; Vuppala, Pradeep K; Freeman, Burgess B; Mohankumar, Kumarasamypet M; Throm, Stacy L; Gilbertson, Richard J; Stewart, Clinton F

    2015-05-01

    Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m(2). Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (K pt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12 ± 0.05. The model-predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-h IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued. PMID:25724157

  9. Preclinical examination of clofarabine in pediatric ependymoma: Intratumoral concentrations insufficient to warrant further study

    PubMed Central

    Patel, Yogesh T.; Jacus, Megan O.; Boulos, Nidal; Dapper, Jason D.; Davis, Abigail D.; Vuppala, Pradeep K.; Freeman, Burgess B.; Mohankumar, Kumarasamypet M.; Throm, Stacy L.; Gilbertson, Richard J.; Stewart, Clinton F.

    2015-01-01

    Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system (CNS) disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time-points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg, IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m2. Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (Kpt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12±0.05. The model predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-hr IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued. PMID:25724157

  10. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    PubMed

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts. PMID:23211390

  11. Preclinical efficacy of a gastro-sparing novel thiazolidin-4-one in alleviating secondary lesions of polyarthritis: A multi-parametric approach.

    PubMed

    Mudgal, Jayesh; Gowdra, Vasantharaju S; Mudgal, Piya P; Nayak, Pawan G; Kumar, Nitesh; Attari, Zenab; Rao, C Mallikarjuna; Nampurath, Gopalan K

    2016-08-25

    The promising role of thiazolidin-4-ones (TZOs) against inflammatory conditions has been reported. From our lab, one of the TZO derivatives, compound 4C, exerted anti-inflammatory potential via inhibition of locally released cytokines and prostaglandin. In continuance, a detailed study was undertaken for the preclinical profiling of this promising TZO derivative against polyarthritis in rats, along with assessment of risk associated with the treatment. Male Sprague-Dawley rats were used for the adjuvant-induced arthritis (AIA) model. Based on the development of secondary lesion, the animals were randomized into different treatment groups. To establish the efficacy of the test compound, parameters such as inflammation, pain, disease progression, cytokines and prostaglandin (PG)-E2 levels and complete blood cell profile were recorded along with radiological and histological examinations of joints. The study also focused on evaluating the side effect of test compound on gastric, liver, renal, blood and cardiovascular components. Compound 4C exerted promising therapeutic effect against secondary lesions in polyarthritis in rats. It limited the progression of chronic inflammation and associated pain in rats. Modulation of cytokine signalling and arachidonate metabolism by 4C was evident from inhibition of interleukin (IL)-6, tumor necrosis factor (TNF)-α and PGE2 generation in AIA rats. Comparatively, compound 4C was safer than diclofenac to cause gastric, liver, renal, blood and cardiovascular toxicities. These finding supports the efficacy and safety profile of 4C, a TZO derivative in limiting the progression of arthritis when administered orally. PMID:27283483

  12. Preclinical Evidence for the Efficacy of Ischemic Postconditioning against Renal Ischemia-Reperfusion Injury, a Systematic Review and Meta-Analysis

    PubMed Central

    Jonker, Simone J.; Menting, Theo P.; Warlé, Michiel C.; Ritskes-Hoitinga, Merel; Wever, Kimberley E.

    2016-01-01

    Background Renal ischemia-reperfusion injury (IRI) is a major cause of kidney damage after e.g. renal surgery and transplantation. Ischemic postconditioning (IPoC) is a promising treatment strategy for renal IRI, but early clinical trials have not yet replicated the promising results found in animal studies. Method We present a systematic review, quality assessment and meta-analysis of the preclinical evidence for renal IPoC, and identify factors which modify its efficacy. Results We identified 39 publications studying >250 control animals undergoing renal IRI only and >290 animals undergoing renal IRI and IPoC. Healthy, male rats undergoing warm ischemia were used in the vast majority of studies. Four studies applied remote IPoC, all others used local IPoC. Meta-analysis showed that both local and remote IPoC ameliorated renal damage after IRI for the outcome measures serum creatinine, blood urea nitrogen and renal histology. Subgroup analysis indicated that IPoC efficacy increased with the duration of index ischemia. Measures to reduce bias were insufficiently reported. Conclusion High efficacy of IPoC is observed in animal models, but factors pertaining to the internal and external validity of these studies may hamper the translation of IPoC to the clinical setting. The external validity of future animal studies should be increased by including females, comorbid animals, and transplantation models, in order to better inform clinical trial design. The severity of renal damage should be taken into account in the design and analysis of future clinical trials. PMID:26963819

  13. Discovery and preclinical antitumor efficacy evaluations of LY32262 and LY33169.

    PubMed

    Corbett, Thomas H; White, Kathryn; Polin, Lisa; Kushner, Juiwanna; Paluch, Jennifer; Shih, Chuan; Grossman, Cora Sue

    2003-02-01

    The discoveries of a new antitumor agent (LY32262) (N-[2,4-dichlorobenzoyl]phenylsulfonamide) and a close analog (LY33169) are described. For this discovery, a disk-diffusion-soft-agar-colony-formation-assay was used to screen a portion of the Eli Lilly inventory, with the evaluation of each agent against normal cells, leukemic cells and several solid tumors, including a multidrug-resistant solid tumor (with marked selective cytotoxicity for Colon-38 and Human-Colon-15/MDR compared to normal fibroblasts and L1210 leukemic cells characterizing the discovery). In mice, LY32262 and/or LY33169 had curative activity against Colon Adenocarcinoma-38, Human Colon-116, Human Prostate LNCaP, and Human Breast WSU-Br-1. In addition, many other tumors were highly sensitive: Panc-03 = 2.4 log kill (LK); Panc-02 = 2.9-4.1 LK; Squamous Lung LC-12 = 2.1 LK; Colon-26 = 2.2 LK; AML1498 = 2.7 LK; Human Sm Cell Lung DMS-273 = 6.3 LK; Human Squamous Lung 165 = 3.7 LK; Human Ovarian BG-1 = 3.7 LK; Human Colon CX-1 (H29) = 1.6 LK; Human Colon-15/MDR (a p-glycoprotein positive multidrug resistant tumor) = 2.3 LK; Human CNS-gliosarcoma-SF295 = 3.8 LK. Several tumors were only marginally responsive or totally unresponsive: Mammary Adenocarcinoma-16/C = 0.6 LK; Mammary Adenocarcinoma-17 = no kill; Colon Adenocarcinoma-11 = no kill; L1210 leukemia = 1.3 LK; Human Prostate PC-3 = 0.5 LK; Human Adenosquamous Lung H125 = no kill; and Human Breast Adenocarcinoma MX-1 = 0.9 LK. There was no absolute tissue of origin correlation with antitumor efficacy, although colon tumors were most responsive and mammary tumors least responsive. The cause of the "hit and miss" efficacy has not been determined. PMID:12795528

  14. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma

    PubMed Central

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-01-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. PMID:22289125

  15. A Polymer-Based Antibody-Vinca Drug Conjugate Platform: Characterization and Preclinical Efficacy.

    PubMed

    Yurkovetskiy, Alexander V; Yin, Mao; Bodyak, Natalya; Stevenson, Cheri A; Thomas, Joshua D; Hammond, Charles E; Qin, LiuLiang; Zhu, Bangmin; Gumerov, Dmitry R; Ter-Ovanesyan, Elena; Uttard, Alex; Lowinger, Timothy B

    2015-08-15

    Antibody-drug conjugates (ADC) are an emerging drug class that uses antibodies to improve cytotoxic drug targeting for cancer treatment. ADCs in current clinical trials achieve a compromise between potency and physicochemical/pharmacokinetic properties by conjugating potent cytotoxins directly to an antibody at a 4:1 or less stoichiometric ratio. Herein, we report a novel, polyacetal polymer-based platform for creating ADC that use poly-1-hydroxymethylethylene hydroxymethyl-formal (PHF), also known as Fleximer. The high hydrophilicity and polyvalency properties of the Fleximer polymer can be used to produce ADC with high drug loading without compromising physicochemical and pharmacokinetic properties. Using trastuzumab and a vinca drug derivative to demonstrate the utility of this platform, a novel Fleximer-based ADC was prepared and characterized in vivo. The ADC prepared had a vinca-antibody ratio of 20:1. It exhibited a high antigen-binding affinity, an excellent pharmacokinetic profile and antigen-dependent efficacy, and tumor accumulation in multiple tumor xenograft models. Our findings illustrate the robust utility of the Fleximer platform as a highly differentiated alternative to the conjugation platforms used to create ADC currently in clinical development. PMID:26113086

  16. Fluorescence detection of tumors: studies on the early diagnosis of microscopic lesions in preclinical and clinical studies

    NASA Astrophysics Data System (ADS)

    Mang, Thomas S.; McGinnis, Carolyn; Crean, David H.; Khan, S.; Liebow, Charles

    1991-06-01

    The growth of microscopic tumor lesions at or beyond treatment field lesions poses major problems in the diagnosis and curative treatment of numerous cancers. Early detection techniques which clearly define the extent of condemned or field spread of disease may improve the primary treatment of the disease. In vivo fluorescence photometry is a non-imaging technique which digitally displays relative fluorescence values in volts. The sensitivity of the instrument has allowed the detection of micrometastases in both pre-clinical and clinical studies using drug doses that are 80-90 lower than those used therapeutically. This technique is now being applied in preliminary experiments to the hamster cheek pouch models to (1) discern varying grades of dysplasia; (2) levels of uptake of the drug in normal growing and quiescent tumors. Results will be shown in two models in which this technique has shown to be efficacious preclinically in the Pollard rat adenocarcinoma model in which micrometastases in the lymph node have been detected, and preliminary studies involving the hamster cheek pouch model in which the pouch is painted with 9, 10 dimethyl-1, 2-benzanthracene (DMBA) for initiation and promotion of tumors. Clinically results will be shown in which fluorescence detection, confirmed by biopsy and histopathological examination, was capable of detecting the existence of micrometastatic involvement of less than 100 cells.

  17. Preclinical Efficacy of Clumping Factor A in Prevention of Staphylococcus aureus Infection

    PubMed Central

    Li, Xue; Wang, Xiaogang; Thompson, Christopher D.; Park, Saeyoung; Park, Wan Beom

    2016-01-01

    ABSTRACT Treatment of Staphylococcus aureus infections has become increasingly difficult because of the emergence of multidrug-resistant isolates. Development of a vaccine to prevent staphylococcal infections remains a priority. To determine whether clumping factor A (ClfA) is a good target protein for inclusion in a multivalent vaccine, we evaluated its efficacy in a variety of relevant staphylococcal infection models, challenging with different S. aureus strains. ClfA adsorbed to Alhydrogel and mixed with Sigma Adjuvant System was more immunogenic and stimulated a more robust Th17 response than ClfA administered with alum alone. ClfA immunization induced the production of functional antibodies in rabbits and mice that blocked S. aureus binding to fibrinogen and were opsonic for S. aureus strains that produced little or no capsular polysaccharide. Mice immunized with ClfA showed a modest reduction in the bacterial burden recovered from subcutaneous abscesses provoked by S. aureus USA300 strain LAC. In addition, the ClfA vaccine reduced lethality in a sepsis model following challenge with strain Newman, but not ST80. Vaccination with ClfA did not protect against surgical wound infection, renal abscess formation, or bacteremia. Passive immunization with antibodies to ClfA did not protect against staphylococcal bacteremia in mice or catheter-induced endocarditis in rats. Some enhancement of bacteremia was observed by ClfA immunization or passive administration of ClfA antibodies when mice were challenged by the intraperitoneal route. Although rodent models of staphylococcal infection have their limitations, our data do not support the inclusion of ClfA in an S. aureus multivalent vaccine. PMID:26838725

  18. Noninferiority of Shanghai Cingular biotech’s bovine pericardial valve preclinical study in juvenile ovine model

    PubMed Central

    Chen, Jin-Miao; Ding, Yu; Lu, Shu-Yang; Pan, Sun; Abudupataer, Mieradilijiang

    2016-01-01

    Background This study introduces a newly Chinese domestic-designed/manufactured bovine pericardial valve, the SCBC valve (Shanghai Cingular Biotech Corporation, Shanghai, China), and evaluates its hemodynamic performance and calcification potential compared with the Carpentier-Edwards (CE) PerimountTM valve (Edwards Lifesciences, Irvine, CA, USA) in juvenile sheep for preclinical study. Methods Five SCBC valves in study group and three CE PerimountTM valves (6900P with TFX) in control group were implanted in the mitral position of juvenile sheep and followed up for five months. Transthoracic echocardiography (TTE) for hemodynamic measurement was performed ten days, three months and five months postoperatively. Valve calcification was assessed by X-ray after euthanasia. Other collected data included macroscopic examination, blood analysis, microorganism culture and histological assessment. Results All sheep in two groups lived to sacrifice without evidence of valvular dysfunction. The SCBC valve had similar hemodynamic performance and susceptibility of calcification compared with the CE PerimountTM valve in juvenile ovine model. In all other parameters, the SCBC valve also exhibited no significant difference compared with the CE PerimountTM valve. Conclusions Our study demonstrated that the SCBC valve can exhibit similar mid-term satisfactory safety and efficacy compared with the CE PerimountTM valve in the mitral position of juvenile sheep model. PMID:27293835

  19. Miltefosine Lipid Nanocapsules for Single Dose Oral Treatment of Schistosomiasis Mansoni: A Preclinical Study

    PubMed Central

    Eissa, Maha M.; El-Moslemany, Riham M.; Ramadan, Alyaa A.; Amer, Eglal I.; El-Azzouni, Mervat Z.; El-Khordagui, Labiba K.

    2015-01-01

    Miltefosine (MFS) is an alkylphosphocholine used for the local treatment of cutaneous metastases of breast cancer and oral therapy of visceral leishmaniasis. Recently, the drug was reported in in vitro and preclinical studies to exert significant activity against different developmental stages of schistosomiasis mansoni, a widespread chronic neglected tropical disease (NTD). This justified MFS repurposing as a potential antischistosomal drug. However, five consecutive daily 20 mg/kg doses were needed for the treatment of schistosomiasis mansoni in mice. The present study aims at enhancing MFS efficacy to allow for a single 20mg/kg oral dose therapy using a nanotechnological approach based on lipid nanocapsules (LNCs) as oral nanovectors. MFS was incorporated in LNCs both as membrane-active structural alkylphospholipid component and active antischistosomal agent. MFS-LNC formulations showed high entrapment efficiency (EE%), good colloidal properties, sustained release pattern and physical stability. Further, LNCs generally decreased MFS-induced erythrocyte hemolytic activity used as surrogate indicator of membrane activity. While MFS-free LNCs exerted no antischistosomal effect, statistically significant enhancement was observed with all MFS-LNC formulations. A maximum effect was achieved with MFS-LNCs incorporating CTAB as positive charge imparting agent or oleic acid as membrane permeabilizer. Reduction of worm load, ameliorated liver pathology and extensive damage of the worm tegument provided evidence for formulation-related efficacy enhancement. Non-compartmental analysis of pharmacokinetic data obtained in rats indicated independence of antischistosomal activity on systemic drug exposure, suggesting possible gut uptake of the stable LNCs and targeting of the fluke tegument which was verified by SEM. The study findings put forward MFS-LNCs as unique oral nanovectors combining the bioactivity of MFS and biopharmaceutical advantages of LNCs, allowing targeting

  20. Pre-Clinical Assays Predict Pan-African Echis Viper Efficacy for a Species-Specific Antivenom

    PubMed Central

    Casewell, Nicholas R.; Cook, Darren A. N.; Wagstaff, Simon C.; Nasidi, Abdulsalami; Durfa, Nandul; Wüster, Wolfgang; Harrison, Robert A.

    2010-01-01

    Background Snakebite is a significant cause of death and disability in subsistent farming populations of sub-Saharan Africa. Antivenom is the most effective treatment of envenoming and is manufactured from IgG of venom-immunised horses/sheep but, because of complex fiscal reasons, there is a paucity of antivenom in sub-Saharan Africa. To address the plight of thousands of snakebite victims in savannah Nigeria, the EchiTAb Study Group organised the production, testing and delivery of antivenoms designed to treat envenoming by the most medically-important snakes in the region. The Echis saw-scaled vipers have a wide African distribution and medical importance. In an effort to maximise the clinical utility of scarce antivenom resources in Africa, we aimed to ascertain, at the pre-clinical level, to what extent the E. ocellatus-specific EchiTAbG antivenom, which was designed specifically for Nigeria, neutralised the lethal activity of venom from two other African species, E. pyramidum leakeyi and E. coloratus. Methodology/Principal Findings Despite apparently quite distinctive venom protein profiles, we observed extensive cross-species similarity in the immuno-reactivity profiles of Echis species-specific antisera. Using WHO standard pre-clinical in vivo tests, we determined that the monospecific EchiTAbG antivenom was as effective at neutralising the venom-induced lethal effects of E. pyramidum leakeyi and E. coloratus as it was against E. ocellatus venom. Under the restricted conditions of this assay, the antivenom was ineffective against the lethal effects of venom from the non-African Echis species, E. carinatus sochureki. Conclusions/Significance Using WHO-recommended pre-clinical tests we have demonstrated that the new anti-E. ocellatus monospecific antivenom EchiTAbG, developed in response to the considerable snakebite-induced mortality and morbidity in Nigeria, neutralised the lethal effects of venoms from Echis species representing each taxonomic group of this

  1. The effect of learning styles and study behavior on success of preclinical students in pharmacology

    PubMed Central

    Asci, Halil; Kulac, Esin; Sezik, Mekin; Cankara, F. Nihan; Cicek, Ekrem

    2016-01-01

    Objectives: To evaluate the effect of learning styles and study behaviors on preclinical medical students’ pharmacology exam scores in a non-Western setting. Materials and Methods: Grasha–Reichmann Student Learning Study Scale and a modified Study Behavior Inventory were used to assess learning styles and study behaviors of preclinical medical students (n = 87). Logistic regression models were used to evaluate the independent effect of gender, age, learning style, and study behavior on pharmacology success. Results: Collaborative (40%) and competitive (27%) dominant learning styles were frequent in the cohort. The most common study behavior subcategories were study reading (40%) and general study habits (38%). Adequate listening and note-taking skills were associated with pharmacology success, whereas students with adequate writing skills had lower exam scores. These effects were independent of gender. Conclusions: Preclinical medical students’ study behaviors are independent predictive factors for short-term pharmacology success. PMID:26997716

  2. Potent efficacy of metronomic topotecan and pazopanib combination therapy in preclinical models of primary or late stage metastatic triple-negative breast cancer

    PubMed Central

    Man, Shan; Bocci, Guido; Kerbel, Robert S.

    2015-01-01

    Metronomic chemotherapy has shown promising activity in numerous preclinical studies and also some phase II clinical studies involving various tumor types, and is currently undergoing phase III trial evaluation. Triple-negative breast cancer (TNBC) is an aggressive histological subtype with limited treatment options and very poor prognosis following progression after standard chemotherapeutic regimens. Herein, we evaluated the potential therapeutic impact and molecular mechanisms of topotecan administered in a continuous low-dose metronomic (LDM) manner, alone or in concurrent combination with pazopanib, an antiangiogenic tyrosine kinase inhibitor (TKI), in a triple-negative, primary and metastatic breast cancer orthotopic model; potential molecular mechanisms of efficacy were also studied, especially the impact of hypoxic conditions. The combination of metronomic topotecan and pazopanib significantly enhanced antitumor activity compared to monotherapy with either drug and prolonged survival, even in the advanced metastatic survival setting, with a marked decrease in tumor vascularity, proliferative index, and the induction of apoptosis. Significant changes in tumor angiogenesis, cancer cell proliferation, apoptosis, HIF1α levels, HIF-1 target genes and ABCG2 were found both in vitro and in tumor tissue. Notably, the pazopanib and metronomic topotecan combination treatment inhibited expression of HIF1α and ABCG2 genes in cells grown under hypoxic conditions, and this was associated with an increased intracellular concentration of the active form of topotecan. Our results suggest a potential novel therapeutic option for the treatment of metastatic triple-negative breast cancer patients. PMID:26623560

  3. Potent efficacy of metronomic topotecan and pazopanib combination therapy in preclinical models of primary or late stage metastatic triple-negative breast cancer.

    PubMed

    Di Desidero, Teresa; Xu, Ping; Man, Shan; Bocci, Guido; Kerbel, Robert S

    2015-12-15

    Metronomic chemotherapy has shown promising activity in numerous preclinical studies and also some phase II clinical studies involving various tumor types, and is currently undergoing phase III trial evaluation. Triple-negative breast cancer (TNBC) is an aggressive histological subtype with limited treatment options and very poor prognosis following progression after standard chemotherapeutic regimens. Herein, we evaluated the potential therapeutic impact and molecular mechanisms of topotecan administered in a continuous low-dose metronomic (LDM) manner, alone or in concurrent combination with pazopanib, an antiangiogenic tyrosine kinase inhibitor (TKI), in a triple-negative, primary and metastatic breast cancer orthotopic model; potential molecular mechanisms of efficacy were also studied, especially the impact of hypoxic conditions. The combination of metronomic topotecan and pazopanib significantly enhanced antitumor activity compared to monotherapy with either drug and prolonged survival, even in the advanced metastatic survival setting, with a marked decrease in tumor vascularity, proliferative index, and the induction of apoptosis. Significant changes in tumor angiogenesis, cancer cell proliferation, apoptosis, HIF1α levels, HIF-1 target genes and ABCG2 were found both in vitro and in tumor tissue. Notably, the pazopanib and metronomic topotecan combination treatment inhibited expression of HIF1α and ABCG2 genes in cells grown under hypoxic conditions, and this was associated with an increased intracellular concentration of the active form of topotecan. Our results suggest a potential novel therapeutic option for the treatment of metastatic triple-negative breast cancer patients. PMID:26623560

  4. Copper-64 Dichloride as Theranostic Agent for Glioblastoma Multiforme: A Preclinical Study

    PubMed Central

    Ferrari, Cristina; Niccoli Asabella, Artor; Villano, Carlo; Giacobbi, Beatrice; Coccetti, Daniela; Panichelli, Paola; Rubini, Giuseppe

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults with a median survival time less than one year. To date, there are only a limited number of effective agents available for GBM therapy and this does not seem to add much survival advantage over the conventional approach based on surgery and radiotherapy. Therefore, the development of novel therapeutic approaches to GBM is essential and those based on radionuclide therapy could be of significant clinical impact. Experimental evidence has clearly demonstrated that cancer cells have a particularly high fractional content of copper inside the nucleus compared to normal cells. This behavior can be conveniently exploited both for diagnosis and for delivering therapeutic payloads (theranostic) of the radionuclide copper-64 into the nucleus of cancerous cells by intravenous administration of its simplest chemical form as dichloride salt [64Cu]CuCl2. To evaluate the potential theranostic role of [64Cu]CuCl2 in GBM, the present work reports results from a preclinical study carried out in a xenografted GBM tumor mouse model. Biodistribution data of this new agent were collected using a small-animal PET tomograph. Subsequently, groups of tumor implanted nude mice were treated with [64Cu]CuCl2 to simulate single- and multiple-dose therapy protocols, and results were analyzed to estimate therapeutic efficacy. PMID:26649294

  5. Preclinical Anticancer Efficacy of BET Bromodomain Inhibitors Is Determined by the Apoptotic Response.

    PubMed

    Conery, Andrew R; Centore, Richard C; Spillane, Kerry L; Follmer, Nicole E; Bommi-Reddy, Archana; Hatton, Charlie; Bryant, Barbara M; Greninger, Patricia; Amzallag, Arnaud; Benes, Cyril H; Mertz, Jennifer A; Sims, Robert J

    2016-03-15

    Small-molecule inhibitors of the bromodomain and extraterminal (BET) family of proteins are being tested in clinical trials for a variety of cancers, but patient selection strategies remain limited. This challenge is partly attributed to the heterogeneous responses elicited by BET inhibition (BETi), including cellular differentiation, senescence, and death. In this study, we performed phenotypic and gene-expression analyses of treatment-naive and engineered tolerant cell lines representing human melanoma and leukemia to elucidate the dominant features defining response to BETi. We found that de novo and acquired tolerance to BETi is driven by the robustness of the apoptotic response, and that genetic or pharmacologic manipulation of the apoptotic signaling network can modify the phenotypic response to BETi. We further reveal that the expression signatures of the apoptotic genes BCL2, BCL2L1, and BAD significantly predict response to BETi. Taken together, our findings highlight the apoptotic program as a determinant of response to BETi, and provide a molecular basis for patient stratification and combination therapy development. Cancer Res; 76(6); 1313-9. ©2016 AACR. PMID:26759243

  6. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia.

    PubMed

    Alachkar, Houda; Mutonga, Martin B G; Metzeler, Klaus H; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-12-15

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients. PMID:25365263

  7. Antitumor efficacy testing in rodents.

    PubMed

    Hollingshead, Melinda G

    2008-11-01

    The preclinical research and human clinical trials necessary for developing anticancer therapeutics are costly. One contributor to these costs is preclinical rodent efficacy studies, which, in addition to the costs associated with conducting them, often guide the selection of agents for clinical development. If inappropriate or inaccurate recommendations are made on the basis of these preclinical studies, then additional costs are incurred. In this commentary, I discuss the issues associated with preclinical rodent efficacy studies. These include the identification of proper preclinical efficacy models, the selection of appropriate experimental endpoints, and the correct statistical evaluation of the resulting data. I also describe important experimental design considerations, such as selecting the drug vehicle, optimizing the therapeutic treatment plan, properly powering the experiment by defining appropriate numbers of replicates in each treatment arm, and proper randomization. Improved preclinical selection criteria can aid in reducing unnecessary human studies, thus reducing the overall costs of anticancer drug development. PMID:18957675

  8. Racer efficacy study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Racer (ammonium nonanoate) is a non-selective contact herbicide that controls several weed species. Racer has been labeled by EPA in the past year for weed control in food crops and is close to receiving approval for use by organic producers. The objective of this study was to verify results from ...

  9. Magnetic Fluid Hyperthermia for Bladder Cancer: A Preclinical Dosimetry Study

    PubMed Central

    Oliveira, Tiago R.; Stauffer, Paul R.; Lee, Chen-Ting; Landon, Chelsea D.; Etienne, Wiguins; Ashcraft, Kathleen A.; McNerny, Katie L.; Mashal, Alireza; Nouls, John; Maccarini, Paolo F.; Beyer, Wayne F.; Inman, Brant; Dewhirst, Mark W.

    2014-01-01

    Purpose This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with Magnetic Fluid Hyperthermia (MFH), performed by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. Materials and Methods The bladders of twenty-five female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42°C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fiberoptic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterization method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. Results Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1°C/min to a steady-state of 42°C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. Conclusion These data demonstrate that our MFH system with magnetite-based nanoparticles provide well-localized heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues. PMID:24050253

  10. Novel therapies for FSGS: preclinical and clinical studies.

    PubMed

    Malaga-Dieguez, Laura; Bouhassira, Diana; Gipson, Debbie; Trachtman, Howard

    2015-03-01

    Focal segmental glomerulosclerosis (FSGS) is a rare but important cause of end-stage kidney disease in children and adults. Current therapy, consisting of corticosteroids and calcineurin inhibitors, fails to achieve a sustained remission in most patients. Therefore, there is a pressing need to develop new treatments for this glomerulopathy. Traditional approaches have focused on agents that modulate the immune system. In this review, we summarize preclinical and clinical data with newer agents that may ameliorate FSGS. We focus on drugs that inhibit immune injury or inflammation, such as abatacept, rituximab, adalimumab, and stem cells. The potential of agents that block the glomerular action of circulating permeability factors such as soluble urokinase receptor is reviewed. Finally, because fibrosis represents the final common pathway of glomerular damage in FSGS, the experience with a wide range of antifibrotic agents is presented. Despite extensive research on the podocyte dysfunction in the pathogenesis of FSGS, there are few agents that directly target podocyte structure or viability. We conclude that FSGS is a heterogeneous disorder and that intensified translational research is vital to improve our understanding of distinct subtypes that have a defined prognosis and predictable response to targeted therapeutic interventions. PMID:25704355

  11. Ethical challenges in preclinical Alzheimer's disease observational studies and trials: Results of the Barcelona summit.

    PubMed

    Molinuevo, José L; Cami, Jordi; Carné, Xavier; Carrillo, Maria C; Georges, Jean; Isaac, Maria B; Khachaturian, Zaven; Kim, Scott Y H; Morris, John C; Pasquier, Florence; Ritchie, Craig; Sperling, Reisa; Karlawish, Jason

    2016-05-01

    Alzheimer's disease (AD) is among the most significant health care burdens. Disappointing results from clinical trials in late-stage AD persons combined with hopeful results from trials in persons with early-stage suggest that research in the preclinical stage of AD is necessary to define an optimal therapeutic success window. We review the justification for conducting trials in the preclinical stage and highlight novel ethical challenges that arise and are related to determining appropriate risk-benefit ratios and disclosing individuals' biomarker status. We propose that to conduct clinical trials with these participants, we need to improve public understanding of AD using unified vocabulary, resolve the acceptable risk-benefit ratio in asymptomatic participants, and disclose or not biomarker status with attention to study type (observational studies vs clinical trials). Overcoming these challenges will justify clinical trials in preclinical AD at the societal level and aid to the development of societal and legal support for trial participants. PMID:26988427

  12. Drugs under preclinical and clinical study for treatment of acute and chronic lymphoblastic leukemia

    PubMed Central

    Jacob, Joe Antony; Salmani, Jumah Masoud Mohammad; Chen, Baoan

    2016-01-01

    Targeted therapy has modernized the treatment of both chronic and acute lymphoblastic leukemia. The introduction of monoclonal antibodies and combinational drugs has increased the survival rate of patients. Preclinical studies with various agents have resulted in positive outputs with Phase III trial drugs and monoclonal antibodies entering clinical trials. Most of the monoclonal antibodies target the CD20 and CD22 receptors. This has led to the approval of a few of these drugs by the US Food and Drug Administration. This review focuses on the drugs under preclinical and clinical study in the ongoing efforts for treatment of acute and chronic lymphoblastic leukemia. PMID:27382259

  13. Investigating the Efficacy of Practical Skill Teaching: A Pilot-Study Comparing Three Educational Methods

    ERIC Educational Resources Information Center

    Maloney, Stephen; Storr, Michael; Paynter, Sophie; Morgan, Prue; Ilic, Dragan

    2013-01-01

    Effective education of practical skills can alter clinician behaviour, positively influence patient outcomes, and reduce the risk of patient harm. This study compares the efficacy of two innovative practical skill teaching methods, against a traditional teaching method. Year three pre-clinical physiotherapy students consented to participate in a…

  14. Pre-clinical and Clinical Safety Studies of CMX-2043: A Cytoprotective Lipoic Acid Analogue for Ischaemia–Reperfusion Injury

    PubMed Central

    Kates, Steven A; Lader, Alan S; Casale, Ralph; Beeuwkes, Reinier

    2014-01-01

    CMX-2043 is an α-lipoic acid analogue targeted to reduction of cellular injury and organ damage due to ischaemia–reperfusion injury (IRI). It has been shown to be effective in a rat model of cardiac IRI. The studies here reported evaluate its safety and pharmacokinetic profile in preparation for human clinical studies in procedures associated with IRI. Safety and tolerability were tested in standard pre-clinical in vitro and animal models and in a Phase 1 human clinical trial. CMX-2043 did not bind to a wide range of receptors and specific targets at approximately 4 μg/mL (10 μM). It was not mutagenic by Ames assay, did not produce chromosome aberrations in Chinese hamster ovary (CHO) cells, and was negative for clastogenic potential. Toxicological studies in rats including both single and 14-day repeat intravenous doses and in dogs (single intravenous dose) with a 2-week recovery period were conducted. The NOAEL in rats and dogs was 30 and >10 mg/kg, respectively. No serious adverse events were reported in a placebo-controlled, sequential dose escalation Phase 1 clinical trial. The low toxicity in the pre-clinical studies and the absence of adverse events in the Phase 1 trial have supported investigation of CMX-2043 in a human efficacy trial. PMID:24751172

  15. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study

    PubMed Central

    Zhang, Ningyan; Liu, Liming; Dumitru, Calin Dan; Cummings, Nga Rewa Houston; Cukan, Michael; Jiang, Youwei; Li, Yuan; Li, Fang; Mitchell, Teresa; Mallem, Muralidhar R; Ou, Yangsi; Patel, Rohan N; Vo, Kim; Wang, Hui; Burnina, Irina; Choi, Byung-Kwon; Huber, Hans; Stadheim, Terrance A

    2011-01-01

    Mammalian cell culture systems are used predominantly for the production of therapeutic monoclonal antibody (mAb) products. A number of alternative platforms, such as Pichia engineered with a humanized N-linked glycosylation pathway, have recently been developed for the production of mAbs. The glycosylation profiles of mAbs produced in glycoengineered Pichia are similar to those of mAbs produced in mammalian systems. This report presents for the first time the comprehensive characterization of an anti-human epidermal growth factor receptor 2 (HER2) mAb produced in glycoengineered Pichia, and a study comparing the anti-HER2 from Pichia, which had an amino acid sequence identical to trastuzumab, with trastuzumab. The comparative study covered a full spectrum of preclinical evaluation, including bioanalytical characterization, in vitro biological functions, in vivo anti-tumor efficacy and pharmacokinetics in both mice and non-human primates. Cell signaling and proliferation assays showed that anti-HER2 from Pichia had antagonist activities comparable to trastuzumab. However, Pichia-produced material showed a 5-fold increase in binding affinity to FcγIIIA and significantly enhanced antibody dependent cell-mediated cytotoxicity (ADCC) activity, presumably due to the lack of fucose on N-glycans. In a breast cancer xenograft mouse model, anti-HER2 was comparable to trastuzumab in tumor growth inhibition. Furthermore, comparable pharmacokinetic profiles were observed for anti-HER2 and trastuzumab in both mice and cynomolgus monkeys. We conclude that glycoengineered Pichia provides an alternative production platform for therapeutic mAbs and may be of particular interest for production of antibodies for which ADCC is part of the clinical mechanism of action. PMID:21487242

  16. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs

    PubMed Central

    2014-01-01

    Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting. PMID:25183392

  17. Dicycloplatin, a novel platinum analog in chemotherapy: synthesis of chinese pre-clinical and clinical profile and emerging mechanistic studies.

    PubMed

    Yu, Jing Jie; Yang, Xuqing; Song, Qinhua; Mueller, Michael D; Remick, Scot C

    2014-01-01

    Dicycloplatin (DCP) has better solubility and stability than both cisplatin and carboplatin. Pre-clinical and phase I studies demonstrated significant antitumor activity and fewer adverse events than carboplatin. Phase II clinical trials in advanced non-small cell lung cancer found efficacy and safety of DCP-plus-paclitaxel comparable to carboplatin-plus-paclitaxel but better tolerability. This article summarizes and reviews pre-clinical and clinical data for dicycloplatin from the Chinese medical literature. We also report on new mechanistic findings in our laboratory in West Virginia, USA. Patient blood samples were collected for DCP-prototype determination by liquid chromatography mass spectrometry (LC-MS/MS). Molecular studies of ovarian cancer cells treated with DCP or cisplatin were carried out for gene-signature profiling using immunoblotting. Pharmacokinetic mass-spectrometry showed different spectrum profiles of DCP and carboplatin in plasma. Plasma concentration of DCP prototype was 17.1 μg/ml 2h after administration, with a peak concentration of 26.9 μg/ml at 0.5 h. Immunoblotting showed DCP-induced activation of DNA damage pathways, including double-phosphorylated checkpoint kinase 2 (CHK2) and breast cancer 1 (BRCA1) and triple-phosphorylated p53, compared to controls. Cisplatin produced a similar profile, with increased p53 protein. DCP and cisplatin activate DNA-damage response through similar pathways. DCP may be more soluble and stable, and better-tolerated. PMID:24403501

  18. Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study

    PubMed Central

    Wei, Kuo-Chen; Chu, Po-Chun; Wang, Hay-Yan Jack; Huang, Chiung-Yin; Chen, Pin-Yuan; Tsai, Hong-Chieh; Lu, Yu-Jen; Lee, Pei-Yun; Tseng, I-Chou; Feng, Li-Ying; Hsu, Peng-Wei; Yen, Tzu-Chen; Liu, Hao-Li

    2013-01-01

    The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment. PMID:23527068

  19. Exploratory Study of Factors Related to Educational Scores of First Preclinical Year Medical Students

    ERIC Educational Resources Information Center

    Sitticharoon, Chantacha; Srisuma, Sorachai; Kanavitoon, Sawita; Summachiwakij, Sarawut

    2014-01-01

    The relationships among the scores of major subjects taught in the first preclinical year of a Thai medical school, previous academic achievements, and daily life activities are rarely explored. We therefore performed an exploratory study identifying various factors possibly related to the educational scores of these medical students.…

  20. [Small animal image-guided radiotherapy: A new era for preclinical studies].

    PubMed

    Delpon, G; Frelin-Labalme, A-M; Heinrich, S; Beaudouin, V; Noblet, C; Begue, M; Le Deroff, C; Pouzoulet, F; Chiavassa, S

    2016-02-01

    Preclinical external beam radiotherapy irradiations used to be delivered with a static broad beam. To promote the transfer from animal to man, the preclinical treatment techniques dedicated to the animal have been optimized to be similar to those delivered to patients in clinical practice. In this context, preclinical irradiators have been developed. Due to the small sizes of the animals, and the irradiation beams, the scaling to the small animal dimensions involves specific problems. Reducing the size and energy of the irradiation beams require very high technical performance, especially for the mechanical stability of the irradiator and the spatial resolution of the imaging system. In addition, the determination of the reference absorbed dose rate must be conducted with a specific methodology and suitable detectors. To date, three systems are used for preclinical studies in France. The aim of this article is to present these new irradiators dedicated to small animals from a physicist point of view, including the commissioning and the quality control. PMID:26856635

  1. Plant-based medicines for anxiety disorders, part 2: a review of clinical studies with supporting preclinical evidence.

    PubMed

    Sarris, Jerome; McIntyre, Erica; Camfield, David A

    2013-04-01

    Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. Thus, our aim was to provide a comprehensive narrative review of plant-based medicines that have clinical and/or preclinical evidence of anxiolytic activity. We present the article in two parts. In part one, we reviewed herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In this current article (part two), we review herbal medicines for which there have been both preclinical and clinical investigations of anxiolytic activity. A search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) for English language papers using the search terms 'anxiety' OR 'anxiety disorder' OR 'generalized anxiety disorder' OR 'social phobia' OR 'post-traumatic stress disorder' OR 'panic disorder' OR 'agoraphobia' OR 'obsessive compulsive disorder' in combination with the search terms 'Herb*' OR 'Medicinal Plants' OR 'Botanical Medicine' OR 'Chinese herb*', in addition to individual herbal medicines. This search of the literature revealed 1,525 papers, of which 53 plants were included in the review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed here in part two), with the other 32 having solely preclinical evidence (reviewed in part one). Support for efficacy was found for chronic use (i.e. greater than one day) of the following herbs in treating a range of anxiety disorders in human clinical trials: Piper methysticum, Matricaria recutita, Ginkgo biloba, Scutellaria lateriflora, Silybum marianum, Passiflora incarnata, Withania somniferum, Galphimia glauca, Centella asiatica, Rhodiola rosea, Echinacea spp., Melissa officinalis and Echium

  2. Development of an NIH consortium for preclinicAl AssESsment of CARdioprotective therapies (CAESAR): a paradigm shift in studies of infarct size limitation.

    PubMed

    Lefer, David J; Bolli, Roberto

    2011-01-01

    An estimated 935,000 Americans suffer a myocardial infarction every year; because their prognosis is determined by the size of the infarct, reducing infarct size is of paramount importance to alleviate morbidity and mortality. For 40 years, the National Heart, Lung, and Blood Institute (NHLBI) has invested enormous resources (at least several hundred million dollars) in preclinical studies aimed at developing infarct-sparing therapies, and several hundred (if not thousands) therapies have been claimed to limit infarct size in preclinical models. Unfortunately, due largely to methodological problems, this enormous investment has not produced any notable clinical application, and no cardioprotective therapy is currently available for clinical use. Clearly, after 40 years of futile efforts, a new approach is needed to overcome the problems that have impeded the translation of cardioprotective therapies. The time has come to apply to preclinical research on cardioprotection, the same standards of scientific rigor that are applied to clinical trials. In compliance with the recommendations of an National Heart, Lung, and Blood Institute (NHLBI)-sponsored workshop held in June 2003 and using the clinical trial networks established by the NHLBI as a model for developing a collaborative infrastructure for research sharing, a preclinical consortium has been organized that will operate in a manner analogous to a clinical trial network. This infrastructure has been named CAESAR (Consortium for preclinicAl assESsment of cARdioprotective therapies). Under the direction of Roberto Bolli, 4 Institutions (University of Louisville, Johns Hopkins, Emory University, and Medical College of Virginia) will work together to conduct blinded, randomized, and adequately powered studies using a rigorous design, dose-response analyses, optimal statistical methods, independent data analysis Cores, an independent statistical Core, verification of tetrazolium data with histology and plasma

  3. Spinal Cord Tolerance in the Age of Spinal Radiosurgery: Lessons From Preclinical Studies

    SciTech Connect

    Medin, Paul M.; Boike, Thomas P.

    2011-04-01

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat has demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.

  4. Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35K++ protein: a novel rituximab cotherapeutic

    PubMed Central

    Richter, Maximilian; Yumul, Roma; Saydaminova, Kamola; Wang, Hongjie; Gough, Michael; Baldessari, Audrey; Cattaneo, Roberto; Lee, Frank; Wang, Chung-Huei Katherine; Jang, Haishan; Astier, Anne; Gopal, Ajay; Carter, Darrick; Lieber, André

    2016-01-01

    Rituximab is a mouse/human chimeric monoclonal antibody targeted toward CD20. It is efficient as first-line therapy of CD20-positive B-cell malignancies. However, a large fraction of treated patients relapse with rituximab-resistant disease. So far, only modest progress has been made in treatment options for rituximab refractory patients. One of the mechanisms for rituximab resistance involves the upregulation of CD46, which is a key cell surface protein that blocks the activation of complement. We have recently developed a technology that depletes CD46 from the cell surface and thereby sensitizes tumor cells to complement-dependent cytotoxicity. This technology is based on a small recombinant protein, Ad35K++ that binds with high affinity to CD46. In preliminary studies using a 6 × histidinyl tagged protein, we had demonstrated that intravenous Ad35K++ injection in combination with rituximab was safe and increased rituximab-mediated killing of CD20-positive target cells in mice and nonhuman primates (NHPs). The presence of the tag, while allowing for easy purification by Ni-NTA chromatography, has the potential to increase the immunogenicity of the recombinant protein. For clinical application, we therefore developed an Ad35K++ protein without His-tag. In the present study, we performed preclinical studies in two animal species (mice and NHPs) with this protein demonstrating its safety and efficacy. These studies estimated the Ad35K++ dose range and treatment regimen to be used in patients. Furthermore, we showed that intravenous Ad35K++ injection triggers the shedding of the CD46 extracellular domain in xenograft mouse tumor models and in macaques. Shed serum CD46 can be measured in the serum and can potentially be used as a pharmacodynamic marker for monitoring Ad35K++ activity in patient undergoing treatment with this agent. These studies create the basis for an investigational new drug application for the use of Ad35K++ in combination with rituximab in the

  5. Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35K++ protein: a novel rituximab cotherapeutic.

    PubMed

    Richter, Maximilian; Yumul, Roma; Saydaminova, Kamola; Wang, Hongjie; Gough, Michael; Baldessari, Audrey; Cattaneo, Roberto; Lee, Frank; Wang, Chung-Huei Katherine; Jang, Haishan; Astier, Anne; Gopal, Ajay; Carter, Darrick; Lieber, André

    2016-01-01

    Rituximab is a mouse/human chimeric monoclonal antibody targeted toward CD20. It is efficient as first-line therapy of CD20-positive B-cell malignancies. However, a large fraction of treated patients relapse with rituximab-resistant disease. So far, only modest progress has been made in treatment options for rituximab refractory patients. One of the mechanisms for rituximab resistance involves the upregulation of CD46, which is a key cell surface protein that blocks the activation of complement. We have recently developed a technology that depletes CD46 from the cell surface and thereby sensitizes tumor cells to complement-dependent cytotoxicity. This technology is based on a small recombinant protein, Ad35K++ that binds with high affinity to CD46. In preliminary studies using a 6 × histidinyl tagged protein, we had demonstrated that intravenous Ad35K++ injection in combination with rituximab was safe and increased rituximab-mediated killing of CD20-positive target cells in mice and nonhuman primates (NHPs). The presence of the tag, while allowing for easy purification by Ni-NTA chromatography, has the potential to increase the immunogenicity of the recombinant protein. For clinical application, we therefore developed an Ad35K++ protein without His-tag. In the present study, we performed preclinical studies in two animal species (mice and NHPs) with this protein demonstrating its safety and efficacy. These studies estimated the Ad35K++ dose range and treatment regimen to be used in patients. Furthermore, we showed that intravenous Ad35K++ injection triggers the shedding of the CD46 extracellular domain in xenograft mouse tumor models and in macaques. Shed serum CD46 can be measured in the serum and can potentially be used as a pharmacodynamic marker for monitoring Ad35K++ activity in patient undergoing treatment with this agent. These studies create the basis for an investigational new drug application for the use of Ad35K++ in combination with rituximab in the

  6. A magnetic resonance (MR) compatible selective brain temperature manipulation system for preclinical study

    PubMed Central

    Liu, Qingwei; Cai, Yu; Lin, Weili; Turner, Gregory H; An, Hongyu

    2012-01-01

    There is overwhelming evidence that hypothermia can improve the outcome of an ischemic stroke. However, the most widely used systemic cooling method could lead to multiple side effects, while the incompatibility with magnetic resonance imaging of the present selective cooling methods highly limit their application in preclinical studies. In this study, we developed a magnetic resonance compatible selective brain temperature manipulation system for small animals, which can regulate brain temperature quickly and accurately for a desired period of time, while maintaining the normal body physiological conditions. This device was utilized to examine the relationship between T1 relaxation, cerebral blood flow, and temperature in brain tissue during magnetic resonance imaging of ischemic stroke. The results showed that this device can be an efficient brain temperature manipulation tool for preclinical studies needing local hypothermic or hyperthermic conditions. PMID:23166453

  7. Therapeutic Applications of Incretin Mimetics for Metabolic Diseases: Preclinical Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exenatide (exendin-4) is an incretin mimetic peptide that shares several glucoregulatory actions with the endogenous incretin GLP-1. In addition to its actions on glucose control, exenatide produces effects to reduce food intake and body weight in all species studied. GLP-1 and exenatide have also b...

  8. Preclinical studies of N3-O-toluyl-fluorouracil-loaded lipid-based nanosuspensions in H22-bearing mice

    PubMed Central

    Zhang, Juan; Li, Min; Liu, Zhihong; Wang, Lili; Liu, Yongjun; Zhang, Na

    2014-01-01

    Purpose N3-O-toluyl-fluorouracil (TFU) is a potential antitumor prodrug of 5-fluorouracil (5-FU), but its poor solubility has limited its use in clinic. This study aimed to improve the bioavailability of TFU by preparing TFU-loaded lipid-based nanosuspensions (TFU-LNS) and perform a preclinical evaluation. Methods TFU-LNS were prepared through high-pressure homogenization and were lyophilized afterwards. For in vitro test, the physicochemical properties and cytotoxicity against HegG2 cells were conducted. For in vivo evaluation, the pharmacokinetics, tissue distribution, and antitumor efficacy were investigated in H22-bearing Kunming mice. Results TFU showed different degradability in four media; in particular, nearly all of it converted to an equimolar amount of 5-FU in blank plasma of Wistar rats. The lyophilized TFU-LNS had a mean particle size of 180.03±3.11 nm and zeta potential of −8.02±1.43 mV and showed no discernible changes after storage at 4°C for 3 months. In the in vivo antitumor study, the antitumor efficacy of TFU-LNS was consistent with that of 5-FU injection. Furthermore, TFU-LNS released a lower concentration of 5-FU in heart and kidney throughout the tissue distribution studies. Conclusion TFU-LNS exhibited convincing antitumor activity and easy scale-up opportunity, which suggests that TFU-LNS might be a promising drug delivery system for cancer therapy. PMID:24920908

  9. [Preclinical in vitro and in vivo models for the assessment of biological activity in biosimilarity studies].

    PubMed

    Escobedo-Moratilla, Abraham; Barba de la Rosa, Ana Paulina; Pérez-Urizar, José Trinidad

    2015-01-01

    A drug that contains a recombinant protein as an active principle is called a biotechnological drug or biopharmaceutical.There are currently over 300 biopharmaceuticals worldwide. Many of these contains a similar active principle (biosimilar drug) as other previously registered (innovator drug). It has suggested that due to the complex implications in a formulation containing a protein, the manufacturing process is a key factor for efficacy and safety requirements. In fact, certain variability has been detected of the protein properties in different lots (or batches) of the same manufacturer, which produce changes at a clinical level. For this reason, the evaluation of biosimilar drugs has acquired great relevance, being the preclinical level of one of the more important stages of the development due to its lower cost (with respect to the clinical level) and its high capacity to detect formulation-manufacture problems. However, the demonstration of comparability at physicochemical, preclinical, and clinical levels is required in order to achieve market registration. In this review the in vitro and in vivo models used for the assessment of proposed biosimilars will be discussed. PMID:26089274

  10. Preclinical and Clinical Studies for Sodium Tungstate: Application in Humans

    PubMed Central

    Bertinat, Romina; Nualart, Francisco; Li, Xuhang; Yáñez, Alejandro J.; Gomis, Ramón

    2015-01-01

    Diabetes is a complex metabolic disorder triggered by the deficient secretion of insulin by the pancreatic β-cell or the resistance of peripheral tissues to the action of the hormone. Chronic hyperglycemia is the major consequence of this failure, and also the main cause of diabetic problems. Indeed, several clinical trials have agreed in that tight glycemic control is the best way to stop progression of the disease. Many anti-diabetic drugs for treatment of type 2 diabetes are commercially available, but no ideal normoglycemic agent has been developed yet. Moreover, weight gain is the most common side effect of many oral anti-diabetic agents and insulin, and increased weight has been shown to worsen glycemic control and increase the risk of diabetes progression. In this sense, the inorganic salt sodium tungstate (NaW) has been studied in different animal models of metabolic syndrome and diabetes, proving to have a potent effect on normalizing blood glucose levels and reducing body weight, without any hypoglycemic action. Although the liver has been studied as the main site of NaW action, positive effects have been also addressed in muscle, pancreas, brain, adipose tissue and intestine, explaining the effective anti-diabetic action of this salt. Here, we review NaW research to date in these different target organs. We believe that NaW deserves more attention, since all available anti-diabetic treatments remain suboptimal and new therapeutics are urgently needed. PMID:25995968

  11. Technetium-99m galactosyl-neoglycoalbumin: preparation and preclinical studies

    SciTech Connect

    Vera, D.R.; Stadalnik, R.C.; Krohn, K.A.

    1985-10-01

    Technetium-99m galactosyl-neoglycoalbumin ((Tc) NGA), a labeled analog ligand to the hepatocyte-specific receptor, hepatic binding protein (HBP), was prepared and tested for labeling yield, stability, biodistribution, toxicity, and dosimetry. The ligand was synthesized by the covalent coupling of a carbohydrate bifunctional reagent, 2-imino-2-ethyloxymethyl-1-thiogalactose, to human serum albumin. Testing in mice and rabbits revealed the product to be nontoxic and apyrogenic. Biodistribution studies in rabbits demonstrated the liver as the single focus of tracer uptake. Dosimetry was based on kinetic studies in three baboons. Absorbed doses to liver, small intestine, urinary bladder wall, and uterus were 0.089, 0.28, 0.56, and 0.88 rad/mCi, respectively. Total body, lens of the eye, red marrow, ovaries, and testes were less than 0.06 rad/mCi. High liver specificity imparted by receptor binding combined with high labeling yield, stability, acceptable dosimetry, and safety provide (Tc)NGA with the attributes required for routine clinical assessment of hepatocyte function.

  12. Luciferase fragment complementation imaging in preclinical cancer studies

    PubMed Central

    Lake, Madryn C.; Aboagye, Eric O.

    2014-01-01

    The luciferase fragment complementation assay (LFCA) enables molecular events to be non-invasively imaged in live cells in vitro and in vivo in a comparatively cheap and safe manner. It is a development of previous enzyme complementation assays in which reporter genes are split into two, individually enzymatically inactive, fragments that are able to complement one another upon interaction. This complementation can be used to externally visualize cellular activities. In recent years, the number of studies which have used LFCAs to probe questions relevant to cancer have increased, and this review summarizes the most significant and interesting of these. In particular, it focuses on work conducted on the epidermal growth factor, nuclear and chemokine receptor families, and intracellular signaling pathways, including IP3, cAMP, Akt, cMyc, NRF2 and Rho GTPases. LFCAs which have been developed to image DNA methylation and detect RNA transcripts are also discussed. PMID:25594026

  13. An Oral Formulation of YK-4-279: Preclinical Efficacy and Acquired Resistance Patterns in Ewing Sarcoma.

    PubMed

    Lamhamedi-Cherradi, Salah-Eddine; Menegaz, Brian A; Ramamoorthy, Vandhana; Aiyer, Ramani A; Maywald, Rebecca L; Buford, Adrianna S; Doolittle, Dannette K; Culotta, Kirk S; O'Dorisio, James E; Ludwig, Joseph A

    2015-07-01

    Ewing sarcoma is a transcription factor-mediated pediatric bone tumor caused by a chromosomal translocation of the EWSR1 gene and one of several genes in the ETS family of transcription factors, typically FLI1 or ERG. Full activity of the resulting oncogenic fusion protein occurs only after binding RNA helicase A (RHA), and novel biologically targeted small molecules designed to interfere with that interaction have shown early promise in the preclinical setting. Herein, we demonstrate marked preclinical antineoplastic activity of an orally bioavailable formulation of YK-4-279 and identify mechanisms of acquired chemotherapy resistance that may be exploited to induce collateral sensitivity. Daily enteral administration of YK-4-279 led to significant delay in Ewing sarcoma tumor growth within a murine model. In advance of anticipated early-phase human clinical trials, we investigated both de novo and acquired mechanism(s) by which Ewing sarcoma cells evade YK-4-279-mediated cell death. Drug-resistant clones, formed by chronic in vitro exposure to steadily increased levels of YK-4-279, overexpressed c-Kit, cyclin D1, pStat3(Y705), and PKC isoforms. Interestingly, cross-resistance to imatinib and enzastaurin (selective inhibitors of c-Kit and PKC-β, respectively), was observed and the use of YK-4-279 with enzastaurin in vitro led to marked drug synergy, suggesting a potential role for combination therapies in the future. By advancing an oral formulation of YK-4-279 and identifying prominent mechanisms of resistance, this preclinical research takes us one step closer to a shared goal of curing adolescents and young adults afflicted by Ewing sarcoma. PMID:25964201

  14. Analgesic and hypnotic activities of Laghupanchamula: A preclinical study

    PubMed Central

    Ghildiyal, Shivani; Gautam, Manish K.; Joshi, Vinod K.; Goel, Raj K.

    2014-01-01

    Background: In Ayurvedic classics, two types of Laghupanchamula -five plant roots (LP) have been mentioned containing four common plants viz. Kantakari, Brihati, Shalaparni, and Prinshniparni and the fifth plant is either Gokshura (LPG) or Eranda (LPE). LP has been documented to have Shothahara (anti-inflammatory), Shulanashka (analgesic), Jvarahara (antipyretic), and Rasayana (rejuvenator) activities. Aim: To evaluate the acute toxicity (in mice), analgesic and hypnotic activity (in rats) of 50% ethanolic extract of LPG (LPGE) and LPE (LPEE). Materials and Methods: LPEG and LPEE were prepared separately by using 50% ethanol following the standard procedures. A graded dose (250, 500 and 1000 mg/kg) response study for both LPEE and LPGE was carried out for analgesic activity against rat tail flick response which indicated 500 mg/kg as the optimal effective analgesic dose. Hence, 500 mg/kg dose of LPEE and LPGE was used for hot plate test and acetic acid induced writhing model in analgesic activity and for evaluation of hypnotic activity. Results: Both the extracts did not produce any acute toxicity in mice at single oral dose of 2.0 g/kg. Both LPGE and LPEE (250, 500, and 1000 mg/kg) showed dose-dependent elevation in pain threshold and peak analgesic effect at 60 min as evidenced by increased latency period in tail-flick method by 25.1-62.4% and 38.2-79.0% respectively. LPGE and LPEE (500 mg/kg) increased reaction time in hot-plate test at peak 60 min analgesic effect by 63.2 and 85.8% and reduction in the number of acetic acid-induced writhes by 55.9 and 65.8% respectively. Both potentiated pentobarbitone-induced hypnosis as indicated by increased duration of sleep in treated rats. Conclusion: The analgesic and hypnotic effects of LP formulations authenticate their uses in Ayurvedic system of Medicine for painful conditions. PMID:25364205

  15. Pediatric Autoimmune Disorders Associated with Streptococcal Infections and Tourette's Syndrome in Preclinical Studies

    PubMed Central

    Spinello, Chiara; Laviola, Giovanni; Macrì, Simone

    2016-01-01

    Accumulating evidence suggests that Tourette's Syndrome (TS) – a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances – can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes

  16. Pediatric Autoimmune Disorders Associated with Streptococcal Infections and Tourette's Syndrome in Preclinical Studies.

    PubMed

    Spinello, Chiara; Laviola, Giovanni; Macrì, Simone

    2016-01-01

    Accumulating evidence suggests that Tourette's Syndrome (TS) - a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances - can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes

  17. The failure to detect drug-induced sensory loss in standard preclinical studies.

    PubMed

    Gauvin, David V; Abernathy, Matthew M; Tapp, Rachel L; Yoder, Joshua D; Dalton, Jill A; Baird, Theodore J

    2015-01-01

    Over the years a number of drugs have been approved for human use with limited signs of toxicity noted during preclinical risk assessment study designs but then show adverse events in compliant patients taking the drugs as prescribed within the first few years on the market. Loss or impairments in sensory systems, such as hearing, vision, taste, and smell have been reported to the FDA or have been described in the literature appearing in peer-reviewed scientific journals within the first five years of widespread use. This review highlights the interactive cross-modal compensation within sensory systems that can occur that reduces the likelihood of identifying these losses in less sentient animals used in standard preclinical toxicology and safety protocols. We provide some historical and experimental evidence to substantiate these sensory effects in and highlight the critical importance of detailed training of technicians on basic ethological, species-specific behaviors of all purpose-bred laboratory animals used in these study designs. We propose that the time, effort and cost of training technicians to be better able to identify and document very subtle changes in behavior will serve to increase the likelihood of early detection of biomarkers predictive of drug-induced sensory loss within current standard regulatory preclinical research protocols. PMID:26045062

  18. Toxicity of Bothrops sp snake venoms from Ecuador and preclinical assessment of the neutralizing efficacy of a polyspecific antivenom from Costa Rica.

    PubMed

    Laines, Johana; Segura, Álvaro; Villalta, Mauren; Herrera, María; Vargas, Mariángela; Alvarez, Gladys; Gutiérrez, José María; León, Guillermo

    2014-09-01

    The toxicological profile of the venoms of the snakes Bothrops asper and Bothrops atrox from Ecuador was investigated, together with the venom of a population of B. asper formerly classified as 'Bothrops xanthogrammus'. The three venoms exerted lethal, hemorrhagic, myotoxic, coagulant and defibrinogenating effects, in agreement with the characteristic toxicological profile of Bothrops sp venoms. A polyspecific antivenom (bothropic-crotalic-lachesic) manufactured in Costa Rica was assessed for its preclinical efficacy against the toxic activities of these Ecuadorian venoms. Antivenom was effective in the neutralization of the five activities tested in the three venoms. These observations are in agreement with previous reports on the extensive cross-reactivity and paraspecific neutralization of antivenoms manufactured in Latin America against the venoms of Bothrops sp snakes. PMID:24950051

  19. Preclinical Efficacy of Bevacizumab with CRLX101, an Investigational Nanoparticle-Drug Conjugate, in Treatment of Metastatic Triple-Negative Breast Cancer.

    PubMed

    Pham, Elizabeth; Yin, Melissa; Peters, Christian G; Lee, Christina R; Brown, Donna; Xu, Ping; Man, Shan; Jayaraman, Lata; Rohde, Ellen; Chow, Annabelle; Lazarus, Douglas; Eliasof, Scott; Foster, F Stuart; Kerbel, Robert S

    2016-08-01

    VEGF pathway-targeting antiangiogenic drugs, such as bevacizumab, when combined with chemotherapy have changed clinical practice for the treatment of a broad spectrum of human cancers. However, adaptive resistance often develops, and one major mechanism is elevated tumor hypoxia and upregulated hypoxia-inducible factor-1α (HIF1α) caused by antiangiogenic treatment. Reduced tumor vessel numbers and function following antiangiogenic therapy may also affect intratumoral delivery of concurrently administered chemotherapy. Nonetheless, combining chemotherapy and bevacizumab can lead to improved response rates, progression-free survival, and sometimes, overall survival, the extent of which can partly depend on the chemotherapy backbone. A rational, complementing chemotherapy partner for combination with bevacizumab would not only reduce HIF1α to overcome hypoxia-induced resistance, but also improve tumor perfusion to maintain intratumoral drug delivery. Here, we evaluated bevacizumab and CRLX101, an investigational nanoparticle-drug conjugate containing camptothecin, in preclinical mouse models of orthotopic primary triple-negative breast tumor xenografts, including a patient-derived xenograft. We also evaluated long-term efficacy of CRLX101 and bevacizumab to treat postsurgical, advanced metastatic breast cancer in mice. CRLX101 alone and combined with bevacizumab was highly efficacious, leading to complete tumor regressions, reduced metastasis, and greatly extended survival of mice with metastatic disease. Moreover, CRLX101 led to improved tumor perfusion and reduced hypoxia, as measured by contrast-enhanced ultrasound and photoacoustic imaging. CRLX101 durably suppressed HIF1α, thus potentially counteracting undesirable effects of elevated tumor hypoxia caused by bevacizumab. Our preclinical results show pairing a potent cytotoxic nanoparticle chemotherapeutic that complements and improves concurrent antiangiogenic therapy may be a promising treatment strategy for

  20. Development and preclinical efficacy of novel transforming growth factor-β1 short interfering RNAs for pulmonary fibrosis.

    PubMed

    D'Alessandro-Gabazza, Corina N; Kobayashi, Tetsu; Boveda-Ruiz, Daniel; Takagi, Takehiro; Toda, Masaaki; Gil-Bernabe, Paloma; Miyake, Yasushi; Yasukawa, Atsushi; Matsuda, Yoshikazu; Suzuki, Noboru; Saito, Hiromitsu; Yano, Yutaka; Fukuda, Ayako; Hasegawa, Tetsuya; Toyobuku, Hidekazu; Rennard, Stephen I; Wagner, Peter D; Morser, John; Takei, Yoshiyuki; Taguchi, Osamu; Gabazza, Esteban C

    2012-03-01

    Idiopathic pulmonary fibrosis is a chronic devastating disease of unknown etiology. No therapy is currently available. A growing body of evidence supports the role of transforming growth factor (TGF)-β1 as the major player in the pathogenesis of the disease. However, attempts to control its expression and to improve the outcome of pulmonary fibrosis have been disappointing. We tested the hypothesis that TGF-β1 is the dominant factor in the acute and chronic phases of pulmonary fibrosis and developed short interfering (si)RNAs directed toward molecules implicated in the disease. This study developed novel sequences of siRNAs targeting the TGF-β1 gene and evaluated their therapeutic efficacy in two models of pulmonary fibrosis: a model induced by bleomycin and a novel model of the disease developed spontaneously in mice overexpressing the full length of human TGF-β1 in the lungs. Intrapulmonary delivery of aerosolized siRNAs of TGF-β1 with sequences common to humans and rodents significantly inhibited bleomycin-induced pulmonary fibrosis in the acute and chronic phases of the disease and in a dose-dependent manner. Aerosolized human-specific siRNA also efficiently inhibited pulmonary fibrosis, improved lung function, and prolonged survival in human TGF-β1 transgenic mice. Mice showed no off-target effects after intratracheal administration of siRNA. These results suggest the applicability of these novel siRNAs as tools for treating pulmonary fibrosis in humans. PMID:22033267

  1. Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models

    PubMed Central

    Marangoni, Francesco; Bosticardo, Marita; Charrier, Sabine; Draghici, Elena; Locci, Michela; Scaramuzza, Samantha; Panaroni, Cristina; Ponzoni, Maurilio; Sanvito, Francesca; Doglioni, Claudio; Liabeuf, Marie; Gjata, Bernard; Montus, Marie; Siminovitch, Katherine; Aiuti, Alessandro; Naldini, Luigi; Dupré, Loïc; Roncarolo, Maria Grazia; Galy, Anne; Villa, Anna

    2009-01-01

    Wiskott–Aldrich Syndrome (WAS) is a life-threatening X-linked disease characterized by immunodeficiency, thrombocytopenia, autoimmunity, and malignancies. Gene therapy could represent a therapeutic option for patients lacking a suitable bone marrow (BM) donor. In this study, we analyzed the long-term outcome of WAS gene therapy mediated by a clinically compatible lentiviral vector (LV) in a large cohort of wasnull mice. We demonstrated stable and full donor engraftment and Wiskott–Aldrich Syndrome protein (WASP) expression in various hematopoietic lineages, up to 12 months after gene therapy. Importantly, we observed a selective advantage for T and B lymphocytes expressing transgenic WASP. T-cell receptor (TCR)-driven T-cell activation, as well as B-cell's ability to migrate in response to CXCL13, was fully restored. Safety was evaluated throughout the long-term follow-up of primary and secondary recipients of WAS gene therapy. WAS gene therapy did not affect the lifespan of treated animals. Both hematopoietic and nonhematopoietic tumors arose, but we excluded the association with gene therapy in all cases. Demonstration of long-term efficacy and safety of WAS gene therapy mediated by a clinically applicable LV is a key step toward the implementation of a gene therapy clinical trial for WAS. PMID:19259069

  2. A Preclinical Study Combining the DNA Repair Inhibitor Dbait with Radiotherapy for the Treatment of Melanoma1

    PubMed Central

    Biau, Julian; Devun, Flavien; Jdey, Wael; Kotula, Ewa; Quanz, Maria; Chautard, Emmanuel; Sayarath, Mano; Sun, Jian-Sheng; Verrelle, Pierre; Dutreix, Marie

    2014-01-01

    Melanomas are highly radioresistant tumors, mainly due to efficient DNA double-strand break (DSB) repair. Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by radiation therapy (RT). First, the cytotoxic efficacy of Dbait in combination with RT was evaluated in vitro in SK28 and 501mel human melanoma cell lines. Though the extent of RT-induced damage was not increased by Dbait, it persisted for longer revealing a repair defect. Dbait enhanced RT efficacy independently of RT doses. We further assayed the capacity of DT01 (clinical form of Dbait) to enhance efficacy of “palliative” RT (10 × 3 Gy) or “radical” RT (20 × 3 Gy), in an SK28 xenografted model. Inhibition of repair of RT-induced DSB by DT01 was revealed by the significant increase of micronuclei in tumors treated with combined treatment. Mice treated with DT01 and RT combination had significantly better tumor growth control and longer survival compared to RT alone with the “palliative” protocol [tumor growth delay (TGD) by 5.7-fold; median survival: 119 vs 67 days] or the “radical” protocol (TGD by 3.2-fold; median survival: 221 vs 109 days). Only animals that received the combined treatment showed complete responses. No additional toxicity was observed in any DT01-treated groups. This preclinical study provides encouraging results for a combination of a new DNA repair inhibitor, DT01, with RT, in the absence of toxicity. A first-in-human phase I study is currently under way in the palliative management of melanoma in-transit metastases (DRIIM trial). PMID:25379020

  3. The effects of cytochrome P450 induction by xenobiotics on endobiotic metabolism in pre-clinical safety studies.

    PubMed

    Amacher, David E

    2010-05-01

    The induction of hepatic cytochrome P450 (CYP) enzymes, conjugating enzymes, and drug transporters involved in the phase I-III metabolism of xenobiotics is frequently encountered in pre-clinical drug safety studies. As xenobiotics, new drug entities can serve as ligands to three major nuclear receptors; the aryl hydrocarbon receptor (AhR), the constitutive androstane receptor (CAR), and the pregnane X receptor (PXR). These act as xenosensors that often coordinate gene expression with several other nuclear receptors normally involved in endobiotic metabolism. A subsequent gene activation cascade can result in altered liver weights and histopathology and, in some cases, reduced therapeutic efficacy if the drug under test is also a substrate for the induced metabolic enzymes. In humans, CYP induction can result in therapeutic failure for autoinducers or drug-drug interactions if the pharmacokinetic and pharmacodynamic properties of co-administered drugs are altered because they are substrates for the induced enzymes. In addition to CYP gene expression, nuclear receptor proteins regulate the expression of complex gene networks, and therefore mediate the metabolism and modify the effects of steroid hormones, fat-soluble vitamins, and free fatty acids on the metabolic, reproductive, and developmental processes of mammals. CAR and PXR also regulate hepatic energy metabolism through cross-talk with insulin- or glucagon-responsive transcription factors. This review examines the perturbation of these endogenous regulatory systems by xenobiotic CYP inducers, which have potential pathophysiological consequences ranging from alterations in the biological clock to adverse effects on the cardiovascular system of pre-clinical species. PMID:20218941

  4. Osteogenic Potential of Dental Mesenchymal Stem Cells in Preclinical Studies: A Systematic Review Using Modified ARRIVE and CONSORT Guidelines

    PubMed Central

    Ramamoorthi, Murali; Bakkar, Mohammed; Jordan, Jack; Tran, Simon D.

    2015-01-01

    Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials. PMID:26106427

  5. Attempted and successful compensation in preclinical and early manifest neurodegeneration - a review of task FMRI studies.

    PubMed

    Scheller, Elisa; Minkova, Lora; Leitner, Mathias; Klöppel, Stefan

    2014-01-01

    Several models of neural compensation in healthy aging have been suggested to explain brain activity that aids to sustain cognitive function. Applying recently suggested criteria of "attempted" and "successful" compensation, we reviewed existing literature on compensatory mechanisms in preclinical Huntington's disease (HD) and amnestic mild cognitive impairment (aMCI). Both disorders constitute early stages of neurodegeneration ideal for examining compensatory mechanisms and developing targeted interventions. We strived to clarify whether compensation criteria derived from healthy aging populations can be applied to early neurodegeneration. To concentrate on the close coupling of cognitive performance and brain activity, we exclusively addressed task fMRI studies. First, we found evidence for parallels in compensatory mechanisms between healthy aging and neurodegenerative disease. Several studies fulfilled criteria of attempted compensation, while reports of successful compensation were largely absent, which made it difficult to conclude on. Second, comparing working memory studies in preclinical HD and aMCI, we identified similar compensatory patterns across neurodegenerative disorders in lateral and medial prefrontal cortex. Such patterns included an inverted U-shaped relationship of neurodegeneration and compensatory activity spanning from preclinical to manifest disease. Due to the lack of studies systematically targeting all criteria of compensation, we propose an exemplary study design, including the manipulation of compensating brain areas by brain stimulation. Furthermore, we delineate the benefits of targeted interventions by non-invasive brain stimulation, as well as of unspecific interventions such as physical activity or cognitive training. Unambiguously detecting compensation in early neurodegenerative disease will help tailor interventions aiming at sustained overall functioning and delayed clinical disease onset. PMID:25324786

  6. Exploratory study of factors related to educational scores of first preclinical year medical students.

    PubMed

    Sitticharoon, Chantacha; Srisuma, Sorachai; Kanavitoon, Sawita; Summachiwakij, Sarayut

    2014-03-01

    The relationships among the scores of major subjects taught in the first preclinical year of a Thai medical school, previous academic achievements, and daily life activities are rarely explored. We therefore performed an exploratory study identifying various factors possibly related to the educational scores of these medical students. Questionnaires were sent out to all first preclinical year medical students, with 79.8% being returned (245/307 questionnaires). Positive correlations were revealed between the premedical year grade point average (pre-MD GPA) and anatomy, physiology, and biochemistry scores (R = 0.664, 0.521, and 0.653, respectively, P < 0.001 for all) by Pearson's method. Using multiple linear regression analysis, anatomy scores could be predicted by pre-MD GPA, student satisfaction with anatomy, the percentage of expected reading, monthly earnings, reading after class and near exam time, and duration of sleeping periods near exam time (R = 0.773, R(2) = 0.598, P < 0.001). Physiology scores could be estimated by pre-MD GPA, the percentage of expected reading, monthly earnings, and percentage of those who fell asleep during class and near exam time (R = 0.722, R(2) = 0.521, P < 0.001). Biochemistry scores could be calculated by pre-MD GPA, the percentage of expected reading, motivation to study medicine, student satisfaction with biochemistry, and exam performance expectations (R = 0.794, R(2) = 0.630, P < 0.001). In conclusion, pre-MD GPA and the percentage of expected reading are factors involved in producing good academic results in the first preclinical year. Anatomy and biochemistry, but not physiology, scores are influenced by satisfaction. PMID:24585466

  7. Plant-based medicines for anxiety disorders, Part 1: a review of preclinical studies.

    PubMed

    Sarris, Jerome; McIntyre, Erica; Camfield, David A

    2013-03-01

    Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. This article (part 1) reviews herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In part 2, we review herbal medicines for which there have been clinical investigations for anxiolytic activity. An open-ended, language-restricted (English) search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) using specific search criteria to identify herbal medicines that have been investigated for anxiolytic activity. This search of the literature revealed 1,525 papers, from which 53 herbal medicines were included in the full review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed in part 2), with another 32 having solely preclinical studies (reviewed here in part 1). Preclinical evidence of anxiolytic activity (without human clinical trials) was found for Albizia julibrissin, Sonchus oleraceus, Uncaria rhynchophylla, Stachys lavandulifolia, Cecropia glazioui, Magnolia spp., Eschscholzia californica, Erythrina spp., Annona spp., Rubus brasiliensis, Apocynum venetum, Nauclea latifolia, Equisetum arvense, Tilia spp., Securidaca longepedunculata, Achillea millefolium, Leea indica, Juncus effusus, Coriandrum sativum, Eurycoma longifolia, Turnera diffusa, Euphorbia hirta, Justicia spp., Crocus sativus, Aloysia polystachya, Albies pindrow, Casimiroa edulis, Davilla rugosa, Gastrodia elata, Sphaerathus indicus, Zizyphus jujuba and Panax ginseng. Common mechanisms of action for the majority of botanicals reviewed primarily involve GABA, either via direct receptor binding or ionic channel or cell membrane modulation; GABA transaminase

  8. Food for Thought Look Back in Anger – What Clinical Studies Tell Us About Preclinical Work

    PubMed Central

    Hartung, Thomas

    2013-01-01

    Summary Misled by animal studies and basic research? Whenever we take a closer look at the outcome of clinical trials in a field such as, most recently, stroke or septic shock, we see how limited the value of our preclinical models was. For all indications, 95% of drugs that enter clinical trials do not make it to the market, despite all promise of the (animal) models used to develop them. Drug development has started already to decrease its reliance on animal models: In Europe, for example, despite increasing R&D expenditure, animal use by pharmaceutical companies dropped by more than 25% from 2005 to 2008. In vitro studies are likewise limited: questionable cell authenticity, over-passaging, mycoplasma infections, and lack of differentiation as well as non-homeostatic and non-physiologic culture conditions endanger the relevance of these models. The standards of statistics and reporting often are poor, further impairing reliability. Alarming studies from industry show miserable reproducibility of landmark studies. This paper discusses factors contributing to the lack of reproducibility and relevance of pre-clinical research. The conclusion: Publish less but of better quality and do not rely on the face value of animal studies. PMID:23861075

  9. Comparative Plasma Exposure and Lung Distribution of Two Human Use Commercial Azithromycin Formulations Assessed in Murine Model: A Preclinical Study

    PubMed Central

    Rivulgo, Virginia; Sparo, Mónica; Ceci, Mónica; Fumuso, Elida; Confalonieri, Alejandra; Sánchez Bruni, Sergio F.

    2013-01-01

    Azithromycin (AZM) therapeutic failure and relapses of patients treated with generic formulations have been observed in clinical practice. The main goal of this research was to compare in a preclinical study the serum exposure and lung tissue concentration of two commercial formulations AZM-based in murine model. The current study involved 264 healthy Balb-C. Mice were divided into two groups (n = 44): animals of Group A (reference formulation -R-) were orally treated with AZM suspension at 10 mg/kg of b.w. Experimental animals of Group B (generic formulation -G-) received identical treatment than Group A with a generic formulation AZM-based. The study was repeated twice as Phase II and III. Serum and lung tissue samples were taken 24 h post treatment. Validated microbiological assay was used to determine the serum pharmacokinetic and lung distribution of AZM. After the pharmacokinetic analysis was observed, a similar serum exposure for both formulations of AZM assayed. In contrast, statistical differences (P < 0.001) were obtained after comparing the concentrations of both formulations in lung tissue, being the values obtained for AUC and Cmax (AZM-R-) +1586 and 122%, respectively, than those obtained for AZM-G- in lung. These differences may indicate large differences on the distribution process of both formulations, which may explain the lack of efficacy/therapeutic failure observed on clinical practice. PMID:24073402

  10. Assessment of an Orofacial Operant Pain Assay as a Preclinical Tool for Evaluating Analgesic Efficacy in Rodents.

    PubMed

    Ramirez, Harvey E; Queeney, Timothy J; Dunbar, Misha L; Eichner, Michael C; Del Castillo, Dania I; Battles, August H; Neubert, John K

    2015-07-01

    A model system capable of providing clinically relevant analgesic doses with minimal trauma has been elusive in laboratory animal medicine. Our laboratory has developed an orofacial operant pain system that effectively discriminates between non-noxious and noxious thermal stimuli in rats and mice. Male and female rats (Crl:SD) and mice (Crl:SKR-HR(hr)) were trained to perform a task (placing their face through an opening and having their cheeks stay in contact with thermodes) to receive a reward (a solution of sweetened condensed milk). Currently accepted doses of buprenorphine were tested by using a crossover design. Pain was induced in both species by sensitizing the depilated skin over both cheeks with capsaicin cream or by creating a surgical incision (rats only) and then allowing the animals to contact a temperature-regulated thermode while obtaining a reward. Optimal antinociceptive doses included 0.05 and 0.1 mg/kg in male mice but only 0.05 mg/kg in female mice. In rats, optimal antinociceptive doses included 0.03 and 0.05 mg/kg for male rats but only 0.03 mg/kg for female rats. The 2 pain-induction models in rats (capsaicin cream and surgical incision) did not differ. Our orofacial operant pain assay can determine clinically relevant analgesic doses for rodents in a preclinical assay. The automated, investigator-independent nature of the assay, in conjunction with its high sensitivity, makes this method an improvement over traditional noninvasive methods, providing better data for developing optimal analgesic recommendations for rats and mice. PMID:26224444

  11. Assessment of an Orofacial Operant Pain Assay as a Preclinical Tool for Evaluating Analgesic Efficacy in Rodents

    PubMed Central

    Ramirez, Harvey E; Queeney, Timothy J; Dunbar, Misha L; Eichner, Michael C; Del Castillo, Dania I; Battles, August H; Neubert, John K

    2015-01-01

    A model system capable of providing clinically relevant analgesic doses with minimal trauma has been elusive in laboratory animal medicine. Our laboratory has developed an orofacial operant pain system that effectively discriminates between nonnoxious and noxious thermal stimuli in rats and mice. Male and female rats (Crl:SD) and mice (Crl:SKR-HRhr) were trained to perform a task (placing their face through an opening and having their cheeks stay in contact with thermodes) to receive a reward (a solution of sweetened condensed milk). Currently accepted doses of buprenorphine were tested by using a crossover design. Pain was induced in both species by sensitizing the depilated skin over both cheeks with capsaicin cream or by creating a surgical incision (rats only) and then allowing the animals to contact a temperature-regulated thermode while obtaining a reward. Optimal antinociceptive doses included 0.05 and 0.1 mg/kg in male mice but only 0.05 mg/kg in female mice. In rats, optimal antinociceptive doses included 0.03 and 0.05 mg/kg for male rats but only 0.03 mg/kg for female rats. The 2 pain-induction models in rats (capsaicin cream and surgical incision) did not differ. Our orofacial operant pain assay can determine clinically relevant analgesic doses for rodents in a preclinical assay. The automated, investigator-independent nature of the assay, in conjunction with its high sensitivity, makes this method an improvement over traditional noninvasive methods, providing better data for developing optimal analgesic recommendations for rats and mice. PMID:26224444

  12. Preclinical pharmacology, ocular tolerability and ocular hypotensive efficacy of a novel non-peptide bradykinin mimetic small molecule.

    PubMed

    Sharif, Najam A; Li, Linya; Katoli, Parvaneh; Xu, Shouxi; Veltman, James; Li, Byron; Scott, Daniel; Wax, Martin; Gallar, Juana; Acosta, Carmen; Belmonte, Carlos

    2014-11-01

    We sought to characterize the ocular pharmacology, tolerability and intraocular pressure (IOP)-lowering efficacy of FR-190997, a non-peptidic bradykinin (BK) B2-receptor agonist. FR-190997 possessed a relatively high receptor binding affinity (Ki = 27 nM) and a high in vitro potency (EC50 = 18.3 ± 4.4 nM) for inositol-1-phosphate generation via human cloned B2-receptors expressed in host cells with mimimal activity at B1-receptors. It also mobilized intracellular Ca2+ in isolated human trabecular meshwork (h-TM), ciliary muscle (h-CM), and in immortalized non-pigmented ciliary epithelial (h-iNPE) cells (EC50s = 167-384 nM; Emax = 32-86% of BK-induced response). HOE-140, a selective B2-receptor antagonist, potently blocked the latter effects of FR-190997 (e.g., IC50 = 7.3 ± 0.6 nM in h-CM cells). FR-190997 also stimulated the release of prostaglandins (PGs) from h-TM and h-CM cells (EC50s = 60-84 nM; Emax = 29-44% relative to max. BK-induced effects). FR-190997 (0.3-300 μg t.o.) did not activate cat corneal polymodal nociceptors and did not cause ocular discomfort in Dutch-Belted rabbits, but it was not well tolerated in New Zealand albino rabbits and Hartley guinea pigs. A single topical ocular (t.o.) dose of 1% FR-190997 in Dutch-Belted rabbits and mixed breed cats did not lower IOP. However, FR-190997 efficaciously lowered IOP of conscious ocular hypertensive cynomolgus monkey eyes (e.g., 34.5 ± 7.5% decrease; 6 h post-dose of 30 μg t.o.; n = 8). Thus, FR-190997 is an unexampled efficacious ocular hypotensive B2-receptor non-peptide BK agonist that activates multiple signaling pathways to cause IOP reduction. PMID:25307520

  13. Preclinical efficacy of the oncolytic measles virus expressing the sodium iodide symporter in iodine non-avid anaplastic thyroid cancer: a novel therapeutic agent allowing noninvasive imaging and radioiodine therapy.

    PubMed

    Reddi, H V; Madde, P; McDonough, S J; Trujillo, M A; Morris, J C; Myers, R M; Peng, K W; Russell, S J; McIver, B; Eberhardt, N L

    2012-09-01

    Anaplastic thyroid cancer is an extremely aggressive disease resistant to radioiodine treatment because of loss of sodium iodide symporter (NIS) expression. To enhance prognosis of this fatal cancer, we validated the preclinical efficacy of measles virus (MV)-NIS, the vaccine strain of the oncolytic MV (MV-Edm), modified to include the NIS gene. Western blotting analysis confirmed that a panel of eight anaplastic thyroid cancer (ATC)-derived cell lines do not express NIS protein, but do express CD46, the MV receptor. In vitro cell death assays and in vivo xenograft studies demonstrate the oncolytic efficacy of MV-NIS in BHT-101 and KTC-3, ATC-derived cell lines. Radioactive iodine uptake along with single-photon emission computed tomography (SPECT)-computed tomography imaging of KTC-3 xenografts after (99)Tc(m) administration confirmed NIS expression in vitro and in vivo, respectively, after virus treatment. Adjuvant administration of RAI, to MV-NIS-treated KTC-3 tumors showed a trend for increased tumor cell killing. As current treatment for ATC is only palliative, and MV-NIS is currently Food and Drug Administration approved for human clinical trials in myeloma, our data indicate that targeting ATC with MV-NIS could prove to be a novel therapeutic strategy for effective treatment of iodine-resistant ATC and will expedite its testing in clinical trials for this aggressive disease. PMID:22790962

  14. Preclinical efficacy of sepantronium bromide (YM155) in multiple myeloma is conferred by down regulation of Mcl-1.

    PubMed

    Wagner, Verena; Hose, Dirk; Seckinger, Anja; Weiz, Ludmila; Meißner, Tobias; Rème, Thiery; Breitkreutz, Iris; Podar, Klaus; Ho, Anthony D; Goldschmidt, Hartmut; Krämer, Alwin; Klein, Bernard; Raab, Marc S

    2014-11-15

    The inhibitor-of-apoptosis family member survivin has been reported to inhibit apoptosis and regulate mitosis and cytokinesis. In multiple myeloma, survivin has been described to be involved in downstream sequelae of various therapeutic agents. We assessed 1093 samples from previously untreated patients, including two independent cohorts of 392 and 701 patients, respectively. Survivin expression was associated with cell proliferation, adverse prognostic markers, and inferior event-free and overall survival, supporting the evaluation of survivin as a therapeutic target in myeloma. The small molecule suppressant of survivin--YM155--is in clinical development for the treatment of solid tumors. YM155 potently inhibited proliferation and induced apoptosis in primary myeloma cells and cell lines. Gene expression and protein profiling revealed the critical roles of IL6/STAT3-signaling and the unfolded protein response in the efficacy of YM155. Both pathways converged to down regulate anti-apoptotic Mcl-1 in myeloma cells. Conversely, growth inhibition and apoptotic cell death by YM155 was rescued by ectopic expression of Mcl-1 but not survivin, identifying Mcl-1 as the pivotal downstream target of YM155 in multiple myeloma. Mcl-1 expression was likewise associated with adverse prognostic markers, and inferior survival. Our results strongly support the clinical evaluation of YM155 in patients with multiple myeloma. PMID:25296978

  15. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies.

    PubMed

    Tukaj, Stefan; Węgrzyn, Grzegorz

    2016-03-01

    Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, is responsible for biological activities of key signaling molecules (clients) such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular processes, including growth, survival, differentiation, and apoptosis. Because Hsp90 is also involved in stabilization of oncogenic 'client' proteins, its specific chaperone activity blockers are currently being tested as anticancer agents in advanced clinical trials. Recent in vitro and in vivo studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the immune system. For these reasons, pharmacological inhibition of Hsp90 has been evaluated in murine models of autoimmune and inflammatory diseases. This mini-review summarizes current knowledge of the effects of Hsp90 inhibitors on autoimmune and inflammatory diseases' features and is based solely on preclinical studies. PMID:26786410

  16. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease.

    PubMed

    Jones, Carrie K; Bubser, Michael; Thompson, Analisa D; Dickerson, Jonathan W; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L; Bridges, Thomas M; Morrison, Ryan D; Jadhav, Satyawan; Engers, Darren W; Italiano, Kimberly; Bode, Jacob; Daniels, J Scott; Lindsley, Craig W; Hopkins, Corey R; Conn, P Jeffrey; Niswender, Colleen M

    2012-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu₄), including N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu₄ PAMsexhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu₄ in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu₄ PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with L-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of L-DOPA, suggesting that mGlu₄ PAMs may provide L-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu₄ PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either L-DOPA or A2A antagonists. PMID:22088953

  17. Selective Allosteric Inhibition of MMP9 Is Efficacious in Preclinical Models of Ulcerative Colitis and Colorectal Cancer.

    PubMed

    Marshall, Derek C; Lyman, Susan K; McCauley, Scott; Kovalenko, Maria; Spangler, Rhyannon; Liu, Chian; Lee, Michael; O'Sullivan, Christopher; Barry-Hamilton, Vivian; Ghermazien, Haben; Mikels-Vigdal, Amanda; Garcia, Carlos A; Jorgensen, Brett; Velayo, Arleene C; Wang, Ruth; Adamkewicz, Joanne I; Smith, Victoria

    2015-01-01

    Expression of matrix metalloproteinase 9 (MMP9) is elevated in a variety of inflammatory and oncology indications, including ulcerative colitis and colorectal cancer. MMP9 is a downstream effector and an upstream mediator of pathways involved in growth and inflammation, and has long been viewed as a promising therapeutic target. However, previous efforts to target matrix metalloproteinases (MMPs), including MMP9, have utilized broad-spectrum or semi-selective inhibitors. While some of these drugs showed signs of efficacy in patients, all MMP-targeted inhibitors have been hampered by dose-limiting toxicity or insufficient clinical benefit, likely due to their lack of specificity. Here, we show that selective inhibition of MMP9 did not induce musculoskeletal syndrome (a characteristic toxicity of pan-MMP inhibitors) in a rat model, but did reduce disease severity in a dextran sodium sulfate-induced mouse model of ulcerative colitis. We also found that MMP9 inhibition decreased tumor growth and metastases incidence in a surgical orthotopic xenograft model of colorectal carcinoma, and that inhibition of either tumor- or stroma-derived MMP9 was sufficient to reduce primary tumor growth. Collectively, these data suggest that selective MMP9 inhibition is a promising therapeutic strategy for treatment of inflammatory and oncology indications in which MMP9 is upregulated and is associated with disease pathology, such as ulcerative colitis and colorectal cancer. In addition, we report the development of a potent and highly selective allosteric MMP9 inhibitor, the humanized monoclonal antibody GS-5745, which can be used to evaluate the therapeutic potential of MMP9 inhibition in patients. PMID:25961845

  18. Selective Allosteric Inhibition of MMP9 Is Efficacious in Preclinical Models of Ulcerative Colitis and Colorectal Cancer

    PubMed Central

    McCauley, Scott; Kovalenko, Maria; Spangler, Rhyannon; Liu, Chian; Lee, Michael; O’Sullivan, Christopher; Barry-Hamilton, Vivian; Ghermazien, Haben; Mikels-Vigdal, Amanda; Garcia, Carlos A.; Jorgensen, Brett; Velayo, Arleene C.; Wang, Ruth; Adamkewicz, Joanne I.; Smith, Victoria

    2015-01-01

    Expression of matrix metalloproteinase 9 (MMP9) is elevated in a variety of inflammatory and oncology indications, including ulcerative colitis and colorectal cancer. MMP9 is a downstream effector and an upstream mediator of pathways involved in growth and inflammation, and has long been viewed as a promising therapeutic target. However, previous efforts to target matrix metalloproteinases (MMPs), including MMP9, have utilized broad-spectrum or semi-selective inhibitors. While some of these drugs showed signs of efficacy in patients, all MMP-targeted inhibitors have been hampered by dose-limiting toxicity or insufficient clinical benefit, likely due to their lack of specificity. Here, we show that selective inhibition of MMP9 did not induce musculoskeletal syndrome (a characteristic toxicity of pan-MMP inhibitors) in a rat model, but did reduce disease severity in a dextran sodium sulfate-induced mouse model of ulcerative colitis. We also found that MMP9 inhibition decreased tumor growth and metastases incidence in a surgical orthotopic xenograft model of colorectal carcinoma, and that inhibition of either tumor- or stroma-derived MMP9 was sufficient to reduce primary tumor growth. Collectively, these data suggest that selective MMP9 inhibition is a promising therapeutic strategy for treatment of inflammatory and oncology indications in which MMP9 is upregulated and is associated with disease pathology, such as ulcerative colitis and colorectal cancer. In addition, we report the development of a potent and highly selective allosteric MMP9 inhibitor, the humanized monoclonal antibody GS-5745, which can be used to evaluate the therapeutic potential of MMP9 inhibition in patients. PMID:25961845

  19. Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials.

    PubMed

    Coleman, C Norman; Higgins, Geoff S; Brown, J Martin; Baumann, Michael; Kirsch, David G; Willers, Henning; Prasanna, Pataje G S; Dewhirst, Mark W; Bernhard, Eric J; Ahmed, Mansoor M

    2016-07-01

    There is an urgent need to improve reproducibility and translatability of preclinical data to fully exploit opportunities for molecular therapeutics involving radiation and radiochemotherapy. For in vitro research, the clonogenic assay remains the current state-of-the-art of preclinical assays, whereas newer moderate and high-throughput assays offer the potential for rapid initial screening. Studies of radiation response modification by molecularly targeted agents can be improved using more physiologic 3D culture models. Elucidating effects on the cancer stem cells (CSC, and CSC-like) and developing biomarkers for defining targets and measuring responses are also important. In vivo studies are necessary to confirm in vitro findings, further define mechanism of action, and address immunomodulation and treatment-induced modification of the microenvironment. Newer in vivo models include genetically engineered and patient-derived xenograft mouse models and spontaneously occurring cancers in domesticated animals. Selection of appropriate endpoints is important for in vivo studies; for example, regrowth delay measures bulk tumor killing, whereas local tumor control assesses effects on CSCs. The reliability of individual assays requires standardization of procedures and cross-laboratory validation. Radiation modifiers must be tested as part of clinical standard of care, which includes radiochemotherapy for most tumors. Radiation models are compatible with but also differ from those used for drug screening. Furthermore, the mechanism of a drug as a chemotherapeutic agent may be different from its interaction with radiation and/or radiochemotherapy. This provides an opportunity to expand the use of molecular-targeted agents. Clin Cancer Res; 22(13); 3138-47. ©2016 AACR. PMID:27154913

  20. Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    NASA Astrophysics Data System (ADS)

    Nam, I. F.; Zhuk, V. V.

    2015-04-01

    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.

  1. Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies

    PubMed Central

    Ahluwalia, Manmeet; de Groot, John; Liu, Wei (Michael)

    2011-01-01

    Glioblastoma (GBM) is an extremely aggressive, infiltrative tumor with a poor prognosis. The regulatory approval of bevacizumab for recurrent GBM has confirmed that molecularly targeted agents have potential for GBM treatment. Preclinical data showing that SRC and SRC-family kinases (SFKs) mediate intracellular signaling pathways controlling key biologic/oncogenic processes provide a strong rationale for investigating SRC/SFK inhibitors, eg, dasatinib, in GBM and clinical studies are underway. The activity of these agents against solid tumors suggests that they may also be useful in treating brain metastases. This article reviews the potential for using SRC/SFK inhibitors to treat GBM and brain metastases. Word count =99/100 PMID:20947248

  2. Contribution of Large Pig for Renal Ischemia-Reperfusion and Transplantation Studies: The Preclinical Model

    PubMed Central

    Giraud, S.; Favreau, F.; Chatauret, N.; Thuillier, R.; Maiga, S.; Hauet, T.

    2011-01-01

    Animal experimentation is necessary to characterize human diseases and design adequate therapeutic interventions. In renal transplantation research, the limited number of in vitro models involves a crucial role for in vivo models and particularly for the porcine model. Pig and human kidneys are anatomically similar (characterized by multilobular structure in contrast to rodent and dog kidneys unilobular). The human proximity of porcine physiology and immune systems provides a basic knowledge of graft recovery and inflammatory physiopathology through in vivo studies. In addition, pig large body size allows surgical procedures similar to humans, repeated collections of peripheral blood or renal biopsies making pigs ideal for medical training and for the assessment of preclinical technologies. However, its size is also its main drawback implying expensive housing. Nevertheless, pig models are relevant alternatives to primate models, offering promising perspectives with developments of transgenic modulation and marginal donor models facilitating data extrapolation to human conditions. PMID:21403881

  3. Immune Competency of a Hairless Mouse Strain for Improved Preclinical Studies in Genetically-Engineered Mice

    PubMed Central

    Schaffer, Beverly S.; Grayson, Marcia H.; Wortham, Joy M.; Kubicek, Courtney B.; McCleish, Amanda T.; Prajapati, Suresh I.; Nelon, Laura D.; Brady, Michelle M.; Jung, Inkyung; Hosoyama, Tohru; Sarro, Leslea M.; Hanes, Martha A.; Rubin, Brian P.; Michalek, Joel E.; Clifford, Charles B.; Infante, Anthony J.; Keller, Charles

    2010-01-01

    Genetically-engineered mouse models (GEMMs) of cancer are of increasing value to preclinical therapeutics. Optical imaging is a cost-effective method of assessing deep-seated tumor growth in GEMMs whose tumors can be encoded to express luminescent or fluorescent reporters, although reporter signal attenuation would be improved if animals were fur-free. In this study, we sought to determine whether hereditable furlessness resulting from a hypomorphic mutation in the Hairless gene would or would not also affect immune competence. By assessment of humoral and cellular immunity of the SKH1 mouse line bearing the hypomorphic Hairless mutation, we determined that blood counts, immunoglobulin levels, and CD4+ and CD8+ T cells were comparable between SKH1 and the C57Bl/6 strain. On examination of T cell subsets, statistically significant differences in naïve T cells (1.7 vs. 3.4 × 105 cells/spleen in SKH1 vs. C57Bl/6, p=0.008) and memory T cells (1.4 vs. 0.13 × 106 cells/spleen in SKH1 vs. C57Bl/6, p=0.008) were detected. However, the numerical differences did not result in altered T cell functional response to antigen re-challenge (keyhole limpet hemocyanin) in a lymph node cell in vitro proliferative assay. Furthermore, interbreeding the SKH1 mouse line to a rhabdomyosarcoma GEMM demonstrated preserved anti-tumor responses of CD56+ Natural Killer cells and CD163+ macrophages, without any differences in tumor pathology. The fur-free GEMM was also especially amenable to multiplex optical imaging. Thus, SKH1 represents an immune competent, fur-free mouse strain which may be of use for interbreeding to other genetically-engineered mouse models of cancer for improved preclinical studies. PMID:20663932

  4. Simvastatin Hydroxy Acid Fails to Attain Sufficient Central Nervous System Tumor Exposure to Achieve a Cytotoxic Effect: Results of a Preclinical Cerebral Microdialysis Study.

    PubMed

    Patel, Yogesh T; Jacus, Megan O; Davis, Abigail D; Boulos, Nidal; Turner, David C; Vuppala, Pradeep K; Freeman, Burgess B; Gilbertson, Richard J; Stewart, Clinton F

    2016-04-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors were potent hits against a mouse ependymoma cell line, but their effectiveness against central nervous system tumors will depend on their ability to cross the blood-brain barrier and attain a sufficient exposure at the tumor. Among 3-hydroxy-3-methylglutaryl coenzyme A inhibitors that had activity in vitro, we prioritized simvastatin (SV) as the lead compound for preclinical pharmacokinetic studies based on its potential for central nervous system penetration as determined from in silico models. Furthermore, we performed systemic plasma disposition and cerebral microdialysis studies of SV (100 mg/kg, p.o.) in a murine model of ependymoma to characterize plasma and tumor extracellular fluid (tECF) pharmacokinetic properties. The murine dosage of SV (100 mg/kg, p.o.) was equivalent to the maximum tolerated dose in patients (7.5 mg/kg, p.o.) based on equivalent plasma exposure of simvastatin acid (SVA) between the two species. SV is rapidly metabolized in murine plasma with 15 times lower exposure compared with human plasma. SVA exposure in tECF was <33.8 ± 11.9 µg/l per hour, whereas the tumor to plasma partition coefficient of SVA was <0.084 ± 0.008. Compared with in vitro washout IC50 values, we did not achieve sufficient exposure of SVA in tECF to suggest tumor growth inhibition; therefore, SV was not carried forward in subsequent preclinical efficacy studies. PMID:26802130

  5. Developing a Measurement Tool for Assessing Physiotherapy Students' Self-Efficacy: A Pilot Study

    ERIC Educational Resources Information Center

    Jones, Anne; Sheppard, Lorraine

    2012-01-01

    The aim of this research was to determine if self-efficacy can be correlated with prior academic achievement and whether self-efficacy can be an outcome measure of education. A self-efficacy instrument was developed and administered to physiotherapy students following completion of their pre-clinical theory experience. The questionnaire results…

  6. Using Bayesian analysis in repeated preclinical in vivo studies for a more effective use of animals.

    PubMed

    Walley, Rosalind; Sherington, John; Rastrick, Joe; Detrait, Eric; Hanon, Etienne; Watt, Gillian

    2016-05-01

    Whilst innovative Bayesian approaches are increasingly used in clinical studies, in the preclinical area Bayesian methods appear to be rarely used in the reporting of pharmacology data. This is particularly surprising in the context of regularly repeated in vivo studies where there is a considerable amount of data from historical control groups, which has potential value. This paper describes our experience with introducing Bayesian analysis for such studies using a Bayesian meta-analytic predictive approach. This leads naturally either to an informative prior for a control group as part of a full Bayesian analysis of the next study or using a predictive distribution to replace a control group entirely. We use quality control charts to illustrate study-to-study variation to the scientists and describe informative priors in terms of their approximate effective numbers of animals. We describe two case studies of animal models: the lipopolysaccharide-induced cytokine release model used in inflammation and the novel object recognition model used to screen cognitive enhancers, both of which show the advantage of a Bayesian approach over the standard frequentist analysis. We conclude that using Bayesian methods in stable repeated in vivo studies can result in a more effective use of animals, either by reducing the total number of animals used or by increasing the precision of key treatment differences. This will lead to clearer results and supports the "3Rs initiative" to Refine, Reduce and Replace animals in research. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27028721

  7. Mouse Model for the Preclinical Study of Metastatic Disease | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Laboratory of Cancer Biology and Genetics, National Cancer Institute seeks partners for collaborative research to co-develop a mouse model that shows preclinical therapeutic response of residual metastatic disease.

  8. Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa

    PubMed Central

    Wert, Katherine J.; Sancho-Pelluz, Javier; Tsang, Stephen H.

    2014-01-01

    Deficiencies in rod-specific cyclic guanosine monophosphate (cGMP) phosphodiesterase-6 (PDE6) are the third most common cause of autosomal recessive retinitis pigmentosa (RP). Previously, viral gene therapy approaches on pre-clinical models with mutations in PDE6 have demonstrated that the photoreceptor cell survival and visual function can be rescued when the gene therapy virus is delivered into the subretinal space before the onset of disease. However, no studies have currently been published that analyze rescue effects after disease onset, a time when human RP patients are diagnosed by a clinician and would receive the treatment. We utilized the AAV2/8(Y733F)-Rho-Pde6α gene therapy virus and injected it into a pre-clinical model of RP with a mutation within the alpha subunit of PDE6: Pde6αD670G. These mice were previously shown to have long-term photoreceptor cell rescue when this gene therapy virus was delivered before the onset of disease. Now, we have determined that subretinal transduction of this rod-specific transgene at post-natal day (P) 21, when approximately half of the photoreceptor cells have undergone degeneration, is more efficient in rescuing cone than rod photoreceptor function long term. Therefore, AAV2/8(Y733F)-Rho-Pde6α is an effective gene therapy treatment that can be utilized in the clinical setting, in human patients who have lost portions of their peripheral visual field and are in the mid-stage of disease when they first present to an eye-care professional. PMID:24101599

  9. Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa.

    PubMed

    Wert, Katherine J; Sancho-Pelluz, Javier; Tsang, Stephen H

    2014-01-15

    Deficiencies in rod-specific cyclic guanosine monophosphate (cGMP) phosphodiesterase-6 (PDE6) are the third most common cause of autosomal recessive retinitis pigmentosa (RP). Previously, viral gene therapy approaches on pre-clinical models with mutations in PDE6 have demonstrated that the photoreceptor cell survival and visual function can be rescued when the gene therapy virus is delivered into the subretinal space before the onset of disease. However, no studies have currently been published that analyze rescue effects after disease onset, a time when human RP patients are diagnosed by a clinician and would receive the treatment. We utilized the AAV2/8(Y733F)-Rho-Pde6α gene therapy virus and injected it into a pre-clinical model of RP with a mutation within the alpha subunit of PDE6: Pde6α(D670G). These mice were previously shown to have long-term photoreceptor cell rescue when this gene therapy virus was delivered before the onset of disease. Now, we have determined that subretinal transduction of this rod-specific transgene at post-natal day (P) 21, when approximately half of the photoreceptor cells have undergone degeneration, is more efficient in rescuing cone than rod photoreceptor function long term. Therefore, AAV2/8(Y733F)-Rho-Pde6α is an effective gene therapy treatment that can be utilized in the clinical setting, in human patients who have lost portions of their peripheral visual field and are in the mid-stage of disease when they first present to an eye-care professional. PMID:24101599

  10. Exercise as a Potential Treatment for Drug Abuse: Evidence from Preclinical Studies

    PubMed Central

    Smith, Mark A.; Lynch, Wendy J.

    2012-01-01

    Epidemiological studies reveal that individuals who engage in regular aerobic exercise are less likely to use and abuse illicit drugs. Until recently, very few studies had examined the causal influences that mediate this relationship, and it was not clear whether exercise was effective at reducing substance use and abuse. In the past few years, several preclinical studies have revealed that exercise reduces drug self-administration in laboratory animals. These studies have revealed that exercise produces protective effects in procedures designed to model different transitional phases that occur during the development of, and recover from, a substance use disorder (e.g., acquisition, maintenance, escalation, and relapse/reinstatement of drug use). Moreover, recent studies have revealed several behavioral and neurobiological consequences of exercise that may be responsible for its protective effects in these assays. Collectively, these studies have provided convincing evidence to support the development of exercise-based interventions to reduce compulsive patterns of drug intake in clinical and at-risk populations. PMID:22347866

  11. [GOOD PLANNING PRACTICE IN PRECLINICAL AND CLINICAL STUDIES OF UNFRACTIONATED AND FRACTIONATED HEPARINS IN RUSSIA AS THE BASIS OF SAFE AND EFFECTIVE ANTICOAGULATION THERAPY].

    PubMed

    Gavrishina, E V; Dobrovolskii, A V; Niyazov, R R; Romodanovskii, D P; Vasil'ev, A N

    2015-01-01

    General principles of appropriate strategies for preclinical and clinical development of unfractionated and low-molecular-weight heparins and demonstration of their biosimilarity to corresponding reference medicinal products are provided. Demonstration of the biosimilarity of heparin-containing medicinal products constitutes the basis for their efficacy and safety during anticoagulation therapy. The main quality, safety, and efficacy characteristics of heparin products are described and the extent of non-clinical and clinical investigations necessary prior to drug marketing authorization are considered. PMID:27017700

  12. Preclinical Efficacy of N-Substituted Benztropine Analogs as Antagonists of Methamphetamine Self-Administration in Rats

    PubMed Central

    Hiranita, Takato; Kohut, Stephen J.; Soto, Paul L.; Tanda, Gianluigi; Kopajtic, Theresa A.

    2014-01-01

    Atypical dopamine-uptake inhibitors have low abuse potential and may serve as leads for development of cocaine-abuse treatments. Among them, the benztropine (BZT) derivatives, N-butyl (JHW007), N-allyl (AHN2-005), and N-methyl (AHN1-055) analogs of 3α-[bis(4′-fluorophenyl)methoxy]-tropane dose-dependently decreased cocaine self-administration without effects on food-maintained responding. Our study examined selectivity by assessing their effects on self-administration of other drugs. As with cocaine, each BZT analog (1.0–10.0 mg/kg i.p.) dose-dependently decreased maximal self-administration of d-methamphetamine (0.01–0.32 mg/kg/infusion) but was inactive against heroin (1.0–32.0 µg/kg/infusion) and ketamine (0.032–1.0 mg/kg/infusion) self-administration. Further, standard dopamine indirect-agonists [WIN35,428 ((−)-3β-(4-fluorophenyl)-tropan-2-β-carboxylic acid methyl ester tartrate), d-amphetamine (0.1–1.0 mg/kg i.p., each)] dose-dependently left-shifted self-administration dose-effect curves for d-methamphetamine, heroin, and ketamine. Noncompetitive NMDA-glutamate receptor/channel antagonists [(+)-MK-801 (0.01–0.1 mg/kg i.p.), memantine (1.0–10.0 mg/kg i.p.)] also left-shifted dose-effect curves for d-methamphetamine and ketamine (but not heroin) self-administration. The µ-agonists [dl-methadone and morphine (1.0–10.0 mg/kg i.p., each)] dose-dependently decreased maximal self-administration of µ-agonists (heroin, remifentanil) but not d-methamphetamine or ketamine self-administration. The µ-agonist-induced decreases were similar to the effects of BZT analogs on stimulant self-administration and effects of food prefeeding on responding maintained by food reinforcement. Radioligand-binding and behavioral studies suggested that inhibition of dopamine transporters and σ receptors were critical for blocking stimulant self-administration by BZT-analogs. Thus, the present results suggest that the effects of BZT analogs on stimulant self

  13. Preclinical efficacy of N-substituted benztropine analogs as antagonists of methamphetamine self-administration in rats.

    PubMed

    Hiranita, Takato; Kohut, Stephen J; Soto, Paul L; Tanda, Gianluigi; Kopajtic, Theresa A; Katz, Jonathan L

    2014-01-01

    Atypical dopamine-uptake inhibitors have low abuse potential and may serve as leads for development of cocaine-abuse treatments. Among them, the benztropine (BZT) derivatives, N-butyl (JHW007), N-allyl (AHN2-005), and N-methyl (AHN1-055) analogs of 3α-[bis(4'-fluorophenyl)methoxy]-tropane dose-dependently decreased cocaine self-administration without effects on food-maintained responding. Our study examined selectivity by assessing their effects on self-administration of other drugs. As with cocaine, each BZT analog (1.0-10.0 mg/kg i.p.) dose-dependently decreased maximal self-administration of d-methamphetamine (0.01-0.32 mg/kg/infusion) but was inactive against heroin (1.0-32.0 µg/kg/infusion) and ketamine (0.032-1.0 mg/kg/infusion) self-administration. Further, standard dopamine indirect-agonists [WIN35,428 ((-)-3β-(4-fluorophenyl)-tropan-2-β-carboxylic acid methyl ester tartrate), d-amphetamine (0.1-1.0 mg/kg i.p., each)] dose-dependently left-shifted self-administration dose-effect curves for d-methamphetamine, heroin, and ketamine. Noncompetitive NMDA-glutamate receptor/channel antagonists [(+)-MK-801 (0.01-0.1 mg/kg i.p.), memantine (1.0-10.0 mg/kg i.p.)] also left-shifted dose-effect curves for d-methamphetamine and ketamine (but not heroin) self-administration. The µ-agonists [dl-methadone and morphine (1.0-10.0 mg/kg i.p., each)] dose-dependently decreased maximal self-administration of µ-agonists (heroin, remifentanil) but not d-methamphetamine or ketamine self-administration. The µ-agonist-induced decreases were similar to the effects of BZT analogs on stimulant self-administration and effects of food prefeeding on responding maintained by food reinforcement. Radioligand-binding and behavioral studies suggested that inhibition of dopamine transporters and σ receptors were critical for blocking stimulant self-administration by BZT-analogs. Thus, the present results suggest that the effects of BZT analogs on stimulant self-administration are

  14. Integration of efficacy, pharmacokinetic and safety assessment of interleukin-1 receptor antagonist in a preclinical model of arthritis.

    PubMed

    Zuurmond, Anne-Marie; Koudijs, Angela; van El, Benno; Doornbos, Robert P; van Manen-Vernooij, Babs C T; Bastiaans, Jacqueline H M W; Penninks, André H; van Bilsen, Jolanda H M; Cnubben, Nicole H P; Degroot, Jeroen

    2011-04-01

    Pharmacokinetic properties and safety profile of a drug are likely influenced by the disease state of a patient. In this study, we investigated the influence of arthritic processes on pharmacokinetics and immunotoxicity of interleukin-1 receptor antagonist (Anakinra) in the rat adjuvant arthritis model. Anakinra dose-dependently suppressed joint inflammation and degradation as demonstrated by reduced clinical arthritis score, paw thickness, synovial infiltration and bone degradation. In addition, plasma levels of chemokines MCP-1 and GRO/KC were reduced. Pharmacokinetic behaviour of Anakinra was influenced by disease state of the rats as judged from a decrease in C(max) and an increase of the MRT as the disease progressed at a dose of 24 and 72 mg Anakinra/kg body weight. The pharmacokinetic parameters increased dose-dependently, but non-proportionally with increasing dose. Low level anti-Anakinra antibody formation was observed at prolonged exposure to the biologic. Safety parameters, including haematology, splenic lymphocyte subset analysis, ex vivo stimulation of spleen cells and histopathology of immune system organs were affected by the disease itself to such extent that no additional effects of Anakinra could be observed. In conclusion, we demonstrated that pharmacokinetic behaviour of Anakinra was influenced by the arthritis background of the rats resulting in decreased internal exposure. PMID:21300126

  15. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson's disease.

    PubMed

    Atack, John R; Shook, Brian C; Rassnick, Stefanie; Jackson, Paul F; Rhodes, Kenneth; Drinkenburg, Wilhelmus H; Ahnaou, Abdallah; Te Riele, Paula; Langlois, Xavier; Hrupka, Brian; De Haes, Patrick; Hendrickx, Herman; Aerts, Nancy; Hens, Koen; Wellens, Annemie; Vermeire, Jef; Megens, Anton A H P

    2014-10-15

    Adenosine A2A antagonists are believed to have therapeutic potential in the treatment of Parkinson's disease (PD). We have characterized the dual adenosine A2A/A1 receptor antagonist JNJ-40255293 (2-amino-8-[2-(4-morpholinyl)ethoxy]-4-phenyl-5H-indeno[1,2-d]pyrimidin-5-one). JNJ-40255293 was a high-affinity (7.5 nM) antagonist at the human A2A receptor with 7-fold in vitro selectivity versus the human A1 receptor. A similar A2A:A1 selectivity was seen in vivo (ED50's of 0.21 and 2.1 mg/kg p.o. for occupancy of rat brain A2A and A1 receptors, respectively). The plasma EC50 for occupancy of rat brain A2A receptors was 13 ng/mL. In sleep-wake encephalographic (EEG) studies, JNJ-40255293 dose-dependently enhanced a consolidated waking associated with a subsequent delayed compensatory sleep (minimum effective dose: 0.63 mg/kg p.o.). As measured by microdialysis, JNJ-40255293 did not affect dopamine and noradrenaline release in the prefrontal cortex and the striatum. However, it was able to reverse effects (catalepsy, hypolocomotion, and conditioned avoidance impairment in rats; hypolocomotion in mice) produced by the dopamine D2 antagonist haloperidol. The compound also potentiated the agitation induced by the dopamine agonist apomorphine. JNJ-40255293 also reversed hypolocomotion produced by the dopamine-depleting agent reserpine and potentiated the effects of l-dihydroxyphenylalanine (L-DOPA) in rats with unilateral 6-hydroxydopamine-induced lesions of the nigro-striatal pathway, an animal model of Parkinson's disease. Extrapolating from the rat receptor occupancy dose-response curve, the occupancy required to produce these various effects in rats was generally in the range of 60-90%. The findings support the continued research and development of A2A antagonists as potential treatments for PD. PMID:25203719

  16. CCD-camera-based diffuse optical tomography to study ischemic stroke in preclinical rat models

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jing; Niu, Haijing; Liu, Yueming; Su, Jianzhong; Liu, Hanli

    2011-02-01

    Stroke, due to ischemia or hemorrhage, is the neurological deficit of cerebrovasculature and is the third leading cause of death in the United States. More than 80 percent of stroke patients are ischemic stroke due to blockage of artery in the brain by thrombosis or arterial embolism. Hence, development of an imaging technique to image or monitor the cerebral ischemia and effect of anti-stoke therapy is more than necessary. Near infrared (NIR) optical tomographic technique has a great potential to be utilized as a non-invasive image tool (due to its low cost and portability) to image the embedded abnormal tissue, such as a dysfunctional area caused by ischemia. Moreover, NIR tomographic techniques have been successively demonstrated in the studies of cerebro-vascular hemodynamics and brain injury. As compared to a fiberbased diffuse optical tomographic system, a CCD-camera-based system is more suitable for pre-clinical animal studies due to its simpler setup and lower cost. In this study, we have utilized the CCD-camera-based technique to image the embedded inclusions based on tissue-phantom experimental data. Then, we are able to obtain good reconstructed images by two recently developed algorithms: (1) depth compensation algorithm (DCA) and (2) globally convergent method (GCM). In this study, we will demonstrate the volumetric tomographic reconstructed results taken from tissuephantom; the latter has a great potential to determine and monitor the effect of anti-stroke therapies.

  17. HDL and Atherosclerosis Regression: Evidence from Pre-clinical and Clinical Studies

    PubMed Central

    Feig, Jonathan E.; Hewing, Bernd; Smith, Jonathan D.; Hazen, Stanley L.; Fisher, Edward A.

    2014-01-01

    High density lipoprotein particles (HDL) transport, among other molecules, cholesterol (HDL-C). In epidemiologic studies, plasma HDL-C levels have an inverse relationship to the risk of atherosclerotic cardiovascular disease (CVD). It has been assumed that this reflects the protective functions of HDL, which include their ability to promote cholesterol efflux. Yet, a number of recent pharmacological and genetic studies have failed to demonstrate that increased plasma levels of HDL-C resulted in decreased CVD risk, giving rise to a controversy over whether plasma levels of HDL-C reflect HDL function, or that HDL is even as protective as assumed. On balance, the evidence from pre-clinical and (limited) clinical studies show that HDL can promote the regression of atherosclerosis when the levels of functional particles are increased from endogenous or exogenous sources. The data show that regression results from a combination of reduced plaque lipid and macrophage contents, as well as from a reduction in its inflammatory state. While more research will be needed on basic mechanisms and to establish that these changes translate clinically to reduced CVD events, that HDL can regress plaques suggests that the recent trial failures do not eliminate HDL from consideration as an atheroprotective agent, but emphasizes the important distinction between HDL function and plasma levels of HDL-C. PMID:24385513

  18. Preclinical Studies with Umbilical Cord Mesenchymal Stromal Cells in Different Animal Models for Muscular Dystrophy

    PubMed Central

    Zucconi, Eder; Vieira, Natassia Moreira; Bueno, Carlos Roberto; Secco, Mariane; Jazedje, Tatiana; Costa Valadares, Marcos; Fussae Suzuki, Miriam; Bartolini, Paolo; Vainzof, Mariz; Zatz, Mayana

    2011-01-01

    Umbilical cord mesenchymal stromal cells (MSC) have been widely investigated for cell-based therapy studies as an alternative source to bone marrow transplantation. Umbilical cord tissue is a rich source of MSCs with potential to derivate at least muscle, cartilage, fat, and bone cells in vitro. The possibility to replace the defective muscle cells using cell therapy is a promising approach for the treatment of progressive muscular dystrophies (PMDs), independently of the specific gene mutation. Therefore, preclinical studies in different models of muscular dystrophies are of utmost importance. The main objective of the present study is to evaluate if umbilical cord MSCs have the potential to reach and differentiate into muscle cells in vivo in two animal models of PMDs. In order to address this question we injected (1) human umbilical cord tissue (hUCT) MSCs into the caudal vein of SJL mice; (2) hUCT and canine umbilical cord vein (cUCV) MSCs intra-arterially in GRMD dogs. Our results here reported support the safety of the procedure and indicate that the injected cells could engraft in the host muscle in both animal models but could not differentiate into muscle cells. These observations may provide important information aiming future therapy for muscular dystrophies. PMID:21785565

  19. Benznidazole Extended-Release Tablets for Improved Treatment of Chagas Disease: Preclinical Pharmacokinetic Study.

    PubMed

    Davanço, Marcelo Gomes; Campos, Michel Leandro; Rosa, Talita Atanazio; Padilha, Elias Carvalho; Alzate, Alejandro Henao; Rolim, Larissa Araújo; Rolim-Neto, Pedro José; Peccinini, Rosângela Gonçalves

    2016-04-01

    Benznidazole (BNZ) is the first-line drug for the treatment of Chagas disease. The drug is available in the form of immediate-release tablets for 100-mg (adult) and 12.5-mg (pediatric) doses. The drug is administered two or three times daily for 60 days. The high frequency of daily administrations and the long period of treatment are factors that significantly contribute to the abandonment of therapy, affecting therapeutic success. Accordingly, this study aimed to evaluate the preclinical pharmacokinetics of BNZ administered as extended-release tablets (200-mg dose) formulated with different types of polymers (hydroxypropyl methylcellulose K4M and K100M), compared to the tablets currently available. The studies were conducted with rabbits, and BNZ quantification was performed in plasma and urine by ultraperformance liquid chromatography methods previously validated. The bioavailability of BNZ was adequate in the administration of extended-release tablets; however, with the administration of the pediatric tablet, the bioavailability was lower than with other tablets, which showed that the clinical use of this formulation should be monitored. The pharmacokinetic parameters demonstrated that the extended-release tablets prolonged drug release from the pharmaceutical matrix and provided an increase in the maintenance of the drug concentrationin vivo, which would allow the frequency of administration to be reduced. Thus, a relative bioavailability study in humans will be planned for implementation of a new product for the treatment of Chagas disease. PMID:26883698

  20. Reference values of clinical pathology parameters in cynomolgus monkeys (Macaca fascicularis) used in preclinical studies

    PubMed Central

    Park, Hyun-Kyu; Cho, Jae-Woo; Lee, Byoung-Seok; Park, Heejin; Han, Ji-Seok; Yang, Mi-Jin; Im, Wan-Jung; Park, Do-Yong; Kim, Woo-Jin; Han, Su-Cheol

    2016-01-01

    Nonhuman primates are increasingly used in biomedical research since they are highly homologous to humans compared to other rodent animals. However, there is limited reliable reference data of the clinical pathology parameters in cynomolgus monkeys, and in particular, only some coagulation and urinalysis parameters have been reported. Here, we reported the reference data of clinical chemical, hematological, blood coagulation, and urinalysis parameters in cynomolgus monkeys. The role of sex differences was analyzed and several parameters (including hematocrit, hemoglobin, red blood cell, blood urea nitrogen, total bilirubin, alkaline phosphatase, creatinine kinase, gamma-glutamyl tranferase, and lactate dehydrogenase) significantly differed between male and female subjects. In addition, compared to previous study results, lactate dehydrogenase, creatinine kinase, and aspartate aminotransferase showed significant variation. Interstudy differences could be affected by several factors, including age, sex, geographic origin, presence/absence of anesthetics, fasting state, and the analytical methods used. Therefore, it is important to deliberate with the overall reference indices. In conclusion, the current study provides a comprehensive and updated reference data of the clinical pathology parameters in cynomolgus monkeys and provides improved assessment criteria for evaluating preclinical studies or biomedical research. PMID:27382375

  1. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    PubMed

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201. PMID:27626799

  2. Preclinical Evaluation of Efficacy and Safety of an Improved Lentiviral Vector for the Treatment of β-Thalassemia and Sickle Cell Disease

    PubMed Central

    Negre, Olivier; Bartholomae, Cynthia; Beuzard, Yves; Cavazzana, Marina; Christiansen, Lauryn; Courne, Céline; Deichmann, Annette; Denaro, Maria; de Dreuzy, Edouard; Finer, Mitchell; Fronza, Raffaele; Béatrix, Gillet-Legrand; Joubert, Christophe; Kutner, Robert; Leboulch, Philippe; Maouche, Leïla; Paulard, Anaïs; Pierciey Jr., Francis J.; Rothe, Michael; Ryu, Byoung; Schmidt, Manfred; von Kalle, Christof; Payen, Emmanuel; Veres, Gabor

    2015-01-01

    A previously published clinical trial demonstrated the benefit of autologous CD34+ cells transduced with a self-inactivating lentiviral vector (HPV569) containing an engineered β-globin gene (βA-T87Q globin) in a subject with β-thalassemia major. This vector has been modified to increase transduction efficacy without compromising safety. In vitro analyses indicated that the changes resulted in both increased vector titers (3 to 4 fold) and increased transduction efficacy (2 to 3 fold). An in vivo study in which 58 β-thalassemic mice were transplanted with vector- or mock-transduced syngenic bone marrow cells indicated sustained therapeutic efficacy. Secondary transplantations involving 108 recipients were performed to evaluate long-term safety. The six month study showed no hematological or biochemical toxicity. Integration site (IS) profile revealed an oligo/polyclonal hematopoietic reconstitution in the primary transplants and reduced clonality in secondary transplants. Tumor cells were detected in the secondary transplant mice in all treatment groups (including the control group), without statistical differences in the tumor incidence. Immunohistochemistry and quantitative PCR demonstrated that tumor cells were not derived from transduced donor cells. This comprehensive efficacy and safety data provided the basis for initiating two clinical trials with this second generation vector (BB305) in Europe and in the USA in patients with β-thalassemia major and sickle cell disease. PMID:25429463

  3. Evaluation of the preclinical efficacy of four antivenoms, distributed in sub-Saharan Africa, to neutralize the venom of the carpet viper, Echis ocellatus, from Mali, Cameroon, and Nigeria.

    PubMed

    Sánchez, Laura V; Pla, Davinia; Herrera, María; Chippaux, Jean Philippe; Calvete, Juan J; Gutiérrez, José María

    2015-11-01

    Snakebite envenoming causes a heavy toll in sub-Saharan Africa in terms of mortality and sequelae. In the West African savannah, the viperid Echis ocellatus is responsible for the vast majority of bites. In the last decades, several new antivenoms have been introduced for the treatment of these envenomings, although the assessment of their preclinical efficacy against the venom of E. ocellatus has been studied only for some of them. This work analyzed comparatively the ability of four antivenoms (FAV Afrique, EchiTAb G, EchiTAB-Plus-ICP(®), and Inoserp™ Panafricain) to neutralize lethal, hemorrhagic, and in vitro coagulant activities of the venoms of E. ocellatus from Mali, Cameroon, and Nigeria. In addition, an immunoaffinity chromatography antivenomic protocol was used to assess the ability of the four antivenoms to bind to the proteins of these venoms. Results showed that all the antivenoms were effective in the neutralization of the three effects investigated, and were able to immunocapture, completely or partially, the most abundant components in the E. ocellatus venoms from the geographical origins sampled. Our observations also highlighted quantitative differences between antivenoms in their neutralizing and antivenomics profiles, especially regarding neutralization of in vitro coagulant activity, suggesting that different doses of these antivenoms are probably needed for an effective treatment of human envenomings by this species. PMID:26415904

  4. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies.

    PubMed

    Anker, Stefan D; Ponikowski, Piotr; Mitrovic, Veselin; Peacock, W Frank; Filippatos, Gerasimos

    2015-03-21

    The short- and long-term morbidity and mortality in acute heart failure is still unacceptably high. There is an unmet need for new therapy options with new drugs with a new mode of action. One of the drugs currently in clinical testing in Phase III is ularitide, which is the chemically synthesized form of the human natriuretic peptide urodilatin. Urodilatin is produced in humans by differential processing of pro-atrial natriuretic peptide in distal renal tubule cells. Physiologically, urodilatin appears to be the natriuretic peptide involved in sodium homeostasis. Ularitide exerts its pharmacological actions such as vasodilation, diuresis, and natriuresis through the natriuretic peptide receptor/particulate guanylate cyclase/cyclic guanosine monophosphate pathway. In animal models of heart failure as well as Phase I and II clinical studies in heart failure patients, ularitide demonstrated beneficial effects such as symptom relief and vasodilation, while still preserving renal function. Subsequently, the pivotal acute decompensated heart failure (ADHF) Phase III study, called TRUE-AHF, was started with the objectives to evaluate the effects of ularitide infusion on the clinical status and cardiovascular mortality of patients with ADHF compared with placebo. This review summarizes preclinical and clinical data supporting the potential use of ularitide in the treatment of ADHF. PMID:25670819

  5. Videotaped Feedback Method to Enhance Learning in Preclinical Operative Dentistry: An Experimental Study.

    PubMed

    Shah, Dipali Yogesh; Dadpe, Ashwini Manish; Kalra, Dheeraj Deepak; Garcha, Vikram P

    2015-12-01

    The aim of this study was to investigate if a videotaped feedback method enhanced teaching and learning outcomes in a preclinical operative laboratory setting for novice learners. In 2013, 60 dental students at a dental school in India were randomly assigned to two groups: control (n=30) and experimental (n=30). The control group prepared a Class II tooth preparation for amalgam after receiving a video demonstration of the exercise. The experimental group received the same video demonstration as the control group, but they also participated in a discussion and analysis of the control groups' videotaped performance and then performed the same exercise. The self-evaluation scores (SS) and examiner evaluation scores (ES) of the two groups were compared using the unpaired t-test. The experimental group also used a five-point Likert scale to rate each item on the feedback form. The means of SS (13.65±2.43) and ES (14.75±1.97) of the experimental group were statistically higher than the means of SS (11.55±2.09) and ES (11.60±1.82) of the control group. Most students in the experimental group perceived that this technique enhanced their learning experience. Within the limits of this study, the videotaped feedback using both ideal and non-ideal examples enhanced the students' performance. PMID:26632301

  6. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans.

    PubMed

    Mager, Donald E; Woo, Sukyung; Jusko, William J

    2009-01-01

    An important feature of mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) models is the identification of drug- and system-specific factors that determine the intensity and time-course of pharmacological effects. This provides an opportunity to integrate information obtained from in vitro bioassays and preclinical pharmacological studies in animals to anticipate the clinical and adverse responses to drugs in humans. The fact that contemporary PK/PD modeling continues to evolve and seeks to emulate systems level properties should provide enhanced capabilities to scale-up pharmacodynamic data. Critical steps in drug discovery and development, such as lead compound and first in human dose selection, may become more efficient with the implementation and further refinement of translational PK/PD modeling. In this review, we highlight fundamental principles in pharmacodynamics and the basic expectations for in vitro bioassays and traditional allometric scaling in PK/PD modeling. Discussion of PK/PD modeling efforts for recombinant human erythropoietin is also included as a case study showing the potential for advanced systems analysis to facilitate extrapolations and improve understanding of inter-species differences in drug responses. PMID:19252333

  7. Creative Self-Efficacy: An Intervention Study

    ERIC Educational Resources Information Center

    Mathisen, Gro Ellen; Bronnick, Kolbjorn S.

    2009-01-01

    This study examined the effects of creativity training on creative self-efficacy. We developed a creativity course based on social cognitive theory. The course was conducted in two formats: a five-day course and a condensed one-day course. Samples consisted of students and municipality employees (five-day course), and special education teachers…

  8. Preclinical endodontic teaching

    PubMed Central

    Narayanaraopeta, Udaya; AlShwaimi, Emad

    2015-01-01

    Objectives: To provide an overview of the general curricula in preclinical endodontic training from 6 established dental schools in Saudi Arabia. Methods: This study was conducted in January 2014 including only schools that had more than 2 groups of student graduates prior to the study. We included 2 dental schools from the Central region, one from Qassim region, one from the Makkah region (west), one from Abha region (south west), and one from the eastern region. An internet-based questionnaire was sent to the course directors of preclinical endodontics department of the 6 schools. The survey comprised 20 questions that examined various aspects of preclinical endodontics. Results: It was demonstrated that a significant number of faculty members had Doctor of Philosophy (PhD) degrees (n=21), Master’s degrees (n=15), and Saudi board certifications (n=8). We determined that the faculty to student ratio varied from 2:1 to 8: 1 among the colleges. The participating dental schools were found to teach the Step Back, as well as the Step Down techniques for root canal preparation. Five of the 6 schools implemented the use of nickel titanium rotary instruments. All dental schools predominantly used radiographs as the means of the working length determination. Conclusion: The curriculum for preclinical endodontics in Saudi Arabia is comparable to that followed in most European countries. A more comprehensive survey is needed that would involve more schools to formulate generalized guidelines for preclinical endodontic training in Saudi Arabia. PMID:25630011

  9. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies.

    PubMed

    Aronowski, Jaroslaw; Hall, Christiana E

    2005-04-01

    Intracerebral hemorrhage (ICH) remains a major medical problem, for which there is no effective treatment. However, extensive experimental and clinical research carried out in recent years has brought to light new exciting ideas for novel potential treatments. First, it was well documented that the management of hypertension helps to prevent new and recurrent ICH. Also, development of new guidelines for management of hypertension after the onset of the ICH may help in more effective ICH treatment. Existing contemporary data collected from preclinical studies indicates that ICH-induced inflammation represents a key factor leading to secondary brain damage, suggesting that some anti-inflammatory approaches can be used to treat hemorrhagic stroke. In this article, beyond discussing implications related to hypertension, we will summarize important (but not all) new discoveries connecting the role of inflammation to ICH pathology. Selected aspects of inflammatory response including the role of cytokines, transcription factor nuclear factor-kB, microglia activation, astrogliosis, and complement activation will be introduced. We will also discuss the role for reactive oxygen species and metalloproteinases in ICH pathogenesis and introduce basic knowledge on the nature of ICH-induced cell death including apoptosis. Potential targets for intervention and translation will be discussed. PMID:15845210

  10. Autosomal Dominant Alzheimer Disease: A Unique Resource to Study CSF Biomarker Changes in Preclinical AD

    PubMed Central

    Schindler, Suzanne Elizabeth; Fagan, Anne M.

    2015-01-01

    Our understanding of the pathogenesis of Alzheimer disease (AD) has been greatly influenced by investigation of rare families with autosomal dominant mutations that cause early onset AD. Mutations in the genes coding for amyloid precursor protein (APP), presenilin 1 (PSEN-1), and presenilin 2 (PSEN-2) cause over-production of the amyloid-β peptide (Aβ) leading to early deposition of Aβ in the brain, which in turn is hypothesized to initiate a cascade of processes, resulting in neuronal death, cognitive decline, and eventual dementia. Studies of cerebrospinal fluid (CSF) from individuals with the common form of AD, late-onset AD (LOAD), have revealed that low CSF Aβ42 and high CSF tau are associated with AD brain pathology. Herein, we review the literature on CSF biomarkers in autosomal dominant AD (ADAD), which has contributed to a detailed road map of AD pathogenesis, especially during the preclinical period, prior to the appearance of any cognitive symptoms. Current drug trials are also taking advantage of the unique characteristics of ADAD and utilizing CSF biomarkers to accelerate development of effective therapies for AD. PMID:26175713

  11. Computed tomography-based rigidity analysis: a review of the approach in preclinical and clinical studies

    PubMed Central

    Villa-Camacho, Juan C; Iyoha-Bello, Otatade; Behrouzi, Shohreh; Snyder, Brian D; Nazarian, Ara

    2014-01-01

    The assessment of fracture risk in patients afflicted with osseous neoplasms has long presented a problem for orthopedic oncologists. These patients are at risk for developing pathologic fractures through lytic defects in the appendicular and axial skeleton with devastating consequences on their quality of life. Lesions with a high risk of fracture may require prophylactic surgical stabilization, whereas low-risk lesions can be treated conservatively. Therefore, effective prevention of pathologic fractures depends on accurate assessment of fracture risk and is a critical step to avoid debilitating complications. Given the complex nature of osseous neoplasms, treatment requires a multidisciplinary approach; yet, little consensus regarding fracture risk assessment exists among physicians involved in the care of these patients. In order to improve the overall standard of care, specific criteria must be adopted to formulate consistent and accurate fracture risk predictions. However, clinicians make subjective assessments about fracture risk on plain radiographs using guidelines now recognized to be inaccurate. Osseous neoplasms alter both the material and geometric properties of bone; failure to account for changes in both of these parameters limits the accuracy of current fracture risk assessments. Rigidity, the capacity to resist deformation upon loading, is a structural property that integrates both the material and geometric properties of bone. Therefore, rigidity can be used as a mechanical assay of the changes induced by lytic lesions to the structural competency of bone. Using this principle, computed tomography (CT)-based structural rigidity analysis (CTRA) was developed and validated in a series of preclinical and clinical studies. PMID:25396051

  12. A New Mini-External Fixator for Treating Hallux Valgus: A Preclinical, Biomechanical Study.

    PubMed

    Erdil, Mehmet; Ceylan, Hasan Huseyin; Polat, Gokhan; Kara, Deniz; Bozdag, Ergun; Sunbuloglu, Emin

    2016-01-01

    Proximal metatarsal osteotomy is the most effective technique for correcting hallux valgus deformities, especially in metatarsus primus varus. However, these surgeries are technically demanding and prone to complications, such as nonunion, implant failure, and unexpected extension of the osteotomy to the tarsometatarsal joint. In a preclinical study, we evaluated the biomechanical properties of the fixator and compared it with compression screws for treating hallux valgus with a proximal metatarsal osteotomy. Of 18 metatarsal composite bone models proximally osteotomized, 9 were fixed with a headless compression screw and 9 with the mini-external fixator. A dorsal angulation of 10° and displacement of 10 mm were defined as the failure threshold values. Construct stiffness and the amount of interfragmentary angulation were calculated at various load cycles. All screw models failed before completing 1000 load cycles. In the fixator group, only 2 of 9 models (22.2%) failed before 1000 cycles, both between the 600th and 700th load cycles. The stability of fixation differed significantly between the groups (p < .001). The stability provided by the mini-external fixator was superior to that of compression screw fixation. Additional testing of the fixator is indicated. PMID:26190777

  13. A Patient-Derived Xenograft Model of Parameningeal Embryonal Rhabdomyosarcoma for Preclinical Studies

    PubMed Central

    Hooper, Jody E.; Cantor, Emma L.; Ehlen, Macgregor S.; Banerjee, Avirup; Malempati, Suman; Stenzel, Peter; Woltjer, Randy L.; Gandour-Edwards, Regina; Goodwin, Neal C.; Yang, Yan; Kaur, Pali; Bult, Carol J.; Airhart, Susan D.; Keller, Charles

    2015-01-01

    Embryonal rhabdomyosarcoma (eRMS) is one of the most common soft tissue sarcomas in children and adolescents. Parameningeal eRMS is a variant that is often more difficult to treat than eRMS occurring at other sites. A 14-year-old female with persistent headaches and rapid weight loss was diagnosed with parameningeal eRMS. She progressed and died despite chemotherapy with vincristine, actinomycin-D, and cyclophosphamide plus 50.4 Gy radiation therapy to the primary tumor site. Tumor specimens were acquired by rapid autopsy and tumor tissue was transplanted into immunodeficient mice to create a patient-derived xenograft (PDX) animal model. As autopsy specimens had an ALK R1181C mutation, PDX tumor bearing animals were treated with the pan-kinase inhibitor lestaurtinib but demonstrated no decrease in tumor growth, suggesting that single agent kinase inhibitor therapy may be insufficient in similar cases. This unique parameningeal eRMS PDX model is publicly available for preclinical study. PMID:26696773

  14. Preclinical animal study and clinical trail of modified extraoral craniofacial implants.

    PubMed

    Petrovic, L; Schlegel, K A; Wiltfang, J; Neukam, F W; Rupprecht, S

    2007-01-01

    We report on our experience using a new endosseous implant designed to provide sufficient retention to various types of facial prostheses. In a preclinical animal experiment implants (N=12, 4 x 3.5 mm) were placed in the frontal calvarial region of nine adult pigs. The animals were sacrificed at 2, 4 and 8 weeks to evaluate the implant incorporation microradiographically. The clinical outcome and patient satisfaction of implant-retained prostheses were evaluated in a group of 10 patients with facial defects by using clinical assessment and standardized questionnaires for patients and relatives. In the prospective clinical study 33 identical modified implants for extraoral anchorage were placed for the fixation of various prostheses in the midfacial (eye, nose) and ear regions in the course of a clinical trial and observed over a follow-up period of 34 months. The bone-implant contact in the animal experiment reached 31% (+/-2) at 2 weeks, 39% (+/-1) after 4 weeks and 51% (+/-5) at 8 weeks. In the clinical trial, no implants were lost and all implants remained osseointegrated as confirmed clinically and radiographically, providing a stable prosthetic restoration. The analysis of the questionnaire indicates an improvement of the quality of life of patients with respect to aesthetic and psychological well-being. The results demonstrate that extraoral implants not only achieve sufficient osseointegration but also show good clinical handling and easy fixation possibilities for prosthetic anchorage. PMID:17392045

  15. Meta-Analysis and Systematic Review of Neural Stem Cells therapy for experimental ischemia stroke in preclinical studies

    PubMed Central

    Chen, Lukui; Zhang, Guilong; Gu, Yuchun; Guo, Xiaoyuan

    2016-01-01

    To evaluate the preclinical studies using NSCs transplantation therapy for experimental ischemic stroke, and determine the effect size of NSCs therapy and the correlations between different clinical measures. We firstly searched literatures to identify studies of NSCs therapy in animal cerebral ischemia models, and then calculated the quality score of studies, assessed the effect size of NSCs therapy relative to behavioral and histologic endpoints by meta-analysis. A total of 37 studies and 54 independent treated interventions were used for systematic review and meta-analysis. The median quality score was 5 of 10. 36 studies (53 intervention arms) reported functional outcome, 22 studies (34 intervention arms) reported structural outcome. After adjusted by subgroup and sensitivity analysis, the mean effect sizes were improved by 1.35 for mNSS, 1.84 for rotarod test, 0.61 for cylinder test, and 0.84 for infarct volume. Furthermore, effect size had a certain interaction with clinical variables, for example early NSCs therapy etc. In this preclinical studies, we demonstrated that transplanted NSCs significantly improved outcomes (both functional and structural outcome) in ischemic stroke. It is suggested that future preclinical animal model studies of stroke should improve study quality validity and reduce potentially confounded publication bias. PMID:27554433

  16. Designing More Efficient Preclinical Experiments: A Simulation Study in Chemotherapy-Induced Myelosupression.

    PubMed

    Martin, Emma C; Aarons, Leon; Yates, James W T

    2016-03-01

    A new more efficient preclinical study design (referred to as a compact design) is proposed that removes the need for satellite animals for the collection of toxicokinetic (TK) data by sampling from the main study animals, taking no more than one sample in 24 h to build up a full profile over the course of the study. The compact design's performance was tested with a simulation study, using an example of chemotherapy-induced myelosupression in rats. Data sets were simulated from a model based on available data, following both the compact design and a traditional design using satellite animals, with 100 studies being simulated for each. The effect of the compact design on parameter and variance estimates for the TK and neutrophil models were investigated, as well as the potential effect of interoccasion variability (IOV). The compact design performed equally as well as the traditional design, and had little impact on parameter or variation estimates, indicating that it would be a suitable alternative to traditional satellite designs while reducing the number of animals required. When IOV was present but not accounted for during the TK analysis some parameter estimates were biased and interindividual variation and residual errors inflated; this was reduced by allowing for IOV in the analysis. Using the compact design removes the need for a satellite group, reducing the number of animals required, without affecting the ability to model the data. If large IOV is suspected, caution should be exercised to avoid parameter estimation bias, and inflation of variability and residual error. PMID:26678701

  17. Stem Cell Therapies for Knee Cartilage Repair: The Current Status of Preclinical and Clinical Studies

    PubMed Central

    Anderson, John A.; Little, Dianne; Toth, Alison P.; Moorman, Claude T.; Tucker, Bradford S.; Ciccotti, Michael G.; Guilak, Farshid

    2014-01-01

    Background Articular cartilage damage of the knee is common, causing significant morbidity worldwide. Many adult tissues contain cells that are able to differentiate into multiple cell types, including chondrocytes. These stem cells have gained significant attention over the past decade and may become frontline management for cartilage defects in the very near future. Purpose The role of stem cells in the treatment of knee osteochondral defects was reviewed. Recent animal and clinical studies were reviewed to determine the benefits and potential outcomes of using stem cells for cartilage defects. Study Design Literature review. Methods A PubMed search was undertaken. The key phrase “stem cells and knee” was used. The search included reviews and original articles over an unlimited time period. From this search, articles outlining animal and clinical trials were selected. A search of current clinical trials in progress was performed on the clinicaltrials.gov website, and “stem cells and knee” was used as the search phrase. Results Stem cells have been used in many recent in vitro and animal studies. A number of cell-based approaches for cartilage repair have progressed from preclinical animal studies into clinical trials. Conclusion The use of stem cells for the treatment of cartilage defects is increasing in animal and clinical studies. Methods of delivery of stem cells to the knee’s cartilage vary from direct injection to implantation with scaffolds. While these approaches are highly promising, there is currently limited evidence of a direct clinical benefit, and further research is required to assess the overall outcome of stem cell therapies for knee cartilage repair. PMID:24220016

  18. Designing More Efficient Preclinical Experiments: A Simulation Study in Chemotherapy-Induced Myelosupression

    PubMed Central

    Martin, Emma C.; Aarons, Leon; Yates, James W. T.

    2016-01-01

    A new more efficient preclinical study design (referred to as a compact design) is proposed that removes the need for satellite animals for the collection of toxicokinetic (TK) data by sampling from the main study animals, taking no more than one sample in 24 h to build up a full profile over the course of the study. The compact design’s performance was tested with a simulation study, using an example of chemotherapy-induced myelosupression in rats. Data sets were simulated from a model based on available data, following both the compact design and a traditional design using satellite animals, with 100 studies being simulated for each. The effect of the compact design on parameter and variance estimates for the TK and neutrophil models were investigated, as well as the potential effect of interoccasion variability (IOV). The compact design performed equally as well as the traditional design, and had little impact on parameter or variation estimates, indicating that it would be a suitable alternative to traditional satellite designs while reducing the number of animals required. When IOV was present but not accounted for during the TK analysis some parameter estimates were biased and interindividual variation and residual errors inflated; this was reduced by allowing for IOV in the analysis. Using the compact design removes the need for a satellite group, reducing the number of animals required, without affecting the ability to model the data. If large IOV is suspected, caution should be exercised to avoid parameter estimation bias, and inflation of variability and residual error. PMID:26678701

  19. Discovery and Preclinical Evaluation of BMS-711939, an Oxybenzylglycine Based PPARα Selective Agonist.

    PubMed

    Shi, Yan; Li, Jun; Kennedy, Lawrence J; Tao, Shiwei; Hernández, Andrés S; Lai, Zhi; Chen, Sean; Wong, Henry; Zhu, Juliang; Trehan, Ashok; Lim, Ngiap-Kie; Zhang, Huiping; Chen, Bang-Chi; Locke, Kenneth T; O'Malley, Kevin M; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K; Cap, Michael; Muckelbauer, Jodi; Chang, Chiehying; Krystek, Stanley R; Li, Yi-Xin; Hosagrahara, Vinayak; Zhang, Lisa; Kadiyala, Pathanjali; Xu, Carrie; Blanar, Michael A; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T W; Tino, Joseph A

    2016-06-01

    BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 μM) and PPARδ (EC50 > 100 μM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation. The synthesis, structure-activity relationship (SAR) studies, and in vivo pharmacology of 3 in preclinical animal models as well as its ADME profile are described. PMID:27326332

  20. HD047703, a New Promising Anti-Diabetic Drug Candidate: In Vivo Preclinical Studies

    PubMed Central

    Kim, SoRa; Kim, Dae Hoon; Kim, Young-Seok; Ha, Tae-Young; Yang, Jin; Park, Soo Hyun; Jeong, Kwang Won; Rhee, Jae-Keol

    2014-01-01

    G-protein coupled receptor 119 (GPR119) has emerged as a novel target for the treatment of type 2 diabetes mellitus. GPR119 is involved in glucose-stimulated insulin secretion (GSIS) from the pancreatic β-cells and intestinal cells. In this study, we identified a novel small-molecule GPR119 agonist, HD047703, which raises intracellular cAMP concentrations in pancreatic β-cells and can be expected to potentiate glucose-stimulated insulin secretion from human GPR119 receptor stably expressing cells (CHO cells). We evaluated the acute efficacy of HD047703 by the oral glucose tolerance test (OGTT) in normal C57BL/6J mice. Then, chronic administrations of HD047703 were performed to determine its efficacy in various diabetic rodent models. Single administration of HD047703 caused improved glycemic control during OGTT in a dose-dependent manner in normal mice, and the plasma GLP-1 level was also increased. With respect to chronic efficacy, we observed a decline in blood glucose levels in db/db, ob/ob and DIO mice. These results suggest that HD047703 may be a potentially promising anti-diabetic agent. PMID:25414769

  1. Timing of Decompressive Surgery of Spinal Cord after Traumatic Spinal Cord Injury: An Evidence-Based Examination of Pre-Clinical and Clinical Studies

    PubMed Central

    Furlan, Julio C.; Noonan, Vanessa; Cadotte, David W.

    2011-01-01

    Abstract While the recommendations for spine surgery in specific cases of acute traumatic spinal cord injury (SCI) are well recognized, there is considerable uncertainty regarding the role of the timing of surgical decompression of the spinal cord in the management of patients with SCI. Given this, we sought to critically review the literature regarding the pre-clinical and clinical evidence on the potential impact of timing of surgical decompression of the spinal cord on outcomes after traumatic SCI. The primary literature search was performed using MEDLINE, CINAHL, EMBASE, and Cochrane databases. A secondary search strategy incorporated articles referenced in prior meta-analyses and systematic and nonsystematic review articles. Two reviewers independently assessed every study with regard to eligibility, level of evidence, and study quality. Of 198 abstracts of pre-clinical studies, 19 experimental studies using animal SCI models fulfilled our inclusion and exclusion criteria. Despite some discrepancies in the results of those pre-clinical studies, there is evidence for a biological rationale to support early decompression of the spinal cord. Of 153 abstracts of clinical studies, 22 fulfilled the inclusion and exclusion criteria. While the vast majority of the clinical studies were level-4 evidence, there were two studies of level-2b evidence. The quality assessment scores varied from 7 to 25 with a mean value of 12.41. While 2 of 22 clinical studies assessed feasibility and safety, 20 clinical studies examined efficacy of early surgical intervention to stabilize and align the spine and to decompress the spinal cord; the most common definitions of early operation used 24 and 72 h after SCI as timelines. A number of studies indicated that patients who undergo early surgical decompression can have similar outcomes to patients who received a delayed decompressive operation. However, there is evidence to suggest that early surgical intervention is safe and feasible

  2. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments

    NASA Astrophysics Data System (ADS)

    Dawidczyk, Charlene; Russell, Luisa; Searson, Peter

    2014-08-01

    The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics and tumor accumulation. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field.

  3. A quantitative histological study of early clinical and preclinical Alzheimer's disease.

    PubMed

    Hubbard, B M; Fenton, G W; Anderson, J M

    1990-04-01

    Brains from 70 unselected general hospital necropsy cases aged 60-95 years were surveyed histologically for changes of Alzheimer's disease using Congo Red-Gallocyanin preparations. Counts were made of neurofibrillary tangles in two areas of the neocortex, the hippocampal formation and the substantia innominata. Neurons were counted in the subiculum of the hippocampus, the substantia innominata and the locus coeruleus. In addition, a retrospective enquiry was made concerning the mental health of the patients in the study; cognitive performance was graded on the Global Deterioration Scale (GDS 1-7). Four cases (5.7%) had clinical and pathological changes amounting to early Alzheimer's disease. Tangles were very numerous in all areas and there was a 30% deficit or more of neurons in at least two of the structures counted. Although the diagnosis of Alzheimer's disease was not recorded during life, all had shown signs of early cognitive decline (GDS grades 3-6). A further six cases (8.6%) showed excessive tangle accumulation which may represent preclinical Alzheimer's disease. Tangles were present in the temporal neocortex (Brodmann area 22), whereas they were absent in the remainder of the survey. Tangle density in the hippocampal formation (greater than 50 tangles in a 10 microns section) was also above the baseline level of the majority of cases. However, neuron loss was not widespread in these cases and none had shown evidence of cognitive impairment. The findings confirm that the early stages of Alzheimer's disease commonly occur amongst general hospital necropsies. The emergence of clinical signs of dementia appears to be related to the loss of a critical volume of neurons and not to tangle accumulation alone. PMID:2345598

  4. Tissue Damage in the Canine Normal Esophagus by Photoactivation with Talaporfin Sodium (Laserphyrin): A Preclinical Study

    PubMed Central

    Horimatsu, Takahiro; Muto, Manabu; Yoda, Yusuke; Yano, Tomonori; Ezoe, Yasumasa; Miyamoto, Shinichi; Chiba, Tsutomu

    2012-01-01

    Background Treatment failure at the primary site after chemoradiotherapy is a major problem in achieving a complete response. Photodynamic therapy (PDT) with porfimer sodium (Photofrin®) has some problems such as the requirement for shielding from light for several weeks and a high incidence of skin phototoxicity. PDT with talaporfin sodium (Laserphyrin) is less toxic and is expected to have a better effect compared with Photofrin PDT. However, Laserphyrin PDT is not approved for use in the esophagus. In this preclinical study, we investigated tissue damage of the canine normal esophagus caused by photoactivation with Laserphyrin. Methodology/Principal Findings Diode laser irradiation was performed at 60 min after administration. An area 5 cm oral to the esophagogastric junction was irradiated at 25 J/cm2, 50 J/cm2, and 100 J/cm2 using a three-step escalation. The irradiated areas were evaluated endoscopically on postirradiation days 1 and 7, and were subjected to histological examination after autopsy. The areas injured by photoactivation were 52 mm2, 498 mm2, and 831 mm2 after irradiation at 25 J/cm2, 50 J/cm2, and 100 J/cm2, respectively. Tissue injury was observed in the muscle layer or even deeper at any irradiation level and became more severe as the irradiation dose increased. At 100 J/cm2 both inflammatory changes and necrosis were seen histologically in extra-adventitial tissue. Conclusions/Significance To minimize injury of the normal esophagus by photoactivation with Laserphyrin, diode laser irradiation at 25 J/cm2 appears to be safe. For human application, it would be desirable to investigate the optimal laser dose starting from this level. PMID:22719875

  5. Correlates of preclinical cardiovascular disease in Indigenous and Non-Indigenous Australians: a case control study

    PubMed Central

    Haluska, Brian A; Chan, Lionel; Jeffriess, Leanne; Shaw, A Andrew; Shaw, Joanne; Marwick, Thomas H

    2008-01-01

    Background The high frequency of premature death from cardiovascular disease in indigenous Australians is often attributed to the high prevalence of risk factors, especially type II diabetes mellitus (DM). We evaluated the relationship of ethnicity to atherosclerotic burden, as evidenced by carotid intima-media thickness (IMT), independent of risk factor status. Methods We studied 227 subjects (147 men; 50 ± 13 y): 119 indigenous subjects with (IDM, n = 54), and without DM (InDM, n = 65), 108 Caucasian subjects with (CDM, n = 52), and without DM (CnDM, n = 56). IMT was measured according to standard methods and compared with clinical data and cardiovascular risk factors. Results In subjects both with and without DM, IMT was significantly greater in indigenous subjects. There were no significant differences in gender, body mass index (BMI), systolic blood pressure (SBP), or diastolic blood pressure (DBP) between any of the groups, and subjects with DM showed no difference in plasma HbA1c. Cardiovascular risk factors were significantly more prevalent in indigenous subjects. Nonetheless, ethnicity (β = -0.34; p < 0.0001), age (β = 0.48; p < 0.0001), and smoking (β = 0.13; p < 0.007) were independent predictors of IMT in multiple linear regression models. Conclusion Ethnicity appears to be an independent correlate of preclinical cardiovascular disease, even after correction for the high prevalence of cardiovascular risk factors in indigenous Australians. Standard approaches to control currently known risk factors are vital to reduce the burden of cardiovascular disease, but in themselves may be insufficient to fully address the high prevalence in this population. PMID:18627637

  6. Irinotecan delivery by microbubble-assisted ultrasound - A pilot preclinical study

    NASA Astrophysics Data System (ADS)

    Escoffre, Jean-Michel; Novell, Anthony; Serrière, Sophie; Bouakaz, Ayache

    2012-11-01

    Irinotecan is conventionally used for the treatment of colorectal cancer. However, its administration is associated with severe side effects. Targeted drug delivery using ultrasound (US) combined with microbubbles offers new opportunities to increase the therapeutic effectiveness of antitumor treatment and to reduce toxic exposure to healthy tissues. The objective of this study is to investigate the safety and efficacy of in-vivo delivery of irinotecan by microbubble-assisted US in human glioblastoma model (U-87 MG). In order to validate the potential of this new method in-vivo, subcutaneous tumors were implanted in the flank of nude mouse and treated when they reached a volume of 100 mm3. In the first study, the measured volumes with caliper and anatomic ultrasound imaging were compared for the monitoring and the quantification of tumor growth during 27 days. Ultrasound imaging measurements were positively correlated to caliper measurements. The tumor treatment consisted of an i.v. injection of irinotecan (20 mg/kg) followed one hour later by i.v. administration of MM1 microbubble and an US insonation using a single-element transducer operating at 1MHz (400 kPa, 10 kHz PRF 40% DC, 3 min). The therapeutic efficacy was evaluated for 39 days by measuring the tumor volume before and after treatment using a caliper and based on ultrasound images using an 18 MHz probe (Vevo 2100). Our results showed that anatomical ultrasound imaging was as efficient as caliper for the monitoring and the quantification of tumor growth. Moreover, irinotecan delivery by sonoporation induced a significant decrease of glioblastoma tumor volume and an increase of tumor-doubling time compared to the tumor treated by irinotecan alone. In conclusion, this novel therapeutic approach has promising features since it can be used to reduce the injected drug dose and to achieve a better therapeutic efficacy.

  7. Pharmacological treatment of idiopathic pulmonary fibrosis – preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine

    PubMed Central

    Myllärniemi, Marjukka; Kaarteenaho, Riitta

    2015-01-01

    Three recent clinical trials on the pharmacologic treatment of idiopathic pulmonary fibrosis (IPF) mark a new chapter in the management of patients suffering from this very severe fibrotic lung disease. This review article summarizes the published investigations on the preclinical studies of three novel IPF drugs, namely pirfenidone, nintedanib, and N-acetylcysteine (NAC). In addition, the study protocols, differences, and the main findings in the recent clinical trials of these pharmacological treatments are reviewed. The strategy for drug development and the timeline from the discovery to the clinical use have been very different in these regimens. Pirfenidone was discovered in 1976 but only recently received approval in most countries, and even now its exact mechanism of action is unknown. On the contrary, nintedanib (BIBF1120) was identified in large drug screening tests as a very specific inhibitor of certain tyrosine kinases, but no published data on preclinical tests existed until 2014. NAC, a mucolytic drug with an antioxidant mechanism of action was claimed to possess distinct antifibrotic properties in several experimental models but proved to be ineffective in a recent randomized placebo-controlled trial. At present, no curative treatment is available for IPF. A better understanding of the molecular mechanisms of IPF as well as relevant preclinical tests including animal models and in vitro experiments on human lung cells are needed to promote the development of therapeutic drugs. PMID:26557253

  8. Synergistic anti-tumor efficacy of immunogenic adenovirus ONCOS-102 (Ad5/3-D24-GM-CSF) and standard of care chemotherapy in preclinical mesothelioma model.

    PubMed

    Kuryk, Lukasz; Haavisto, Elina; Garofalo, Mariangela; Capasso, Cristian; Hirvinen, Mari; Pesonen, Sari; Ranki, Tuuli; Vassilev, Lotta; Cerullo, Vincenzo

    2016-10-15

    Malignant mesothelioma (MM) is a rare cancer type caused mainly by asbestos exposure. The median overall survival time of a mesothelioma cancer patient is less than 1-year from diagnosis. Currently there are no curative treatment modalities for malignant mesothelioma, however treatments such as surgery, chemotherapy and radiotherapy can help to improve patient prognosis and increase life expectancy. Pemetrexed-Cisplatin is the only standard of care (SoC) chemotherapy for malignant mesothelioma, but the median PFS/OS (progression-free survival/overall survival) from the initiation of treatment is only up to 12 months. Therefore, new treatment strategies against malignant mesothelioma are in high demand. ONCOS-102 is a dual targeting, chimeric oncolytic adenovirus, coding for human GM-CSF. The safety and immune activating properties of ONCOS-102 have already been assessed in phase 1 study (NCT01598129). In this preclinical study, we evaluated the antineoplastic activity of combination treatment with SoC chemotherapy (Pemetrexed, Cisplatin, Carboplatin) and ONCOS-102 in xenograft BALB/c model of human malignant mesothelioma. We demonstrated that ONCOS-102 is able to induce immunogenic cell death of human mesothelioma cell lines in vitro and showed anti-tumor activity in the treatment of refractory H226 malignant pleural mesothelioma (MPM) xenograft model. While chemotherapy alone showed no anti-tumor activity in the mesothelioma mouse model, ONCOS-102 was able to slow down tumor growth. Interestingly, a synergistic anti-tumor effect was seen when ONCOS-102 was combined with chemotherapy regimens. These findings give a rationale for the clinical testing of ONCOS-102 in combination with first-line chemotherapy in patients suffering from malignant mesothelioma. PMID:27287512

  9. Trajectories of memory decline in preclinical Alzheimer's disease: results from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of ageing.

    PubMed

    Pietrzak, Robert H; Lim, Yen Ying; Ames, David; Harrington, Karra; Restrepo, Carolina; Martins, Ralph N; Rembach, Alan; Laws, Simon M; Masters, Colin L; Villemagne, Victor L; Rowe, Christopher C; Maruff, Paul

    2015-03-01

    Memory changes in preclinical Alzheimer's disease (AD) are often characterized by heterogenous trajectories. However, data regarding the nature and determinants of predominant trajectories of memory changes in preclinical AD are lacking. We analyzed data from 333 cognitively healthy older adults who participated in a multicenter prospective cohort study with baseline and 18-, 36-, and 54-month follow-up assessments. Latent growth mixture modeling revealed 3 predominant trajectories of memory change: a below average, subtly declining memory trajectory (30.9%); a below average, rapidly declining memory trajectory (3.6%); and an above average, stable memory trajectory (65.5%). Compared with the stable memory trajectory, high Αβ (relative risk ratio [RRR] = 2.1), and lower Mini-Mental State Examination (RRR = 0.6) and full-scale IQ (RRR = 0.9) scores were independently associated with the subtly declining memory trajectory; and high Αβ (RRR = 8.3), APOE ε4 carriage (RRR = 6.1), and greater subjective memory impairment (RRR = 1.2) were independently associated with the rapidly declining memory trajectory. Compared with the subtly declining memory trajectory group, APOE ε4 carriage (RRR = 8.4), and subjective memory complaints (RRR = 1.2) were associated with a rapidly declining memory trajectory. These results suggest that the preclinical phase of AD may be characterized by 2 predominant trajectories of memory decline that have common (e.g., high Αβ) and unique (e.g., APOE ε4 genotype) determinants. PMID:25585532

  10. Feasibility study of pre-clinical Thiel embalmed human cadaver for MR-guided focused ultrasound of the spine.

    PubMed

    Karakitsios, Ioannis; Mihcin, Senay; Saliev, Timur; Melzer, Andreas

    2016-06-01

    Background Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive treatment option based on high acoustic absorption and minimal thermal conductivity of the bone to destroy nerves and reduce pain. There is lack of a preclinical validation tool with correct human anatomy. This work introduces usage of an ex-vivo Thiel embalmed human tissue model for preclinical verification of MRgFUS on intervertebral discs or bone metastases within the spinal body. Material and methods Thiel embalmed human cadaver was subjected to FUS sonication of the vertebra (with energies 250J, 420J, 600J) and the intervertebral disc (with energies 310J, 610J, 950J) of the lumbar spine for 20s of sonication under MR guidance. Results For the vertebra, maximum temperatures were recorded as 38 °C, 58.3 °C, 69 °C. The intervertebral disc reached maximum temperatures of 23.7 °C, 54 °C, 83 °C. The temperature measurements showed that the spinal canal and adjacent organs were not heated > 0.1 °C. Conclusions A heating pattern that can induce thermal ablation was achieved in the vertebral body and the intervertebral disc. Adjacent structures and nerves were not heated in lethal levels. Thus, the Thiel embalmed human cadaver can be a safe and efficient model for preclinical study of application of MRgFUS on the upper lumbar spine. PMID:26923220

  11. Combination treatment with hypoxia-activated prodrug evofosfamide (TH-302) and mTOR inhibitors results in enhanced antitumor efficacy in preclinical renal cell carcinoma models

    PubMed Central

    Sun, Jessica D; Ahluwalia, Dharmendra; Liu, Qian; Li, Wenwu; Wang, Yan; Meng, Fanying; Bhupathi, Deepthi; Matteucci, Mark D; Hart, Charles P

    2015-01-01

    Tumors often consist of hypoxic regions which are resistant to chemo- and radiotherapy. Evofosfamide (also known as TH-302), a 2-nitroimidazole triggered hypoxia-activated prodrug, preferentially releases the DNA cross-linker bromo-isophosphoramide mustard in hypoxic cells. The intracellular kinase mTOR plays a key role in multiple pathways which are important in cancer progression. Here we investigated the enhanced efficacy profile and possible mechanisms of evofosfamide in combination with mTOR inhibitor (mTORi) everolimus or temsirolimus in renal cell carcinoma (RCC) xenograft models. The antitumor activities of the mTORi everolimus or temsirolimus alone, evofosfamide alone, or the combination were investigated in the 786-O and Caki-1 RCC cells in vitro and in vivo xenograft models. Two schedules were tested in which evofosfamide was started on the same day as the mTORi or 1 week after. Combination mechanisms were investigated by measuring a panel of pharmacodynamic biomarkers by immunohistochemistry. Antitumor efficacy in both RCC xenograft models was enhanced by the combination of evofosfamide and mTORi. Evofosfamide reduced the increased hypoxia induced by mTORi. Combination treatment induced increased DNA damage, decreased cell proliferation, and decreased survivin. Addition of mTORi did not change evofosfamide-mediated cytotoxicity in 786-O or Caki-1 cells in vitro which might suggest cell non-autonomous effects, specifically increased tumor hypoxia, are important for the in vivo combination activity. Taken together, evofosfamide potentiates the antitumor efficacy of mTOR inhibitors and inhibits the increased tumor hypoxia caused by mTOR inhibition. These studies provide a translational rationale for combining evofosfamide with mTOR inhibitors in clinical studies. PMID:26328245

  12. Preclinical assessment of the absorption and disposition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor GDC-0980 and prediction of its pharmacokinetics and efficacy in human.

    PubMed

    Salphati, Laurent; Pang, Jodie; Plise, Emile G; Lee, Leslie B; Olivero, Alan G; Prior, Wei Wei; Sampath, Deepak; Wong, Susan; Zhang, Xiaolin

    2012-09-01

    (S)-1-{4-[2-(2-Amino-pyrimidin-5-yl)-7-methyl-4-morpholin-4-yl-thieno[3,2-d]pyrimidin-6-ylmethyl]-piperazin-1-yl}-2-hydroxy-propan-1-one (GDC-0980) is a potent and selective inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin, two key components of the PI3K pathway, the deregulation of which is associated with the development of many cancers. The objectives of these studies were to characterize the absorption and disposition of GDC-0980 and assess its efficacy in an MCF7-neo/HER2 human breast cancer xenograft model in immunocompromised mice. Studies in parental Madin-Darby canine kidney cells indicated that GDC-0980 had high permeability (P(app) = 18 × 10⁻⁶ cm/s), suggesting good absorption potential. However, it was found to be a P-glycoprotein and breast cancer resistance protein substrate in transfected cells and in knockout mice studies. Plasma protein binding was low, with the fraction unbound ranging from 29 to 52% across species. GDC-0980 hepatic clearance (CL) was predicted to be low in all of the species tested from hepatocyte incubations. The plasma CL of GDC-0980 was low in mouse (6.30 ml · min⁻¹ · kg⁻¹), rat (15.4 ml · min⁻¹ · kg⁻¹), and dog (6.37 ml · min⁻¹ · kg⁻¹) and moderate in cynomolgus monkey (18.9 ml · min⁻¹ · kg⁻¹). Oral bioavailability ranged from 14.4% in monkey to 125% in dog. Predicted human plasma CL and volume of distribution using allometry were 5.1 ml · min⁻¹ · kg⁻¹ and 1.8 l/kg, respectively. Parameters estimated from the pharmacokinetic/pharmacodynamic modeling of the MCF7-neo/HER2 xenograft data indicated that the GDC-0980 plasma concentration required for tumor stasis was approximately 0.5 μM. These parameters, combined with the predicted human pharmacokinetic profile, suggested that 55 mg once daily may be a clinically efficacious dose. GDC-0980 preclinical characterization and the predictions of its human properties supported its clinical development; it

  13. Challenges for Preclinical Investigations of Human Biofield Modalities.

    PubMed

    Gronowicz, Gloria; Bengston, William; Yount, Garret

    2015-11-01

    Preclinical models for studying the effects of the human biofield have great potential to advance our understanding of human biofield modalities, which include external qigong, Johrei, Reiki, therapeutic touch, healing touch, polarity therapy, pranic healing, and other practices. A short history of Western biofield studies using preclinical models is presented and demonstrates numerous and consistent examples of human biofields significantly affecting biological systems both in vitro and in vivo. Methodological issues arising from these studies and practical solutions in experimental design are presented. Important questions still left unanswered with preclinical models include variable reproducibility, dosing, intentionality of the practitioner, best preclinical systems, and mechanisms. Input from the biofield practitioners in the experimental design is critical to improving experimental outcomes; however, the development of standard criteria for uniformity of practice and for inclusion of multiple practitioners is needed. Research in human biofield studies involving preclinical models promises a better understanding of the mechanisms underlying the efficacy of biofield therapies and will be important in guiding clinical protocols and integrating treatments with conventional medical therapies. PMID:26665042

  14. Challenges for Preclinical Investigations of Human Biofield Modalities

    PubMed Central

    Gronowicz, Gloria; Bengston, William

    2015-01-01

    Preclinical models for studying the effects of the human biofield have great potential to advance our understanding of human biofield modalities, which include external qigong, Johrei, Reiki, therapeutic touch, healing touch, polarity therapy, pranic healing, and other practices. A short history of Western biofield studies using preclinical models is presented and demonstrates numerous and consistent examples of human biofields significantly affecting biological systems both in vitro and in vivo. Methodological issues arising from these studies and practical solutions in experimental design are presented. Important questions still left unanswered with preclinical models include variable reproducibility, dosing, intentionality of the practitioner, best preclinical systems, and mechanisms. Input from the biofield practitioners in the experimental design is critical to improving experimental outcomes; however, the development of standard criteria for uniformity of practice and for inclusion of multiple practitioners is needed. Research in human biofield studies involving preclinical models promises a better understanding of the mechanisms underlying the efficacy of biofield therapies and will be important in guiding clinical protocols and integrating treatments with conventional medical therapies. PMID:26665042

  15. Cell-Seeded Tubularized Scaffolds for Reconstruction of Long Urethral Defects: A Preclinical Study

    PubMed Central

    Orabi, Hazem; AbouShwareb, Tamer; Zhang, Yuanyuan; Yoo, James J.; Atala, Anthony

    2012-01-01

    Background The treatment options for patients requiring repair of a long segment of the urethra are limited by the availability of autologous tissues. We previously reported that acellular collagen-based tubularized constructs seeded with cells are able to repair small urethral defects in a rabbit model. Objective We explored the feasibility of engineering clinically relevant long urethras for surgical reconstruction in a canine preclinical model. Design, setting, and participants Autologous bladder epithelial and smooth muscle cells from 15 male dogs were grown and seeded onto preconfigured collagen-based tubular matrices (6 cm in length). The perineal urethral segment was removed in 21 male dogs. Urethroplasties were performed with tubularized collagen scaffolds seeded with cells in 15 animals. Tubularized constructs without cells were implanted in six animals. Serial urethrography and three-dimensional computed tomography (CT) scans were performed pre- and postoperatively at 1, 3, 6, and 12 mo. The animals were euthanized at their predetermined time points (three animals at 1 mo, and four at 3, 6, and 12 mo) for analyses. Outcome measurements and statistical analysis Statistical analysis of CT imaging and histology was not needed. Results and limitations CT urethrograms showed wide-caliber urethras without strictures in animals implanted with cell-seeded matrices. The urethral segments replaced with acellular scaffolds collapsed. Gross examination of the urethral implants seeded with cells showed normal-appearing tissue without evidence of fibrosis. Histologically, an epithelial cell layer surrounded by muscle fiber bundles was observed on the cell-seeded constructs, and cellular organization increased over time. The epithelial and smooth muscle phenotypes were confirmed using antibodies to pancytokeratins AE1/AE3 and smooth muscle–specific desmin. Formation of an epithelial cell layer occurred in the unseeded constructs, but few muscle fibers formed

  16. Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies

    PubMed Central

    Dang, Michelle; Henderson, Rachel E.; Garraway, Levi A.

    2016-01-01

    ABSTRACT Zebrafish are a major model for chemical genetics, and most studies use embryos when investigating small molecules that cause interesting phenotypes or that can rescue disease models. Limited studies have dosed adults with small molecules by means of water-borne exposure or injection techniques. Challenges in the form of drug delivery-related trauma and anesthesia-related toxicity have excluded the adult zebrafish from long-term drug efficacy studies. Here, we introduce a novel anesthetic combination of MS-222 and isoflurane to an oral gavage technique for a non-toxic, non-invasive and long-term drug administration platform. As a proof of principle, we established drug efficacy of the FDA-approved BRAFV600E inhibitor, Vemurafenib, in adult zebrafish harboring BRAFV600E melanoma tumors. In the model, adult casper zebrafish intraperitoneally transplanted with a zebrafish melanoma cell line (ZMEL1) and exposed to daily sub-lethal dosing at 100 mg/kg of Vemurafenib for 2 weeks via oral gavage resulted in an average 65% decrease in tumor burden and a 15% mortality rate. In contrast, Vemurafenib-resistant ZMEL1 cell lines, generated in culture from low-dose drug exposure for 4 months, did not respond to the oral gavage treatment regimen. Similarly, this drug treatment regimen can be applied for treatment of primary melanoma tumors in the zebrafish. Taken together, we developed an effective long-term drug treatment system that will allow the adult zebrafish to be used to identify more effective anti-melanoma combination therapies and opens up possibilities for treating adult models of other diseases. PMID:27482819

  17. Synthesis, characterization and preclinical studies of two-photon-activated targeted PDT therapeutic triads

    NASA Astrophysics Data System (ADS)

    Spangler, C. W.; Starkey, J. R.; Rebane, A.; Meng, F.; Gong, A.; Drobizhev, M.

    2006-02-01

    Photodynamic therapy (PDT) continues to evolve into a mature clinical treatment of a variety of cancer types as well as age-related macular degeneration of the eye. However, there are still aspects of PDT that need to be improved in order for greater clinical acceptance. While a number of new PDT photo-sensitizers, sometimes referred to as second- or third- generation therapeutic agents, are currently under clinical investigation, the direct treatment through the skin of subcutaneous tumors deeper than 5 mm remains problematic. Currently approved PDT porphyrin photo-sensitizers, as well as several modified porphyrins (e.g. chlorins, bacteriochlorins, etc.) that are under clinical investigation can be activated at 630-730 nm, but none above 800 nm. It would be highly desirable if new PDT paradigms could be developed that would allow photo-activation deep in the tissue transparency window in the Near-infrared (NIR) above 800 nm to reduce scattering and absorption phenomena that reduce deep tissue PDT efficacy. Rasiris and MPA Technologies have developed new porphyrins that have greatly enhanced two-photon absorption ( P A ) cross-sections and can be activated deep in the NIR (ca. 780-850 nm). These porphyrins can be incorporated into a therapeutic triad that also employs an small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR onephoton imaging agent that allows tracking the delivery of the triad to the tumor site, as well as clearance of excess triad from healthy tissue prior to the start of PDT treatment. We are currently using these new triads in efficacy studies with a breast cancer cell line that has been transfected with luciferase genes that allow implanted tumor growth and post- PDT treatment efficacy studies in SCID mouse models by following the rise and decay of the bioluminescence signal. We have also designed highly absorbing and scattering collagen breast cancer phantoms in which we have demonstrated

  18. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies.

    PubMed

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-06-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD. PMID:26585287

  19. Attempted and Successful Compensation in Preclinical and Early Manifest Neurodegeneration – A Review of Task fMRI Studies

    PubMed Central

    Scheller, Elisa; Minkova, Lora; Leitner, Mathias; Klöppel, Stefan

    2014-01-01

    Several models of neural compensation in healthy aging have been suggested to explain brain activity that aids to sustain cognitive function. Applying recently suggested criteria of “attempted” and “successful” compensation, we reviewed existing literature on compensatory mechanisms in preclinical Huntington’s disease (HD) and amnestic mild cognitive impairment (aMCI). Both disorders constitute early stages of neurodegeneration ideal for examining compensatory mechanisms and developing targeted interventions. We strived to clarify whether compensation criteria derived from healthy aging populations can be applied to early neurodegeneration. To concentrate on the close coupling of cognitive performance and brain activity, we exclusively addressed task fMRI studies. First, we found evidence for parallels in compensatory mechanisms between healthy aging and neurodegenerative disease. Several studies fulfilled criteria of attempted compensation, while reports of successful compensation were largely absent, which made it difficult to conclude on. Second, comparing working memory studies in preclinical HD and aMCI, we identified similar compensatory patterns across neurodegenerative disorders in lateral and medial prefrontal cortex. Such patterns included an inverted U-shaped relationship of neurodegeneration and compensatory activity spanning from preclinical to manifest disease. Due to the lack of studies systematically targeting all criteria of compensation, we propose an exemplary study design, including the manipulation of compensating brain areas by brain stimulation. Furthermore, we delineate the benefits of targeted interventions by non-invasive brain stimulation, as well as of unspecific interventions such as physical activity or cognitive training. Unambiguously detecting compensation in early neurodegenerative disease will help tailor interventions aiming at sustained overall functioning and delayed clinical disease onset. PMID:25324786

  20. Preclinical and Pilot Clinical Studies of Docetaxel Chemoradiation for Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Chen Yuhchyau; Pandya, Kishan J.; Hyrien, Ollivier; Keng, Peter C.; Smudzin, Therese; Anderson, Joy; Qazi, Raman; Smith, Brian; Watson, Thomas J.; Feins, Richard H.; Johnstone, David W.

    2011-08-01

    Purpose: Local and distant failure rates remain high despite aggressive chemoradiation (CRT) treatment for Stage III non-small-cell lung cancer. We conducted preclinical studies of docetaxel's cytotoxic and radiosensitizing effects on lung cancer cell lines and designed a pilot study to target distant micrometastasis upfront with one-cycle induction chemotherapy, followed by low-dose radiosensitizing docetaxel CRT. Methods and Materials: A preclinical study was conducted in human lung cancer cell lines NCI 520 and A549. Cells were treated with two concentrations of docetaxel for 3 h and then irradiated immediately or after a 24-h delay. A clonogenic survival assay was conducted and analyzed for cytotoxic effects vs. radiosensitizing effects of docetaxel. A pilot clinical study was designed based on preclinical study findings. Twenty-two patients were enrolled with a median follow-up of 4 years. Induction chemotherapy consisted of 75 mg/m{sup 2} of docetaxel and 75 mg/m{sup 2} of cisplatin on Day 1 and 150 mg/m{sup 2} of recombinant human granulocyte colony-stimulating factor on Days 2 through 10. Concurrent CRT was started 3 to 6 weeks later with twice-weekly docetaxel at 10 to 12 mg/m{sup 2} and daily delayed radiation in 1.8-Gy fractions to 64.5 Gy for gross disease. Results: The preclinical study showed potent cytotoxic effects of docetaxel and subadditive radiosensitizing effects. Delaying radiation resulted in more cancer cell death. The pilot clinical study resulted in a median survival of 32.6 months for the entire cohort, with 3- and 5-year survival rates of 50% and 19%, respectively, and a distant metastasis-free survival rate of 61% for both 3 and 5 years. A pattern-of-failure analysis showed 75% chest failures and 36% all-distant failures. Therapy was well tolerated with Grade 3 esophagitis observed in 23% of patients. Conclusions: One-cycle full-dose docetaxel/cisplatin induction chemotherapy with recombinant human granulocyte colony-stimulating factor

  1. Pre-clinical and preliminary dose-finding and safety studies to identify candidate antivenoms for treatment of envenoming by saw-scaled or carpet vipers (Echis ocellatus) in northern Nigeria.

    PubMed

    Abubakar, S B; Abubakar, I S; Habib, A G; Nasidi, A; Durfa, N; Yusuf, P O; Larnyang, S; Garnvwa, J; Sokomba, E; Salako, L; Laing, G D; Theakston, R D G; Juszczak, E; Alder, N; Warrell, D A

    2010-04-01

    The aim of this study was to identify candidate antivenoms with specific activity against the venom of the saw-scaled or carpet viper (Echis ocellatus) in northern Nigeria, where bites by this species cause great morbidity and mortality but where effective antivenoms have become scarce and unaffordable. Selected antivenoms were destined to be compared by randomised controlled clinical trials (RCTs). Standard pre-clinical neutralisation assays were carried out in rodents. We included two licensed antivenoms of established clinical efficacy and 6 candidate antivenoms. Although 6 of the tested antivenoms showed promising efficacy, all but 3 were excluded from further study because of inadequate pre-clinical efficacy or because they were unavailable or unaffordable for the anticipated RCTs. Median effective doses (ED(50)) of the remaining three candidate antivenoms suggested that the following doses might neutralise the maximum observed venom yield of 24.8 mg (dry weight) of venom milked from captive E. ocellatus: 10 ml of MicroPharm "EchiTAb G" (ET-G) antivenom; 30 ml of Instituto Clodomiro Picado "EchiTAb-Plus-ICP" (ET-Plus) antivenom; 50 ml of VacSera, Cairo "EgyVac" antivenom. A preliminary clinical dose-finding and safety study of these three antivenoms was carried out in 24 patients with incoagulable blood after E. ocellatus bites who were not severely envenomed. A 3+3 dose escalation design was employed. Initial doses of 10 ml ET-G and 30 ml ET-Plus restored blood coagulability in groups of 6 patients with early mild reactions (pruritus only) in not more than one third of them. EgyVac antivenom did not fulfil efficacy or safety criteria in 12 patients. On the basis of these results, ET-G and ET-Plus were selected for comparison in a RCT. PMID:19874841

  2. Rodents as pre-clinical models for predicting vaccine performance in humans.

    PubMed

    Riese, Peggy; Trittel, Stephanie; Schulze, Kai; Guzmán, Carlos A

    2015-01-01

    Vaccines represent a key building block for establishing a successful and sustainable control strategy against infectious diseases. Vaccine development often depends on the availability of correlates for protection and reliable animal models for the screening, selection and prioritization of potential vaccine candidates. This is performed according to their immunogenicity, efficacy and safety profiles in pre-clinical studies, which are also critical for identification of candidate antigens, selection of an optimal delivery system and design of appropriate vaccine formulations. Thus, pre-clinical studies in animal models are a prerequisite for addressing crucial issues and generating a solid pre-clinical package for the approval of clinical trials. This review addresses the strengths, limitations and perspectives of rodents as a vaccine development and pre-clinical validation tool. PMID:26268433

  3. Prazosin addition to fluvoxamine: A preclinical study and open clinical trial in OCD.

    PubMed

    Feenstra, Matthijs G P; Klompmakers, André; Figee, Martijn; Fluitman, Sjoerd; Vulink, Nienke; Westenberg, Herman G M; Denys, Damiaan

    2016-02-01

    The efficacy of selective serotonin reuptake inhibitors (SRIs) in psychiatric disorders may be "augmented" through the addition of atypical antipsychotic drugs. A synergistic increase in dopamine (DA) release in the prefrontal cortex has been suggested to underlie this augmentation effect, though the mechanism of action is not clear yet. We used in vivo microdialysis in rats to study DA release following the administration of combinations of fluvoxamine (10 mg/kg) and quetiapine (10 mg/kg) with various monoamine-related drugs. The results confirmed that the selective 5-HT1A antagonist WAY-100635 (0.05 mg/kg) partially blocked the fluvoxamine-quetiapine synergistic effect (maximum DA increase dropped from 325% to 214%). A novel finding is that the α1-adrenergic blocker prazosin (1 mg/kg), combined with fluvoxamine, partially mimicked the effect of augmentation (maximum DA increase 205%; area-under-the-curve 163%). As this suggested that prazosin augmentation might be tested in a clinical study, we performed an open clinical trial of prazosin 20 mg addition to SRI in therapy-resistant patients with obsessive-compulsive disorder applying for neurosurgery. A small, non-significant reduction in Yale Brown Obsessive Compulsive Scale (Y-BOCS) scores was observed in 10 patients and one patient was classified as a responder with a reduction in Y-BOCS scores of more than 25%. We suggest that future clinical studies augmenting SRIs with an α1-adrenergic blocker in less treatment resistant cases should be considered. The clinical trial "Prazosin in combination with a serotonin reuptake inhibitor for patients with Obsessive Compulsive disorder: an open label study" was registered at 24/05/2011 under trial number ISRCTN61562706: http://www.controlled-trials.com/ISRCTN61562706. PMID:26712326

  4. A bioluminescent mouse model of proliferation to highlight early stages of pancreatic cancer: A suitable tool for preclinical studies.

    PubMed

    de Latouliere, Luisa; Manni, Isabella; Iacobini, Carla; Pugliese, Giuseppe; Grazi, Gian Luca; Perri, Pasquale; Cappello, Paola; Novelli, Franco; Menini, Stefano; Piaggio, Giulia

    2016-09-01

    Transgenic mouse models designed to recapitulate genetic and pathologic aspects of cancer are useful to study early stages of disease as well as its progression. Among several, two of the most sophisticated models for pancreatic ductal adenocarcinoma (PDAC) are the LSL-Kras(G12D/+);Pdx-1-Cre (KC) and LSL-Kras(G12D/+);LSL-Trp53(R172H/+);Pdx-1-Cre (KPC) mice, in which the Cre-recombinase regulated by a pancreas-specific promoter activates the expression of oncogenic Kras alone or in combination with a mutant p53, respectively. Non-invasive in vivo imaging offers a novel approach to preclinical studies introducing the possibility to investigate biological events in the spatio/temporal dimension. We recently developed a mouse model, MITO-Luc, engineered to express the luciferase reporter gene in cells undergoing active proliferation. In this model, proliferation events can be visualized non-invasively by bioluminescence imaging (BLI) in every body district in vivo. Here, we describe the development and characterization of MITO-Luc-KC- and -KPC mice. In these mice we have now the opportunity to follow PDAC evolution in the living animal in a time frame process. Moreover, by relating in vivo and ex vivo BLI and histopathological data we provide evidence that these mice could represents a suitable tool for pancreatic cancer preclinical studies. Our data also suggest that aberrant proliferation events take place early in pancreatic carcinogenesis, before tumour appearance. PMID:26704357

  5. The Humanized NOD/SCID Mouse as a Preclinical Model to Study the Fate of Encapsulated Human Islets

    PubMed Central

    Vaithilingam, Vijayaganapathy; Oberholzer, Jose; Guillemin, Gilles J.; Tuch, Bernard E.

    2010-01-01

    Despite encouraging results in animal models, the transplantation of microencapsulated islets into humans has not yet reached the therapeutic level. Recent clinical trials using microencapsulated human islets in barium alginate showed the presence of dense fibrotic overgrowth around the microcapsules with no viable islets. The major reason for this is limited understanding of what occurs when encapsulated human islets are allografted. This warrants the need for a suitable small animal model. In this study, we investigated the usefulness of NOD/SCID mice reconstituted with human PBMCs (called humanized NOD/SCID mice) as a preclinical model. In this model, human T cell engraftment could be achieved, and CD45+ cells were observed in the spleen and peripheral blood. Though the engrafted T cells caused a small fibrotic overgrowth around the microencapsulated human islets, this failed to stop the encapsulated islets from functioning in the diabetic recipient mice. The ability of encapsulated islets to survive in this mouse model might partly be attributed to the presence of Th2 cytokines IL-4 and IL-10, which are known to induce graft tolerance. In conclusion, this study showed that the hu-NOD/SCID mouse is not a suitable preclinical model to study the allograft rejection mechanisms of encapsulated human islets. As another result, the maintained viability of transplanted islets on the NOD/SCID background emphasized a critical role of protective mechanisms in autoimmune diabetes transplanted subjects due to specific immunoregulatory effects provided by IL-4 and IL-10. PMID:20703439

  6. Methods to Evaluate the Antitumor Activity of Immune Checkpoint Inhibitors in Preclinical Studies.

    PubMed

    Allard, Bertrand; Allard, David; Stagg, John

    2016-01-01

    Immune checkpoint inhibitors (ICI) are a new class of drugs characterized by their ability to enhance antitumor immune responses through the blockade of critical cell surface receptors involved in the maintenance of peripheral tolerance. The recent approval of ICI targeting CTLA-4 or PD-1 for the treatment of cancer constitutes a major breakthrough in the field of oncology and demonstrates the potential of immune-mediated therapies in achieving durable cancer remissions. The identification of new immune regulatory pathways that could be targeted to reactivate or boost antitumor immunity is now a very active field of research. In this context, the use of syngeneic mouse models and immune monitoring techniques are the cornerstone of proof-of-concept studies. In this chapter, we describe the general methodology to evaluate antitumor activity of ICI in immunocompetent mice. We outline protocols to reliably establish tumors in mice and generate lung metastasis through tail vein injections with the aim of testing the efficacy of ICI. We also present methods to analyze the composition of the tumor immune-infiltrate by multicolor flow cytometry. PMID:27581021

  7. Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells

    PubMed Central

    Fiskus, Warren; Sharma, Sunil; Saha, Saikat; Shah, Bhavin; Devaraj, Santhana G. T.; Sun, Baohua; Horrigan, Stephen; Leveque, Christopher; Zu, Youli; Iyer, Swaminathan; Bhalla, Kapil N.

    2014-01-01

    The canonical WNT-β-catenin pathway is essential for self-renewal, growth and survival of AML stem/blast progenitor cells (BPCs). Deregulated WNT signaling inhibits degradation of β-catenin, causing increased nuclear translocation and co-factor activity of β-catenin with the transcriptional regulator TCF4/LEF1 in AML BPCs. Here, we determined the pre-clinical anti-AML activity of the anthraquinone oxime-analog BC2059 (BC), known to attenuate β-catenin levels. BC treatment disrupted the binding of β-catenin with the scaffold protein TBL1 (transducin β-like 1) and proteasomal degradation and decline in the nuclear levels of β-catenin. This was associated with reduced transcriptional activity of TCF4 and expression of its target genes, cyclin D1, c-MYC and survivin. BC treatment dose-dependently induced apoptosis of cultured and primary AML BPCs. Treatment with BC also significantly improved the median survival of immune-depleted mice engrafted with either cultured or primary AML BPCs exhibiting nuclear expression of β-catenin. Co-treatment with the pan-histone deacetylase inhibitor panobinostat and BC synergistically induced apoptosis of cultured and primary AML BPCs, including those expressing FLT3-ITD, as well as further significantly improved the survival of immune-depleted mice engrafted with primary AML BPCs. These findings underscore the promising pre-clinical activity and warrant further testing of BC against human AML, especially those expressing FLT3-ITD. PMID:25482131

  8. Progressive impairment on neuropsychological tasks in a longitudinal study of preclinical Alzheimer's disease.

    PubMed

    Mickes, Laura; Wixted, John T; Fennema-Notestine, Christine; Galasko, Douglas; Bondi, Mark W; Thal, Leon J; Salmon, David P

    2007-11-01

    Previous research suggests that patients with Alzheimer's disease exhibit cognitive impairment in the years preceding a clinical diagnosis. Memory impairments are particularly pronounced, but the relative degree to which other cognitive functions are impaired and the speed with which they decline during the preclinical years remains unclear. The authors report a detailed neuropsychological evaluation of 11 patients over the course of 3 years up to and including the 1st year of nonnormal diagnosis. The results suggest that performance falls off rapidly in all areas of cognitive functioning but that abilities thought to be subserved by the medial and lateral temporal lobes (episodic and semantic memory, respectively) appear to be substantially more impaired than those abilities thought to be subserved by the frontal lobes. PMID:17983283

  9. Therapeutic vaccination in chronic hepatitis B: preclinical studies in the woodchuck.

    PubMed

    Kosinska, Anna D; Zhang, Ejuan; Lu, Mengji; Roggendorf, Michael

    2010-01-01

    Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to a satisfactory result. Induction of HBV-specific T cells by therapeutic vaccination or immunotherapies may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients did not result in effective control of HBV infection, suggesting that new formulations of therapeutic vaccines are needed. The woodchuck (Marmota monax) is a useful preclinical model for developing the new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments with nucleos(t)ide analogues, DNA vaccines, and protein vaccines were tested in the woodchuck model. In this paper we summarize the available data concerning therapeutic immunization and gene therapy using recombinant viral vectors approaches in woodchucks, which show encouraging results. In addition, we present potential innovations in immunomodulatory strategies to be evaluated in this animal model. PMID:21188201

  10. Preclinical Studies on the Pharmacokinetics, Safety and Toxicology of Oxfendazole: Toward First in Human Studies

    PubMed Central

    Codd, Ellen E.; Ng, Hanna H.; McFarlane, Claire; Riccio, Edward S.; Doppalapudi, Rupa; Mirsalis, Jon C.; Horton, R. John; Gonzalez, Armando E.; Garcia, H. Hugo; Gilman, Robert H.

    2015-01-01

    A two-week study in rats identified target organs of oxfendazole toxicity to be bone marrow, epididymis, liver, spleen, testis, and thymus. Female rats had greater oxfendazole exposure and exhibited toxicities at lower doses than did males. Decreased WBC levels, a class effect of benzimidazole anthelminthics, returned to normal during the recovery period. The NOAEL was determined to be >5 but < 25 mg/kg/d and the MTD 100 mg/kg/d. The highest dose, 200 mg/kg/d resulted in significant toxicity and mortality, leading to euthanization of the main study animals in this group after seven days. Oxfendazole did not exhibit genetic toxicology signals in standard Ames bacterial, mouse lymphoma or rat micronucleus assays, nor did it provoke safety concerns when evaluated for behavioral effects in rats or cardiovascular safety effects in dogs. These results support the transition of oxfendazole to First in Human safety studies preliminary to its evaluation in human helminth diseases. PMID:25701764

  11. Pharmacokinetics and tolerability of NSC23925b, a novel P-glycoprotein inhibitor: preclinical study in mice and rats.

    PubMed

    Gao, Yan; Shen, Jacson K; Choy, Edwin; Zhang, Zhan; Mankin, Henry J; Hornicek, Francis J; Duan, Zhenfeng

    2016-01-01

    Overexpression of P-glycoprotein (Pgp) increases multidrug resistance (MDR) in cancer, which greatly impedes satisfactory clinical treatment and outcomes of cancer patients. Due to unknown pharmacokinetics, the use of Pgp inhibitors to overcome MDR in the clinical setting remains elusive despite promising in vitro results. The purpose of our current preclinical study is to investigate the pharmacokinetics and tolerability of NSC23925b, a novel and potent P-glycoprotein inhibitor, in rodents. Plasma pharmacokinetic studies of single-dose NSC23925b alone or in combination with paclitaxel or doxorubicin were conducted in male BALB/c mice and Sprague-Dawley rats. Additionally, inhibition of human cytochrome P450 (CYP450) by NSC23925b was examined in vitro. Finally, the maximum tolerated dose (MTD) of NSC23925b was determined. NSC23925b displayed favorable pharmacokinetic profiles after intraperitoneal/intravenous (I.P./I.V.) injection alone or combined with chemotherapeutic drugs. The plasma pharmacokinetic characteristics of the chemotherapy drugs were not affected when co-administered with NSC23925b. All the animals tolerated the I.P./I.V. administration of NSC23925b. Moreover, the enzymatic activity of human CYP450 was not inhibited by NSC23925b. Our results demonstrated that Pgp inhibitor NSC23925b exhibits encouraging preclinical pharmacokinetic characteristics and limited toxicity in vivo. NSC23925b has the potential to treat cancer patients with MDR in the future. PMID:27157103

  12. Pre-clinical and clinical walking kinematics in female breeding pigs with lameness: A nested case-control cohort study.

    PubMed

    Stavrakakis, S; Guy, J H; Syranidis, I; Johnson, G R; Edwards, S A

    2015-07-01

    Gait profiles were investigated in a cohort of female pigs experiencing a lameness period prevalence of 29% over 17 months. Gait alterations before and during visually diagnosed lameness were evaluated to identify the best quantitative clinical lameness indicators and early predictors for lameness. Pre-breeding gilts (n= 84) were recruited to the study over a period of 6 months, underwent motion capture every 5 weeks and, depending on their age at entry to the study, were followed for up to three successive gestations. Animals were subject to motion capture in each parity at 8 weeks of gestation and on the day of weaning (28 days postpartum). During kinematic motion capture, the pigs walked on the same concrete walkway and an array of infra-red cameras was used to collect three dimensional coordinate data of reflective skin markers attached to the head, trunk and limb anatomical landmarks. Of 24 pigs diagnosed with lameness, 19 had preclinical gait records, whilst 18 had a motion capture while lame. Depending on availability, data from one or two preclinical motion capture 1-11 months prior to lameness and on the day of lameness were analysed. Lameness was best detected and evaluated using relative spatiotemporal gait parameters, especially vertical head displacement and asymmetric stride phase timing. Irregularity in the step-to-stride length ratio was elevated (deviation  ≥ 0.03) in young pigs which presented lameness in later life (odds ratio 7.2-10.8). PMID:25986130

  13. Pharmacokinetics and tolerability of NSC23925b, a novel P-glycoprotein inhibitor: preclinical study in mice and rats

    PubMed Central

    Gao, Yan; Shen, Jacson K.; Choy, Edwin; Zhang, Zhan; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2016-01-01

    Overexpression of P-glycoprotein (Pgp) increases multidrug resistance (MDR) in cancer, which greatly impedes satisfactory clinical treatment and outcomes of cancer patients. Due to unknown pharmacokinetics, the use of Pgp inhibitors to overcome MDR in the clinical setting remains elusive despite promising in vitro results. The purpose of our current preclinical study is to investigate the pharmacokinetics and tolerability of NSC23925b, a novel and potent P-glycoprotein inhibitor, in rodents. Plasma pharmacokinetic studies of single-dose NSC23925b alone or in combination with paclitaxel or doxorubicin were conducted in male BALB/c mice and Sprague-Dawley rats. Additionally, inhibition of human cytochrome P450 (CYP450) by NSC23925b was examined in vitro. Finally, the maximum tolerated dose (MTD) of NSC23925b was determined. NSC23925b displayed favorable pharmacokinetic profiles after intraperitoneal/intravenous (I.P./I.V.) injection alone or combined with chemotherapeutic drugs. The plasma pharmacokinetic characteristics of the chemotherapy drugs were not affected when co-administered with NSC23925b. All the animals tolerated the I.P./I.V. administration of NSC23925b. Moreover, the enzymatic activity of human CYP450 was not inhibited by NSC23925b. Our results demonstrated that Pgp inhibitor NSC23925b exhibits encouraging preclinical pharmacokinetic characteristics and limited toxicity in vivo. NSC23925b has the potential to treat cancer patients with MDR in the future. PMID:27157103

  14. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments

    PubMed Central

    Dawidczyk, Charlene M.; Russell, Luisa M.; Searson, Peter C.

    2014-01-01

    The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics, tumor accumulation, and biodistribution. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field. PMID:25202689

  15. Latent Structure and Factorial Invariance of a Neuropsychological Test Battery for the Study of Preclinical Alzheimer’s Disease

    PubMed Central

    Dowling, N. Maritza; Hermann, Bruce; La Rue, Asenath; Sager, Mark A.

    2010-01-01

    Objective To examine the latent structure of a test battery currently being used in a longitudinal study of asymptomatic middle-aged adults with a parental history of Alzheimer’s disease (AD) and test the invariance of the factor solution across subgroups defined by selected demographic variables and known genetic risk factors for AD. Method An exploratory factor analysis (EFA) and a sequence of confirmatory factor analyses (CFA) were conducted on 24 neuropsychological measures selected to provide a comprehensive estimate of cognitive abilities most likely to be affected in preclinical AD. Once the underlying latent model was defined and the structural validity established through model comparisons, a multi-group confirmatory factor analysis model was used to test for factorial invariance across groups. Results The EFA solution revealed a factor structure consisting of 5 constructs: verbal ability, visuo-spatial ability, speed & executive function, working memory, and verbal learning & memory. The CFA models provided support for the hypothesized 5-factor structure. Results indicated factorial invariance of the model across all groups examined. Conclusions Collectively, the results suggested a relatively strong psychometric basis for using the factor structure in clinical samples that match the characteristics of this cohort. This confirmed an invariant factor structure should prove useful in research aimed to detect the earliest cognitive signature of preclinical AD in similar middle aged cohorts. PMID:21038965

  16. Efficacy and Tolerability of a GD2-Directed Trifunctional Bispecific Antibody in a Preclinical Model: Subcutaneous Administration Is Superior to Intravenous Delivery.

    PubMed

    Deppisch, Nina; Ruf, Peter; Eissler, Nina; Neff, Frauke; Buhmann, Raymund; Lindhofer, Horst; Mocikat, Ralph

    2015-08-01

    Trifunctional bispecific antibodies (trAb) are novel anticancer drugs that recruit and activate different types of immune effector cells at the targeted tumor. Thus, tumor cells are effectively eliminated and a long-lasting tumor-specific T-cell memory is induced. The trAb Ektomab is directed against human CD3 on T cells and the tumor-associated ganglioside GD2, which is an attractive target for immunotherapy of melanoma in humans. To optimize clinical applicability, we studied different application routes with respect to therapeutic efficacy and tolerability by using the surrogate trAb Surek (anti-GD2 × anti-murine CD3) and a murine melanoma engineered to express GD2. We show that subcutaneous injection of the trAb is superior to the intravenous delivery pathway, which is the standard application route for therapeutic antibodies. Despite lower plasma levels after subcutaneous administration, the same tumor-protective potential was observed in vivo compared with intravenous administration of Surek. However, subcutaneously delivered Surek showed better tolerability. This could be explained by a continuous release of the antibody leading to constant plasma levels and a delayed induction of proinflammatory cytokines. Importantly, the induction of counter-regulatory mechanisms was reduced after subcutaneous application. These findings are relevant for the clinical application of trifunctional bispecific antibodies and, possibly, also other immunoglobulin constructs. Mol Cancer Ther; 14(8); 1877-83. ©2015 AACR. PMID:26063765

  17. Design of preservation solutions for universal tissue preservation in vivo: demonstration of efficacy in preclinical models of profound hypothermic cardiac arrest.

    PubMed

    Taylor, M J; Rhee, P; Chen, Z; Alam, H B

    2005-01-01

    The design of new solutions for the universal preservation of tissues is a quest that would facilitate multiple-organ harvesting from organ donors since current preservation solutions do not provide optimum preservation for all organs. In contrast, a new approach to bloodless surgery using hypothermic blood substitution (HBS) to protect the whole body during profound hypothermic circulatory arrest (clinical suspended animation) has focused on the development of a hybrid solution design with the objective of providing universal tissue preservation. In this study, a porcine model of uncontrolled lethal hemorrhage was employed. A combination of two new solutions, maintenance and purge, was used in a cardiopulmonary bypass (CPB) technique to affect profound hypothermia and prolonged cardiac arrest (60 min), with resuscitation after surgical repair of the vascular deficit induced to affect exsanguination. After rewarming and recovery, pigs were monitored for 6 weeks for neurological deficits, cognitive function (learning new skills), and organ dysfunction. All the normothermic control animals died (n = 10), whereas 90% (9 of 10) in the HBS group survived (P < .05). Moreover, all of the survivors were neurologically intact, displayed normal learning and memory capability, and had no long-term organ dysfunction. Histology of brains after 6 weeks revealed no ischemic damage in marked contrast to control animals, which all showed diffuse ischemic damage. The demonstrated efficacy of these synthetic, acellular HBS solutions for protection of all the tissues in the body during clinical suspended animation justifies their consideration for multiple-organ harvesting from cadaveric and living donors. PMID:15808626

  18. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 4: pre-clinical efficacy and complication data required to justify a clinical trial.

    PubMed

    Cooper, David K C; Bottino, Rita; Gianello, Pierre; Graham, Melanie; Hawthorne, Wayne J; Kirk, Allan D; Korsgren, Olle; Park, Chung-Gyu; Weber, Collin

    2016-01-01

    In 2009, the International Xenotransplantation Association (IXA) published a consensus document that provided guidelines and "recommendations" (not regulations) for those contemplating clinical trials of porcine islet transplantation. These guidelines included the IXA's opinion on what constituted "rigorous pre-clinical studies using the most relevant animal models" and were based on "non-human primate testing." We now report our discussion following a careful review of the 2009 guidelines as they relate to pre-clinical testing. In summary, we do not believe there is a need to greatly modify the conclusions and recommendations of the original consensus document. Pre-clinical studies should be sufficiently rigorous to provide optimism that a clinical trial is likely to be safe and has a realistic chance of success, but need not be so demanding that success might only be achieved by very prolonged experimentation, as this would not be in the interests of patients whose quality of life might benefit immensely from a successful islet xenotransplant. We believe these guidelines will be of benefit to both investigators planning a clinical trial and to institutions and regulatory authorities considering a proposal for a clinical trial. In addition, we suggest consideration should be given to establishing an IXA Clinical Trial Advisory Committee that would be available to advise (but not regulate) researchers considering initiating a clinical trial of xenotransplantation. PMID:26916706

  19. Study Skills Course Impact on Academic Self-Efficacy

    ERIC Educational Resources Information Center

    Wernersbach, Brenna M.; Crowley, Susan L.; Bates, Scott C.; Rosenthal, Carol

    2014-01-01

    Although study skills courses improve student retention, the impact of study skills courses on students' academic self-efficacy has not been investigated. The present study examined pre- and posttest levels of academic self-efficacy in college students enrolled in a study skills course (n = 126) compared to students enrolled in a general education…

  20. Employing a Gain-of-Function Factor IX Variant R338L to Advance the Efficacy and Safety of Hemophilia B Human Gene Therapy: Preclinical Evaluation Supporting an Ongoing Adeno-Associated Virus Clinical Trial

    PubMed Central

    Sun, Junjiang; Gui, Tong; Hu, Genlin; Hannah, William B.; Wichlan, David G.; Wu, Zhijian; Grieger, Joshua C.; Li, Chengwen; Suwanmanee, Thipparat; Stafford, Darrel W.; Booth, Carmen J.; Samulski, Jade J.; Kafri, Tal; McPhee, Scott W.J.

    2015-01-01

    FIX activity, 100–500%). These preclinical studies demonstrate a safety:efficacy profile supporting an ongoing phase 1/2 human clinical trial of the scAAV8.FIXR338L vector (designated BAX335). PMID:25419787

  1. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial.

    PubMed

    Monahan, Paul E; Sun, Junjiang; Gui, Tong; Hu, Genlin; Hannah, William B; Wichlan, David G; Wu, Zhijian; Grieger, Joshua C; Li, Chengwen; Suwanmanee, Thipparat; Stafford, Darrel W; Booth, Carmen J; Samulski, Jade J; Kafri, Tal; McPhee, Scott W J; Samulski, R Jude

    2015-02-01

    , 100-500%). These preclinical studies demonstrate a safety:efficacy profile supporting an ongoing phase 1/2 human clinical trial of the scAAV8.FIXR338L vector (designated BAX335). PMID:25419787

  2. Reproducibility of results in preclinical studies: a perspective from the bone field.

    PubMed

    Manolagas, Stavros C; Kronenberg, Henry M

    2014-10-01

    The biomedical research enterprise-and the public support for it-is predicated on the belief that discoveries and the conclusions drawn from them can be trusted to build a body of knowledge which will be used to improve human health. As in all other areas of scientific inquiry, knowledge and understanding grow by layering new discoveries upon earlier ones. The process self-corrects and distills knowledge by discarding false ideas and unsubstantiated claims. Although self-correction is inexorable in the long-term, in recent years biomedical scientists and the public alike have become alarmed and deeply troubled by the fact that many published results cannot be reproduced. The chorus of concern reached a high pitch with a recent commentary from the NIH Director, Francis S. Collins, and Principal Deputy Director, Lawrence A. Tabak, and their announcement of specific plans to enhance reproducibility of preclinical research that relies on animal models. In this invited perspective, we highlight the magnitude of the problem across biomedical fields and address the relevance of these concerns to the field of bone and mineral metabolism. We also suggest how our specialty journals, our scientific organizations, and our community of bone and mineral researchers can help to overcome this troubling trend. PMID:24916175

  3. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases.

    PubMed

    Shagisultanova, Elena; Gaponova, Anna V; Gabbasov, Rashid; Nicolas, Emmanuelle; Golemis, Erica A

    2015-08-01

    Cancer progression requires a significant reprogramming of cellular signaling to support the essential tumor-specific processes that include hyperproliferation, invasion (for solid tumors) and survival of metastatic colonies. NEDD9 (also known as CasL and HEF1) encodes a multi-domain scaffolding protein that assembles signaling complexes regulating multiple cellular processes relevant to cancer. These include responsiveness to signals emanating from the T and B cell receptors, integrins, chemokine receptors, and receptor tyrosine kinases, as well as cytoplasmic oncogenes such as BCR-ABL and FAK- and SRC-family kinases. Downstream, NEDD9 regulation of partners including CRKL, WAVE, PI3K/AKT, ERK, E-cadherin, Aurora-A (AURKA), HDAC6, and others allow NEDD9 to influence functions as pleiotropic as migration, invasion, survival, ciliary resorption, and mitosis. In this review, we summarize a growing body of preclinical and clinical data that indicate that while NEDD9 is itself non-oncogenic, changes in expression of NEDD9 (most commonly elevation of expression) are common features of tumors, and directly impact tumor aggressiveness, metastasis, and response to at least some targeted agents inhibiting NEDD9-interacting proteins. These data strongly support the relevance of further development of NEDD9 as a biomarker for therapeutic resistance. Finally, we briefly discuss emerging evidence supporting involvement of NEDD9 in additional pathological conditions, including stroke and polycystic kidney disease. PMID:25967390

  4. Therapeutic vaccination and immunomodulation in the treatment of chronic hepatitis B: preclinical studies in the woodchuck.

    PubMed

    Kosinska, Anna D; Liu, Jia; Lu, Mengji; Roggendorf, Michael

    2015-02-01

    Infection with hepatitis B virus (HBV) may lead to subclinical, acute or chronic hepatitis. In the prevaccination era, HBV infections were endemic due to frequent mother to child transmission in large regions of the world. However, there are still estimated 240 million chronic HBV carriers today and ca. 620,000 patients die per year due to HBV-related liver diseases. Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to satisfactory results. Induction of HBV-specific T cells by therapeutic vaccination or immunomodulation may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients with or without therapeutic reduction of viral load did not result in effective immune control of HBV infection, suggesting that combination of antiviral treatment with new formulations of therapeutic vaccines is needed. The woodchuck (Marmota monax) and its HBV-like woodchuck hepatitis virus are a useful preclinical animal model for developing new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments using nucleos(t)ide analogues, with prime-boost vaccination using DNA vaccines, new hepadnaviral antigens or recombinant adenoviral vectors were tested in the woodchuck model. In this review, we summarize these encouraging results obtained with these therapeutic vaccines. In addition, we present potential innovations in immunostimulatory strategies by blocking the interaction of the inhibitory programmed death receptor 1 with its ligand in this animal model. PMID:25535101

  5. Reproducibility of Results in Preclinical Studies: A Perspective From the Bone Field

    PubMed Central

    Manolagas, Stavros C.; Kronenberg, Henry M.

    2015-01-01

    The biomedical research enterprise—and the public support for it—is predicated on the belief that discoveries and the conclusions drawn from them can be trusted to build a body of knowledge which will be used to improve human health. As in all other areas of scientific inquiry, knowledge and understanding grow by layering new discoveries upon earlier ones. The process self-corrects and distills knowledge by discarding false ideas and unsubstantiated claims. Although self-correction is inexorable in the long-term, in recent years biomedical scientists and the public alike have become alarmed and deeply troubled by the fact that many published results cannot be reproduced. The chorus of concern reached a high pitch with a recent commentary from the NIH Director, Francis S. Collins, and Principal Deputy Director, Lawrence A. Tabak, and their announcement of specific plans to enhance reproducibility of preclinical research that relies on animal models. In this invited perspective, we highlight the magnitude of the problem across biomedical fields and address the relevance of these concerns to the field of bone and mineral metabolism. We also suggest how our specialty journals, our scientific organizations, and our community of bone and mineral researchers can help to overcome this troubling trend. PMID:24916175

  6. Analysis of antigen specific T cells in diabetes - Lessons from pre-clinical studies and early clinical trials.

    PubMed

    Krishnamurthy, Balasubramanian; Selck, Claudia; Chee, Jonathan; Jhala, Guarang; Kay, Thomas W H

    2016-07-01

    Antigen-specific immune tolerance promises to provide safe and effective therapies to prevent type 1 diabetes (T1D). Antigen-specific therapy requires two components: well-defined, clinically relevant autoantigens; and safe approaches to inducing tolerance in T cells specific for these antigens. Proinsulin is a critical autoantigen in both NOD mice, based on knockout mouse studies and induction of immune tolerance to proinsulin preventing disease whereas most antigens cannot, and also in human T1D based on proinsulin-specific T cells being found in the islets of affected individuals and the early appearance of insulin autoantibodies. Effective antigen-specific therapies that prevent T1D in humans have not yet been developed although doubt remains about the best molecular form of the antigen, the dose and the route of administration. Preclinical studies suggest that antigen specific therapy is most useful when administered before onset of autoimmunity but this time-window has not been tested in humans until the recent "pre-point" study. There may be a 'window of opportunity' during the neonatal period when 'vaccine' like administration of proinsulin for a short period may be sufficient to prevent diabetes. After the onset of autoimmunity, naive antigen-specific T cells have differentiated into antigen-experienced memory cells and the immune responses have spread to multiple antigens. Induction of tolerance at this stage becomes more difficult although recent studies have suggested generation of antigen-specific TR1 cells can inhibit memory T cells. Preclinical studies are required to identify additional 'help' that is required to induce tolerance to memory T cells and develop protocols for effective therapy in individuals with established autoimmunity. PMID:27083395

  7. Taking Journal Clubs off Autopilot: A Case Study of Teaching Literature Evaluation Skills to Preclinical MD/PhD Students

    PubMed Central

    Currier, Rebecca L.; Schneider, Marguerite Reid; Heubi, James E.

    2014-01-01

    Researchers designed learner-directed journal clubs to develop literature evaluation skills in preclinical students. Sessions balanced student-led discussion with structured objectives and faculty support. During the pilot with preclinical MD/PhD students, self-rated mastery improved over all 17 measured objectives. Six exercises have since been incorporated into the full medical school curriculum. PMID:24634798

  8. Preclinical profile of cabazitaxel.

    PubMed

    Vrignaud, Patricia; Semiond, Dorothée; Benning, Veronique; Beys, Eric; Bouchard, Hervé; Gupta, Sunil

    2014-01-01

    First-generation taxanes have changed the treatment paradigm for a wide variety of cancers, but innate or acquired resistance frequently limits their use. Cabazitaxel is a novel second-generation taxane developed to overcome such resistance. In vitro, cabazitaxel showed similar antiproliferative activity to docetaxel in taxane-sensitive cell lines and markedly greater activity in cell lines resistant to taxanes. In vivo, cabazitaxel demonstrated excellent antitumor activity in a broad spectrum of docetaxel-sensitive tumor xenografts, including a castration-resistant prostate tumor xenograft, HID28, where cabazitaxel exhibited greater efficacy than docetaxel. Importantly, cabazitaxel was also active against tumors with innate or acquired resistance to docetaxel, suggesting therapeutic potential for patients progressing following taxane treatment and those with docetaxel-refractory tumors. In patients with tumors of the central nervous system (CNS), and in patients with pediatric tumors, therapeutic success with first-generation taxanes has been limited. Cabazitaxel demonstrated greater antitumor activity than docetaxel in xenograft models of CNS disease and pediatric tumors, suggesting potential clinical utility in these special patient populations. Based on therapeutic synergism observed in an in vivo tumor model, cabazitaxel is also being investigated clinically in combination with cisplatin. Nonclinical evaluation of the safety of cabazitaxel in a range of animal species showed largely reversible changes in the bone marrow, lymphoid system, gastrointestinal tract, and male reproductive system. Preclinical safety signals of cabazitaxel were consistent with the previously reported safety profiles of paclitaxel and docetaxel. Clinical observations with cabazitaxel were consistent with preclinical results, and cabazitaxel is indicated, in combination with prednisone, for the treatment of patients with hormone-refractory metastatic prostate cancer previously treated

  9. Two Years Later: Journals Are Not Yet Enforcing the ARRIVE Guidelines on Reporting Standards for Pre-Clinical Animal Studies

    PubMed Central

    Baker, David; Lidster, Katie; Sottomayor, Ana; Amor, Sandra

    2014-01-01

    There is growing concern that poor experimental design and lack of transparent reporting contribute to the frequent failure of pre-clinical animal studies to translate into treatments for human disease. In 2010, the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were introduced to help improve reporting standards. They were published in PLOS Biology and endorsed by funding agencies and publishers and their journals, including PLOS, Nature research journals, and other top-tier journals. Yet our analysis of papers published in PLOS and Nature journals indicates that there has been very little improvement in reporting standards since then. This suggests that authors, referees, and editors generally are ignoring guidelines, and the editorial endorsement is yet to be effectively implemented. PMID:24409096

  10. (99m)Tc-amitrole as a novel selective imaging probe for solid tumor: In silico and preclinical pharmacological study.

    PubMed

    Essa, B M; Sakr, T M; Khedr, Mohammed A; El-Essawy, F A; El-Mohty, A A

    2015-08-30

    Lactoperoxidase (LPO) inhibitors are very selective for solid tumor due to their high binding affinity to the LPO enzyme. A computational study was used to select top-ranked LPO inhibitor (alone and in complex with (99m)Tc) with high in silico affinity. The novel prepared (99m)Tc-amitrole complex demonstrated both in silico and in vivo high affinity toward solid tumors.(99m)Tc-amitrole was radio-synthesized with a high radiochemical yield (89.7±3.25). It showed in vitro stability for up to 6h. Its preclinical evaluation in solid tumor-bearing mice showed high retention and biological accumulation in solid tumor cells with a high Target/Non-Target (T/NT) ratio equal to 4.9 at 60min post-injection. The data described previously could recommend (99m)Tc-amitrole as potential targeting scintigraphic probe for solid tumor imaging. PMID:25956074

  11. Cranberries and Cancer: An Update of Preclinical Studies Evaluating the Cancer Inhibitory Potential of Cranberry and Cranberry Derived Constituents.

    PubMed

    Weh, Katherine M; Clarke, Jennifer; Kresty, Laura A

    2016-01-01

    Cranberries are rich in bioactive constituents reported to influence a variety of health benefits, ranging from improved immune function and decreased infections to reduced cardiovascular disease and more recently cancer inhibition. A review of cranberry research targeting cancer revealed positive effects of cranberries or cranberry derived constituents against 17 different cancers utilizing a variety of in vitro techniques, whereas in vivo studies supported the inhibitory action of cranberries toward cancers of the esophagus, stomach, colon, bladder, prostate, glioblastoma and lymphoma. Mechanisms of cranberry-linked cancer inhibition include cellular death induction via apoptosis, necrosis and autophagy; reduction of cellular proliferation; alterations in reactive oxygen species; and modification of cytokine and signal transduction pathways. Given the emerging positive preclinical effects of cranberries, future clinical directions targeting cancer or premalignancy in high risk cohorts should be considered. PMID:27548236

  12. Retrospect and Prospect of Studies of Teacher Efficacy in China

    ERIC Educational Resources Information Center

    He, Ning; Miao, Danmin

    2006-01-01

    Teacher efficacy is a powerful variable in educational and psychological studies. And it aroused much attention and interest from Chinese scholars in the past decade, which led to an accumulation of documents in this field. Following an introduction of efficacy studies in the west, the article reviews the brief history of those in China,…

  13. Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia.

    PubMed

    Bachegowda, Lohith; Morrone, Kerry; Winski, Shannon L; Mantzaris, Ioannis; Bartenstein, Matthias; Ramachandra, Nandini; Giricz, Orsi; Sukrithan, Vineeth; Nwankwo, George; Shahnaz, Samira; Bhagat, Tushar D; Bhattacharyya, Sanchari; Assal, Amer; Shastri, Aditi; Gordon-Mitchell, Shanisha; Pellagatti, Andrea; Boultwood, Jacqueline; Schinke, Carolina; Yu, Yiting; Guha, Chandan; Rizzi, James; Garrus, Jennifer; Brown, Suzy; Wollenberg, Lance; Hogeland, Grant; Wright, Dale; Munson, Mark; Rodriguez, Mareli; Gross, Stefan; Chantry, David; Zou, Yiyu; Platanias, Leonidas C; Burgess, Laurence E; Pradhan, Kith; Steidl, Ulrich; Verma, Amit

    2016-08-15

    Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) suppress normal hematopoietic activity in part by enabling a pathogenic inflammatory milieu in the bone marrow. In this report, we show that elevation of angiopoietin-1 in myelodysplastic CD34(+) stem-like cells is associated with higher risk disease and reduced overall survival in MDS and AML patients. Increased angiopoietin-1 expression was associated with a transcriptomic signature similar to known MDS/AML stem-like cell profiles. In seeking a small-molecule inhibitor of this pathway, we discovered and validated pexmetinib (ARRY-614), an inhibitor of the angiopoietin-1 receptor Tie-2, which was also found to inhibit the proinflammatory kinase p38 MAPK (which is overactivated in MDS). Pexmetinib inhibited leukemic proliferation, prevented activation of downstream effector kinases, and abrogated the effects of TNFα on healthy hematopoietic stem cells. Notably, treatment of primary MDS specimens with this compound stimulated hematopoiesis. Our results provide preclinical proof of concept for pexmetinib as a Tie-2/p38 MAPK dual inhibitor applicable to the treatment of MDS/AML. Cancer Res; 76(16); 4841-9. ©2016 AACR. PMID:27287719

  14. Deconstructing the role of the ECM microenvironment on drug efficacy targeting MAPK signaling in a pre-clinical platform for cutaneous melanoma

    PubMed Central

    Blehm, Benjamin H.; Jiang, Nancy; Kotobuki, Yorihisa; Tanner, Kandice

    2015-01-01

    Therapeutics targeting the BRAF kinase in cutaneous melanoma have significantly improved patient survival. However, durable responses in the face of metastatic disease are rarely realized where the problem of brain metastases is generally growing in magnitude. Tumor and stromal cells dynamically remodel the extracellular matrix (ECM) during the establishment of a metastatic lesion. We reasoned that ECM composition strongly determines drug efficacy on cell motility, adhesion and viability rendering one drug more potent and another less so. To test this hypothesis, we constructed platforms recreating the ECM composition due to the stroma and tumor cells, mimicking the brain’s perivascular niche and hyaluronic acid (HA) rich parenchyma. Using human melanoma cell lines, we observed that cell adhesion was minimally affected by BRAF inhibition but ablated by ERK inhibition. Cell motility was impaired for both drugs. We determined that the composition and architecture of the ECM niche modulated drug efficacy. In one series, potency of BRAF inhibition was blunted in 3D Fibronectin-HA hydrogels whereas Laminin-HA hydrogels protected against ERK inhibition. In the other series, Laminin blunted drug efficacy, despite both series sharing the same BRAF mutation. These data reinforce the importance of contextual drug assessment in designing future therapeutics. PMID:25934286

  15. Concise review: Preclinical studies on human cell-based therapy in rodent ischemic stroke models: where are we now after a decade?

    PubMed

    Leong, Wai Khay; Lewis, Martin D; Koblar, Simon A

    2013-06-01

    Stroke, a debilitating brain insult, afflicts millions of individuals globally each year. In the last decade, researchers have investigated cell-based therapy as an alternative strategy to improve neurological outcome following stroke. This concise review critically examines preclinical reports using human adult and fetal stem/progenitor cells in rodent models of ischemic stroke. As we enter the second decade of study, we should aim to optimize our collective likelihood to translational success for stroke victims worldwide. We advocate international consensus recommendations be developed for future preclinical research. PMID:23390084

  16. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data

    PubMed Central

    Walther, Sebastian; Halpern, Michael

    2010-01-01

    The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD). Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies.

  17. Extracurricular activities associated with stress and burnout in preclinical medical students.

    PubMed

    Fares, Jawad; Saadeddin, Zein; Al Tabosh, Hayat; Aridi, Hussam; El Mouhayyar, Christopher; Koleilat, Mohamad Karim; Chaaya, Monique; El Asmar, Khalil

    2016-09-01

    This study aims to assess the prevalence of stress and burnout among preclinical medical students in a private university in Beirut, Lebanon, and evaluate the association between extracurricular involvement and stress and burnout relief in preclinical medical students. A cross-sectional survey was conducted on a random sample of 165 preclinical medical students. Distress level was measured using the 12-item General Health Questionnaire (GHQ-12) while that of burnout was measured through the Maslach Burnout Inventory-Student Survey (MBI-SS). The MBI-SS assesses three interrelated dimensions: emotional exhaustion, cynicism, and academic efficacy. Extracurricular activities were divided into four categories: physical exercise, music, reading, and social activities. All selected participants responded. A substantial proportion of preclinical medical students suffered from stress (62%) and burnout (75%). Bivariate and multivariate regression analyses revealed that being a female or a 1st year medical student correlated with higher stress and burnout. Music-related activities were correlated with lower burnout. Social activities or living with parents were associated with lower academic efficacy. The high stress and burnout levels call for action. Addressing the studying conditions and attending to the psychological wellbeing of preclinical medical students are recommendations made in the study. PMID:26644345

  18. N-Aryl Piperazine Metabotropic Glutamate Receptor 5 Positive Allosteric Modulators Possess Efficacy in Preclinical Models of NMDA Hypofunction and Cognitive Enhancement

    PubMed Central

    Gregory, K.J.; Herman, E.J.; Ramsey, A.J.; Hammond, A.S.; Byun, N.E.; Stauffer, S.R.; Manka, J.T.; Jadhav, S.; Bridges, T.M.; Weaver, C.D.; Niswender, C.M.; Steckler, T.; Drinkenburg, W.H.; Ahnaou, A.; Lavreysen, H.; Macdonald, G.J.; Bartolomé, J.M.; Mackie, C.; Hrupka, B.J.; Caron, M.G.; Daigle, T.L.; Lindsley, C.W.; Conn, P.J.

    2013-01-01

    Impaired transmission through glutamatergic circuits has been postulated to play a role in the underlying pathophysiology of schizophrenia. Furthermore, inhibition of the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors (NMDAR) induces a syndrome that recapitulates many of the symptoms observed in patients with schizophrenia. Selective activation of metabotropic glutamate receptor subtype 5 (mGlu5) may provide a novel therapeutic approach for treatment of symptoms associated with schizophrenia through facilitation of transmission through central glutamatergic circuits. Here, we describe the characterization of two novel N-aryl piperazine mGlu5 positive allosteric modulators (PAMs): 2-(4-(2-(benzyloxy)acetyl)piperazin-1-yl)benzonitrile (VU0364289) and 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE). VU0364289 and DPFE induced robust leftward shifts in the glutamate concentration-response curves for Ca2+ mobilization and extracellular signal-regulated kinases 1 and 2 phosphorylation. Both PAMs displayed micromolar affinity for the common mGlu5 allosteric binding site and high selectivity for mGlu5. VU0364289 and DPFE possessed suitable pharmacokinetic properties for dosing in vivo and produced robust dose-related effects in reversing amphetamine-induced hyperlocomotion, a preclinical model predictive of antipsychotic-like activity. In addition, DPFE enhanced acquisition of contextual fear conditioning in rats and reversed behavioral deficits in a mouse model of NMDAR hypofunction. In contrast, DPFE had no effect on reversing apomorphine-induced disruptions of prepulse inhibition of the acoustic startle reflex. These mGlu5 PAMs also increased monoamine levels in the prefrontal cortex, enhanced performance in a hippocampal-mediated memory task, and elicited changes in electroencephalogram dynamics commensurate with procognitive effects. Collectively, these data support and extend the role for the development of novel

  19. A Case Study of Elementary Beginning Mathematics Teachers' Efficacy Development

    ERIC Educational Resources Information Center

    Chang, Yu-Liang

    2010-01-01

    The main purpose of this research was to explore the developmental process of and possible changes in beginning elementary mathematics teachers' efficacy. Beginning teachers with and without mathematics and science backgrounds were also compared to explore differences in their efficacy development. A multiple-case study method with a process and…

  20. Self-Efficacy and Collaborative Learning: An Intervention Study

    ERIC Educational Resources Information Center

    Robertson, Jane

    2012-01-01

    Findings from empirical research suggest that both self-efficacy beliefs and collaborative learning may have an influence upon student academic performance. However, the phenomena of self-efficacy beliefs, collaborative learning, and academic achievement have not been studied in concert with one another. Using quantitative research methods, I…

  1. Preclinical and clinical studies with cysteamine and pantethine related to the central nervous system.

    PubMed

    Vécsei, L; Widerlöv, E

    1990-01-01

    1. Cysteamine is formed by degradation of coenzyme A (CoA) and causes somatostatin (SS), prolactin and noradrenaline depletion in the brain and peripheral tissues. 2. Cysteamine influences several behavioral processes, like active and passive avoidance behavior, open-field activity, kindled seizures, pain perception and SS-induced barrel rotation. 3. Cysteamine has several established (cystinosis, radioprotection, acetaminophen poisoning) and theoretical (Huntington's disease, prolactin-secreting adenomas) indications in clinical practice. 4. Pantethine is a naturally occurring compound which is metabolized to cysteamine. 5. Pantethine depletes SS, prolactin and noradrenaline with lower efficacy compared to that of cysteamine. 6. Pantethine is well tolerated by patients and has been suggested to treatment of atherosclerosis. The other possible clinical indications (alcoholism, Parkinson's disease, instead of cysteamine) are discussed. PMID:2277850

  2. Preclinical Diastolic Dysfunction

    PubMed Central

    Wan, Siu-Hin; Vogel, Mark W.; Chen, Horng H

    2014-01-01

    Preclinical Diastolic Dysfunction (PDD) has been broadly defined as subjects with left ventricular diastolic dysfunction, without the diagnosis of congestive heart failure (HF), and with normal systolic function. PDD is an entity which remains poorly understood, yet has definite clinical significance. Although few original studies have focused on PDD, it has been shown that PDD is prevalent, and that there is a clear progression from PDD to symptomatic heart failure including dyspnea, edema, and fatigue. In diabetic patients and patients with coronary artery disease or hypertension, it has been shown that patients with PDD have a significantly higher risk of progression to heart failure and death compared to patients without PDD. Because of these findings and the increasing prevalence of the heart failure epidemic, it is clear that an understanding of PDD is essential to decreasing patients’ morbidity and mortality. This review will focus on what is known concerning preclinical diastolic dysfunction, including definitions, staging, epidemiology, pathophysiology, and the natural history of the disease. In addition, given the paucity of trials focused on PDD treatment, studies targeting risk factors associated with the development of PDD and therapeutic trials for heart failure with preserved ejection fraction will be reviewed. PMID:24291270

  3. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical-translational studies

    SciTech Connect

    Miller, Janine D.; Scull, Heather

    2007-11-01

    Photodynamic therapy (PDT) is emerging as a promising non-invasive treatment for cancers. PDT involves either local or systemic administration of a photosensitizing drug, which preferentially localizes within the tumor, followed by illumination of the involved organ with light, usually from a laser source. Here, we provide a selective overview of our experience with PDT at Case Western Reserve University, specifically with the silicon phthalocyanine photosensitizer Pc 4. We first review our in vitro studies evaluating the mechanism of cell killing by Pc 4-PDT. Then we briefly describe our clinical experience in a Phase I trial of Pc 4-PDT and our preliminary translational studies evaluating the mechanisms behind tumor responses. Preclinical work identified (a) cardiolipin and the anti-apoptotic proteins Bcl-2 and Bcl-xL as targets of Pc 4-PDT, (b) the intrinsic pathway of apoptosis, with the key participation of caspase-3, as a central response of many human cancer cells to Pc 4-PDT, (c) signaling pathways that could modify apoptosis, and (d) a formulation by which Pc 4 could be applied topically to human skin and penetrate at least through the basal layer of the epidermis. Clinical-translational studies enabled us to develop an immunohistochemical assay for caspase-3 activation, using biopsies from patients treated with topical Pc 4 in a Phase I PDT trial for cutaneous T-cell lymphoma. Results suggest that this assay may be used as an early biomarker of clinical response.

  4. Does Bacillus anthracis Lethal Toxin Directly Depress Myocardial Function? A Review of Clinical Cases and Preclinical Studies

    PubMed Central

    Suffredini, Dante A.; Sampath-Kumar, Hanish; Li, Yan; Ohanjanian, Lernik; Remy, Kenneth E.; Cui, Xizhong; Eichacker, Peter Q.

    2015-01-01

    The US outbreak of B.anthracis infection in 2001 and subsequent cases in the US and Europe demonstrate that anthrax is a continuing risk for the developed world. While several bacterial components contribute to the pathogenesis of B. anthracis, production of lethal toxin (LT) is strongly associated with the development of hypotension and lethality. However, the mechanisms underlying the cardiovascular instability LT produces are unclear. Some evidence suggests that LT causes shock by impairing the peripheral vasculature, effects consistent with the substantial extravasation of fluid in patients dying with B. anthracis. Other data suggests that LT directly depresses myocardial function. However a clinical correlate for this latter possibility is less evident since functional studies and post-mortem examination in patients demonstrate absent or minimal cardiac changes. The purposes of this review were to first present clinical studies of cardiac functional and histologic pathology with B. anthracis infection and to then examine in vivo, in vitro, and ex vivo preclinical studies of LT’s myocardial effects. Together, these data suggest that it is unclear whether that LT directly depresses cardiac function. This question is important for the clinical management and development of new therapies for anthrax and efforts should continue to be made to answer it. PMID:26703730

  5. Does Bacillus anthracis Lethal Toxin Directly Depress Myocardial Function? A Review of Clinical Cases and Preclinical Studies.

    PubMed

    Suffredini, Dante A; Sampath-Kumar, Hanish; Li, Yan; Ohanjanian, Lernik; Remy, Kenneth E; Cui, Xizhong; Eichacker, Peter Q

    2015-12-01

    The US outbreak of B.anthracis infection in 2001 and subsequent cases in the US and Europe demonstrate that anthrax is a continuing risk for the developed world. While several bacterial components contribute to the pathogenesis of B. anthracis, production of lethal toxin (LT) is strongly associated with the development of hypotension and lethality. However, the mechanisms underlying the cardiovascular instability LT produces are unclear. Some evidence suggests that LT causes shock by impairing the peripheral vasculature, effects consistent with the substantial extravasation of fluid in patients dying with B. anthracis. Other data suggests that LT directly depresses myocardial function. However a clinical correlate for this latter possibility is less evident since functional studies and post-mortem examination in patients demonstrate absent or minimal cardiac changes. The purposes of this review were to first present clinical studies of cardiac functional and histologic pathology with B. anthracis infection and to then examine in vivo, in vitro, and ex vivo preclinical studies of LT's myocardial effects. Together, these data suggest that it is unclear whether that LT directly depresses cardiac function. This question is important for the clinical management and development of new therapies for anthrax and efforts should continue to be made to answer it. PMID:26703730

  6. The discovery of rivaroxaban: translating preclinical assessments into clinical practice

    PubMed Central

    Kubitza, Dagmar; Perzborn, Elisabeth; Berkowitz, Scott D.

    2013-01-01

    Direct oral anticoagulants that target a single coagulation factor (such as factor Xa or thrombin) have been developed in recent years in an attempt to address some of the limitations of traditional anticoagulants. Rivaroxaban is an oral, direct factor Xa inhibitor that inhibits free and clot-bound factor Xa and factor Xa in the prothrombinase complex. Preclinical studies demonstrated a potent anticoagulant effect of rivaroxaban in plasma as well as the ability of this agent to prevent and treat venous and arterial thrombosis in animal models. These studies led to an extensive phase I clinical development program that investigated the pharmacological properties of rivaroxaban in humans. In these studies, rivaroxaban was shown to exhibit predictable pharmacokinetics and pharmacodynamics and to have no clinically relevant interactions with many commonly prescribed co-medications. The pharmacodynamic effects of rivaroxaban (for example, inhibition of factor Xa and prolongation of prothrombin time) were closely correlated with rivaroxaban concentrations in plasma. The encouraging findings from preclinical and early clinical studies were expanded upon in large, randomized phase III studies, which demonstrated the clinical efficacy and safety of rivaroxaban in a broad spectrum of patients. This article provides an overview of the discovery and development of rivaroxaban, describing the pharmacodynamic profile established in preclinical studies and the optimal translation to clinical studies in healthy subjects and patient populations. PMID:24324436

  7. Preclinical Efficacy and Safety Profile of Allometrically Scaled Doses of Doxycycline Used to Turn "On" Therapeutic Transgene Expression from High-Capacity Adenoviral Vectors in a Glioma Model.

    PubMed

    VanderVeen, Nathan; Raja, Nicholas; Yi, Elizabeth; Appelman, Henry; Ng, Philip; Palmer, Donna; Zamler, Daniel; Dzaman, Marta; Lowenstein, Pedro R; Castro, Maria G

    2016-06-01

    Glioblastoma multiforme (GBM) is the most commonly occurring primary brain cancer in adults, in whom its highly infiltrative cells prevent total surgical resection, often leading to tumor recurrence and patient death. Our group has discovered a gene therapy approach for GBM that utilizes high-capacity "gutless" adenoviral vectors encoding regulatable therapeutic transgenes. The herpes simplex type 1-thymidine kinase (TK) actively kills dividing tumor cells in the brain when in the presence of the prodrug, ganciclovir (GCV), whereas the FMS-like tyrosine kinase 3 ligand (Flt3L) is an immune-stimulatory molecule under tight regulation by a tetracycline-inducible "Tet-On" activation system that induces anti-GBM immunity. As a prelude to a phase I clinical trial, we evaluated the safety and efficacy of Food and Drug Administration (FDA)-approved doses of the tetracycline doxycycline (DOX) allometrically scaled for rats. DOX initiates the expression of Flt3L, which has been shown to recruit dendritic cells to the brain tumor microenvironment-an integral first step in the development of antitumor immunity. The data revealed a highly safe profile surrounding these human-equivalent doses of DOX under an identical therapeutic window as proposed in the clinical trial. This was confirmed through a neuropathological analysis, liver and kidney histopathology, detection of neutralizing antibodies, and systemic toxicities in the blood. Interestingly, we observed a significant survival advantage in rats with GBM receiving the 300 mg/day equivalent dosage of DOX versus the 200 mg/day equivalent. Additionally, rats rejected "recurrent" brain tumor threats implanted 90 days after their primary brain tumors. We also show that DOX detection within the plasma can be an indicator of optimal dosing of DOX to attain therapeutic levels. This work has significant clinical relevance for an ongoing phase I clinical trial in humans with primary GBM and for other therapeutic approaches using

  8. Re-Evaluate the Effect of Hyperbaric Oxygen Therapy in Cancer - A Preclinical Therapeutic Small Animal Model Study

    PubMed Central

    Pande, Sneha; Sengupta, Amit; Srivastava, Anurag; Gude, Rajiv P.; Ingle, Arvind

    2012-01-01

    Tumor hypoxia is a known driver of angiogenesis that also facilitates tumor growth. Moreover, poorly oxygenated central tumor area remains relatively radio or chemo resistant. HBO therapy is known to elevate the levels of dissolved oxygen and eliminates tumor hypoxia. It has been one of the modalities in cancer treatment; therefore its optimization is important. In this experimental study, no cancer enhancing effect was seen during the course of HBO therapy; however, post therapy there was an accelerated growth and progression of tumor. HBO treated mice lived shorter and the response to therapy was dose & tumor volume dependent. HBO therapy probably exert its effect on the cancer proliferating cells through multiple pathways such as increased DNA damage, apoptosis & geno-toxicity leading to slow cancer progression while post therapy tumorigenic effect could be due to impaired DNA repair mechanism, mutagenic effect & aneuploidy as well as altered blood supply & nutrients. Tumor growth reached plateau with time and this finding validated theoretical model predicting tumor reaching an asymptotic limit. While, marked asymmetry observed in tumor volume progression or cancer cell proliferation rate in each of the experimental C3H mouse suggested a need for an alternate small animal pre-clinical cancer therapeutic model. PMID:23144880

  9. Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney Injury in Multi-site Preclinical Biomarker Qualification Studies

    PubMed Central

    Vaidya, Vishal S.; Ozer, Josef S.; Frank, Dieterle; Collings, Fitz B.; Ramirez, Victoria; Troth, Sean; Muniappa, Nagaraja; Thudium, Douglas; Gerhold, David; Holder, Daniel J.; Bobadilla, Norma A.; Marrer, Estelle; Perentes, Elias; Cordier, André; Vonderscher, Jacky; Maurer, Gérard; Goering, Peter L.; Sistare, Frank D.; Bonventre, Joseph V.

    2010-01-01

    Kidney toxicity accounts for a significant percentage of morbidity and drug candidate failure. Serum creatinine (SCr) and blood urea nitrogen (BUN) have been used to monitor kidney dysfunction for over a century but these markers are insensitive and non-specific. In multi-site preclinical rat toxicology studies the diagnostic performance of urinary kidney injury molecule-1 (Kim-1) was compared to traditional biomarkers as predictors of kidney tubular histopathologic changes, currently considered the “gold standard” of nephrotoxicity. In multiple models of kidney injury, urinary Kim-1 significantly outperformed SCr and BUN. The area under the receiver operating characteristic curve for Kim-1 was between 0.91 and 0.99 as compared to 0.79 to 0.9 for BUN and 0.73 to 0.85 for SCr. Thus urinary Kim-1 is the first injury biomarker of kidney toxicity qualified by the FDA and EMEA and is expected to significantly improve kidney safety monitoring. PMID:20458318

  10. A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies.

    PubMed

    Verhaegen, Frank; van Hoof, Stefan; Granton, Patrick V; Trani, Daniela

    2014-12-01

    Recently, precision irradiators integrated with a high-resolution CT imaging device became available for pre-clinical studies. These research platforms offer significant advantages over older generations of animal irradiators in terms of precision and accuracy of image-guided radiation targeting. These platforms are expected to play a significant role in defining experiments that will allow translation of research findings to the human clinical setting. In the field of radiotherapy, but also others such as neurology, the platforms create unique opportunities to explore e.g. the synergy between radiation and drugs or other agents. To fully exploit the advantages of this new technology, accurate methods are needed to plan the irradiation and to calculate the three-dimensional radiation dose distribution in the specimen. To this end, dedicated treatment planning systems are needed. In this review we will discuss specific issues for precision irradiation of small animals, we will describe the workflow of animal treatment planning, and we will examine several dose calculation algorithms (factorization, superposition-convolution, Monte Carlo simulation) used for animal irradiation with kilovolt photon beams. Issues such as dose reporting methods, photon scatter, tissue segmentation and motion will also be discussed briefly. PMID:24629309