Science.gov

Sample records for preconditioning induces neuroprotective

  1. TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning.

    PubMed

    Packard, Amy E B; Leung, Philberta Y; Vartanian, Keri B; Stevens, Susan L; Bahjat, Frances R; Stenzel-Poore, Mary P

    2012-12-01

    Systemic preconditioning with the TLR9 ligand CpG induces neuroprotection against brain ischemic injury through a tumor necrosis factor (TNF)-dependent mechanism. It is unclear how systemic administration of CpG engages the brain to induce the protective phenotype. To address this, we created TLR9-deficient reciprocal bone marrow chimeric mice lacking TLR9 on either hematopoietic cells or radiation-resistant cells of nonhematopoietic origin. We report that wild-type mice reconstituted with TLR9-deficient hematopoietic cells failed to show neuroprotection after systemic CpG preconditioning. Further, while hematopoietic expression of TLR9 is required for CpG-induced neuroprotection it is not sufficient to restore protection to TLR9-deficient mice that are reconstituted with hematopoietic cells bearing TLR9. To determine whether the absence of protection was associated with TNF, we examined TNF levels in the systemic circulation and the brain. We found that although TNF is required for CpG preconditioning, systemic TNF levels did not correlate with the protective phenotype. However, induction of cerebral TNF mRNA required expression of TLR9 on both hematopoietic and nonhematopoietic cells and correlated with neuroprotection. In accordance with these results, we show the therapeutic potential of intranasal CpG preconditioning, which induces brain TNF mRNA and robust neuroprotection with no concomitant increase in systemic levels of TNF. PMID:23010947

  2. Failure and rescue of preconditioning-induced neuroprotection in severe stroke-like insults.

    PubMed

    Tauskela, Joseph S; Aylsworth, Amy; Hewitt, Melissa; Brunette, Eric; Blondeau, Nicolas

    2016-06-01

    Preconditioning is a well established neuroprotective modality. However, the mechanism and relative efficacy of neuroprotection between diverse preconditioners is poorly defined. Cultured neurons were preconditioned by 4-aminopyridine and bicuculline (4-AP/bic), rendering neurons tolerant to normally lethal (sufficient to kill most neurons) oxygen-glucose deprivation (OGD) or a chemical OGD-mimic, ouabain/TBOA, by suppression of extracellular glutamate (glutamateex) elevations. However, subjecting preconditioned neurons to longer-duration supra-lethal insults caused neurotoxic glutamateex elevations, thereby identifying a 'ceiling' to neuroprotection. Neuroprotective 'rescue' of neurons could be obtained by administration of an NMDA receptor antagonist, MK-801, just before glutamateex rose during these supra-lethal insults. Next, we evaluated if these concepts of glutamateex suppression during lethal OGD, and a neuroprotective ceiling requiring MK-801 rescue under supra-lethal OGD, extended to the preconditioning field. In screening a panel of 42 diverse putative preconditioners, neuroprotection against normally lethal OGD was observed in 12 cases, which correlated with glutamateex suppression, both of which could be reversed, either by the inclusion of a glutamate uptake inhibitor (TBOA, to increase glutamateex levels) during OGD or by exposure to supra-lethal OGD. Administrating MK-801 during the latter stages of supra-lethal OGD again rescued neurons, although to varying degrees dependent on the preconditioning agent. Thus, 'stress-testing' against the harshest ischemic-like insults yet tested identifies the most efficacious preconditioners, which dictates how early MK-801 needs to be administered during the insult in order to maintain neuroprotection. Preconditioning delays a neurotoxic rise in glutamateex levels, thereby 'buying time' for acute anti-excitotoxic pharmacologic rescue. PMID:26867506

  3. Is longer sevoflurane preconditioning neuroprotective in permanent focal cerebral ischemia?

    PubMed

    Qiu, Caiwei; Sheng, Bo; Wang, Shurong; Liu, Jin

    2013-08-15

    Sevoflurane preconditioning has neuroprotective effects in the cerebral ischemia/reperfusion model. However, its influence on permanent cerebral ischemia remains unclear. In the present study, the rats were exposed to sevoflurane for 15, 30, 60, and 120 minutes, followed by induction of permanent cerebral ischemia. Results demonstrated that 30- and 60-minute sevoflurane preconditioning significantly reduced the infarct volume at 24 hours after cerebral ischemia, and 60-minute lurane preconditioning additionally reduced the number of TUNEL- and caspase-3-positive cells in the ischemic penumbra. However, 120-minute sevoflurane preconditioning did not show evident neuroprotective effects. Moreover, 60-minute sevoflurane preconditioning significantly attenuated neurological deficits and infarct volume in rats at 4 days after cerebral ischemia. These findings indicated that 60-minute sevoflurane preconditioning can induce the best neuroprotective effects in rats with permanent cerebral ischemia through the inhibition of apoptosis. PMID:25206521

  4. Transient expression of Nxf, a bHLH-PAS transactivator induced by neuronal preconditioning, confers neuroprotection in cultured cells.

    PubMed

    Hester, Ian; McKee, Sarah; Pelletier, Phillip; Thompson, Charles; Storbeck, Christopher; Mears, Alan; Schulz, Jörg B; Hakim, Antoine A; Sabourin, Luc A

    2007-03-01

    Cortical spreading depression (CSD) induces waves of neuronal depolarization that confer neuroprotection to subsequent ischemic events in the rat brain. To gain insights into the molecular mechanisms elicited by CSD, we used representational difference analysis (RDA) to identify mRNAs induced by potassium depolarization in vivo. Using this approach, we have isolated a cDNA encoding the SIM2-related bHLH-PAS protein Nxf. Our results confirm that Nxf mRNA and protein are rapidly and transiently expressed in cortical neurons following CSD. Reporter assays show that Nxf is a transcriptional activator that associates with the bHLH-PAS sub-class co-factor ARNT2. Adenovirus-mediated expression of epitope-tagged Nxf results in cell death and the direct activation of the Bax gene in cultured cells. However, RNA interference studies show that endogenous Nxf is required for optimal neuroprotection by preconditioning in cultured F-11 cells. Together, our data indicate that Nxf is a novel bHLH-PAS transactivator transiently induced by preconditioning and that its sustained expression is detrimental. The identification of Nxf may represent an important step in our understanding of the molecular mechanisms of brain preconditioning and injury. PMID:17214977

  5. Repeated preconditioning with hyperbaric oxygen induces neuroprotection against forebrain ischemia via suppression of p38 mitogen activated protein kinase.

    PubMed

    Yamashita, Satoshi; Hirata, Takao; Mizukami, Yoichi; Cui, Ying Jun; Fukuda, Shiro; Ishida, Kazuyoshi; Matsumoto, Mishiya; Sakabe, Takefumi

    2009-12-01

    We previously reported in rats that preconditioning with hyperbaric oxygen (HBO; 100% O(2) 3.5-atomsphere absolute (ATA), 1 h/day for 5 days) provided neuroprotection against transient (8 min) forebrain ischemia possibly through protein synthesis relevant to neurotrophin receptor and inflammatory-immune system. A recent report suggested that HBO-induced neuroprotection is relevant to brain derived neurotrophic factor and its downstream event involving suppression of p38 mitogen activated protein kinase (p38) activation. In the present study, we first performed a dose comparison (1, 2, and 3.5 ATA) of HBO-induced neuroprotection and then investigated pharmacological modification by 10 mg/kg anisomycin (a protein synthesis inhibitor and potent activator for p38) and 200 microg/kg SB203580 (a p38 inhibitor), which were given intraperitoneally 60 and 30 min before every 3.5 ATA-HBO treatment, respectively. Most prominent protective effect on hippocampal CA1 neurons was observed with 3.5 ATA-HBO (survived neurons: 69% [62-73%] vs. untreated: 3.9% [2-8%], 1 ATA: 8.8% [0-26%], 2 ATA-HBO: 46% [22-62%] (median [range]) (7 days after ischemia). Anisomycin abolished a neuroprotective effect (survived neuron: 1.2% [0-7%]). SB203580, when given between administration of anisomycin and HBO treatment, resumed a neuroprotective effect (survived neuron: 52% [37-62%]). The level of phosphorylated p38 at 10-min reperfusion was significantly decreased in 3.5 ATA-HBO group (32% [12-53%] of sham). Single pretreatment with 100 and 200 microg/kg of SB203580 exerted a similar neuroprotective effect (39% [25-51%] and 59% [50-72%]) to 2 and 3.5 ATA-HBO preconditioning, respectively. It is concluded that suppression of p38 phosphorylation plays a key role in HBO-induced neuroprotection and that pretreatment with a p38 inhibitor (SB203580) can provide similar neuroprotection. PMID:19747454

  6. Mitochondria: the missing link between preconditioning and neuroprotection.

    PubMed

    Correia, Sónia C; Santos, Renato X; Perry, George; Zhu, Xiongwei; Moreira, Paula I; Smith, Mark A

    2010-01-01

    The quote "what does not kill you makes you stronger" perfectly describes the preconditioning phenomenon - a paradigm that affords robust brain tolerance in the face of neurodegenerative insults. Over the last few decades, many attempts have been made to identify the molecular mechanisms involved in preconditioning-induced protective responses, and recent data suggests that many of these mechanisms converge on the mitochondria, positing mitochondria as master regulators of preconditioning-triggered endogenous neuroprotection. In this review, we critically discuss evidence for the involvement of mitochondria within the preconditioning paradigm. We will highlight the crucial targets and mediators by which mitochondria are integrated into neuroprotective signaling pathways that underlie preconditioning, putting focus on mitochondrial respiratory chain and mitochondrial reactive oxygen species, mitochondrial ATP-sensitive potassium channels, mitochondrial permeability transition pore, uncoupling proteins, and mitochondrial antioxidant enzyme manganese superoxide dismutase. We also discuss the role of mitochondria in the induction of hypoxia-inducible factor-1, a transcription factor engaged in preconditioning-mediated neuroprotective effects. The identification of intrinsic mitochondrial mechanisms involved in preconditioning will provide new insights which can be translated into potential pharmacological interventions aimed at counteracting neurodegeneration. PMID:20463394

  7. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

    PubMed Central

    Wang, Kun; Kong, Xiangang

    2016-01-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K+ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  8. Calcium preconditioning triggers neuroprotection in retinal ganglion cells

    PubMed Central

    Brandt, Sean K.; Weatherly, Monique E.; Ware, Lillian; Linn, David M.; Linn, Cindy L.

    2010-01-01

    In the mammalian retina, excitotoxicity has been shown to be involved in apoptotic retinal ganglion cell (RGC) death and is associated with certain retinal disease states including glaucoma, diabetic retinopathy and retinal ischemia. Previous studies from this lab (Wehrwein et al., 2004) have demonstrated that acetylcholine (ACh) and nicotine protects against glutamate-induced excitotoxicity in isolated adult pig RGCs through nicotinic acetylcholine receptors (nAChRs). Activation of nAChRs in these RGCs triggers cell survival signaling pathways and inhibits apoptotic enzymes (Asomugha et al., 2010). However, the link between binding of nAChRs and activation of neuroprotective pathways is unknown. In this study, we examine the hypothesis that calcium permeation through nAChR channels is required for ACh-induced neuroprotection against glutamate-induced excitotoxicity in isolated pig RGCs. RGCs were isolated from other retinal tissue using a two step panning technique and cultured for 3 days under different conditions. In some studies, calcium imaging experiments were performed using the fluorescent calcium indicator, fluo-4, and demonstrated that calcium permeates the nAChR channels located on pig RGCs. In other studies, the extracellular calcium concentration was altered to determine the effect on nicotine-induced neuroprotection. Results support the hypothesis that calcium is required for nicotine-induced neuroprotection in isolated pig RGCs. Lastly, studies were performed to analyze the effects of preconditioning on glutamate-induced excitotoxicity and neuroprotection. In these studies, a preconditioning dose of calcium was introduced to cells using a variety of mechanisms before a large glutamate insult was applied to cells. Results from these studies support the hypothesis that preconditioning cells with a relatively low level of calcium before an excitotoxic insult leads to neuroprotection. In the future, these results could provide important information

  9. Calcium preconditioning triggers neuroprotection in retinal ganglion cells.

    PubMed

    Brandt, S K; Weatherly, M E; Ware, L; Linn, D M; Linn, C L

    2011-01-13

    In the mammalian retina, excitotoxicity has been shown to be involved in apoptotic retinal ganglion cell (RGC) death and is associated with certain retinal disease states including glaucoma, diabetic retinopathy and retinal ischemia. Previous studies from this lab [Wehrwein E, Thompson SA, Coulibaly SF, Linn DM, Linn CL (2004) Invest Ophthalmol Vis Sci 45:1531-1543] have demonstrated that acetylcholine (ACh) and nicotine protects against glutamate-induced excitotoxicity in isolated adult pig RGCs through nicotinic acetylcholine receptors (nAChRs). Activation of nAChRs in these RGCs triggers cell survival signaling pathways and inhibits apoptotic enzymes [Asomugha CO, Linn DM, Linn CL (2010) J Neurochem 112:214-226]. However, the link between binding of nAChRs and activation of neuroprotective pathways is unknown. In this study, we examine the hypothesis that calcium permeation through nAChR channels is required for ACh-induced neuroprotection against glutamate-induced excitotoxicity in isolated pig RGCs. RGCs were isolated from other retinal tissue using a two step panning technique and cultured for 3 days under different conditions. In some studies, calcium imaging experiments were performed using the fluorescent calcium indicator, fluo-4, and demonstrated that calcium permeates the nAChR channels located on pig RGCs. In other studies, the extracellular calcium concentration was altered to determine the effect on nicotine-induced neuroprotection. Results support the hypothesis that calcium is required for nicotine-induced neuroprotection in isolated pig RGCs. Lastly, studies were performed to analyze the effects of preconditioning on glutamate-induced excitotoxicity and neuroprotection. In these studies, a preconditioning dose of calcium was introduced to cells using a variety of mechanisms before a large glutamate insult was applied to cells. Results from these studies support the hypothesis that preconditioning cells with a relatively low level of calcium before

  10. Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia.

    PubMed

    Kim, Dong Won; Lee, Jae-Chul; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Seo, Jeong Yeol; Cho, Jun Hwi; Kang, Il Jun; Hong, Seongkweon; Kim, Young-Myeong; Won, Moo-Ho; Kim, In Hye

    2015-09-01

    Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia. PMID:26290267

  11. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection

    PubMed Central

    Neumann, Jake T; Thompson, John W; Raval, Ami P; Cohan, Charles H; Koronowski, Kevin B; Perez-Pinzon, Miguel A

    2015-01-01

    Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation altered neuronal excitability, and whether these changes were BDNF-mediated. We used both in vitro (hippocampal organotypic cultures and cortical neuronal-glial cocultures) and in vivo (acute hippocampal slices 48 hours after preconditioning) models of IPC or PKCɛ activation. BDNF protein expression increased 24 to 48 hours after preconditioning, where inhibition of the BDNF Trk receptors abolished neuroprotection against oxygen and glucose deprivation (OGD) in vitro. In addition, there was a significant decrease in neuronal firing frequency and increase in threshold potential 48 hours after preconditioning in vivo, where this threshold modulation was dependent on BDNF activation of Trk receptors in excitatory cortical neurons. In addition, 48 hours after PKCɛ activation in vivo, the onset of anoxic depolarization during OGD was significantly delayed in hippocampal slices. Overall, these results suggest that after IPC or PKCɛ activation, there are BDNF-dependent electrophysiologic modifications that lead to neuroprotection. PMID:25370861

  12. Preconditioning Provides Neuroprotection in Models of CNS Disease: Paradigms and Clinical Significance

    PubMed Central

    Stetler, R. Anne; Leak, Rehana K.; Gan, Yu; Li, Peiying; Hu, Xiaoming; Jing, Zheng; Chen, Jun; Zigmond, Michael J.; Gao, Yanqin

    2014-01-01

    Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of “cross-tolerance,” in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning. In a subsequent components of this two-part series, we will discuss the cellular and molecular events that are likely to underlie these phenomena. PMID:24389580

  13. Remote Limb Ischemic Preconditioning: A Neuroprotective Technique in Rodents.

    PubMed

    Brandli, Alice

    2015-01-01

    Sublethal ischemia protects tissues against subsequent, more severe ischemia through the upregulation of endogenous mechanisms in the affected tissue. Sublethal ischemia has also been shown to upregulate protective mechanisms in remote tissues. A brief period of ischemia (5-10 min) in the hind limb of mammals induces self-protective responses in the brain, lung, heart and retina. The effect is known as remote ischemic preconditioning (RIP). It is a therapeutically promising way of protecting vital organs, and is already under clinical trials for heart and brain injuries. This publication demonstrates a controlled, minimally invasive method of making a limb - specifically the hind limb of a rat - ischemic. A blood pressure cuff developed for use in human neonates is connected to a manual sphygmomanometer and used to apply 160 mmHg pressure around the upper part of the hind limb. A probe designed to detect skin temperature is used to verify the ischemia, by recording the drop in skin temperature caused by pressure-induced occlusion of the leg arteries, and the rise in temperature which follows release of the cuff. This method of RIP affords protection to the rat retina against bright light-induced damage and degeneration. PMID:26065365

  14. Role of MicroRNAs in innate neuroprotection mechanisms due to preconditioning of the brain

    PubMed Central

    Jimenez-Mateos, Eva M.

    2015-01-01

    Insults to the brain that are sub-threshold for damage activate endogenous protective pathways, which can temporarily protect the brain against a subsequent harmful episode. This mechanism has been named as tolerance and its protective effects have been shown in experimental models of ischemia and epilepsy. The preconditioning-stimulus can be a short period of ischemia or mild seizures induced by low doses of convulsant drugs. Gene-array profiling has shown that both ischemic and epileptic tolerance feature large-scale gene down-regulation but the mechanism are unknown. MicroRNAs are a class of small non-coding RNAs of ~20–22 nucleotides length which regulate gene expression at a post-transcriptional level via mRNA degradation or inhibition of protein translation. MicroRNAs have been shown to be regulated after non-harmful and harmful stimuli in the brain and to contribute to neuroprotective mechanisms. This review focuses on the role of microRNAs in the development of tolerance following ischemic or epileptic preconditioning. PMID:25954143

  15. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats.

    PubMed

    Otsuka, Shotaro; Sakakima, Harutoshi; Sumizono, Megumi; Takada, Seiya; Terashi, Takuto; Yoshida, Yoshihiro

    2016-04-15

    Preconditioning exercise can exert neuroprotective effects after stroke. However, the mechanism underlying these neuroprotective effects by preconditioning exercise remains unclear. We investigated the neuroprotective effects of preconditioning exercise on brain damage and the expression levels of the midkine (MK) and brain-derived neurotrophic factor (BDNF) after brain ischemia. Animals were assigned to one of 4 groups: exercise and ischemia (Ex), no exercise and ischemia (No-Ex), exercise and no ischemia (Ex-only), and no exercise and intact (Control). Rats ran on a treadmill for 30 min once a day at a speed of 25 m/min for 5 days a week for 3 weeks. After the exercise program, stroke was induced by a 60 min left middle cerebral artery occlusion using an intraluminal filament. The infarct volume, motor function, neurological deficits, and the cellular expressions levels of MK, BDNF, GFAP, PECAM-1, caspase 3, and nitrotyrosine (NT) were evaluated 48 h after the induction of ischemia. The infarct volume, neurological deficits and motor function in the Ex group were significantly improved compared to that of the No-Ex group. The expression levels of MK, BDNF, GFAP, and PECAM-1 were enhanced in the Ex group compared to the expression levels in the No-Ex group after brain ischemia, while the expression levels of activated caspase 3 and NT were reduced in the area surrounding the necrotic lesion. Our findings suggest that preconditioning exercise reduced the infract volume and ameliorated motor function, enhanced expression levels of MK and BDNF, increased astrocyte proliferation, increased angiogenesis, and reduced neuronal apoptosis and oxidative stress. PMID:26808606

  16. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation

    PubMed Central

    Sun, Meiyan; Deng, Bin; Zhao, Xiaoyong; Gao, Changjun; Yang, Lu; Zhao, Hui; Yu, Daihua; Zhang, Feng; Xu, Lixian; Chen, Lei; Sun, Xude

    2015-01-01

    Excessive microglial activation often contributes to inflammation-mediated neurotoxicity in the ischemic penumbra during the acute stage of ischemic stroke. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation via the NF-κB pathway. Isoflurane preconditioning (IP) can provide neuroprotection and inhibit microglial activation. In this study, we investigated the roles of the TLR4 signalling pathway in IP to exert neuroprotection following ischemic stroke in vivo and in vitro. The results showed that 2% IP alleviated neurological deficits, reduced the infarct volume, attenuated apoptosis and weakened microglial activation in the ischemic penumbra. Furthermore, IP down-regulated the expression of HSP 60, TLR4 and MyD88 and up-regulated inhibitor of IκB-α expression compared with I/R group in vivo. In vitro, 2% IP and a specific inhibitor of TLR4, CLI-095, down-regulated the expression of TLR4, MyD88, IL-1β, TNF-α and Bax, and up-regulated IκB-α and Bcl-2 expression compared with OGD group. Moreover, IP and CLI-095 attenuated microglial activation-induced neuronal apoptosis, and overexpression of the TLR4 gene reversed the neuroprotective effects of IP. In conclusion, IP provided neuroprotection by regulating TLR4 expression directly, alleviating microglial activation and neuroinflammation. Thus, inhibiting the activation of microglial activation via TLR4 may be a new avenue for stroke treatment. PMID:26086415

  17. The P2X4 receptor is required for neuroprotection via ischemic preconditioning

    PubMed Central

    Ozaki, Tomohiko; Muramatsu, Rieko; Sasai, Miwa; Yamamoto, Masahiro; Kubota, Yoshiaki; Fujinaka, Toshiyuki; Yoshimine, Toshiki; Yamashita, Toshihide

    2016-01-01

    Ischemic preconditioning (IPC), a procedure consisting of transient ischemia and subsequent reperfusion, provides ischemic tolerance against prolonged ischemia in the brain. Although the blood flow changes mediated by IPC are primarily perceived by vascular endothelial cells, the role of these cells in ischemic tolerance has not been fully clarified. In this study, we found that the P2X4 receptor, which is abundantly expressed in vascular endothelial cells, is required for ischemic tolerance following middle artery occlusion (MCAO) in mice. Mechanistically, the P2X4 receptor was stimulated by fluid shear stress, which mimics reperfusion, thus promoting the increased expression of osteopontin, a neuroprotective molecule. Furthermore, we found that the intracerebroventricular administration of osteopontin was sufficient to exert a neuroprotective effect mediated by preconditioning-stimulated P2X4 receptor activation. These results demonstrate a novel mechanism whereby vascular endothelial cells are involved in ischemic tolerance. PMID:27173846

  18. p-ERK involvement in the neuroprotection exerted by ischemic preconditioning in rat hippocampus subjected to four vessel occlusion.

    PubMed

    Kovalska, M; Kovalska, L; Mikuskova, K; Adamkov, M; Tatarkova, Z; Lehotsky, J

    2014-12-01

    Global brain ischemia-reperfusion causes delayed cell death in hippocampal CA1 (cornus ammonis 1) pyramidal neurons after reperfusion. Ischemic tolerance evoked by preconditioning (IPC) represents a phenomenon of CNS adaptation to any subsequent ischemia. This paper was designed to describe changes in the mitogen-activated protein kinases (MAPK) protein pathways of the hippocampal area following by IPC. Ischemia was induced by a 4-vessels occlusion (4VO) and the rats were preconditioned by a non-injurious ischemia. Apoptotic markers were used to follow the degeneration process. Western blot and immunohistochemistry identified p-ERK (phosphorylated extracellular signal-regulated protein kinase) and p38 proteins in injured hippocampal areas. P-ERK quantification increased after IPC and reached the highest level at 24 hours after ischemia. Interestingly, neuroprotection induced by IPC lead to the opposite effect on MAPK/p38, where the level was lowest at 24 hours after ischemia. Taken together, the present study clearly demonstrates that p-ERK takes part in complex cascades triggered by IPC in the selectively vulnerable hippocampal region. In addition, paper describes a crosstalk between p-ERK and p-p38 which occurs after preconditioning maneuver in 4VO model of global ischemia. PMID:25554980

  19. Hypoxia Precondition Promotes Adipose-Derived Mesenchymal Stem Cells Based Repair of Diabetic Erectile Dysfunction via Augmenting Angiogenesis and Neuroprotection

    PubMed Central

    Li, ShaoDan; Xu, Yong; Chen, Ping; Liu, Yi; Ding, Qiang; Wahafu, Wasilijiang; Hong, BaoFa; Yang, MingHui

    2015-01-01

    The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs) for diabetes induced erectile dysfunction (DED). AMSCs were pretreated with normoxia (20% O2, N-AMSCs) or sub-lethal hypoxia (1% O2, H-AMSCs). The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF) and its receptor FIK-1, angiotensin (Ang-1), basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg) and were randomly divided into three groups—Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP) and intracavernosal pressure (ICP) were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05). Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF) (p<0.01) and smooth muscle markers (α-SMA) (p<0.01). Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection. PMID:25790284

  20. Essential involvement of the NMDA receptor in ethanol preconditioning-dependent neuroprotection from amyloid-betain vitro.

    PubMed

    Mitchell, Robert M; Neafsey, Edward J; Collins, Michael A

    2009-10-01

    In several epidemiological studies, moderate ethanol consumption has been associated with reduced risks of cognitive decline or Alzheimer's dementia. Of potential relevance is that brain cultures preconditioned with moderate ethanol concentrations are resistant to neurotoxic Alzheimer's amyloid-beta (Abeta) peptides. Using rat cerebellar mixed cultures we investigated whether certain membrane receptors were early 'sensors' in moderate ethanol preconditioning (MEP). In a 6-day MEP protocol (30 mM ethanol), neuroprotection from Abeta25-35 was undiminished by antagonism during the first 3 days of either adenosine A(1) or Galpha(i/o) protein-coupled receptors. However, similar cotreatment with memantine or DL-2-amino-5-phosphono-pentanoic acid (AP-5), antagonists of NMDA receptors (NMDAR), abolished neuroprotection, indicating key early involvement of this ionotropic glutamate receptor. Also in these cultures, directly activating NMDAR using subexcitotoxic NMDA preconditioning prevented Abeta neurotoxicity. By day 2 of MEP, we observed increased levels of NMDAR subunits NR1, NR2B, and NR2C that persisted through day 6. Interestingly, memantine co-exposure blocked elevations in the obligatory NR1 subunit. Furthermore, 2 days of MEP significantly increased two indicators of synaptic NMDAR localization, NR2B phospho-Tyr1472, and post-synaptic density 95 scaffolding protein. The results indicate that ethanol preconditioning-dependent neuroprotection is associated with early increases in NR subunits concomitant with enhancement of synaptic localization and activity of NMDAR. PMID:19694907

  1. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits.

    PubMed

    Nie, Huang; Xiong, Lize; Lao, Ning; Chen, Shaoyang; Xu, Ning; Zhu, Zhenghua

    2006-05-01

    The present study examined the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen (HBO) preconditioning is triggered by an initial oxidative stress and is associated with an increase of antioxidant enzyme activities as one effector of the neuroprotection. New Zealand White rabbits were subjected to HBO preconditioning, hyperbaric air (HBA) preconditioning, or sham pretreatment once daily for five consecutive days before spinal cord ischemia. Activities of catalase (CAT) and superoxide dismutase were increased in spinal cord tissue in the HBO group 24 h after the last pretreatment and reached a higher level after spinal cord ischemia for 20 mins followed by reperfusion for 24 or 48 h, in comparison with those in control and HBA groups. The spinal cord ischemic tolerance induced by HBO preconditioning was attenuated when a CAT inhibitor, 3-amino-1,2,4-triazole,1 g/kg, was administered intraperitoneally 1 h before ischemia. In addition, administration of a free radical scavenger, dimethylthiourea, 500 mg/kg, intravenous, 1 h before each day's preconditioning, reversed the increase of the activities of both enzymes in spinal cord tissue. The results indicate that an initial oxidative stress, as a trigger to upregulate the antioxidant enzyme activities, plays an important role in the formation of the tolerance against spinal cord ischemia by HBO preconditioning. PMID:16136055

  2. ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning.

    PubMed

    Su, Chang; Sun, Fen; Cunningham, Rebecca L; Rybalchenko, Nataliya; Singh, Meharvan

    2014-01-01

    Oxidative stress has long been implicated in the pathogenesis of various neurodegenerative disorders such as Alzheimer's disease and stroke. While high levels of oxidative stress are generally associated with cell death, a slight rise of reactive oxygen species (ROS) levels can be protective by "preconditioning" cells to develop a resistance against subsequent challenges. However, the mechanisms underlying such preconditioning (PC)-induced protection are still poorly understood. Previous studies have supported a role of ERK5 (mitogen-activated protein [MAP] kinase 5) in neuroprotection and ischemic tolerance in the hippocampus. In agreement with these findings, our data suggest that ERK5 mediates both hydrogen peroxide (H2O2)-induced PC as well as nerve growth factor (NGF)-induced neuroprotection. Activation of ERK5 partially rescued pheochromocytoma PC12 cells as well as primary hippocampal neurons from H2O2-caused death, while inhibition of ERK5 abolished NGF or PC-induced protection. These results implicate ERK5 signaling as a common downstream pathway for NGF and PC. Furthermore, both NGF and PC increased the expression of the transcription factor, KLF4, which can initiate an anti-apoptotic response in various cell types. Induction of KLF4 by NGF or PC was blocked by siERK5, suggesting that ERK5 is required in this process. siKLF4 can also attenuate NGF- or PC-induced neuroprotection. Overexpression of active MEK5 or KLF4 in H2O2-stressed cells increased Bcl-2/Bax ratio and the expression of NAIP (neuronal apoptosis inhibitory protein). Taken together, our data suggest that ERK5/KLF4 cascade is a common signaling pathway shared by at least two important mechanisms by which neurons can be protected from cell death. PMID:25015774

  3. Nrf2/antioxidant defense pathway is involved in the neuroprotective effects of Sirt1 against focal cerebral ischemia in rats after hyperbaric oxygen preconditioning.

    PubMed

    Xue, Fen; Huang, Jin-Wen; Ding, Pei-Yan; Zang, Hong-Gang; Kou, Zhi-Jian; Li, Ting; Fan, Juan; Peng, Zheng-Wu; Yan, Wen-Jun

    2016-08-01

    Sirtuin 1 (Sirt1) is a class III histone deacetylase involved in neuroprotection induced by hyperbaric oxygen preconditioning (HBO-PC) in animal models of ischemia. However, the underlying mechanisms remain to be illustrated. In the present study, rats exposed to middle cerebral artery occlusion (MCAO) were used to establish an ischemic stroke model. The infarct volume ratio, neurobehavioral score, and expressions of Sirt1, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and superoxide dismutase 1 (SOD1) were evaluated at 7 days after reperfusion, and the level of malondialdehyde (MDA) was used to assess oxidative stress. HBO-PC increased the expression of Sirt1 and reduced infarct volume ratio and neurobehavioral deficit in MCAO rats. Meanwhile, HBO-PC also increased expression of Nrf2, HO-1, and SOD1 and decreased MDA content. Furthermore, either Sirt1 or Nrf2 knockdown by short interfering RNA (siRNA) inhibited the expression of Nrf2, HO-1, and SOD1 and eliminated the neuroprotective effects of HBO-PC. Taken together, the results suggest that the Nrf2/antioxidant defense pathway is involved in the long lasting neuroprotective effects of Sirt1 induced by HBO-PC against transient focal cerebral ischemia. PMID:27131779

  4. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2

    PubMed Central

    Nada, Shadia E.; Shah, Zahoor A.

    2012-01-01

    Ginkgo biloba/EGb 761® (EGb 761) is a popular and standardized natural extract used worldwide for the treatment of many ailments. Although EGb 761 is purported to have a plethora of benefits, here, we were interested to study the neuroprotective properties of EGb 761 and its components and determine whether nuclear factor E2 (Nrf2)/heme oxygenase 1 (HO1) induction of the collapsin response mediator protein 2 (CRMP2) pathway contributes to neuroprotection. Mice were pretreated with EGb 761 or one of its constituents (bilobalide, ginkgolide A, ginkgolide B, and terpene free material [TFM]) for 7 days and then subjected to transient middle cerebral artery occlusion (tMCAO) and 48 h of reperfusion. All components except TFM significantly reduced infarct volumes and neurologic deficits. Next, we examined the antioxidant and neuritogenic properties of EGb 761 in primary neurons. Compared with vehicle-treated cells, pretreatment with EGb 761 significantly enhanced the survival of neurons exposed to tertiary butylhydroperoxide (t-BuOOH), hydrogen peroxide (H2O2), and N-methyl-D-aspartate (NMDA). Bilobalide and ginkgolide A also protected cells against NMDA-induced excitotoxicity. Immunofluorescence and Western blot analysis showed that EGb 761 pretreatment significantly increased the protein expression levels of Nrf2, HO1, GAPDH, β-actin, CRMP2, and histone H3 during t-BuOOH-induced oxidative stress. These findings suggest that EGb 761 not only has antioxidant activity but also neuritogenic potential. Demonstrating such effects for possible drug discovery may prove beneficial in stroke and ischemic brain injury. PMID:22297164

  5. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    SciTech Connect

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  6. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    PubMed Central

    Mirrione, Martine M.; Konomos, Dorothy K.; Gravanis, Iordanis; Dewey, Stephen L.; Aguzzi, Adriano; Heppner, Frank L.; Tsirka, Stella E.

    2010-01-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 hours prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 hours prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation. PMID:20382223

  7. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    PubMed Central

    Shamsaei, Nabi; Khaksari, Mehdi; Erfani, Sohaila; Rajabi, Hamid; Aboutaleb, Nahid

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction through occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration. PMID:26487851

  8. Opioid-induced preconditioning: recent advances and future perspectives.

    PubMed

    Peart, Jason N; Gross, Eric R; Gross, Garrett J

    2005-01-01

    Opioids, named by Acheson for compounds with morphine-like actions despite chemically distinct structures, have received much research interest, particularly for their central nervous system (CNS) actions involved in pain management, resulting in thousands of scientific papers focusing on their effects on the CNS and other organ systems. A more recent area which may have great clinical importance concerns the role of opioids, either endogenous or exogenous compounds, in limiting the pathogenesis of ischemia-reperfusion injury in heart and brain. The role of endogenous opioids in hibernation provides tantalizing evidence for the protective potential of opioids against ischemia or hypoxia. Mammalian hibernation, a distinct energy-conserving state, is associated with depletion of energy stores, intracellular acidosis and hypoxia, similar to those which occur during ischemia. However, despite the potentially detrimental cellular state induced with hibernation, the myocardium remains resilient for many months. What accounts for the hypoxia-tolerant state is of great interest. During hibernation, circulating levels of opioid peptides are increased dramatically, and indeed, are considered a "trigger" of hibernation. Furthermore, administration of opioid antagonists can effectively reverse hibernation in mammals. Therefore, it is not surprising that activation of opioid receptors has been demonstrated to preserve cellular status following a hypoxic insult, such as ischemia-reperfusion in many model systems including the intestine [Zhang, Y., Wu, Y.X., Hao, Y.B., Dun, Y. Yang, S.P., 2001. Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine. Life Sci. 68, 1013-1019], skeletal muscle [Addison, P.D., Neligan, P.C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C.R., Pang, C.Y., 2003. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ

  9. Resveratrol and ischemic preconditioning in the brain.

    PubMed

    Raval, Ami P; Lin, Hung Wen; Dave, Kunjan R; Defazio, R Anthony; Della Morte, David; Kim, Eun Joo; Perez-Pinzon, Miguel A

    2008-01-01

    Cardiovascular pathologies in the French are not prevalent despite high dietary saturated fat consumption. This is commonly referred to as the "French Paradox" attributing its anti-lipidemic effects to moderate consumption of red wine. Resveratrol, a phytoalexin found in red wine, is currently the focus of intense research both in the cardiovascular system and the brain. Current research suggests resveratrol may enhance prognosis of neurological disorders such as, Parkinson's, Huntington's, Alzheimer's diseases and stroke. The beneficial effects of resveratrol include: antioxidation, free radical scavenger, and modulation of neuronal energy homeostasis and glutamatergic receptors/ion channels. Resveratrol directly increases sirtuin 1 (SIRT1) activity, a NAD(+) (oxidized form of nicotinamide adenine dinucleotide)-dependent histone deacetylase related to increased lifespan in various species similar to calorie restriction. We recently demonstrated that brief resveratrol pretreatment conferred neuroprotection against cerebral ischemia via SIRT1 activation. This neuroprotective effect produced by resveratrol was similar to ischemic preconditioning-induced neuroprotection, which protects against lethal ischemic insults in the brain and other organ systems. Inhibition of SIRT1 abolished ischemic preconditioning-induced neuroprotection in CA1 region of the hippocampus. Since resveratrol and ischemic preconditioning-induced neuroprotection require activation of SIRT1, this common signaling pathway may provide targeted therapeutic treatment modalities as it relates to stroke and other brain pathologies. In this review, we will examine common signaling pathways, cellular targets of resveratrol, and ischemic preconditioning-induced neuroprotection as it relates to the brain. PMID:18537630

  10. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury.

    PubMed

    Wang, Chen; Liu, Chang; Gao, Kai; Zhao, Haosen; Zhou, Zipeng; Shen, Zhaoliang; Guo, Yue; Li, Zhuo; Yao, Tianchen; Mei, Xifan

    2016-09-01

    Spinal cord injury (SCI) is one of the most serious nervous system disorders characterised by high morbidity and disability. Inflammatory and autophagy responses play an important role in the development of SCI. Metformin, a first-line drug for type-2 diabetes, features autophagy promotion as well as anti-inflammatory and anti-apoptotic properties in the nervous system. In this study, we investigated the neuroprotection effects of metformin preconditioning on rats after SCI. Results of Basso, Beattie and Bresnahan scores, HE staining and Nissl staining showed that the function and quantity of motor neurons were protected by metformin after SCI. Western blot revealed that the expression of Beclin-1 and LC3B-II was enhanced, and the phosphorylation levels of the mammalian target of rapamycin (mTOR) protein and p70S6K were reduced by metformin after SCI. Metformin significantly reduced the expression of NF-κB. Moreover, Western blot and immunofluorescence results indicated that caspase 3 activation was reduced, whereas bcl-2 level was significantly increased by metformin. Hence, metformin attenuated SCI by inhibiting apoptosis and inflammation and enhancing the autophagy via the mTOR/p70S6K signalling pathway. PMID:27246734

  11. NCX1 Exchanger Cooperates with Calretinin to Confer Preconditioning-Induced Tolerance Against Cerebral Ischemia in the Striatum.

    PubMed

    Boscia, Francesca; Casamassa, Antonella; Secondo, Agnese; Esposito, Alba; Pannaccione, Anna; Sirabella, Rossana; Pignataro, Giuseppe; Cuomo, Ornella; Vinciguerra, Antonio; de Rosa, Valeria; Annunziato, Lucio

    2016-03-01

    Recently, the Na(+)/Ca(+2) exchanger NCX1 and the calcium binding protein calretinin have emerged as new molecular effectors of delayed preconditioning in the brain. In the present study, we investigated whether NCX1 and calretinin cooperate within the preconditioned striatum to confer neurons greater resistance to degeneration. Confocal microscopy analysis revealed that NCX1 expression was upregulated in calretinin-positive interneurons in the rat striatum after tolerance induction. Consistently, coimmunoprecipitation assays performed on human SHSY-5Y cells, a neuronal cell line which constitutively expresses calretinin, revealed a binding between NCX1 and calretinin. Finally, silencing of calretinin expression, both in vitro and in vivo, significantly prevented preconditioning-induced neuroprotection. Interestingly, our biochemical and functional studies showed that the selective silencing of calretinin in brain cells significantly prevented not only the preconditioning-induced upregulation of NCX1 expression and activity but also the activation of the prosurvival protein kinase Akt, which is involved in calretinin and NCX1 protective actions. Collectively, our results indicate that the Na(+)/Ca(+2) exchanger NCX1 and the calcium binding protein calretinin cooperate within the striatum to confer tolerance against cerebral ischemia. PMID:25633096

  12. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia.

    PubMed

    Hong, Seongkweon; Ahn, Ji Yun; Cho, Geum-Sil; Kim, In Hye; Cho, Jeong Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Park, Seung Min; Cho, Jun Hwi; Choi, Soo Young; Lee, Jae-Chul

    2015-10-01

    Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia. PMID:26692857

  13. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia

    PubMed Central

    Hong, Seongkweon; Ahn, Ji Yun; Cho, Geum-Sil; Kim, In Hye; Cho, Jeong Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Park, Seung Min; Cho, Jun Hwi; Choi, Soo Young; Lee, Jae-Chul

    2015-01-01

    Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia. PMID:26692857

  14. Low-dose GYKI-52466: prophylactic preconditioning confers long-term neuroprotection and functional recovery following hypoxic-ischaemic brain injury.

    PubMed

    Nayak, P K; Kerr, D S

    2013-03-01

    Experimental preconditioning provides beneficial outcomes in conditions such as cardiac surgery, brain surgery and stroke. Here we evaluated the protective effects of low-dose subcutaneous GYKI-52466 preconditioning in a rat model of hypoxic-ischaemic (HI) brain injury. Male Sprague-Dawley rats (postnatal day 26) were administered saline or GYKI-52466 (GYKI; 3-mg/kg, 90 min; 1-mg/kg, twice in 120 min; or 0.5-mg/kg, thrice in 180 min) prior to left common carotid artery occlusion. Animals were allowed to recover for 2h, and then placed in a hypoxia chamber (8% O₂/92% N₂; 33 ± 1°C) for 1h. A sham surgery group received saline without HI. Seizure activity was scored during hypoxia and sensorimotor tests performed before surgery and at 1, 7, 14 and 90 days post-HI. On days 14 and 90 brains were fixed and sectioned for the assessment of infarct size and ventricular enlargement. Low-dose GYKI-52466 preconditioning significantly reduced infarct volume and ventricular enlargement relative to saline-treated controls at day 14 after HI. On day 90, tissue loss was significantly reduced by GYKI 3-mg/kg compared to saline. Foot-faults, paw use asymmetry, and postural reflex scores were significantly improved in all GYKI treatment groups. Our results show that GYKI-52466 is effective at doses well-below, and at pre-administration intervals well-beyond previous studies, and suggest that a classical blockade of ionotropic AMPA receptors does not underlie its neuroprotective effects. Low-dose GYKI-52466 preconditioning represents a novel, prophylactic strategy for neuroprotection in a field almost devoid of effective pharmaceuticals. PMID:23246617

  15. Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats.

    PubMed

    Fan, Ran; Yu, Tao; Lin, Jia-Li; Ren, Guang-Dong; Li, Yi; Liao, Xiao-Xing; Huang, Zi-Tong; Jiang, Chong-Hui

    2016-10-01

    In this study, we investigated the effects of remote ischemic preconditioning on post resuscitation cerebral function in a rat model of cardiac arrest and resuscitation. The animals were randomized into six groups: 1) sham operation, 2) lateral ventricle injection and sham operation, 3) cardiac arrest induced by ventricular fibrillation, 4) lateral ventricle injection and cardiac arrest, 5) remote ischemic preconditioning initiated 90min before induction of ventricular fibrillation, and 6) lateral ventricle injection and remote ischemic preconditioning before cardiac arrest. Reagent of Lateral ventricle injection is neuroglobin antisense oligodeoxynucleotides which initiated 24h before sham operation, cardiac arrest or remote ischemic preconditioning. Remote ischemic preconditioning was induced by four cycles of 5min of limb ischemia, followed by 5min of reperfusion. Ventricular fibrillation was induced by current and lasted for 6min. Defibrillation was attempted after 6min of cardiopulmonary resuscitation. The animals were then monitored for 2h and observed for an additionally maximum 70h. Post resuscitation cerebral function was evaluated by neurologic deficit score at 72h after return of spontaneous circulation. Results showed that remote ischemic preconditioning increased neurologic deficit scores. To investigate the neuroprotective effects of remote ischemic preconditioning, we observed neuronal injury at 48 and 72h after return of spontaneous circulation and found that remote ischemic preconditioning significantly decreased the occurrence of neuronal apoptosis and necrosis. To further comprehend mechanism of neuroprotection induced by remote ischemic preconditioning, we found expression of neuroglobin at 24h after return of spontaneous circulation was enhanced. Furthermore, administration of neuroglobin antisense oligodeoxynucleotides before induction of remote ischemic preconditioning showed that the level of neuroglobin was decreased then partly abrogated

  16. Cerebral Ischemic Preconditioning: the Road So Far….

    PubMed

    Thushara Vijayakumar, N; Sangwan, Amit; Sharma, Bhargy; Majid, Arshad; Rajanikant, G K

    2016-05-01

    Cerebral preconditioning constitutes the brain's adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2-3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain. PMID:26081149

  17. Preconditioning with recombinant high-mobility group box 1 induces ischemic tolerance in a rat model of focal cerebral ischemia-reperfusion.

    PubMed

    Wang, Chen; Liu, Xiao-Xi; Huang, Kai-Bin; Yin, Su-Bing; Wei, Jing-Jing; Hu, Ya-Fang; Gu, Yong; Zheng, Guo-Qing

    2016-05-01

    Preconditioning with ligands of toll-like receptors (TLRs) is a powerful neuroprotective approach whereby a low dose of stimulus confers significant protection against subsequent substantial brain damage by reprogramming the ischemia-activated TLRs signaling. Herein, we aim to explore whether preconditioning with recombinant high-mobility group box 1 (rHMGB1), one of the TLRs ligands, decreases cerebral ischemia-reperfusion injury (IRI). Rats were intracerebroventricularly pretreated with rHMGB1, 1 or 3 days before induction of middle cerebral artery occlusion. Results showed that preconditioning with rHMGB1 1 day, but not 3 days, prior to ischemia dramatically reduced neurological deficits, infarct size, brain swelling, cell apoptosis, and blood-brain barrier permeability. Interleukin-1R-associated kinase-M (IRAK-M), a critical negative regulator of TLRs signaling, was robustly increased in response to brain IRI and was further elevated by rHMGB1 pretreatment, indicating its role associated with the rHMGB1 preconditioning-mediated ischemic tolerance. In vitro and in vivo assays indicated that the induced IRAK-M expression was localized in microglia. In addition, TLR4 specific inhibitor TAK-242 abolished the neuroprotective effects and the induction of IRAK-M offered by rHMGB1 preconditioning. Collectively, our study demonstrates that rHMGB1 preconditioning is neuroprotective during cerebral IRI, which is associated with activated TLR4/IRAK-M signaling in microglia. We found that high-mobility group box 1 (HMGB1) pretreatment conditioned the brain against subsequent ischemia-reperfusion injury. We propose the following mechanism for HMGB1 preconditioning-mediated ischemic tolerance: through toll-like receptor TLR4, HMGB1 preconditioning magnifies the up-regulation of interleukin-1R-associated kinase-M (IRAK-M) induced by ischemia-reperfusion in microglia, resulting in the decreased phosphorylation of IRAK-1. These findings are helpful in understanding the

  18. Roles of thioredoxin in nitric oxide-dependent preconditioning-induced tolerance against MPTP neurotoxin

    SciTech Connect

    Chiueh, C.C. . E-mail: chiueh@tmu.edu.tw; Andoh, Tsugunobu; Chock, P. Boon

    2005-09-01

    Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation. Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against

  19. Superior neuroprotective effects of cerebrolysin in nanoparticle-induced exacerbation of hyperthermia-induced brain pathology.

    PubMed

    Sharma, Aruna; Muresanu, Dafin Fior; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    In recent years, the incidence of heat stroke and associated brain pathology are increasing Worldwide. More than half of the world's population are living in areas associated with high environmental heat especially during the summer seasons. Thus, new research is needed using novel drug targets to achieve neuroprotection in heat-induced brain pathology. Previous research from our laboratory showed that the pathophysiology of brain injuries following heat stroke are exacerbated by chronic intoxication of engineered nanoparticles of small sizes (50-60 nm) following identical heat exposure in rats. Interestingly, in nanoparticle-intoxicated animals the known neuroprotective agents in standard doses failed to induce effective neuroprotection. This suggests that the dose-response of the drugs either requires modification or new therapeutic agents are needed to provide better neuroprotection in nanoparticle-intoxicated animals after heat stroke. This review is focused on the use of cerebrolysin, a mixture of several neurotrophic factors and active peptide fragments, in relation to other neuroprotective agents normally used to treat ischemic stroke in clinics in nanoparticle-induced exacerbation of brain damage in heat stroke. It appears that cerebrolysin exerts the most superior neuroprotective effects in heat stress as compared to other neuroprotective agents on brain pathology in normal rats. Interestingly, to induce effective neuroprotection in nanoparticle-induced exacerbation of brain pathology a double dose of cerebrolysin is needed. On the other hand, double doses of the other drugs were quite ineffective in reducing brain damage. These observations suggest that the drug type and doses are important factors in attenuating nanoparticle-induced exacerbation of brain pathology in heat stroke. The functional significance and possible mechanisms of drug-induced neuroprotection in nanoparticle-treated, heat-stressed rats are discussed. PMID:22229316

  20. Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning

    PubMed Central

    Mayer, Britta; Soppert, Josefin; Kraemer, Sandra; Schemmel, Sabrina; Beckers, Christian; Bleilevens, Christian; Rossaint, Rolf; Coburn, Mark; Goetzenich, Andreas; Stoppe, Christian

    2016-01-01

    Increasing evidence indicates that argon has organoprotective properties. So far, the underlying mechanisms remain poorly understood. Therefore, we investigated the effect of argon preconditioning in cardiomyocytes within the first and second window of preconditioning. Primary isolated cardiomyocytes from neonatal rats were subjected to 50% argon for 1 h, and subsequently exposed to a sublethal dosage of hypoxia (<1% O2) for 5 h either within the first (0–3 h) or second window (24–48 h) of preconditioning. Subsequently, the cell viability and proliferation was measured. The argon-induced effects were assessed by evaluation of mRNA and protein expression after preconditioning. Argon preconditioning did not show any cardioprotective effects in the early window of preconditioning, whereas it leads to a significant increase of cell viability 24 h after preconditioning compared to untreated cells (p = 0.015) independent of proliferation. Argon-preconditioning significantly increased the mRNA expression of heat shock protein (HSP) B1 (HSP27) (p = 0.048), superoxide dismutase 2 (SOD2) (p = 0.001), vascular endothelial growth factor (VEGF) (p < 0.001) and inducible nitric oxide synthase (iNOS) (p = 0.001). No difference was found with respect to activation of pro-survival kinases in the early and late window of preconditioning. The findings provide the first evidence of argon-induced effects on the survival of cardiomyocytes during the second window of preconditioning, which may be mediated through the induction of HSP27, SOD2, VEGF and iNOS. PMID:27447611

  1. Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning.

    PubMed

    Mayer, Britta; Soppert, Josefin; Kraemer, Sandra; Schemmel, Sabrina; Beckers, Christian; Bleilevens, Christian; Rossaint, Rolf; Coburn, Mark; Goetzenich, Andreas; Stoppe, Christian

    2016-01-01

    Increasing evidence indicates that argon has organoprotective properties. So far, the underlying mechanisms remain poorly understood. Therefore, we investigated the effect of argon preconditioning in cardiomyocytes within the first and second window of preconditioning. Primary isolated cardiomyocytes from neonatal rats were subjected to 50% argon for 1 h, and subsequently exposed to a sublethal dosage of hypoxia (<1% O₂) for 5 h either within the first (0-3 h) or second window (24-48 h) of preconditioning. Subsequently, the cell viability and proliferation was measured. The argon-induced effects were assessed by evaluation of mRNA and protein expression after preconditioning. Argon preconditioning did not show any cardioprotective effects in the early window of preconditioning, whereas it leads to a significant increase of cell viability 24 h after preconditioning compared to untreated cells (p = 0.015) independent of proliferation. Argon-preconditioning significantly increased the mRNA expression of heat shock protein (HSP) B1 (HSP27) (p = 0.048), superoxide dismutase 2 (SOD2) (p = 0.001), vascular endothelial growth factor (VEGF) (p < 0.001) and inducible nitric oxide synthase (iNOS) (p = 0.001). No difference was found with respect to activation of pro-survival kinases in the early and late window of preconditioning. The findings provide the first evidence of argon-induced effects on the survival of cardiomyocytes during the second window of preconditioning, which may be mediated through the induction of HSP27, SOD2, VEGF and iNOS. PMID:27447611

  2. Remote limb preconditioning protects against ischemia-induced neuronal death through ameliorating neuronal oxidative DNA damage and parthanatos.

    PubMed

    Jin, Wei; Xu, Wei; Chen, Jing; Zhang, Xiaoxiao; Shi, Lei; Ren, Chuancheng

    2016-07-15

    Remote limb preconditioning (RPC) ameliorates ischemia-induced cerebral infarction and promotes neurological function recovery; however, the mechanism of RPC hasn't been fully understood, which limits its clinical application. The present study aimed at exploring the underlying mechanism of RPC through testing its effects on neuronal oxidative DNA damage and parthanatos in a rat focal cerebral ischemia model. Infarct volume was investigated by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Oxidative DNA damage was investigated via analyzing the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Besides, terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (TUNEL) and DNA laddering were utilized to evaluate neuronal DNA fragmentation. Moreover, we tested whether RPC regulated poly(ADP-ribose) polymer (PAR) and apoptosis inducing factor (AIF) pathway; thus, PAR expression, AIF translocation and AIF/histone H2AX (H2AX) interaction were investigated. The results showed that RPC exerted neuroprotective effects by ameliorating oxidative DNA damage and neuronal parthanatos; additionally, RPC suppressed PAR/AIF pathway through reducing AIF translocation and AIF/H2AX interaction. The present study further exposed neuroprotective mechanism of RPC, and provided new evidence for the research on RPC and ICS. PMID:27288768

  3. Nrf2 activation in astrocytes contributes to spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning.

    PubMed

    Xu, Jiajun; Huang, Guoyang; Zhang, Kun; Sun, Jinchuan; Xu, Tao; Li, Runping; Tao, Hengyi; Xu, Weigang

    2014-08-01

    In this study, we investigated whether nuclear factor erythroid 2-related factor 2 (Nrf2) activation in astrocytes contributes to the neuroprotection induced by a single hyperbaric oxygen preconditioning (HBO-PC) against spinal cord ischemia/reperfusion (SCIR) injury. In vivo: At 24 h after a single HBO-PC at 2.5 atmospheres absolute for 90 min, the male ICR mice underwent SCIR injury by aortic cross-clamping surgery and observed for 48 h. HBO-PC significantly improved hindlimb motor function, reduced secondary spinal cord edema, ameliorated the reactivity of spinal motor-evoked potentials, and slowed down the process of apoptosis to exert neuroprotective effects against SCIR injury. At 12 h or 24 h after HBO-PC without aortic cross-clamping surgery, Western blot, enzyme-linked immunosorbent assay, realtime-polymerase chain reaction and double-immunofluorescence staining were used to detect the Nrf2 activity of spinal cord tissue, such as mRNA level, protein content, DNA binding activity, and the expression of downstream gene, such as glutamate-cysteine ligase, γ-glutamyltransferase, multidrug resistance protein 1, which are key proteins for intracellular glutathione synthesis and transit. The Nrf2 activity and downstream genes expression were all enhanced in normal spinal cord with HBO-PC. Glutathione content of spinal cord tissue with HBO-PC significantly increased at all time points after SCIR injury. Moreover, Nrf2 overexpression mainly occurs in astrocytes. In vitro: At 24 h after HBO-PC, the primary spinal astrocyte-neuron co-cultures from ICR mouse pups were subjected to oxygen-glucose deprivation (OGD) for 90 min to simulate the ischemia-reperfusion injury. HBO-PC significantly increased the survival rate of neurons and the glutathione content in culture medium, which was mainly released from asctrocytes. Moreover, the Nrf2 activity and downstream genes expression induced by HBO-PC were mainly enhanced in astrocytes, but not in neurons. In

  4. [Phytoadaptogens-induced phenomenon similar to ischemic preconditioning].

    PubMed

    Arbuzov, A G; Maslov, L N; Burkova, V N; Krylatov, A V; Konkovskaia, Iu N; Safronov, S M

    2009-04-01

    The course administration (16 mg/kg per os for 5 days) of extracts of Panax ginseng or Rhodiola rosea induced a decrease in the infarction size/the area at risk (IS AAR) ratio during a 45-min local ischemia and a 2-hr reperfusion in artificially ventilated chloralose-anaesthetized rats. Single administration of ginseng or Rhodiola 24 h before ischemia did not affect the IS/AAR ratio. Chronic administration of Extracts of Eleutherococcus senticosus, Leuzea carthamoides and Aralia mandshurica had no effect on the IS/AAR ratio. Pretreatment with extract ofAralia mandshurica prevented appearance of ventricular arrhythmias during first 10 min coronary artery occlusion. Pretreatment with extract of Rhodiola rosea decreased the incidence of ventricular fibrillation during ischemia. Single administration of extracts of Panax ginseng or Rhodiola rosea in a dose of 16 mg/kg had no effect on the IS/AAR ratio. The authors conclude that extracts of ginseng or Rhodiola exhibit a powerful cardioprotective effect. Extract of Aralia exhibit a strong antiarrhythmic effect. Extracts of ginseng and Rhodiola do not mimic phenomena of ischemia preconditioning. PMID:19505042

  5. Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity.

    PubMed

    Zou, L; Jankovic, J; Rowe, D B; Xie, W; Appel, S H; Le, W

    1999-01-01

    Pramipexole, a novel non-ergoline dopamine (DA) agonist, has been applied successfully for treatment of Parkinson's disease (PD). We report here that pramipexole can protect dopaminergic cell line Mes23.5 against dopamine- and levodopa-induced cytotoxicity possibly through a mechanism related to antioxidant activity. In the MES 23.5 cultures, DA and L-DOPA induce a dose- and time-dependent cytotoxicity, as determined by tetrazolium salt and trypan blue assays. Furthermore, an in situ terminal deoxynucleotidyl transferase assay demonstrates that DA-induced cell death is apoptotic. Pretreatment with pramipexole in a concentration range (4-100 microM) significantly attenuates DA- or L-DOPA-induced cytotoxicity and apoptosis, an action which is not blocked by D3 antagonist U-99194 A or D2 antagonist raclopride. Pramipexole also protects MES 23.5 cells from hydrogen peroxide-induced cytotoxicity in a dose-dependent manner. In cell-free system, pramipexole can effectively inhibit the formation of melanin, an end product resulting from DA or L-DOPA oxidation. These results indicate that pramipexole exerts its neuroprotective effect possibly through a mechanism, which is independent of DA receptors but related to antioxidation or scavenging of free radicals (e.g. hydrogen peroxide). As a direct DA agonist and potentially neuroprotective agent, pramipexole remains attractive in the treatment of PD. PMID:10227583

  6. The Effect of Hypoxic Preconditioning on Induced Schwann Cells under Hypoxic Conditions

    PubMed Central

    Chen, Ou; Wu, Miaomiao; Jiang, Liangfu

    2015-01-01

    Object Our objective was to explore the protective effects of hypoxic preconditioning on induced Schwann cells exposed to an environment with low concentrations of oxygen. It has been observed that hypoxic preconditioning of induced Schwann cells can promote axonal regeneration under low oxygen conditions. Method Rat bone marrow mesenchymal stem cells (MSCs) were differentiated into Schwann cells and divided into a normal oxygen control group, a hypoxia-preconditioning group and a hypoxia group. The ultrastructure of each of these groups of cells was observed by electron microscopy. In addition, flow cytometry was used to measure changes in mitochondrial membrane potential. Annexin V-FITC/PI staining was used to detect apoptosis, and Western blots were used to detect the expression of Bcl-2/Bax. Fluorescence microscopic observations of axonal growth in NG-108 cells under hypoxic conditions were also performed. Results The hypoxia-preconditioning group maintained mitochondrial cell membrane and crista integrity, and these cells exhibited less edema than the hypoxia group. In addition, the cells in the hypoxia-preconditioning group were found to be in early stages of apoptosis, whereas cells from the hypoxia group were in the later stages of apoptosis. The hypoxia-preconditioning group also had higher levels of Bcl-2/Bax expression and longer NG-108 cell axons than were observed in the hypoxia group. Conclusion Hypoxic preconditioning can improve the physiological state of Schwann cells in a severe hypoxia environment and improve the ability to promote neurite outgrowth. PMID:26509259

  7. Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity.

    PubMed

    Zhu, Jing; Carozzi, Valentina Alda; Reed, Nicole; Mi, Ruifa; Marmiroli, Paola; Cavaletti, Guido; Hoke, Ahmet

    2016-01-01

    Ethoxyquin was recently identified as a neuroprotective compound against toxic neuropathies and efficacy was demonstrated against paclitaxel-induced neurotoxicity in vivo. In this study we examined the efficacy of ethoxyquin in preventing neurotoxicity of cisplatin in rodent models of chemotherapy-induced peripheral neuropathy and explored its mechanism of action. Ethoxyquin prevented neurotoxicity of cisplatin in vitro in a sensory neuronal cell line and primary rat dorsal root ganglion neurons. In vivo, chronic co-administration of ethoxyquin partially abrogated cisplatin-induced behavioral, electrophysiological and morphological abnormalities. Furthermore, ethoxyquin did not interfere with cisplatin's ability to induce tumor cell death in ovarian cancer cell line in vitro and in vivo. Finally, ethoxyquin reduced the levels of two client proteins (SF3B2 and ataxin-2) of a chaperone protein, heat shock protein 90 (Hsp90) when co-administered with cisplatin in vitro. These results implied that the neuroprotective effect of ethoxyquin is mediated through these two client proteins of Hsp90. In fact, reducing levels of SF3B2 in tissue-cultured neurons was effective against neurotoxicity of cisplatin. These findings suggest that ethoxyquin or other compounds that inhibit chaperone activity of Hsp90 and reduce levels of its client protein, SF3B2 may be developed as an adjuvant therapy to prevent neurotoxicity in cisplatin-based chemotherapy protocols. PMID:27350330

  8. Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity

    PubMed Central

    Zhu, Jing; Carozzi, Valentina Alda; Reed, Nicole; Mi, Ruifa; Marmiroli, Paola; Cavaletti, Guido; Hoke, Ahmet

    2016-01-01

    Ethoxyquin was recently identified as a neuroprotective compound against toxic neuropathies and efficacy was demonstrated against paclitaxel-induced neurotoxicity in vivo. In this study we examined the efficacy of ethoxyquin in preventing neurotoxicity of cisplatin in rodent models of chemotherapy-induced peripheral neuropathy and explored its mechanism of action. Ethoxyquin prevented neurotoxicity of cisplatin in vitro in a sensory neuronal cell line and primary rat dorsal root ganglion neurons. In vivo, chronic co-administration of ethoxyquin partially abrogated cisplatin-induced behavioral, electrophysiological and morphological abnormalities. Furthermore, ethoxyquin did not interfere with cisplatin’s ability to induce tumor cell death in ovarian cancer cell line in vitro and in vivo. Finally, ethoxyquin reduced the levels of two client proteins (SF3B2 and ataxin-2) of a chaperone protein, heat shock protein 90 (Hsp90) when co-administered with cisplatin in vitro. These results implied that the neuroprotective effect of ethoxyquin is mediated through these two client proteins of Hsp90. In fact, reducing levels of SF3B2 in tissue-cultured neurons was effective against neurotoxicity of cisplatin. These findings suggest that ethoxyquin or other compounds that inhibit chaperone activity of Hsp90 and reduce levels of its client protein, SF3B2 may be developed as an adjuvant therapy to prevent neurotoxicity in cisplatin-based chemotherapy protocols. PMID:27350330

  9. Exercise preconditioning attenuates pressure overload-induced pathological cardiac hypertrophy

    PubMed Central

    Xu, Tongyi; Tang, Hao; Zhang, Ben; Cai, Chengliang; Liu, Xiaohong; Han, Qingqi; Zou, Liangjian

    2015-01-01

    Pathological cardiac hypertrophy, a common response of the heart to a variety of cardiovascular diseases, is typically associated with myocytes remodeling and fibrotic replacement, cardiac dysfunction. Exercise preconditioning (EP) increases the myocardial mechanical load and enhances tolerance of cardiac ischemia-reperfusion injury (IRI), however, is less reported in pathological cardiac hypertrophy. To determine the effect of EP in pathological cardiac hypertrophy, Male 10-wk-old Sprague-Dawley rats (n=30) were subjected to 4 weeks of EP followed by 4-8 weeks of pressure overload (transverse aortic constriction, TAC) to induce pathological remodeling. TAC in untrained controls (n=30) led to pathological cardiac hypertrophy, depressed systolic function. We observed that left ventricular wall thickness in end diastole, heart size, heart weight-to-body weight ratio, heart weight-to-tibia length ratio, cross-sectional area of cardiomyocytes and the reactivation of fetal genes (atrial natriuretic peptide and brain natriuretic peptide) were markedly increased, meanwhile left ventricular internal dimension at end-diastole, systolic function were significantly decreased by TAC at 4 wks after operation (P < 0.01), all of which were effectively inhibited by EP treatment (P < 0.05), but the differences of these parameters were decreased at 8 wks after operation. Furthermore, EP treatment inhibited degradation of IκBα, and decreased NF-κB p65 subunit levels in the nuclear fraction, and then reduced IL2 levels in the myocardium of rats subject to TAC. EP can effectively attenuate pathological cardiac hypertrophic responses induced by TAC possibly through inhibition of degradation of IκB and blockade of the NF-κB signaling pathway in the early stage of pathological cardiac hypertrophy. PMID:25755743

  10. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  11. Treatment of laser-induced retinal injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1997-05-01

    Retinal laser photocoagulation treatments are often complicated with immediate side-effect of visual impairment. To determine whether glutamate-receptor blockers can serve as adjuvant neuroprotective therapy, we examined the effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Argon laser retinal lesions were created in the retina of 36 DA rats. Treatment with intraperitoneal injections of MK-801 or saline was started immediately after the laser photocoagulation. The animals were sacrificed after 3, 20 or 60 days and the retinal lesions were evaluated histologically and morphometrically. Photoreceptor-cell loss was significantly smaller in MK-801-treated rats than controls. The proliferative membrane composed of retinal pigment epithelial cells which was seen at the base of the lesion in control retinas, was smaller in the MK-801-treated retinas. MK-801 exhibited neuroprotective and anti-proliferative properties in the retina. Glutamate-receptor blockers should be further investigated for serving as adjuvant therapy to retinal photocoagulation treatments.

  12. Hypoxic preconditioning with cobalt ameliorates hypobaric hypoxia induced pulmonary edema in rat.

    PubMed

    Shukla, Dhananjay; Saxena, Saurabh; Purushothaman, Jayamurthy; Shrivastava, Kalpana; Singh, Mrinalini; Shukla, Shirish; Malhotra, Vineet Kumar; Mustoori, Sairam; Bansal, Anju

    2011-04-10

    Exposure to high altitude results in hypobaric hypoxia which is considered as an acute physiological stress and often leads to high altitude maladies such as high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The best way to prevent high altitude injuries is hypoxic preconditioning which has potential clinical usefulness and can be mimicked by cobalt chloride. Preconditioning with cobalt has been reported to provide protection in various tissues against ischemic injury. However, the effect of preconditioning with cobalt against high altitude induced pulmonary edema has not been investigated in vivo. Therefore, in the present study, rats pretreated with saline or cobalt (12.5mg/kg body weight) for 7days were exposed to hypobaric hypoxia of 9142m for 5h at 24°C. Formation of pulmonary edema was assessed by measuring transvascular leakage of sodium fluorescein dye and lung water content. Total protein content, albumin content, vascular endothelial growth factor (VEGF) and cytokine levels were measured in bronchoalveolar lavage fluid. Expression of HO-1, MT, NF-κB DNA binding activity and lung tissue pathology were evaluated to determine the effect of preconditioning on HAPE. Hypobaric hypoxia induced increase in transvascular leakage of sodium fluorescein dye, lung water content, lavage total protein, albumin, VEGF levels, pro-inflammatory cytokine levels, tissue expression of cell adhesion molecules and NF-κB DNA binding activity were reduced significantly after hypoxic preconditioning with cobalt. Expression of anti-inflammatory protein HO-1, MT, TGF-β and IL-6 were increased after hypoxic preconditioning. These data suggest that hypoxic preconditioning with cobalt has protective effect against HAPE. PMID:21296072

  13. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke

    PubMed Central

    2014-01-01

    Background Repetitive hypoxic preconditioning (RHP) creates an anti-inflammatory phenotype that protects from stroke-induced injury for months after a 2-week treatment. The mechanisms underlying long-term tolerance are unknown, though one exposure to hypoxia significantly increased peripheral B cell representation. For this study, we sought to determine if RHP specifically recruited B cells into the protected ischemic hemisphere, and whether RHP could phenotypically alter B cells prior to stroke onset. Methods Adult, male SW/ND4 mice received RHP (nine exposures over 2 weeks; 8 to 11 % O2; 2 to 4 hours) or identical exposures to 21 % O2 as control. Two weeks following RHP, a 60-minute transient middle cerebral artery occlusion was induced. Standard techniques quantified CXCL13 mRNA and protein expression. Two days after stroke, leukocytes were isolated from brain tissue (70:30 discontinuous Percoll gradient) and profiled on a BD-FACS Aria flow cytometer. In a separate cohort without stroke, sorted splenic CD19+ B cells were isolated 2 weeks after RHP and analyzed on an Illumina MouseWG-6 V2 Bead Chip. Final gene pathways were determined using Ingenuity Pathway Analysis. Student’s t-test or one-way analysis of variance determined significance (P < 0.05). Results CXCL13, a B cell-specific chemokine, was upregulated in post-stroke cortical vessels of both groups. In the ischemic hemisphere, RHP increased B cell representation by attenuating the diapedesis of monocyte, macrophage, neutrophil and T cells, to quantities indistinguishable from the uninjured, contralateral hemisphere. Pre-stroke splenic B cells isolated from RHP-treated mice had >1,900 genes differentially expressed by microarray analysis. Genes related to B-T cell interactions, including antigen presentation, B cell differentiation and antibody production, were profoundly downregulated. Maturation and activation were arrested in a cohort of B cells from pre-stroke RHP-treated mice while

  14. Signals mediating Klotho-induced neuroprotection in hippocampal neuronal cells.

    PubMed

    Cheng, Meng-Fu; Chen, Li-Jen; Niu, Ho-Shan; Yang, Ting-Ting; Lin, Kao-Chang; Cheng, Juei-Tang

    2015-01-01

    The erythropoietin (Epo) receptor (EpoR) is expressed in the brain and was shown to have neuroprotective effects against brain damage in animal models. A recent study indicated that EpoR and its activity are the downstream effectors of Klotho for cytoprotection in the kidney. Thus, we propose that Klotho can stimulate the expression of EpoR in neuronal cells to enhance Epo-mediated protection. H19-7 hippocampal neuronal cells were treated with recombinant Klotho. In H19-7 cells, Klotho increased the expression of both the EpoR protein and mRNA. Klotho also enhanced the transcription activity of the EpoR promoter in H19-7 cells. Moreover, Klotho augmented the Epo-triggered phosphorylation of Jak2 and Stat5 and protected H19-7 cells from hydrogen peroxide cytotoxicity. The silencing of EpoR abolished the protective effect of Klotho against peroxide-induced cytotoxicity. Finally, the silencing of GATA1 diminished the Klotho-induced increase in EpoR protein and mRNA expression as well as its promoter activity. In conclusion, Klotho increased EpoR expression in neuronal cells through GATA1, thereby enabling EpoR to function as a cytoprotective protein against oxidative injury. PMID:25856523

  15. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia

    PubMed Central

    2014-01-01

    Background Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic

  16. Desflurane Preconditioning Induces Oscillation of NF-κB in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Miao, Changhong; Tang, Jianguo; Zhu, Biao

    2013-01-01

    Background Nuclear factor kappa B (NF-κB) has been implicated in anesthetic preconditioning (APC) induced protection against anoxia and reoxygenation (A/R) injury. The authors hypothesized that desflurane preconditioning would induce NF-κB oscillation and prevent endothelial cells apoptosis. Methods A human umbilical vein endothelial cells (HUVECs) A/R injury model was used. A 30 minute desflurane treatment was initiated before anoxia. NF-κB inhibitor BAY11-7082 was administered in some experiments before desflurane preconditioning. Cells apoptosis was analyzed by flow cytometry using annexin V–fluorescein isothiocyanate staining and cell viability was evaluated by modified tertrozalium salt (MTT) assay. The cellular superoxide dismutases (SOD) activitiy were tested by water-soluble tetrazolium salt (WST-1) assay. NF-κB p65 subunit nuclear translocation was detected by immunofluorescence staining. Expression of inhibitor of NF-κB-α (IκBα), NF-κB p65 and cellular inhibitor of apoptosis 1 (c-IAP1), B-cell leukemia/lymphoma 2 (Bcl-2), cysteine containing aspartate specific protease 3 (caspases-3) and second mitochondrial-derived activator of caspase (SMAC/DIABLO) were determined by western blot. Results Desflurane preconditioning caused phosphorylation and nuclear translocation of NF-κB before anoxia, on the contrary, induced the synthesis of IκBα and inhibition of NF-κB after reoxygenation. Desflurane preconditioning up-regulated the expression of c-IAP1 and Bcl-2, blocked the cleavage of caspase-3 and reduced SMAC release, and decreased the cell death of HUVECs after A/R. The protective effect was abolished by BAY11-7082 administered before desflurane. Conclusions The results demonstrated that desflurane activated NF-κB during the preconditioning period and inhibited excessive activation of NF-κB in reperfusion. And the oscillation of NF-κB induced by desflurane preconditioning finally up-regulated antiapoptotic proteins expression and protected

  17. The protective effect of intraperitoneal medical ozone preconditioning and treatment on hepatotoxicity induced by methotrexate

    PubMed Central

    Aslaner, Arif; Çakır, Tuğrul; Çelik, Betül; Doğan, Uğur; Akyüz, Cebrail; Baştürk, Ahmet; Polat, Cemal; Gündüz, Umut; Mayir, Burhan; Şehirli, Ahmet Özer

    2015-01-01

    The aim of this study is to determine the effects of medical ozone preconditioning and treatment on the methotrexate acute induced hepatotoxicity in rats that has not reports elsewhere. Eighteen rats were randomly assigned into three equal groups; control, Mtx and Mtx with ozone. Hepatotoxicity was performed with a single dose of 20 mg/kg Mtx to group 2 and group 3 at the fifteenth day. The medical ozone preconditioning was administered intraperitonealy in group 3 for fifteen days and more five days after inducing Mtx. The other rats of the group 1 and 2 received saline injection. At the twentyfirst day the blood and the liver tissue samples were obtained to measure the levels of liver enzymes ALT and AST, proinflamatory cytokines TNF-α, IL-1β, malondialdehyde, glutathione and myeloperoxidase. And the histolopatological examination was evaluated for injury score. In our study Mtx administration caused a significant increase on the liver enzymes ALT and AST, the tissue MDA and MPO activity and significant decrease in the tissue GSH. Moreover the both pro-inflammatory cytokines were significantly increased in the Mtx group. Medical ozone preconditioning and treatment reversed all these biochemical parameters and histopathological changes of the hepatotoxicity induced by Mtx. We conclude that medical ozone ameliorates Mtx induced hepatotoxicity in rats. PMID:26550257

  18. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression.

    PubMed

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-09-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus‑associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR‑19a, and the downregulation of miR‑1, let‑7f and miR‑124 expression levels following IPostC was confirmed utilizing reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  19. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression

    PubMed Central

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-01-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus-associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR-19a, and the downregulation of miR-1, let-7f and miR-124 expression levels following IPostC was confirmed utilizing reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  20. Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection.

    PubMed

    Sharma, Roohani; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2016-01-01

    Remote hind limb preconditioning (RIPC) is a protective strategy in which short episodes of ischemia and reperfusion in a remote organ (hind limb) protects the target organ (heart) against sustained ischemic reperfusion injury. The present study was designed to investigate the possible role of thromboxane A2 in RIPC-induced cardioprotection in rats. Remote hind limb preconditioning was performed by four episodes of 5 min of inflation and 5 min of deflation of pressure cuff. Occlusion of the hind limb with blood pressure cuff is most feasible, non-invasive, clinically relevant, and safe method for inducing RIPC. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120-min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. The extent of myocardial infarct size along with the functional parameters including left ventricular developed pressure (LVDP), dp/dtmax, and dp/dtmin were also measured. Ozagrel (thromboxane synthase inhibitor) and seratrodast (thromboxane A2 receptor antagonist) were employed as pharmacological modulators of thromboxane A2. Remote hind limb preconditioning significantly attenuated ischemia/reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of ozagrel and seratrodast completely abolished the cardioprotective effects of RIPC suggesting the key role of thromboxane A2 in RIPC-induced cardioprotection. It may be concluded that brief episodes of preconditioning ischemia and reperfusion activates the thromboxane synthase enzyme that produces thromboxane A2, which may elicit cardioprotection either involving humoral or neurogenic pathway. PMID:26531833

  1. Marked hyperglycemia attenuates anesthetic preconditioning in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Canfield, Scott G.; Sepac, Ana; Sedlic, Filip; Muravyeva, Maria Y.; Bai, Xiaowen; Bosnjak, Zeljko J.

    2012-01-01

    Introduction Anesthetic preconditioning protects cardiomyocytes from oxidative stress-induced injury, but it is ineffective in patients with diabetes mellitus. To address the role of hyperglycemia in the inability of diabetic individuals to be preconditioned, we used human cardiomyocytes differentiated from induced pluripotent stem cells generated from patients with or without type 2 diabetes mellitus (DM-iPSC- and N-iPSC-CMs, respectively) to investigate the efficacy of preconditioning in varying glucose conditions (5, 11, and 25 mM). Methods Induced pluripotent stem cells were induced to generate cardiomyocytes by directed differentiation. For subsequent studies, cardiomyocytes were identified by genetic labeling with enhanced green fluorescent protein driven by a cardiac-specific promoter. Cell viability was analyzed by lactate dehydrogenase assay. Confocal microscopy was utilized to measure opening of the mitochondrial permeability transition pore and the mitochondrial adenosine-5′-triphosphate-sensitive potassium channels. Results Isoflurane (0.5 mM) preconditioning protected N-iPSC- and DM-iPSC-CMs from oxidative stress-induced lactate dehydrogenase release and mitochondrial permeability transition pore opening in 5 mM and 11 mM glucose. Isoflurane triggered mitochondrial adenosine-5′-triphosphate-sensitive potassium channel opening in N-iPSC-CMs in 5 mM and 11 mM glucose and in DM-iPSC-CMs in 5 mM glucose. 25 mM glucose disrupts anesthetic preconditioning-mediated protection in DM-iPSC- and N-iPSC-CMs. Conclusions The opening of mitochondrial adenosine-5′-triphosphate-sensitive potassium channels are disrupted in DM-iPSC-CMs in 11 mM and 25 mM glucose and in N-iPSC-CMs in 25 mM glucose. Cardiomyocytes derived from healthy donors and patients with a specific disease, such as diabetes in this study, open possibilities in studying genotype and phenotype related pathologies in a human relevant model. PMID:22820846

  2. Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning.

    PubMed

    Racay, Peter; Chomova, Maria; Tatarkova, Zuzana; Kaplan, Peter; Hatok, Jozef; Dobrota, Dusan

    2009-09-01

    Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia. PMID:19283470

  3. Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson's disease.

    PubMed

    Li, Chao; Guo, Yuan; Xie, Wenjie; Li, Xingang; Janokovic, Joseph; Le, Weidong

    2010-10-01

    Pramipexole (PPX), a dopamine (DA) receptor D3 preferring agonist, has been used as monotherapy or adjunct therapy to treat Parkinson's disease (PD) for many years. Several in vitro and in vivo studies in neurotoxin-induced DA neuron injury models have reported that PPX may possess neuroprotective properties. The present study is to evaluate the neuroprotection of PPX in a sustained DA neuron degeneration model of PD induced by ubiquitin-proteasome system (UPS) impairment. Adult C57BL/6 mice were treated with PPX (low dose 0.1 mg/kg or high dose 0.5 mg/kg, i.p, twice a day) started 7 days before, and continued after microinjection of proteasome inhibitor lactacystin in the medial forebrain bundle for a total 4 weeks. Animal behavior observation, and pathological and biochemical assays were conducted to determine the neuroprotective effects of PPX. We report here that PPX treatment significantly improves rotarod performance, attenuates DA neuron loss and striatal DA reduction, and alleviates proteasomal inhibition and microglial activation in the substantia nigra of lactacystin-lesioned mice. PPX can increase the levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and induce an activation of autophagy. Furthermore, pretreatment with D3 receptor antagonist U99194 can significantly block the PPX-mediated neuroprotection. These results suggest that multiple molecular pathways may be attributed to the neuroprotective effects of PPX in the UPS impairment model of PD. PMID:20635141

  4. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-08-01

    Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels. PMID:27118661

  5. Protective effect of carbon monoxide pre-conditioning on LPS-induced endothelial cell stress

    PubMed Central

    Zannoni, Augusta; Bacci, Maria Laura; Forni, Monica

    2009-01-01

    Increasing evidence indicates that carbon monoxide (CO) may protect against several diseases including sepsis. The ability of CO pre-treatment to provide good pre-conditioning against lipopolysaccharide (LPS)-induced injury was tested using an in vitro model of primary culture of porcine aortic endothelial cells (pAEC). pAEC were exposed to CO (250 ppm) or air for 1 h prior to the addition of LPS (10 μg/ml). Hsp70, HO-1, and Egr-1 protein levels were determined as well as vascular endothelial growth factor (VEGF) secretion after 4, 7, and 15 h. The effect of CO on LPS-induced apoptosis was also detected at 15 h. CO pre-treatment before the addition of LPS, significantly reduced LPS-induced apoptosis. LPS induced an increase in the level of VEGF in culture media after 7 and 15 h, and a larger increase was detected in CO pre-treated cells. In addition, CO pre-treatment reduced LPS-induced Hsp70, HO-1, and Egr-1 protein expression. In conclusion, CO treatment seems to provide a good pre-conditioning for the prevention of LPS-induced endothelial injury. PMID:19693705

  6. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms

    PubMed Central

    Horowitz, Michal; Umschweif, Gali; Yacobi, Assaf; Shohami, Esther

    2015-01-01

    Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA) develops via altered molecular programs such as cross-tolerance Heat Acclimation-Neuroprotection Cross-Tolerance (HANCT). The mechanisms underlying cross-tolerance depend on enhanced “on-demand” protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI). The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed. PMID:26283898

  7. Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-06-15

    Remote ischemic preconditioning (RIPC) induced by alternate cycles of preconditioning ischemia and reperfusion protects the heart against sustained ischemia-reperfusion-induced injury. This technique has been translated to clinical levels in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention and heart valve surgery. Adenosine is a master regulator of energy metabolism and reduces myocardial ischemia-reperfusion-induced injury. Furthermore, adenosine is a critical trigger as well as a mediator in RIPC-induced cardioprotection and scientists have demonstrated the role of adenosine by showing an increase in its levels in the systemic circulation during RIPC delivery. Furthermore, the blockade of cardioprotective effects of RIPC in the presence of specific adenosine receptor blockers and transgenic animals with targeted ablation of A1 receptors has also demonstrated its critical role in RIPC. The studies have shown that adenosine may elicit cardioprotection via activation of neurogenic pathway. The present review describes the possible role and mechanism of adenosine in mediating RIPC-induced cardioprotection. PMID:27157518

  8. Ozone-Oxidative Preconditioning Prevents Doxorubicin-induced Cardiotoxicity in Sprague-Dawley Rats

    PubMed Central

    Delgado-Roche, Livan; Hernández-Matos, Yanet; Medina, Emilio A.; Morejón, Dalia Á.; González, Maité R.; Martínez-Sánchez, Gregorio

    2014-01-01

    Objectives: Induced dilated cardiomyopathy is the main limitation of the anti-cancer drug doxorubicin, which causes oxidative stress and cardiomyocyte death. As ozone therapy can activate the antioxidant systems, this study aimed to investigate the therapeutic efficacy of ozone-oxidative preconditioning against doxorubicin-induced cardiotoxicity. Methods: The study was carried out from September 2013 to January 2014. Sprague-Dawley rats were randomly distributed in the following treatment groups: Group 1 were treated with 2 mg/kg intraperitoneal (i.p.) of doxorubicin twice a week for 50 days; Group 2 were treated with 0.3 mg of ozone/oxygen mixture at 50 μg/mL of ozone per 6 mL of oxygen by rectal insufflation and then treated with doxorubicin; Group 3 were treated as Group 2 but only with the oxygen, and Group 4 were treated with oxygen first, and then with sodium chloride i.p. as the control group. Results: The results showed that ozone therapy preserved left ventricle morphology which was accompanied by a reduction of serum pro-brain natriuretic peptide levels. The cardioprotective effects of ozone-oxidative preconditioning were associated with a significant increase (P <0.05) of antioxidant enzymes activities and a reduction of lipid and protein oxidation (P <0.05). Conclusion: Ozone-oxidative preconditioning prevents doxorubicin-induced dilated cardiomyopathy through an increase of antioxidant enzymes and a reduction of oxidised macromolecules. This establishes the background for future studies to determine if ozone therapy can be used as a complementary treatment for attenuating doxorubicin-induced cardiotoxicity in cancer patients. PMID:25097769

  9. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson's disease model induced by MPTP via chelating iron.

    PubMed

    Wang, Y-Q; Wang, M-Y; Fu, X-R; Peng-Yu; Gao, G-F; Fan, Y-M; Duan, X-L; Zhao, B-L; Chang, Y-Z; Shi, Z-H

    2015-01-01

    Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP(+)-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases. PMID:25968939

  10. Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ-induced toxicity in PC12 cells.

    PubMed

    Na, Chae Sun; Hong, Seong Su; Choi, Yun-Hyeok; Lee, Yong Ho; Hong, Sun Hee; Lim, Ji-Youn; Kang, Byeong Hoa; Park, So-Young; Lee, Dongho

    2010-07-01

    A new flavonoid, 7-demethylageconyflavone A (1), and five known compounds, tricin (2), ageconyflavone A (3), corylin (4), nectandrin B (5), and 4-ketopinoresinol (6) were isolated from the aerial parts of Eragrostis ferruginea. Their structures were determined using spectroscopic techniques, including 1D- and 2D-NMR. All compounds were tested for the neuroprotective effects against amyloid beta peptide (Abeta) using PC12 cells, a major cause of the pathology of Alzheimer's disease. Tricin (2) was found to have a neuroprotective effect with an ED(50) value of 20.3 microM against Abeta-induced toxicity in PC12 cells. Ageconyflavone A (3), nectandrin B (5) and 4-ketopinoresinol (6) demonstrated moderate neuroprotective effects with ED(50) values of 58.7, 44.1, and 54.8 microM, respectively. PMID:20661708

  11. Investigations on the role of leukotrienes in remote hind limb preconditioning-induced cardioprotection in rats.

    PubMed

    Singh, Baljeet; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2016-05-01

    The cardioprotective effects of remote hind limb preconditioning (RIPC) are well established, but its mechanisms still remain to be explored. Therefore, the present study was aimed to explore the possible involvement of 5-lipoxygenase-derived leukotrienes in RIPC. The hind limb was tied by a pressure cuff and was subjected to four episodes of inflation and deflation (5min each) to induce remote hind-limb preconditioning. Thereafter, the hearts were isolated and were subjected to global ischemia (30min) followed by reperfusion (120min) on the Langendorff apparatus. The extent of myocardial injury was assessed by measuring lactate dehydrogenase (LDH) and creatine kinase (CK) levels in the coronary effluent; the infarct size using TTC staining, and the hemodynamic parameters including LVDP, dp/dtmax and dp/dtmin. RIPC significantly decreased ischemia and reperfusion-induced increase in LDH, CK release, infarct size and improved LVDP, dp/dtmax and dp/dtmin. Administration of montelukast, leukotriene receptor antagonist (10 and 20mg/kg) and zileuton, 5-lipoxygenase inhibitor, (2.5 and 5mg/kg) abolished RIPC-induced cardioprotection. It may be concluded that hind limb ischemia stimulates 5-lipoxygenase to release leukotrienes which may elicit cardioprotection by humoral or neurogenic pathway. PMID:27058978

  12. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis.

    PubMed

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  13. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis

    PubMed Central

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  14. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    NASA Astrophysics Data System (ADS)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (P<0.01). The shorter HBO treatment was less effective, showing an increase only in nuclei density at the central area of lesion (P< 0.01). Hyperbaric oxygen seems to exert a neuroprotective effect on laser-induced retinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  15. Neuroprotective effects of pramipexole against tunicamycin-induced cell death in PC12 cells.

    PubMed

    Nakayama, Hitoshi; Zhao, Jing; Ei-Fakhrany, Amany; Isosaki, Minoru; Satoh, Hiroyasu; Kyotani, Yoji; Yoshizumi, Masanori

    2009-12-01

    1. Pramipexole (PPX), a dopamine D2 and D3 receptor agonist, exerts neuroprotective effects via both dopamine receptor-mediated and non-dopaminergic mechanisms. In the present study, we demonstrate that PPX reduces the toxicity of tunicamycin, a typical endoplasmic reticulum (ER) stressor, in PC12h cells, a subline of PC12 cells. 2. The PC12h cells were treated with 300 micromol / L PPX in the presence of 0.5 micromol / L tunicamycin for 24 h. The neuroprotective effects of PPX against tunicamycin-induced cell death were evaluated using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays, Hoechst 33258 staining and western blot analysis. 3. Tunicamycin (0.2, 0.3 and 0.5 microg / mL) dose-dependently decreased MTT activity and increased LDH release from PC12h cells. Treatment with 300 micromol / L PPX rescued the tunicamycin-induced decrease in cell viability. 4. Spiperone (10 micromol / L), a dopamine D2 and D4 receptor antagonist, had no effect on PPX neuroprotection against tunicamycin in these cells. Marker proteins of ER stress and apoptosis are known to be upregulated by tunicamycin, but we detected no significant effects of PPX on these factors. 5. In conclusion, we speculate that a combination of several mechanisms may be involved in PPX-induced neuroprotection. PMID:19515063

  16. Remote ischemic preconditioning to reduce contrast-induced nephropathy: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Despite the increasing use of pre- and posthydration protocols and low-osmolar instead of high-osmolar iodine-containing contrast media, the incidence of contrast-induced nephropathy (CIN) is still significant. There is evidence that contrast media cause ischemia-reperfusion injury of the medulla. Remote ischemic preconditioning (RIPC) is a non-invasive, safe, and low-cost method to reduce ischemia-reperfusion injury. Methods The RIPCIN study is a multicenter, single-blinded, randomized controlled trial in which 76 patients at risk of CIN will receive standard hydration combined with RIPC or hydration with sham preconditioning. RIPC will be applied by four cycles of 5 min ischemia and 5 min reperfusion of the forearm by inflating a blood pressure cuff at 50 mmHg above the actual systolic pressure. The primary outcome measure will be the change in serum creatinine from baseline to 48 to 72 h after contrast administration. Discussion A recent pilot study reported that RIPC reduced the incidence of CIN after coronary angioplasty. The unusual high incidence of CIN in this study is of concern and limits its generalizability. Therefore, we propose a randomized controlled trial to study whether RIPC reduces contrast-induced kidney injury in patients at risk for CIN according to the Dutch guidelines. Trial registration Current Controlled Trials ISRCTN76496973 PMID:24721127

  17. BCG Vaccine-Induced Neuroprotection in a Mouse Model of Parkinson's Disease

    PubMed Central

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P.; Kaufman, Daniel L.

    2011-01-01

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions. PMID:21304945

  18. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease.

    PubMed

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P; Kaufman, Daniel L

    2011-01-01

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions. PMID:21304945

  19. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity.

    PubMed

    Singh, Tanveer; Goel, Rajesh Kumar

    2015-07-01

    The present study was envisaged to investigate the neuroprotective potential of Allium cepa (A. cepa) in aluminium chloride induced neurotoxicity. Aluminium chloride (50 mg/kg/day) was administered orally in mice supplemented with different doses of A. cepa hydroethanolic extract for a period of 60 days. Various behavioural, biochemical and histopathological parameters were estimated in aluminium exposed animals. Chronic aluminium administration resulted in significant motor incoordination and memory deficits, which were also endorsed biochemically as there was increased oxidative stress as well as elevated acetylcholinesterase (AChE) and aluminium levels in the brain. Supplementation with A. cepa in aluminium exposed animals significantly improved muscle coordination and memory deficits as well as reduced oxidative stress, AChE and decreased abnormal aluminium deposition in the brain. Histopathologically, there was marked deterioration visualized as decreased vacuolated cytoplasm as well as decreased pyramidal cells in the hippocampal area of mice brain which were found to be reversed with A. cepa supplementation. Administration of BADGE (PPARγ antagonist) in aluminium exposed animals reversed the neuroprotective potential of A. cepa as assessed with various behavioural, biochemical, neurochemical and histopathological estimations. In conclusion, finding of this study suggested significant neuroprotective potential of A. cepa in aluminium induced neurotoxicity. Further, the role of PPARγ receptor agonism has also been suggested as a putative neuroprotective mechanism of A. cepa, which needs further studies for confirmation. PMID:25940660

  20. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    PubMed Central

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning

  1. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  2. Hypoxia-Inducible Factor 1: Regulator of Mitochondrial Metabolism and Mediator of Ischemic Preconditioning

    PubMed Central

    Semenza, Gregg L.

    2010-01-01

    Hypoxia-inducible factor 1 (HIF-1) mediates adaptive responses to reduced oxygen availability by regulating gene expression. A critical cell-autonomous adaptive response to chronic hypoxia controlled by HIF-1 is reduced mitochondrial mass and/or metabolism. Exposure of HIF-1-deficient fibroblasts to chronic hypoxia results in cell death due to excessive levels of reactive oxygen species (ROS). HIF-1 reduces ROS production under hypoxic conditions by multiple mechanisms including: a subunit switch in cytochrome c oxidase from the COX4-1 to COX4-2 regulatory subunit that increases the efficiency of complex IV; induction of pyruvate dehydrogenase kinase 1, which shunts pyruvate away from the mitochondria; induction of BNIP3, which triggers mitochondrial selective autophagy; and induction of microRNA-210, which blocks assembly of Fe/S clusters that are required for oxidative phosphorylation. HIF-1 is also required for ischemic preconditioning and this effect may be due in part to its induction of CD73, the enzyme that produces adenosine. HIF-1-dependent regulation of mitochondrial metabolism may also contribute to the protective effects of ischemic preconditioning. PMID:20732359

  3. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs.

    PubMed

    Shukla, Dhananjay; Saxena, Saurabh; Jayamurthy, Purushotman; Sairam, Mustoori; Singh, Mrinalini; Jain, Swatantra Kumar; Bansal, Anju; Ilavazaghan, Govindaswamy

    2009-01-01

    Shukla, Dhananjay, Saurabh Saxena, Purushotman Jayamurthy, Mustoori Sairam, Mrinalini, Singh, Swatantra Kumar Jain, Anju Bansal, and Govindaswamy Ilavazaghan. High Alt. Med. Biol. 10:57-69, 2009.-Hypoxic preco759nditioning (HPC) provides robust protection against injury from subsequent prolonged hypobaric hypoxia, which is a characteristic of high altitude and is known to induce oxidative injury in lung by increasing the generation of reactive oxygen species (ROS) and decreasing the effectiveness of the antioxidant defense system. We hypothesize that HPC with cobalt might protect the lung from subsequent hypobaric hypoxia-induced lung injury. HPC with cobalt can be achieved by oral feeding of CoCl(2) (12.5 mg kg(-1)) in rats for 7 days. Nonpreconditioned rats responded to hypobaric hypoxia (7619 m) by increased reactive oxygen species (ROS) generation and a decreased GSH/GSSG ratio. They also showed a marked increase in lipid peroxidation, heat-shock proteins (HSP32, HSP70), metallothionins (MT), levels of inflammatory cytokines (TNF-alpha, IFN-gamma, MCP-1), and SOD, GPx, and GST enzyme activity. In contrast, rats preconditioned with cobalt were far less impaired by severe hypobaric hypoxia, as observed by decreased ROS generation, lipid peroxidation, and inflammatory cytokine release and an inceased GSH/GSSG ratio. Increased expression of antioxidative proeins Nrf-1, HSP-32, and MT was also observed in cobalt- preconditioned animals. A marked increase in the protein expression and DNA binding activity of hypoxia-inducible transcriptional factor (HIF-1alpha) and its regulated genes, such as erythropoietin (EPO) and glucose transporter-1 (glut-1), was observed after HPC with cobalt. We conclude that HPC with cobalt enhances antioxidant status in the lung and protects from subsequent hypobaric hypoxia-induced oxidative stress. PMID:19278353

  4. Role of the Toll-like receptor 3 signaling pathway in the neuroprotective effect of sevoflurane pre-conditioning during cardiopulmonary bypass in rats

    PubMed Central

    ZHOU, JIN; ZHOU, NAN; WU, XIAO-NING; CAO, HUI-JUAN; SUN, YING-JIE; ZHANG, TIE-ZHENG; CHEN, KE-YAN; YU, DONG-MEI

    2015-01-01

    The aim of the present study was to explore the roles and possible molecular mechanism of the alleviating effect of sevoflurane pre-treatment on the extracorporeal circulation and to investigate the possible involvement of the Toll-like receptor (TLR3) signaling pathway. A total of 64 male Sprague Dawley rats were randomly divided into three groups: The sham operation group (H group; n=8), cardiopulmonary bypass (CPB) group (C group; n=24) and sevoflurane pre-conditioning group (S group; n=32). The C group was subjected to tracheal intubation and mechanical ventilation, vessel puncture and catheter placement in the right femoral artery and right internal jugular vein, while no CPB was performed in the H group. The S group was pre-treated with 2.4% sevoflurane for 1 h prior to establishing the CPB model. The CPB in the C and S groups was performed for 1 h. Blood of the rats was analyzed and clinical parameters were detected prior to, during and at various time-points after CPB. In addition, eight rats from the C and S groups each were sacrificed at these time-points and brain tissue samples were analyzed. The levels of the brain damage-specific protein S100-β as well as IL-6 and IFN-β in the serum were detected by ELISA; furthermore, the expression levels of TLR3 and TIR-domain-containing adapter-inducing interferon-β (TRIF) in the left hippocampus were assessed by ELISA and/or western blot analysis. The right hippocampus was assessed for neuronal apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The mean arterial pressure, heart rate and hematocrit were significantly decreased following CPB (P<0.05), while there was no significant changes in any other clinical parameters. The serum levels of S100-β and IL-6 in the C group were significantly increased compared with those in the H group (P<0.05), which was attenuated by sevoflurane-pre-treatment. Compared with the H group, the serum levels of IFN-β as well as hippocampal protein

  5. Retinal ganglion cell neuroprotection induced by activation of alpha7 nicotinic acetylcholine receptors.

    PubMed

    Mata, David; Linn, David M; Linn, Cindy L

    2015-12-01

    The α7nAChR agonist, PNU-282987, has previously been shown to have a neuroprotective effect against loss of retinal ganglion cells (RGCs) in an in vivo glaucoma model when the agent was injected into the vitreous chamber of adult Long Evans rat eyes. Here, we characterized the neuroprotective effect of PNU-282987 at the nerve fiber and retinal ganglion cell layer, determined that neuroprotection occurred when the agonist was applied as eye drops and verified detection of the agonist in the retina, using LC/MS/MS. To induce glaucoma-like conditions in adult Long Evans rats, hypertonic saline was injected into the episcleral veins to induce scar tissue and increase intraocular pressure. Within one month, this procedure produced significant loss of RGCs compared to untreated conditions. RGCs were quantified after immunostaining with an antibody against Thy 1.1 and imaged using a confocal microscope. In dose-response studies, concentrations of PNU-282987 were applied to the animal's right eye two times each day, while the left eye acted as an internal control. Eye drops of PNU-282987 resulted in neuroprotection against RGC loss in a dose-dependent manner using concentrations between 100 μM and 2 mM PNU-282987. LC/MS/MS results demonstrated that PNU-282987 was detected in the retina when applied as eye drops, relatively small amounts of PNU-282987 were measured in blood plasma and no PNU-282987 was detected in cardiac tissue. These results support the hypothesis that eye drop application of PNU-282987 can prevent loss of RGCs associated with glaucoma, which can lead to neuroprotective treatments for diseases that involve α7nAChRs. PMID:26239818

  6. The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia

    PubMed Central

    Ostrowski, Robert P.; Graupner, Gerhart; Titova, Elena; Zhang, Jennifer; Chiu, Jeffrey; Dach, Neal; Corleone, Dalia; Tang, Jiping; Zhang, John H.

    2008-01-01

    We hypothesized that the brain-protective effect of hyperbaric oxygen (HBO) preconditioning in a transient global cerebral ischemia rat model is mediated by the inhibition of early apoptosis. One hundred ten male Sprague Dawley (SD) rats (300–350 g body weight) were allocated to the sham group and three other groups with 10 minutes of four-vessel occlusion, untreated or preconditioned with either 3 or 5 hyperbaric oxygenations. HBO preconditioning improved neurobehavioral scores and reduced mortality, decreased ischemic cell change, reduced the number of early apoptotic cells and hampered a conversion of early to late apoptotic alterations. HBO preconditioning reduced the immunoreactivity of phosphorylated p38 in vulnerable neurons and increased the expression of brain derived neurotrophic factor (BDNF) in early stage post-ischemia. However, preconditioning with 3 HBO treatments proved less beneficial than with 5 HBO treatments. We conclude that HBO preconditioning may be neuroprotective by reducing early apoptosis and inhibition of the conversion of early to late apoptosis, possibly through an increase in brain BDNF level and the suppression of p38 activation. PMID:17822911

  7. Preconditioning of endoplasmic reticulum stress protects against acrylonitrile-induced cytotoxicity in primary rat astrocytes: The role of autophagy.

    PubMed

    Yu, Bai; Wenjun, Zhao; Changsheng, Yin; Yuntao, Fang; Jing, Ma; Ben, Li; Hai, Qian; Guangwei, Xing; Suhua, Wang; Fang, Li; Aschner, Michael; Rongzhu, Lu

    2016-07-01

    This study explored the protective effects of endoplasmic reticulum (ER) stress preconditioning induced by 2-deoxy-d-glucose (2-DG) or oxidized dithiothreitol (DTTox) on acrylonitrile (AN)-induced cytotocity in primary rat astrocytes. Cells were pretreated with 2-DG or DTTox for different times at various concentration. Next, astrocytes were treated with 2.5mM AN for an additional 12h. Cell viability and cytotoxicity were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) leakage, respectively. Reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were determined. Expression of glucose-regulated protein 78 (GRP78), phosphorylated-eukaryotic translation initiation factor 2α (p-eIF2α), microtubule-associated protein light chain 3 (LC3), P62, and Beclin1 were used to assess autophagy. In addition, 3-methyadenine (3-MA), an autophagy-specific inhibitor, was used to assess the role of autophagy in ER stress preconditioning-induced protection against AN cytotoxicity. The results showed that AN alone significantly decreased astrocytic viability and enhanced cytotoxicity. Compared to the AN-alone group, preconditioning with 2-DG or DTTox significantly increased cell viability and reduced cytotoxicity to indistinguishable levels. Decreased ROS generation and increased ΔΨm were also inherent to ER stress preconditioning with these compounds. Furthermore, autophagy was activated by both 2-DG and DTTox. Blockage of autophagy attenuated the protection afforded by 2-DG or DTTox preconditioning in AN-treated astrocytes. These results establish that ER stress preconditioning affords cellular protection against AN, and that activation of autophagy mediates the cytoprotection. Modulation of ER stress and resultant activation of autophagy may be a novel target for to ameliorate AN toxicity. PMID:27260289

  8. Hypoxia preconditioning attenuates bladder overdistension-induced oxidative injury by up-regulation of Bcl-2 in the rat

    PubMed Central

    Yu, Hong-Jeng; Chien, Chiang-Ting; Lai, Yu-Jen; Lai, Ming-Kuen; Chen, Chau-Fong; Levin, Robert M; Hsu, Su-Ming

    2004-01-01

    We explored whether hypoxic preconditioning minimizes oxidative injury induced by overdistension/emptying in the rat bladder. For hypoxic preconditioning, female Wistar rats were placed in a hypobaric chamber (380 Torr) 15 h day−1 for 28 days. Overdistension was induced by infusion of two times the threshold volume of saline into the bladder and was maintained for 1 or 2 h, followed by drainage/emptying. During overdistension (ischaemia) and emptying (reperfusion) periods, a bursting increase of reactive oxygen species (ROS) from the bladder was originated from the large numbers of infiltrating leucocytes and scattered resident cells, including urothelial, submucosal, and smooth muscle cells. ROS impaired the voiding function by a reduction of bladder afferent and efferent nerve activity and bethanecol- or ATP-induced detrusor contraction. ROS enhanced pro-apoptotic mechanisms, including increases in the Bax/Bcl-2 ratio, CPP32 expression, and poly(ADP-ribose) polymerase (PARP) fragments with subsequent apoptotic cell formation in the insulted bladders. Hypoxia preconditioning up-regulated Bcl-2 expression in the bladder and significantly reduced the levels of ROS and apoptosis detected in the overdistension/emptying bladders and preserved partial voiding function. Bcl-2 up-regulation by hypoxia preconditioning contributes protection against overdistension/emptying-induced oxidative stress and injury in the bladder. PMID:14608004

  9. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  10. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. PMID:26826319

  11. Rosuvastatin induces delayed preconditioning against L-glutamate excitotoxicity in cultured cortical neurons

    PubMed Central

    Domoki, Ferenc; Kis, Béla; Gáspár, Tamás; Snipes, James A.; Bari, Ferenc; Busija, David W.

    2009-01-01

    We tested whether rosuvastatin (RST) protected against excitotoxic neuronal cell death in rat primary cortical neuronal cultures. L-glutamate (200µM, 1h) reduced neuronal viability (% of naive controls, mean±SEM, n=8–32, *p<0.05) from 100±2% to 60±1%*, but pretreatment with RST (0.5 µM, 3 days) increased survival to 88±2%*. RST-induced neuroprotection was not affected by coapplication with mevalonate (10µM), although the same dose of mevalonate fully prevented the neurotoxic effects of a high dose (20µM) of RST. RST (0.5 µM) pretreatment did not affect mitochondrial membrane potential or superoxide anion levels in quiescent neurons. However, RST pretreatment blunted elevations in free intracellular Ca2+ and reduced increases in superoxide anion levels following glutamate exposure. Manganese superoxide dismutase (SOD), copper-zinc SOD, catalase, and reduced glutathione levels were unaffected by RST pretreatment. In contrast, acute, one time RST application did not affect either baseline or L-glutamate-induced increases in superoxide levels. In summary, 3- day RST pretreatment induces resistance to the excitotoxic effect of L-glutamate in cultured neurons apparently by a mechanism that is independent of 3-hydroxy-3-methyl-glutaryl-coenzyme A- reductase inhibition. The delayed neuroprotection by RST against excitotoxicity does not involve sustained mitochondrial depolarization or superoxide anion production as initiating events, although it is associated with reduced Ca2+ influx and superoxide anion production upon L-glutamate challenge. PMID:19931334

  12. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore

    PubMed Central

    Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar

    2016-01-01

    Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated

  13. Ischemic preconditioning protects against ischemic brain injury.

    PubMed

    Ma, Xiao-Meng; Liu, Mei; Liu, Ying-Ying; Ma, Li-Li; Jiang, Ying; Chen, Xiao-Hong

    2016-05-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  14. Ischemic preconditioning protects against ischemic brain injury

    PubMed Central

    Ma, Xiao-meng; Liu, Mei; Liu, Ying-ying; Ma, Li-li; Jiang, Ying; Chen, Xiao-hong

    2016-01-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  15. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models

    PubMed Central

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H. V.

    2016-01-01

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine’s ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease. PMID:27145922

  16. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models.

    PubMed

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H V

    2016-01-01

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine's ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease. PMID:27145922

  17. Molecular mechanism of preconditioning.

    PubMed

    Das, Manika; Das, Dipak K

    2008-04-01

    During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2-3 h) and (ii) late preconditioning (starting at 24 h lasting until 72-96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of K(ATP) channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion. PMID:18344203

  18. Neuroprotective effects of bis(7)-tacrine against glutamate-induced retinal ganglion cells damage

    PubMed Central

    2010-01-01

    Background Glutamate-mediated excitotoxicity, primarily through N-methyl-D-aspartate (NMDA) receptors, may be an important cause of retinal ganglion cells (RGCs) death in glaucoma and several other retinal diseases. Bis(7)-tacrine is a noncompetitive NMDA receptors antagonist that can prevent glutamate-induced hippocampal neurons damage. We tested the effects of bis(7)-tacrine against glutamate-induced rat RGCs damage in vitro and in vivo. Results In cultured neonatal rats RGCs, the MTT assay showed that glutamate induced a concentration- and time-dependent toxicity. Bis(7)-tacrine and memantine prevented glutamate-induced cell death in a concentration-dependent manner with IC50 values of 0.028 μM and 0.834 μM, respectively. The anti-apoptosis effects of bis(7)-tacrine were confirmed by annexin V-FITC/PI staining. In vivo, TUNEL analysis and retrograde labeling analysis found that pretreatment with bis(7)-tacrine(0.2 mg/kg) induced a significant neuroprotective effect against glutamate-induced RGCs damage. Conclusions Our results showed that bis(7)-tacrine had neuroprotective effects against glutamate-induced RGCs damage in vitro and in vivo, possibly through the drug's anti-NMDA receptor effects. These findings make bis(7)-tacrine potentially useful for treating a variety of ischemic or traumatic retinopathies inclusive of glaucoma. PMID:20199668

  19. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    PubMed Central

    Kosaraju, Jayasankar; Chinni, Santhivardhan; Roy, Partha Deb; Kannan, Elango; Antony, A. Shanish; Kumar, M. N. Satish

    2014-01-01

    Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). Materials and Methods: T. cordifolia ethanol extract (TCEE) was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 μg). Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg) and two experimental groups (n = 6/group). Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein) and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein) at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18) and 400 mg/kg (1.11 ± 0.15) when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation. PMID:24741189

  20. Molecular Imaging-Assisted Optimization of Hsp70 Expression during Laser-Induced Thermal Preconditioning for Wound Repair Enhancement

    PubMed Central

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Joshua T.; Abraham, Alexander A.; Nanney, Lillian B.; Mahadevan-Jansen, Anita; Davidson, Jeffrey M.; Jansen, E. Duco

    2013-01-01

    Patients at risk for impaired healing may benefit from prophylactic measures aimed at improving wound repair. Several photonic devices claim to enhance repair by thermal and photochemical mechanisms. We hypothesized that laser-induced thermal preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed diode laser (λ =1.85 μm, τp=2 ms, 50 Hz, H =7.64 mJcm−2), the skin of transgenic mice that contain an hsp70 promoter-driven luciferase was preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized in vitro and in vivo using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Biomechanical properties and histological parameters of wound healing were evaluated for up to 14 days. Bioluminescent imaging studies indicated that an optimized laser protocol increased hsp70 expression by 10-fold. Under these conditions, laser-preconditioned incisions were two times stronger than control wounds. Our data suggest that this molecular imaging approach provides a quantitative method for optimization of tissue preconditioning and that mild laser-induced heat shock may be a useful therapeutic intervention prior to surgery. PMID:18580963

  1. HIF1α is Necessary for Exercise-Induced Neuroprotection while HIF2α is Needed for Dopaminergic Neuron Survival in the Substantia Nigra pars compacta

    PubMed Central

    Smeyne, Michelle; Sladen, Paul; Jiao, Yun; Dragatsis, Ioannis; Smeyne, Richard Jay

    2015-01-01

    Exercise reduces the risk of developing a number of neurological disorders and increases the efficiency of cellular energy production. However, overly strenuous exercise produces oxidative stress. Proper oxygenation is crucial for the health of all tissues, and tight regulation of cellular oxygen is critical to balance O2 levels and redox homeostasis in the brain. Hypoxia Inducible Factor (HIF)1α and HIF2α are transcription factors regulated by cellular oxygen concentration that initiate gene regulation of vascular development, redox homeostasis, and cell cycle control. HIF1α and HIF2α contribute to important adaptive mechanisms that occur when oxygen and ROS homeostasis become unbalanced. It has been shown that preconditioning by exposure to a stressor prior to a hypoxic event reduces damage that would otherwise occur. Previously we reported that three months of exercise protects SNpc DA neurons from toxicity caused by Complex I inhibition. Here, we identify the cells in the SNpc that express HIF1α and HIF2α and show that running exercise produces hypoxia in SNpc DA neurons, and alters the expression of HIF1α and HIF2α. In mice carrying a conditional knockout of Hif1α in postnatal neurons we observe that exercise alone produces SNpc TH+ DA neuron loss. Loss of HIF1α also abolishes exercise-induced neuroprotection. In mice lacking Hif2α in postnatal neurons, the number of TH+ DA neurons in the adult SNpc is diminished, but three months of exercise rescues this loss. We conclude that HIF1α is necessary for exercise-induced neuroprotection and both HIF1α and HIF2α are necessary for the survival and function of adult SNpc DA neurons. PMID:25796140

  2. Neuroprotective effects of (-)-linalool against oxygen-glucose deprivation-induced neuronal injury.

    PubMed

    Park, Hyeon; Seol, Geun Hee; Ryu, Sangwoo; Choi, In-Young

    2016-04-01

    (-)-Linalool, a major component of many essential oils, is widely used in cosmetics and flavoring ingredients as well as in traditional medicines. Although various in vitro and in vivo studies have shown that (-)-linalool has anti-convulsant, anti-nociceptive, anti-inflammatory and anti-oxidative properties, its anti-ischemic/hypoxic effects have yet to be determined. This study assessed the neuroprotective effects of (-)-linalool against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cortical neuronal injury, an in vitro model of ischemic stroke. (-)-Linalool significantly attenuated OGD/R-evoked cortical neuronal injury/death, although it did not inhibit N-methyl-D-aspartate (NMDA)-induced excitotoxicity. (-)-Linalool significantly reduced intracellular oxidative stress during OGD/R-induced injury, as well as scavenging peroxyl radicals (Trolox equivalents or TE = 3.8). This anti-oxidant effect was found to correlate with the restoration of OGD/R-induced decreases in the activities of SOD and catalase. In addition, (-)-linalool inhibited microglial migration induced by monocyte-chemoattractant protein-1 (MCP-1), a chemokine released by OGD/R. These findings show that (-)-linalool has neuroprotective effects against OGD/R-induced neuronal injury, which may be due to its anti-oxidant and anti-inflammatory activities. Detailed examination of the anti-ischemic mechanisms of (-)-linalool may indicate strategies for the development of drugs to treat cerebral ischemic injury. PMID:26832326

  3. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    PubMed

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. PMID:27129619

  4. Paracrine Neuroprotective Effects of Neural Stem Cells on Glutamate-Induced Cortical Neuronal Cell Excitotoxicity

    PubMed Central

    Geranmayeh, Mohammad Hossein; Baghbanzadeh, Ali; Barin, Abbas; Salar-Amoli, Jamileh; Dehghan, Mohammad Mehdi; Rahbarghazi, Reza; Azari, Hassan

    2015-01-01

    Purpose: Glutamate is a major excitatory neurotransmitter in mammalian central nervous system. Excessive glutamate releasing overactivates its receptors and changes calcium homeostasis that in turn leads to a cascade of intracellular events causing neuronal degeneration. In current study, we used neural stem cells conditioned medium (NSCs-CM) to investigate its neuroprotective effects on glutamate-treated primary cortical neurons. Methods: Embryonic rat primary cortical cultures were exposed to different concentrations of glutamate for 1 hour and then they incubated with NSCs-CM. Subsequently, the amount of cell survival in different glutamate excitotoxic groups were measured after 24 h of incubation by trypan blue exclusion assay and MTT assay. Hoechst and propidium iodide were used for determining apoptotic and necrotic cell death pathways proportion and then the effect of NSCs-CM was investigated on this proportion. Results: NSCs conditioned medium increased viability rate of the primary cortical neurons after glutamate-induced excitotoxicity. Also we found that NSCs-CM provides its neuroprotective effects mainly by decreasing apoptotic cell death rate rather than necrotic cell death rate. Conclusion: The current study shows that adult neural stem cells could exert paracrine neuroprotective effects on cortical neurons following a glutamate neurotoxic insult. PMID:26819924

  5. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats.

    PubMed

    Waszak, Paul; Alphonse, Rajesh; Vadivel, Arul; Ionescu, Lavinia; Eaton, Farah; Thébaud, Bernard

    2012-10-10

    Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity. Bone marrow derived-mesenchymal stem cells (BM-MSC) prevent lung injury in an O(2)-induced model of BPD. The low level of lung BM-MSC engraftment suggests alternate mechanisms-beyond cell replacement-to account for their therapeutic benefit. We hypothesized that BM-MSC prevent O(2)-induced BPD through a paracrine-mediated mechanism and that preconditioning of BM-MSC would further enhance this paracrine effect. To this end, conditioned medium (CM) from BM-MSC (MSCcm) or preconditioned CM harvested after 24 h of BM-MSC exposure to 95% O(2) (MSC-O2cm) were administrated for 21 days to newborn rats exposed to 95% O(2) from birth until postnatal day (P)14. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and exhibited signs of pulmonary hypertension (PH), assessed by echo-Doppler, right ventricular hypertrophy, and pulmonary artery medial wall thickness. Daily intraperitoneal administration of both CM preserved alveolar growth. MSC-O2cm exerted the most potent therapeutic benefit and also prevented PH. CM of lung fibroblasts (control cells) had no effect. MSCcm had higher antioxidant capacity than control fibroblast CM. Preconditioning did not increase the antioxidant capacity in MSC-O2cm but produced higher levels of the naturally occurring antioxidant stanniocalcin-1 in MSC-O2cm. Ex vivo preconditioning enhances the paracrine effect of BM-MSC and opens new therapeutic options for cell-based therapies. Ex vivo preconditioning may also facilitate the discovery of MSC-derived repair molecules. PMID:22533467

  6. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats

    PubMed Central

    Shi, Bin; Feng, Zhi-Qiang; Li, Wen-Bing; Zhang, Hong-Yi

    2015-01-01

    AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats. METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue. RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation. CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats. PMID:26074692

  7. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus.

    PubMed

    Kim, Jong-Hoon; Cho, Soo Yeun; Lee, Jun-Ho; Jeong, Sang Min; Yoon, In-Soo; Lee, Byung-Hwan; Lee, Joon-Hee; Pyo, Mi Kyung; Lee, Sang-Mok; Chung, Jun-Mo; Kim, Sunoh; Rhim, Hyewhon; Oh, Jae-Wook; Nah, Seung-Yeol

    2007-03-01

    We previously demonstrated that ginsenoside Rg(3) (Rg(3)), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents and NMDA-induced neurotoxicity (Kim, S., Kim, T., Ahn, K., Park, W.K., Nah, S.Y., Rhim, H., 2004. Ginsenoside Rg(3) antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem. Biophys. Res. Commun. 323, 416-424). Accumulating evidence suggests that homocysteine (HC), a metabolite of methionine, exerts its excitotoxicity through NMDA receptor activation. In the present study, we examined the neuroprotective effects of Rg(3) on HC-induced hippocampal excitotoxicity in vitro and in vivo. Our in vitro studies using rat cultured hippocampal neurons revealed that Rg(3) treatment significantly and dose-dependently inhibited HC-induced hippocampal cell death, with an EC(50) value of 28.7+/-7.5 muM. Rg(3) treatment not only significantly reduced HC-induced DNA damage, but also dose-dependently attenuated HC-induced caspase-3 activity in vitro. Our in vivo studies revealed that intracerebroventricular (i.c.v.) pre-administration of Rg(3) significantly and dose-dependently reduced i.c.v. HC-induced hippocampal damage in rats. To examine the mechanisms underlying the in vitro and in vivo neuroprotective effects of Rg(3) against HC-induced hippocampal excitotoxicity, we examined the effect of Rg(3) on HC-induced intracellular Ca(2+) elevations in cultured hippocampal cells and found that Rg(3) treatment dose-dependently inhibited HC-induced intracellular Ca(2+) elevation, with an IC(50) value of 41.5+/-17.5 muM. In addition, Rg(3) treatment dose-dependently inhibited HC-induced currents in Xenopus oocytes expressing the NMDA receptor, with an IC(50) of 47.3+/-14.2 muM. These results collectively indicate that Rg(3)-induced neuroprotection against HC in rat hippocampus might be achieved via inhibition of HC-mediated NMDA receptor activation. PMID:17239831

  8. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina.

    PubMed

    Zhang, Chanjuan; Wang, Zhen; Zhao, Jiayi; Li, Qin; Huang, Cuiqin; Zhu, Lihong; Lu, Daxiang

    2016-05-01

    Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage. PMID:26119305

  9. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats.

    PubMed Central

    Borrego, Aluet; Zamora, Zullyt B; González, Ricardo; Romay, Cheyla; Menéndez, Silvia; Hernández, Frank; Montero, Teresita; Rojas, Enys

    2004-01-01

    BACKGROUND: Acute renal failure is a dose-limiting factor of cisplatin chemotherapy. Here, we show the protective effect of ozone oxidative preconditioning against cisplatin-induced renal dysfunction in rats. Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-pro-oxidant balance for preservation of the cell redox state by increasing antioxidant endogenous systems in various in vivo and in vitro experimental models. AIMS: To analyze the protective role of ozone oxidative preconditioning against cisplatin-induced nephrotoxicity. METHODS: Male Sprague-Dawley rats were pretreated with 15 intrarectal applications of ozone/oxygen mixture at 0.36, 0.72, 1.1, 1.8 and 2.5 mg/kg before cisplatin intraperitoneal injection (6 mg/kg). Serum and kidneys were extracted and analyzed 5 days after cisplatin treatment for determinations of the renal content of glutathione, thiobarbituric acid-reactive substances, renal concentration and enzymatic activities of catalase, superoxide dismutase and glutathione peroxidase. RESULTS: Ozone pretreatment prevented the increase in serum creatinine levels, the glutathione depletion and the inhibition of superoxide dismutase, catalase and glutathione peroxidase activities induced by cisplatin in the rat kidney. Also, the renal content of thiobarbituric acid-reactive substances was decreased by ozone therapy. These protective effects of ozone were dose dependent. CONCLUSIONS: Intrarectal ozone therapy prevented effectively the renal antioxidant unbalance induced by cisplatin treatment. PMID:15203559

  10. p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing

    PubMed Central

    Posada-Duque, Rafael Andres; López-Tobón, Alejandro; Piedrahita, Diego; González-Billault, Christian; Cardona-Gomez, Gloria Patricia

    2015-01-01

    CDK5 plays an important role in neurotransmission and synaptic plasticity in the normal function of the adult brain, and dysregulation can lead to Tau hyperphosphorylation and cognitive impairment. In a previous study, we demonstrated that RNAi knock down of CDK5 reduced the formation of neurofibrillary tangles and prevented neuronal loss in triple transgenic Alzheimer’s mice. Here, we report that CDK5 RNAi protected against glutamate-mediated excitotoxicity using primary hippocampal neurons transduced with AAV2.5 viral vector eGFP-tagged SCR or CDK5 shRNA-miR during 12 days. Protection was dependent on a concomitant increase in p35 and was reversed using p35 RNAi, which affected the down-stream Rho GTPase activity. Furthermore, p35 overexpression and constitutively active Rac1 mimicked CDK5 silencing-induced neuroprotection. In addition, 3xTg-AD mice (24 months old) were injected in the hippocampus with SCR or CDK5 shRNA-miR, and spatial learning and memory were performed three weeks post injection using “Morris” water maze test. Our data showed that CDK5 knock down induced an increase in p35 protein levels and Rac activity in triple transgenic Alzheimer’s mice, which correlated with the recovery of cognitive function; these findings confirm that increased p35 and active Rac are involved in neuroprotection. In summary, our data suggest that p35 acts as a mediator of Rho GTPase activity and contributes to the neuroprotection induced by CDK5 RNAi. PMID:25864429

  11. p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing.

    PubMed

    Posada-Duque, Rafael Andres; López-Tobón, Alejandro; Piedrahita, Diego; González-Billault, Christian; Cardona-Gomez, Gloria Patricia

    2015-07-01

    CDK5 plays an important role in neurotransmission and synaptic plasticity in the normal function of the adult brain, and dysregulation can lead to Tau hyperphosphorylation and cognitive impairment. In a previous study, we demonstrated that RNAi knock down of CDK5 reduced the formation of neurofibrillary tangles (NFT) and prevented neuronal loss in triple transgenic Alzheimer's mice. Here, we report that CDK5 RNAi protected against glutamate-mediated excitotoxicity using primary hippocampal neurons transduced with adeno-associated virus 2.5 viral vector eGFP-tagged scrambled or CDK5 shRNA-miR during 12 days. Protection was dependent on a concomitant increase in p35 and was reversed using p35 RNAi, which affected the down-stream Rho GTPase activity. Furthermore, p35 over-expression and constitutively active Rac1 mimicked CDK5 silencing-induced neuroprotection. In addition, 3xTg-Alzheimer's disease mice (24 months old) were injected in the hippocampus with scrambled or CDK5 shRNA-miR, and spatial learning and memory were performed 3 weeks post-injection using 'Morris' water maze test. Our data showed that CDK5 knock down induced an increase in p35 protein levels and Rac activity in triple transgenic Alzheimer's mice, which correlated with the recovery of cognitive function; these findings confirm that increased p35 and active Rac are involved in neuroprotection. In summary, our data suggest that p35 acts as a mediator of Rho GTPase activity and contributes to the neuroprotection induced by CDK5 RNAi. PMID:25864429

  12. Acceleration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Nishiyama, Naoki; Yoshino, Seiji; Ujiro, Takumi; Watanabe, Shin; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2015-08-01

    We examined the sequential effects of salt-mist stress followed by high-system-voltage stress on the power loss of crystalline silicon photovoltaic (PV) modules to determine whether a crucial failure as potential-induced degradation (PID) is accelerated by material-property changes caused by the long-term effects of a less harmful stress such as salt-mist spraying. Degradation profiles confirmed in this study show that PID is accelerated by certain types of salt-mist preconditioning. For the acceleration of PID, the contribution of sodium ions liberated from the front glass of the PV module seems to be excluded. Therefore, we consider that the sodium ions penetrating into the PV modules from the ambient environment may also cause degradation according to the proposed mechanisms of PID, as the sodium ions existing in the front glass cause PID. Furthermore, this type of degradation may indicate the wear-out phenomenon after a long-term exposure in the field (especially near the coast).

  13. Ethanol preconditioning of rat cerebellar cultures targets NMDA receptors to the synapse and enhances peroxiredoxin 2 expression.

    PubMed

    Mitchell, Robert M; Tajuddin, Nuzhath; Campbell, Edward M; Neafsey, Edward J; Collins, Michael A

    2016-07-01

    Epidemiological studies indicate that light-moderate alcohol (ethanol) consumers tend to have reduced risks of cognitive impairment and progression to dementia during aging. Exploring possible mechanisms, we previously found that moderate ethanol preconditioning (MEP, 20-30mM) of rat brain cultures for several days instigated neuroprotection against β-amyloid peptides. Our biochemical evidence implicated the NMDA receptor (NMDAR) as a potential neuroprotective "sensor", specifically via synaptic NMDAR signaling. It remains unclear how ethanol modulates the receptor and its downstream targets to engender neuroprotection. Here we confirm with deconvolution microscopy that MEP of rat mixed cerebellar cultures robustly increases synaptic NMDAR localization. Phospho-activation of the non-receptor tyrosine kinases Src and Pyk2, known to be linked to synaptic NMDAR, is also demonstrated. Additionally, the preconditioning enhances levels of an antioxidant protein, peroxiredoxin 2 (Prx2), reported to be downstream of synaptic NMDAR signaling, and NMDAR antagonism with memantine (earlier found to abrogate MEP neuroprotection) blocks the Prx2 elevations. To further link Prx2 with antioxidant-based neuroprotection, we circumvented the ethanol preconditioning-NMDAR pathway by pharmacologically increasing Prx2 with the naturally-occurring cruciferous compound, 3H-1,2-dithiole-3-thione (D3T). Thus, D3T pretreatment elevated Prx2 expression to a similar extent as MEP, while concomitantly preventing β-amyloid neurotoxicity; D3T also protected the cultures from hydrogen peroxide toxicity. The findings support a mechanism that couples synaptic NMDAR signaling, Prx2 expression and augmented antioxidant defenses in ethanol preconditioning-induced neuroprotection. That this mechanism can be emulated by a cruciferous vegetable constituent suggests that such naturally-occurring "neutraceuticals" may be useful in therapy for oxidative stress-related dementias. PMID:27021955

  14. Functional Identification of Neuroprotective Molecules

    PubMed Central

    Dai, Cheng; Liang, Dong; Li, Huiwu; Sasaki, Masayuki; Dawson, Ted M.; Dawson, Valina L.

    2010-01-01

    The central nervous system has the capacity to activate profound neuroprotection following sub-lethal stress in a process termed preconditioning. To gain insight into this potent survival response we developed a functional cloning strategy that identified 31 putative neuroprotective genes of which 28 were confirmed to provide protection against oxygen-glucose deprivation (OGD) or excitotoxic exposure to N-methyl-D-aspartate (NMDA) in primary rat cortical neurons. These results reveal that the brain possesses a wide and diverse repertoire of neuroprotective genes. Further characterization of these and other protective signals could provide new treatment opportunities for neurological injury from ischemia or neurodegenerative disease. PMID:21124846

  15. Autoregulation of Inducible Nitric Oxide Synthase Expression by RNA Interference Provides Neuroprotection in Neonatal Rats

    PubMed Central

    Wang, Zhi; Feng, Chenzhuo; Zhao, Huijuan; Ren, Xiaoyan; Peng, Shuling; Zuo, Zhiyi

    2015-01-01

    We have shown that autoregulation of gene expression by RNA interference is achievable in cell cultures. To determine whether this novel concept could be used to produce neuroprotection under in vivo condition, postnatal day (PND) 3 rats received intracerebroventricular injection of lentivirus that carried or did not carry code for short hairpin RNA (shRNA) of inducible nitric oxide synthase (iNOS). The expression of this shRNA was controlled by an iNOS promoter (piNOS-shRNA) or cytomegalovirus promoter (pCMV-shRNA). The rats were subjected to brain hypoxia-ischemia at PND7. Ischemic brain tissues had increased iNOS expression. This increase was attenuated by virus carrying piNOS-shRNA. Virus carrying pCMV-shRNA reduced iNOS to a level that was lower than control. Brain tissue loss and functional impairment after the hypoxia-ischemia were attenuated by the virus carrying piNOS-shRNA but not by pCMV-shRNA. Our results provide proof-of-concept evidence that autoregulation of iNOS expression by RNA interference induces neuroprotection in vivo and that appropriate regulation of gene expression is important. PMID:25767617

  16. Epsilon Aminocaproic Acid Pretreatment Provides Neuroprotection Following Surgically Induced Brain Injury in a Rat Model.

    PubMed

    Komanapalli, Esther S; Sherchan, Prativa; Rolland, William; Khatibi, Nikan; Martin, Robert D; Applegate, Richard L; Tang, Jiping; Zhang, John H

    2016-01-01

    Neurosurgical procedures can damage viable brain tissue unintentionally by a wide range of mechanisms. This surgically induced brain injury (SBI) can be a result of direct incision, electrocauterization, or tissue retraction. Plasmin, a serine protease that dissolves fibrin blood clots, has been shown to enhance cerebral edema and hemorrhage accumulation in the brain through disruption of the blood brain barrier. Epsilon aminocaproic acid (EAA), a recognized antifibrinolytic lysine analogue, can reduce the levels of active plasmin and, in doing so, potentially can preserve the neurovascular unit of the brain. We investigated the role of EAA as a pretreatment neuroprotective modality in a SBI rat model, hypothesizing that EAA therapy would protect brain tissue integrity, translating into preserved neurobehavioral function. Male Sprague-Dawley rats were randomly assigned to one of four groups: sham (n = 7), SBI (n = 7), SBI with low-dose EAA, 150 mg/kg (n = 7), and SBI with high-dose EAA, 450 mg/kg (n = 7). SBI was induced by partial right frontal lobe resection through a frontal craniotomy. Postoperative assessment at 24 h included neurobehavioral testing and measurement of brain water content. Results at 24 h showed both low- and high-dose EAA reduced brain water content and improved neurobehavioral function compared with the SBI groups. This suggests that EAA may be a useful pretherapeutic modality for SBI. Further studies are needed to clarify optimal therapeutic dosing and to identify mechanisms of neuroprotection in rat SBI models. PMID:26463967

  17. Pharmacological blockade of the calcium plateau provides neuroprotection following organophosphate paraoxon induced status epilepticus in rats.

    PubMed

    Deshpande, Laxmikant S; Blair, Robert E; Huang, Beverly A; Phillips, Kristin F; DeLorenzo, Robert J

    2016-01-01

    Organophosphate (OP) compounds which include nerve agents and pesticides are considered chemical threat agents. Currently approved antidotes are crucial in limiting OP mediated acute mortality. However, survivors of lethal OP exposure exhibit delayed neuronal injury and chronic behavioral morbidities. In this study, we investigated neuroprotective capabilities of dantrolene and carisbamate in a rat survival model of paraoxon (POX) induced status epilepticus (SE). Significant elevations in hippocampal calcium levels were observed 48-h post POX SE survival, and treatment with dantrolene (10mg/kg, i.m.) and carisbamate (90mg/kg, i.m.) lowered these protracted calcium elevations. POX SE induced delayed neuronal injury as characterized by Fluoro Jade C labeling was observed in critical brain areas including the dentate gyrus, parietal cortex, amygdala, and thalamus. Dantrolene and carisbamate treatment provided significant neuroprotection against delayed neuronal damage in these brain regions when administered one-hour after POX-SE. These results indicate that dantrolene or carisbamate could be effective adjuvant therapies to the existing countermeasures to reduce neuronal injury and behavioral morbidities post OP SE survival. PMID:27224207

  18. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination

    PubMed Central

    Slowik, A; Schmidt, T; Beyer, C; Amor, S; Clarner, T; Kipp, M

    2015-01-01

    BACKGROUND AND PURPOSE Modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes within the lymph nodes. Here, we evaluated the potential of an agonist at this receptor, FTY720 (fingolimod), to activate the promyelinating pathways within the brain to encourage remyelination and neuroprotection. EXPERIMENTAL APPROACH In this study, we used the cuprizone model in male C57BL/6 mice and tested the promyelinating and neuroprotective effects of FTY720 after acute and chronic toxin-induced experimental demyelination. We used histological, immunohistochemical and gene expression methods. KEY RESULTS The midline of the corpus callosum was severely demyelinated after acute and chronic cuprizone-induced demyelination. Robust endogenous remyelination was evident after acute, but impaired after chronic, demyelination. FTY720 treatment modestly accelerated myelin recovery after acute but not chronic cuprizone exposure. Markers of gliosis (astrocyte and microglia activation) were not affected by FTY720 treatment. Remarkably, the accumulation of amyloid precursor protein-positive spheroids in axons was less distinct in FTY720-treated animals, indicating that this compound alleviated ongoing axonal damage. CONCLUSIONS AND IMPLICATIONS We show that even during endogenous remyelination, axonal degeneration continued at a low level, accumulating over time. This continuous neurodegenerative process was ameliorated by FTY720 treatment. FTY720 preserved CNS integrity by direct interaction with brain resident cells, the actions of which are still to be defined. PMID:25220526

  19. Low Doses of Camptothecin Induced Hormetic and Neuroprotective Effects in PC12 Cells

    PubMed Central

    Zhang, Chao; Chen, Shenghui; Bao, Jiaolin; Zhang, Yulin; Huang, Borong; Jia, Xuejing; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao

    2015-01-01

    Hormetic response is an adaptive mechanism for a cell or organism surviving in an unfavorable environment. It has been an intriguing subject of researches covering a broad range of biological and medical disciplines, in which the underlying significance and molecular mechanisms are under intensive investigation. In the present study, we demonstrated that topoisomerase I inhibitor camptothecin (CPT), a potent anticancer agent, induced an obvious hormetic response in rat pheochromocytoma PC12 cells. Camptothecin inhibited PC12 cell growth at relative high doses as generally acknowledged while stimulated the cell growth by as much as 39% at low doses. Moreover, low doses of CPT protected the cells from hydrogen peroxide (H2O2)-induced cell death. Phosphoinositide 3-kinase (PI3K)/Akt and nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were reported playing pivotal roles in protecting cells from oxidative stress. We observed that these 2 pathways were upregulated by low doses of CPT, as evidenced by increased levels of phosphorylated PI3K, phosphorylated Akt, phosphorylated mammalian target of rapamycin, Nrf2, and HO-1; and abolishment of the growth-promoting and neuroprotective effects of CPT by LY294002, a PI3K inhibitor. These results suggest that the hormetic and neuroprotective effects of CPT at low doses on PC12 cells were attributable, at least partially, to upregulated PI3K/Akt and Nrf2/HO-1 pathways. PMID:26674066

  20. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia.

    PubMed

    Hamzei Taj, Somayyeh; Kho, Widuri; Riou, Adrien; Wiedermann, Dirk; Hoehn, Mathias

    2016-06-01

    microRNA-124 (miR-124), the most abundant miRNA of the CNS, was recently shown to modulate the polarization of activated microglia and infiltrating macrophages towards the anti-inflammatory M2 phenotype and protect neurons in various ways after brain disease. In ischemic stroke, microglia and macrophages of a detrimental and persistent pro-inflammatory M1 phenotype have been shown to aggravate the secondary injury. Thus, shifting the polarization of microglia/macrophages into the beneficial, anti-inflammatory M2-like phenotype is considered neuroprotective after stroke onset. Here, we have induced 30 min transient occlusion of the right middle cerebral artery (MCAO) in 34 male, C57BL/6 mice. Lesion development was monitored with T2-weighted MRI. Liposomated miR-124 was injected in 11 animals at 48 h and in 5 animals at 10 days after MCAO. Arg-1, a marker for M2 phenotype, was co-stained with Iba-1, NeuN or GFAP. The distribution of astrocytes, neurons and microglia/macrophages and their expression of Arg-1 were quantified. Early miR-124 injection resulted in a significantly increased neuronal survival and a significantly increased number of M2-like polarized microglia/macrophages. Moreover, the lesion core, delineated by reactive astrocytes, was significantly reduced over time upon early miR-124 injection. These neuroprotective and anti-inflammatory effects of the early miR-124 treatment were pronounced during the first week with Arg-1. Number of Arg-1+ microglia/macrophages correlated with neuronal protection and with functional improvement during the first week. Thus, our present results demonstrate that miR-124 may serve as a novel therapeutic strategy for neuroprotection and functional recovery upon stroke onset. PMID:27031810

  1. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats.

    PubMed

    Kushwah, Neetu; Jain, Vishal; Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349

  2. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats

    PubMed Central

    Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349

  3. Neuregulin-1 is Neuroprotective in a Rat Model of Organophosphate-Induced Delayed Neuronal Injury

    PubMed Central

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.

    2012-01-01

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. PMID:22583949

  4. Neuroprotection of microglial conditioned medium on 6-hydroxydopamine-induced neuronal death: role of transforming growth factor beta-2.

    PubMed

    Polazzi, Elisabetta; Altamira, Luis Emiliano Peña; Eleuteri, Simona; Barbaro, Raffaella; Casadio, Chiara; Contestabile, Antonio; Monti, Barbara

    2009-07-01

    Microglia, the immune cells of the CNS, play essential roles in both physiological and pathological brain states. Here we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine, which induces a Parkinson-like neurodegeneration, and to identify the protective factor(s). MCM nearly completely protects CGNs from 6-hydroxydopamine neurotoxicity and at least some of the protective factor(s) are peptidic in nature. While the fraction of the medium containing molecules < 30 kDa completely protects CGNs, fractions containing molecules < 10 kDa or > 10 kDa are not neuroprotective. We further demonstrate that microglia release high amounts of transforming growth factor-beta2 (TGF-beta2) and that its exogenous addition to the fraction of the medium not containing it (< 10 kDa) fully restores the neuroprotective action. Moreover, MCM neuroprotection is significantly counteracted by an inhibitor of TGF-beta2 transduction pathway. Our results identify TGF-beta2 as an essential neuroprotective factor released by microglia in its culture medium that requires to be fully effective the concomitant presence of other factor(s) of low molecular weight. PMID:19457129

  5. Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    PubMed

    Naseer, M I; Ullah, I; Narasimhan, M L; Lee, H Y; Bressan, R A; Yoon, G H; Yun, D J; Kim, M O

    2014-01-01

    Fetal alcohol syndrome is a neurological and developmental disorder caused by exposure of developing brain to ethanol. Administration of osmotin to rat pups reduced ethanol-induced apoptosis in cortical and hippocampal neurons. Osmotin, a plant protein, mitigated the ethanol-induced increases in cytochrome c, cleaved caspase-3, and PARP-1. Osmotin and ethanol reduced ethanol neurotoxicity both in vivo and in vitro by reducing the protein levels of cleaved caspase-3, intracellular [Ca(2+)]cyt, and mitochondrial transmembrane potential collapse, and also upregulated antiapoptotic Bcl-2 protein. Osmotin is a homolog of adiponectin, and it controls energy metabolism via phosphorylation. Adiponectin can protect hippocampal neurons against ethanol-induced apoptosis. Abrogation of signaling via receptors AdipoR1 or AdipoR2, by transfection with siRNAs, reduced the ability of osmotin and adiponectin to protect neurons against ethanol-induced neurodegeneration. Metformin, an activator of AMPK (adenosine monophosphate-activated protein kinase), increased whereas Compound C, an inhibitor of AMPK pathway, reduced the ability of osmotin and adiponectin to protect against ethanol-induced apoptosis. Osmotin exerted its neuroprotection via Bcl-2 family proteins and activation of AMPK signaling pathway. Modulation of AMPK pathways by osmotin, adiponectin, and metformin hold promise as a preventive therapy for fetal alcohol syndrome. PMID:24675468

  6. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury

    SciTech Connect

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory D.; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.

    2012-07-15

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.

  7. Neuroprotection by taurine in ethanol-induced apoptosis in the developing cerebellum

    PubMed Central

    2010-01-01

    Background Acute ethanol administration leads to massive apoptotic neurodegeneration in the developing central nervous system. We studied whether taurine is neuroprotective in ethanol-induced apoptosis in the mouse cerebellum during the postnatal period. Methods The mice were divided into three groups: ethanol-treated, ethanol+taurine-treated and controls. Ethanol (20% solution) was administered subcutaneously at a total dose of 5 g/kg (2.5 g/kg at time 1 h and 2.5 g/kg at 3 h) to the ethanol and ethanol+taurine groups. The ethanol+taurine group also received two injections of taurine (1 g/kg each, at time zero and at 4 h). To estimate apoptosis, immunostaining for activated caspase-3 and TUNEL staining were made in the mid-sagittal sections containing lobules I-X of the cerebellar vermis at 12 or 8 hours after the first taurine injection. Changes in the blood taurine level were monitored at each hour by reverse-phase high-performance liquid chromatography (HPLC). Results Ethanol administration induced apoptosis of Purkinje cells on P4 in all cerebellar lobules, most extensively in lobules IX and X, and on P7 increased the number of activated caspase-3-immunoreactive and TUNEL-positive cells in the internal layer of the cerebellum. Administration of taurine significantly decreased the number of activated caspase-3-immunoreactive and TUNEL-positive cells in the internal layer of the cerebellum on P7, but had no effect on Purkinje cells in P4 mice. The high initial taurine concentration in blood of the ethanol+taurine group diminished dramatically during the experiment, not being different at 13 h from that in the controls. Conclusions We conclude that the neuroprotective action of taurine is not straightforward and seems to be different in different types of neurons and/or requires prolonged maintenance of the high taurine concentration in blood plasma. PMID:20804586

  8. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis.

    PubMed

    Khalil, Wagdy K B; Assaf, Naglaa; ElShebiney, Shaimaa A; Salem, Neveen A

    2015-01-01

    Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neurodegeneration, mitochondrial impairment, and oxidative stress. Exposure of animals to rotenone induces a range of responses characteristic of PD, including reactive oxygen species production and dopaminergic cell death. Although l-dopa is the drug of choice for improving core symptoms of PD, it is associated with involuntary movements. The current study was directed to evaluate the neuroprotective effect of bee venom acupuncture therapy (BVA) against rotenone-induced oxidative stress, neuroinflammation, and apoptosis in PD mouse model. Forty male Swiss mice were divided into four groups: (1) received saline solution orally and served as normal control, (2) received rotenone (1.5 mg/kg, s.c. every other day for 6 doses), (3) received rotenone concomitantly with l-dopa (25 mg/kg, daily, p.o. for 6 days), and finally (4) received rotenone concomitantly with BVA (0.02 ml once every 3 days for two weeks). Rotenone-treated mice showed impairment in locomotor behavior and a significant reduction in brain dopamine, serotonin, norepinephrine, GSH levels, and paraoxonase activity, whereas a significant increase was observed in brain malondialdehyde, tumor necrosis factor-α, interleukin-β levels besides DNA damage, and over-expression of caspase-3, Bax, and Bcl-2 genes. Significant improvement of the aforementioned parameters was demonstrated after BVA compared to l-dopa therapy. In conclusion, bee venom normalized all the neuroinflammatory and apoptotic markers and restored brain neurochemistry after rotenone injury. Therefore, BVA is a promising neuroprotective therapy for PD. PMID:25481089

  9. Resveratrol preconditioning protects against cerebral ischemic injury via Nrf2

    PubMed Central

    Narayanan, Srinivasan V.; Dave, Kunjan R.; Saul, Isa; Perez-Pinzon, Miguel A.

    2015-01-01

    Background and Purpose Nuclear erythroid 2 related factor 2 (Nrf2) is an astrocyte-enriched transcription factor that has previously been shown to upregulate cellular antioxidant systems in response to ischemia. While resveratrol preconditioning (RPC) has emerged as a potential neuroprotective therapy, the involvement of Nrf2 in RPC-induced neuroprotection and mitochondrial reactive oxygen species (ROS) production following cerebral ischemia remains unclear. The goal of our study was to study the contribution of Nrf2 to RPC and its effects on mitochondrial function. Methods We used rodent astrocyte cultures and an in vivo stroke model with RPC. An Nrf2 DNA-binding ELISA and protein analysis via Western blotting of downstream Nrf2 targets were performed to determine RPC-induced activation of Nrf2 in rat and mouse astrocytes. Following RPC, mitochondrial function was determined by measuring ROS production and mitochondrial respiration in both wild-type (WT) and Nrf2−/− mice. Infarct volume was measured to determine neuroprotection, while protein levels were measured by immunoblotting. Results We report that Nrf2 is activated by RPC in rodent astrocyte cultures, and that loss of Nrf2 reduced RPC-mediated neuroprotection in a mouse model of focal cerebral ischemia. In addition, we observed that wild-type and Nrf2−/− cortical mitochondria exhibited increased uncoupling and ROS production following RPC treatments, Finally, Nrf2−/− astrocytes exhibited decreased mitochondrial antioxidant expression and were unable to upregulate cellular antioxidants following RPC treatment. Conclusion Nrf2 contributes to RPC-induced neuroprotection through maintaining mitochondrial coupling and antioxidant protein expression. PMID:25908459

  10. Neuroprotective effect of some plant extracts in cultured CT105-induced PC12 cells.

    PubMed

    Kim, Sang Tae; Kim, Jeong Do; Lyu, Yeoung-Su; Lee, Min-Yung; Kang, Hyung-Won

    2006-10-01

    Carboxyl-terminal fragments of APP (CT) have been found in plaques, microvessels and the neurofibrillary tangles in the brains of AD patients. These carboxyl-terminal fragments, which contain the complete Abeta sequence, appear to be toxic to neurons in culture cells. However, the possible role of other cleaved products of APP is less clear. We showed that a recombinant carboxy-terminal 105 amino acid fragment (CT105) of APP induced strong neurotoxicity in PC12 cells. We prepared alcoholic extract from Oriental herbal plants and screened their protective effects against CT105-induced cell death in PC12 cells after the treatment of these extracts. Of the 10 kinds of plant extracts, 12 kinds of extracts had considerable protective effects against CT105-induced cell death, especially, Uncariae Ramulus et Uncus (UREU), Gastrodia elata (GAE), Evodia officinalis (EO) and Panax ginseng (PAG) showed the most protective effect at the concentration of 50 microg/ml. BuOH extract of UREU and GAE possessed the strongest protective effects against neurotoxicity of CT105-induced PC12 cells and showed inhibitory effect with IC50 values of 4.8 and 8.3 microg/ml, respectively. These plants are promising candidates of neuroprotective effects and would be useful for the treatment of the neuronal degenerative diseases such as Alzheimer's diseases. PMID:17015944

  11. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity

    PubMed Central

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Hu, Zhen; Zhao, Ming; Che, Chun-Tao; Ip, Siu-Po

    2012-01-01

    Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer's disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer's disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer's disease, beta-amyloid- (Aβ-) induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation. PMID:22778778

  12. Neuroprotective effects of Triticum aestivum L. against beta-amyloid-induced cell death and memory impairments.

    PubMed

    Jang, Jung-Hee; Kim, Chang-Yul; Lim, Sun Ha; Yang, Chae Ha; Song, Kyung-Sik; Han, Hyung Soo; Lee, Hyeong-Kyu; Lee, Jongwon

    2010-01-01

    beta-Amyloid (A beta) is a key component of senile plaques, neuropathological hallmarks of Alzheimer's disease (AD) and has been reported to induce cell death via oxidative stress. This study investigated the protective effects of Triticum aestivum L. (TAL) on A beta-induced apoptosis in SH-SY5Y cells and cognitive dysfunctions in Sprague-Dawley (SD) rats. Cells treated with A beta exhibited decreased viability and apoptotic features, such as DNA fragmentation, alterations in mitochondria and an increased Bax/Bcl-2 ratio, which were attenuated by TAL extract (TALE) pretreatment. To elucidate the neuroprotective mechanisms of TALE, the study examined A beta-induced oxidative stress and cellular defense. TALE pretreatment suppressed A beta-increased intracellular accumulation of reactive oxygen species (ROS) via up-regulation of glutathione, an essential endogenous antioxidant. To further verify the effect of TALE on memory impairments, A beta or scopolamine was injected in SD rats and a water maze task conducted as a spatial memory test. A beta or scopolamine treatment increased the time taken to find the platform during training trials, which was decreased by TALE pretreatment. Furthermore, one of the active components of TALE, total dietary fiber also effectively inhibited A beta-induced cytotoxicity and scopolamine-caused memory deficits. These results suggest that TALE may have preventive and/or therapeutic potential in the management of AD. PMID:19441012

  13. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    SciTech Connect

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  14. Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones.

    PubMed

    Bösel, Julian; Gandor, Florin; Harms, Christoph; Synowitz, Michael; Harms, Ulrike; Djoufack, Pierre Chryso; Megow, Dirk; Dirnagl, Ulrich; Hörtnagl, Heide; Fink, Klaus B; Endres, Matthias

    2005-03-01

    Statins [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors] exert cholesterol-independent pleiotropic effects that include anti-thrombotic, anti-inflammatory, and anti-oxidative properties. Here, we examined direct protective effects of atorvastatin on neurones in different cell damage models in vitro. Primary cortical neurones were pre-treated with atorvastatin and then exposed to (i) glutamate, (ii) oxygen-glucose deprivation or (iii) several apoptosis-inducing compounds. Atorvastatin significantly protected from glutamate-induced excitotoxicity as evidenced by propidium iodide staining, nuclear morphology, release of lactate dehydrogenase, and mitochondrial tetrazolium metabolism, but not from oxygen-glucose deprivation or apoptotic cell death. This anti-excitototoxic effect was evident with 2-4 days pre-treatment but not with daily administration or shorter-term pre-treatment. The protective properties occurred independently of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition because co-treatment with mevalonate or other isoprenoids did not reverse or attenuate neuroprotection. Atorvastatin attenuated the glutamate-induced increase of intracellular calcium, which was associated with a modulation of NMDA receptor function. Taken together, atorvastatin exerts specific anti-excitotoxic effects independent of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition, which has potential therapeutic implications. PMID:15748157

  15. Neuroprotection of luteolin against methylmercury-induced toxicity in lobster cockroach Nauphoeta cinerea.

    PubMed

    Adedara, Isaac A; Rosemberg, Denis B; Souza, Diogo O; Farombi, Ebenezer O; Aschner, Michael; Rocha, Joao B T

    2016-03-01

    Luteolin (3', 4', 5, 7-tetrahydroxyflavone) is a polyphenolic compound found in foods of plant origin and has been reported to possess antioxidant and neuroprotective properties. However, there is dearth of information on the beneficial effects of luteolin on methylmercury (MeHg), a long-established neurotoxic compound in animals and humans. This study evaluated the effect of luteolin on MeHg-induced behavioral and biochemical deficits, using lobster cockroach Nauphoeta cinerea as an alternative and complementary animal model. The insects were exposed for 35 consecutive days to either MeHg alone (0.05 mg/g feed) or in combination with luteolin at 0.25, 0.5 and 1.0 mg/g feed. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches' heads. Luteolin supplementation dose-dependently reversed the MeHg-induced locomotor deficits and enhanced the exploratory profiles of MeHg-exposed cockroaches as confirmed by track and occupancy plot analyses. Luteolin reversed the MeHg-induced acetylcholinesterase activity inhibition, decreased dichlorofluorescein oxidation and lipid peroxidation levels, but increased total thiol level and catalase and glutathione S-transferase activities in the treated cockroaches. In conclusion, luteolin prevented oxidative stress indices and neurobehavioral deficits in a Nauphoeta cinerea model of MeHg toxicity. PMID:26905302

  16. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    PubMed Central

    Sifringer, Marco; von Haefen, Clarissa; Krain, Maria; Paeschke, Nadine; Bendix, Ivo; Bührer, Christoph; Spies, Claudia D.; Endesfelder, Stefanie

    2015-01-01

    Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight) and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable. PMID:25653737

  17. The neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells.

    PubMed

    Kabiraj, Parijat; Valenzuela, Carlos A; Marin, Jose E; Ramirez, David A; Mendez, Lois; Hwang, Michael S; Varela-Ramirez, Armando; Fenelon, Karine; Narayan, Mahesh; Skouta, Rachid

    2015-10-01

    Endoplasmic reticulum (ER) proteins including protein disulfide isomerase (PDI) are playing crucial roles in maintaining appropriate protein folding. Under nitrosative stress, an excess of nitric oxide (NO) radical species induced the S-nitrosylation of PDI cysteines which eliminate its isomerase and oxidoreductase capabilities. In addition, the S-nitrosylation-PDI complex is the cause of aggregation especially of the α-synuclein (α-syn) protein (accumulation of Lewy-body aggregates). We recently identified a potent antioxidant small molecule, Ferrostatin-1 (Fer-1), that was able to inhibit a non-apoptotic cell death named ferroptosis. Ferroptosis cell death involved the generation of oxidative stress particularly lipid peroxide. In this work, we reported the neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells (SH-SY5Y). We first synthesized the Fer-1 and confirmed that it is not toxic toward the SH-SY5Y cells at concentrations up to 12.5 μM. Second, we showed that Fer-1 compound quenched the commercially available stable radical, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), in non-cellular assay at 82 %. Third, Fer-1 inhibited the ROS/RNS generated under rotenone insult in SH-SY5Y cells. Fourth, we revealed the effective role of Fer-1 in ER stress mediated activation of apoptotic pathway. Finally, we reported that Fer-1 mitigated rotenone-induced α-syn aggregation. PMID:26385697

  18. Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons.

    PubMed

    Li, Qingbo; Li, Jinsheng; Zhang, Lifan; Wang, Bairen; Xiong, Lize

    2007-02-27

    Hyperbaric oxygen (HBO) preconditioning can induce ischemic tolerance in the spinal cord. The effect can be attenuated by the administration of an oxygen free radical scavenger or by inhibition of antioxidant enzymes. However, the mechanism underlying HBO preconditioning of neurons against ischemic injury remains enigmatic. Therefore, in the present study primary cultured spinal cord neurons were treated with HBO and then subjected to a hydrogen peroxide (H(2)O(2)) insult. The results show that H(2)O(2) stimulation of the cultured spinal neurons caused severe DNA damage and decreased cell viability, and that these neurons were well protected against damage after a single exposure to HBO preconditioning (0.35 MPa, 98% O(2), 37 degrees C, 2 h). The protective effect started 4 h after pretreatment and lasted for at least 24 h. The cultured neurons after HBO treatment also exhibited increased heme oxygenase-1 (HO-1) expression at both the protein and mRNA levels, which paralleled the protective effect of HBO. Treatment with tin-mesoporphyrin IX (SnMP), a specific HO-1 inhibitor, before HBO pretreatment abolished the HBO-induced adaptive protection noted in the cultured spinal neurons. In conclusion, HBO preconditioning can protect primary cultured spinal cord neurons against oxidative stress, and the upregulation of HO-1 expression plays an essential role in HBO induced preconditioning effect. PMID:17291539

  19. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury

    PubMed Central

    Tu, Yue; Miao, Xiao-mei; Yi, Tai-long; Chen, Xu-yi; Sun, Hong-tao; Cheng, Shi-xiang; Zhang, Sai

    2016-01-01

    Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited. Therefore, we investigated whether combined treatment might have clinical effectiveness for the treatment of acute severe traumatic brain injury. Using a rat model of traumatic brain injury, combined treatment substantially alleviated cerebral edema and blood-brain barrier dysfunction. Furthermore, neurological function was ameliorated, and cellular necrosis and the inflammatory response were lessened. These findings suggest that the combined effects of bloodletting at Jing points (20 μL, twice a day, for 2 days) and mild induced hypothermia (6 hours) are better than their individual effects alone. Their combined application may have marked neuroprotective effects in the clinical treatment of acute severe traumatic brain injury. PMID:27482221

  20. Glutathione preconditioning attenuates Ac-LDL-induced macrophage apoptosis via protein kinase C-dependent Ac-LDL trafficking.

    PubMed

    Rosenson-Schloss, Rene S; Chnari, Evangelia; Brieva, Thomas A; Dang, Anh; Moghe, Prabhas V

    2005-01-01

    Oxidized low-density lipoprotein (ox-LDL) incorporation into intimally resident vascular cells via scavenger receptors marks one of the early steps in atherosclerosis. Cellular apoptotic damage results from two major serial intracellular events: the binding and scavenger receptor-mediated uptake of oxidizable lipoproteins and the intracellular oxidative responses of accumulated lipoproteins. Most molecular approaches to prevent apoptotic damage have focused on singular events within the cascade of lipoprotein trafficking. To identify a multifocal strategy against LDL-induced apoptosis, we evaluated the role of cellular preconditioning by glutathione-ethyl ester (GSH-Et), a native redox regulator, in the prevention of the uptake and apoptotic effects of an oxidizable scavenger receptor-specific ligand, acetylated low-density lipoprotein (Ac-LDL). Our results indicate that GSH-Et-mediated protein kinase C (PKC) pathway modulation regulates Ac-LDL binding and incorporation into GSH-Et preconditioned cells and subsequently delays reactive oxygen intermediate generation and apoptotic conversion. The GSH-Et protective effects on apoptosis and Ac-LDL binding were reversed by calphostin C, a PKC inhibitor, and were accompanied by an increase in PKC phosphorylation. However, the rate of reactive oxygen intermediate accumulation was not increased following calphostin C treatment, suggesting that GSH-Et may play an important nonreactive oxygen-intermediate-based protective role in regulating apoptotic dynamics. Overall, we report on the novel role for GSH-Et preconditioning as a molecular strategy to limit lipoprotein entry into the cells, which presents a proactive modality to prevent cellular apoptosis in contrast with the prevalent antioxidant approaches that treat damage retroactively. PMID:15618124

  1. Nanowired drug delivery of antioxidant compound H-290/51 enhances neuroprotection in hyperthermia-induced neurotoxicity.

    PubMed

    Muresanu, Dafin F; Sharma, Aruna; Tian, Z Ryan; Smith, Mark A; Sharma, Hari Shanker

    2012-02-01

    Nanoparticles from the environment or through industrial sources can induce profound alterations in human health, often leading to brain dysfunction. However, it is still unclear whether nanoparticle intoxication could also alter the physiological or pathological responses of additional brain injury, stress response or disease processes. Military personals engaged in combat or peacekeeping operations are often exposed to nanoparticles from various environmental sources, e.g., Ag, Cu, Si, C, Al. In addition, these military personals are often exposed to high environmental heat, or gun and missle explosion injury leading to head or spinal trauma. Thus it is likely that additional CNS injury or stress-induced pathophysiological processes are influenced by nanoparticle intoxication. In this situation, when a combination of nanoparticles and central nervous system (CNS) injury or stress exist together, drug therapy needed to correct these anomalies may not work as effectively as in normal situation. Previous studies from our laboratory show that nanoparticle-intoxicated animals when subjected to hyperthermia resulted in exacerbation of brain pathology. In these animals, antioxidant compounds, e.g., H-290/51 that inhibits free radical formation and induces marked neuroprotection in normal rats after heat stress, failed to protect brain damage when a combination of nanoparticles and heat exposure was used. However, nanowired H-290/51 resulted in better neuroprotection in nanoparticles intoxicated animals after heat stress. Interestingly, high doses of the normal compound induced some neuroprotection in these nanoparticle-treated, heat-stressed rats. These observations suggest that a combination of nanoparticles and heat stress is dangerous and in such situations modification of drug dosage is needed to achieve comparable neuroprotection. In this review possible mechanisms of nanoparticle-induced exacerbation of heat induced neurotoxicity and brain protection achieved by

  2. Multimodal Neuroprotection Induced by PACAP38 in Oxygen–Glucose Deprivation and Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood–brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen–glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor—tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 down-regulated the nerve growth factor receptor (p75NTR) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75NTR and Nogo receptor. PMID:22678884

  3. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.

    2015-01-01

    Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789

  4. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

    PubMed

    Linares, Gabriel R; Chiu, Chi-Tso; Scheuing, Lisa; Leng, Yan; Liao, Hsiao-Mei; Maric, Dragan; Chuang, De-Maw

    2016-07-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells

  5. Neuroprotective effects of Rhizoma Dioscoreae polysaccharides against neuronal apoptosis induced by in vitro hypoxia

    PubMed Central

    XIANG, QIN; ZHOU, WEN-YUN; HU, WEI-XU; WEN, ZHU; HE, DAN; WU, XIAO-MU; WEI, HUI-PING; WANG, WEN-DING; HU, GUO-ZHU

    2015-01-01

    Rhizoma Dioscoreae polysaccharides (RDPS) are the primary active ingredient of Rhizoma Dioscoreae, which is a traditional Chinese medicine. RDPS have previously been shown to scavenge reactive oxygen species, and protect against D-galactose-induced mimetic aging. The present study aimed to investigate the neuroprotective effects of RDPS against hypoxia-induced neuronal cell apoptosis. Neuronal cells harvested from pregnant Sprague-Dawley rats were divided into groups, as follows: i) Normal control group; ii) hypoxia-induced apoptosis neuronal cell model; iii) 0.025 g/l RDPS-treated group; iv) 0.05 g/l RDPS-treated group; v) 0.1 g/l RDPS-treated group; and vi) 0.25 g/l RDPS treated group. Neuronal cell viability was investigated using an MTT assay, and neuronal cell apoptosis was analyzed using Annexin V-fluorescein isothiocyanate/propidium iodide double-staining, Hoechst 33342 fluorescent staining, Rhodamine 123 staining, polymerase chain reaction and immunocytochemical staining. The RDPS-treated neuronal cells exhibited improved viability, and decreased hypoxia-induced mitochondrial injury and apoptosis. In addition, the mRNA and protein expression levels of caspase-3 and B-cell lymphoma (Bcl)-2-associated X protein (Bax) were significantly downregulated, whereas the mRNA and protein expression levels of Bcl-2 were significantly upregulated, in the RDPS-treated hypoxic neurons, as compared with the apoptosis model (P<0.05). Furthermore, the ratio of Bcl-2 expression:Bax expression significantly increased following RDPS treatment, as compared with the apoptosis model (P<0.05). The results of the present study suggested that RDPS may attenuate hypoxia-induced neuronal cell apoptosis by altering the expression levels of key apoptosis-regulating proteins in hypoxic neurons. PMID:26668596

  6. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity.

    PubMed

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun; Choi, Yun-Sik

    2016-05-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  7. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  8. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40).

    PubMed

    Miguel-Hidalgo, J J; Alvarez, X A; Cacabelos, R; Quack, G

    2002-12-20

    Progressive neuronal loss and cognitive decline in Alzheimer's disease (AD) might be aggravated by beta-amyloid-enhanced excitotoxicity. Memantine is an uncompetitive NMDA receptor antagonist under clinical development for the treatment of AD. Memantine has neuroprotective actions in several in vitro and in vivo models. In the present study, we determined whether memantine protected against beta-amyloid induced neurotoxicity and learning impairment in rats. Twenty Sprague-Dawley rats received vehicle or vehicle plus memantine (steady-state plasma concentrations of 2.34+/-0.23 microM, n=10) s.c. by osmotic pump for 9 days. After 2 days of treatment, 2 microl of water containing beta-amyloid 1-40 [Abeta(1-40)] were injected into the hippocampal fissure. On the ninth day of treatment, animals were sacrificed, and morphological and immunohistochemical techniques were used to determine the extent of neuronal degeneration and astrocytic and microglial activation in the hippocampus. Psychomotor activity and spatial discrimination were tested on the eighth day of treatment. Abeta(1-40), but not water, injections into hippocampus led to neuronal loss in the CA1 subfield, evidence of widespread apoptosis, and astrocytic and microglial activation and hypertrophy. Memantine treated animals had significant reductions in the amount of neuronal degeneration, pyknotic nuclei, and GFAP immunostaining as compared with vehicle treated animals. These data suggest that memantine, at therapeutically relevant concentrations, can protect against neuronal degeneration induced by beta-amyloid. PMID:12468047

  9. Neuroprotection of Grape Seed Extract and Pyridoxine against Triton-Induced Neurotoxicity.

    PubMed

    Abdou, Heba M; Wahby, Mayssaa M

    2016-01-01

    Triton WR-1339 administration causes neurotoxicity. Natural products and herbal extracts can attenuate cerebral injury. In the present study, we investigated the neuroprotective role of grape seed extract and/or vitamin B6 against triton-induced neurotoxicity. Thirty-five adult male albino rats of the Sprague-Dawley strain, weighing 140-145 g, were divided into five groups: control, triton, grape seed extract + triton, grape seed extract + triton + vitamin B6, and vitamin B6 + triton. The hematological and biochemical analyses were carried out. Alteration in iNOS mRNA gene expression was determined using reverse-transcriptase PCR analysis. In addition, qualitative DNA fragmentation was examined using agarose gel electrophoresis. Triton-treatment caused significant disturbances in the hematological parameters, the neurological functions, and the antioxidant profile. Also, triton significantly increased the iNOS mRNA expression and DNA damage. Our results showed that grape seed extract and/or vitamin B6 could attenuate all the examined parameters. These natural substances could exhibit protective effects against triton-induced neurological damage because of their antioxidative and antiapoptotic capacities. PMID:27293516

  10. Neuroprotective effect of cobalt chloride on hypobaric hypoxia-induced oxidative stress.

    PubMed

    Shrivastava, Kalpana; Shukla, Dhananjay; Bansal, Anju; Sairam, Mustoori; Banerjee, P K; Ilavazhagan, Govindaswamy

    2008-02-01

    Hypobaric hypoxia, characteristic of high altitude is known to increase the formation of reactive oxygen and nitrogen species (RONS), and decrease effectiveness of antioxidant enzymes. RONS are involved and may even play a causative role in high altitude related ailments. Brain is highly susceptible to hypoxic stress and is involved in physiological responses that follow. Exposure of rats to hypobaric hypoxia (7619 m) resulted in increased oxidation of lipids and proteins due to increased RONS and decreased reduced to oxidized glutathione (GSH/GSSG) ratio. Further, there was a significant increase in superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) levels. Increase in heme oxygenase 1 (HO-1) and heat shock protein 70 (HSP70) was also noticed along with metallothionein (MT) II and III. Administration of cobalt appreciably attenuated the RONS generation, oxidation of lipids and proteins and maintained GSH/GSSH ratio similar to that of control cells via induction of HO-1 and MT offering efficient neuroprotection. It can be concluded that cobalt reduces hypoxia oxidative stress by maintaining higher cellular HO-1 and MT levels via hypoxia inducible factor 1alpha (HIF-1alpha) signaling mechanisms. These findings provide a basis for possible use of cobalt for prevention of hypoxia-induced oxidative stress. PMID:17706837

  11. In Vitro Neuroprotective Effect of Shikimic Acid Against Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Rabelo, Thallita Kelly; Zeidán-Chuliá, Fares; Caregnato, Fernanda Freitas; Schnorr, Carlos Eduardo; Gasparotto, Juciano; Serafini, Mairim Russo; de Souza Araújo, Adriano Antunes; Quintans-Junior, Lucindo José; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-08-01

    Shikimic acid (SA), originally extracted from Illicium verum Hook. fil., is an indispensable starting material for the synthesis of the antiviral drug Oseltamivir (Tamiflu(®)) with very limited number of studies regarding its biological effects in vitro. Therefore, we here evaluated the thermoanalytical profile, redox properties, and in vitro effects of SA on human neuronal-like cells (SH-SY5Y). The thermoanalytical profile of SA was studied by using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG) characterization. Both antioxidant potential and in vitro lipoperoxidation levels were analyzed. Cell viability and intracellular reactive species (RS) production was determined by DCF and SRB assays, respectively. Our results show in vitro antioxidant activity of SA without exerting cytotoxic effects on SH-SY5Y cells at tested concentrations of 10 nM, 10 μM, and 10 mM. In addition, SA protected the cells against H2O2-induced toxicity; effect that could be related, at least in part, with decreased intracellular RS production and its antioxidant potential. The present study shows evidence for neuroprotective actions of SA against oxidative stress-induced toxicity on SH-SY5Y cells, inviting for further investigation about its potential use in the context of oxidative stress-associated neurodegenerative diseases. PMID:25862258

  12. Neuroprotection of Grape Seed Extract and Pyridoxine against Triton-Induced Neurotoxicity

    PubMed Central

    Abdou, Heba M.

    2016-01-01

    Triton WR-1339 administration causes neurotoxicity. Natural products and herbal extracts can attenuate cerebral injury. In the present study, we investigated the neuroprotective role of grape seed extract and/or vitamin B6 against triton-induced neurotoxicity. Thirty-five adult male albino rats of the Sprague-Dawley strain, weighing 140–145 g, were divided into five groups: control, triton, grape seed extract + triton, grape seed extract + triton + vitamin B6, and vitamin B6 + triton. The hematological and biochemical analyses were carried out. Alteration in iNOS mRNA gene expression was determined using reverse-transcriptase PCR analysis. In addition, qualitative DNA fragmentation was examined using agarose gel electrophoresis. Triton-treatment caused significant disturbances in the hematological parameters, the neurological functions, and the antioxidant profile. Also, triton significantly increased the iNOS mRNA expression and DNA damage. Our results showed that grape seed extract and/or vitamin B6 could attenuate all the examined parameters. These natural substances could exhibit protective effects against triton-induced neurological damage because of their antioxidative and antiapoptotic capacities. PMID:27293516

  13. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis.

    PubMed

    Jaeger, Hanna M; Pehlke, Jens R; Kaltwasser, Britta; Kilic, Ertugrul; Bähr, Mathias; Hermann, Dirk M; Doeppner, Thorsten R

    2015-06-10

    N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling.Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84.Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished.In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy. PMID:26050199

  14. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis

    PubMed Central

    Jaeger, Hanna M.; Pehlke, Jens R.; Kaltwasser, Britta; Kilic, Ertugrul; Bähr, Mathias; Hermann, Dirk M.; Doeppner, Thorsten R.

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling. Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84. Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished. In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy. PMID:26050199

  15. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells.

    PubMed

    Bak, Dong-Ho; Kim, Hyung Don; Kim, Young Ock; Park, Chun Geun; Han, Seung-Yun; Kim, Jwa-Jin

    2016-02-01

    Ginseng (Panax ginseng C.A. Mey.) is commonly used in traditional oriental medicine for its wide spectrum of medicinal properties, including anti-inflammatory, antitumorigenic, adaptogenic and anti-aging properties. 20(S)-Protopanaxadiol (PPD), the main intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we aimed to investigate the neuroprotective effects of PPD on PC12 cells; however, the underlying mechanisms remain elusive. We examined cell viability by MTT assay and the morphological changes of PC12 cells following glutamate‑induced cell damage and evaluated the anti‑apoptotic effects of PPD using Hoechst 33258 staining, western blot analysis and Muse™ Cell Analyzer and the antioxidant effects of PPD using FACS analysis and immunofluorescence. Furthermore, PPD exerted protective effects on PC12 cells via the inhibition of mitochondrial damage against glutamate-induced excitotoxicity using immunofluorescence, electron microscopy and FACS analysis. We demonstrate that treatment with PPD suppresses apoptosis, which contributes to the neuroprotective effects of PPD against glutamate‑induced excitotoxicity in PC12 cells. Treatment with PPD inhibited nuclear condensation and decreased the number of Annexin V-positive cells. In addition, PPD increased antioxidant activity and mitochondrial homeostasis in the glutamate-exposed cells. These antioxidant effects were responsible for the neuroprotection and enhanced mitochondrial function following treatment with PPD. Furthermore, PD inhibited the glutamate-induced morphological changes in the mitochondria and scavenged the mitochondrial and cytosolic reactive oxygen species (ROS) induced by glutamate. In addition, mitochondrial function was significantly improved in terms of mitochondrial membrane potential (MMP) and enhanced mitochondrial mass compared with the cells exposed to glutamate and not treated with PPD. Taken together, the findings of our study indicate

  16. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells

    PubMed Central

    BAK, DONG-HO; KIM, HYUNG DON; KIM, YOUNG OCK; PARK, CHUN GEUN; HAN, SEUNG-YUN; KIM, JWA-JIN

    2016-01-01

    Ginseng (Panax ginseng C.A. Mey.) is commonly used in traditional oriental medicine for its wide spectrum of medicinal properties, including anti-inflammatory, antitumorigenic, adaptogenic and anti-aging properties. 20(S)-Protopanaxadiol (PPD), the main intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we aimed to investigate the neuroprotective effects of PPD on PC12 cells; however, the underlying mechanisms remain elusive. We examined cell viability by MTT assay and the morphological changes of PC12 cells following glutamate-induced cell damage and evaluated the anti-apoptotic effects of PPD using Hoechst 33258 staining, western blot analysis and Muse™ Cell Analyzer and the antioxidant effects of PPD using FACS analysis and immunofluorescence. Furthermore, PPD exerted protective effects on PC12 cells via the inhibition of mitochondrial damage against glutamate-induced excitotoxicity using immunofluorescence, electron microscopy and FACS analysis. We demonstrate that treatment with PPD suppresses apoptosis, which contributes to the neuroprotective effects of PPD against glutamate-induced excitotoxicity in PC12 cells. Treatment with PPD inhibited nuclear condensation and decreased the number of Annexin V-positive cells. In addition, PPD increased antioxidant activity and mitochondrial homeostasis in the glutamate-exposed cells. These antioxidant effects were responsible for the neuroprotection and enhanced mitochondrial function following treatment with PPD. Furthermore, PD inhibited the glutamate-induced morphological changes in the mitochondria and scavenged the mitochondrial and cytosolic reactive oxygen species (ROS) induced by glutamate. In addition, mitochondrial function was significantly improved in terms of mitochondrial membrane potential (MMP) and enhanced mitochondrial mass compared with the cells exposed to glutamate and not treated with PPD. Taken together, the findings of our study indicate that the

  17. Antiamnesic and neuroprotective effects of donepezil against learning impairments induced in mice by exposure to carbon monoxide gas.

    PubMed

    Meunier, Johann; Ieni, John; Maurice, Tangui

    2006-06-01

    Donepezil is a potent acetylcholinesterase inhibitor that also interacts with the sigma1 receptor, an intracellular neuromodulatory protein. In the present study, we analyzed the antiamnesic and neuroprotective activities of donepezil in a mouse hypoxia model induced by repetitive CO exposure, comparing donepezil's pharmacological profile with other cholinesterase inhibitors tacrine, rivastigmine, and galanthamine, and the reference sigma1 agonist igmesine. CO exposure induced, after 7 days, hippocampal neurodegeneration, analyzed by Cresyl violet staining, and behavioral alterations, measured using spontaneous alternation and passive avoidance responses. When injected 20 min before the behavioral tests, i.e., 7 to 8 days after CO, all drugs showed antiamnesic properties. Preadministration of the sigma1 receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD1047) blocked only the igmesine and donepezil effects. The neuroprotective activity of the drugs was tested by injection 20 min before the first CO exposure (preinsult protection) or by injection 1 h after the last CO exposure (postinsult protection). All drugs alleviated the hypoxia-induced neurodegeneration and behavioral impairments when injected before CO exposure. Preadministration of BD1047 blocked both the igmesine and donepezil effects. However, when injected after CO exposure, only igmesine and donepezil induced effective neuroprotection, and the morphological and behavioral effects were BD1047-sensitive. These results showed that donepezil is a potent antiamnesic and neuroprotective compound against the neurodegeneration induced by excitotoxic insult, and its pharmacological actions as both an acetylcholinesterase inhibitor and sigma1 receptor agonist contribute to its marked efficacy. In particular, the drug is a more potent postinsult protecting agent compared with more selective cholinesterase inhibitors. PMID:16551835

  18. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    PubMed

    Kim, Soo-Ki; Cho, Sang-Buem; Moon, Hyung-In

    2010-12-01

    The neuroprotective effects of Paulownia tomentosa against glutamate-induced neurotoxicity were studied in primary cultured rat cortical cells. It was found that the aqueous extract of this medicinal plant significantly attenuated glutamate-induced toxicity. In order to clarify the mechanism(s) underlying this neuroprotective effect, the active fractions and components were isolated and identified. Five compounds were isolated as the methanol extracts from air-dried flowers of P. tomentosa. Isoatriplicolide tiglate exhibited significant neuroprotective activity against glutamate-induced toxicity at concentrations ranging from 1 μM to 10 μM, and exhibited cell viability of approximately 43-78%. Therefore, the neuroprotective effect of P. tomentosa might be due to the inhibition of glutamate-induced toxicity by the sesquiterpene lactone derivative it contains. PMID:20683844

  19. Transcriptome profiling of hippocampal CA1 after early-life seizure-induced preconditioning may elucidate new genetic therapies for epilepsy.

    PubMed

    Friedman, L K; Mancuso, J; Patel, A; Kudur, V; Leheste, J R; Iacobas, S; Botta, J; Iacobas, D A; Spray, D C

    2013-07-01

    Injury of the CA1 subregion induced by a single injection of kainic acid (1 × KA) in juvenile animals (P20) is attenuated in animals with two prior sustained neonatal seizures on P6 and P9. To identify gene candidates involved in the spatially protective effects produced by early-life conditioning seizures we profiled and compared the transcriptomes of CA1 subregions from control, 1 × KA- and 3 × KA-treated animals. More genes were regulated following 3 × KA (9.6%) than after 1 × KA (7.1%). Following 1 × KA, genes supporting oxidative stress, growth, development, inflammation and neurotransmission were upregulated (e.g. Cacng1, Nadsyn1, Kcng1, Aven, S100a4, GFAP, Vim, Hrsp12 and Grik1). After 3 × KA, protective genes were differentially over-expressed [e.g. Cat, Gpx7, Gad1, Hspa12A, Foxn1, adenosine A1 receptor, Ca(2+) adaptor and homeostasis proteins, Cacnb4, Atp2b2, anti-apoptotic Bcl-2 gene members, intracellular trafficking protein, Grasp and suppressor of cytokine signaling (Socs3)]. Distinct anti-inflammatory interleukins (ILs) not observed in adult tissues [e.g. IL-6 transducer, IL-23 and IL-33 or their receptors (IL-F2 )] were also over-expressed. Several transcripts were validated by real-time polymerase chain reaction (QPCR) and immunohistochemistry. QPCR showed that casp 6 was increased after 1 × KA but reduced after 3 × KA; the pro-inflammatory gene Cox1 was either upregulated or unchanged after 1 × KA but reduced by ~70% after 3 × KA. Enhanced GFAP immunostaining following 1 × KA was selectively attenuated in the CA1 subregion after 3 × KA. The observed differential transcriptional responses may contribute to early-life seizure-induced pre-conditioning and neuroprotection by reducing glutamate receptor-mediated Ca(2+) permeability of the hippocampus and redirecting inflammatory and apoptotic pathways. These changes could lead to new genetic therapies for epilepsy. PMID:23551718

  20. Chemically Bonding of Amantadine with Gardenamide A Enhances the Neuroprotective Effects against Corticosterone-Induced Insults in PC12 Cells

    PubMed Central

    Zhao, Jiaqiang; Peng, Lizhi; Zheng, Wenhua; Wang, Rikang; Zhang, Lei; Yang, Jian; Chen, Heru

    2015-01-01

    Two amantadine (ATD)-gardenamide A (GA) ligands have been designed and synthesized. The bonding of ATD with GA through a methylene carbonyl brigde (L1) enhances the neuroprotective effect against corticosterone (CORT)-induced impairments in PC12 cells; while the bonding through a succinyl brigde (L2) does not. L1 reduces the level of reactive oxygen species (ROS) and cell apoptosis generated by CORT. It restores CORT-changed cell morphology to a state that is closed to normal PC12 cells. One mechanism of L1 to attenuate CORT-induced cell apoptosis is through the adjustment of both caspase-3 and Bcl-2 proteins. Like GA, both nNOS and eNOS might be involved in the neuroprotective mechanism of L1. All the evidences suggest that L1 may be a potential agent to treat depression. PMID:26402670

  1. Neuroprotective effect of Decalepis hamiltonii in paraquat-induced neurotoxicity in Drosophila melanogaster: biochemical and behavioral evidences.

    PubMed

    Jahromi, Samaneh Reiszadeh; Haddadi, Mohammad; Shivanandappa, T; Ramesh, S R

    2013-12-01

    In this paper, we have demonstrated for the first time, the antioxidant and neuroprotective effects of Decalepis hamiltonii (Dh) root extract against paraquat (PQ)-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Exposure of adult D. melanogaster (Oregon K) to PQ induced oxidative stress as evidenced by glutathione depletion, lipid peroxidation and enhanced activities of antioxidant enzymes such as catalase, superoxide dismutase as well as elevated levels of acetylcholine esterase. Pretreatment of flies by feeding with Dh extract (0.1, 0.5 %) for 14 days boosted the activities of antioxidant enzymes and prevented the PQ-induced oxidative stress. Dietary feeding of Dh extract prior to PQ exposure showed a lower incidence of mortality and enhanced motor activities of flies in a negative geotaxis assay; both suggesting the neuroprotective potential of Dh. Based on the results, we contemplate that the roots of Dh might prevent and ameliorate the human diseases caused by oxidative stress. The neuroprotective action of Dh can be attributed to the antioxidant constituents while the precise mechanism of its action needs further investigations. PMID:24173775

  2. Biomarkers for ischemic preconditioning: finding the responders

    PubMed Central

    Koch, Sebastian; Della-Morte, David; Dave, Kunjan R; Sacco, Ralph L; Perez-Pinzon, Miguel A

    2014-01-01

    Ischemic preconditioning is emerging as an innovative and novel cytoprotective strategy to counter ischemic vascular disease. At the root of the preconditioning response is the upregulation of endogenous defense systems to achieve ischemic tolerance. Identifying suitable biomarkers to show that a preconditioning response has been induced remains a translational research priority. Preconditioning leads to a widespread genomic and proteonomic response with important effects on hemostatic, endothelial, and inflammatory systems. The present article summarizes the relevant preclinical studies defining the mechanisms of preconditioning, reviews how the human preconditioning response has been investigated, and which of these bioresponses could serve as a suitable biomarker. Human preconditioning studies have investigated the effects of preconditioning on coagulation, endothelial factors, and inflammatory mediators as well as on genetic expression and tissue blood flow imaging. A biomarker for preconditioning would significantly contribute to define the optimal preconditioning stimulus and the extent to which such a response can be elicited in humans and greatly aid in dose selection in the design of phase II trials. Given the manifold biologic effects of preconditioning a panel of multiple serum biomarkers or genomic assessments of upstream regulators may most accurately reflect the full spectrum of a preconditioning response. PMID:24643082

  3. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism.

    PubMed

    Prakash, Jay; Yadav, Satyndra Kumar; Chouhan, Shikha; Singh, Surya Pratap

    2013-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder and these days a lot of emphasis is given on the treatment of this disease using herbal medicines. The present study evaluates the neuroprotective effect of Withania somnifera (Ws) root extract on Parkinsonian mice. The mice were divided into three groups; the first group served as control, the second group was given maneb (MB) and paraquat (PQ) and the last group was administered MB-PQ along with Ws root extract for 3, 6 and 9 weeks. The behavioral studies showed a significant improvement in the motor movement patterns and gripping ability of Ws root extract exposed Parkinsonian mice. Tyrosine hydroxylase (TH) immunostaining was reduced in the substantia nigra of MB-PQ exposed mice, while Ws co-exposure restored TH immunostaining significantly. Additionally, our results also demonstrate generation of oxidative stress in the nigrostriatal region of MB-PQ exposed mice. There was a marked decline in the level of catalase and a simultaneous increase in the level of nitrite and lipid peroxidation in Parkinsonian mice. Thus, the Ws root extract have shown to counteract the pro-oxidants and their associated oxidative stress in the PD model studied here. Our results clearly indicate the usefulness of Ws root extract in providing protection against MB-PQ induced nigrostriatal dopaminergic neurodegeneration and marked improvement in the behavioral, anatomical and the biochemical deformities. PMID:23430469

  4. The Neuroprotective Effect of Gugijihwang-Tang on Trimethyltin-Induced Memory Dysfunction in the Rat

    PubMed Central

    Jung, Eun-Yee; Ahn, Chang Joon; Cho, Seung-Hun; Bae, Hyunsu; Shim, Insop

    2013-01-01

    Gugijihwang-Tang (the herbal formula PM012), a decoction consisting of several herbs including Rehmanniae Radix Preparata, has been widely used as herbal treatment for dementia. In order to investigate the neuroprotective action of this prescription, we examined the effect of Gugijihwang-Tang on learning and memory using the Morris water maze and [F-18]FDG micro PET neuroimaging technique. After injection of trimethyltin (TMT, 8.0 mg/kg, i.p.), which is a potent toxicant that selectively kills cells in the central nervous system, rats were administered Gugijihwang-Tang (100 mg/kg, p.o.) daily for two weeks, followed by the Morris water maze tasks and [F-18]FDG micro PET neuroimaging. In Gugijihwang-Tang administered TMT-treated rats, they showed improved learning and memory abilities in water maze tasks and glucose metabolism, suggesting that Gugijihwang-Tang plays effectively positive role in the improvement of brain function including learning and memory after TMT-induced neurodegeneration. Taken together, our results suggested that the Gugijihwang-Tang should be useful for developing strategies protecting nervous system and improving brain function. PMID:23861706

  5. SIRT3 Acts as a Neuroprotective Agent in Rotenone-Induced Parkinson Cell Model.

    PubMed

    Zhang, Jing-Yi; Deng, Yong-Ning; Zhang, Meng; Su, Hua; Qu, Qiu-Min

    2016-07-01

    SIRT3 is a member of Sirtuins family, which belongs to NAD(+) dependent class III histone deacetylases. Emerging evidence suggests that SIRT3 plays a pivotal role in regulating mitochondrial function. Mitochondrial dysfunction is a main pathogenesis of Parkinson's disease (PD). Here, we have investigated the protective effect of SIRT3 for PD cell model. The rotenone-induced human neuroblastoma SH-SY5Y cells damage was used as PD cell model. The lentiviral vectors were used to over-expression or knockdown SIRT3 expression. The cell viability was analyzed using MTT method. The apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured by flow cytometer. Superoxide dismutase (SOD) and glutathione (GSH) were detected by using automated microplate reader. The accumulation of α-synuclein was determined by immunofluorescence staining. SIRT3 knockdown significantly worsen rotenone-induced decline of cell viability (p < 0.01) and enhanced cell apoptosis (p < 0.01), exacerbated the decrease of SOD (p < 0.05) and GSH (p < 0.05), and augmented the accumulation of α-synuclein (p < 0.05). While SIRT3 overexpression dramatically increased cell viability (p < 0.01), and decreased cell apoptosis (p < 0.01), prevented the accumulation of α-synuclein (p < 0.05), suppressed the reducing of SOD (p < 0.05) and GSH (p < 0.01), decreased ROS generation (p < 0.05), and alleviated MMP collapse (p < 0.01) induced by rotenone. SIRT3 has neuroprotective effect in PD cell model and could be developed into a therapeutic agent for PD patients. PMID:27053302

  6. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum.

    PubMed

    Thangarajan, Sumathi; Deivasigamani, Asha; Natarajan, Suganya Sarumani; Krishnan, Prasanna; Mohanan, Sandhya Koombankallil

    2014-09-01

    The present study has been designed to investigate the protective effect of L-theanine against 3-nitropropionic acid (3-NP)-induced Huntington's disease (HD)-like symptoms in rats. The present experimental protocol design includes systemic 3-NP acid (10 mg/kg intraperitonially) treatment for 14 d. L-theanine (100 and 200 mg/kg) was given orally, once a day, 1 h before 3-NP acid treatment for 14 d. Body weight and behavioral parameters (Morris water maze, open field test (OFT), forced swim test (FST) and rotarod activity) were assessed on 1st, 5th, 10th and 15th day post-3-NP acid administration. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and mitochondrial enzyme complex. Succinate dehydrogenase (SDH) were measured on the 15th day in the striatum. Systemic 3-NP acid treatment significantly reduced body weight, locomotor activity and oxidative defense. The mitochondrial enzyme activity was also significantly impaired in the striatum region in 3-NP acid-treated animals. L-theanine (100 and 200 mg/kg b.wt.) treatment significantly attenuated the impairment in behavioral, biochemical and mitochondrial enzyme activities as compared to the 3-NP acid-treated group. The results of the present study suggest that pretreatment with L-theanine significantly attenuated 3-NP induced oxidative stress and restored the decreased SOD, GSH, CAT and SDH activity. It also decreased the neuronal damage as evidenced by histopathological analysis of striatum. Based on the above study, it has been proved that L-theanine has neuroprotective activity against 3-NP induced neurotoxicity. PMID:24325390

  7. HSP70.1 AND -70.3 ARE REQUIRED FOR LATE-PHASE PROTECTION INDUCED BY ISCHEMIC PRECONDITIONING OF MOUSE HEARTS

    EPA Science Inventory

    Heat-Shock Proteins 70.1 and 70.3 Are Required for Late-phase Protection
    Induced by Ischemic Preconditioning of the Mouse Heart
    Craig R. Hampton 1 , Akira Shimamoto 1 , Christine L. Rothnie 1 , Jeaneatte Griscavage-Ennis 1 ,
    Albert Chong 1 , David J. Dix 2 , Edward D. Ve...

  8. Design, synthesis and biological evaluation of novel chiral oxazino-indoles as potential and selective neuroprotective agents against Aβ25-35-induced neuronal damage.

    PubMed

    Chen, Jing; Tao, Ling-Xue; Xiao, Wei; Ji, Sha-Sha; Wang, Jian-Rong; Li, Xu-Wen; Zhang, Hai-Yan; Guo, Yue-Wei

    2016-08-01

    A series of chiral oxazino-indoles have been synthesized via a key intermolecular oxa-Pictet-Spengler reaction. These compounds exhibited significant and selective neuroprotective effects against Aβ25-35-induced neuronal damage. This is the first report of evaluating the influence of chiral diversity of oxazino-indoles on their neuroprotective activities, with the structure-activity relationship been analyzed. The highly active compounds 3f, 3g, 4g, 4h, and 6b all performed over 90% cell protection, providing a new direction for the development of neuroprotective agents against Alzheimer's disease. PMID:27301369

  9. Aromatase Inhibition Attenuates Desflurane-Induced Preconditioning against Acute Myocardial Infarction in Male Mouse Heart In Vivo

    PubMed Central

    Jazbutyte, Virginija; Stumpner, Jan; Redel, Andreas; Lorenzen, Johan M.; Roewer, Norbert

    2012-01-01

    The volatile anesthetic desflurane (DES) effectively reduces cardiac infarct size following experimental ischemia/reperfusion injury in the mouse heart. We hypothesized that endogenous estrogens play a role as mediators of desflurane-induced preconditioning against myocardial infarction. In this study, we tested the hypothesis that desflurane effects local estrogen synthesis by modulating enzyme aromatase expression and activity in the mouse heart. Aromatase metabolizes testosterone to 17β- estradiol (E2) and thereby significantly contributes to local estrogen synthesis. We tested aromatase effects in acute myocardial infarction model in male mice. The animals were randomized and subjected to four groups which were pre-treated with the selective aromatase inhibitor anastrozole (A group) and DES alone (DES group) or in combination (A+DES group) for 15 minutes prior to surgical intervention whereas the control group received 0.9% NaCl (CON group). All animals were subjected to 45 minutes ischemia following 180 minutes reperfusion. Anastrozole blocked DES induced preconditioning and increased infarct size compared to DES alone (37.94±15.5% vs. 17.1±3.62%) without affecting area at risk and systemic hemodynamic parameters following ischemia/reperfusion. Protein localization studies revealed that aromatase was abundant in the murine cardiovascular system with the highest expression levels in endothelial and smooth muscle cells. Desflurane application at pharmacological concentrations efficiently upregulated aromatase expression in vivo and in vitro. We conclude that desflurane efficiently regulates aromatase expression and activity which might lead to increased local estrogen synthesis and thus preserve cellular integrity and reduce cardiac damage in an acute myocardial infarction model. PMID:22876297

  10. Remote ischemic precondition prevents radial artery endothelial dysfunction induced by ischemia and reperfusion based on a cyclooxygenase-2-dependent mechanism

    PubMed Central

    Liu, Zhen-Bing; Yang, Wen-Xia; Fu, Xiang-Hua; Zhao, Lin-Feng; Gao, Jun-Ling

    2015-01-01

    Ischemic preconditioning (IPC) and remote ischemic precondition (RIPC) are resistance to ischemia-reperfusion (IR) injury. They have common protective mechanism. Cyclooxygenase (COX)-2 participate in the mechanism of IPC. So, the purpose of this study was to determine whether RIPC protects endothelial function of radial artery in human against IR and whether COX-2 involves in this effect. Endothelial IR injury was induced by arm ischemia (20 min) and reperfusion. Flow-mediated dilation (FMD) of the radial artery was measured before and after IR. RIPC (three 5-min cycles of ischemia of the contralateral arm) was applied immediately and 24 h before IR. All volunteers received the COX-2 inhibitor celecoxib (200 mg orally twice daily) for 5 days. On day 6, all subjects experienced the same studies as described. FMD was reduced by IR without administration of RIPC (P<0.0001). RIPC prevent this impairment of FMD immediately (P=NS) and at 24 h (P=NS). Nevertheless, the COX-2 inhibiter abolished protective effect of RIPC at 24 h (P=NS), but not immediately (P=0.001). After administration of the COX-2 inhibiter, post-IR FMD after RIPC performed immediately had significant increase than after RIPC performed at 24 h (P=0.001) and without administration of RIPC (P=0.003). The COX-2 inhibiter made post-IR FMD evidently decrease after RIPC performed at 24 h (P=0.002). RIPC prevents radial artery endothelial dysfunction induced by IR. This protective effect of RIPC in the late phase is mediated by a COX-2-dependent mechanism. PMID:26885023

  11. Exercise-induced neuroprotection in the spastic Han Wistar rat: the possible role of brain-derived neurotrophic factor.

    PubMed

    Van Kummer, Brooke H; Cohen, Randy W

    2015-01-01

    Moderate aerobic exercise has been shown to enhance motor skills and protect the nervous system from neurodegenerative diseases, like ataxia. Our lab uses the spastic Han Wistar rat as a model of ataxia. Mutant rats develop forelimb tremor and hind limb rigidity and have a decreased lifespan. Our lab has shown that exercise reduced Purkinje cell degeneration and delayed motor dysfunction, significantly increasing lifespan. Our study investigated how moderate exercise may mediate neuroprotection by analyzing brain-derived neurotrophic factor (BDNF) and its receptor TrkB. To link BDNF to exercise-induced neuroprotection, mutant and normal rats were infused with the TrkB antagonist K252a or vehicle into the third ventricle. During infusion, rats were subjected to moderate exercise regimens on a treadmill. Exercised mutants receiving K252a exhibited a 21.4% loss in Purkinje cells compared to their controls. Cerebellar TrkB expression was evaluated using non-drug-treated mutants subjected to various treadmill running regimens. Running animals expressed three times more TrkB than sedentary animals. BDNF was quantified via Sandwich ELISA, and cerebellar expression was found to be 26.6% greater in mutant rats on 7-day treadmill exercise regimen compared to 30 days of treadmill exercise. These results suggest that BDNF is involved in mediating exercise-induced neuroprotection. PMID:25710032

  12. Enhanced Neuroprotection of Minimally Invasive Surgery Joint Local Cooling Lavage against ICH-induced Inflammation Injury and Apoptosis in Rats.

    PubMed

    Liu, Xi-Chang; Jing, Li-Yan; Yang, Ming-Feng; Wang, Kun; Wang, Yuan; Fu, Xiao-Yan; Fang, Jie; Hou, Ya-Jun; Sun, Jing-Yi; Li, Da-Wei; Zhang, Zong-Yong; Mao, Lei-Lei; Tang, You-Mei; Fu, Xiao-Ting; Fan, Cun-Dong; Yang, Xiao-Yi; Sun, Bao-Liang

    2016-07-01

    Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1β and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application. PMID:26224360

  13. Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats.

    PubMed

    Chompoopong, Supin; Jarungjitaree, Sunit; Punbanlaem, Tideeporn; Rungruang, Thanaporn; Chongthammakun, Sukumal; Kettawan, Aikkarach; Taechowisan, Thongchai

    2016-09-01

    The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD. PMID:27430236

  14. Preconditioning with low concentration NO attenuates subsequent NO-induced apoptosis in vascular smooth muscle cells via HO-1-dependent mitochondrial death pathway

    SciTech Connect

    Kwak, Hyun-Jeong; Park, Kyoung-Mi; Lee, Seahyoung; Lim, Hyun-Joung; Go, Sang-Hee; Eom, Sang-Mi; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-12-01

    Nitric oxide (NO) signaling pathways are important in both the maintenance of vascular homeostasis and disease progression. Overproduction of NO has been associated with ischemia/reperfusion (I/R) injury. Growing evidences suggest that NO preconditioning has cytoprotective effects against I/R injury. However, the mechanism with which NO mediates these effects remains to be elucidated. The purpose of this study was to examine the mechanism of how NO preconditioning inhibits subsequent NO-induced apoptosis in vascular smooth muscle cells (VSMC), specifically focusing on heme oxygenase-1 (HO-1). According to our data, sodium nitroprusside (SNP) increased HO-1 expression in a concentration dependent manner. Preconditioning with low concentration SNP (0.3 mM) inhibited subsequent high concentration SNP (1.5 mM)-induced apoptosis, and this effect was reversed by the HO-1 inhibitor SnPP. Low concentration SNP-mediated protection involved p38 kinase inactivation and increased Bcl-2 expression. Furthermore, mitochondrial membrane potential was concomitantly increased with decreased expressions of Bax, Apaf-1, and activity of caspase-3, which was reversed by SnPP treatment. Our results show that low concentration SNP preconditioning suppresses subsequent high concentration SNP-induced apoptosis by inhibiting p38 kinase and mitochondrial death pathway via HO-1-dependent mechanisms in VSMC.

  15. MLC901, a Traditional Chinese Medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats.

    PubMed

    Quintard, H; Lorivel, T; Gandin, C; Lazdunski, M; Heurteaux, C

    2014-09-26

    Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. NeuroAid (MLC601 and MLC901), a Traditional Medicine used in China for patients after stroke has been previously reported to induce neuroprotection and neuroplasticity. This study was designed to evaluate the neuroprotective and neuroregenerative effects of MLC901 in a rat model of TBI. TBI was induced by a moderate lateral fluid percussion applied to the right parietal cortex. MLC901 was injected intraperitoneally at 2h post-TBI, and then administered in drinking water at a concentration of 10mg/ml until sacrifice of the animals. The cognitive deficits induced by TBI were followed by using the "what-where-when" task, which allows the measurement of episodic-like memory. MLC901 treatment decreased brain lesions induced by TBI. It prevented the serum increase of S-100 beta (S100B) and neuron-specific enolase (NSE), which may be markers to predict the neurologic outcome in human patients with TBI. MLC901 reduced the infarct volume when injected up to 2h post-TBI, prevented edema formation and assisted its resolution, probably via the regulation of aquaporin 4. These positive MLC901 effects were associated with an upregulation of vascular endothelial growth factor (VEGF) as well as an increase of endogenous hippocampal neurogenesis and gliogenesis around the lesion. Furthermore, MLC901 reduced cognitive deficits induced by TBI. Rats subjected to TBI displayed a suppression of temporal order memory, which was restored by MLC901. This work provides evidence that MLC901 has neuroprotective and neurorestorative actions, which lead to an improvement in the recovery of cognitive functions in a model of traumatic brain injury. PMID:24993477

  16. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways.

    PubMed

    Pan, Wanying; Lin, Lin; Zhang, Nan; Yuan, Fuli; Hua, Xiaoxiao; Wang, Yueting; Mo, Liqiu

    2016-10-01

    Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine's neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine. PMID:26683659

  17. Treatment with an activator of hypoxia-inducible factor 1, DMOG provides neuroprotection after traumatic brain injury.

    PubMed

    Sen, Tanusree; Sen, Nilkantha

    2016-08-01

    Traumatic brain injury (TBI) is one of the major cause of morbidity and mortality and it affects more than 1.7 million people in the USA. A couple of regenerative pathways including activation of hypoxia-inducible transcription factor 1 alpha (HIF-1α) are initiated to reduce cellular damage following TBI; however endogenous activation of these pathways is not enough to provide neuroprotection after TBI. Thus we aimed to see whether sustained activation of HIF-1α can provide neuroprotection and neurorepair following TBI. We found that chronic treatment with dimethyloxaloylglycine (DMOG) markedly increases the expression level of HIF-1α and mRNA levels of its downstream proteins such as Vascular endothelial growth factor (VEGF), Phosphoinositide-dependent kinase-1 and 4 (PDK1, PDK4) and Erythropoietin (EPO). Treatment of DMOG activates a major cell survival protein kinase Akt and reduces both cell death and lesion volume following TBI. Moreover, administration of DMOG augments cluster of differentiation 31 (CD31) staining in pericontusional cortex after TBI, which suggests that DMOG stimulates angiogenesis after TBI. Treatment with DMOG also improves both memory and motor functions after TBI. Taken together our results suggest that sustained activation of HIF-1α provides significant neuroprotection following TBI. PMID:26970014

  18. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease.

    PubMed

    Balez, Rachelle; Steiner, Nicole; Engel, Martin; Muñoz, Sonia Sanz; Lum, Jeremy Stephen; Wu, Yizhen; Wang, Dadong; Vallotton, Pascal; Sachdev, Perminder; O'Connor, Michael; Sidhu, Kuldip; Münch, Gerald; Ooi, Lezanne

    2016-01-01

    Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, yet current therapeutic treatments are inadequate due to a complex disease pathogenesis. The plant polyphenol apigenin has been shown to have anti-inflammatory and neuroprotective properties in a number of cell and animal models; however a comprehensive assessment has not been performed in a human model of AD. Here we have used a human induced pluripotent stem cell (iPSC) model of familial and sporadic AD, in addition to healthy controls, to assess the neuroprotective activity of apigenin. The iPSC-derived AD neurons demonstrated a hyper-excitable calcium signalling phenotype, elevated levels of nitrite, increased cytotoxicity and apoptosis, reduced neurite length and increased susceptibility to inflammatory stress challenge from activated murine microglia, in comparison to control neurons. We identified that apigenin has potent anti-inflammatory properties with the ability to protect neurites and cell viability by promoting a global down-regulation of cytokine and nitric oxide (NO) release in inflammatory cells. In addition, we show that apigenin is able to protect iPSC-derived AD neurons via multiple means by reducing the frequency of spontaneous Ca(2+) signals and significantly reducing caspase-3/7 mediated apoptosis. These data demonstrate the broad neuroprotective action of apigenin against AD pathogenesis in a human disease model. PMID:27514990

  19. A single fraction from Uncaria sinensis exerts neuroprotective effects against glutamate-induced neurotoxicity in primary cultured cortical neurons.

    PubMed

    Kim, Ha Neui; Jang, Ji Yeon; Choi, Byung Tae

    2015-06-01

    We identified a neuroprotective single fraction among 62 ones of hexane extract from Uncaria sinensis (JGH43IA) and investigated its effects and mechanisms in primary cortical neurons. Pretreatment with JGH43IA showed a significantly increase cell viability in a dose-dependent manner with a decrease in the lactate dehydrogenase release. When we performed morphological assay and flow cytometry to determination of the type of cell death, pretreatment with JGH43IA showed a significant reduction of glutamate-induced apoptotic cell death. Then we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR) with calpain activation to elucidate possible pathways of neuroprotection by JGH43IA. Pretreatment with JGH43IA exhibited a significant attenuation of NMDAR GluN2B subunit activation and a decrease in active form of calpain 1 leading to subsequent cleavage of striatal-enriched protein tyrosine phosphatase (STEP). In addition, pretreatment with JGH43IA showed a marked increase of cAMP responsive element binding protein. These results suggest that JGH43IA may have neuroprotective effects through down-regulation of NMDAR GluN2B subunit and calpain 1 activation, and subsequent alleviation of STEP cleavage. This single fraction from U. sinensis might be a useful therapeutic agent for brain disorder associated with glutamate injury. PMID:26140220

  20. A single fraction from Uncaria sinensis exerts neuroprotective effects against glutamate-induced neurotoxicity in primary cultured cortical neurons

    PubMed Central

    Kim, Ha Neui; Jang, Ji Yeon

    2015-01-01

    We identified a neuroprotective single fraction among 62 ones of hexane extract from Uncaria sinensis (JGH43IA) and investigated its effects and mechanisms in primary cortical neurons. Pretreatment with JGH43IA showed a significantly increase cell viability in a dose-dependent manner with a decrease in the lactate dehydrogenase release. When we performed morphological assay and flow cytometry to determination of the type of cell death, pretreatment with JGH43IA showed a significant reduction of glutamate-induced apoptotic cell death. Then we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR) with calpain activation to elucidate possible pathways of neuroprotection by JGH43IA. Pretreatment with JGH43IA exhibited a significant attenuation of NMDAR GluN2B subunit activation and a decrease in active form of calpain 1 leading to subsequent cleavage of striatal-enriched protein tyrosine phosphatase (STEP). In addition, pretreatment with JGH43IA showed a marked increase of cAMP responsive element binding protein. These results suggest that JGH43IA may have neuroprotective effects through down-regulation of NMDAR GluN2B subunit and calpain 1 activation, and subsequent alleviation of STEP cleavage. This single fraction from U. sinensis might be a useful therapeutic agent for brain disorder associated with glutamate injury. PMID:26140220

  1. Neuroprotective effect of estradiol-loaded poly(lactic-co-glycolic acid) nanoparticles on glutamate-induced excitotoxic neuronal death.

    PubMed

    Kim, Jeong Hwan; Kim, Gyu Hyun; Jeong, Ji Heun; Lee, In Ho; Lee, Ye Ji; Lee, Nam Seob; Jeong, Young Gil; Lee, Je Hun; Yu, Kwang Sik; Lee, Shin Hye; Hong, Seul Ki; Kang, Seong Hee; Kang, Bo Sun; Kim, Do Kyung; Han, Seung Yun

    2014-11-01

    Different concentrations of estradiol (E2)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (E2-PLGA-NPs) were synthesized using the emulsion-diffusion method. Transmission electron microscopy results showed that the average particle size of E2-PLGA-NPs was 98 ± 1.9 nm when stabilized with polyvinyl alcohol and 103 ± 4.9 nm when stabilized with Tween-80. Fourier transform-infrared spectroscopy with diamond attenuated total reflectance was used to identify the presence or absence of E2 molecules in PLGA nanocapsules. Cell proliferation was assessed after treating SH-SY5Y neuroblastoma cells with 1 nM-1 μM of E2 and E2-PLGA-NPs. The neuroprotective efficacy against glutamate-induced excitotoxicity was also investigated in SH-SY5Y neuroblastoma cells. Neuroprotection was greater in E2-PLGA-NP-treated cells than in cells treated with the same concentration of E2. Furthermore, E2- and E2-PLGA-NP-treated cells expressed more p-ERK1/2 and p-CREB than cells treated with glutamate only. Moreover, the expression of p-ERK1/2 was higher than that of p-CREB. In this study, p-ERK1/2 had a greater influence on the neuroprotective effect of E2 and E2-PLGA-NPs than p-CREB. PMID:25958534

  2. Neuroprotective Actions of Clinoptilolite and Ethylenediaminetetraacetic Acid Against Lead-induced Toxicity in Mice Mus musculus

    PubMed Central

    Basha, Mahaboob P.; Begum, Shabana; Mir, Bilal Ahmed

    2013-01-01

    Objectives: Oxidative stress is considered as a possible molecular mechanism involved in lead (Pb2+) neurotoxicity. Very few studies have been investigated on the occurrence of oxidative stress in developing animals due to Pb2+ exposure. Considering the vulnerability of the developing brain to Pb2+, this study was carried out to investigate the effects of Pb2+ exposure in brain regions especially on antioxidant enzyme activities along with ameliorative effects of ethylenediaminetetraacetic acid (EDTA) and clinoptilolite. Methods: Three-week old developing Swiss mice Mus musculus were intraperitoneally administered with Pb2+ acetate in water (w/v) (100 mg/kg body weight/day) for 21 days and control group was given distilled water. Further Pb2+-toxicated mice were made into two subgroups and separately supplemented with EDTA and clinoptilolite (100 mg/kg body weight) for 2 weeks. Results: In Pb2+-exposed mice, in addition to increased lipid peroxidation, the activity levels of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH) found to decrease in all regions of brain indicating, existence of severe oxidative stress due to decreased antioxidant function. Treatment of Pb2+-exposed mice with EDTA and clinoptilolite lowered the lipid peroxidation (LPO) levels revealing their antioxidant potential to prevent oxidative stress. Similarly their administration led to recover the level of catalase, SOD, and GPx enzymes affected during Pb2+ toxicity in different regions of brain. Conclusions: The protection of brain tissue against Pb2+-induced toxicity by clinoptilolite and EDTA in the present experiment might be due to their ability to react faster with peroxyl radicals there by reducing the severity of biochemical variable indicative of oxidative damage. Thus, the results of present study indicate the neuroprotective potential of clinoptilolite and EDTA against Pb2+ toxicity. PMID:24403728

  3. Exercise preconditioning reduces ischemia reperfusion-induced focal cerebral infarct volume through up-regulating the expression of HIF-1α.

    PubMed

    Wang, Lu; Deng, Wenqian; Yuan, Qiongjia; Yang, Huijun

    2015-03-01

    To study the effect and mechanism of exercise preconditioning on focal cerebral ischemia reperfusion induced cerebral infarction via rat model; Sixty Sprague Dawley rats were divided into three groups at random: ischemia reperfusion group (IR, n=24), sham group (sham, n=12) and exercise preconditioning group (EP, n=24). Group EP carried out moderate exercise preconditioning for 4 weeks (swimming with non-weight bearing, 60 minutes/day, 6 days/week), Rats in Group EP and IR were established cerebral ischemia reperfusion injury model by Zea Longa's thread method. The cerebral infarct volume in rat of different group was evaluated after 2%TTC staining, expression of HIF-1α in rats' brain was detected by real-time RT-PCR, immunohistochmeistry method and western blot. No cerebral infarction and significant expression of HIF-1α in Group sham. Compared with Group IR, there was smaller infarct volume and stronger HIF-1α expression in Group EP (P<0.05). Moderate exercise preconditioning reduces ischemia reperfusion induced focal cerebral infarct volume through up-regulating the expression of HIF-1α. PMID:25796156

  4. Hypoxia-induced preconditioning in adult stimulated cardiomyocytes is mediated by the opening and trafficking of sarcolemmal KATP channels

    PubMed Central

    Budas, Grant R.; Jovanovic, Sofija; Crawford, Russell M.; Jovanovic, Aleksandar

    2007-01-01

    The opening of sarcolemmal and mitochondrial ATP-sensitive K+ (KATP) channels in the heart is believed to mediate ischemic preconditioning, a phenomenon whereby brief periods of ischemia/reperfusion protect the heart against myocardial infarction. Here, we have applied digital epifluorescent microscopy, immunoprecipitation and Western blotting, perforated patch clamp electrophysiology, and immunofluorescence/laser confocal microscopy to examine the involvement of KATP channels in cardioprotection afforded by preconditioning. We have shown that adult, stimulated-to-beat, guinea-pig cardiomyocytes survived in sustained hypoxia for ∼17 min. An episode of 5-min-long hypoxia/5-min-long reoxygenation before sustained hypoxia dramatically increased the duration of cellular survival. Experiments with different antagonists of KATP channels, applied at different times during the experimental protocol, suggested that the opening of sarcolemmal KATP channels at the beginning of sustained hypoxia mediate preconditioning. This conclusion was supported by perforated patch clamp experiments that revealed activation of sarcolemmal KATP channels by preconditioning. Immunoprecipitation and Western blotting as well as immunofluorescence and laser confocal microscopy showed that the preconditioning is associated with the increase in KATP channel proteins in sarcolemma. Inhibition of trafficking of KATP channel subunits prevented preconditioning without affecting sensitivity of cardiomyocytes to hypoxia in the absence of preconditioning. We conclude that the preconditioning is mediated by the activation and trafficking of sarcolemmal KATP channels. PMID:15084521

  5. Aquaporin-4 Inhibition Mediates Piroxicam-Induced Neuroprotection against Focal Cerebral Ischemia/Reperfusion Injury in Rodents

    PubMed Central

    Paul, Sudip; Patnaik, Ranjana

    2013-01-01

    Background and Purpose Aquaporin-4(AQP4) is an abundant water channel protein in brain that regulates water transport to maintain homeostasis. Cerebral edema resulting from AQP4 over expression is considered to be one of the major determinants for progressive neuronal insult during cerebral ischemia. Although, both upregulation and downregulation of AQP4 expression is associated with brain pathology, over expression of AQP4 is one of the chief contributors of water imbalance in brain during ischemic pathology. We have found that Piroxicam binds to AQP4 with optimal binding energy value. Thus, we hypothesized that Piroxicam is neuroprotective in the rodent cerebral ischemic model by mitigating cerebral edema via AQP4 regulation. Methods Rats were treated with Piroxicam OR placebo at 30 min prior, 2 h post and 4 h post 60 minutes of MCAO followed by 24 hour reperfusion. Rats were evaluated for neurological deficits and motor function just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, RT-PCR and western blot experiments. Results Piroxicam pretreatment thirty minutes prior to ischemia and four hour post reperfusion afforded neuroprotection as evident through significant reduction in cerebral infarct volume, improvement in motor behavior, neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde were also found to be significantly reduced in ischemic brain regions in treated animals. This neuroprotection was found to be associated with inhibition of acid mediated rise in intracellular calcium levels and also downregulated AQP4 expression. Conclusions Findings of the present study provide significant evidence that Piroxicam acts as a potent AQP4 regulator and renders neuroprotection in focal cerebral ischemia. Piroxicam could be clinically exploited for the treatment of brain stroke along with other anti-stroke therapeutics in

  6. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning

    SciTech Connect

    Williams, C. David; McGill, Mitchell R.; Lebofsky, Margitta; Bajt, Mary Lynn; Jaeschke, Hartmut

    2014-02-01

    Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18 h or 1 h prior to an APAP overdose. Administration of allopurinol 18 h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6 h after APAP; however, 1 h pretreatment offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2 h) however late JNK activation (6 h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18 h or 1 h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18 h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose. - Highlights: • 18 h allopurinol pretreatment protects against acetaminophen-induced liver injury. • 1 h allopurinol pretreatment does not protect from APAP-induced

  7. Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats

    PubMed Central

    FATANI, AMAL JAMIL; AL-REJAIE, SALIM SALIH; ABUOHASHISH, HATEM MUSTAFA; AL-ASSAF, ABDULLAH; PARMAR, MIHIR YOGESHKUMAR; OLA, MOHAMMAD SHAMSUL; AHMED, MOHAMMED MAHBOOBUDDIN

    2015-01-01

    The application of traditional medicine for diabetes and associated complications, such as diabetic neuropathy (DN), has received increasing attention. The aim of the present study was to investigate the potential ameliorative effect of Gymnema sylvestre (Gs) in a rat model of DN. Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Treatment with Gs extract (50 or 100 mg/kg/day) began two weeks following the administration of STZ and was continued for five weeks. Pain threshold behavior tests were performed subsequent to the five-week Gs treatment period. In addition, the serum levels of glucose, insulin and proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, were determined. Furthermore, the sciatic tissue levels of nitric oxide, thiobarbituric acid reactive substances and reduced glutathione were determined, as well as the activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. Levels of insulin-like growth factor (IGF), nerve growth factor (NGF), TNF-α, IL-1β and IL-6 were also assessed in the sciatic tissue. In addition, the sciatic nerve tissue samples were analyzed for histopathological alterations. The diabetic rats exhibited apparent reductions in the paw-withdrawal (31%; P<0.01) and tail-flick latencies (38%; P<0.05). Furthermore, the diabetic rats demonstrated an evident elevation in serum and sciatic levels of proinflammatory cytokines. Measured oxidative stress biomarkers were significantly altered in the sciatic nerve tissue of the diabetic rats. Treatment with Gs attenuated diabetes-induced modifications with regard to the levels of serum glucose, insulin and proinflammatory cytokines. In the sciatic nerve tissue, the diabetes-induced alterations in IL levels and oxidative stress biomarkers were significantly improved in the Gs-treated rats. Furthermore, the reduction in the sciatic tissue expression levels of IGF

  8. Neuroprotective Effects of Endurance Exercise Against High-Fat Diet-Induced Hippocampal Neuroinflammation.

    PubMed

    Kang, E-B; Koo, J-H; Jang, Y-C; Yang, C-H; Lee, Y; Cosio-Lima, L M; Cho, J-Y

    2016-05-01

    Obesity contributes to systemic inflammation, which is associated with the varied pathogenesis of neurodegenerative diseases. Growing evidence has demonstrated that endurance exercise (EE) mitigates obesity-induced brain inflammation. However, exercise-mediated anti-inflammatory mechanisms remain largely unknown. We investigated how treadmill exercise (TE) reverses obesity-induced brain inflammation, mainly focusing on toll-like receptor-4 (TLR-4)-dependent neuroinflammation in the obese rat brain after 20 weeks of a high-fat diet (HFD). TE in HFD-fed rats resulted in a significant lowering in the homeostasis model assessment of insulin resistance index, the area under the curve for glucose and abdominal visceral fat, and also improved working memory ability in a passive avoidance task relative to sedentary behaviour in HFD-fed rats, with the exception of body weight. More importantly, TE revoked the increase in HFD-induced proinflammatory cytokines (tumour necrosis factor α and interleukin-1β) and cyclooxygenase-2, which is in parallel with a reduction in TLR-4 and its downstream proteins, myeloid differentiation 88 and tumour necrosis factor receptor associated factor 6, and phosphorylation of transforming growth factor β-activated kinase 1, IkBα and nuclear factor-κB. Moreover, TE reduced an indicator of microglia activation, ionised calcium-binding adapter molecule-1, and also decreased glial fibrillary acidic protein, an indicator of gliosis formed by activated astrocytes in the cerebral cortex and the hippocampal dentate gyrus, compared to HFD-fed sedentary rats. Finally, EE up-regulated the expression of anti-apoptotic protein, Bcl-2, and suppressed the expression of pro-apoptotic protein, Bax, in the hippocampus compared to HFD-fed sedentary rats. Taken together, these data suggest that TE may exert neuroprotective effects as a result of mitigating the production of proinflammatory cytokines by inhibiting the TLR4 signalling pathways. The results of

  9. Neuroprotective effects of purslane herb aquenous extracts against D-galactose induced neurotoxicity.

    PubMed

    Hongxing, Zhang; Nancai, Yu; Guofu, Huang; Jianbo, Shao; Yanxia, Wu; Hanju, Huang; Qian, Liu; Wei, Ma; Yandong, Yi; Hao, Huang

    2007-12-15

    In order to evaluate mechanisms of natural plant purslane herb aquenous extracts (PHAS) for neuroprotective, we assessed neuroprotective effects of PHAS at doses of 2.5, 5 and 10 mg/(kg day) on SD mice injected daily with D-gal (50 mg/(kg day)) by behavioral tests. PHAS-fed mice showed higher activity upon induction by new environmental stimuli, lower anxiety and higher novelty-seeking behavior in the open field tasks, and significantly improved learning and memory ability in step-through compared with D-gal-treated mice. We further examined the mechanisms involved in neuroprotective effects of PHAS on mouse brain. PHAS significantly increased superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) level. Meanwhile, PHAS also could up-regulate telomere lengths and telomerase activity in PHAS-fed groups. Furthermore, we examined the expression of p21(waf1) and p53 mRNA and protein in mouse brain by western blot analysis and real-time RT-PCR. We found that p21(waf1)was down-regulated by PHAS without changing the expression of p53. The results of this study suggested that the PHAS might be a primary target of p21(waf1)and the neuroprotective effect of PHAS might be carried out through a p21(waf1)-dependent and p53-independent pathway. PMID:17764668

  10. p120-catenin is necessary for neuroprotection induced by CDK5 silencing in models of Alzheimer's disease.

    PubMed

    Uribe-Arias, Alejandro; Posada-Duque, Rafael Andrés; González-Billault, Christian; Villegas, Andrés; Lopera, Francisco; Cardona-Gómez, Gloria Patricia

    2016-08-01

    Cyclin-dependent kinase 5 (CDK5) plays important roles in synaptic function. Its unregulated over-activation has been, however, associated with neurodegeneration in Alzheimer's disease. Our previous studies revealed that CDK5 silencing ameliorates tauopathy and spatial memory impairment in the 3xTgAD mouse model. However, how CDK5 targeting affects synaptic adhesion proteins, such as those involved in the cadherin/catenin system, during learning and memory processes is not completely understood. In this study, we detected reduced expression of p120 catenin (p120 ctn), N-cadherin, and β-catenin in the brain of human Alzheimer's disease patients, in addition to a reduced PSD95 and GluN2B protein levels in a 3xTgAD mouse model. Such decrease in synaptic proteins was recovered by CDK5 silencing in mice leading to a better learning and memory performance. Additionally, CDK5 inhibition or knockout increased p120 ctn levels. Moreover, in a glutamate-induced excitotoxicity model, CDK5 silencing-induced neuroprotection depended on p120 ctn. Together, those findings suggest that p120 ctn plays an important role in the neuronal dysfunction of Alzheimer's disease models and contributes to CDK5 silencing-induced neuroprotection and improvement of memory function. p120ctn is part of the synaptic adhesion molecular complex N-cadh/p120ctn/B-ctn/PSD95, and it has a pivotal role in cell adhesion stabilization and dendritic spine modulation. Our data show that synaptic adhesion complex is affected in AD human brains and in AD models. This complex is recovered by the silencing of CDK5, preventing memory dysfunction in an AD mice model and contributing to the neuroprotection in a depend-mode of p120ctn. PMID:27273428

  11. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts.

    PubMed

    Amini, Elham; Rezaei, Mohsen; Mohamed Ibrahim, Norlinah; Golpich, Mojtaba; Ghasemi, Rasoul; Mohamed, Zahurin; Raymond, Azman Ali; Dargahi, Leila; Ahmadiani, Abolhassan

    2015-08-01

    Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great

  12. Discovery of a novel neuroprotectant, BHDPC, that protects against MPP+/MPTP-induced neuronal death in multiple experimental models.

    PubMed

    Chong, Cheong-Meng; Ma, Dan; Zhao, Chao; Franklin, Robin J M; Zhou, Zhong-Yan; Ai, Nana; Li, Chuwen; Yu, Huidong; Hou, Tingjun; Sa, Fei; Lee, Simon Ming-Yuen

    2015-12-01

    Progressive degeneration and death of neurons are main causes of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Although some current medicines may temporarily improve their symptoms, no treatments can slow or halt the progression of neuronal death. In this study, a pyrimidine derivative, benzyl 7-(4-hydroxy-3-methoxyphenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (BHDPC), was found to attenuate dramatically the MPTP-induced death of dopaminergic neurons and improve behavior movement deficiency in zebrafish, supporting its potential neuroprotective activity in vivo. Further study in rat organotypic cerebellar cultures indicated that BHDPC was able to suppress MPP(+)-induced cell death of brain tissue slices ex vivo. The protective effect of BHDPC against MPP(+) toxicity was also effective in human neuroblastoma SH-SY5Y cells through restoring abnormal changes in mitochondrial membrane potential and numerous apoptotic regulators. Western blotting analysis indicated that BHDPC was able to activate PKA/CREB survival signaling and further up-regulate Bcl2 expression. However, BHDPC failed to suppress MPP(+)-induced cytotoxicity and the increase of caspase 3 activity in the presence of the PKA inhibitor H89. Taken together, these results suggest that BHDPC is a potential neuroprotectant with prosurvival effects in multiple models of neurodegenerative disease in vitro, ex vivo, and in vivo. PMID:26415025

  13. Neuroprotective effects of the monoamine oxidase inhibitor tranylcypromine and its amide derivatives against Aβ(1-42)-induced toxicity.

    PubMed

    Caraci, Filippo; Pappalardo, Giuseppe; Basile, Livia; Giuffrida, Alessandro; Copani, Agata; Tosto, Rita; Sinopoli, Alessandro; Giuffrida, Maria Laura; Pirrone, Emanuele; Drago, Filippo; Pignatello, Rosario; Guccione, Salvatore

    2015-10-01

    Monoamine oxidase (MAO) enzymes play a central role in the pathogenesis of Alzheimer's disease (AD) and MAO inhibitors (MAOIs) are antidepressant drugs currently studied for their neuroprotective properties in neurodegenerative disorders. In the present work MAOIs such as tranylcypromine [trans-(+)-2-phenylcyclopropanamine, TCP] and its amide derivatives, TCP butyramide (TCP-But) and TCP acetamide (TCP-Ac), were tested for their ability to protect cortical neurons challenged with synthetic amyloid-β (Aβ)-(1-42) oligomers (100 nM) for 48 h. TCP significantly prevented Aβ-induced neuronal death in a concentration-dependent fashion and was maximally protective only at 10 µM. TCP-But was maximally protective in mixed neuronal cultures at 1 µM, a lower concentration compared to TCP, whereas the new derivative, TCP-Ac, was more efficacious than TCP and TCP-But and significantly protected cortical neurons against Aβ toxicity at nanomolar concentrations (100 nM). Experiments carried out with the Thioflavin-T (Th-T) fluorescence assay for fibril formation showed that TCP and its amide derivatives influenced the early events of the Aβ aggregation process in a concentration-dependent manner. TCP-Ac was more effective than TCP-But and TCP in slowing down the Aβ(1-42) aggregates formation through a lengthening at the lag phase. In our experimental model co-incubation of Aβ(1-42) oligomers with TCP-Ac was able to almost completely prevent Aβ-induced neurodegeneration. These results suggest that inhibition of Aβ oligomer-mediated aggregation significantly contributes to the overall neuroprotective activity of TCP-Ac and also raise the possibility that TCP, and in particular the new compound TCP-Ac, might represent new pharmacological tools to yield neuroprotection in AD. PMID:26162702

  14. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3

  15. BDNF-TrkB Pathway Mediates Neuroprotection of Hydrogen Sulfide against Formaldehyde-Induced Toxicity to PC12 Cells

    PubMed Central

    Gao, Sheng-Lan; Tian, Ying; Wang, Chun-Yan; Wang, Li; Gu, Hong-Feng; Tang, Xiao-Qing

    2015-01-01

    Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity. PMID:25749582

  16. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke

    PubMed Central

    Pace, Marta; Baracchi, Francesca; Gao, Bo; Bassetti, Claudio

    2015-01-01

    Study Objectives: Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. Design: Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. Settings: Basic sleep research laboratory. Measurements and Results: Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. Conclusion: Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms. Citation: Pace M, Baracchi F, Gao B, Bassetti C. Identification of sleep-modulated pathways involved in neuroprotection from stroke. SLEEP 2015;38(11):1707–1718. PMID:26085290

  17. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes

    PubMed Central

    Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  18. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo.

    PubMed

    Beegle, Julie; Lakatos, Kinga; Kalomoiris, Stefanos; Stewart, Heather; Isseroff, R Rivkah; Nolta, Jan A; Fierro, Fernando A

    2015-06-01

    Mesenchymal stem cells/multipotent stromal cells (MSCs) are promising therapeutics for a variety of conditions. However, after transplantation, cell retention remains extremely challenging. Given that many hypoxic signals are transitory and that the therapeutic administration of MSCs is typically into tissues that are normally hypoxic, we studied the effect of hypoxic preconditioning (HP) prior to new exposure to hypoxia. We show that preincubation for 2 days or more in 1% oxygen reduces serum deprivation-mediated cell death, as observed by higher cell numbers and lower incorporation of EthD-III and Annexin V. Consistently, HP-MSCs expressed significantly lower levels of cytochrome c and heme oxygenase 1 as compared to controls. Most importantly, HP-MSCs showed enhanced survival in vivo after intramuscular injection into immune deficient NOD/SCID-IL2Rgamma(-/-) mice. Interestingly, HP-MSCs consume glucose and secrete lactate at a slower rate than controls, possibly promoting cell survival, as glucose remains available to the cells for longer periods of time. In addition, we compared the metabolome of HP-MSCs to controls, before and after hypoxia and serum deprivation, and identified several possible mediators for HP-mediated cell survival. Overall, our findings suggest that preincubation of MSCs for 2 days or more in hypoxia induces metabolic changes that yield higher retention after transplantation. PMID:25702874

  19. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes.

    PubMed

    Vinokur, Vladimir; Weksler-Zangen, Sarah; Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  20. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    PubMed

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  1. Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury.

    PubMed

    Liang, Zhigang; Shi, Fang; Wang, Yong; Lu, Li; Zhang, Zhanjun; Wang, Xuan; Wang, Xiaomin

    2011-06-22

    Tenuigenin, an active component of Polygala tenuifolia root extracts, has been shown to provide antioxidative and anti-aging effects in Alzheimer's disease, as well as to promote proliferation and differentiation of neural progenitor cells. However, the effects of tenuigenin on Parkinson's disease remain unclear. In the present study, SH-SY5Y cells were utilized to determine the effects of tenuigenin on 6-hydroxydopamine (6-OHDA)-induced injury. Results showed that 1.0 × 10⁻¹-10 μM tenuigenin significantly promoted cell viability and reduced cell death. In addition, tenuigenin protected mitochondrial membrane potential (MMP) against 6-OHDA damage and significantly increased glutathione and superoxide dismutase expression. At the mRNA level, tenuigenin resulted in down-regulation of caspase-3, but up-regulation of tyrosine hydroxylase expression in 6-OHDA damaged cells. These results suggested that tenuigenin provides neuroprotection to dopaminergic neurons from 6-OHDA-induced damage. The neuroprotective mechanisms might involve antioxidative effects, maintenance of mitochondrial function, and regulation of caspase-3 and tyrosine hydroxylase expression and activity. Tenuigenin could provide a novel antioxidative strategy for Parkinson's disease. PMID:21536104

  2. Neuroprotective and nootropic activity of Clitorea ternatea Linn.(Fabaceae) leaves on diabetes induced cognitive decline in experimental animals

    PubMed Central

    Talpate, Karuna A.; Bhosale, Uma A.; Zambare, Mandar R.; Somani, Rahul S

    2014-01-01

    Purpose: Ethanol extract of Clitorea ternatea (EECT) was evaluated in diabetes-induced cognitive decline rat model for its nootropic and neuroprotective activity. Materials and Methods: Effect on spatial working memory, spatial reference memory and spatial working-reference memory was evaluated by Y maze, Morris water maze and Radial arm maze respectively. Neuroprotective effects of EECT was studied by assaying acetylcholinesterase, lipid peroxide, superoxide dismutase (SOD), total nitric oxide (NO), catalase (CAT) and glutathione (GSH) levels in the brain of diabetic rats. Results: The EECT (200 and 400 mg/kg) was found to cause significant increase in spatial working memory (P < 0.05), spatial reference memory (P < 0.001) and spatial working-reference (P < 0.001) in retention trials on Y maze, Morris water maze and Radial arm maze respectively. Whereas significant decrease in acetylcholinesterase activity (P < 0.05), lipid peroxide (P < 0.001), total NO (P < 0.001) and significant increase in SOD, CAT and GSH levels was observed in animals treated with EECT (200 and 400 mg/kg) compared to diabetic control group. Conclusions: The present data indicates that Clitorea ternatea tenders protection against diabetes induced cognitive decline and merits the need for further studies to elucidate its mode of action. PMID:24459404

  3. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia.

    PubMed

    Choi, Hyun Young; Park, Joon Ha; Chen, Bai Hui; Shin, Bich Na; Lee, Yun Lyul; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Yan, Bing Chun; Hwang, In Koo; Cho, Jun Hwi; Kim, Young-Myeong; Kim, Sung Koo

    2016-09-01

    Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin-eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment. PMID:27209305

  4. Neuroprotective Effect of Lycopene Against PTZ-induced Kindling Seizures in Mice: Possible Behavioural, Biochemical and Mitochondrial Dysfunction.

    PubMed

    Bhardwaj, Manveen; Kumar, Anil

    2016-02-01

    Oxidative stress and mitochondrial dysfunction are the major contributing factors in the pathophysiology of various neurological disorders. Recently, antioxidant therapies aimed at reducing oxidative stress gained a considerable attention in epilepsy treatment. Lycopene, a carotenoid antioxidant, has received scientific interest in recent years. So, the present study has been designed to evaluate the neuroprotective effect of lycopene against the pentylenetetrazol (PTZ)-induced kindling epilepsy. Laca mice received lycopene (2.5, 5 and 10 mg/kg) and sodium valproate for a period of 29 days and PTZ (40 mg/kg i.p (Intraperitoneal)) injection on alternative days. Various behavioural (kindling score), biochemical parameters (lipid peroxidation, superoxide dismutase, reduced glutathione, catalase and nitrite) and mitochondrial enzyme complex activities (I, II and IV) were assessed in the brain. Results depicted that repeated administration of a sub-convulsive dose of PTZ (40 mg/kg) significantly increased kindling score, oxidative damage and impaired mitochondrial enzyme complex activities (I, II and IV) as compared with naive animals. Lycopene (5 and 10 mg/kg) and sodium valproate (100 mg/kg) treatment for a duration of 29 days significantly attenuated kindling score, reversed oxidative damage and restored mitochondrial enzyme complex activities (I, II and IV) as compared with control. Thus, present study demonstrates the neuroprotective potential of lycopene in PTZ-induced kindling in mice. PMID:26633078

  5. White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells.

    PubMed

    López, Víctor; Calvo, Maria Isabel

    2011-03-01

    Tea is a popular beverage whose consumption is associated with prevention of certain disorders. The objective of the study was to investigate the potential neuroprotective effect of white tea extract (WTE) on hydrogen peroxide induced toxicity in PC12 cells. Cells were treated with various doses of WTE (10-250 μg/ml) before exposition to 250 μM hydrogen peroxide and cell survival was determined through the MTT and LDH assays. Oxidative stress was quantified in the cells after treatments as intracellular reactive oxygen species (ROS) production and the antioxidant activity of the extract was assessed in a cell free system in terms of free radical scavenging capacity. Results showed that WTE has a significant protective effect in the PC12 cell line against hydrogen peroxide as cell survival was significantly superior in WTE-treated cells compared to hydrogen peroxide-treated cells. A reduction on intracellular oxidative stress as well as radical scavenging properties were produced by WTE. Results suggest that WTE protects PC12 cells against H(2)O(2)-induced toxicity, and that an antioxidant mechanism through ROS scavenging may be in part responsible for cells neuroprotection. PMID:21271291

  6. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons

    PubMed Central

    Hao, Lingyun; Wei, Xuewen; Guo, Peng; Zhang, Guangyi; Qi, Suhua

    2016-01-01

    Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies. PMID:27420046

  7. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    PubMed Central

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  8. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    PubMed

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  9. Alkaloids from the hook-bearing branch of Uncariarhynchophylla and their neuroprotective effects against glutamate-induced HT22 cell death.

    PubMed

    Qi, Wen; Yue, Si-Jia; Sun, Jia-Hong; Simpkins, James W; Zhang, Lin; Yuan, Dan

    2014-01-01

    One new alkaloid, 4-geissoschizine N-oxide methyl ether (1), was isolated from the EtOH extract of the hook-bearing branch of Uncariarhynchophylla, together with 10 known alkaloids, 3-epi-geissoschizine methyl ether (2) isolated from U.rhynchophylla for the first time, geissoschizine methyl ether (3), 4-hirsuteine N-oxide (4), hirsuteine (5), hirsutine (6), 3α-dihydro-cadambine (7), 3β-isodihydro-cadambine (8), cadambine (9), strictosamide (10), and akuammigine (11). The structures were elucidated by spectroscopic methods including UV, ESI-QTOF MS, NMR, and circular dichroism experiments. Neuroprotective effects of 1-9 were investigated against 3 mM glutamate-induced HT22 cell death. The activity assay showed that 2, 3, 5, and 6 exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, only weak neuroprotective activities were observed for 1, 4, 7, 8, and 9. PMID:24899363

  10. Effects of electroacupuncture preconditioning on jugular vein glucose level and cerebral edema in rats undergoing cerebral ischemia reperfusion that induced injury

    PubMed Central

    Wan, Qiuxia; Pan, Peng; Xu, Changqing; Li, Wenzhi

    2014-01-01

    Objective: To determine the effects of electroacupuncture (EA) preconditioning on the blood glucose level in jugular vein and water content in brain tissues in rats undergoing cerebral ischemia reperfusion that induced injury. Methods: 90 healthy male Wister rats were randomly assigned to 3 groups: sham-operation (SH) group, cerebral ischemia reperfusion (IR) group and electroacupuncture (EA) preconditioning plus IR group. EA group was pretreated with EA delivered to acupoints of “Baihui” (Du 20) and “Shuigou” (Du 26) 30 min before cerebral ischemia. Results: No marked difference was observed in brain water content 2 h after procedure in IR group, SH group and EA group. Compared with SH group, the brain water contents in IR group and EA group were significantly higher 6 h after reperfusion and peaked at 48 h (P < 0.01). The blood glucose levels in EA and IR groups were significantly higher than that of SH group 2 h after reperfusion, which peaked at 6 h and tended to decline up to 24 h after reperfusion (P < 0.01). 2 h, 6 h, and 24 h after reperfusion, EA group had significantly lower blood glucose levels than IR group (P < 0.01). Conclusion: Electroacupuncture preconditioning can significantly inhibit the augmentation of the blood glucose level and attenuate cerebral edema induced by reperfusion, which leads to alleviation of injury caused by ischemia reperfusion. PMID:25550958

  11. Neuroprotective effects of Asiaticoside

    PubMed Central

    Qi, Feng-yan; Yang, Le; Tian, Zhen; Zhao, Ming-gao; Liu, Shui-bing; An, Jia-ze

    2014-01-01

    In the central nervous system, Asiaticoside has been shown to attenuate in vitro neuronal damage caused by exposure to β-amyloid. In vivo studies demonstrated that Asiaticoside could attenuate neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion animals. In addition, Asiaticoside showed anxiolytic effects in acute and chronic stress animals. However, its potential neuroprotective properties in glutamate-induced excitotoxicity have not been fully studied. We investigated the neuroprotective effects of Asiaticoside in primary cultured mouse cortical neurons exposed to glutamate-induced excitotoxicity invoked by N-methyl-D-aspartate. Pretreatment with Asiaticoside decreased neuronal cell loss in a concentration-dependent manner and restored changes in expression of apoptotic-related proteins Bcl-2 and Bax. Asiaticoside pretreatment also attenuated the upregulation of NR2B expression, a subunit of N-methyl-D-aspartate receptors, but did not affect expression of NR2A subunits. Additionally, in cultured neurons, Asiaticoside significantly inhibited Ca2+ influx induced by N-methyl-D-aspartate. These experimental findings provide preliminary evidence that during excitotoxicity induced by N-methyl-D-aspartate exposure in cultured cortical neurons, the neuroprotective effects of Asiaticoside are mediated through inhibition of calcium influx. Aside from its anti-oxidant activity, down-regulation of NR2B-containing N-methyl-D-aspartate receptors may be one of the underlying mechanisms in Asiaticoside neuroprotection. PMID:25221579

  12. Early Combined Therapy with Pharmacologically Induced Hypothermia and Edaravone Exerts Neuroprotective Effects in a Rat Model of Intracerebral Hemorrhage.

    PubMed

    Zhu, Yonglin; Liu, Chunling; Sun, Zhikun

    2015-11-01

    In present study, we evaluated acute neuroprotective effects of combined therapy with pharmacologically induced hypothermia and edaravone in a rat model of intracerebral hemorrhage (ICH). ICH was caused by injection of 0.5 U of collagenase VII to the caudate nucleus of male Sprague-Dawley rats. Sham-treated animals receive injections of normal saline instead of collagenase VII. All animals were randomly divided into five groups: sham group, ICH group, hypothermia group, edavarone (10 mg/kg) group, and combined hypothermia + edavarone group. Hypothermia was induced by injection of the second-generation neurotensin receptor agonist HPI-201 (2 mg/kg at 1 h after ICH; 1 mg/kg at 4 and 7 h after ICH). Hypothermia was sustained for at least 6 h. The study outcomes were the extent of brain edema, permeability of the blood-brain barrier (Evan's blue dye), expression of matrix metalloproteinase-9 and inflammatory cytokines (IL-1β, IL-4, IL-6, and TNF-α), and expression of apoptosis-related proteins (caspase-3, cytochrome C, Bcl-2, and Bax). Brain edema, permeability of the blood-brain barrier, and expression of metalloproteinase-9 were increased, while expression of caspase-3 and Bcl-2 was decreased by ICH. We observed that the combined therapy was significantly more potent in reverting the above negative trends induced by ICH. In conclusion, our results indicate that a combination of pharmacologically induced hypothermia and edavarone leads to potentiation of their respective neuroprotective effects. PMID:27352357

  13. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    PubMed

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. PMID:27113328

  14. Neurogenic neuroprotection: clinical perspectives

    PubMed Central

    Mandel, Mauricio; Fonoff, Erich Talamoni; Bor-Seng-Shu, Edson; Teixeira, Manoel Jacobsen; Chadi, Gerson

    2012-01-01

    Summary Neurogenic neuroprotection is a promising approach for treating patients with ischemic brain lesions. In rats, stimulation of the deep brain nuclei has been shown to reduce the volume of focal infarction. In this context, protection of neural tissue can be a rapid intervention that has a relatively long-lasting effect, making fastigial nucleus stimulation (FNS) a potentially valuable method for clinical application. Although the mechanisms of neuroprotection induced by FNS remain partially unclear, important data have been presented in the last two decades. A 1-h electrical FNS reduced, by 59%, infarctions triggered by permanent occlusion of the middle cerebral artery in Fisher rats. The acute effect of electrical FNS is likely mediated by a prolonged opening of potassium channels, and the sustained effect appears to be linked to inhibition of the apoptotic cascade. A better understanding of the neuronal circuitry underlying neurogenic neuroprotection may contribute to improving neurological outcomes in ischemic brain insults. PMID:23597434

  15. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy.

    PubMed

    Ali, Muhammad; Mehmood, Azra; Anjum, Muhammad Sohail; Tarrar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2015-12-01

    Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia

  16. Neuroprotective effects of Buyang Huanwu decoction on cerebral ischemia-induced neuronal damage

    PubMed Central

    Mu, Qingchun; Liu, Pengfei; Hu, Xitong; Gao, Haijun; Zheng, Xu; Huang, Haiyan

    2014-01-01

    Among the various treatment methods for stroke, increasing attention has been paid to traditional Chinese medicines. Buyang Huanwu decoction is a commonly used traditional Chinese medicine for the treatment of stroke. This paper summarizes the active components of the Chinese herb, which is composed of Huangqi (Radix Astragali seu Hedysari), Danggui (Radix Angelica sinensis), Chishao (Radix Paeoniae Rubra), Chuanxiong (Rhizoma Ligustici Chuanxiong), Honghua (Flos Carthami), Taoren (Semen Persicae) and Dilong (Pheretima), and identifies the therapeutic targets and underlying mechanisms that contribute to the neuroprotective properties of Buyang Huanwu decoction. PMID:25368650

  17. CRITICAL ROLE OF LARGE CONDUCTANCE VOLTAGE- AND CALCIUM-ACTIVATED POTASSIUM CHANNELS IN LEPTIN-INDUCED NEUROPROTECTION OF N-METHYL-D-ASPARTATE-EXPOSED CORTICAL NEURONS

    PubMed Central

    Mancini, Maria; Soldovieri, Maria Virginia; Gessner, Guido; Wissuwa, Bianka; Barrese, Vincenzo; Boscia, Francesca; Secondo, Agnese; Miceli, Francesco; Franco, Cristina; Ambrosino, Paolo; Canzoniero, Lorella MariaTeresa; Bauer, Michael; Hoshi, Toshinori; Heinemann, Stefan H; Taglialatela, Maurizio

    2014-01-01

    In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-D-Aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death which were concentration-dependent (10–100 ng/ml) and largest when the adipokine was preincubated for 2 hours before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by Paxilline (Pax, 0.01–1 μM) and Iberiotoxin (Ibtx, 1–100 nM), two blockers of Ca2+- and voltage-activated K+ channels (Slo1 BK channels), with EC50s (38±10 nM and 5±2 nM for Pax and Ibtx, respectively) close to those reported for Pax- and Ibtx-induced BK channel blockade; the BK channel opener NS1619 (1–30 μM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10–100 ng/ml) increased intracellular Ca2+ levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca2+ levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases. PMID:24973659

  18. Taurodeoxycholate-induced intestinal injury is modulated by oxidative stress-dependent pre-conditioning like mechanisms.

    PubMed

    Portincasa, Piero; Grattagliano, Ignazio; Petruzzelli, Michele; Moschetta, Antonio; Debellis, Lucantonio; Palasciano, Giuseppe

    2008-11-10

    Mechanisms by which hydrophobic bile salts cause tissue changes below their critical micellar concentration (CMC, 1-2mM) and above (4-8mM) remain poorly understood. In this study, rat colonic mucosa was exposed to different concentrations of taurodeoxycholate (TDC), t-butyl-hydroperoxide (t-BH) or glutathione ester with or without pre-incubation with 2mM TDC. Exposure to 2mM TDC was associated with 10% higher tissue levels of total glutathione (GSH, basal values: 33.7+/-3.3 nmol/mg prot). With TDC 8mM, GSH decreased to 16.4+/-2.3 nmol/mg prot (P<0.05), oxidized glutathione (GSSG) increased by 60% (P<0.05), glutathione peroxidase (GSH-Px) and reductase activities were threefold increased, protein carbonyls fourfold increased, protein sulfhydrils decreased by 78%, lactate dehydrogenase (LDH) and GSSG release in the incubation medium were sixfold higher. In 2mM TDC pre-treated tissues, the subsequent incubation with 8mM TDC induced a lower loss of tissue GSH, and a lower release of LDH and GSSG. Pre-incubation with 2mM TDC partly protected against t-BH toxicity, while glutathione ester protected against 8mM TDC toxicity. In conclusion, TDC exposure causes opposite effects depending on CMC: induction of antioxidant protective systems including glutathione system (pre-conditioning effect) was observed with TDC below CMC, oxidative damages pointing to decreased mucosal detoxification potential with above CMC. PMID:18771718

  19. Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2016-03-01

    Methylphenidate (MPH) abuse causes neurodegeneration. The neuroprotective effects of topiramate (TPM) have been reported but its putative mechanism remains unclear. The current study evaluates the role of various doses of TPM on protection of rat hippocampal cells from MPH-induced oxidative stress and inflammation in vivo. Seventy adult male rats were divided into six groups. Group 1 received normal saline (0.7 mL/rat) and group 2 was injected with MPH (10 mg/kg) for 21 days. Groups 3, 4, 5, 6 and 7 concurrently were treated by MPH (10 mg/kg) and TPM (10, 30, 50, 70 and 100 mg/kg, intraperitoneally (i.p.)), respectively for 21 days. After drug administration, the open field test (OFT) was used to investigate motor activity. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. Also, the brain-derived neurotrophic factor (BDNF) level was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. Cresyl violet staining of Dentate Gyrus (DG) and CA1 cell layers of the hippocampus were also performed. MPH significantly disturbs motor activity in OFT and TPM (70 and 100 mg/kg) decreased this disturbance. Also MPH significantly increased lipid peroxidation, mitochondrial reduced state of glutathione (GSH) level, interleukin (IL)-1β and tumour necrosis factor (TNF)-α and BDNF level in isolated hippocampal cells. Also superoxide dismutase, glutathione peroxidase and glutathione reductase activity significantly decreased. Various doses of TPM attenuated these effects and significantly decreased MPH-induced oxidative damage, inflammation and hippocampal cell loss and increased BDNF level. This study suggests that TPM has the potential to be used as a neuroprotective agent against oxidative stress and neuroinflammation induced by frequent use of MPH. PMID:26718459

  20. Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite.

    PubMed

    El-Remessy, Azza B; Khalil, Ibrahim E; Matragoon, Suraporn; Abou-Mohamed, Gamal; Tsai, Nai-Jer; Roon, Penny; Caldwell, Ruth B; Caldwell, Robert W; Green, Keith; Liou, Gregory I

    2003-11-01

    In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Delta9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-D-aspartate (NMDA) in rats, which also received 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL,a superoxide dismutase-mimetic), N-omega-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), THC, or CBD. Retinal neuron loss was determined by TDT-mediated dUTP nick-end labeling assay, inner retinal thickness, and quantification of the mRNAs of ganglion cell markers. NMDA induced a dose- and time-dependent accumulation of nitrite/nitrate, lipid peroxidation, and nitrotyrosine (foot print of peroxynitrite), and a dose-dependent apoptosis and loss of inner retinal neurons. Treatment with L-NAME or TEMPOL protected retinal neurons and confirmed the involvement of peroxynitrite in retinal neurotoxicity. The neuroprotection by THC and CBD was because of attenuation of peroxynitrite. The effect of THC was in part mediated by the cannabinoid receptor CB1. These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma. PMID:14578199

  1. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition

    PubMed Central

    Rzechorzek, Nina M.; Connick, Peter; Livesey, Matthew R.; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J.A.; Hardingham, Giles E.; Chandran, Siddharthan

    2015-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling — conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  2. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition.

    PubMed

    Rzechorzek, Nina M; Connick, Peter; Livesey, Matthew R; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J A; Hardingham, Giles E; Chandran, Siddharthan

    2016-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling--conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  3. Recurrent Sleep Fragmentation Induces Insulin and Neuroprotective Mechanisms in Middle-Aged Flies

    PubMed Central

    Williams, Michael J.; Perland, Emelie; Eriksson, Mikaela M.; Carlsson, Josef; Erlandsson, Daniel; Laan, Loora; Mahebali, Tabusi; Potter, Ella; Frediksson, Robert; Benedict, Christian; Schiöth, Helgi B.

    2016-01-01

    Lack of quality sleep increases central nervous system oxidative stress and impairs removal of neurotoxic soluble metabolites from brain parenchyma. During aging poor sleep quality, caused by sleep fragmentation, increases central nervous system cellular stress. Currently, it is not known how organisms offset age-related cytotoxic metabolite increases in order to safeguard neuronal survival. Furthermore, it is not understood how age and sleep fragmentation interact to affect oxidative stress protection pathways. We demonstrate sleep fragmentation increases systems that protect against oxidative damage and neuroprotective endoplasmic reticulum molecular chaperones, as well as neuronal insulin and dopaminergic expression in middle-aged Drosophila males. Interestingly, even after sleep recovery the expression of these genes was still upregulated in middle-aged flies. Finally, sleep fragmentation generates higher levels of reactive oxygen species (ROS) in middle-aged flies and after sleep recovery these levels remain significantly higher than in young flies. The fact that neuroprotective pathways remain upregulated in middle-aged flies beyond sleep fragmentation suggests it might represent a strong stressor for the brain during later life. PMID:27531979

  4. Hypoxia inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: from ferroptosis to stroke

    PubMed Central

    Speer, Rachel E.; Karuppagounder, Saravanan S.; Basso, Manuela; Sleiman, Sama; Kumar, Amit; Brand, David; Smirnova, Natalya; Gazaryan, Irina; Khim, Soah J.; Ratan, Rajiv R.

    2015-01-01

    Neurologic conditions including stroke, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia Inducible Factor-1alpha (HIF-1α) mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway are neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adpatation in detail, and provide perspective on which targets within this pathway appear to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases. PMID:23376032

  5. Neuroprotective effects of cold-inducible RNA-binding protein during mild hypothermia on traumatic brain injury

    PubMed Central

    Wang, Guan; Zhang, Jian-ning; Guo, Jia-kui; Cai, Ying; Sun, Hong-sheng; Dong, Kun; Wu, Cheng-gang

    2016-01-01

    Cold-inducible RNA-binding protein (CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5°C on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP mRNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury. PMID:27335561

  6. Neuroprotective Effects of a Standardized Flavonoid Extract from Safflower against a Rotenone-Induced Rat Model of Parkinson's Disease.

    PubMed

    Ablat, Nuramatjan; Lv, Deyong; Ren, Rutong; Xiaokaiti, Yilixiati; Ma, Xiang; Zhao, Xin; Sun, Yi; Lei, Hui; Xu, Jiamin; Ma, Yingcong; Qi, Xianrong; Ye, Min; Xu, Feng; Han, Hongbin; Pu, Xiaoping

    2016-01-01

    Parkinson's disease (PD) is a major age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra par compacta (SNpc). Rotenone is a neurotoxin that is routinely used to model PD to aid in understanding the mechanisms of neuronal death. Safflower (Carthamus tinctorius. L.) has long been used to treat cerebrovascular diseases in China. This plant contains flavonoids, which have been reported to be effective in models of neurodegenerative disease. We previously reported that kaempferol derivatives from safflower could bind DJ-1, a protein associated with PD, and that a flavonoid extract from safflower exhibited neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and found to primarily contain flavonoids. The aim of the current study was to confirm the neuroprotective effects of SAFE in rotenone-induced Parkinson rats. The results showed that SAFE treatment increased body weight and improved rearing behavior and grip strength. SAFE (35 or 70 mg/kg/day) treatment reversed the decreased protein expression of tyrosine hydroxylase, dopamine transporter and DJ-1 and increased the levels of dopamine and its metabolite. In contrast, acetylcholine levels were decreased. SAFE treatment also led to partial inhibition of PD-associated changes in extracellular space diffusion parameters. These changes were detected using a magnetic resonance imaging (MRI) tracer-based method, which provides novel information regarding neuronal loss and astrocyte activation. Thus, our results indicate that SAFE represents a potential therapeutic herbal treatment for PD. PMID:27563865

  7. Spatial distributions of earthquake-induced landslides and hillslope preconditioning in northwest South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Parker, R. N.; Hancox, G. T.; Petley, D. N.; Massey, C. I.; Densmore, A. L.; Rosser, N. J.

    2015-01-01

    Current models to explain regional-scale landslide events are not able to account for the possible effects of the legacy of previous earthquakes, which have triggered landslides in the past and are known to drive damage accumulation in brittle hillslope materials. This paper tests the hypothesis that spatial distributions of earthquake-induced landslides are determined by both the conditions at the time of the triggering earthquake (time-independent factors), and also the legacy of past events (time-dependent factors). To explore this, we undertake an analysis of failures triggered by the 1929 Buller and 1968 Inangahua earthquakes, in the northwest South Island of New Zealand. The spatial extent of landslides triggered by these events was in part coincident (overlapping). Spatial distributions of earthquake-triggered landslides are determined by a combination of earthquake and local characteristics, which influence the dynamic response of hillslopes. To identify the influence of a legacy from past events, we use logistic regression to control for the effects of time-independent variables (seismic ground motion, hillslope gradient, lithology, and the effects of topographic amplification caused by ridge- and slope-scale topography), in an attempt to reveal unexplained variability in the landslide distribution. We then assess whether this variability can be attributed to the legacy of past events. Our results suggest that the 1929 Buller earthquake influenced the distribution of landslides triggered by the 1968 Inangahua earthquake. Hillslopes in regions that experienced strong ground motions in 1929 were more likely to fail in 1968 than would be expected on the basis of time-independent factors alone. This effect is consistent with our hypothesis that unfailed hillslopes in the 1929 earthquake were weakened by damage accumulated during this earthquake and its associated aftershock sequence, and this weakening then influenced the performance of the landscape in the

  8. Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats.

    PubMed

    Pourkhodadad, Soheila; Alirezaei, Masoud; Moghaddasi, Mehrnoush; Ahmadvand, Hassan; Karami, Manizheh; Delfan, Bahram; Khanipour, Zahra

    2016-09-01

    Alzheimer's disease is a progressive neurodegenerative disorder with decline in memory. The role of oxidative stress is well known in the pathogenesis of the disease. The purpose of this study was to evaluate pretreatment effects of oleuropein on oxidative status and cognitive dysfunction induced by colchicine in the hippocampal CA1 area. Male Wistar rats were pretreated orally once daily for 10 days with oleuropein at doses of 10, 15 and 20 mg/kg. Thereafter, colchicine (15 μg/rat) was administered into the CA1 area of the hippocampus to induce cognitive dysfunction. The Morris water maze was used to assess learning and memory. Biochemical parameters such as glutathione peroxidase and catalase activities, nitric oxide and malondialdehyde concentrations were measured to evaluate the antioxidant status in the rat hippocampus. Our results indicated that colchicine significantly impaired spatial memory and induced oxidative stress; in contrast, oleuropein pretreatment significantly improved learning and memory retention, and attenuated the oxidative damage. The results clearly indicate that oleuropein has neuroprotective effects against colchicine-induced cognitive dysfunction and oxidative damage in rats. PMID:26892487

  9. The Neuroprotective Role of Insulin Against MPP(+) -Induced Parkinson's Disease in Differentiated SH-SY5Y Cells.

    PubMed

    Ramalingam, Mahesh; Kim, Sung-Jin

    2016-04-01

    Parkinson's disease (PD) is a common chronic neurodegenerative disorder associated with aging that primarily caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SN). Retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells (SH-SY5Y+RA) have been broadly utilized in studies of mechanisms of the pathogenesis underlying 1-Methyl-4-phenyl pyridinium (MPP(+) )-induced PD models. Here, we investigated the neuroprotective mechanisms of insulin on MPP(+) -induced neurotoxicity on SH-SY5Y+RA cells. Recent studies suggest that insulin has a protective effect against oxidative stress but not been elucidated for PD. In this study, pretreatment of insulin prevented the cell death in a dose dependent manner and lowered nitric oxide (NO) release, reactive oxygen species (ROS), and calcium ion (Ca(2+) ) influx induced by MPP(+) . Insulin also elevated tyrosine hydroxylase (TH) and insulin signaling pathways in dopaminergic neuron through activating PI3K/Akt/GSK-3 survival pathways which in turn inhibits MPP(+) -induced iNOS and ERK activation, and Bax to Bcl-2 ratio. These results suggest that insulin has a protective effect on MPP(+) -neurotoxicity in SH-SY5Y+RA cells. J. Cell. Biochem. 117: 917-926, 2016. © 2015 Wiley Periodicals, Inc. PMID:26364587

  10. Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs

    PubMed Central

    Robinson, Ainsley M.; Miller, Sarah; Payne, Natalie; Boyd, Richard; Sakkal, Samy; Nurgali, Kulmira

    2015-01-01

    Background & Aims The therapeutic benefits of mesenchymal stem cells (MSCs), such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis. Methods At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS), guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM), or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs. Results MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome. Conclusion MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted

  11. Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson's disease.

    PubMed

    Kim, Mi Eun; Lee, Joo Yeon; Lee, Kyung Moon; Park, Hee Ra; Lee, Eunjin; Lee, Yujeong; Lee, Jun Sik; Lee, Jaewon

    2016-08-01

    Bee venom (BV), also known as apitoxin, is widely used in traditional oriental medicine to treat immune-related diseases. Recent studies suggest that BV could be beneficial for the treatment of neurodegenerative diseases. Parkinson's disease (PD) is the second most common neurodegenerative disease next to Alzheimer's disease, and PD pathologies are closely associated with neuroinflammation. Previous studies have suggested the neuroprotective effects of BV in animal models of PD are due to the modulation of inflammation. However, the molecular mechanisms responsible for the anti-neuroinflammatory effect of BV have not been elucidated in astrocytes. Here, the authors investigated the neuroprotective effects of BV and pramipexole (PPX; a positive control) in a subchronic MPTP-induced murine PD model. Both BV and PPX prevented MPTP-induced impairments in motor performance and reduced dopaminergic neuron loss, and furthermore, these neuroprotective effects of BV and PPX were found to be associated with reduced astroglial activation in vivo PD model. However, in MPP(+) treated primary cultured astrocytes, BV modulated astrocyte activation, whereas PPX did not, indicating that the neuroprotective effects of PPX were not mediated by neuroinflammation. These findings suggest that BV should be considered a potential therapeutic or preventive agent for PD and other neuroinflammatory associated disorders. PMID:27469335

  12. Anticonvulsive and neuroprotective effects of synergetic combination of phenytoin and gastrodin on the convulsion induced by penicillin in mice.

    PubMed

    Zhou, Ziqi; Lin, Yanzhu; Zheng, Hongyi; He, Yuzhong; Xu, Haohua; Zhang, Siheng; Weng, Wen; Li, Wei; Zhu, Linyan; Yang, Haifeng

    2015-08-01

    Phenytoin (PHT) is a commonly prescribed first-line antiepileptic drug. However, long-term administration of PHT can cause memory loss and balance disturbance. Gastrodin (GD) is the major bioactive component in Tianma and has sedative, anticonvulsive, memory strengthening, and neuroprotective effects. To combine the two drugs seems attractive; however, little was known about the efficacy of combination therapy. In this study, convulsive attack was successfully induced by penicillin. Isobolographic analysis, memory and balance behavior test, histopathological examination, and Western blot analysis were used to investigate whether the combination therapy of GD and PHT can enhance anticonvulsive effect and reduce the side effects associated with PHT. The GD alone (950.60 mg/kg) and the PHT alone (45.50 mg/kg) could produce an anticonvulsive effect, while comparable effect could be produced by PHT : GD = 1 : 50 (8.59 : 429.27 mg/kg), which reduce the dose of PHT by 81% and GD by 55%. After the chronic anticonvulsive experiments of 16 days, the balance disturbance and short-/long-term memory loss were observed in the PHT group, while the PHT + GD therapy can protect the normal balance and memory function. The neuron morphology of hippocampus was preserved, and the number of surviving neurons after combination therapy was more than the model group. The amount of NF-κB (p65) expression was increased in combination group. All above suggested the potential of the combination of PHT and GD enhances the anticonvulsive effect and the neuroprotective effect and reduces the PHT-associated memory and balance disturbance. The PHT + GD strategy would provide new possibilities as a novel promising methodology to treat epileptic patients. PMID:26018871

  13. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion

    PubMed Central

    Cao, Zhijuan; Balasubramanian, Adithya

    2013-01-01

    Traditional methods of therapeutic hypothermia show promise for neuroprotection against cerebral ischemia-reperfusion (I/R), however, with limitations. We examined effectiveness and specificity of pharmacological hypothermia (PH) by transient receptor potential vanilloid 1 (TRPV1) channel agonism in the treatment of focal cerebral I/R. Core temperature (Tcore) was measured after subcutaneous infusion of TRPV1 agonist dihydrocapsaicin (DHC) in conscious C57BL/6 WT and TRPV1 knockout (KO) mice. Acute measurements of heart rate (HR), mean arterial pressure (MAP), and cerebral perfusion were measured before and after DHC treatment. Focal cerebral I/R (1 h ischemia + 24 h reperfusion) was induced by distal middle cerebral artery occlusion. Hypothermia (>8 h) was initiated 90 min after start of reperfusion by DHC infusion (osmotic pump). Neurofunction (behavioral testing) and infarct volume (TTC staining) were measured at 24 h. DHC (1.25 mg/kg) produced a stable drop in Tcore (33°C) in naive and I/R mouse models but not in TRPV1 KO mice. DHC (1.25 mg/kg) had no measurable effect on HR and cerebral perfusion but produced a slight transient drop in MAP (<6 mmHg). In stroke mice, DHC infusion produced hypothermia, decreased infarct volume by 87%, and improved neurofunctional score. The hypothermic and neuroprotective effects of DHC were absent in TRPV1 KO mice or mice maintained normothermic with heat support. PH via TRPV1 agonist appears to be a well-tolerated and effective method for promoting mild hypothermia in the conscious mouse. Furthermore, TRPV1 agonism produces effective hypothermia in I/R mice and significantly improves outcome when initiated 90 min after start of reperfusion. PMID:24305062

  14. Neuroprotective Effect of Coptis chinensis in MPP[Formula: see text] and MPTP-Induced Parkinson's Disease Models.

    PubMed

    Friedemann, Thomas; Ying, Yue; Wang, Weigang; Kramer, Edgar R; Schumacher, Udo; Fei, Jian; Schröder, Sven

    2016-01-01

    The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinson's disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinson's disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinson's disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinson's disease. PMID:27430912

  15. Preconditioning chemotherapy with paclitaxel and cisplatin enhances the antitumor activity of cytokine induced-killer cells in a murine lung carcinoma model.

    PubMed

    Huang, Xiang; Huang, Guichun; Song, Haizhu; Chen, Longbang

    2011-08-01

    Adoptive cell therapy involving the use of ex vivo generated cytokine-induced killer cells (CIKs) provides a promising approach to immunotherapy. However, the therapeutic activity of CIKs is limited by the immunosuppressive factors active in the host. It has become increasingly apparent that manipulation of the recipient immune system with the preconditioning regimen is essential to guarantee the antitumor effect of subsequent adoptive cell therapy. In our study, paclitaxel (PTX) and cisplatin (DDP) were used as preconditioning drugs combined with CIKs to illustrate the potential mechanisms underlying the synergic antitumor effect against Lewis lung cancer cells in vitro and in vivo. We found that 3LL cells displayed an increased sensitization to CIKs-induced lysis after treatment with PTX or DDP in vitro. Significant inhibition of tumor growth was observed in mice treated with combinatorial chemo-immunotherapy with respect to untreated or single regimen treated ones. Prior chemotherapy markedly enhanced the intratumoral accumulation of CD3(+) T lymphocytes and the homing of CIKs to the spleen and tumor. Moreover, the frequencies of intratumoral and splenic regulatory T cells (Tregs) were significantly decreased after chemotherapy pretreatment. Our findings provide a new rationale for combining immunotherapy and chemotherapy to induce a synergistic antitumor response in patients with lung cancer. PMID:20878978

  16. Neuroprotective Effect of Ginkgolide B on Bupivacaine-Induced Apoptosis in SH-SY5Y Cells

    PubMed Central

    Li, Le; Zhang, Qing-guo; Lai, Lu-ying; Wen, Xian-jie; Zheng, Ting; Cheung, Chi-wai; Zhou, Shu-qin; Xu, Shi-yuan

    2013-01-01

    Local anesthetics are used routinely and effectively. However, many are also known to activate neurotoxic pathways. We tested the neuroprotective efficacy of ginkgolide B (GB), an active component of Ginkgo biloba, against ROS-mediated neurotoxicity caused by the local anesthetic bupivacaine. SH-SY5Y cells were treated with different concentrations of bupivacaine alone or following preincubation with GB. Pretreatment with GB increased SH-SY5Y cell viability and attenuated intracellular ROS accumulation, apoptosis, mitochondrial dysfunction, and ER stress. GB suppressed bupivacaine-induced mitochondrial depolarization and mitochondria complex I and III inhibition and increased cleaved caspase-3 and Htra2 expression, which was strongly indicative of activation of mitochondria-dependent apoptosis with concomitantly enhanced expressions of Grp78, caspase-12 mRNA, protein, and ER stress. GB also improved ultrastructural changes indicative of mitochondrial and ER damage induced by bupivacaine. These results implicate bupivacaine-induced ROS-dependent mitochondria, ER dysfunction, and apoptosis, which can be attenuated by GB through its antioxidant property. PMID:24228138

  17. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice.

    PubMed

    Liu, Hao; Song, Zhi; Liao, Daguang; Zhang, Tianyi; Liu, Feng; Zhuang, Kai; Luo, Kui; Yang, Liang

    2015-01-01

    Trans-caryophyllene (TC), a component of essential oil found in many flowering plants, has shown its neuroprotective effects in various neurological disorders. However, the effects of TC on epilepsy haven't been reported before. In this study, we investigated the effect of TC on kainic acid-induced seizure activity caused by oxidative stress and pro-inflammation. We found that TC pretreatment significantly decreased seizure activity score compared to kainic acid treated group. Importantly, TC pretreatment leads to lowering the mortality in kainic acid treated mice. In addition, TC was found to significantly inhibit KA-induced generation of malondialdehyde. TC pretreatment also preserved the activity of GPx, SOD, and CAT. Notably, our data shows that an important property of TC is its capacity to exert cerebral anti-inflammatory effects by mitigating the expression of proinflammatory cytokines, such as TNF-α and IL-1β. These data suggest that TC has a potential protective effect on chemical induced seizure and brain damage. PMID:25417010

  18. Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation

    PubMed Central

    Guo, Shuyun; Liu, Yanwu; Ma, Rui; Li, Jun; Su, Binxiao

    2016-01-01

    Increasing evidence has demonstrated the role of endogenous cannabinoids system (ECS) on protecting brain injury caused by ischemia (IMI). Papers reported that microglia-mediated inflammation has become one of the most pivotal mechanisms for IMI. This study was aimed to investigate the potential roles of ECS on neuron protection under microglia-mediated inflammation. Inflammatory cytokines level both in vitro (BV-2 cells) and in vivo (brain tissue from constructed IMI model and brain-isolated microglia) was detected. ECS levels were detected, and its effects on inflammations was also analyzed. Influence of microglia-mediated inflammation on neuron injury was analyzed. Moreover, the effects of ECS on protecting neuron injury were also analyzed. Our results showed that the levels of inflammatory cytokines including TNFα and IL-1β were higher while IKBα was lower in IMI model brain tissue, brain-isolated microglia and BV-2 cells compared to the control. Inflammation was activated in microglia, as well as the activation of ECS characterized by the increasing level of AEA and 2-AG. Furthermore, the activated microglia-mediated self-inflammation performed harmful influence on neurons via suppressing cell viability and inducing apoptosis. Moreover, ECS functioned as a protector on neuron injury though promoting cell proliferation and suppressing cell apoptosis which were caused by the activated BV-2 cells (LPS induced for 3 h). Our data suggested that ECS may play certain neuroprotective effects on microglia-mediated inflammations-induced IMI through anti-inflammatory function. PMID:27398146

  19. Magnetically softened iron oxide (MSIO) nanofluid and its application to thermally-induced heat shock proteins for ocular neuroprotection.

    PubMed

    Bae, Seongtae; Jeoung, Jin Wook; Jeun, Minhong; Jang, Jung-Tak; Park, Joo Hyun; Kim, Yu Jeong; Lee, Kwan; Kim, Minkyu; Lee, Jooyoung; Hwang, Hey Min; Paek, Sun Ha; Park, Ki Ho

    2016-09-01

    Magnetically softened iron oxide (MSIO) nanofluid, PEGylated (Mn0.5Zn0.5)Fe2O4, was successfully developed for local induction of heat shock proteins (HSPs) 72 in retinal ganglion cells (RGCs) for ocular neuroprotection. The MSIO nanofluid showed significantly enhanced alternating current (AC) magnetic heat induction characteristics including exceptionally high SLP (Specific Loss Power, > 2000 W/g). This phenomenon was resulted from the dramatically improved AC magnetic softness of MSIO caused by the magnetically tailored Mn(2+) and Zn(2+) distributions in Fe3O4. In addition, the MSIO nanofluid with ultra-thin surface coating layer thickness and high monodispersity allowed for a higher cellular uptake up to a 52.5% with RGCs and enhancing "relaxation power" for higher AC heating capability. The RGCs cultured with MSIO nanofluid successfully induced HSPs 72 by magnetic nanofluid hyperthermia (MNFH). Moreover, it was interestingly observed that systematic control of "AC magnetically-induced heating up rate" reaching to a constant heating temperature of HSPs 72 induction allowed to achieve maximized induction efficiency at the slowest AC heating up rate during MNFH. In addition to in-vitro experimental verification, the studies of MSIO infusion behavior using animal models and a newly designed magnetic coil system demonstrated that the MSIO has promising biotechnical feasibility for thermally-induced HSPs agents in future glaucoma clinics. PMID:27294536

  20. Cognitive deficits and anxiety induced by diisononyl phthalate in mice and the neuroprotective effects of melatonin

    PubMed Central

    Ma, Ping; Liu, Xudong; Wu, Jiliang; Yan, Biao; Zhang, Yuchao; Lu, Yu; Wu, Yang; Liu, Chao; Guo, Junhui; Nanberg, Eewa; Bornehag, Carl-Gustaf; Yang, Xu

    2015-01-01

    Diisononyl phthalate (DINP) is a plasticizer that is frequently used as a substitute for other plasticizers whose use is prohibited in certain products. In vivo studies on the neurotoxicity of DINP are however, limited. This work aims to investigate whether DINP causes neurobehavioral changes in mice and to provide useful advice on preventing the occurrence of these adverse effects. Behavioral analysis showed that oral administration of 20 or 200 mg/kg/day DINP led to mouse cognitive deficits and anxiety. Brain histopathological observations, immunohistochemistry assays (cysteine-aspartic acid protease 3 [caspase-3], glial fibrillary acidic protein [GFAP]), oxidative stress assessments (reactive oxygen species [ROS], glutathione [GSH], superoxide dismutase [SOD] activities, 8-hydroxy-2-deoxyguanosine [8-OH-dG] and DNA-protein crosslinks [DPC]), and assessment of inflammation (tumor necrosis factor alpha [TNF-а] and interleukin-1 beta [IL-1β]) of mouse brains showed that there were histopathological alterations in the brain and increased levels of oxidative stress, and inflammation for these same groups. However, some of these effects were blocked by administration of melatonin (50 mg/kg/day). Down-regulation of oxidative stress was proposed to explain the neuroprotective effects of melatonin. The data suggests that DINP could cause cognitive deficits and anxiety in mice, and that melatonin could be used to avoid these adverse effects. PMID:26424168

  1. Cognitive deficits and anxiety induced by diisononyl phthalate in mice and the neuroprotective effects of melatonin.

    PubMed

    Ma, Ping; Liu, Xudong; Wu, Jiliang; Yan, Biao; Zhang, Yuchao; Lu, Yu; Wu, Yang; Liu, Chao; Guo, Junhui; Nanberg, Eewa; Bornehag, Carl-Gustaf; Yang, Xu

    2015-01-01

    Diisononyl phthalate (DINP) is a plasticizer that is frequently used as a substitute for other plasticizers whose use is prohibited in certain products. In vivo studies on the neurotoxicity of DINP are however, limited. This work aims to investigate whether DINP causes neurobehavioral changes in mice and to provide useful advice on preventing the occurrence of these adverse effects. Behavioral analysis showed that oral administration of 20 or 200 mg/kg/day DINP led to mouse cognitive deficits and anxiety. Brain histopathological observations, immunohistochemistry assays (cysteine-aspartic acid protease 3 [caspase-3], glial fibrillary acidic protein [GFAP]), oxidative stress assessments (reactive oxygen species [ROS], glutathione [GSH], superoxide dismutase [SOD] activities, 8-hydroxy-2-deoxyguanosine [8-OH-dG] and DNA-protein crosslinks [DPC]), and assessment of inflammation (tumor necrosis factor alpha [TNF-а] and interleukin-1 beta [IL-1β]) of mouse brains showed that there were histopathological alterations in the brain and increased levels of oxidative stress, and inflammation for these same groups. However, some of these effects were blocked by administration of melatonin (50 mg/kg/day). Down-regulation of oxidative stress was proposed to explain the neuroprotective effects of melatonin. The data suggests that DINP could cause cognitive deficits and anxiety in mice, and that melatonin could be used to avoid these adverse effects. PMID:26424168

  2. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence.

    PubMed

    Prasad, Sathya N; Muralidhara

    2013-02-01

    The primary objective of this investigation was to assess the neuroprotective efficacy of spice active principles namely Eugenol (Eug) and isoeugenol (IE) in an acrylamide (ACR) neuropathy model in rats. In the present study, ACR administration (50 mg/kg bw, i.p. 3 times/week) for 5 weeks to growing rats caused typical symptoms of neuropathy. We found that treatment of ACR rats with spice active principles (10 mg/kg bw, for 5 weeks) caused marked improvement in gait score and responses in a battery of behavioral tests. Terminally, both spice active principles markedly attenuated ACR-induced markers of oxidative stress viz., reactive oxygen species (ROS), malondialdehyde (MDA) and nitric oxide (NO) in sciatic nerve (SN) as well as brain regions (cortex Ct, cerebellum Cb). Treatment with Eug restored the reduced glutathione levels in SN and brain regions. Interestingly, both spice active principles effectively diminished ACR-induced elevation in cytosolic calcium levels and acetylcholinesterase activity in SN and Ct. Further, the diminished activity of ATPase among ACR rats was enhanced in SN and restored in brain regions. Furthermore, Eug treatment significantly offset ACR-induced depletion in dopamine levels in brain regions. Collectively our findings suggest the propensity of these spice active principles to attenuate ACR-induced neuropathy. Further studies are necessary to understand the precise molecular mechanism/s by which these spice active principles attenuate neuropathy. Nevertheless, our data clearly demonstrate the beneficial effects of spice active principles in ACR-induced neuropathy in rats and suggest their possible therapeutic usage as an adjuvant in the management of other forms of neuropathy in humans. PMID:23161090

  3. [Neuroprotective effects of a novel antidiabetic drug (D-Ser2)Oxm on amyloid β protein-induced cytotoxicity].

    PubMed

    Han, Yu-Fei; Holscher, Christian; Wang, Zhao-Jun; Zhang, Jun; Yuan, Li; Tong, Jia-Qing; Wang, Dan-Dan; Wu, Mei-Na; Qi, Jin-Shun

    2016-06-25

    The accumulation and neurotoxicity of amyloid β protein (Aβ) in the brain is one of major pathological hallmarks of Alzheimer's disease (AD). The effective drugs against Aβ have been still deficient up to now. According to a most recent study, (D-Ser2) Oxm, a new antidiabetic drug, not only improves the disorders in plasma glucose and insulin in type 2 diabetes mellitus (T2DM) rats, but also exerts positive effects on hippocampal neurogenesis and synaptogenesis. However, it is still unclear whether (D-Ser2)Oxm can directly protect cultured neurons against Aβ1-42-induced cytotoxicity. In the present study, we investigated the neuroprotective effects of (D-Ser2)Oxm on the cultured primary hippocampal neurons by testing the cell viability, neuronal apoptosis, mitochondrial membrane potential and intracellular calcium concentration. The results showed that treatment with (D-Ser2)Oxm effectively reversed Aβ1-42-induced decline in cell viability (P < 0.001), and this protective effect could be inhibited by the pretreatment with exendin(9-39), a GLP-1 receptor blocker. (D-Ser2)Oxm treatment also decreased Aβ1-42-induced neuronal early apoptosis and down-regulated apoptotic protein caspase3. Meantime, (D-Ser2)Oxm treatment inhibited Aβ1-42-induced [Ca(2+)]i elevation, mitochondrial membrane potential depolarization, and glycogen synthase kinase-3β (GSK3β) activation. These results suggest that (D-Ser2)Oxm can protect hippocampal neurons against Aβ1-42-induced cytotoxicity and this effect may be related to activation of GLP-1 receptors, regulation of intracellular calcium homeostasis and stabilization of mitochondrial membrane potential. PMID:27350199

  4. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats.

    PubMed

    Jawaid, Talha; Jahan, Shah; Kamal, Mehnaz

    2015-01-01

    The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.]), perindopril (0.1 mg/kg b.w., [i.p.]), enalapril (0.1 mg/kg b.w., [i.p.]), and ramipril (0.1 mg/kg b.w., [i.p.]) were administered in different group of animals for 5 days. On 5(th) day, scopolamine (1 mg/kg b.w., i.p.) was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM) test and pole climbing test (PCT). Biochemical estimations like glutathione (GSH), malondialdehyde (MDA), and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril. PMID:26317078

  5. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson's Disease.

    PubMed

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson's disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  6. Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model.

    PubMed

    Shi, Zhenhua; Lu, Zhongbing; Zhao, Yashuo; Wang, Yueqi; Zhao-Wilson, Xi; Guan, Peng; Duan, Xianglin; Chang, Yan-Zhong; Zhao, Baolu

    2013-06-01

    Previous pharmacological studies have indicated that AC11 (a standardized aqueous extract of Uncaria tomentosa) has beneficial effects on DNA repair and immune function. However, its benefits go beyond this. The present study utilized electron spin resonance (ESR) and spin trapping technique, as well as the 6-OHDA-induced cell damage and transgenic Caenorhabditis elegans models, towards exploring the antioxidant and neuroprotective ability of AC11. Our results showed that AC11 could scavenge several types of free radicals, especially hydroxyl radicals (60% of hydroxyl radicals were scavenged by 30 μg/ml of AC11). In SH-SY5Y cells, we found that AC11 could dose dependently protect 6-OHDA induced cell damage by increase cell viability and mitochondrial membrane potential. AC11 pretreatment also significantly decreased the level of lipid peroxidation, intracellular reactive oxygen species and nitric oxide in 6-OHDA treated cells. In NL5901 C. elegans, 10 μg/ml AC11 could reduce the aggregation of α-synuclein by 40%. These findings encourage further investigation on AC11 and its active constituent compounds, as possible therapeutic intervention against Parkinson's disease. PMID:23500604

  7. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid.

    PubMed

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel C T; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461

  8. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats

    PubMed Central

    Jawaid, Talha; Jahan, Shah; Kamal, Mehnaz

    2015-01-01

    The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.]), perindopril (0.1 mg/kg b.w., [i.p.]), enalapril (0.1 mg/kg b.w., [i.p.]), and ramipril (0.1 mg/kg b.w., [i.p.]) were administered in different group of animals for 5 days. On 5th day, scopolamine (1 mg/kg b.w., i.p.) was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM) test and pole climbing test (PCT). Biochemical estimations like glutathione (GSH), malondialdehyde (MDA), and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril. PMID:26317078

  9. Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca2+ Influx

    PubMed Central

    Wang, Ke; Zhu, Xue; Zhang, Kai; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2016-01-01

    Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca2+ influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca2+ hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases. PMID:27409614

  10. Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca(2+) Influx.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2016-01-01

    Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca(2+) influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca(2+) hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases. PMID:27409614

  11. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments

    PubMed Central

    Ivanov, Pavel; O’Day, Elizabeth; Emara, Mohamed M.; Wagner, Gerhard; Lieberman, Judy; Anderson, Paul

    2014-01-01

    Angiogenin (ANG) is a stress-activated ribonuclease that promotes the survival of motor neurons. Ribonuclease inactivating point mutations are found in a subset of patients with ALS, a fatal neurodegenerative disease with no cure. We recently showed that ANG cleaves tRNA within anticodon loops to produce 5′- and 3′-fragments known as tRNA-derived, stress-induced RNAs (tiRNAs). Selected 5′-tiRNAs (e.g., tiRNAAla, tiRNACys) cooperate with the translational repressor Y-box binding protein 1 (YB-1) to displace the cap-binding complex eIF4F from capped mRNA, inhibit translation initiation, and induce the assembly of stress granules (SGs). Here, we show that translationally active tiRNAs assemble unique G-quadruplex (G4) structures that are required for translation inhibition. We show that tiRNAAla binds the cold shock domain of YB-1 to activate these translational reprogramming events. We discovered that 5′-tiDNAAla (the DNA equivalent of 5′-tiRNAAla) is a stable tiRNA analog that displaces eIF4F from capped mRNA, inhibits translation initiation, and induces the assembly of SGs. The 5′-tiDNAAla also assembles a G4 structure that allows it to enter motor neurons spontaneously and trigger a neuroprotective response in a YB-1–dependent manner. Remarkably, the ability of 5′-tiRNAAla to induce SG assembly is inhibited by G4 structures formed by pathological GGGGCC repeats found in C9ORF72, the most common genetic cause of ALS, suggesting that functional interactions between G4 RNAs may contribute to neurodegenerative disease. PMID:25404306

  12. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning.

    PubMed

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-Ja; Hallenbeck, John M

    2015-12-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. Mammalian hibernation provides a valuable model of tolerance to ischemic stress. Herein, we demonstrate that marked reductions in the phosphorylation of ribosomal protein S6 (rpS6), extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinase p44/42 (p44/42MAPK) and ribosomal protein S6 kinase (S6K) occur within the brains of both hibernating squirrels and rats, which have undergone an ischemic

  13. Cell cycle arrest associated with anoxia-induced quiescence, anoxic preconditioning, and embryonic diapause in embryos of the annual killifish Austrofundulus limnaeus

    PubMed Central

    Meller, Camie L.; Meller, Robert; Simon, Roger P.; Culpepper, Kristin M.; Podrabsky, Jason E.

    2012-01-01

    Embryos of the annual killifish Austrofundulus limnaeus can enter into dormancy associated with diapause and anoxia-induced quiescence. Dormant embryos are composed primarily of cells arrested in the G1/G0 phase of the cell cycle based on flow cytometry analysis of DNA content. In fact, most cells in developing embryos contain only a diploid complement of DNA, with very few cells found in the S, G2, or M phases of the cell cycle. Diapause II embryos appear to be in a G0-like state with low levels of cyclin D1 and p53. However, the active form of pAKT is high during diapause II. Exposure to anoxia causes an increase in cyclin D1 and p53 expression in diapause II embryos, suggesting a possible re-entry into the cell cycle. Post-diapause II embryos exposed to anoxia or anoxic preconditioning have stable levels of cyclin D1 and stable or reduced levels of p53. The amount of pAKT is severely reduced in 12 dpd embryos exposed to anoxia or anoxic preconditioning. This study is the first to evaluate cell cycle control in embryos of A. limnaeus during embryonic diapause and in response to anoxia and builds a foundation for future research on the role of cell cycle arrest in supporting vertebrate dormancy. PMID:22570106

  14. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    PubMed

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. PMID:26423303

  15. Can medical herbs stimulate regeneration or neuroprotection and treat neuropathic pain in chemotherapy-induced peripheral neuropathy?

    PubMed

    Schröder, Sven; Beckmann, Kathrin; Franconi, Giovanna; Meyer-Hamme, Gesa; Friedemann, Thomas; Greten, Henry Johannes; Rostock, Matthias; Efferth, Thomas

    2013-01-01

    Chemotherapy-induced neuropathy (CIPN) has a relevant impact on the quality of life of cancer patients. There are no curative conventional treatments, so further options have to be investigated. We conducted a systematic review in English and Chinese language databases to illuminate the role of medical herbs. 26 relevant studies on 5 single herbs, one extract, one receptor-agonist, and 8 combinations of herbs were identified focusing on the single herbs Acorus calamus rhizoma, Cannabis sativa fructus, Chamomilla matricaria, Ginkgo biloba, Salvia officinalis, Sweet bee venom, Fritillaria cirrhosae bulbus, and the herbal combinations Bu Yang Huan Wu, modified Bu Yang Huan Wu plus Liuwei Di Huang, modified Chai Hu Long Gu Mu Li Wan, Geranii herba plus Aconiti lateralis praeparata radix , Niu Che Sen Qi Wan (Goshajinkigan), Gui Zhi Jia Shu Fu Tang (Keishikajutsubuto), Huang Qi Wu Wu Tang (Ogikeishigomotsuto), and Shao Yao Gan Cao Tang (Shakuyakukanzoto). The knowledge of mechanism of action is still limited, the quality of clinical trials needs further improvement, and studies have not yielded enough evidence to establish a standard practice, but a lot of promising substances have been identified. While CIPN has multiple mechanisms of neuronal degeneration, a combination of herbs or substances might deal with multiple targets for the aim of neuroprotection or neuroregeneration in CIPN. PMID:23983777

  16. Can Medical Herbs Stimulate Regeneration or Neuroprotection and Treat Neuropathic Pain in Chemotherapy-Induced Peripheral Neuropathy?

    PubMed Central

    Schröder, Sven; Beckmann, Kathrin; Franconi, Giovanna; Greten, Henry Johannes; Rostock, Matthias; Efferth, Thomas

    2013-01-01

    Chemotherapy-induced neuropathy (CIPN) has a relevant impact on the quality of life of cancer patients. There are no curative conventional treatments, so further options have to be investigated. We conducted a systematic review in English and Chinese language databases to illuminate the role of medical herbs. 26 relevant studies on 5 single herbs, one extract, one receptor-agonist, and 8 combinations of herbs were identified focusing on the single herbs Acorus calamus rhizoma, Cannabis sativa fructus, Chamomilla matricaria, Ginkgo biloba, Salvia officinalis, Sweet bee venom, Fritillaria cirrhosae bulbus, and the herbal combinations Bu Yang Huan Wu, modified Bu Yang Huan Wu plus Liuwei Di Huang, modified Chai Hu Long Gu Mu Li Wan, Geranii herba plus Aconiti lateralis praeparata radix , Niu Che Sen Qi Wan (Goshajinkigan), Gui Zhi Jia Shu Fu Tang (Keishikajutsubuto), Huang Qi Wu Wu Tang (Ogikeishigomotsuto), and Shao Yao Gan Cao Tang (Shakuyakukanzoto). The knowledge of mechanism of action is still limited, the quality of clinical trials needs further improvement, and studies have not yielded enough evidence to establish a standard practice, but a lot of promising substances have been identified. While CIPN has multiple mechanisms of neuronal degeneration, a combination of herbs or substances might deal with multiple targets for the aim of neuroprotection or neuroregeneration in CIPN. PMID:23983777

  17. Neuroprotection by Vitamin C Against Ethanol-Induced Neuroinflammation Associated Neurodegeneration in the Developing Rat Brain.

    PubMed

    Ahmad, Ashfaq; Shah, Shahid A; Badshah, Haroon; Kim, Min J; Ali, Tahir; Yoon, Gwang H; Kim, Tae H; Abid, Nouman B; Rehman, Shafiq Ur; Khan, Sohail; Kim, Myeong O

    2016-01-01

    Ethanol induces oxidative stress and its exposure during early developmental age causes neuronal cell death which leads to several neurological disorders. We previously reported that vitamin C can protect against ethanol-induced apoptotic cell death in the developing rat brain. Here, we extended our study to understand the therapeutic efficacy of vitamin C against ethanol-induced oxidative stress, neuroinflammation mediated neurodegeneration in postnatal day 7 (PND7) rat. A single episode of ethanol (5g/kg) subcutaneous administration to postnatal day 7 rat significantly induced the production of reactive oxygen species (ROS), and activated both microglia and astrocytes followed by the induction of different apoptotic markers. On the other hand, due to its free radical scavenging properties, vitamin C treatment significantly reduced the production of reactive oxygen species, suppressed both activated microglia and astrocytes and reversed other changes including elevated level of Bax/Bcl-2 ratio, cytochrome c and different caspases such as caspase-9 and caspase-3 induced by ethanol in developing rat brain. Moreover, vitamin C treatment also reduced ethanol-induced activation of Poly [ADP-Ribose] Polymerase 1(PARP-1) and neurodegeneration as evident from Flouro-Jade-B and Nissl stainined neuronal cell death in PND7 rat brain. These findings suggest that vitamin C mitigated ethanol-induced oxidative stress, neuroinflammation and apoptotic neuronal loss and may be beneficial against ethanol damaging effects in brain development. PMID:26831257

  18. ACTIVITY-DEPENDENT NEUROPROTECTIVE PROTEIN–DERIVED PEPTIDE, NAP, PREVENTING ALCOHOL-INDUCED APOPTOSIS IN FETAL BRAIN OF C57BL/6 MOUSE

    PubMed Central

    SARI, Y.

    2012-01-01

    Possible prevention of the effects of prenatal alcohol exposure has been investigated using peptides that were previously shown to be involved in neuroprotection both in vitro and in vivo. I focused in this study on investigating the neuro-protective effects of one of these peptides with regard to the determination of the downstream signaling pathways involved in neuroprotection. This peptide with the sequence NAPVSIPQ, known as NAP, a fragment of activity-dependent neuroprotective protein, demonstrated a potent protective effect against oxidative stress associated with alcohol exposure. On embryonic day 7 (E7), weight-matched C57BL/6 pregnant females were assigned the following groups: (1) Ethanol liquid diet group (ALC) 25% (4.49%, v/v) ethano-derived calories, (2) Pair-fed (PF) control group (3) Chow control group, (4) treatment groups with alcohol alongside i.p. injections of d-NAP (ALC/d-NAP, 20 or 30 μg/20 g body weight), (5) PF/d-NAP control group. On E13, fetal brains were collected and assayed for TdT-mediated dUTP nick end labeling (TUNEL) staining, caspase-3 colorimetric assay and ELISA for cytochrome c detection. My results show that NAP significantly prevented alcohol-induced weight reduction of the fetal brain. Apoptosis was determined by TUNEL staining; NAP administration significantly prevented alcohol-induced increases in TUNEL-positive cells in primordium cingulate cortex and basal ganglia eminence. The investigation of downstream signaling pathways involving NAP neuroprotection revealed that this peptide significantly prevented alcohol-induced increase in the concentrations of caspase-3 in E13 fetal brains. Moreover, ELISA for cytochrome c shows that NAP significantly prevented both alcohol-induced increases in the level of cytosolic cytochrome c and alcohol-induced decreases in the level of mitochondrial cytochrome c. These data provide an understanding of NAP intracellular target, and the downstream mechanisms of action that will pave a path

  19. Neuroprotective action of deer bone extract against glutamate or Aβ₁₋₄₂-induced oxidative stress in mouse hippocampal cells.

    PubMed

    Kim, Cho Rong; Jeon, Hye Lyun; Shin, Suk Kyung; Kim, Hyun Jeong; Ahn, Chang-Won; Jung, Sung Ug; Park, Soo-Hyun; Kim, Mee Ree

    2014-02-01

    Water extracts of deer bone, called nokgol in Korean, and deer antlers have been traditionally used as anti-aging medicines. Deer antler extract is known to possess various activities, including anti-aging or anti-amnesic activity. However, there are no reports about the neuroprotective effect of deer bone extract (DBE). The objective of this study was to examine the neuroprotective effect of DBE on glutamate-induced cell death of mouse hippocampal cells (HT-22 cells) and to elucidate the mode of neuroprotective action of DBE. In this study, HT-22 cells was pretreated with DBE before stimulation with glutamate, and then, the effects of DBE on cell viability, oxidative stress markers, and MAP kinases were determined. Separately, the effect of DBE on H₂O₂ or amyloid beta peptide (1-42) (Aβ₁₋₄₂)-induced cytotoxicity of HT-22 cells was evaluated. DBE protected HT-22 cells from glutamate-induced cell death and prevented the increase in lactate dehydrogenase leakage in HT-22 cells. DBE also prevented glutamate-induced oxidative stress, as indicated by increased reactive oxygen species and lipid peroxidation as well as by decreases in glutathione (GSH) levels and GSH peroxidase activity. In addition, DBE inhibited glutamate-induced activation of c-Jun N-terminal kinases (JNK), p38, and extracellular signal-regulated kinase, indicators of oxidative stress-induced cell death. Furthermore, DBE also protected against H₂O₂ and Aβ₁₋₄₂-induced cytotoxicity. These results suggest that DBE may be a useful functional agent for the prevention against neurodegenerative disorders involving oxidative stress. PMID:24460377

  20. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-ɛ and p38 MAPK

    PubMed Central

    Weber, Nina C; Toma, Octavian; Wolter, Jessica I; Obal, Detlef; Müllenheim, Jost; Preckel, Benedikt; Schlack, Wolfgang

    2004-01-01

    Xenon is an anesthetic with minimal hemodynamic side effects, making it an ideal agent for cardiocompromised patients. We investigated if xenon induces pharmacological preconditioning (PC) of the rat heart and elucidated the underlying molecular mechanisms. For infarct size measurements, anesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received either the anesthetic gas xenon, the volatile anesthetic isoflurane or as positive control ischemic preconditioning (IPC) during three 5-min periods before 25-min ischemia. Control animals remained untreated for 45 min. To investigate the involvement of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), rats were pretreated with the PKC inhibitor calphostin C (0.1 mg kg−1) or the p38 MAPK inhibitor SB203580 (1 mg kg−1). Additional hearts were excised for Western blot and immunohistochemistry. Infarct size was reduced from 50.9±16.7% in controls to 28.1±10.3% in xenon, 28.6±9.9% in isoflurane and to 28.5±5.4% in IPC hearts. Both, calphostin C and SB203580, abolished the observed cardioprotection after xenon and isoflurane administration but not after IPC. Immunofluorescence staining and Western blot assay revealed an increased phosphorylation and translocation of PKC-ɛ in xenon treated hearts. This effect could be blocked by calphostin C but not by SB203580. Moreover, the phosphorylation of p38 MAPK was induced by xenon and this effect was blocked by calphostin C. In summary, we demonstrate that xenon induces cardioprotection by PC and that activation of PKC-ɛ and its downstream target p38 MAPK are central molecular mechanisms involved. Thus, the results of the present study may contribute to elucidate the beneficial cardioprotective effects of this anesthetic gas. PMID:15644876

  1. Quantitative proteomics study of the neuroprotective effects of B12 on hydrogen peroxide-induced apoptosis in SH-SY5Y cells

    PubMed Central

    Zhong, Lijun; Zhou, Juntuo; Chen, Xi; Lou, Yaxin; Liu, Dan; Zou, Xiajuan; Yang, Bin; Yin, Yuxin; Pan, Yan

    2016-01-01

    B12 belongs to the coumarin class of compounds that have been shown to have various physiological and pharmacological activities including anti-inflammatory, antibacterial, and antioxidant. In the present study, we characterised the neuroprotective effects of B12 against H2O2-induced neuronal cell damage in SH-SY5Y cells. Protein expression profiling in combination with pathway analysis was deployed to investigate the molecular events associated with the neuroprotective effects in human neuronal cells using a label-free quantitative proteomics approach. A total of 22 proteins were significantly differentially expressed in H2O2-damaged cells with or without B12 treatment. Bioinformatics analysis using the Cytoscape platform indicated that poly pyrimidine tract binding protein 1 (PTBP1) was highly associated with the protective effect, and western blotting verified that PTBP1 was up-regulated in H2O2 + B12 treatment group, compared with the H2O2 treated group. PTBP RNAi experiments knocked down PTBP expression, which cancelled out the protective effect of B12 on cell viability. Thus, we infer that B12 neuroprotective activity involves up-regulation of PTBP1 and its associated signalling networks following H2O2-induced apoptosis in SH-SY5Y cells. B12 or related compounds may prove to be useful therapeutic agents for the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. PMID:26951766

  2. Involvement of ERK1/2 pathway in neuroprotective effects of pyrroloquinoline quinine against rotenone-induced SH-SY5Y cell injury.

    PubMed

    Zhang, Q; Zhang, J; Jiang, C; Qin, J; Ke, K; Ding, F

    2014-06-13

    Pyrroloquinoline quinone (PQQ), a redox cofactor in the mitochondrial respiratory chain, has been shown to protect neurons against glutamate-induced damage both in vitro and in vivo. In this study, specific inhibitors to each of the mitochondrial complexes were used to find out which reactive oxygen species (ROS)-generating sites could be affected by PQQ. Then we established an in vitro model of Parkinson's disease (PD) by exposing cultured SH-SY5Y dopaminergic cells to rotenone, a complex I inhibitor. The neuroprotective effects of PQQ were observed by pretreatment of SH-SY5Y cells with PQQ before rotenone injury, and the possible involvement of certain signaling pathways were investigated. PQQ pretreatment prevented SH-SY5Y cells from rotenone-induced apoptosis in a concentration-dependent manner. PQQ neuroprotection was associated with inhibition of intracellular ROS production, modulation of the expression of apoptosis-related Bcl-2 and Bax, and regulation of the level of superoxide dismutase, glutathione, and malondialdehyde. Meanwhile, PQQ up-regulated the gene expression of Ndufs 1, 2, and 4 (complex I subunits), and increased mitochondrial viability and mitochondrial DNA content. Furthermore, PQQ pretreatment activated ERK1/2 phosphorylation in rotenone-injured SH-SY5Y cells, while ERK1/2 inhibition suppressed PQQ neuroprotection. All the results suggested that PQQ could protect SH-SY5Y cells against rotenone injury by reducing ROS production and maintaining mitochondrial functions through activation of ERK1/2 pathway. PMID:24755484

  3. Cyclooxygenase-independent neuroprotective effects of aspirin against dopamine quinone-induced neurotoxicity.

    PubMed

    Asanuma, Masato; Miyazaki, Ikuko; Kikkawa, Yuri; Kimoto, Naotaka; Takeshima, Mika; Murakami, Shinki; Miyoshi, Ko

    2012-09-01

    Prostaglandin H synthase exerts not only cyclooxygenase activity but also peroxidase activity. The latter activity of the enzyme is thought to couple with oxidation of dopamine to dopamine quinone. Therefore, it has been proposed that cyclooxygenase inhibitors could suppress dopamine quinone formation. In the present study, we examined effects of various cyclooxygenase inhibitors against excess methyl L-3,4-dihydroxyphenylalanine (L-DOPA)-induced quinoprotein (protein-bound quinone) formation and neurotoxicity using dopaminergic CATH.a cells. The treatment with aspirin inhibited excess methyl L-DOPA-induced quinoprotein formation and cell death. However, acetaminophen did not show protective effects, and indomethacin and meloxicam rather aggravated these methyl L-DOPA-induced changes. Aspirin and indomethacin did not affect the level of glutathione that exerts quenching dopamine quinone in dopaminergic cells. In contrast with inhibiting effects of higher dose in the previous reports, relatively lower dose of aspirin that affected methyl L-DOPA-induced quinoprotein formation and cell death failed to prevent cyclooxygenase-induced dopamine chrome generation in cell-free system. Furthermore, aspirin but not acetaminophen or meloxicam showed direct dopamine quinone-scavenging effects in dopamine-semiquinone generating systems. The present results suggest that cyclooxygenase shows little contribution to dopamine oxidation in dopaminergic cells and that protective effects of aspirin against methyl L-DOPA-induced dopamine quinone neurotoxicity are based on its cyclooxygenase-independent property. PMID:22674083

  4. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection.

    PubMed

    Janda, Elzbieta; Lascala, Antonella; Carresi, Cristina; Parafati, Maddalena; Aprigliano, Serafina; Russo, Vanessa; Savoia, Claudia; Ziviani, Elena; Musolino, Vincenzo; Morani, Federica; Isidoro, Ciro; Mollace, Vincenzo

    2015-01-01

    Oxidative stress (OS) stimulates autophagy in different cellular systems, but it remains controversial if this rule can be generalized. We have analyzed the effect of chronic OS induced by the parkinsonian toxin paraquat (PQ) on autophagy in astrocytoma cells and primary astrocytes, which represent the first cellular target of neurotoxins in the brain. PQ decreased the basal levels of LC3-II and LC3-positive vesicles, and its colocalization with lysosomal markers, both in the absence and presence of chloroquine. This was paralleled by increased number and size of SQSTM1/p62 aggregates. Downregulation of autophagy was also observed in cells chronically exposed to hydrogen peroxide or nonlethal concentrations of PQ, and it was associated with a reduced astrocyte capability to protect dopaminergic cells from OS in co-cultures. Surprisingly, PQ treatment led to inhibition of MTOR, activation of MAPK8/JNK1 and MAPK1/ERK2-MAPK3/ERK1 and upregulation of BECN1/Beclin 1 expression, all signals typically correlating with induction of autophagy. Reduction of OS by NMDPEF, a specific NQO2 inhibitor, but not by N-acetylcysteine, abrogated the inhibitory effect of PQ and restored autophagic flux. Activation of NQO2 by PQ or menadione and genetic manipulation of its expression confirmed the role of this enzyme in the inhibitory action of PQ on autophagy. PQ did not induce NFE2L2/NRF2, but when it was co-administered with NMDPEF NFE2L2 activity was enhanced in a SQSTM1-independent fashion. Thus, a prolonged OS in astrocytes inhibits LC3 lipidation and impairs autophagosome formation and autophagic flux, in spite of concomitant activation of several pro-autophagic signals. These findings outline an unanticipated neuroprotective role of astrocyte autophagy and identify in NQO2 a novel pharmacological target for its positive modulation. PMID:26046590

  5. Egg white hydrolysate promotes neuroprotection for neuropathic disorders induced by chronic exposure to low concentrations of mercury.

    PubMed

    Rizzetti, Danize Aparecida; Fernandez, Francisca; Moreno, Silvia; Uranga Ocio, José Antonio; Peçanha, Franck Maciel; Vera, Gema; Vassallo, Dalton Valentim; Castro, Marta Miguel; Wiggers, Giulia Alessandra

    2016-09-01

    This study aims to investigate whether the egg white hydrolysate (EWH) acts on the neuropathic disorders associated with long-term Mercury (Hg) exposure in rats. 8- week-old male Wistar rats were treated for 60 days with: a) Control - saline solution (i.m.); b) Mercury - HgCl2 (1st dose 4.6μg/kg, subsequent doses 0.07μg/kg/day, i.m.); c) Hydrolysate - EWH (1g/kg/day, gavage); d) Mercury and Hydrolysate. Mechanical allodynia was assessed using Von Frey Hairs test; heat hyperalgesia by the plantar test; catalepsy by a modification of the "ring test" and spontaneous locomotor activity by a photocell activity chambers. Analyses were performed at 0, 30 and 60 days of treatment. Brain and plasma MDA, plasma NPSH and TNF-α determination and skin immunohistochemistry were performed at 60 days. Hg induced a reduction in mechanical sensitivity threshold at 30 and 60 days and in thermal sensitivity threshold at 60 days. At the end of treatment catalepsy was developed, but there was not significant alteration in spontaneous locomotor activity. Hg also increased brain and plasma MDA, plasma NPSH and TNF-α levels and the number of Merkel cell-neurite complex in the skin. EWH prevented the development of mechanical allodynia, thermal hyperalgesia and catalepsy induced by Hg and the increase in MDA concentration in brain and plasma and in the number of Merkel cell-neurite complex in the skin. In conclusion, EWH promotes neuroprotection against the toxic effects caused by Hg, demonstrating a beneficial therapeutic potential. PMID:27350078

  6. Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington's disease like symptoms in rats: behavioral, biochemical, cellular and histological evidences.

    PubMed

    Kumar, Anil; Chaudhary, Tanya; Mishra, Jitendriya

    2013-11-15

    Emerging evidences indicate hesperidin, a citrus flavanone, attenuates neurodegenerative processes and related complications. Besides its anti-oxidant properties, the other probable mechanisms which underpin its neuroprotective potential are still not clear. In light of emerging role of flavonoids in modulating oxidative stress and neuro-inflammation, the study has been designed to explore the possible neuroprotective effect of hesperidin and its combination with minocycline (microglial inhibitor), against quinolinic acid (QA) induced Huntington's disease (HD) like symptoms in rats. Unilateral intrastriatal administration of QA (300 nmol/4 µl) significantly reduced body weight, impaired behavior (locomotor activity, beam balance and memory performance), caused oxidative damage (increased lipid peroxidation, nitrite concentration, depleted super oxide dismutase and reduced glutathione), demonstrated mitochondrial dysfunction (decreased Complex-I, II, III, and IV activities), increased striatal lesion volume and altered the levels of TNF-α, caspase-3 as well as BDNF expression, as compared to sham group. Meanwhile, chronic hesperidin (100mg/kg, p.o.) and minocycline (25mg/kg, p.o.) treatment for 21 days significantly attenuated the behavioral, biochemical and cellular alterations as compared to QA treated (control) animals, whereas hesperidin (50mg/kg, p.o.) treatment was found to be non-significant. However, treatment of hesperidin (50mg/kg) in combination with minocycline (25mg/kg) potentiated their neuroprotective effect, which was significant as compared to their effects per se in QA treated animals. Taken altogether, the results of the present study suggest a possible interplay of microglial modulation and anti-oxidant effect in neuroprotective potential of hesperidin against QA induced HD like symptoms in rats. PMID:24211676

  7. Pressure-Induced Alterations in PEDF and PEDF-R Expression: Implications for Neuroprotective Signaling in Glaucoma

    PubMed Central

    Lee, Sean J; Duncan, D’Anne S; Echevarria, Franklin D; McLaughlin, William M; Hatcher, Jeremy B; Sappington, Rebecca M

    2015-01-01

    Introduction Alterations in neuron-glia signaling are implicated in glaucoma, a neurodegenerative disease characterized by retinal ganglion cell (RGC) death. Pigment epithelium derived factor (PEDF) is a secreted protein with potential neuroprotective qualities in retinal disease, including chronic ocular hypertension. Here we sought to determine whether moderate, short-term elevations in IOP alter PEDF signaling and whether pressure-induced PEDF signaling directly impacts RGC apoptosis. Methods In retina from naïve mice and mice with unilateral, microbead-induced glaucoma, we examined expression and cell type-specific localization of PEDF and its receptor (PEDF-R), using quantitative PCR and immunohistochemistry. Using primary cultures of purified RGCs and Müller cells, we examined cell type-specific expression of PEDF in response to 48 hours of elevated hydrostatic pressure, using multiplex ELISA and immunocytochemistry. We also measured pressure-induced apoptosis of RGCs in the presence or absence of atglistatin, a potent and selective inhibitor of PEDF-R, and recombinant PEDF, using TUNEL assays. Results PEDF and PEDF-R are constitutively expressed in naïve retina, primarily in the ganglion cell and nerve fiber layers. Elevated IOP increases PEDF and PEDF-R expression, particularly associated with RGCs and Müller cells. Elevated pressure in vitro increased PEDF secretion by 6-fold in RGCs and trended towards an increase in expression by Müller cells, as compared to ambient pressure. This was accompanied by changes in the subcellular localization of PEDF-R in both cell types. Inhibition of PEDF signaling with atglistatin increased pressure-induced apoptosis in RGCs and treatment with recombinant PEDF inhibited pressure-induced apoptosis, both in a dose-dependent manner. Conclusion Our findings suggest that moderate, short-term elevations in IOP promote PEDF signaling via up-regulation of both PEDF and PEDF-R. Based on in vivo and in vitro studies, this PEDF

  8. The Neuroprotective Effect of Erythropoietin on Rotenone-Induced Neurotoxicity in SH-SY5Y Cells Through the Induction of Autophagy.

    PubMed

    Jang, Wooyoung; Kim, Hee Ju; Li, Huan; Jo, Kwang Deog; Lee, Moon Kyu; Yang, Hyun Ok

    2016-08-01

    Currently, the autophagy pathway is thought to be important for the pathogenesis of Parkinson's disease (PD), and the modulation of autophagy may be a novel strategy for the treatment of this disease. Erythropoietin (EPO) has been reported to have neuroprotective effects through anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms, and it has also been shown to modulate autophagy signaling in an oxygen toxicity model. Therefore, we investigated the effects of EPO on autophagy markers and evaluated its neuroprotective effect on rotenone-induced neurotoxicity. We adapted the rotenone-induced neurotoxicity model to SH-SY5Y cells as an in vitro model of PD. We measured cell viability using MTT and annexin V/propidium iodide assays and measured intracellular levels of reactive oxygen species. Immunofluorescence analysis was performed to measure the expression of LC3 and α-synuclein. Intracellular signaling proteins associated with autophagy were examined by immunoblot analysis. EPO mono-treatment increased the levels of mammalian target of rapamycin (mTOR)-independent/upstream autophagy markers, including Beclin-1, AMPK, and ULK-1. Rotenone treatment of SH-SY5Y cells reduced their viability, increased reactive oxygen species levels, and induced apoptosis and α-synuclein expression, and simultaneous exposure to EPO significantly reduced these effects. Rotenone enhanced mTOR expression and suppressed Beclin-1 expression, indicating suppression of the autophagy system. However, combined treatment with EPO restored Beclin-1 expression and decreased mTOR expression. EPO protects against rotenone-induced neurotoxicity in SH-SY5Y cells by enhancing autophagy-related signaling pathways. The experimental evidence for the EPO-induced neuroprotection against rotenone-induced dopaminergic neurotoxicity may significantly impact the development of future PD treatment strategies. PMID:26156288

  9. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain.

    PubMed

    Shah, Shahid Ali; Yoon, Gwang Ho; Kim, Hyun-Ok; Kim, Myeong Ok

    2015-05-01

    Glutamate-induced excitotoxicity due to over-activation of glutamate receptors and associated energy depletion (phosphorylation and activation of AMPK) results in neuronal cell death in various neurological disorders. Restoration of energy balance during an excitotoxic insult is critical for neuronal survival. Ascorbic acid (vitamin C), an essential nutrient with well-known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. In this study, we reported the therapeutic efficacy of vitamin C in response to glutamate-induced excitation, resulting in energy depletion and apoptosis in the hippocampus of the developing rat brain. A single subcutaneous injection of glutamate at two different concentrations (5 and 10 mg/kg) in postnatal day 7 rat pups increased brain glutamate levels and increased the protein expression of neuronal apoptotic markers. Both doses of glutamate upregulated the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, cytochrome-c release, caspase-3 activation and the expression of PARP-1. However, co-treatment of vitamin C (250 mg/kg) with glutamate decreased brain glutamate levels and reversed the changes induced by glutamate in the developing hippocampus. Interestingly, only a high dose of glutamate caused the phosphorylation and activation of AMPK and induced neuronal cell death, whereas a low dose of glutamate failed to mediate these effects. Vitamin C supplementation reduced the glutamate-induced phosphorylation of AMPK and attenuated neuronal cell death, as assessed morphologically by Fluoro Jade B in the hippocampal CA1 region of the developing brain. Taken together, our results indicated that glutamate in both concentrations is toxic to the immature rat brain, whereas vitamin C is pharmacologically effective against glutamate-induced neurodegeneration. PMID:25701025

  10. Preconditioning induced by gentamicin protects against acute kidney injury: The role of prostaglandins but not nitric oxide

    SciTech Connect

    Pessoa, Edson A.; Convento, Marcia B.; Ribas, Otoniel S.; Tristao, Vivian R.; Reis, Luciana Aparecida; Borges, Fernanda T.; Schor, Nestor

    2011-05-15

    Nephrotoxicity is the main side effect of gentamicin (GENTA). Preconditioning (PC) refers to a situation in which an organ subjected to an injury responds less intensely when exposed to another injury. The aim of this study was to evaluate the effect of PC with GENTA on nephrotoxic acute kidney injury (AKI). GENTA group rats were injected daily with GENTA (40 mg/kg/BW) for 10 days. PC animals were injected with GENTA for 3 days (40 mg/kg/BW/daily) and, after one rest week, were injected daily with GENTA for 10 days. Animals of the L-NAME and DICLO groups were preconditioned for 3 days and then received daily injections of GENTA for 10 days; they were concomitantly treated with L-NAME (10 mg/kg/BW) and diclofenac (DICLO, 5 mg/kg/BW) for 13 days. Blood and urine were collected for measurement of serum creatinine, urea, urine sodium, protein, hydroperoxides, lipid peroxidation and nitric oxide (NO). The animals were killed; kidneys were removed for histology and immunohistochemistry for apoptosis and cell proliferation. GENTA group rats showed an increase in plasma creatinine, urea, urine sodium, hydroperoxides, lipid peroxidation, proteinuria, necrosis and apoptosis, characterizing nephrotoxic AKI. PC animals showed a decrease in these parameters and increased proliferation. The blockade of NO synthesis by L-NAME potentiated the protective effect, suggesting that NO contributed to the injury caused by GENTA. The blockade of prostaglandin synthesis with DICLO increased serum and urinary parameters, blunting the protective effect of PC. Our data suggest that PC could be a useful tool to protect against nephrotoxic AKI.

  11. Revisiting cobalt chloride preconditioning to prevent hypobaric hypoxia-induced damage: identification of global proteomic alteration and key networks.

    PubMed

    Ahmad, Yasmin; Mishra, Shalini; Arya, Adtiya; Paul, Subhojit; Sharma, Manish; Prasad, Jyotsna; Bhargava, Kalpana

    2016-05-01

    Several studies have supported the hypoxia mimetic roles and cytoprotective properties of cobalt chloride in vitro and in vivo. However, a clear understanding of biological process-based mechanism that integrates the available information remains unknown. This study was aimed to explore the potential mechanism of cobalt chloride deciphering its benefits and well-known physiological challenge caused by hypobaric hypoxia that reportedly affects nearly 24 % of the global population. In order to explore the mechanism of CoCl2, we used global proteomic and systems biology approach in rat model to provide a deeper insight into molecular mechanisms of preconditioning. Furthermore, key conclusions were drawn based on biological network analysis and their enrichment with ontological overlaps. The study was further strengthened by consistent identification of validation of proteins using immunoblotting. CoCl2-pretreated animals exposed to hypoxia showed two significant networks, one lipid metabolism and other cell cycle associated, with a total score of 23 and eight focus molecules. In this study, we delineated two primary routes: one, by direct modulation of reactive oxygen species metabolism and, second, by regulation of lipid metabolism which was not known until now. The previously known benefits of cobalt chloride during physiological challenge by hypobaric hypoxia are convincing and could be explained by some basic set of metabolic and molecular reorganization within the hypoxia model. Interestingly, we also observed some of the completely unknown roles of cobalt chloride such as regulation of lipid that could undulate the translational roles of cobalt chloride supplementation beyond hypoxia preconditioning. PMID:26882918

  12. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials. PMID:27086703

  13. Neuroprotective Effects of Agomelatine and Vinpocetine Against Chronic Cerebral Hypoperfusion Induced Vascular Dementia.

    PubMed

    Gupta, Surbhi; Singh, Prabhat; Sharma, Brij Mohan; Sharma, Bhupesh

    2015-01-01

    Chronic cerebral hypoperfusion (CCH) has been considered as a critical cause for the development of cognitive decline and dementia of vascular origin. Melatonin receptors have been reported to be beneficial in improving memory deterioration. Phosphodiesterase-1 (PDE1) enzyme offers protection against cognitive impairments and cerebrovascular disorders. Aim of this study is to explore the role of agomelatine (a dual MT1 and MT2 melatonin receptor agonist) and vinpocetine (selective PDE1 inhibitor) in CCH induced vascular dementia (VaD). Two vessel occlusion (2VO) or bilateral common carotid arteries ligation method was performed to initiate a phase of chronic hypoperfusion in mice. 2VO animals have shown significant cognitive deficits (Morris water maze), cholinergic dysfunction (increased acetyl cholinesterase -AChE) activity alongwith increased brain oxidative stress (decreased brain catalase, glutathione, as well as superoxide dismutase with an increase in malondialdehyde levels), and significant increase in brain infarct size (2,3,5- triphenylterazolium chloride-TTC staining). Treatment of agomelatine and vinpocetine reduced CCH induced learning and memory deficits and limited cholinergic dysfunction, oxidative stress, and tissue damage, suggesting that agomelatine and vinpocetine may provide benefits in CCH induced VaD. PMID:26036976

  14. Red Lentil Extract: Neuroprotective Effects on Perphenazine Induced Catatonia in Rats

    PubMed Central

    Tarahomi, Shahram; Arzi, Ardeshir; Goudarzi, Mehdi; Bahadoram, Mohammad; Rashidi-Nooshabadi, Mohammadreza

    2016-01-01

    Introduction Parkinsonism is a neurodegenerative disease that is defined by certain symptoms such as muscle rigidity, impaired movement, catatonia, tremor and disorientation of body. Aim The aim was to investigate the effect of red lentil extract on perphenazine-induced Catatonia in model of rat. Materials and Methods This experimental study was done on 48 male albino rats (weight 180–200g) of the Sprague-Dawley strain. Animals were randomly divided into six groups and were pre-treated with a single dose of red lentil extract (200, 400, 800 and 1000 mg/kg), most effective dose of bromocriptine (30mg/kg) and normal saline (5ml/kg) via intraperitoneal (IP) route. perphenazine (5 mg/kg) was after 30 minutes, administered (IP) to induce catatonia. The scoring method of Morpurgo was used to determine the muscular rigidity of animals. Results The results showed that the 200mg/kg red lentil extract treated group had no significant reduction in catatonic responses after perphenazine administration in comparison with control group while the groups that received 800 and 1000mg/kg of red lentil extract showed significant difference (p<0.05) at all the time points. Conclusion The results revealed that hydroalcoholic extract of red lentil has protective effect on Catatonia induced by perphenazine in rats. So this extract may be probably beneficial for catatonia in Parkinsonism. PMID:27504309

  15. Antiapoptotic and neuroprotective role of Curcumin in Pentylenetetrazole (PTZ) induced kindling model in rat.

    PubMed

    Saha, Lekha; Chakrabarti, Amitava; Kumari, Sweta; Bhatia, Alka; Banerjee, Dibyojyoti

    2016-02-01

    Kindling, a sub threshold chemical or electrical stimulation, increases seizure duration and enhances accompanied behavior until it reaches a sort of equilibrium state. The present study aimed to explore the effect of curcumin on the development of kindling in PTZ kindled rats and its role in apoptosis and neuronal damage. In a PTZ kindled Wistar rat model, different doses of curcumin (100, 200 and 300 mg/kg) were administrated orally one hour before the PTZ injections on alternate day during the whole kindling days. The following parameters were compared between control and experimental groups: the course of kindling, stages of seizures, Histopathological scoring of hippocampus, antioxidant parameters in the hippocampus, DNA fragmentation and caspase-3 expression in hippocampus, and neuron-specific enolase in the blood. One way ANOVA followed by Bonferroni post hoc analysis and Fischer's Exact test were used for statistical analyses. PTZ, 30 mg/kg, induced kindling in rats after 32.0 ± 1.4 days. Curcumin showed dose-dependent anti-seizure effect. Curcumin (300 mg/kg) significantly increased the latency to myoclonic jerks, clonic seizures as well as generalized tonic-clonic seizures, improved the seizure score and decreased the number of myoclonic jerks. PTZ kindling induced a significant neuronal injury, oxidative stress and apoptosis which were reversed by pretreatment with curcumin in a dose-dependent manner. Our study suggests that curcumin has a potential antiepileptogenic effect on kindling-induced epileptogenesis. PMID:26934781

  16. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease

    PubMed Central

    Balez, Rachelle; Steiner, Nicole; Engel, Martin; Muñoz, Sonia Sanz; Lum, Jeremy Stephen; Wu, Yizhen; Wang, Dadong; Vallotton, Pascal; Sachdev, Perminder; O’Connor, Michael; Sidhu, Kuldip; Münch, Gerald; Ooi, Lezanne

    2016-01-01

    Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases, yet current therapeutic treatments are inadequate due to a complex disease pathogenesis. The plant polyphenol apigenin has been shown to have anti-inflammatory and neuroprotective properties in a number of cell and animal models; however a comprehensive assessment has not been performed in a human model of AD. Here we have used a human induced pluripotent stem cell (iPSC) model of familial and sporadic AD, in addition to healthy controls, to assess the neuroprotective activity of apigenin. The iPSC-derived AD neurons demonstrated a hyper-excitable calcium signalling phenotype, elevated levels of nitrite, increased cytotoxicity and apoptosis, reduced neurite length and increased susceptibility to inflammatory stress challenge from activated murine microglia, in comparison to control neurons. We identified that apigenin has potent anti-inflammatory properties with the ability to protect neurites and cell viability by promoting a global down-regulation of cytokine and nitric oxide (NO) release in inflammatory cells. In addition, we show that apigenin is able to protect iPSC-derived AD neurons via multiple means by reducing the frequency of spontaneous Ca2+ signals and significantly reducing caspase-3/7 mediated apoptosis. These data demonstrate the broad neuroprotective action of apigenin against AD pathogenesis in a human disease model. PMID:27514990

  17. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells

    PubMed Central

    Yuan, Jing; Yu, Jian-xiong

    2016-01-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells. PMID:27335573

  18. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells.

    PubMed

    Yuan, Jing; Yu, Jian-Xiong

    2016-05-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells. PMID:27335573

  19. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1

    PubMed Central

    Baxter, Paul S; Martel, Marc-Andre; McMahon, Aoife; Kind, Peter C; Hardingham, Giles E

    2011-01-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca2+ transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB’s activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands. PMID:21623792

  20. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    PubMed Central

    González-Pacheco, Héctor; Méndez-Domínguez, Aurelio; Hernández, Salomón; López-Marure, Rebeca; Vazquez-Mellado, Maria J.; Aguilar, Cecilia; Rocha-Zavaleta, Leticia

    2014-01-01

    Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes. PMID:24578622

  1. Potential neuroprotective effects of SIRT1 induced by glucose deprivation in PC12 cells.

    PubMed

    Fujino, Kotaro; Ogura, Yurina; Sato, Kazunori; Nedachi, Taku

    2013-12-17

    Nutrient availability is one of the most important signals regulating cellular fates including cell growth, differentiation, and death. Recent evidence suggests that the NAD(+)-dependent histone deacetylase sirtuin 1 (SIRT1) plays a prominent role in linking changes in nutritional availability with cellular fate regulation. SIRT1 expression is observed in neurons, yet the expressional and functional regulation of this protein is not fully understood. In the present study, we examined whether extracellular glucose concentration affects the expression and localization of SIRT1 in PC12 cells. Further, we examined levels of forkhead box O3a (FoxO3a), which is also controlled by changes in extracellular glucose concentration. We observed the total expression levels of SIRT1 and FoxO3a in PC12 cells were reduced when glucose availability increased via gene expressional control, at least in part. Nuclear localization of SIRT1 and FoxO3a was increased by glucose deprivation. Even though the changes in extracellular glucose concentration regulated SIRT1 and FoxO3a in a similar direction, the effects of nerve growth factor on these two proteins were completely different. Finally, we found the potent SIRT1 inhibitor enhanced glucose deprivation-induced cell death. Therefore, we propose that glucose deprivation-induced SIRT1 expression potentially plays a major role in protecting PC12 cells. PMID:24183892

  2. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  3. Rosiglitazone activation of PPARγ-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress.

    PubMed

    Chiang, Ming-Chang; Nicol, Christopher J; Cheng, Yi-Chuan; Lin, Kuan-Hung; Yen, Chia-Hui; Lin, Chien-Hung

    2016-04-01

    Neuronal cell impairment, such as that induced by amyloid-beta (Aβ) protein, is a process with limited therapeutic interventions and often leads to long-term neurodegeneration common in disorders such as Alzheimer's disease. Interestingly, peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor whose ligands control many physiological and pathologic processes, and may be neuroprotective. We hypothesized that rosiglitazone, a PPARγ agonist, would prevent Aβ-mediated effects in human neural stem cells (hNSCs). Here, we show that rosiglitazone reverses, via PPARγ-dependent downregulation of caspase 3 and 9 activity, the Aβ-mediated decreases in hNSC cell viability. In addition, Aβ decreases hNSC messenger RNA (mRNA) levels of 2 neuroprotective factors (Bcl-2 and CREB), but co-treatment with rosiglitazone significantly rescues these effects. Rosiglitazone co-treated hNSCs also showed significantly increased mitochondrial function (reflected by levels of adenosine triphosphate and Mit mass), and PPARγ-dependent mRNA upregulation of PGC1α and mitochondrial genes (nuclear respiratory factor-1 and Tfam). Furthermore, hNSCs co-treated with rosiglitazone were significantly rescued from Aβ-induced oxidative stress and correlates with reversal of the Aβ-induced mRNA decrease in oxidative defense genes (superoxide dismutase 1, superoxide dismutase 2, and glutathione peroxidase 1). Taken together, these novel findings show that rosiglitazone-induced activation of PPARγ-dependent signaling rescues Aβ-mediated toxicity in hNSCs and provide evidence supporting a neuroprotective role for PPARγ activating drugs in Aβ-related diseases such as Alzheimer's disease. PMID:26973118

  4. Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway.

    PubMed

    Wen, X; Huang, A; Hu, J; Zhong, Z; Liu, Y; Li, Z; Pan, X; Liu, Z

    2015-09-10

    Oxidative stress (OS) mediated the pathogenesis of Alzheimer's disease (AD). Astaxanthin (ATX) has been reported to exert antioxidant activities as well as neuroprotective effects in vivo and in vitro. But it is still unknown whether the Akt/glycogen synthase kinase-3β (GSK-3β) signaling mediated the neuroprotective effect of ATX in HT22 cells. Flow cytometric analysis was used to evaluate reactive oxygen species (ROS) generation. Caspase and PARP activity was measured. The expressions of heme oxygenase-1 (HO-1), nuclear factor-E2-related factor 2 (Nrf2), Bcl-2, Bax, apoptosis-inducing factor (AIF), cytochrome-c (Cyto-c), p-Akt and p-GSK-3β were evaluated to elucidate the underlying mechanism. Our results showed that ATX significantly attenuated glutamate-induced cell viability loss and lactate dehydrogenase (LDH) release, decreased the expression of caspase-3/8/9 activity and cleaved PARP, and suppressed the intracellular accumulation of ROS in HT22 cells after exposure to glutamate. ATX also increased the mitochondrial expression of AIF, Cyto-c as well as Bax while decreased Bcl-2. Moreover, ATX also induced the HO-1 expression in a dose and time-dependent manner, increased the antioxidant-responsive element (ARE) activity and nuclear Nrf2 expression. Furthermore, treatment with ATX restored the p-Akt and p-GSK-3β (Ser9) as well as HO-1 expression reduced by glutamate. This protective effect was partially blocked by the inhibitors lithium chloride treatment in HT22, indicating the involvement of Akt/GSK-3β inactivation during the neuroprotective effect of ATX. Our results provide the first evidence that ATX can protect glutamate-induced cytotoxicity in HT22 via attenuating caspase activation and mitochondrial dysfunction and modulating the Akt/GSK-3β signaling, indicating ATX may be useful for the treatment of neurodegenerative disorders such as AD. PMID:26197224

  5. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  6. Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency.

    PubMed

    Zigmond, Michael J; Cameron, Judy L; Leak, Rehana K; Mirnics, Karoly; Russell, Vivienne A; Smeyne, Richard J; Smith, Amanda D

    2009-12-01

    We are testing the hypothesis that exercise is neuroprotective in animal models of the dopamine (DA) deficiency in Parkinson's disease. Our studies include mice or rats provided access to a running wheel and subsequently treated with MPTP (mice) or 6-hydroxydopamine (rats) and monkeys provided access to a treadmill and subsequently treated with MPTP. Typically, the exercise occurs for 3 months prior to the toxin treatment and often for 1-2 months thereafter. Our findings indicate that exercise reduces the behavioral impairments elicited by the dopaminergic neurotoxins as well as the loss of DA neurons as assessed by PET imaging and biochemical or histochemical assessment of tissue samples. Our studies are focused on one of several possible explanations for the beneficial effects of exercise: an exercise-induced increase in the expression of neurotrophic factors, particularly GDNF. Our observations indicate that GDNF can reduce the vulnerability of DA neurons, in part due to the activation of key intracellular cascades. We also find that mild cellular stress itself can provide protection against more intensive stress, a form of preconditioning. We conclude that dopamine neurons have the capacity to respond to intracellular and extracellular signals by triggering endogenous neuroprotective mechanisms. This raises the possibility that some individuals with Parkinson's disease suffer from a reduction of these neuroprotective mechanisms, and that treatments that boost these mechanisms - including exercise - may provide therapeutic benefit. PMID:20083005

  7. A Hypothesis: Hydrogen Sulfide Might Be Neuroprotective against Subarachnoid Hemorrhage Induced Brain Injury

    PubMed Central

    Yu, Yong-Peng; Chi, Xiang-Lin; Liu, Li-Jun

    2014-01-01

    Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S) protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS) induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH). Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH. PMID:24707204

  8. Caffeine neuroprotects against dexamethasone-induced anxiety-like behaviour in the Zebrafish (Danio rerio).

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2013-01-15

    The early-life stress has critical impact on brain development which can lead to long-term effects on brain functions during adulthood. It has been reported that caffeine possesses a protective effect in neurodegenerative diseases. Thus, this study investigates the potential of caffeine to protect brain functions from adverse effects due to stress exposure during early-life development in the male zebrafish. In the first part of this study, synthetic glucocorticoid, dexamethasone (DEX) (2-200 mg/L for 24 h) was used to induce stress effects in the zebrafish larvae from 4 to 5 days post-fertilisation (dpf) and the effect of DEX administration on zebrafish larvae on anxiety-like behaviour during adulthood in novel tank test was investigated. Next, the possible protective effect of caffeine pre-treatment (5-50 mg/L for 24 h from 3 to 4dpf) before DEX administration was studied. DEX-treated adult male zebrafish showed higher anxiety levels in behavioural tests, as seen in longer latency to enter the top part of the tank, lower transition numbers between the top and bottom parts with more time spent at the bottom and lesser time spent at the top and lower distance travelled at top part. The effect of DEX on anxiety-like behaviour was dose-dependent. Importantly, adult male zebrafish pre-treated with caffeine before DEX treatment did not show any anxiety-like behaviour. These results show that exposure to stress during early-life leads to anxiety-like behaviour in the adult male zebrafish but pre-treatment with caffeine protects from stress-induced anxiety. PMID:23044054

  9. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  10. The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity.

    PubMed

    Colak, Suat; Geyikoglu, Fatime; Keles, Osman Nuri; Türkez, Hasan; Topal, Ahmet; Unal, Bünyami

    2011-09-01

    This study was designed to investigate the qualitative and quantitative changes in brain tissue following aluminum chloride (AlCl(3)) administration and to determine whether boric acid (BA) has a protective effect against brain damage induced by AlCl( 3). For this aim, Sprague-Dawley rats were randomly separated into eight groups: (1) control, (2) AlCl(3) (5 mg/kg/day), (3, 4 and 5) BA (3.25, 36 and 58.5 mg/kg/day), (6, 7 and 8) AlCl(3) (5 mg/kg/day) plus BA (3.25, 36 and 58.5 mg/kg/day). After the animals were killed, the total numbers of neuron in the brain of all groups were determined using an unbiased stereological analysis. In addition to the stereological analysis, all brains were examined histopathologically by using light and electron microscopy. The stereological and histopathological results indicated a high damage of the rat brain tissues in the AlCl(3) and AlCl(3) + high dose BA (36 and 58.5) treatment groups. However, protective effects on neuron were observed in the AlCl(3) + low dose BA (3.25) group when compared other AlCl(3) groups. Our stereological and histopathological findings show that low-dose BA, as a proteasome inhibitor, can decrease the adverse effects of AlCl(3) on the cerebral cortex. PMID:21543463

  11. A cellular lipidomic study on the Aβ-induced neurotoxicity and neuroprotective effects of EGCG by using UPLC/MS-based glycerolipids profiling and multivariate analysis.

    PubMed

    Zhang, Hongyang; Wang, Jing-Rong; Yau, Lee Fong; Ho, Hing Man; Chan, Chi Leung; Hu, Ping; Liu, Liang; Jiang, Zhi-Hong

    2012-10-30

    The aim of this study was to investigate the cellular lipid metabolism associated with β-amyloid peptide (Aβ)-induced neurotoxicity as well as the neuroprotective effect of (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea. An ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based lipidomic approach was developed to screen and identify changes of the glycerolipids (GL) upon Aβ treatment with or without the presence of EGCG in PC12 cells. Principle component analysis (PCA) showed that the Aβ-treated group was well separated from the control group, whereas the EGCG group was closer to the control group. The GL levels were significantly elevated in Aβ-treated cells compared with the control group, but were restored near to normal levels after EGCG treatment. The elevated phosphatidylcholines (PCs) levels observed in the Aβ-treated PC12 cells were quite probably the integrated results of the reduced phospholipase A(2) (PLA(2)) activity and the enhanced activity of lysophospholipid acyltransferases. Moreover, an increased liberation of arachidonic acid (AA) from PCs was observed as another important response of PC12 cells to the Aβ aggregates, implying an active inflammatory process occurring in Aβ induced neurotoxicity. EGCG treatment can reverse the deregulated metabolism of PCs, which might be one of the biochemical mechanisms contributing to its neuroprotective effect. Collectively, results obtained from the current lipidomic analyses of PC12 cells provided important insight into the biochemical mechanisms underlying Aβ-induced neurotoxicity and neuro protective effects of EGCG. This is the first report of the lipidomic study on the neuroprotective effect of EGCG. PMID:23032920

  12. Role of Dickkopf-1 (Dkk1), an Antagonist of the Wnt-β-Catenin Signaling Pathway, in Estrogen-Induced Neuroprotection and Attenuation of Tau Phosphorylation

    PubMed Central

    Zhang, Quan-Guang; Wang, Ruimin; Khan, Mohammad; Mahesh, Virendra; Brann, Darrell W.

    2009-01-01

    17β-Estradiol (E2) has been implicated to be neuroprotective in a variety of neurodegenerative disorders, although the mechanism remains poorly understood. The current study sheds light on this issue by demonstrating that low physiological levels of E2 protects the hippocampus CA1 against global cerebral ischemia by preventing elevation of dickkopf-1 (Dkk1), an antagonist of the Wnt-β-Catenin signaling pathway, which is a principal mediator of neurodegeneration in cerebral ischemia and Alzheimer’s disease. E2 inhibition of Dkk1 elevation correlated with a reduction of phospho-β-Catenin and elevation of nuclear β-Catenin levels, as well as enhancement of Wnt-3, suggesting E2 activation of the Wnt-β-Catenin signaling pathway. In agreement, the β-Catenin-downstream prosurvival factor, survivin was induced by E2 at 24 hr and 48 hr after cerebral ischemia, an effect observed only in surviving neurons, as degenerating neurons lacked survivin expression. E2 suppression of Dkk1 elevation was found to be due to attenuation of upstream JNK/c-Jun signaling, as E2 attenuated of JNK/c-Jun activation and a JNK inhibitor significantly blocked Dkk1 induction. Tau hyperphosphorylation has been implicated to have a prodeath role in Alzheimer’s disease and cerebral ischemia, and E2 attenuates tau hyperphosphorylation. Our study demonstrates that tau hyperphosphorylation is strongly induced after global cerebral ischemia, and that E2 inhibits tau hyperphosphorylation by suppressing activation of the JNK/c-Jun/Dkk1 signaling pathway. Finally, exogenous Dkk1 replacement via icv administration completely reversed E2 induced-neuroprotection, nuclear β-Catenin induction and phospho-tau attenuation, further suggesting that E2 inhibition of Dkk1 is a critical mechanism underlying its neuroprotective and phospho-tau regulatory effects following cerebral ischemia. PMID:18716201

  13. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.

    PubMed

    O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F

    2007-02-01

    Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary

  14. Mitochondrial Dihydrolipoamide Dehydrogenase Is Upregulated in Response to Intermittent Hypoxic Preconditioning

    PubMed Central

    Li, Rongrong; Luo, Xiaoting; Wu, Jinzi; Thangthaeng, Nopporn; Jung, Marianna E.; Jing, Siqun; Li, Linya; Ellis, Dorette Z.; Liu, Li; Ding, Zhengnian; Forster, Michael J.; Yan, Liang-Jun

    2015-01-01

    Intermittent hypoxia preconditioning (IHP) has been shown to protect neurons against ischemic stroke injury. Studying how proteins respond to IHP may identify targets that can help fight stroke. The objective of the present study was to investigate whether mitochondrial dihydrolipoamide dehydrogenase (DLDH) would respond to IHP and if so, whether such a response could be linked to neuroprotection in ischemic stroke injury. To do this, we subjected male rats to IHP for 20 days and measured the content and activity of DLDH as well as the three α-keto acid dehydrogenase complexes that contain DLDH. We also measured mitochondrial electron transport chain enzyme activities. Results show that DLDH content was indeed upregulated by IHP and this upregulation did not alter the activities of the three α-keto acid dehydrogenase complexes. Results also show that the activities of the five mitochondrial complexes (I-V) were not altered either by IHP. To investigate whether IHP-induced DLDH upregulation is linked to neuroprotection against ischemic stroke injury, we subjected both DLDH deficient mouse and DLDH transgenic mouse to stroke surgery followed by measurement of brain infarction volume. Results indicate that while mouse deficient in DLDH had exacerbated brain injury after stroke, mouse overexpressing human DLDH also showed increased brain injury after stroke. Therefore, the physiological significance of IHP-induced DLDH upregulation remains to be further investigated. PMID:26078703

  15. Mitochondrial Dihydrolipoamide Dehydrogenase is Upregulated in Response to Intermittent Hypoxic Preconditioning.

    PubMed

    Li, Rongrong; Luo, Xiaoting; Wu, Jinzi; Thangthaeng, Nopporn; Jung, Marianna E; Jing, Siqun; Li, Linya; Ellis, Dorette Z; Liu, Li; Ding, Zhengnian; Forster, Michael J; Yan, Liang-Jun

    2015-01-01

    Intermittent hypoxia preconditioning (IHP) has been shown to protect neurons against ischemic stroke injury. Studying how proteins respond to IHP may identify targets that can help fight stroke. The objective of the present study was to investigate whether mitochondrial dihydrolipoamide dehydrogenase (DLDH) would respond to IHP and if so, whether such a response could be linked to neuroprotection in ischemic stroke injury. To do this, we subjected male rats to IHP for 20 days and measured the content and activity of DLDH as well as the three α-keto acid dehydrogenase complexes that contain DLDH. We also measured mitochondrial electron transport chain enzyme activities. Results show that DLDH content was indeed upregulated by IHP and this upregulation did not alter the activities of the three α-keto acid dehydrogenase complexes. Results also show that the activities of the five mitochondrial complexes (I-V) were not altered either by IHP. To investigate whether IHP-induced DLDH upregulation is linked to neuroprotection against ischemic stroke injury, we subjected both DLDH deficient mouse and DLDH transgenic mouse to stroke surgery followed by measurement of brain infarction volume. Results indicate that while mouse deficient in DLDH had exacerbated brain injury after stroke, mouse overexpressing human DLDH also showed increased brain injury after stroke. Therefore, the physiological significance of IHP-induced DLDH upregulation remains to be further investigated. PMID:26078703

  16. Role of the pituitary–adrenal axis in granulocyte-colony stimulating factor-induced neuroprotection against hypoxia–ischemia in neonatal rats

    PubMed Central

    Charles, Mélissa S.; Ostrowski, Robert P.; Manaenko, Anatol; Duris, Kamil; Zhang, John H.; Tang, Jiping

    2013-01-01

    Several reports indicate that the activity of the hypothalamic–pituitary–adrenal axis (HPA) is increased after a brain insult and that its down-regulation can improve detrimental outcomes associated with ischemic brain injuries. Granulocyte-colony stimulating factor (G-CSF) is a neuroprotective drug shown in the naïve rat to regulate hormones of the HPA axis. In this study we investigate whether G-CSF confers its neuroprotective properties by influencing the HPA response after neonatal hypoxia–ischemia (HI). Following the Rice–Vannucci model, seven day old rats (P7) were subjected to unilateral carotid ligation followed by 2.5 h of hypoxia. To test our hypothesis, metyrapone was administered to inhibit the release of rodent specific glucocorticoid, corticosterone, at the adrenal level. Dexamethasone, a synthetic glucocorticoid, was administered to agonize the effects of corticosterone. Our results show that both G-CSF and metyrapone significantly reduced infarct volume while dexamethasone treatment did not reduce infarct size even when combined with G-CSF. The protective effects of G-CSF do not include blood brain barrier preservation as suggested by the brain edema results. G-CSF did not affect the pituitary released adrenocorticotropic hormone (ACTH) levels in the blood plasma at 4 h, but suppressed the increase of corticosterone in the blood. The administration of G-CSF and metyrapone increased weight gain, and significantly reduced the Bax/Bcl-2 ratio in the brain while dexamethasone reversed the effects of G-CSF. The combination of G-CSF and metyrapone significantly decreased caspase-3 protein levels in the brain, and the effect was antagonized by dexamethasone. We report that G-CSF is neuroprotective in neonatal HI by reducing infarct volume, by suppressing the HI-induced increase of the Bax/Bcl-2 ratio, and by decreasing corticosterone in the blood. Metyrapone was able to confer similar neuroprotection as G-CSF while dexamethasone reversed the

  17. N-methyl-D-aspartate preconditioning improves short-term motor deficits outcome after mild traumatic brain injury in mice.

    PubMed

    Costa, Tayana; Constantino, Leandra C; Mendonça, Bruna P; Pereira, Josimar G; Herculano, Bruno; Tasca, Carla I; Boeck, Carina R

    2010-05-01

    Traumatic brain injury (TBI) causes impairment of fine motor functions in humans and nonhuman mammals that often persists for months after the injury occurs. Neuroprotective strategies for prevention of the sequelae of TBI and understanding the molecular mechanisms and cellular pathways are related to the glutamatergic system. It has been suggested that cellular damage subsequent to TBI is mediated by the excitatory neurotransmitters, glutamate and aspartate, through the excessive activation of the N-methyl-D-aspartate (NMDA) receptors. Thus, preconditioning with a low dose of NMDA was used as a strategy for protection against locomotor deficits observed after TBI in mice. Male adult mice CF-1 were preconditioned with NMDA (75 mg/kg) 24 hr before the TBI induction. Under anesthesia with O(2)/N(2)O (33%: 66%) inhalation, the animals were subjected to the experimental model of trauma that occurs by the impact of a 25 g weight on the skull. Sensorimotor gating was evaluated at 1.5, 6, or 24 hr after TBI induction by using footprint and rotarod tests. Cellular damage also was assessed 24 hr after occurrence of cortical trauma. Mice preconditioned with NMDA were protected against all motor deficits revealed by footprint tests, but not those observed in rotarod tasks. Although mice showed motor deficits after TBI, no cellular damage was observed. These data corroborate the hypothesis that glutamatergic excitotoxicity, especially via NMDA receptors, contributes to severity of trauma. They also point to a putative neuroprotective mechanism induced by a sublethal dose of NMDA to improve motor behavioral deficits after TBI. PMID:19998488

  18. Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels.

    PubMed

    Nazıroğlu, M; Ciğ, B; Ozgül, C

    2013-07-01

    Glutathione (GSH) and N-acetylcysteine (NAC) are thiol-containing antioxidants, and also act through a direct reaction with free radicals. Transient receptor potential vanilloid 1 (TRPV1) is the principal transduction channel serving as a polymodal detector. Despite the importance of oxidative stress in pain sensitivity, its role in TRPV1 modulation is poorly understood. NAC may also have a regulator role on TRPV1 channel activity in the dorsal root ganglion (DRG) neuron. Therefore, we tested the effects of GSH and NAC on TRPV1 channel current, Ca(2+) influx, oxidative stress and caspase activity in the DRG of mice. DRG neurons were freshly isolated from mice and the neurons were incubated for 6 and 24h with buthionine sulfoximine (BSO). Pretreatment of cultured DRG neurons with NAC, results in a protection against oxidative damages. This neuroprotection is associated with the attenuation of a Ca(2+) influx triggered by oxidative agents such as H2O2, 5,5'-dithiobis-(2-nitrobenzoic acid) and GSH depletion via BSO. Here, we demonstrate the contribution of cytosolic factors (related to thiol group depletion) on the activation of TRPV1 channels in this mechanism. TRPV1 channels are activated by various agents including capsaicin (CAP), the pungent component of hot chili peppers, and are blocked by capsazepine. An oxidative environment also increased CAP-evoked TRPV1 currents in the neurons. When NAC and GSH were included in the patch pipette as well as extracellularly in the chamber, TRPV1 channels were not activated by CAP and H2O2. TRPV1 inhibitors, 2-aminoethyl diphenylborinate and N-(p-amylcinnamoyl)anthranilic acid strongly reduced BSO-induced oxidative toxicity and Ca(2+) influx, in a manner similar to pretreatment with NAC and GSH. Caspase-3 and -9 activities of all groups were not changed by the agonists or antagonists. In conclusion, in our experimental model, TRPV1 channels are involved in the oxidative stress-induced neuronal death, and negative modulation

  19. Effects of hypoxic preconditioning on synaptic ultrastructure in mice.

    PubMed

    Liu, Yi; Sun, Zhishan; Sun, Shufeng; Duan, Yunxia; Shi, Jingfei; Qi, Zhifeng; Meng, Ran; Sun, Yongxin; Zeng, Xianwei; Chui, Dehua; Ji, Xunming

    2015-01-01

    Hypoxic preconditioning (HPC) elicits resistance to more drastic subsequent insults, which potentially provide neuroprotective therapeutic strategy, but the underlying mechanisms remain to be fully elucidated. Here, we examined the effects of HPC on synaptic ultrastructure in olfactory bulb of mice. Mice underwent up to five cycles of repeated HPC treatments, and hypoxic tolerance was assessed with a standard gasp reflex assay. As expected, HPC induced an increase in tolerance time. To assess synaptic responses, Western blots were used to quantify protein levels of representative markers for glia, neuron, and synapse, and transmission electron microscopy was used to examine synaptic ultrastructure and mitochondrial density. HPC did not significantly alter the protein levels of astroglial marker (GFAP), neuron-specific markers (GAP43, Tuj-1, and OMP), synaptic number markers (synaptophysin and SNAP25) or the percentage of excitatory synapses versus inhibitory synapses. However, HPC significantly affected synaptic curvature and the percentage of synapses with presynaptic mitochondria, which showed concomitant change pattern. These findings demonstrate that HPC is associated with changes in synaptic ultrastructure. PMID:25155519

  20. Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells.

    PubMed

    Xian, Yan-Fang; Ip, Siu-Po; Mao, Qing-Qiu; Lin, Zhi-Xiu

    2016-07-01

    Beta-amyloid (Aβ) accumulation, one of the most important pathogenic traits of Alzheimer's disease (AD), has been reported to induce neurotoxicity in vitro as well as in vivo. Honokiol, isolated from the bark of Magnolia officinalis, has neuroprotective effects in different models of AD in vivo and in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of honokiol against Aβ1-42-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The results revealed that honokiol protected PC12 cells from Aβ1-42 induced cytotoxicity with increases in cell viability, GSH production and Bcl-2 expression, but decreases in the release of lactate dehydrogenase and cytochrome c, the amount of DNA fragmentation and MDA level, as well as Bax expression. Mechanistic study showed that honokiol could inhibit the activation of glycogen synthase kinase (GSK)-3β, attenuate the nuclear accumulation of β-catenin and suppress the phosphorylation of β-catenin (Ser33/Ser37/Thr41 site) in the Aβ1-42-treated PC12 cells. These results indicate that the anti-oxidative and anti-apoptotic effects of honokiol in Aβ1-42-treated PC12 cells may be mediated, at least in part, by regulation the GSK-3β and β-catenin signaling pathways. PMID:27131736

  1. Neuroprotective Effect of Gui Zhi (Ramulus Cinnamomi) on Ma Huang- (Herb Ephedra-) Induced Toxicity in Rats Treated with a Ma Huang-Gui Zhi Herb Pair

    PubMed Central

    Zheng, Fang-hao; Wei, Ping; Huo, Hui-ling; Xing, Xue-feng; Chen, Fei-long; Tan, Xiao-mei; Luo, Jia-bo

    2015-01-01

    Herb Ephedra (Ma Huang in Chinese) and Ramulus Cinnamomi (Gui Zhi in Chinese) are traditional Chinese herbs, often used together to treat asthma, nose and lung congestion, and fever with anhidrosis. Due to the adverse effects of ephedrine, clinical use of Ma Huang is restricted. However, Gui Zhi extract has been reported to decrease spontaneous activity in rats and exert anti-inflammatory and neuroprotective effects. The present study explored the possible inhibitory effect of Gui Zhi on Ma Huang-induced neurotoxicity in rats when the two herbs were used in combination. All Ma Huang and Ma Huang-Gui Zhi herb pair extracts were prepared using methods of traditional Chinese medicine and were normalized based on the ephedrine content. Two-month-old male Sprague-Dawley rats (n = 6 rats/group) were administered Ma Huang or the Ma Huang-Gui Zhi herb pair extracts for 7 days (ephedrine = 48 mg/kg), and locomotor activity was measured. After 7 days, oxidative damage in the prefrontal cortex was measured. Gui Zhi decreased hyperactivity and sensitization produced by repeated Ma Huang administration and attenuated oxidative stress induced by Ma Huang. The results of this study demonstrate the neuroprotective potential of Gui Zhi in Ma Huang-induced hyperactivity and oxidative damage in the prefrontal cortex of rats when used in combination. PMID:25691910

  2. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    PubMed Central

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases. PMID:25075574

  3. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation

    PubMed Central

    Gonzalez-Rey, Elena; Lachaud, Christian C.; Guilliams, Tim; Fernandez-Montesinos, Rafael; Benitez-Rondan, Alicia; Robledo, Gema; Hmadcha, Abdelkrim; Delgado, Mario; Dobson, Christopher M.; Pozo, David

    2013-01-01

    In recent years, it has become accepted that α-synuclein (αSyn) has a key role in the microglia-mediated neuroinflammation, which accompanies the development of Parkinson’s disease and other related disorders, such as Dementia with Lewy Bodies and Alzheimer’s disease. Nevertheless, the cellular and molecular mechanisms underlying its pathological actions, especially in the sporadic forms of the diseases, are not completely understood. Intriguingly, several epidemiological and animal model studies have revealed a link between certain microbial infections and the onset or progression of sporadic forms of these neurodegenerative disorders. In this work, we have characterized the effect of toll-like receptor (TLR) stimulation on primary murine microglial cultures and analysed the impact of priming cells with extracellular wild-type (Wt) αSyn on the subsequent TLR stimulation of cells with a set of TLR ligands. By assaying key interleukins and chemokines we report that specific stimuli, in particular Pam3Csk4 (Pam3) and single-stranded RNA40 (ssRNA), can differentially affect the TLR2/1- and TLR7-mediated responses of microglia when pre-conditioned with αSyn by augmenting IL-6, MCP-1/CCL2 or IP-10/CXCL10 secretion levels. Furthermore, we report a skewing of αSyn-primed microglia stimulated with ssRNA (TLR7) or Pam3 (TLR2/1) towards intermediate but at the same time differential, M1/M2 phenotypes. Finally, we show that the levels and intracellular location of activated caspase-3 protein change significantly in αSyn-primed microglia after stimulation with these particular TLR agonists. Overall, we report a remarkable impact of non-aggregated αSyn pre-sensitization of microglia on TLR-mediated immunity, a phenomenon that could contribute to triggering the onset of sporadic α-synuclein-related neuropathologies. PMID:24236103

  4. Neuroprotective properties of a protein kinase inhibitor against ischaemia-induced neuronal damage in rats and gerbils.

    PubMed Central

    Satoh, S.; Ikegaki, I.; Suzuki, Y.; Asano, T.; Shibuya, M.; Hidaka, H.

    1996-01-01

    1. The neuroprotective properties of fasudil (HA1077), a novel protein kinase inhibitor, were evaluated in two animal models of cerebral ischaemia: transient bilateral carotid artery occlusion in Mongolian gerbils and cerebral microembolization in rats. 2. The cytoprotective effect of fasudil on delayed neuronal death in gerbils was compared with the effects of nimodipine, a calcium channel antagonist and ozagrel, a thromboxane A2 synthetase inhibitor. The average of the neuronal cell density in the ischaemic control group was 17.8 +/- 2.1 cells mm-1, whereas fasudil (30 mg kg-1) significantly diminished the loss of CA1 neurones with the average of the neuronal cell density of 101.0 +/- 22.0 cells mm-1; nimodipine (10 mg kg-1) and ozagrel (30 mg kg-1) did not significantly protect against the ischaemia-induced neuronal loss. 3. In the rat model, the effects of fasudil on the histological and neurological consequences of cerebral microembolization produced via the injection of microspheres were examined. Twenty-four hours after the injection of microspheres into the internal carotid artery, all animals in the control group showed typical symptoms of stroke. Neurological function was significantly improved in the fasudil-treated animals. In the controls, the infarcted area in a cortical slice selected to include the hippocampal area was 0.25 +/- 0.01 cm2 (mean +/- s.e.mean) (43.9 +/- 2.4% of cortical section of the half hemisphere); the difference was significant compared to the mean area of 32.7 +/- 2.8 and 21.5 +/- 4.8% observed in rats treated with fasudil (3, 10 mg kg-1), respectively. Fasudil (10 mg kg-1) significantly suppressed the increased water content in ischaemic brain tissues (saline-treated rats, 82.4 +/- 0.2% vs fasudil-treated rats, 81.0 +/- 0.4%). 4. These results suggest that: (i) various protein kinases are involved in the pathogenesis of ischaemic injury; and (ii) the inhibition of protein kinases may be efficacious in preventing neuronal death

  5. Neuroprotective effects of vinpocetine and its major metabolite cis-apovincaminic acid on NMDA-induced neurotoxicity in a rat entorhinal cortex lesion model.

    PubMed

    Nyakas, Csaba; Felszeghy, Klára; Szabó, Róbert; Keijser, Jan N; Luiten, Paul G M; Szombathelyi, Zsolt; Tihanyi, Károly

    2009-01-01

    Vinpocetine (ethyl-apovincaminate, Cavinton), a synthetic derivative of the Vinca minor alkaloid vincamine, has been used now for decades for prevention and treatment of cerebrovascular diseases predisposing to development of dementia. Both vinpocetine and its main metabolite cis-apovincaminic acid (cAVA) exert a neuroprotective type of action. Bilateral N-methyl-D-aspartate (NMDA)-induced neurodegeneration in the entorhinal cortex of rat was used as a dementia model to confirm the neuroprotective action of these compounds in vivo. NMDA-lesioned rats were treated 60 min before lesion and throughout 3 postoperative days with a 10 mg/kg intraperitoneal dose of vinpocetine or cAVA. Behavioral tests started after termination of drug treatment and consisted of novel object recognition, social discrimination, and spontaneous alternation in a Y-maze, and spatial learning in the Morris water maze. At the end of behavioral testing brains were perfused with fixative and the size of the excitotoxic neuronal lesion and that of microglial activation around the lesion were assayed quantitatively on brain sections immunostained for neuron-specific nuclear protein (NeuN) and integrin CD11b, respectively. Entorhinal NMDA lesions impaired recognition of novel objects and the new social partner, and suppressed spontaneous alternation and spatial learning performance in the Morris maze. Both vinpocetine and cAVA effectively attenuated the behavioral deficits, and significantly decreased lesion size and the region of microglia activation. Both lesion-induced attention deficit and learning disabilities were markedly alleviated by vinpocetine and cAVA. The morphological findings corroborated the behavioral observations and indicated reduced lesion size and microglia activation especially after vinpocetine treatment which supports an in vivo neuroprotective mode of action of vinpocitine and a less potent action of cAVA. PMID:19492990

  6. Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection.

    PubMed

    Wu, Yuqiu; Kazumura, Kimiko; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2015-10-01

    Rasagiline and selegiline, inhibitors of type B monoamine oxidase (MAO-B), protect neurons from cell death in cellular and animal models. Suppression of mitochondrial membrane permeabilization and subsequent activation of apoptosis cascade, and induction of anti-apoptotic, pro-survival genes are proposed to contribute the anti-apoptotic function. Rasagiline suppresses neurotoxin- and oxidative stress-induced membrane permeabilization in isolated mitochondria, but the mechanism has been not fully clarified. In this paper, regulation of the mitochondrial permeability transition pore by rasagiline and selegiline was examined in apoptosis induced by PK11195, a ligand of the outer membrane translocator protein 18 kDa (TSPO) in SH-SY5Y cells. The pore opening was quantitatively measured using a simultaneous monitoring system for calcium (Ca(2+)) and superoxide (O2(-)) (Ishibashi et al. in Biochem Biophys Res Commun 344:571-580, 2006). The association of the pore opening with Ca(2+) efflux and ROS increase was proved by the inhibition of Bcl-2 overexpression and cyclosporine A treatment. Potency to release Ca(2+) was correlated with the cytotoxicity of TSPO antagonists, PK11195, FGIN-1-27 and protoporphyrin IX, whereas a TSPO agonist, 4-chloro-diazepamine, did not significantly increase Ca(2+) or cause cell death. Rasagiline and selegiline inhibited mitochondrial Ca(2+) efflux through the mitochondrial permeability transition pore dose dependently. Ca(2+) efflux was confirmed as the initial signal in mitochondrial apoptotic cascade, and the suppression of Ca(2+) efflux may account for the neuroprotective function of rasagiline and selegiline. The quantitative measurement of Ca(2+) efflux can be applied to determine anti-apoptotic activity of neuroprotective compounds. The role of mitochondrial Ca(2+) release in neuronal death and also in neuroprotection by MAO-B inhibitors is discussed. PMID:25863936

  7. Prokineticins are neuroprotective in models of cerebral ischemia and ischemic tolerance in vitro.

    PubMed

    Landucci, Elisa; Lattanzi, Roberta; Gerace, Elisabetta; Scartabelli, Tania; Balboni, Gianfranco; Negri, Lucia; Pellegrini-Giampietro, Domenico E

    2016-09-01

    Bv8/prokineticin 2 (PK2) is a member of a bioactive family of peptides that regulate multiple functions in the CNS including hyperalgesia, neurogenesis, neuronal survival and inflammation. Recent studies have associated PK2 and prokineticin receptors (PKR) with human diseases, but because their role in neuropathology is still debated we examined whether prokineticins exert a protective or deleterious role in models of cerebral ischemia and ischemic tolerance in vitro. In order to mimic cerebral ischemia, we exposed primary murine cortical cell cultures or rat organotypic hippocampal slices to appropriate periods of oxygen-glucose deprivation (OGD), which leads to neuronal damage 24 h later. Ischemic tolerance was induced by exposing hippocampal slices to a preconditioning subtoxic pharmacological stimulus (3 μM NMDA for 1 h) 24 h before the exposure to OGD. Bv8 (10-100 nM) attenuated OGD injury in cortical cultures and hippocampal slices, and the effect was prevented by the PKR antagonist PC7. The development of OGD tolerance was associated with an increase in the expression of PK2, PKR1 and PKR2 mRNA and proteins and was prevented by addition of the antagonist PC7 into the medium during preconditioning. Both Bv8 at protective concentrations and the NMDA preconditioning stimulus promoted the phosphorylation of ERK1/2 and Akt. These findings indicate that the prokineticin system can be up-regulated by a defensive preconditioning subtoxic NMDA stimulus and that PK2 may act as an endogenous neuroprotective factor through the activation of the ERK1/2 and Akt transduction pathways. PMID:27140692

  8. Presenilin 1 promotes trypsin-induced neuroprotection via the PAR2/ERK signaling pathway. Effects of presenilin 1 FAD mutations.

    PubMed

    Nikolakopoulou, Angeliki M; Georgakopoulos, Anastasios; Robakis, Nikolaos K

    2016-06-01

    Mutants of presenilin 1 (PS1) increase neuronal cell death causing autosomal-dominant familial Alzheimer's disease (FAD). Recent literature shows that treatment of neuronal cultures with low concentrations of trypsin, a member of the serine family of proteases, protects neurons from toxic insults by binding to the proteinase-activated receptor 2 and stimulating survival kinase extracellular signal-regulated kinase (ERK 1/2). Other studies show that PS1 is necessary for the neuroprotective activity of specific neurotrophic factors, such as brain-derived neurotrophic factor, against excitotoxicity and oxidative stress. Here, we show that treatment of mouse cortical neuronal cultures with trypsin activates ERK1/2 and protects neurons against glutamate excitoxicity. The trypsin-dependent ERK activation and neuroprotection requires both alleles of PS1 because neither PS1 knockout nor PS1 hemizygous neuronal cultures can use exogenous trypsin to activate ERK1/2 or increase neuronal survival. The protective effect of PS1 does not depend on its γ-secretase activity because inhibitors of γ-secretase have no effect on trypsin-mediated neuroprotection. Importantly, cortical neuronal cultures either heterozygous or homozygous for PS1 FAD mutants are unable to use trypsin to activate ERK1/2 and rescue neurons from excitotoxicity, indicating that FAD mutants inhibit trypsin-dependent neuroprotection in an autosomal-dominant manner. Furthermore, our data support the theory that PS FAD mutants increase neurodegeneration by inhibiting the ability of neurons to use cellular factors as protective agents against toxic insults. PMID:27143420

  9. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β

    PubMed Central

    Ma, Yulong; Guo, Hang; Zhang, Lixia; Tao, Liang; Yin, Anqi; Liu, Zhaoyu; Li, Yan; Dong, Hailong; Xiong, Lize; Hou, Wugang

    2016-01-01

    The incidence of ischemic stroke is significantly increased in postmenopausal women. However, the neuroprotective effects of estrogen replacement therapy (ERT) against stroke remain controversial, and the role of astrocytes in ERT has rarely been explored. In this study, we investigated the effects of estrogen and selective estrogen receptor (ER) agonists on astrocytes activation and neuronal apoptosis in mice under conditions of cell culture oxygen and glucose deprivation and reperfusion (OGD-R), and global cerebral ischemia (GCI). We demonstrated that hippocampal astrocytes primarily express ERβ. In astrocytes, 2.5–20 nM 17β-estradiol (E2) or 10 nM DPN (ERβ agonist) not 10 nM PPT (ERα agonist), significantly increased GFAP expression. And 10 nM E2, DPN or E2+MPP (ERα antagonist), but not PPT or E2+PHTPP (ERβ antagonist), significantly reduced neuronal apoptosis following the subjection of astrocyte and neuronal cocultures to OGD-R. We also found that either 50 μg/kg E2 or 8 mg/kg DPN replacement (3 weeks) significantly increased GFAP expression and reduced GCI-induced neuronal apoptosis in hippocampal CA1 region of ovariectomized mice. These results indicate that estrogen-induced neuroprotection against ischemia-reperfusion injury involves activation of astrocytes via ERβ. Thus, the discovery and design of astrocyte-selective ERβ modulators may offer a new strategy for ERT of ischemic stroke. PMID:26891996

  10. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation.

    PubMed

    Chanana, Priyanka; Kumar, Anil

    2016-04-01

    Sleep deprivation (SD) is an experience of inadequate or poor quality of sleep that may produce significant alterations in multiple neural systems. Centella asiatica (CA) is a psychoactive medicinal herb with immense therapeutic potential. The present study was designed to explore the possible nitric oxide (NO) modulatory mechanism in the neuroprotective effect of CA against SD induced anxiety like behaviour, oxidative damage and neuroinflammation. Male laca mice were sleep deprived for 72 h, and CA (150 and 300 mg/kg) was administered alone and in combination with NO modulators for 8 days, starting five days before 72-h SD exposure. Various behavioural (locomotor activity, elevated plus maze) and biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels and superoxide dismutase activity), neuroinflammation marker (TNF-alpha) were assessed subsequently. CA (150 and 300 mg/kg) treatment for 8 days significantly improved locomotor activity, anti-anxiety like effect and attenuated oxidative damage and TNF α level as compared to sleep-deprived 72-h group. Also while the neuroprotective effect of CA was increased by NO antagonists, it was diminished by NO agonists. The present study suggests that NO modulatory mechanism could be involved in the protective effect of CA against SD-induced anxiety-like behaviour, oxidative damage and neuroinflammation in mice. PMID:26848139

  11. Comparison of Neuroprotective Effects of Melissa officinalis Total Extract and Its Acidic and Non-Acidic Fractions against A β-Induced Toxicity

    PubMed Central

    Sepand, Mohammad Reza; Soodi, Maliheh; Hajimehdipoor, Homa; Soleimani, Masoud; Sahraei, Ehsan

    2013-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease that was characterized with deposit of beta amyloid (Aβ) aggregate in senile plaque. Oxidative damage to neurons and loss of cholinergic neurons in forebrain region are observed in this disease. Melissa officinalis is a medicinal plant from Lamiaceae family, used traditionally in the treatment of cognitive disorders. It has cholinomimetic and potent antioxidant activity. In the present study, we investigated the possible neuroprotective effects of total ethanolic extract, acidic and nonacidic fraction of Melissa officinalis on Aβ-induced cytotoxicity and oxidative stress in PC12 cells and also measured their in-vitro anticholinesterase activity. PC12 cells were incubated with the extract and fractions prior to the incubation with Aβ and cell toxicity was assessed by MTT assay. In addition, productions of reactive oxygen species (ROS), Malondialdehyde (MDA) as a biomarker of lipid peroxidation and glutathione peroxidase activity were measured. Pretreatment of cells with total extract and acidic fraction (not non-acidic fraction) had protective effect against Aβ-induced oxidative changes and cell death. In concentrations in which both total extracts of an acidic fraction showed neuroprotective effects, inhibition of cholinesterase activity was not significant. Then, the protective effects of Melissa officinalis total extract and acidic fraction were not attributed to their anticholinesterase activity. Acidic fraction showed more potent protective effect compared to the total extract, leading to the fact that polyphenolic compounds and terpenoic acids are the most effective components in the total extract concentrated in this fraction. PMID:24250617

  12. Dose-dependent neuroprotective effect of caffeine on a rotenone-induced rat model of parkinsonism: A histological study.

    PubMed

    Soliman, Amira M; Fathalla, Ahmed M; Moustafa, Ahmed A

    2016-06-01

    Several lines of evidence have demonstrated an inverse relationship between caffeine utilization and Parkinson's disease (PD) progression. Caffeine is a methylxanthine known as a non-specific inhibitor of adenosine (A2A and A1) receptors in the cerebrum and demonstrated to be a neuroprotective medication. In this study, the neuroprotective efficacy of two different doses of caffeine ranging above the usual consumption dose and below the toxic dose was investigated using histopathological and immunohistochemical methods. Thirty-two male rats were randomly divided into 4 groups, with 8 in each group: vehicle control (1ml/kg/48h for 12 days), rotenone (1.5mg/kg/48h, s.c. for 12 days), low-dose Caffeine-treated: (10mg/kg IP. daily for 12 days), high-dose Caffeine-treated (20mg IP daily for 12 days). Twenty-four hours after the last rotenone injection, animals were sacrificed and brains were sectioned and prepared for histopathological staining with hematoxylinand eosin, cresyl violet and Mallory's phosphotungestic acid haematoxylinand for immunohistochemical staining of tyrosine hydroxylase. Our study showed that the treatment with caffeine improved histopathological degeneration in the substantia nigra parts compacta (SNpc) neurons and hindered the reduction in dopamine concentration caused by rotenone. We also found that a higher dose of caffeine was more effective against histopathological degeneration. These results suggest that caffeine has a dose-dependent neuroprotective effect. PMID:27132082

  13. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat.

    PubMed

    Nazıroğlu, Mustafa; Senol, Nilgün; Ghazizadeh, Vahid; Yürüker, Vehbi

    2014-08-01

    Neurodegeneration associated with acute central nervous system injuries and diseases such as spinal cord injury and traumatic brain injury (TBI) are reported to be mediated by the regulation of apoptosis and oxidative stress through Ca(2+) influx. The thiol redox system antioxidants, such as N-acetylcysteine (NAC) and selenium (Se), display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. However, there are no reports on hippocampal apoptosis, cytosolic reactive oxygen species (ROS), or Ca(2+) values in rats with an induced TBI. Therefore, we tested the effects of Se and NAC administration on apoptosis, oxidative stress, and Ca(2+) influx through TRPV1 channel activations in the hippocampus of TBI-induced rats. The 32 rats were divided into four groups: control, TBI, TBI + NAC, and TBI + Se groups. Intraperitoneal administrations of NAC and Se were performed at 1, 24, 48, and 72 h after TBI induction. After 3 days, the hippocampal neurons were freshly isolated from the rats. In cytosolic-free Ca(2+) analyses, the neurons were stimulated with the TRPV1 channel agonist capsaicin, a pungent compound found in hot chili peppers. Cytosolic-free Ca(2+), apoptosis, cytosolic ROS levels, and caspase-3 and -9 activities were higher in the TBI group than control. The values in the hippocampus were decreased by Se and NAC administrations. In conclusion, we observed that NAC and Se have protective effects on oxidative stress, apoptosis, and Ca(2+) entry via TRPV1 channel activation in the hippocampus of this TBI model, but the effect of NAC appears to be much greater than that of Se. They are both interesting candidates for studying the amelioration of TBIs. PMID:24842665

  14. Exercise preconditioning reduces neonatal incision surgery-induced enhanced hyperalgesia via inhibition of P38 mitogen-activated protein kinase and IL-1β, TNF-α release.

    PubMed

    Gong, Xingrui; Jiang, Jing; Zhang, Mazhong

    2016-08-01

    Neonatal surgery leads to enhanced hyperalgesia to noxious stimulation in adulthood via a mechanism caused by enhanced phosphorylated (p)-p38 expression in microglia. We tested the effect of exercise on reducing enhanced hypersensitivity primed by neonatal incision surgery. Adult female Wistar rats, with or without neonatal incision surgery at postnatal day (P) 3, received right hind paw plantar incision surgery under anesthesia at P44. The rats performed wheel-running exercise from P22 to P41. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured and ipsilateral spinal cords were collected for protein quantification. For PWT and PWL, exercise reduced the pain index after incision surgery at P44 in rats with neonatal surgery (P<0.01). Western blots showed that exercise suppressed P-p38 expression relative to adult rats without neonatal surgery (P<0.05). Results of ELISA showed that exercise reduced IL-1β and TNF-α (P<0.05) concentration in the ipsilateral spinal cord. Exercise preconditioning is an effective approach to reducing enhanced adult hyperalgesia primed by neonatal surgery. The mechanism may be explained by exercise-induced inhibition of P-p38 activation and IL-1β, TNF-α release. PMID:27235543

  15. Short-term preconditioning enhances the therapeutic potential of adipose-derived stromal/stem cell-conditioned medium in cisplatin-induced acute kidney injury.

    PubMed

    Overath, Jürgen M; Gauer, Stefan; Obermüller, Nicholas; Schubert, Ralf; Schäfer, Richard; Geiger, Helmut; Baer, Patrick C

    2016-03-15

    The development of new strategies to preserve renal function after acute kidney injury (AKI) is necessary due to limited clinical intervention options. The organ-protective effects of mesenchymal stromal/stem cells (MSCs) and their conditioned medium (CM) have been investigated demonstrating that both separately promoted tubular recovery and ameliorated the outcome of AKI. Nevertheless, strategies to optimise the regenerative potential of both are highly needed. Here we investigated the effects of CM from adipose-derived MSCs (ASCs) preincubated in a hypoxic environment (Hyp). Protective factors were investigated by PCR analysis and a protein array in vitro. The expression of 64 of the 308 proteins assayed was found to be more than two-fold increased after Hyp. CM of Hyp-pretreated ASCs (pCM) was used to enhance regeneration in a mouse model of cisplatin-induced AKI (cisAKI). Renal function was assessed by measurements of markers for AKI and serum cytokine levels. The pCM significantly ameliorated serum creatinine and neutrophil gelatinase-associated lipocalin values, and also the levels of inflammatory cytokines IL-1β and IL-6 in the serum of mice with AKI. Our work clearly showed that a Hyp preconditioning significantly increases the release of protective factors in ASCs and enhances the therapeutic effects of CM in cisAKI in mice. PMID:26992633

  16. Hyperbaric Oxygen Preconditioning Induces Tolerance against Oxidative Injury and Oxygen-Glucose Deprivation by Up-Regulating Heat Shock Protein 32 in Rat Spinal Neurons

    PubMed Central

    Xu, Li; Wang, Shifeng; Li, Runping; Liu, Kan; Zheng, Juan; Cai, Zhiyu; Zhang, Kun; Luo, Yuandeng; Xu, Weigang

    2014-01-01

    Objective Hyperbaric oxygen (HBO) preconditioning (HBO-PC) has been testified to have protective effects on spinal cord injury (SCI). However, the mechanisms remain enigmatic. The present study aimed to explore the effects of HBO-PC on primary rat spinal neurons against oxidative injury and oxygen-glucose deprivation (OGD) and the relationship with heat shock proteins (HSPs). Methods Primary rat spinal neurons after 7 days of culture were used in this study. HSPs were detected in rat spinal neurons following a single exposure to HBO at different time points by Western blot. Using lactate dehydrogenase release assay and cell counting kit-8 assay, the injuries induced by hydrogen peroxide (H2O2) insult or OGD were determined and compared among neurons treated with HBO-PC with or without HSP inhibitors. Results The results of Western blot showed that HSP27, HSP70 and HSP90 have a slight but not significant increase in primary neurons following HBO exposure. However, HSP32 expression significantly increased and reached highest at 12 h following HBO exposure. HBO-PC significantly increased the cell viability and decreased the medium lactate dehydrogenase content in cultures treated with H2O2 or OGD. Pretreatment with zinc protoporphyrin IX, a specific inhibitor of HSP32, significantly blocked the protective effects of HBO-PC. Conclusions These results suggest that HBO-PC could protect rat spinal neurons in vitro against oxidative injury and OGD mostly by up-regulating of HSP32 expression. PMID:24465817

  17. Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/Bcl-2 Ratio and Prevention of Caspase-3 Activation

    PubMed Central

    Aboutaleb, Nahid; Shamsaei, Nabi; Rajabi, Hamid; Khaksari, Mehdi; Erfani, Sohaila; Nikbakht, Farnaz; Motamedi, Pezhman; Shahbazi, Ali

    2016-01-01

    Introduction: Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Methods: Male rats weighing 260–300 g were randomly allocated into three groups (sham, exercise, and ischemia). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCAs) for 20 min. Levels of expression of Bax, Bcl-2, and caspase-3 proteins in CA1 area of hippocampus were determined by immunohistochemical staining . Results: The number of active caspase-3-positive neurons in CA1 area were significantly increased in ischemia group, compared to sham-operated group (P<0.001), and exercise preconditioning significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P<0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in ischemia group, compared to sham-operated group (P<0.001). Discussion: This study indicated that exercise has a neuroprotective effects against cerebral ischemia when used as preconditioning stimuli. PMID:27303596

  18. Neuroprotection of (+)-2-(1-Hydroxyl-4-Oxocyclohexyl) Ethyl Caffeate Against Hydrogen Peroxide and Lipopolysaccharide Induced Injury via Modulating Arachidonic Acid Network and p38-MAPK Signaling.

    PubMed

    Shen, Jiao-Ning; Xu, Liu-Xin; Shan, Lei; Zhang, Wei-Dong; Li, Hong-Lin; Wang, Rui

    2015-01-01

    Oxidative stress and neuroinflammation are highly relevant to the pathological processes of various neurodegenerative diseases including Alzheimer's disease (AD). (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a novel 5-lipoxygenase inhibitor, was isolated from the whole plant of Incarvillea mairei var granditlora (Wehrhahn) Grierson. In this study, we investigated the protective effect of HOEC on hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) -induced cytotoxicity and neuroinflammation in vitro and in vivo. MTT assay, LDH release assay, morphological observation and Hoechst 33342/PI dual staining followed by EIA, immunofluorescence staining and Western Blotting analysis were performed to elucidate the neuroprotective effect of HOEC. Treatment with HOEC at various concentrations prior to H2O2 exposure significantly enhanced cell viability, decreased LDH release, prevented cell morphologic changes and apoptosis. Instead of PGE2 reduction, HOEC markedly inhibited the production of LTB4 and suppressed the macrophage-mediated neurotoxicity. Western blotting and immunofluorescence staining showed that HOEC inhibited H2O2-induced p38 phosphorylation and NF-κB activation. Neuroprotective effect of HOEC was abolished by a p38 inhibitor. Further in vivo studies of LPS-induced neuroinflammation confirmed the anti-inflammatory effects of HOEC. These findings that HOEC protects SH-SY5Y cells from H2O2 and LPS-induced injury via arachidonic acid network modulation followed by p38 MAPK and NF-κB signaling, might make HOEC be considered as a therapeutic candidate for prevention and treatment of neurodegenerative diseases involving oxidative stress or/and inflammation. PMID:26510982

  19. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (ESTSC)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  20. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways

    PubMed Central

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  1. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways.

    PubMed

    Zhu, Huili; Zhang, Yusheng; Shi, Zhongshan; Lu, Dan; Li, Tingting; Ding, Yan; Ruan, Yiwen; Xu, Anding

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia. PMID:27240461

  2. Neuroprotective Effects of Methyl 3,4-Dihydroxybenzoate against TBHP-Induced Oxidative Damage in SH-SY5Y Cells.

    PubMed

    Cai, Liang; Wang, Li-Fang; Pan, Jun-Ping; Mi, Xiang-Nan; Zhang, Zheng; Geng, Hai-Ju; Wang, Jia-Hui; Hu, Song-Hui; Zhang, Wei; Gao, Qin; Wu, Wu-Tian; Luo, Huan-Min

    2016-01-01

    This study investigated the neuroprotective effects of methyl 3,4-dihydroxybenzoate (MDHB) against t-butyl hydroperoxide (TBHP) induced oxidative damage in SH-SY5Y (human neuroblastoma cells) and the underlying mechanisms. SH-SY5Y were cultured in DMEM + 10% FBS for 24 h and pretreated with different concentrations of MDHB or N-acetyl-l-cysteine (NAC) for 4 h prior to the addition of 40 μM TBHP for 24 h. Cell viability was analyzed using the methylthiazolyltetrazolium (MTT) and lactate dehydrogenase (LDH) assays. An annexin V-FITC assay was used to detect cell apoptosis rates. The 2',7'-dichlorofluorescin diacetate (DCFH-DA) assay was used to determine intracellular ROS levels. The activities of antioxidative enzymes (GSH-Px and SOD) were measured using commercially available kits. The oxidative DNA damage marker 8-OHdG was detected using ELISA. Western blotting was used to determine the expression of Bcl-2, Bax, caspase 3, p-Akt and Akt proteins in treated SH-SY5Y cells. Our results showed that MDHB is an effective neuroprotective compound that can mitigate oxidative stress and inhibit apoptosis in SH-SY5Y cells. PMID:27556437

  3. Oxygen sensors and energy sensors act synergistically to achieve a graded alteration in gene expression: consequences for assessing the level of neuroprotection in response to stressors.

    PubMed

    Renshaw, Gillian M C; Warburton, Joshua; Girjes, Adeeb

    2004-01-01

    Changes in gene expression are associated with switching to an autoprotected phenotype in response to environmental and physiological stress. Ubiquitous molecular chaperones from the heat shock protein (HSP) superfamily confer neuronal protection that can be blocked by antibodies. Recent research has focused on the interactions between the molecular sensors that affect the increased expression of neuroprotective HSPs above constitutive levels. An examination of the conditions under which the expression of heat shock protein 70 (Hsp70) was up regulated in a hypoxia and anoxia tolerant tropical species, the epaulette shark (Hemiscyllium ocellatum), revealed that up-regulation was dependent on exceeding a stimulus threshold for an oxidative stressor. While hypoxic-preconditioning confers neuroprotective changes, there was no increase in the level of Hsp70 indicating that its increased expression was not associated with achieving a neuroprotected state in response to hypoxia in the epaulette shark. Conversely, there was a significant increase in Hsp70 in response to anoxic-preconditioning, highlighting the presence of a stimulus threshold barrier and raising the possibility that, in this species, Hsp70 contributes to the neuroprotective response to extreme crises, such as oxidative stress. Interestingly, there was a synergistic effect of coincident stressors on Hsp70 expression, which was revealed when metabolic stress was superimposed upon oxidative stress. Brain energy charge was significantly lower when adenosine receptor blockade, provided by treatment with aminophylline, was present prior to the final anoxic episode, under these circumstances, the level of Hsp70 induced was significantly higher than in the pair-matched saline treated controls. An understanding of the molecular and metabolic basis for neuroprotective switches, which result in an up-regulation of neuroprotective Hsp70 expression in the brain, is needed so that intervention strategies can be devised

  4. Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis.

    PubMed

    Benedek, Gil; Zhang, Jun; Bodhankar, Sheetal; Nguyen, Ha; Kent, Gail; Jordan, Kelley; Manning, Dustin; Vandenbark, Arthur A; Offner, Halina

    2016-04-15

    Sex hormones promote immunoregulatory effects on multiple sclerosis. The current study evaluated estrogen effects on regulatory B cells and resident CNS microglia during experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate an estrogen-dependent induction of multiple regulatory B cell markers indicative of IL-10 dependent as well as IFN-γ dependent pathways. Moreover, although estrogen pretreatment of EAE mice inhibited the infiltration of pro-inflammatory cells into the CNS, it enhanced the frequency of regulatory B cells and M2 microglia. Our study suggests that estrogen has a broad effect on the development of regulatory B cells during EAE, which in turn could promote neuroprotection. PMID:27049561

  5. Zinc finger protein 667 expression is upregulated by cerebral ischemic preconditioning and protects cells from oxidative stress

    PubMed Central

    YUAN, DUN; HUANG, JUN; YUAN, XIANRUI; ZHAO, JIE; JIANG, WEIXI

    2013-01-01

    Brain ischemic injury is associated with clinical emergencies such as acute ischemic and hemorrhagic stroke, head trauma, prolonged severe hypotension and cardiac arrest. Ischemic preconditioning (IPC) is the most powerful endogenous mechanism against ischemic injury. However, the majority of IPC treatments are invasive and thus impractical in the clinical setting. Identifying the endogenous neuroprotective mechanism induced by IPC is important for developing new strategies to reduce stroke severity. Zinc finger protein 667 (ZNF667) is a novel zinc finger protein that is upregulated by myocardial IPC. However, its functional role in neuronal ischemia has not been elucidated. In this study, the changes of ZNF667 expression on cerebral IPC and its potential neuroprotective function were investigated. The cerebral ischemia model was established by ameliorated four-vessel occlusion in rats. The northern blot results demonstrated that ZNF667 expression was increased in the hippocampus and cortex at 12 and 24 h after cerebral ischemic pretreatment. To investigate the neuroprotective function of ZNF667, enhanced green fluorescent protein (EGFP)-ZNF667 fusion protein was expressed in C2C12 and brain astrocytoma cells and its subcellular localization was detected by confocal microscopy. EGFP-ZNF667 fusion proteins were localized in the nucleus of C2C12 and brain astrocytoma cells, indicating that ZNF667 may act as a transcription factor in neural cells. To mimic oxidative stress associated with ischemia/reperfusion injury, hydrogen peroxide (H2O2) was used to treat cells. Cell viability was measured by the lactate dehydrogenase (LDH) and WST-1 assays. A decrease in viability was detected in C2C12 and astrocytoma cells following H2O2 treatment, whereas ZNF667 gene overexpression significantly improved cell viability following H2O2 treatment. These results suggested that ZNF667 plays a neuroprotective role by acting as a transcription factor in cerebral IPC. PMID:24648981

  6. Neuroprotective effects of the Phellinus linteus ethyl acetate extract against H2O2-induced apoptotic cell death of SK-N-MC cells.

    PubMed

    Choi, Doo Jin; Cho, Sarang; Seo, Jeong Yeon; Lee, Hyang Burm; Park, Yong Il

    2016-01-01

    Numerous studies have suggested that neuronal cells are protected against oxidative stress-induced cell damage by antioxidants, such as polyphenolic compounds. Phellinus linteus (PL) has traditionally been used to treat various symptoms in East Asian countries. In the present study, we prepared an ethyl acetate extract from the fruiting bodies of PL (PLEA) using hot water extraction, ethanol precipitation, and ethyl acetate extraction. The PLEA contained polyphenols as its major chemical component, and thus, we predicted that it may exhibit antioxidant and neuroprotective effects against oxidative stress. The results showed that the pretreatment of human brain neuroblastoma SK-N-MC cells with the PLEA (0.1-5 μg/mL) significantly and dose-dependently reduced the cytotoxicity of H2O2 and the intracellular ROS levels and enhanced the expression of HO-1 (heme oxygenase-1) and antioxidant enzymes, such as CAT (catalase), GPx-1 (glutathione peroxidase-1), and SOD-1 and -2 (superoxide dismutase-1 and -2). The PLEA also directly scavenged free radicals. PLEA pretreatment also significantly attenuated DNA fragmentation and suppressed the mRNA expression and activation of mitogen-activated protein kinases extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 kinase, which are induced by oxidative stress and lead to cell death. PLEA pretreatment inhibited the activation of the apoptosis-related proteins caspase-3 and poly (ADP-ribose) polymerase. These results demonstrate that the PLEA has neuroprotective effects against oxidative stress (H2O2)-induced neuronal cell death via its antioxidant and anti-apoptotic properties. PLEA should be investigated in an in vivo model on its potential to prevent or ameliorate neurodegenerative disease. PMID:26773779

  7. Upstream signaling of protein kinase C-epsilon in xenon-induced pharmacological preconditioning. Implication of mitochondrial adenosine triphosphate dependent potassium channels and phosphatidylinositol-dependent kinase-1.

    PubMed

    Weber, Nina C; Toma, Octavian; Damla, Halil; Wolter, Jessica I; Schlack, Wolfgang; Preckel, Benedikt

    2006-06-01

    Xenon elicits preconditioning of the myocardium via protein kinase C-epsilon. We determined the implication of (1) the mitochondrial adenosinetriphosphate dependent potassium (K(ATP)) channels and (2) the 3'phosphatidylinositol-dependent kinase-1 (PDK-1) in activating protein kinase C-epsilon. For infarct size measurements, anaesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received xenon 70% during three 5-min periods before ischaemia with or without the K(ATP) channel blocker 5-hydroxydecanoate or Wortmannin as PI3K/PDK-1 inhibitor. For Western blot, hearts were excised at five time points after xenon preconditioning (Control, 15, 25, 35, 45 min). Infarct size was reduced from 42+/-6% (mean+/-S.D.) to 27+/-8% after xenon preconditioning (P<0.05). Western blot revealed an increased activation of PKC-epsilon after 45 min and of PDK-1 after 25 min during xenon preconditioning. 5-hydroxydecanoate and Wortmannin blocked both effects. PKC-epsilon is activated downstream of mitochondrial K(ATP) channels and PDK-1. Both pathways are functionally involved in xenon preconditioning. PMID:16716295

  8. Hyperbaric oxygen preconditioning protects the lung against acute pancreatitis induced injury via attenuating inflammation and oxidative stress in a nitric oxide dependent manner.

    PubMed

    Yu, Qi-Hong; Zhang, Pei-Xi; Liu, Ying; Liu, Wenwu; Yin, Na

    2016-09-01

    This study aimed to investigate the protective effects of hyperbaric oxygen preconditioning (HBO-PC) on acute pancreatitis AP associated acute lung injury (ALI) and the potential mechanisms. Rats were randomly divided into sham group, AP group, HBO-PC + AP group and HBO-PC + L-NAME group. Rats in HBO-PC + AP group received HBO-PC once daily for 3 days, and AP was introduced 24 h after last HBO-PC. In HBO-PC + L-NAME group, L-NAME (40 mg/kg) was intraperitoneally injected before each HBO-PC. At 24 h after AP, the blood lipase and amylase activities were measured; the lung and pancreas were harvested for pathological examination; the bronchoalveolar lavage fluid was collected for the detection of lactate dehydrogenase (LDH) and proteins; inflammatory factors, superoxide dismutase (SOD) activity and malonaldehyde content were measured in the lung and blood; the Nrf2, SOD-1 and haem oxygenase-1 (HO-1) protein expression was measured in the lung. The lung nitric oxide (NO) and NO synthase activity increased significantly after HBO-PC. HBO-PC was able to reduce blood lipase and amylase activities, improve lung and pancreatic pathology, decrease LDH and proteins in BALF, inhibit the production of inflammatory factors, reduce malonaldehyde content and increase SOD activity in the lung and blood as well as increase protein expression of Nrf2, SOD-1 and HO-1 in the lung. However, L-NAME before HBO-PC significantly attenuated protective effects of HBO-PC. HBO-PC is able to protect the lung against AP induced injury by attenuating inflammation and oxidative stress in the lung via a NO dependent manner. PMID:27453338

  9. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity; a novel candidate for HIV-neuroprotection1

    PubMed Central

    Cross, Stephanie A.; Cook, Denise R.; Chi, Anthony W.S.; Vance, Patricia J.; Kolson, Lorraine L.; Wong, Bethany J.; Jordan-Sciutto, Kelly L.; Kolson, Dennis L.

    2011-01-01

    Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the central nervous system (CNS) and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV infected monocyte-derived macrophages (MDM) release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected MDM reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed; inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals. PMID:21976775

  10. Neuroprotective properties of marrow-isolated adult multilineage-inducible cells in rat hippocampus following global cerebral ischemia are enhanced when complexed to biomimetic microcarriers.

    PubMed

    Garbayo, Elisa; Raval, Ami P; Curtis, Kevin M; Della-Morte, David; Gomez, Lourdes A; D'Ippolito, Gianluca; Reiner, Teresita; Perez-Stable, Carlos; Howard, Guy A; Perez-Pinzon, Miguel A; Montero-Menei, Claudia N; Schiller, Paul C

    2011-12-01

    Cell-based therapies for global cerebral ischemia represent promising approaches for neuronal damage prevention and tissue repair promotion. We examined the potential of marrow-isolated adult multilineage-inducible (MIAMI) cells, a homogeneous subpopulation of immature human mesenchymal stromal cell, injected into the hippocampus to prevent neuronal damage induced by global ischemia using rat organotypic hippocampal slices exposed to oxygen-glucose deprivation and rats subjected to asphyxial cardiac arrest. We next examined the value of combining fibronectin-coated biomimetic microcarriers (FN-BMMs) with epidermal growth factor (EGF)/basic fibroblast growth factor (bFGF) pre-treated MIAMI compared to EGF/bFGF pre-treated MIAMI cells alone, for their in vitro and in vivo neuroprotective capacity. Naïve and EGF/bFGF pre-treated MIAMI cells significantly protected the Cornu Ammonis layer 1 (CA1) against ischemic death in hippocampal slices and increased CA1 survival in rats. MIAMI cells therapeutic value was significantly increased when delivering the cells complexed with FN-BMMs, probably by increasing stem cell survival and paracrine secretion of pro-survival and/or anti-inflammatory molecules as concluded from survival, differentiation and gene expression analysis. Four days after oxygen and glucose deprivation and asphyxial cardiac arrest, few transplanted cells administered alone survived in the brain whereas stem cell survival improved when injected complexed with FN-BMMs. Interestingly, a large fraction of the transplanted cells administered alone or in complexes expressed βIII-tubulin suggesting that partial neuronal transdifferentiation may be a contributing factor to the neuroprotective mechanism of MIAMI cells. PMID:21496021

  11. NEUROPROTECTIVE PROPERTIES OF MARROW-ISOLATED ADULT MULTILINEAGE INDUCIBLE CELLS IN RAT HIPPOCAMPUS FOLLOWING GLOBAL CEREBRAL ISCHEMIA ARE ENHANCED WHEN COMPLEXED TO BIOMIMETIC MICROCARRIERS

    PubMed Central

    Garbayo, E.; Raval, A.P.; Curtis, K.M.; Della-Morte, D.; Gomez, L.A.; D'Ippolito, G.; Reiner, T.; Perez-Stable, C.; Howard, G.A.; Perez-Pinzon, M.A.; Montero-Menei, C.N.; Schiller, P.C.

    2015-01-01

    Cell-based therapies for global cerebral ischemia represent promising approaches for neuronal damage prevention and tissue repair promotion. We examined the potential of Marrow-Isolated Adult Multilineage Inducible (MIAMI) cells, a homogeneous subpopulation of immature human mesenchymal stromal cell, injected into the hippocampus to prevent neuronal damage induced by global ischemia using rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD) and rats subjected to asphyxial cardiac arrest (ACA). We next examined the value of combining fibronectin-coated biomimetic microcarriers (FN-BMMs) with EGF/bFGF pre-treated MIAMI compared to EGF/bFGF pre-treated MIAMI cells alone, for their in vitro and in vivo neuroprotective capacity. Naïve and EGF/bFGF pre-treated MIAMI cells significantly protected the Cornu Ammonis layer 1 (CA1) against ischemic death in hippocampal slices and increased CA1 survival in rats. MIAMI cells therapeutic value was significantly increased when delivering the cells complexed with FN-BMMs, probably by increasing stem cell survival and paracrine secretion of pro-survival and/or anti-inflammatory molecules as concluded from survival, differentiation and gene expression analysis. Four days after OGD and ACA, few transplanted cells administered alone survived in the brain whereas stem cell survival improved when injected complexed with FN-BMMs. Interestingly, a large fraction of the transplanted cells administered alone or in complexes expressed βIII-Tubulin suggesting that partial neuronal transdifferentiation may be a contributing factor to the neuroprotective mechanism of MIAMI cells. PMID:21496021

  12. Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity.

    PubMed

    Gamir-Morralla, A; López-Menéndez, C; Ayuso-Dolado, S; Tejeda, G S; Montaner, J; Rosell, A; Iglesias, T; Díaz-Guerra, M

    2015-01-01

    Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), has a central role in the coordination of receptor crosstalk and the integration of signaling pathways essential for neuronal differentiation, survival and function. This protein is a shared downstream effector for neurotrophin- and ephrin-receptors signaling that also interacts with the N-methyl-d-aspartate type of glutamate receptors (NMDARs). Failures in neurotrophic support and glutamate signaling are involved in pathologies related to excitotoxicity and/or neurodegeneration, where different components of these dynamic protein complexes result altered by a combination of mechanisms. In the case of Kidins220/ARMS, overactivation of NMDARs in excitotoxicity and cerebral ischemia triggers its downregulation, which contributes to neuronal death. This key role in neuronal life/death decisions encouraged us to investigate Kidins220/ARMS as a novel therapeutic target for neuroprotection. As the main mechanism of Kidins220/ARMS downregulation in excitotoxicity is proteolysis by calpain, we decided to develop cell-penetrating peptides (CPPs) that could result in neuroprotection by interference of this processing. To this aim, we first analyzed in detail Kidins220/ARMS cleavage produced in vitro and in vivo, identifying a major calpain processing site in its C-terminal region (between amino acids 1669 and 1670) within a sequence motif highly conserved in vertebrates. Then, we designed a 25-amino acids CPP (Tat-K) containing a short Kidins220/ARMS sequence enclosing the identified calpain site (amino acids 1668-1681) fused to the HIV-1 Tat protein basic domain, able to confer membrane permeability to attached cargoes. Transduction of cortical neurons with Tat-K reduced Kidins220/ARMS calpain processing in a dose- and time-dependent manner upon excitotoxic damage and allowed preservation of the activity of pERK1/2 and pCREB, signaling molecules central to

  13. Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity

    PubMed Central

    Gamir-Morralla, A; López-Menéndez, C; Ayuso-Dolado, S; Tejeda, G S; Montaner, J; Rosell, A; Iglesias, T; Díaz-Guerra, M

    2015-01-01

    Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), has a central role in the coordination of receptor crosstalk and the integration of signaling pathways essential for neuronal differentiation, survival and function. This protein is a shared downstream effector for neurotrophin- and ephrin-receptors signaling that also interacts with the N-methyl-d-aspartate type of glutamate receptors (NMDARs). Failures in neurotrophic support and glutamate signaling are involved in pathologies related to excitotoxicity and/or neurodegeneration, where different components of these dynamic protein complexes result altered by a combination of mechanisms. In the case of Kidins220/ARMS, overactivation of NMDARs in excitotoxicity and cerebral ischemia triggers its downregulation, which contributes to neuronal death. This key role in neuronal life/death decisions encouraged us to investigate Kidins220/ARMS as a novel therapeutic target for neuroprotection. As the main mechanism of Kidins220/ARMS downregulation in excitotoxicity is proteolysis by calpain, we decided to develop cell-penetrating peptides (CPPs) that could result in neuroprotection by interference of this processing. To this aim, we first analyzed in detail Kidins220/ARMS cleavage produced in vitro and in vivo, identifying a major calpain processing site in its C-terminal region (between amino acids 1669 and 1670) within a sequence motif highly conserved in vertebrates. Then, we designed a 25-amino acids CPP (Tat-K) containing a short Kidins220/ARMS sequence enclosing the identified calpain site (amino acids 1668–1681) fused to the HIV-1 Tat protein basic domain, able to confer membrane permeability to attached cargoes. Transduction of cortical neurons with Tat-K reduced Kidins220/ARMS calpain processing in a dose- and time-dependent manner upon excitotoxic damage and allowed preservation of the activity of pERK1/2 and pCREB, signaling molecules central to

  14. Ischemic Preconditioning in White Matter: Magnitude and Mechanism

    PubMed Central

    Hamner, Margaret A.; Ye, Zucheng; Lee, Richard V.; Colman, Jamie R.; Le, Thu; Gong, Davin C.; Weinstein, Jonathan R.

    2015-01-01

    Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon whereby brief ischemic exposure confers tolerance to a subsequent ischemic challenge. IPC has not been studied selectively in CNS white matter (WM), although stroke frequently involves WM. We determined whether IPC is present in WM and, if so, its mechanism. We delivered a brief in vivo preconditioning ischemic insult (unilateral common carotid artery ligation) to 12- to 14-week-old mice and determined WM ischemic vulnerability [oxygen–glucose deprivation (OGD)] 72 h later, using acutely isolated optic nerves (CNS WM tracts) from the preconditioned (ipsilateral) and control (contralateral) hemispheres. Functional and structural recovery was assessed by quantitative measurement of compound action potentials (CAPs) and immunofluorescent microscopy. Preconditioned mouse optic nerves (MONs) showed better functional recovery after OGD than the non-preconditioned MONs (31 ± 3 vs 17 ± 3% normalized CAP area, p < 0.01). Preconditioned MONs also showed improved axon integrity and reduced oligodendrocyte injury compared with non-preconditioned MONs. Toll-like receptor-4 (TLR4) and type 1 interferon receptor (IFNAR1), key receptors in innate immune response, are implicated in gray matter preconditioning. Strikingly, IPC-mediated WM protection was abolished in both TLR4−/− and IFNAR1−/− mice. In addition, IPC-mediated protection in WM was also abolished in IFNAR1fl/fl LysMcre, but not in IFNAR1fl/fl control, mice. These findings demonstrated for the first time that IPC was robust in WM, the phenomenon being intrinsic to WM itself. Furthermore, WM IPC was dependent on innate immune cell signaling pathways. Finally, these data demonstrated that microglial-specific expression of IFNAR1 plays an indispensable role in WM IPC. SIGNIFICANCE STATEMENT Ischemic preconditioning (IPC) has been studied predominantly in gray matter, but stroke in humans frequently involves white matter (WM) as well. Here we

  15. Platelet Rich Plasma Clot Releasate Preconditioning Induced PI3K/AKT/NFκB Signaling Enhances Survival and Regenerative Function of Rat Bone Marrow Mesenchymal Stem Cells in Hostile Microenvironments

    PubMed Central

    Peng, Yan; Huang, Sha; Wu, Yan; Nie, Xiaohu; Liu, Hongwei; Ma, Kui; Zhou, Jiping; Gao, Dongyun; Feng, Changjiang; Yang, Siming

    2013-01-01

    Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription–polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0–22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic. PMID:23885779

  16. Morphine-induced delayed pre-conditioning against anoxia/reoxygenation injury in pulmonary artery endothelial cells: The role of mitochondrial KATP channels.

    PubMed

    Ding, Wengang; Guo, Yueping; Cui, Xiaoguang; Zhang, Bing; Li, Dongmei; Li, Wenzhi

    2016-01-01

    Opioids produce delayed pre-conditioning (PC) in vivo and in vitro. Our previous research revealed that opioid‑induced delayed PC has an antiapoptotic effect on pulmonary artery endothelial cells (PAECs) suffering from anoxia/reoxygenation (A/R) injury. The present study hypothesized that activation of endothelial mitochondrial ATP‑sensitive potassium (KATP) channels may result in antiapoptotic effects and against dysfunction in PAECs. Cultured porcine PAECs underwent 16 h anoxia treatment, followed by 1 h reoxygenation, which occurred 24 h following pretreatment with saline (0.9% NaCl; w/v) or morphine (1 µM). To determine the underlying mechanism, a selective mitochondrial KATP inhibitor, 5‑hydroxydecanoic acid (5‑HD; 100 µM), and an opioid receptor antagonist, naloxone (Nal; 10 µM), were administered 30 min prior to the A/R load. The percentage of apoptotic cells was assessed by Annexin V‑fluorescein isothiocyanate staining, using a fluorescence‑activated cell sorter. The mRNA expression of intercellular cell adhesion molecule‑1 (ICAM‑1) was measured by reverse transcription‑quantitative polymerase chain reaction. The endothelin‑1 (ET‑1) content in the supernatant of PAECs cultures was estimated by radioimmunoassay. Compared with the control, A/R caused the apoptosis of PAECs, release of ET‑1 and increased mRNA expression of ICAM‑1. Morphine‑induced delayed PC significantly reduced PAEC apoptosis, increased the release of ET‑1 and reduced the mRNA expression of ICAM‑1 by ~1.7‑times, compared with A/R. The protective effect of morphine was abolished by pretreatment with 5‑HD and Nal, however, the two agents themselves failed to aggravate the A/R injury. These results suggested that morphine-induced delayed PC has a protective effect during A/R injury of PAECs. This effect may be mediated by mitochondrial KATP channels and is opioid receptor-dependent. PMID:26648415

  17. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang; Wang, Dujun; Yu, Xiaofeng

    2016-06-01

    Glutamate has been proven to induce oxidative stress through the formation of reactive oxygen species (ROS) and increased calcium overload which results in neuronal injury, development of neurodegenerative diseases and death. Adenosine is one of the bioactive nucleosides found in Cordyceps cicadae and it has displayed several pharmacological activities including neuroprotection. In this study, the protective effects of adenosine from C. cicadae against glutamate-induce oxidative stress in PC12 cells were evaluated. The exposure of PC12 cells to glutamate (5mM) induced the formation of ROS, increased Ca(2+) influx, endoplasmic reticulum (ER) stress and up regulated the expression of pro-apoptotic factor Bax. However, pretreatment with adenosine markedly increased cell viability, decreased the elevated levels of ROS and Ca(2+) induced by glutamate. Furthermore adenosine increased the activities of GSH-Px and SOD, as well as retained mitochondria membrane potential (MMP), increased Bcl-2/Bax ratio, and reduced the expression of ERK, p38, and JNK. Overall, our results suggest that adenosine may be a promising potential therapeutic agent for the prevention and treatment of neurodegenerative disorders. PMID:27114365

  18. Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson's disease.

    PubMed

    Kim, Hyo Geun; Park, Gunhyuk; Piao, Ying; Kang, Min Seo; Pak, Youngmi Kim; Hong, Seon-Pyo; Oh, Myung Sook

    2014-03-01

    Parkinson's disease (PD) is generally characterized by the progressive loss of dopaminergic neurons projecting from the substantia nigra pars compacta (SNpc) to the striatum that results in movement dysfunction, but also entails mitochondrial dysfunction. The purpose of this study is to evaluate the protective effects of Moutan Cortex Radicis (MCE, Moutan peony) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like symptoms and to elucidate the underlying mechanisms of action, with a focus on mitochondrial function. In a rat primary mesencephalic culture system, MCE significantly protected dopaminergic neurons from the neurotoxic effects of 1-methyl-4-phenylpyridinium (MPP(+)), an active form of MPTP. Additionally, in a subacute mouse model of MPTP-induced PD, MCE resulted in enhanced recovery from PD-like motor symptoms, including increased locomotor activity and reduced bradykinesia. MCE increased dopamine availability and protected against MPTP-induced dopaminergic neuronal damage. Moreover, MCE inhibited MPTP-induced mitochondrial dysfunction and resulted in increased expression of phosphorylated Akt, ND9, mitochondrial transcription factor A, and H2AX in the SNpc. Mitochondria-mediated apoptosis was also inhibited, via the regulation of B-cell lymphoma family proteins and the inhibition of cytochrome C release and caspase-3 activation. These results indicate that MCE has neuroprotective effects in PD models and may be useful for preventing or treating PD. PMID:24389454

  19. Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) -induced mouse model of Parkinson's disease.

    PubMed

    Zhou, Ting-ting; Zu, Guo; Wang, Xi; Zhang, Xiao-gang; Li, Shao; Liang, Zhan-hua; Zhao, Jie

    2015-12-01

    Ginsenoside Rg1, one of the biologically active ingredients of ginseng, has been considered to be a candidate neuroprotective drug. The objective of the study was to study the protective effects of Rg1 through the peripheral and central inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Rg1 treatment protected TH-positive cells in the SNpc region from MPTP toxicity measured with immunofluoresence. The protein expression levels of TH in the SNpc region of MPTP-induced mice following treatment with Rg1 were higher than MPTP-induced mice which were tested with Western blot. The ratio of CD3(+)CD4(+) to CD3(+)CD8(+) T cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells in the blood increased in MPTP-induced mice following treatment with Rg1 which were detected by flow cytometry analysis. Moreover, Rg1 reduced the serum concentrations of proinflammatory cytokines TNF-α, IFN-γ, IL-1β and IL-6 which were tested with enzyme-linked immunosorbent assay (ELISA). In addition, Rg1 inhibited the activation of microglia and reduced the infiltration of CD3(+) T cells into the SNpc region which were measured by immunofluorescence. Our results indicated that Rg1 may represent a promising drug for the treatment of PD via the regulation of the peripheral and central inflammation. PMID:26548343

  20. The Protective Effect of Remote Renal Preconditioning Against Hippocampal Ischemia Reperfusion Injury: Role of KATP Channels.

    PubMed

    Mehrjerdi, Fatemeh Zare; Aboutaleb, Nahid; Pazoki-Toroudi, Hamidreza; Soleimani, Mansoureh; Ajami, Marjan; Khaksari, Mehdi; Safari, Fatemeh; Habibey, Rouhollah

    2015-12-01

    Remote ischemic preconditioning (RIPC), which consists of several brief ischemia/reperfusion applied at the remote site of lethal ischemia reperfusion, can, through activating different mechanisms, increase the ability of the body's endogenous protection against prolonged ischemia/reperfusion. Recent studies have shown that RIPC has neuroprotective effects, but its mechanisms are not well elucidated. The present study aimed to determine whether activation of KATP channels in remote renal preconditioning decreases hippocampus damage induced by global cerebral ischemia. RIPC was induced by ischemia of the left renal artery (IPC); 24 h later, global cerebral ischemia reperfusion (IR) was induced by common carotid arteries occlusion. 5hydroxydecanoate (5HD) and glibenclamide (Gli) were injected before of IPC. The levels of malondialdehyde (MDA) and catalase (CAT) activity were assessed in hippocampus. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) was assessed to detect apoptotic cells in hippocampus. RIPC inhibited apoptosis by decreasing positive TUNEL cells (P < 0.05). KATP channels blocking with 5HD and Gli markedly increased apoptosis in hippocampal cells in RIPC group (P < 0.001). RIPC decreased MDA level and increased CAT activity in ischemic hippocampus (P < 0.01). Also, 5HD and Gli inhibited the effect of RIPC on MDA level and CAT activity (P < 0.05). The present study shows that RIPC can effectively attenuate programmed cell death, increase activity of CAT, and reduce MDA levels. Blocking of KATP channels inhibited the protective effects of RIPC. PMID:26254913

  1. The neuroprotection of cannabidiol against MPP⁺-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease.

    PubMed

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; Queiroz, Regina Helena Costa; Santos, Antônio Cardozo

    2015-12-25

    Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease. PMID:26556726

  2. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    SciTech Connect

    Xu, Tongyi; Zhang, Ben; Yang, Fan; Cai, Chengliang; Wang, Guokun; Han, Qingqi; Zou, Liangjian

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  3. The Impact of Remote Ischemic Pre-Conditioning on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography and Angioplasty: A Double-Blind Randomized Clinical Trial

    PubMed Central

    Gholoobi, Arash; Sajjadi, Seyyed Masoud; Shabestari, Mahmoud Mohammadzadeh; Eshraghi, Ali; Shamloo, Alireza Sepehri

    2015-01-01

    Background and objective Contrast-induced nephropathy (CIN) is an acute major complication following intravascular administration of iodinated contrast agents; however, the best approach for preventing CIN is not clear. Remote ischemic pre-conditioning (RIPC) is a new, non-pharmacological method that has been considered for the prevention of CIN following coronary angiography. This study assessed the effects of RIPC with four brief episodes of upper limb ischemia and reperfusion in the prevention of contrast-induced nephropathy (CIN) after coronary angiography and/or angioplasty. Methods In this double-blind randomized clinical trial, we enrolled 51 patients with chronic stable angina and non-ST elevation acute coronary syndrome (NSTE.ACS), and they underwent coronary angiography and/or angioplasty. Standard fluid therapy with normal saline was prescribed for all patients before and after the procedure. The patients were divided into two groups, i.e., a study group of patients who had undergone RIPC intervention and a control group of patients who had not undergone RIPC. One hour before the procedure, a sphygmomanometer cuff was placed around one arm and inflated up to 50 mmHg above the systolic pressure for five minutes; then, the cuff was deflated for another five minutes, and this cycle was repeated four times. The patients’ serum creatinine levels were measured at baseline and 48 hours after the procedure, and the incidence of CIN was calculated. Results Twenty-one males and 30 females were studied in two groups, i.e., an RIPC intervention group (n = 25) and a control group (n = 26) that were homogenous considering baseline characteristics. No significant difference was observed in the mean level of serum creatinine between the two groups at a post-intervention time of 48 hours (RICP: 1.74 ± 0.70 mg/dL vs. Control: 1.75 ± 0.87 mg/dL; P = 0.64). However, a lower incidence rate of CIN was observed 48 hours after the administration of the contrast medium in

  4. Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Parker, R. N.; Hancox, G. T.; Petley, D. N.; Massey, C. I.; Densmore, A. L.; Rosser, N. J.

    2015-10-01

    Current models to explain regional-scale landslide events are not able to account for the possible effects of the legacy of previous earthquakes, which have triggered landslides in the past and are known to drive damage accumulation in brittle hillslope materials. This paper tests the hypothesis that spatial distributions of earthquake-induced landslides are determined by both the conditions at the time of the triggering earthquake (time-independent factors) and the legacy of past events (time-dependent factors). To explore this, we undertake an analysis of failures triggered by the 1929 Buller and 1968 Inangahua earthquakes, in the northwest South Island of New Zealand. The spatial extents of landslides triggered by these events were in part coincident. Spatial distributions of earthquake-triggered landslides are determined by a combination of earthquake and local characteristics, which influence the dynamic response of hillslopes. To identify the influence of a legacy from past events, we first use logistic regression to control for the effects of time-independent variables. Through this analysis we find that seismic ground motion, hillslope gradient, lithology, and the effects of topographic amplification caused by ridge- and slope-scale topography exhibit a consistent influence on the spatial distribution of landslides in both earthquakes. We then assess whether variability unexplained by these variables may be attributed to the legacy of past events. Our results suggest that hillslopes in regions that experienced strong ground motions in 1929 were more likely to fail in 1968 than would be expected on the basis of time-independent factors alone. This effect is consistent with our hypothesis that unfailed hillslopes in the 1929 earthquake were weakened by damage accumulated during this earthquake and its associated aftershock sequence, which influenced the behaviour of the landscape in the 1968 earthquake. While our results are tentative, they suggest that the

  5. Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia- reperfusion injury★

    PubMed Central

    Zhang, Ying; Liu, Xiangrong; Yan, Feng; Min, Lianqiu; Ji, Xunming; Luo, Yumin

    2012-01-01

    Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal received middle artery occlusion and reperfusion surgery. The results showed that brain infarct volume was significantly reduced after remote ischemic pre-conditioning. Scores in the forelimb placing test and the postural reflex test were significantly lower in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. Thus, neurological function was better in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. These results indicate that remote ischemic pre-conditioning in rat hindlimb exerts protective effects in ischemia-reperfusion injury. PMID:25745448

  6. Neuroprotective Effects of Biochanin A against β-Amyloid-Induced Neurotoxicity in PC12 Cells via a Mitochondrial-Dependent Apoptosis Pathway.

    PubMed

    Tan, Ji Wei; Kim, Min Kyu

    2016-01-01

    Alzheimer's disease is considered one of the major neurodegenerative diseases and is characterized by the production of β-amyloid (Aβ) proteins and progressive loss of neurons. Biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, was used in the present study as a potential alternative to estrogen replacement therapy via the investigation of its neuroprotective effects against Aβ25-35-induced toxicity, as well as of its potential mechanisms of action in PC12 cells. Exposure of these cells to the Aβ25-35 protein significantly increased cell viability loss and apoptosis. However, the effects induced by Aβ25-35 were markedly reversed in the present of biochanin A. Pretreatment with biochanin A attenuated the cytotoxic effect of the Aβ25-35 protein by decreasing viability loss, LDH release, and caspase activity in cells. Moreover, we found that expression of cytochrome c and Puma were reduced, alongside with the restoration of Bcl-2/Bax and Bcl-xL/Bax ratio in the presence of biochanin A, which led to a decrease in the apoptotic rate. These data demonstrate that mitochondria are involved in the protective effect of biochanin A against Aβ25-35 and that this drug attenuated Aβ25-35-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Thus, biochanin A might raise a possibility as a potential therapeutic agent for Alzheimer's disease and other related neurodegenerative diseases. PMID:27120593

  7. The Neuro-Protective Effect of the Methanolic Extract of Perilla frutescens var. japonicaand Rosmarinic Acid against H₂O₂-Induced Oxidative Stress in C6 Glial Cells.

    PubMed

    Lee, Ah Young; Wu, Ting Ting; Hwang, Bo Ra; Lee, Jaemin; Lee, Myoung-Hee; Lee, Sanghyun; Cho, Eun Ju

    2016-05-01

    Neurodegenerative diseases are often associated with oxidative damage in neuronal cells. This study was conducted to investigate the neuro-protective effect of methanolic (MeOH) extract of Perilla frutescens var. japonica and its one of the major compounds, rosmarinic acid, under oxidative stress induced by hydrogen peroxide (H₂O₂) in C6 glial cells. Exposure of C6 glial cells to H₂O₂ enhanced oxidative damage as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and thiobarbituric acid-reactive substance assays. The MeOH extract and rosmarinic acid prevented oxidative stress by increasing cell viability and inhibiting cellular lipid peroxidation. In addition, the MeOH extract and rosmarinic acid reduced H₂O₂-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcriptional level. Moreover, iNOS and COX-2 protein expression was down-regulated in H₂O₂-indcued C6 glial cells treated with the MeOH extract and rosmarinic acid. These findings suggest that P. frutescens var. japonica and rosmarinic acid could prevent the progression of neurodegenerative diseases through attenuation of neuronal oxidative stress. PMID:27133263

  8. Jujuboside A, a neuroprotective agent from semen Ziziphi Spinosae ameliorates behavioral disorders of the dementia mouse model induced by Aβ 1-42.

    PubMed

    Liu, Zhi; Zhao, Xu; Liu, Bing; Liu, Ai-jing; Li, Huan; Mao, Xin; Wu, Bo; Bi, Kai-shun; Jia, Ying

    2014-09-01

    Semen Ziziphi Spinosae (SZS) has been used as a hypnotic-sedative medicine for thousands of years. Recently, SZS has also shown notable neuroprotective activities via anti-oxidative and anti-inflammatory effects in dementia animals. Jujuboside A (JuA), isolated from SZS, has been proved to be a major hypnotic-sedative component of SZS. In the present study, we firstly evaluated the effects of intracerebroventricular (ICV) injection of JuA (0.02 and 0.2mg/kg) for five consecutive days on cognitive impairment induced by ICV injection of Aβ 1-42. The results showed that ICV treatment with JuA significantly mitigated learning and memory impairment in mice induced by Aβ 1-42 as measured by the Y-maze, active avoidance and Morris water maze. Furthermore, ICV treatment with JuA reduced the level of Aβ 1-42 in hippocampus, significantly inhibited the activities of acetylcholinesterase (AChE) and NO, and decreased the amount of the increased malondialdehyde (MDA) in the hippocampus and cerebral cortex of mice treated with ICV injection of Aβ 1-42. Shrinkage of nuclei, swollen and eccentrically dispersed neuronal bodies were observed in hippocampus of AD mice induced by Aβ 1-42, however, JuA noticeably improved the histopathological damage. Cumulatively, the present study indicates that JuA may serve as a potential therapeutic agent for the treatment of Alzheimer' disease. PMID:24886882

  9. Mitochondria Related Pathway Is Essential for Polysaccharides Purified from Sparassis crispa Mediated Neuro-Protection against Glutamate-Induced Toxicity in Differentiated PC12 Cells

    PubMed Central

    Hu, Shuang; Wang, Di; Zhang, Junrong; Du, Mengyan; Cheng, Yingkun; Liu, Yan; Zhang, Ning; Wang, Di; Wu, Yi

    2016-01-01

    The present study aims to explore the neuro-protective effects of purified Sparassis crispa polysaccharides against l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cell damages and its underlying mechanisms. The Sparassis crispa water extract was purified by a DEAE-52 cellulose anion exchange column and a Sepharose G-100 column. A fraction with a molecular weight of 75 kDa and a diameter of 88.9 nm, entitled SCWEA, was obtained. SCWEA was identified with a triple helix with (1→3)-linked Rha in the backbone, and (1→2) linkages and (1→6) linkages in the side bone. Our results indicated that the pre-treatment of DPC12 cells with SCWEA prior to l-Glu exposure effectively reversed the reduction on cell viability (by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay) and reduced l-Glu-induced apoptosis (by Hoechst staining). SCWEA decreased the accumulation of intracellular reactive oxygen species, blocked Ca2+ influx and prevented depolarization of the mitochondrial membrane potential in DPC12 cells. Furthermore, SCWEA normalized expression of anti-apoptotic proteins in l-Glu-explored DPC12 cells. These results suggested that SCWEA protects against l-Glu-induced neuronal apoptosis in DPC12 cells and may be a promising candidate for treatment against neurodegenerative disease. PMID:26821016

  10. Neuroprotective effects of orientin on hydrogen peroxide‑induced apoptosis in SH‑SY5Y cells.

    PubMed

    Law, Benjamin Ngee Tiing; Ling, Anna Pick Kiong; Koh, Rhun Yian; Chye, Soi Moi; Wong, Ying Pei

    2014-03-01

    Neurodegenerative diseases remain a global issue which affects the ageing population. Efforts towards determining their aetiologies to understand their pathogenic mechanisms are underway in order to identify a pathway through which therapeutic measures can be applied. One such pathogenic mechanism, oxidative stress (OS), is widely considered to be involved in neurodegenerative disease. Antioxidants, most notably flavonoids, have promising potential for therapeutic use as shown in in vitro and in vivo studies. In view of the importance of flavonoids for combating OS, this study investigated the neuroprotective effects of orientin, which has been reported to be capable of crossing the blood‑brain barrier. The maximum non‑toxic dose (MNTD) of orientin against SH‑SY5Y neuroblastoma cells was determined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. The effects of the MNTD and the half MNTD (½MNTD) of orientin on cell cycle progression and intracellular reactive oxygen species (ROS) levels, as well as the activity of caspases 3/7, 8 and 9 after exposure to 150 µM of hydrogen peroxide (H2O2) were also determined using flow cytometry, a 2',7'‑dichlorodihydrofluorescein‑diacetate (DCFH‑DA) assay and caspase assay kits, respectively. The results revealed that orientin at ≤20 µM was not cytotoxic to SH‑SY5Y cells. After treatment with orientin at the MNTD, the percentage of apoptotic cells was significantly reduced compared with that in cells treated with 150 µM H2O2 alone. The results also showed that, although orientin at the MNTD and ½MNTD did not reduce intracellular ROS levels, it significantly inhibited the activity of caspases 3/7. Caspase 9 was significantly inactivated with orientin at the MNTD. Findings from this study suggest that the neuroprotection conferred by orientin was the result of the intracellular mediation of caspase activity. PMID:24366367

  11. Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the neurovascular niche in a neonatal rat model.

    PubMed

    Li, Yi; Zhang, Peixi; Liu, Ying; Liu, Wenwu; Yin, Na

    2016-11-01

    This study aimed to investigate whether helium preconditioning (He-PC) is able to exert neuroprotective effects via improving focal neurovascular niche in a neonatal rat hypoxia/ischemia (HI) brain injury model. Seven day old rat pups were divided into control group, HI group and He-PC group. HI was induced by exposure to 8% oxygen for 90min one day after preconditioning with 70% helium-30% oxygen for three 5-min periods. At 3 and 7 days, the brain was collected for the detection of inflammation related factors (tumor necrosis factor α [TNF-α], interleukin-1β [IL-1β], IL-10) and growth/neurotrophic factors (brain-derived neurotrophic factor [BDNF], basic fibroblast growth factor [bFGF] and nerve growth factor [NGF]); at 7 days, neurobehaviors were evaluated, and the brain was collected for the detection of mRNA expression of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) by PCR, protein expression of angiogenesis related molecules (VEGF, Ang-1, Tie-2 and Flt-1) by Western blotting and microvessel density (MCD) by immunohistochemistry for vWF. Results showed He-PC was able to reduce TNF-α and IL-1β, further increase IL-10, BDNF, bFGF and NGF, elevate the mRNA expression of VEGF and Ang-1, increase the protein expression of VEGF, Ang-1, Tie-2 and Flt-1, promote angiogenesis and improve neurobehaviors as compared to HI group. These findings suggest that He-PC may improve the post-stroke neurovascular niche to exert neuroprotective effects on neonatal HI brain injury. PMID:27515290

  12. Acute Blockage of Notch Signaling by DAPT Induces Neuroprotection and Neurogenesis in the Neonatal Rat Brain After Stroke.

    PubMed

    Li, Zhongxia; Wang, Jiangping; Zhao, Congying; Ren, Keming; Xia, Zhezhi; Yu, Huimin; Jiang, Kewen

    2016-04-01

    Notch signaling is critically involved in various biological events. Notch undergoes cleavage by the γ-secretase enzyme to release Notch intracellular domain that will translocate into nucleus to result in expression of target gene. γ-Secretase inhibitors have been developed as potential treatments for neurological degenerative diseases, but its effects against ischemic injury remain relatively uncertain. In the present study, we demonstrated that N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor not only rescued the cerebral hypoperfusion or ischemia neonatal rats from death, reduced apoptosis in penumbra, but also reduced brain infarct size. Furthermore, DAPT elicited some morphologic hallmarks such as neurogenesis and angiogenesis that related to the brain repair and functional recovery after stroke: increased accumulations of newborn cells in the peri-infarct region with a higher fraction of them adopting immature neuronal and glial markers instead of microglial markers on 5 days, enhanced vascular densities in penumbra at 14 days, and evident regulations of the gene profiles associated with neurogenesis in penumbral tissues. The current results suggest that DAPT is a potential neuroprotectants against ischemic injury in immature brain, and future treatment strategies such as clinical trials using γ-secretase inhibitors would be an attractive therapy for perinatal ischemia. PMID:26691164

  13. Hyperbaric oxygen preconditioning attenuates early apoptosis after spinal cord ischemia in rats.

    PubMed

    Wang, Liping; Li, Wenxian; Kang, Zhimin; Liu, Yun; Deng, Xiaoming; Tao, Hengyi; Xu, Weigang; Li, Runping; Sun, Xuejun; Zhang, John H

    2009-01-01

    This study tested the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning (HBO-PC) is mediated by inhibition of early apoptosis. Male Sprague-Dawley rats were preconditioned with consecutive 4 cycles of 1-h HBO exposures (2.5 atmospheres absolute [ATA], 100% O(2)) at a 12-h interval. At 24 h after the last HBO pretreatment, rats underwent 9 min of spinal cord ischemia induced by occlusion of the descending thoracic aorta in combination with systemic hypotension (40 mmHg). Spinal cord ischemia produced marked neuronal death and neurological dysfunction in animals. HBO-PC enhanced activities of Mn-superoxide dismutase (Mn-SOD) and catalase, as well as the expression of Bcl-2 in the mitochondria in the normal spinal cord at 24 h after the last pretreatment (before spinal cord ischemia), and retained higher levels throughout the early reperfusion in the ischemic spinal cord. In parallel, superoxide and hydrogen peroxide levels in mitochondria were decreased, cytochrome c release into the cytosol was reduced at 1 h after reperfusion, and activation of caspase-3 and -9 was subsequently attenuated. HBO-PC improved neurobehavioral scores and reduced neuronal apoptosis in the anterior, intermediate, and dorsal gray matter of lumbar segment at 24 h after spinal cord ischemia. HBO-PC increased nitric oxide (NO) production. L-nitroarginine-methyl-ester (L-NAME; 10 mg/kg), a nonselective NO synthase (NOS) inhibitor, applied before each HBO-PC protocol abolished these beneficial effects of HBO-PC. We conclude that HBO-PC reduced spinal cord ischemia-reperfusion injury by increasing Mn-SOD, catalase, and Bcl-2, and by suppressing mitochondrial apoptosis pathway. NO may be involved in this neuroprotection. PMID:19196076

  14. Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: a novel mechanism of Nrf2/ARE signaling activation.

    PubMed

    Meng, X; Sun, G; Ye, J; Xu, H; Wang, H; Sun, X

    2014-04-01

    Notoginsenoside R1 (NGR1), a novel phytoestrogen isolated from Panax notoginseng, has antioxidant and anti-apoptotic properties. Oxidative stress plays a pivotal role in neurodegenerative diseases. To mimic oxidative stress in neurons and explore the neuroprotection of NGR1, H₂O₂-induced neurotoxicity in NGF-induced differentiation of PC12 cells was used. In this study, NGR1 preconditioning provided neuroprotective effects via suppressing H₂O₂-induced the intracellular ROS accumulation, the increase in the product of lipid peroxidation (MDA), protein oxidation (protein carbonyl), and DNA fragmentation (8-OHdG), and mitochondrial membrane depolarization as well as caspase-3 activation. Moreover, NGR1 treatment alone potently increased the nuclear translocation of Nrf2, augmented ARE enhancer activity, and upregulated the expression and activity of phase II antioxidant enzymes including HO-1, NQO-1, and γ-GCSc. NGR1 could also increase the ERE activity and activate Akt and ERK1/2 pathways. NGR1-mediated activation of Nrf2/ARE signaling and neuroprotection were abolished by genetic silencing of Nrf2 using siRNA or the pharmacological blockade of estrogen receptors using ICI-182780, and partially inhibited by Akt siRNA or ERK siRNA transfection. In addition, the phosphorylation of ERK1/2 mediated by NGR1 was markedly inhibited in PC12 cells transfected with Akt siRNA. On the contrary, ERK1/2 siRNA transfection hardly had any effect on the phosphorylation of Akt mediated by NGR1. NGR1-mediated activation of Akt and ERK1/2 pathways was blocked by ICI-182780. In conclusion, NGR1 provided neuroprotection via inducing an estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways, subsequently activating Nrf2/ARE signaling and thereby up-regulating phase II antioxidant enzymes. PMID:24437944

  15. Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus.

    PubMed

    Rojas, Asheebo; Ganesh, Thota; Lelutiu, Nadia; Gueorguieva, Paoula; Dingledine, Raymond

    2015-06-01

    Exposure to high levels of organophosphorus compounds (OP) can induce status epilepticus (SE) in humans and rodents via acute cholinergic toxicity, leading to neurodegeneration and brain inflammation. Currently there is no treatment to combat the neuropathologies associated with OP exposure. We recently demonstrated that inhibition of the EP2 receptor for PGE2 reduces neuronal injury in mice following pilocarpine-induced SE. Here, we investigated the therapeutic effects of an EP2 inhibitor (TG6-10-1) in a rat model of SE using diisopropyl fluorophosphate (DFP). We tested the hypothesis that EP2 receptor inhibition initiated well after the onset of DFP-induced SE reduces the associated neuropathologies. Adult male Sprague-Dawley rats were injected with pyridostigmine bromide (0.1 mg/kg, sc) and atropine methylbromide (20 mg/kg, sc) followed by DFP (9.5 mg/kg, ip) to induce SE. DFP administration resulted in prolonged upregulation of COX-2. The rats were administered TG6-10-1 or vehicle (ip) at various time points relative to DFP exposure. Treatment with TG6-10-1 or vehicle did not alter the observed behavioral seizures, however six doses of TG6-10-1 starting 80-150 min after the onset of DFP-induced SE significantly reduced neurodegeneration in the hippocampus, blunted the inflammatory cytokine burst, reduced microglial activation and decreased weight loss in the days after status epilepticus. By contrast, astrogliosis was unaffected by EP2 inhibition 4 d after DFP. Transient treatments with the EP2 antagonist 1 h before DFP, or beginning 4 h after DFP, were ineffective. Delayed mortality, which was low (10%) after DFP, was unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor within a time window that coincides with the induction of cyclooxygenase-2 by DFP is neuroprotective and accelerates functional recovery of rats. PMID:25656476

  16. Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus

    PubMed Central

    Rojas, Asheebo; Ganesh, Thota; Lelutiu, Nadia; Gueorguieva, Paoula; Dingledine, Raymond

    2015-01-01

    Exposure to high levels of organophosphorus compounds (OP) can induce status epilepticus (SE) in humans and rodents via acute cholinergic toxicity, leading to neurodegeneration and brain inflammation. Currently there is no treatment to combat the neuropathologies associated with OP exposure. We recently demonstrated that inhibition of the EP2 receptor for PGE2 reduces neuronal injury in mice following pilocarpine-induced SE. Here, we investigated the therapeutic effects of an EP2 inhibitor (TG6-10-1) in a rat model of SE using diisopropyl fluorophosphate (DFP). We tested the hypothesis that EP2 receptor inhibition initiated well after the onset of DFP-induced SE reduces the associated neuropathologies. Adult male Sprague-Dawley rats were injected with pyridostigmine bromide (0.1 mg/kg, sc) and atropine methylbromide (20 mg/kg, sc) followed by DFP (9.5 mg/kg, ip) to induce SE. DFP administration resulted in prolonged upregulation of COX-2. The rats were administered TG6-10-1 or vehicle (ip) at various time points relative to DFP exposure. Treatment with TG6-10-1 or vehicle did not alter the observed behavioral seizures, however six doses of TG6-10-1 starting 80-150 min after the onset of DFP-induced SE significantly reduced neurodegeneration in the hippocampus, blunted the inflammatory cytokine burst, reduced microglial activation and decreased weight loss in the days after status epilepticus. By contrast, astrogliosis was unaffected by EP2 inhibition 4 d after DFP. Transient treatments with the EP2 antagonist 1 h before DFP, or beginning 4 h after DFP, were ineffective. Delayed mortality, which was low (10%) after DFP, was unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor within a time window that coincides with the induction of cyclooxygenase-2 by DFP is neuroprotective and accelerates functional recovery of rats. PMID:25656476

  17. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson’s Disease

    PubMed Central

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson’s disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  18. Neuroprotective effect of nitric oxide donor isosorbide-dinitrate against oxidative stress induced by ethidium bromide in rat brain

    PubMed Central

    Abdel-Salam, Omar M.E.; Khadrawy, Yasser Ashry; Mohammed, Nadia A.

    2012-01-01

    This study investigated the effect of systemic administration of isosorbide-dinitrate (ISDN) on oxidative stress and brain monoamines in a toxic model of brain demyelination evoked by intracerebral injection (i.c.i) of ethidium bromide (10 µl of 0.1 %). Rats received saline (control) or ISDN at 5 or 10 mg/kg for 10 days prior to injection of ethidium bromide. Rats were euthanized one day later, and then the levels of reduced glutathione (GSH), lipid peroxidation (malondialdehyde; MDA), nitric oxide (nitrite/nitrate), acetylcholinesterase (AChE) activity, paraoxonase activity as well as monoamine levels (serotonin, dopamine and noradrenaline) were assessed in the brain cortex in different treatment groups. The i.c.i of ethidium bromide resulted in increased oxidative stress in the cortex one day after its injection; (i) MDA increased by 36.9 %; (ii) GSH decreased by 20.8 %, while (iii) nitric oxide increased by 60.3 %; (iv) AChE and paraoxonase activities in cortex decreased by 35.9 % and 29.4 %, respectively; (v) serotonin was significantly increased. In ethidium bromide-treated rats, pretreatment with ISDN at 10 mg/kg decreased cortical MDA by 23.9 %. Reduced glutathione was increased by 25.1 % ISDN at 10 mg/kg, while nitric oxide showed a 32.8 and 41.7 % decrease after 5 and 10 mg/kg of ISDN, respectively. Acetylcholinesterase activity increased by 24.3 % by 10 mg/kg of ISDN. Paraoxonase activity showed further decrease by 72.2 and 83.8 % after treatment with 5 and 10 mg/kg of ISDN, respectively. The administration of ISDN decreased the level of serotonin and noradrenaline compared with the ethidium bromide only treated group. Overall, the present findings suggest neuroprotective effect of ISDN against oxidative stress in this model of chemical demyelination.

  19. Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway.

    PubMed

    Xu, Rongfeng; Sun, Yuning; Chen, Zhongpu; Yao, Yuyu; Ma, Genshan

    2016-01-01

    Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen-serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus. PMID:27488808

  20. Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway

    PubMed Central

    Xu, Rongfeng; Sun, Yuning; Chen, Zhongpu; Yao, Yuyu; Ma, Genshan

    2016-01-01

    Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen–serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus. PMID:27488808

  1. The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning

    PubMed Central

    Guo, Xiaowei; Jiang, Xupin; Ren, Xi; Sun, Huanbo; Zhang, Dongxia; Zhang, Qiong; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    The endogenous electric field (EF)-directed migration of keratinocytes (galvanotaxis) into wounds is an essential step in wound re-epithelialization. Hypoxia, which occurs immediately after injury, acts as an early stimulus to initiate the healing process; however, the mechanisms for this effect, remain elusive. We show here that the galvanotactic migration of keratinocytes was enhanced by hypoxia preconditioning as a result of the increased directionality rather than the increased motility of keratinocytes. This enhancement was both oxygen tension- and preconditioning time-dependent, with the maximum effects achieved using 2% O2 preconditioning for 6 hours. Hypoxic preconditioning (2% O2, 6 hours) decreased the threshold voltage of galvanotaxis to < 25 mV/mm, whereas this value was between 25 and 50 mV/mm in the normal culture control. In a scratch-wound monolayer assay in which the applied EF was in the default healing direction, hypoxic preconditioning accelerated healing by 1.38-fold compared with the control conditions. Scavenging of the induced ROS by N-acetylcysteine (NAC) abolished the enhanced galvanotaxis and the accelerated healing by hypoxic preconditioning. Our data demonstrate a novel and unsuspected role of hypoxia in supporting keratinocyte galvanotaxis. Enhancing the galvanotactic response of cells might therefore be a clinically attractive approach to induce improved wound healing. PMID:25988491

  2. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons.

    PubMed

    Dutta, Somhrita; Rutkai, Ibolya; Katakam, Prasad V G; Busija, David W

    2015-09-01

    We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets. PMID:26016889

  3. A Novel In Vivo Model of Focal Light Emitting Diode-Induced Cone-Photoreceptor Phototoxicity: Neuroprotection Afforded by Brimonidine, BDNF, PEDF or bFGF

    PubMed Central

    García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A.; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model

  4. [Neuroprotective activity of the proline-containing dipeptide noopept on the model of brain ischemia induced by the middle cerebral artery occlusion].

    PubMed

    Gavrilova, S A; Us, K S; Ostrovskaia, R U; Koshelev, V B

    2006-01-01

    The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111) on the extent of ischemic cortical stroke was investigated in experiments on white mongrel male rats with ischemia induced by a combination of the middle cerebral artery occlusion with ipsilateral common carotid artery ligation. Animals were treated with noopept (0.5 mg/kg, i.p.) according to the following schedule: 15 min and 2, 24, and 48 h after the occlusion. Test rats were decapitated 72 h after occlusion, brains were extracted and frozen, and thin brain slices were stained with 2,3,5-triphenyltetrazolium chloride. The slices were scanned and processed using Auc 1 computer program, which estimates the percentage of damaged area relative to that of the whole ipsilateral hemisphere. The conditions of coagulation the distal segment of middle cerebral artery were selected, which caused necrosis localized in the fronto-parietal and dorso-lateral regions of the brain cortex without any damage of subcortical structures. The extent of the brain damage in control group (treated by saline) was 18.6%, while that in the group treated with noopept was 12.2%, thus demonstrating a decrease in the infarction area by 34.5% (p < 05). The data on noopept efficacy on the model of the extensive ischemic injury of brain cortex show that this drug has good prospects for use in the neuroprotective treatment of stroke. PMID:16995431

  5. The mechanisms involved in the long-lasting neuroprotective effect of fluoxetine against MDMA (‘ecstasy')-induced degeneration of 5-HT nerve endings in rat brain

    PubMed Central

    Sanchez, V; Camarero, J; Esteban, B; Peter, M J; Green, A R; Colado, M I

    2001-01-01

    It has been reported that co-administration of fluoxetine with 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy') prevents MDMA-induced degeneration of 5-HT nerve endings in rat brain. The mechanisms involved have now been investigated. MDMA (15 mg kg−1, i.p.) administration produced a neurotoxic loss of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in cortex, hippocampus and striatum and a reduction in cortical [3H]-paroxetine binding 7 days later. Fluoxetine (10 mg kg−1, i.p., ×2, 60 min apart) administered concurrently with MDMA or given 2 and 4 days earlier provided complete protection, and significant protection when given 7 days earlier. Fluvoxamine (15 mg kg−1, i.p., ×2, 60 min apart) only produced neuroprotection when administered concurrently. Fluoxetine (10 mg kg−1, ×2) markedly increased the KD and reduced the Bmax of cortical [3H]-paroxetine binding 2 and 4 days later. The Bmax was still decreased 7 days later, but the KD was unchanged. [3H]-Paroxetine binding characteristics were unchanged 24 h after fluvoxamine (15 mg kg−1, ×2). A significant cerebral concentration of fluoxetine plus norfluoxetine was detected over the 7 days following fluoxetine administration. The fluvoxamine concentration had decreased markedly by 24 h. Pretreatment with fluoxetine (10 mg kg−1, ×2) failed to alter cerebral MDMA accumulation compared to saline pretreated controls. Neither fluoxetine or fluvoxamine altered MDMA-induced acute hyperthermia. These data demonstrate that fluoxetine produces long-lasting protection against MDMA-induced neurodegeneration, an effect apparently related to the presence of the drug and its active metabolite inhibiting the 5-HT transporter. Fluoxetine does not alter the metabolism of MDMA or its rate of cerebral accumulation. PMID:11522596

  6. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson's disease in vivo, but not enough to restore the lesioned dopaminergic system.

    PubMed

    Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2016-02-01

    We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD. PMID:26878791

  7. Steps to translate preconditioning from basic research to the clinic

    PubMed Central

    Bahjat, Frances R; Gesuete, Raffaella; Stenzel-Poore, Mary P

    2012-01-01

    Efforts to treat cardiovascular and cerebrovascular diseases often focus on the mitigation of ischemia-reperfusion (I/R) injury. Many treatments or “preconditioners” are known to provide substantial protection against the I/R injury when administered prior to the event. Brief periods of ischemia itself have been validated as a means to achieve neuroprotection in many experimental disease settings, in multiple organ systems, and in multiple species suggesting a common pathway leading to tolerance. In addition, pharmacological agents that act as potent preconditioners have been described. Experimental induction of neuroprotection using these various preconditioning paradigms has provided a unique window into the brain’s endogenous protective mechanisms. Moreover, preconditioning agents themselves hold significant promise as clinical-stage therapies for prevention of I/R injury. The aim of this article is to explore several key steps involved in the preclinical validation of preconditioning agents prior to the conduct of clinical studies in humans. Drug development is difficult, expensive and relies on multi-factorial analysis of data from diverse disciplines. Importantly, there is no single path for the preclinical development of a novel therapeutic and no proven strategy to ensure success in clinical translation. Rather, the conduct of a diverse array of robust preclinical studies reduces the risk of clinical failure by varying degrees depending upon the relevance of preclinical models and drug pharmacology to humans. A strong sense of urgency and high tolerance of failure are often required to achieve success in the development of novel treatment paradigms for complex human conditions. PMID:23504609

  8. Inhibition of Nuclear Translocation of Apoptosis-Inducing Factor Is an Essential Mechanism of the Neuroprotective Activity of Pigment Epithelium-Derived Factor in a Rat Model of Retinal Degeneration

    PubMed Central

    Murakami, Yusuke; Ikeda, Yasuhiro; Yonemitsu, Yoshikazu; Onimaru, Mitsuho; Nakagawa, Kazunori; Kohno, Ri-ichiro; Miyazaki, Masanori; Hisatomi, Toshio; Nakamura, Makoto; Yabe, Takeshi; Hasegawa, Mamoru; Ishibashi, Tatsuro; Sueishi, Katsuo

    2008-01-01

    Photoreceptor apoptosis is a critical process of retinal degeneration in retinitis pigmentosa (RP), a group of retinal degenerative diseases that result from rod and cone photoreceptor cell death and represent a major cause of adult blindness. We previously demonstrated the efficient prevention of photoreceptor apoptosis by intraocular gene transfer of pigment epithelium-derived factor (PEDF) in animal models of RP; however, the underlying mechanism of the neuroprotective activity of PEDF remains elusive. In this study, we show that an apoptosis-inducing factor (AIF)-related pathway is an essential target of PEDF-mediated neuroprotection. PEDF rescued serum starvation-induced apoptosis, which is mediated by AIF but not by caspases, of R28 cells derived from the rat retina by preventing translocation of AIF into the nucleus. Nuclear translocation of AIF was also observed in the apoptotic photoreceptors of Royal College of Surgeons rats, a well-known animal model of RP that carries a mutation of the Mertk gene. Lentivirus-mediated retinal gene transfer of PEDF prevented the nuclear translocation of AIF in vivo, resulting in the inhibition of the apoptotic loss of their photoreceptors in association with up-regulated Bcl-2 expression, which mediates the mitochondrial release of AIF. These findings clearly demonstrate that AIF is an essential executioner of photoreceptor apoptosis in inherited retinal degeneration and provide a therapeutic rationale for PEDF-mediated neuroprotective gene therapy for individuals with RP. PMID:18845835

  9. Neuroprotection in Glaucoma.

    PubMed

    Doozandeh, Azadeh; Yazdani, Shahin

    2016-01-01

    Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC) loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP) reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba extract, neurotrophic factors, antioxidants, calcium channel blockers, brimonidine, glaucoma medications with blood regulatory effect and nitric oxide synthase inhibitors are among compounds with possible neuroprotective activity in preclinical studies. A few agents (such as brimonidine or memantine) with neuroprotective effects in experimental studies have advanced to clinical trials; however the results of clinical trials for these agents have not been conclusive. Nevertheless, lack of compelling clinical evidence has not prevented the off-label use of some of these compounds in glaucoma practice. Stem cell transplantation has been reported to halt experimental neurodegenerative disease processes in the absence of cell replacement. It has been hypothesized that transplantation of some types of stem cells activates multiple neuroprotective pathways via secretion of various factors. The advantage of this approach is a prolonged and targeted effect. Important concerns in this field include the secretion of unwanted harmful mediators, graft survival issues and tumorigenesis. Neuroprotection in glaucoma, pharmacologically or by stem cell transplantation, is an interesting subject waiting for broad and multidisciplinary collaborative studies to better clarify its role in clinical practice. PMID:27413504

  10. Neuroprotection in Glaucoma

    PubMed Central

    Doozandeh, Azadeh; Yazdani, Shahin

    2016-01-01

    Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC) loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP) reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba extract, neurotrophic factors, antioxidants, calcium channel blockers, brimonidine, glaucoma medications with blood regulatory effect and nitric oxide synthase inhibitors are among compounds with possible neuroprotective activity in preclinical studies. A few agents (such as brimonidine or memantine) with neuroprotective effects in experimental studies have advanced to clinical trials; however the results of clinical trials for these agents have not been conclusive. Nevertheless, lack of compelling clinical evidence has not prevented the off-label use of some of these compounds in glaucoma practice. Stem cell transplantation has been reported to halt experimental neurodegenerative disease processes in the absence of cell replacement. It has been hypothesized that transplantation of some types of stem cells activates multiple neuroprotective pathways via secretion of various factors. The advantage of this approach is a prolonged and targeted effect. Important concerns in this field include the secretion of unwanted harmful mediators, graft survival issues and tumorigenesis. Neuroprotection in glaucoma, pharmacologically or by stem cell transplantation, is an interesting subject waiting for broad and multidisciplinary collaborative studies to better clarify its role in clinical practice. PMID:27413504

  11. Modulation of the Nitrergic Pathway via Activation of PPAR-γ Contributes to the Neuroprotective Effect of Pioglitazone Against Streptozotocin-Induced Memory Dysfunction.

    PubMed

    Prakash, Atish; Kumar, Anil; Ming, Long Chiau; Mani, Vasudevan; Majeed, Abu Bakar Abdul

    2015-07-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by impaired memory function and oxidative damage. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through modulating nitric oxide synthase. Recently, PPAR-γ agonists have shown neuroprotective effects in neurodegenerative disorders. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. The present study was designed to investigate the possible nitric oxide mechanism in the protective effect of pioglitazone against streptozotocin (STZ)-induced memory dysfunction. Wistar rats were intracerebroventricularly (ICV) injected with STZ. Then rats were treated with pioglitazone, NO modulators [L-arginine and nitro-L-arginine methyl ester (L-NAME)] for 21 days. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and mito-oxidative parameters, TNF-α, IL-6, and caspase-3 activity were measured. STZ-treated rats showed a memory deficit and significantly increased in mito-oxidative damage and inflammatory mediators and apoptosis in the hippocampus. Chronic treatment of pioglitazone significantly improved memory retention and attenuated mito-oxidative damage parameters, inflammatory markers, and apoptosis in STZ-treated rats. However, L-arginine pretreatment with lower dose of pioglitazone has not produced any protective effect as compared to per se. Furthermore, pretreatment of L-NAME significantly potentiated its protective effect, which indicates the involvement of nitric oxide for activation of PPAR-γ action. These results demonstrate that pioglitazone offers protection against STZ-induced memory dysfunction possibly due to its antioxidant, anti-inflammatory, and anti-apoptotic action mediating nitric oxide pathways and, therefore, could have a therapeutic potential in AD. PMID:25854775

  12. The inhibition of transforming growth factor beta-activated kinase 1 contributed to neuroprotection via inflammatory reaction in pilocarpine-induced rats with epilepsy.

    PubMed

    Tian, Q; Xiao, Q; Yu, W; Gu, M; Zhao, N; Lü, Y

    2016-06-14

    Recently, more and more studies support that inflammation is involved in the pathogenesis of epilepsy. Although TGFβ signaling is involved in epileptogenesis, whether TGFβ-associated neuroinflammation is sufficient to regulate epilepsy remains unknown to date. Furthermore, tumor necrosis factor-α receptor-associated factor-6 (TRAF6), transforming growth factor beta-activated kinase 1 (TAK1), which are the key elements of TGFβ-associated inflammation, is still unclear in epilepsy. Therefore, the present study aimed to explore the role of TRAF6 and TAK1 in pilocarpine-induced epileptic rat model. Firstly, the gene levels and protein expression of TRAF6 and TAK1 were detected in different time points after pilocarpine-induced status epilepticus (SE). 5z-7-oxozeaenol treatment (TAK1 antagonist) was then performed; the changes in TRAF6, TAK1, phosphorylated-TAK1 (P-TAK1), interleukin-1β (IL-1β) levels, neuronal survival and apoptosis, and seizure activity were detected. Our results showed that expressions of TRAF6 were increased after SE, reached the peak in 7day, maintained at the high level to 30days, and the TAK1, P-TAK1 levels were increased after SE following time. After 5z-7-oxozeaenol treatment in epileptic rats, TRAF6-TAK1-P-TAK1 signaling protein expressions were reduced, inflammatory cytokine IL-1β expression was decreased, neuron survival index was improved, the neuron apoptosis index was decreased and seizure durations were alleviated. In conclusion, the expression of TRAF6 and TAK1 are related to the progression of epilepsy. TAK1 might be a potential intervention target for the treatment of epilepsy via neuroprotection. PMID:27012613

  13. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways.

    PubMed

    Siddiq, Ambreena; Aminova, Leila R; Troy, Carol M; Suh, Kyungsun; Messer, Zachary; Semenza, Gregg L; Ratan, Rajiv R

    2009-07-01

    Oxidative stress contributes to tissue injury in conditions ranging from cardiovascular disease to stroke, spinal cord injury, neurodegeneration, and perhaps even aging. Yet the efficacy of antioxidants in human disease has been mixed at best. We need a better understanding of the mechanisms by which established antioxidants combat oxidative stress. Iron chelators are well established inhibitors of oxidative death in both neural and non-neural tissues, but their precise mechanism of action remains elusive. The prevailing but not completely substantiated view is that iron chelators prevent oxidative injury by suppressing Fenton chemistry and the formation of highly reactive hydroxyl radicals. Here, we show that iron chelation protects, rather unexpectedly, by inhibiting the hypoxia-inducible factor prolyl 4-hydroxylase isoform 1 (PHD1), an iron and 2-oxoglutarate-dependent dioxygenase. PHD1 and its isoforms 2 and 3 are best known for stabilizing transcriptional regulators involved in hypoxic adaptation, such as HIF-1alpha and cAMP response element-binding protein (CREB). Yet we find that global hypoxia-inducible factor (HIF)-PHD inhibition protects neurons even when HIF-1alpha and CREB are directly suppressed. Moreover, two global HIF-PHD inhibitors continued to be neuroprotective even in the presence of diminished HIF-2alpha levels, which itself increases neuronal susceptibility to oxidative stress. Finally, RNA interference to PHD1 but not isoforms PHD2 or PHD3 prevents oxidative death, independent of HIF activation. Together, these studies suggest that iron chelators can prevent normoxic oxidative neuronal death through selective inhibition of PHD1 but independent of HIF-1alpha and CREB; and that HIF-2alpha, not HIF-1alpha, regulates susceptibility to normoxic oxidative neuronal death. PMID:19587290

  14. Neuroprotective compounds of Tilia amurensis

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Eom, Min Rye; Jung, Youn Sik; Ma, Choong Je

    2015-01-01

    Background: Tilia amurensis (Tiliacese) has been used for anti-tumor and anti-inflammatory in Korea, China, and Japan. Objective: In this study, we isolated five compounds from T. amurensis and determined whether protected neuronal cells against glutamate-induced oxidative stress in HT22 cells. Materials and Methods: Compounds were isolated using chromatographic techniques including silica gel, Sephadex LH-20 open column and high performance liquid chromatography analysis, and evaluated neuroprotective effect in HT22 cells by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: β-D-fructofuranosyl α-D-glucopyranoside (1), (-)-epicatechin (2), nudiposide (3), lyoniside (4), and scopoletin (5) were isolated by bioactivity-guided fractionation from the ethyl acetate fraction of T. amurensis. Among them, (-)-epicatechin, nudiposide, lyoniside, and scopoletin had significant neuroprotective activities against glutamate-injured neurotoxicity in HT22 cells. Conclusion: These results demonstrated that compound two, three, four, and five have a pronounced protective effect against glutamate-induced neurotoxicity in HT22 cells. PMID:26664019

  15. Neuroprotection by the synthetic neurosteroid enantiomers ent-PREGS and ent-DHEAS against Aβ25-35 peptide-induced toxicity in vitro and in vivo in mice

    PubMed Central

    Villard, Vanessa; Alméras, Marion; Krishnan, Kathiresan; Covey, Douglas F.; Maurice, Tangui; Akwa, Yvette

    2014-01-01

    Rationale PREGS and DHEAS are pro-mnesic, anti-amnesic and neuroprotective steroids in rodents. In Alzheimer's disease (AD) patient brains, their low concentrations are correlated with high levels of Aβ and tau proteins. The unnatural enantiomer ent-PREGS enhanced memory in rodents. We investigated here whether ent-PREGS and ent-DHEAS could be neuroprotective in AD models. Objective The effects of PREGS, ent-PREGS, DHEAS and ent-DHEAS against Aβ25-35 peptide-induced toxicity were examined in vitro on B104 neuroblastoma cells and in vivo in mice. Methods B104 cells pretreated with the steroids before Aβ25-35 were analyzed by flow cytometry measuring cell viability and death processes. Mice injected intracerebroventricularly with Aβ25-35 and the steroids, were analyzed for their memory abilities. Additionally, lipid peroxidation levels in the hippocampus were measured. Results ent-PREGS and PREGS significantly attenuated the Aβ25-35-induced decrease in cell viability. Both steroids prevented the Aβ25-35-induced increase in late apoptotic cells. PREGS further attenuated the ratio of necrotic cells. ent-DHEAS and DHEAS significantly reduced the Aβ25-35-induced toxicity and prevented the cells from entering late apoptosis and necrosis. All steroids stimulated neurite outgrowth per se and prevented the Aβ25-35-induced decrease. In vivo, ent-PREGS and ent-DHEAS significantly attenuated the Aβ25-35-induced decrease in memory (spontaneous alternation and passive avoidance) and an increase in lipid peroxidation levels. In contrast to the natural steroids, both enantiomers prevented amnesia when injected 6 h before Aβ25-35 in contrast to the natural steroids. Conclusion The unnatural steroids ent-PREGS and ent-DHEAS are potent neuroprotective agents and could be effective therapeutical tools in AD. PMID:24481566

  16. Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons.

    PubMed

    Yin, Chunchun; Luo, Xiaoping; Duan, Yuqing; Duan, Wenyi; Zhang, Haihui; He, Yuanqing; Sun, Guibo; Sun, Xiaobo

    2016-08-01

    The present study investigated the protective effects of lotus seedpod procyanidins (LSPCs) on extremely low frequency electromagnetic field (ELF-EMF)-induced neurotoxicity in primary cultured rat hippocampal neurons and the underlying molecular mechanism. The results of MTT, morphological observation, superoxide dismutase (SOD) and malondialdehyde (MDA) assays showed that compared with control, incubating neurons under ELF-EMF exposure significantly decreased cell viability and increased the number of apoptotic cells, whereas LSPCs evidently protected the hippocampal neurons against ELF-EMF-induced cell damage. Moreover, a certain concentration of LSPCs inhibited the elevation of intracellular reactive oxygen species (ROS) and Ca(2+) level, as well as prevented the disruption of mitochondrial membrane potential induced by ELF-EMF exposure. In addition, supplementation with LSPCs could alleviate DNA damage, block cell cycle arrest at S phase, and inhibit apoptosis and necrosis of hippocampal neurons under ELF-EMF exposure. Further study demonstrated that LSPCs up-regulated the activations of Bcl-2, Bcl-xl proteins and suppressed the expressions of Bad, Bax proteins caused by ELF-EMF exposure. In conclusion, these findings revealed that LSPCs protected against ELF-EMF-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptotic pathway. PMID:27470406

  17. Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment.

    PubMed

    Phyu, Moe Pwint; Tangpong, Jitbanjong

    2014-08-01

    Lead poisoning is a common environmental toxicity and low level of lead exposure is responsible for neurobehavioral or intelligence defects. This study was designed to investigate the protective effect of a xanthone derivative of Garcinia mangostana against lead-induced acetycholinesterase (AChE) dysfunction and cognitive impairment in mice. ICR mice were exposed to lead acetate (Pb) in drinking water (1%) with or without xanthone co-administration (100 and 200mg/kgBW/day) for 38days. Xanthone possesses a high phenolic content, which is positive correlation with its antioxidant activity (R(2)=0.98). The IC50 of xanthone on scavenging free radical activities, hydroxyl radical, superoxide radical, hydrogen peroxide and nitric oxide in cell-free system were 0.48±0.08, 1.88±0.09, 2.20±0.03 and 0.98±0.40mg/mL, respectively. We found that Pb induced AChE dysfunction and memory deficit in a dose dependent manner, indicated by in vitro and in vivo studies. However, xanthone significantly restored AChE activity in the blood and brains of mice and prevented Pb-induced neurobehavioral defect indicators with Forced Swimming and Morris water maze tests. Xanthone treatment improved all indicators compared to the Pb-treated group. In conclusion, xanthone alleviates Pb-induced neurotoxicity, in part, by suppression of oxidative damage and reversing AChE activity with a reduction in learning deficit and memory loss. PMID:24795231

  18. Neuroprotection by Polynitrogen Manganese Complexes: Regulation of Reactive Oxygen Species-Related Pathways.

    PubMed

    Chen, Chunxia; Cao, Jing; Ma, Xiaoyan; Wang, Xiaobo; Chen, Qiuyun; Yan, Shihai; Zhao, Ningwei; Geng, Zhirong; Wang, Zhilin

    2016-01-01

    Cell death in the central nervous system causes neurologic diseases, in which reactive oxygen species (ROS) play a critical role by either inducing cellular oxidative stress or by increasing the cell tolerance against insult. Neurologic diseases may potentially be treated by regulating ROS levels in a certain range with small molecules. We studied preconditioning with two polynitrogen manganese complexes (1 and 2) to regulate intracellular ROS levels in the protection of both the differentiated rat pheochromocytoma cell line (PC12 cells) and neurons against H2O2-induced apoptosis. Pre-treatment with the two complexes attenuated the cell apoptosis caused by H2O2. And the ROS-related neuroprotective mechanisms were explored. Both complexes activate the hypoxia inducible factor-related pathways and increase the cell adaptation to oxidative stress. Pre-treatment with complex 1 eliminated intracellular ROS, which also activated antioxidase system, while short-term incubation of complex 2, generated low levels of ROS leading to cell survival. PMID:26857964

  19. Neuroprotection by Polynitrogen Manganese Complexes: Regulation of Reactive Oxygen Species-Related Pathways

    PubMed Central

    Chen, Chunxia; Cao, Jing; Ma, Xiaoyan; Wang, Xiaobo; Chen, Qiuyun; Yan, Shihai; Zhao, Ningwei; Geng, Zhirong; Wang, Zhilin

    2016-01-01

    Cell death in the central nervous system causes neurologic diseases, in which reactive oxygen species (ROS) play a critical role by either inducing cellular oxidative stress or by increasing the cell tolerance against insult. Neurologic diseases may potentially be treated by regulating ROS levels in a certain range with small molecules. We studied preconditioning with two polynitrogen manganese complexes (1 and 2) to regulate intracellular ROS levels in the protection of both the differentiated rat pheochromocytoma cell line (PC12 cells) and neurons against H2O2-induced apoptosis. Pre-treatment with the two complexes attenuated the cell apoptosis caused by H2O2. And the ROS-related neuroprotective mechanisms were explored. Both complexes activate the hypoxia inducible factor-related pathways and increase the cell adaptation to oxidative stress. Pre-treatment with complex 1 eliminated intracellular ROS, which also activated antioxidase system, while short-term incubation of complex 2, generated low levels of ROS leading to cell survival. PMID:26857964

  20. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    PubMed

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection. PMID:18368484

  1. Neuroprotective flavonoids from Flemingia macrophylla.

    PubMed

    Shiao, Young-Ji; Wang, Chuen-Neu; Wang, Wan-Yu; Lin, Yun-Lian

    2005-09-01

    Using an Abeta-induced neurotoxicity blocking assay to direct fractionation, three new flavonoids, fleminginin (1), flemingichromone (2), and flemingichalcone (3), and twenty known compounds were isolated from the active fractions of the aerial parts of Flemingia macrophylla. The structures of 1 - 3 were elucidated on the basis of spectroscopic data. When tested for neuroprotective activity, compound 2, osajin ( 4), 5,7,4'-trihydroxy-6,8-diprenylisoflavone (5), 5,7,4'-trihydroxy-6,3'-diprenylisoflavone (6), and aureole (7) protected neuronal cells from Abeta-induced damage with EC50 values of 31.43 +/- 3.16, 5.01 +/- 1.28, 11.25 +/-1.51, 4.47 +/- 0.65, 12.09 +/- 2.55 microM, respectively. PMID:16206038

  2. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons

    PubMed Central

    JEONG, JONG HEE; NOH, MIN-YOUNG; CHOI, JAE-HYEOK; LEE, HAIWON; KIM, SEUNG HYUN

    2016-01-01

    Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H2O2)-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H2O2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H2O2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c, apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H2O2, and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H2O2-induced cell death

  3. Hyperbaric oxygen preconditioning ameliorates blood-brain barrier damage induced by hypoxia through modulation of tight junction proteins in an in vitro model

    PubMed Central

    Hao, Lei; Guo, Xiuming; Zou, Can; Zhou, Huchuan; Tian, Hong; Zhang, Yubo; Song, Chuan; Liu, Lei

    2016-01-01

    Aim To explore the effects of hyperbaric oxygen preconditioning (HBOP) on the permeability of blood-brain barrier (BBB) and expression of tight junction proteins under hypoxic conditions in vitro. Methods A BBB in vitro model was constructed using the hCMEC/D3 cell line and used when its trans-endothelial electrical resistance (TEER) reached 80-120 Ω · cm2 (tested by Millicell-Electrical Resistance System). The cells were randomly divided into the control group cultured under normal conditions, the group cultured under hypoxic conditions (2%O2) for 24 h (hypoxia group), and the group first subjected to HBOP for 2 h and then to hypoxia (HBOP group). Occludin and ZO-1 expression were analyzed by immunofluorescence assay. Results Normal hCMEC/D3 was spindle-shaped and tightly integrated. TEER was significantly reduced in the hypoxia (P = 0.001) and HBOP group (P = 0.014) compared to control group, with a greater decrease in the hypoxia group. Occludin membranous expression was significantly decreased in the hypoxia group (P = 0.001) compared to the control group, but there was no change in the HBOP group. ZO-1 membranous expression was significantly decreased (P = 0.002) and cytoplasmic expression was significantly increased (P = 0.001) in the hypoxia group compared to the control group, although overall expression levels did not change. In the HBOP group, there was no significant change in ZO-1 expression compared to the control group. Conclusion Hyperbaric oxygen preconditioning protected the integrity of BBB in an in vitro model through modulation of occludin and ZO-1 expression under hypoxic conditions. PMID:26935614

  4. Reduction in postsystolic wall thickening during late preconditioning.

    PubMed

    Monnet, Xavier; Lucats, Laurence; Colin, Patrice; Derumeaux, Geneviève; Dubois-Rande, Jean-Luc; Hittinger, Luc; Ghaleh, Bijan; Berdeaux, Alain

    2007-01-01

    Brief coronary artery occlusion (CAO) and reperfusion induce myocardial stunning and late preconditioning. Postsystolic wall thickening (PSWT) also develops with CAO and reperfusion. However, the time course of PSWT during stunning and the regional function pattern of the preconditioned myocardium remain unknown. The goal of this study was to investigate the evolution of PSWT during myocardial stunning and its modifications during late preconditioning. Dogs were chronically instrumented to measure (sonomicrometry) systolic wall thickening (SWT), PSWT, total wall thickening (TWT = SWT + PSWT), and maximal rate of thickening (dWT/dt(max)). Two 10-min CAO (circumflex artery) were performed 24 h apart (day 0 and day 1, n = 7). At day 0, CAO decreased SWT and increased PSWT. During the first hours of the subsequent stunning, evolution of PSWT was symmetrical to that of SWT. At day 1, baseline SWT was similar to day 0, but PSWT was reduced (-66%), while dWT/dt(max) and SWT/TWT ratio increased (+48 and +14%, respectively). After CAO at day 1, stunning was reduced, indicating late preconditioning. Simultaneously vs. day 0, PSWT was significantly reduced, and dWT/dt(max) as well as SWT/TWT ratio were increased, i.e., a greater part of TWT was devoted to ejection. Similar decrease in PSWT was observed with a nonischemic preconditioning stimulus (rapid ventricular pacing, n = 4). In conclusion, a major contractile adaptation occurs during late preconditioning, i.e., the rate of wall thickening is enhanced and PWST is almost abolished. These phenotype adaptations represent potential approaches for characterizing stunning and late preconditioning with repetitive ischemia in humans. PMID:16920813

  5. Neuroprotective Effect of a DJ-1 Based Peptide in a Toxin Induced Mouse Model of Multiple System Atrophy

    PubMed Central

    Glat, Micaela Johanna; Ben-Zur, Tali; Barhum, Yael; Offen, Daniel

    2016-01-01

    Multiple System Atrophy (MSA) is a sporadic neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and dysautonomia, in various combinations. In MSA with parkinsonism (MSA-P), the degeneration is mainly restricted to the substantia nigra pars compacta and putamen. Studies have identified alterations in DJ-1 (PARK7), a key component of the anti-oxidative stress response, in Parkinson’s disease (PD) and MSA patients. Previously we have shown that a short DJ-1-based peptide named ND-13, protected cultured cells against neurotoxic insults and improved behavioral outcome in animal models of Parkinson’s disease (PD). In this study, we used the 3-Nitropropionic acid (3-NP)-induced mouse model of MSA and treated the animals with ND-13 in order to evaluate its therapeutic effects. Our results show that ND-13 protects cultured cells against oxidative stress generated by the mitochondrial inhibitor, 3-NP. Moreover, we show that ND-13 attenuates nigrostriatal degeneration and improves performance in motor-related behavioral tasks in 3-NP-treated mice. Our findings suggest a rationale for using ND-13 as a promising therapeutic approach for treatment of MSA. PMID:26901405

  6. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway.

    PubMed

    Wang, Mei; Qi, Da-Shi; Zhou, Cui; Han, Dong; Li, Pei-Pei; Zhang, Fang; Zhou, Xiao-Yan; Han, Meng; Di, Jie-Hui; Ye, Jun-Song; Yu, Hong-Min; Song, Yuan-Jian; Zhang, Guang-Yi

    2016-03-01

    Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway. PMID:26794251

  7. Operator-Based Preconditioning of Stiff Hyperbolic Systems

    SciTech Connect

    Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.

    2009-02-09

    We introduce an operator-based scheme for preconditioning stiff components encoun- tered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a char- acteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study.

  8. Ischemic preconditioning affects long-term cell fate through DNA damage-related molecular signaling and altered proliferation.

    PubMed

    Kapoor, Sorabh; Berishvili, Ekaterine; Bandi, Sriram; Gupta, Sanjeev

    2014-10-01

    Despite the potential of ischemic preconditioning for organ protection, long-term effects in terms of molecular processes and cell fates are ill defined. We determined consequences of hepatic ischemic preconditioning in rats, including cell transplantation assays. Ischemic preconditioning induced persistent alterations; for example, after 5 days liver histology was normal, but γ-glutamyl transpeptidase expression was observed, with altered antioxidant enzyme content, lipid peroxidation, and oxidative DNA adducts. Nonetheless, ischemic preconditioning partially protected from toxic liver injury. Similarly, primary hepatocytes from donor livers preconditioned with ischemia exhibited undesirably altered antioxidant enzyme content and lipid peroxidation, but better withstood insults. However, donor hepatocytes from livers preconditioned with ischemia did not engraft better than hepatocytes from control livers. Moreover, proliferation of hepatocytes from donor livers preconditioned with ischemia decreased under liver repopulation conditions. Hepatocytes from donor livers preconditioned with ischemia showed oxidative DNA damage with expression of genes involved in MAPK signaling that impose G1/S and G2/M checkpoint restrictions, including p38 MAPK-regulated or ERK-1/2-regulated cell-cycle genes such as FOS, MAPK8, MYC, various cyclins, CDKN2A, CDKN2B, TP53, and RB1. Thus, although ischemic preconditioning allowed hepatocytes to better withstand secondary insults, accompanying DNA damage and molecular events simultaneously impaired their proliferation capacity over the long term. Mitigation of ischemic preconditioning-induced DNA damage and deleterious molecular perturbations holds promise for advancing clinical applications. PMID:25128377

  9. Neuroprotection in glaucoma

    PubMed Central

    Vasudevan, Sushil K; Gupta, Viney; Crowston, Jonathan G

    2011-01-01

    Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications. PMID:21150020

  10. Preconditioning boosts regenerative programmes in the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    During preconditioning, exposure to a non-lethal harmful stimulus triggers a body-wide increase of survival and pro-regenerative programmes that enable the organism to better withstand the deleterious effects of subsequent injuries. This phenomenon has first been described in the mammalian heart, where it leads to a reduction of infarct size and limits the dysfunction of the injured organ. Despite its important clinical outcome, the actual mechanisms underlying preconditioning-induced cardioprotection remain unclear. Here, we describe two independent models of cardiac preconditioning in the adult zebrafish. As noxious stimuli, we used either a thoracotomy procedure or an induction of sterile inflammation by intraperitoneal injection of immunogenic particles. Similar to mammalian preconditioning, the zebrafish heart displayed increased expression of cardioprotective genes in response to these stimuli. As zebrafish cardiomyocytes have an endogenous proliferative capacity, preconditioning further elevated the re-entry into the cell cycle in the intact heart. This enhanced cycling activity led to a long-term modification of the myocardium architecture. Importantly, the protected phenotype brought beneficial effects for heart regeneration within one week after cryoinjury, such as a more effective cell-cycle reentry, enhanced reactivation of embryonic gene expression at the injury border, and improved cell survival shortly after injury. This study reveals that exposure to antecedent stimuli induces adaptive responses that render the fish more efficient in the activation of the regenerative programmes following heart damage. Our results open a new field of research by providing the adult zebrafish as a model system to study remote cardiac preconditioning. PMID:27440423

  11. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3β pathway.

    PubMed

    Zhang, Yini; Zhang, Zhao; Wang, Haitang; Cai, Nan; Zhou, Shuang; Zhao, Yaoping; Chen, Xue; Zheng, Shaoqiang; Si, Qi; Zhang, Wei

    2016-09-01

    Ginsenoside Rg1 is the primary active substance in ginseng, and it has multiple pharmacological actions. Investigations on the pharmacologic action of ginsenoside Rg1 have developed, with a particular focus on the regulation of metabolism. The present study hypothesized that the neuroprotective effects of ginsenoside Rg1 prevent cognitive impairment induced by isoflurane anesthesia via antioxidant, anti‑inflammatory and anti‑apoptotic effects, mediated by the phosphoinositide 3‑kinase (PI3K)/AKT/glycogen synthase kinase‑3β (GSK‑3β) pathway in aged rats. Sprague‑Dawley rats were divided into isoflurane and ginsenoside Rg1 groups and were treated with 20 mg/kg ginsenoside Rg1 for 7 days. Morris water maze was performed to analyze the cognitive function of the rats. Enzyme‑linked immunosorbent assays were used to analyze the levels of malondialdehyde, glutathione, interleukin (IL)‑1β, IL‑6 and caspase 3. The protein expression levels of AKT, GSK 3β, p21WAF1/CIP1 and p53 were measured using western blot analysis. Ginsenoside Rg1 significantly improved cognitive function, and exhibited antioxidant and anti‑inflammatory effects, demonstrating the neuroprotective effects of ginsenoside Rg1 against the effect of isoflurane anesthesia in the rats. In addition, ginsenoside Rg1 significantly reduced caspase‑3 activity, upregulated the expression of PI3K/AKT/GSK‑3β and downregulated the mRNA expression levels of p21WAF1/CIP1 and p53 in the aged rats exposed to isoflurane anesthesia. The data obtained in the present study provided evidence that the neuroprotective effects of ginsenoside Rg1 prevented the cognitive impairment induced by isoflurane anesthesia via antioxidant, anti‑inflammatory and anti‑apoptotic effects, mediated by the PI3K/AKT/GSK‑3β pathway. PMID:27485139

  12. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  13. Hyperbaric oxygen pretreatment and preconditioning.

    PubMed

    Camporesi, Enrico M; Bosco, Gerardo

    2014-01-01

    Exposure to hyperbaric oxygen (HBO2) before a crucial event, with the plan to create a preventing therapeutic situation, has been defined "preconditioning" and is emerging as a useful adjunct both in diving medicine as well before ischemic or inflammatory events. Oxygen pre-breathing before diving has been extensively documented in recreational, technical, commercial and military diving for tissue denitrogenation, resulting in reduced post-diving bubble loads, reduced decompression requirements and more rapid return to normal platelet function after a decompression. Preoxygenation at high atmospheric pressure has also been used in patients before exposure to clinical situations with beneficial effects, but the mechanisms of action have not yet been ascertained. During the reperfusion of ischemic tissue, oxygenated blood increases numbers and activities of oxidants generated in tissues. Previous reports showed that HBO2 preconditioning caused the activation of antioxidative enzymes and related genes in the central nervous system, including catalase (CAT), superoxide dismutase and heme oxygenase-1. Despite the increasing number of basic science publications on this issue, studies describing HBO2 preconditioning in the clinical practice remain scarce. To date, only a few studies have investigated the preconditioning effects of HBO2 in relation to the human brain and myocardium with robust and promising results. PMID:24984322

  14. Hyperbaric oxygen preconditioning attenuates neuroinflammation after intracerebral hemorrhage in rats by regulating microglia characteristics.

    PubMed

    Yang, Liming; Tang, Jun; Chen, Qianwei; Jiang, Bing; Zhang, Bo; Tao, Yihao; Li, Lin; Chen, Zhi; Zhu, Gang

    2015-11-19

    Intracerebral Hemorrhage (ICH) results in a detrimental neurologic disorder with complicated secondary brain injury. Hyperbaric oxygen preconditioning (HBOP) may be a safe and effective therapeutic method for ICH victims. Our previous studies have demonstrated that HBOP induces neuroprotection in cerebral ischemia and traumatic brain injury. This study aimed to investigate whether HBOP could alleviate neuroinflammation by regulating changes in microglia characteristics in a rat model of ICH. ICH was induced by autologous arterial blood injection, and animals were sacrificed at 12, 24, and 72 h post injury. We measured motor function and brain water content to evaluate the extent of inflammation. Fluoro-Jade C and TNF-α staining was used to characterize neuronal degeneration and neuroinflammatory cytokines, and immunofluorescence staining was performed for CD11b to show activated microglia and Iba-1 to show microglia. Our results indicate that motor dysfunction and brain water content are alleviated by HBOP, and Fluoro-Jade C staining demonstrates that neuron degeneration decreased in the HBOP group. The growth of Iba-1-positive microglia decreased in the HBOP group. Moreover, TNF-α was dynamically reduced in the HBOP group compared with the ICH group. CD11b-Iba-1 double staining demonstrated that the ratio of CD11b and Iba-1 was significantly decreased in the HBOP group. Overall, the data demonstrated that HBOP could significantly alleviate the ICH-induced neuroinflammation by regulating microglia characteristics changing. The phenomenon may propel the progress of the relation between microglia and HBOP and represent a novel target for ICH treatment. PMID:26301824

  15. Expression of Monocarboxylate Transporter Isoforms in Rat Skeletal Muscle Under Hypoxic Preconditioning and Endurance Training.

    PubMed

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2016-03-01

    Previously, we have reported the regulation of monocarboxylate transporters (MCT)1 and MCT4 by physiological stimuli such as hypoxia and exercise. In the present study, we have evaluated the effect of hypoxic preconditioning and training on expression of different MCT isoforms in muscles. We found the increased mRNA expression of MCT1, MCT11, and MCT12 after hypoxic preconditioning with cobalt chloride and training. However, the expression of other MCT isoforms increased marginally or even reduced after hypoxic preconditioning. Only the protein expression of MCT1 increased after hypoxia preconditioning. MCT2 protein expression increased after training only and MCT4 protein expression decreased both in preconditioning and hypoxic training. Furthermore, we found decreased plasma lactate level during hypoxia preconditioning (0.74-fold), exercise (0.78-fold), and hypoxia preconditioning along with exercise (0.67-fold), which indicates increased lactate uptake by skeletal muscle. The protein-protein interactions with hypoxia inducible factor-1 and MCT isoforms were also evaluated, but no interaction was found. In conclusion, we say that almost all MCTs are expressed in red gastrocnemius muscle at the mRNA level and their expression is regulated differently under hypoxia preconditioning and exercise condition. PMID:26716978

  16. Preconditioning ischemia time determines the degree of glycogen depletion and infarct size reduction in rat hearts.

    PubMed

    Barbosa, V; Sievers, R E; Zaugg, C E; Wolfe, C L

    1996-02-01

    The cardioprotective effect of preconditioning is associated with glycogen depletion and attenuation of intracellular acidosis during subsequent prolonged ischemia. This study determined the effects of increasing preconditioning ischemia time on myocardial glycogen depletion and on infarct size reduction. In addition, this study determined whether infarct size reduction by preconditioning correlates with glycogen depletion before prolonged ischemia. Anesthetized rats underwent a single episode of preconditioning lasting 1.25, 2.5, 5, or 10 minutes or multiple episodes cumulating in 10 (2 x 5 min) or 20 minutes (4 x 5 or 2 x 10 min) of preconditioning ischemia time, each followed by 5 minutes of reperfusion. Then both preconditioned and control rats underwent 45 minutes of ischemia induced by left coronary artery (LCA) occlusion and 120 minutes of reperfusion. After prolonged ischemia, infarct size was determined by dual staining with triphenyltetrazolium chloride and phthalocyanine blue dye. Glycogen levels were determined by an enzymatic assay in selected rats from each group before prolonged ischemia. We found that increasing preconditioning ischemia time resulted in glycogen depletion and infarct size reduction that could both be described by exponential functions. Furthermore, infarct size reduction correlated with glycogen depletion before prolonged ischemia (r = 0.98; p < 0.01). These findings suggest a role for glycogen depletion in reducing ischemic injury in the preconditioned heart. PMID:8579012

  17. Increased neuronal and astroglial aquaporin-1 immunoreactivity in rat striatum by chemical preconditioning with 3-nitropropionic acid.

    PubMed

    Hoshi, Akihiko; Tsunoda, Ayako; Yamamoto, Teiji; Tada, Mari; Kakita, Akiyoshi; Ugawa, Yoshikazu

    2016-07-28

    Aquaporin-1 (AQP1) is a water channel expressed in the choroid plexus and participates in forming cerebrospinal fluid. Interestingly, reactive astrocytes also express AQP1 in the central nervous system under some pathological conditions. On the other hand, 3-nitropropionic acid (3NP) is a mitochondrial toxin that causes selective degeneration of striatum; however, its chemical preconditioning is neuroprotective against cerebral ischemia. We previously reported that mild 3NP application is accompanied with numerous reactive astrocytes in rat striatum devoid of typical necrotic lesions. Therefore, we studied whether AQP1 in the rat striatum could be upregulated with reactive astrocytosis using the 3NP model. Immunohistochemical or immunofluorescence analysis showed that reactive astrocytosis in the striatum, which upregulates glial fibrillary acidic protein and glutamine synthetase, was induced by mild doses of 3NP administration. Intriguingly, after 3NP treatment, AQP1 was intensely expressed not only by the subpopulation of astroglia but also by neurons. The AQP1 immunoreactivity became more intensified at the early-subtoxic stage (ES: 24-48h), but not as much in the delayed-subtoxic stage (DS: 96-120h). In contrast, AQP4 expression in the striatum was downregulated after 3NP treatment, in particular during the ES stage. AQP1 upregulation/AQP4 downregulation induced under subtoxic 3NP treatment may play a pivotal role in water homeostasis and cell viability in the striatum. PMID:27181510

  18. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart

    PubMed Central

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP), velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax, and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk. PMID:26773185

  19. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart.

    PubMed

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP),velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk. PMID:26773185

  20. Preconditioning Operators on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nepomnyaschikh, S. V.

    1996-01-01

    We consider systems of mesh equations that approximate elliptic boundary value problems on arbitrary (unstructured) quasi-uniform triangulations and propose a method for constructing optimal preconditioning operators. The method is based upon two approaches: (1) the fictitious space method, i.e., the reduction of the original problem to a problem in an auxiliary (fictitious) space, and (2) the multilevel decomposition method, i.e., the construction of preconditioners by decomposing functions on hierarchical meshes. The convergence rate of the corresponding iterative process with the preconditioner obtained is independent of the mesh step. The preconditioner has an optimal computational cost: the number of arithmetic operations required for its implementation is proportional to the number of unknowns in the problem. The construction of the preconditioning operators for three dimensional problems can be done in the same way.

  1. [Pharmacological preconditioning in carotid endarterectomy].

    PubMed

    Kuznetsov, M R; Karalkin, A V; Fedin, A I; Virganskii, A O; Kunitsyn, N V; Kholopova, E A; Yumin, S M

    2015-01-01

    The study was aimed at examining efficacy of preoperative preparation (pharmacological preconditioning) for carotid endarterectomy in patients with chronic cerebrovascular insufficiency. For this purpose, we analysed the outcomes of surgical treatment in a total of 80 patients presenting with haemodynamically significant unilateral and bilateral lesions of carotid arteries. Of these, 40 patients were operated on immediately and a further 40 patients underwent surgery after pharmacological preconditioning with Actovegin taken at a daily dose of 1,200 mg for 1.5 months. It was demonstrated that preoperative preparation prior to surgery increases cerebral perfusion which is determined by means of single-photon emission computed tomography, thus substantially improving the outcomes of surgical treatment. Statistically significant differences in cognitive function of these groups of patients were revealed 7 days and 6 months after the operation. Improvement of cognitive functions was associated with fewer symptom-free postoperative cerebral ischaemic foci in various regions of the brain. A conclusion was made on a positive role of pharmacological preconditioning with Actovegin in surgical management of cerebrovascular insufficiency, first of all in relation to more complete restoration of cognitive functions. PMID:26355920

  2. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity.

    PubMed

    Noh, Min-Young; Koh, Seong H; Kim, Sung-Min; Maurice, Tangui; Ku, Sae-Kwang; Kim, Seung H

    2013-11-01

    The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional

  3. The Neuroprotective Effects of Justicidin A on Amyloid Beta25-35-Induced Neuronal Cell Death Through Inhibition of Tau Hyperphosphorylation and Induction of Autophagy in SH-SY5Y Cells.

    PubMed

    Gu, Ming-Yao; Kim, Joonki; Yang, Hyun Ok

    2016-06-01

    Justicidin A is a structurally defined arylnaphthalide lignan, which has been shown anti-cancer activity; however, the neuroprotective effect of justicidin A is still untested. In this study, we investigated the action of justicidin A on amyloid beta (Aβ)25-35-induced neuronal cell death via inhibition of the hyperphosphorylation of tau and induction of autophagy in SH-SY5Y cells. Pretreatment with justicidin A significantly elevated cell viability in cells treated with Aβ25-35. Western blot data demonstrated that justicidin A inhibited the Aβ25-35-induced up-regulation the levels of hyperphosphorylation of tau in SH-SY5Y cells. In addition, treatment with justicidin A significantly induced autophagy as measured by the increasing LC3 II/I ratio, an important autophagy marker. These studies showed that justicidin A inhibited activity of glycogen synthase kinase-3beta (GSK-3β), which is an important kinase in up-stream signaling pathways; inhibited hyperphosphorylation of tau in AD; and enhanced activity of AMP-activated protein kinase (AMPK), which is the key molecule for both hyperphosphorylation of tau and induction of autophagy. These data provide the first evidence that justicidin A protects SH-SY5Y cells from Aβ25-35-induced neuronal cell death through inhibition of hyperphosphorylation of tau and induction of autophagy via regulation the activity of GSK-3β and AMPK, and they also provide some insights into the relationship between tau protein hyperphosphorylation and autophagy. Thus, we conclude that justicidin A may have a potential role for neuroprotection and, therefore, may be used as a therapeutic agent for AD. PMID:26887582

  4. Neuroprotective Actions of Neurosteroids

    PubMed Central

    Borowicz, Kinga K.; Piskorska, Barbara; Banach, Monika; Czuczwar, Stanislaw J.

    2011-01-01

    Neurosteroids were initially defined as steroid hormones locally synthesized within the nervous tissue. Subsequently, they were described as steroid hormone derivatives that devoid hormonal action but still affect neuronal excitability through modulation of ionotropic receptors. Neurosteroids are further subdivided into natural (produced in the brain) and synthetic. Some authors distinguish between hormonal and regular neurosteroids in the group of natural ones. The latter group, including hormone metabolites like allopregnanolone or tetrahydrodeoxycorticosterone, is devoid of hormonal activity. Both hormones and their derivatives share, however, most of the physiological functions. It is usually very difficult to distinguish the effects of hormones and their metabolites. All these substances may influence seizure phenomena and exhibit neuroprotective effects. Neuroprotection offered by steroid hormones may be realized in both genomic and non-genomic mechanisms and involve regulation of the pro- and anti-apoptotic factors expression, intracellular signaling pathways, neurotransmission, oxidative, and inflammatory processes. Since regular neurosteroids show no affinity for steroid receptors, they may act only in a non-genomic mode. Multiple studies have been conducted so far to show efficacy of neurosteroids in the treatment of the central and peripheral nervous system injury, ischemia, neurodegenerative diseases, or seizures. In this review we focused primarily on neurosteroid mechanisms of action and their role in the process of neurodegeneration. Most of the data refers to results obtained in experimental studies. However, it should be realized that knowledge about neuroactive steroids remains still incomplete and requires confirmation in clinical conditions. PMID:22649375

  5. Neuroprotection in Preterm Infants

    PubMed Central

    Berger, R.; Söder, S.

    2015-01-01

    Preterm infants born before the 30th week of pregnancy are especially at risk of perinatal brain damage which is usually a result of cerebral ischemia or an ascending intrauterine infection. Prevention of preterm birth and early intervention given signs of imminent intrauterine infection can reduce the incidence of perinatal cerebral injury. It has been shown that administering magnesium intravenously to women at imminent risk of a preterm birth leads to a significant reduction in the likelihood of the infant developing cerebral palsy and motor skill dysfunction. It has also been demonstrated that delayed clamping of the umbilical cord after birth reduces the rate of brain hemorrhage among preterm infants by up to 50%. In addition, mesenchymal stem cells seem to have significant neuroprotective potential in animal experiments, as they increase the rate of regeneration of the damaged cerebral area. Clinical tests of these types of therapeutic intervention measures appear to be imminent. In the last trimester of pregnancy, the serum concentrations of estradiol and progesterone increase significantly. Preterm infants are removed abruptly from this estradiol and progesterone rich environment. It has been demonstrated in animal experiments that estradiol and progesterone protect the immature brain from hypoxic-ischemic lesions. However, this neuroprotective strategy has unfortunately not yet been subject to sufficient clinical investigation. PMID:25650134

  6. Human Umbilical Cord Blood Cells Induce Neuroprotective Change in Gene Expression Profile in Neurons After Ischemia Through Activation of Akt Pathway

    PubMed Central

    Shahaduzzaman, M. D.; Mehta, Vijay; Golden, Jason E.; Rowe, Derrick D.; Green, Suzanne; Tadinada, Ramya; Foran, Elspeth A.; Sanberg, Paul R.; Pennypacker, Keith R.; Willing, Alison E.

    2016-01-01

    Human umbilical cord blood (HUCB) cell therapies have shown promising results in reducing brain infarct volume and most importantly in improving neurobehavioral function in rat permanent middle cerebral artery occlusion, a model of stroke. In this study, we examined the gene expression profile in neurons subjected to oxygen-glucose deprivation (OGD) with or without HUCB treatment and identified signaling pathways (Akt/MAPK) important in eliciting HUCB-mediated neuroprotective responses. Gene chip microarray analysis was performed using RNA samples extracted from the neuronal cell cultures from four experimental groups: normoxia, normoxia + HUCB, OGD, and OGD + HUCB. Both quantitative RT-PCR and immunohistochemistry were carried out to verify the microarray results. Using the Genomatix software program, promoter regions of selected genes were compared to reveal common transcription factor-binding sites and, subsequently, signal transduction pathways. Under OGD condition, HUCB cells significantly reduced neuronal loss from 68% to 44% [one-way ANOVA, F(3, 16) = 11, p = 0.0003]. Microarray analysis identified mRNA expression of Prdx5, Vcam1, CCL20, Alcam, and Pax6 as being significantly altered by HUCB cell treatment. Inhibition of the Akt pathway significantly abolished the neuroprotective effect of HUCB cells [one-way ANOVA, F(3, 11) = 8.663, p = 0.0031]. Our observations show that HUCB neuroprotection is dependent on the activation of the Akt signaling pathway that increases transcription of the Prdx5 gene. We concluded that HUCB cell therapy would be a promising treatment for stroke and other forms of brain injury by modifying acute gene expression to promote neural cell protection. PMID:25413246

  7. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  8. Using the Electroretinogram to Assess Function in the Rodent Retina and the Protective Effects of Remote Limb Ischemic Preconditioning.

    PubMed

    Brandli, Alice; Stone, Jonathan

    2015-01-01

    The ERG is the sum of all retinal activity. The ERG is usually recorded from the cornea, which acts as an antenna that collects and sums signals from the retina. The ERG is a sensitive measure of changes in retinal function that are pan-retinal, but is less effective for detecting damage confined to a small area of retina. In the present work we describe how to record the 'flash' ERG, which is the potential generated when the retina is exposed to a brief light flash. We describe methods of anaesthesia, mydriasis and corneal management during recording; how to keep the retina dark adapted; electrode materials and placement; the range and calibration of stimulus energy; recording parameters and the extraction of data. We also describe a method of inducing ischemia in one limb, and how to use the ERG to assess the effects of this remote-from-the-retina ischemia on retinal function after light damage. A two-flash protocol is described which allows isolation of the cone-driven component of the dark-adapted ERG, and thereby the separation of the rod and cone components. Because it can be recorded with techniques that are minimally invasive, the ERG has been widely used in studies of the physiology, pharmacology and toxicology of the retina. We describe one example of this usefulness, in which the ERG is used to assess the function of the light-damaged retina, with and without a neuroprotective intervention; preconditioning by remote ischemia. PMID:26131649

  9. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms.

    PubMed

    Sharma, Roohani; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2015-12-01

    Ischemic conditioning is an intrinsic protective mechanism in which repeated short episodes of reversible ischemia protects the tissue and increases its tolerance against a subsequent longer period of ischemia (index ischemia). Bradykinin is a physiologically and pharmacologically active peptide of the kallikrein-kinin system. Besides the involvement of bradykinin in a variety of physiological and pathological responses such as pain, inflammation and in cardiovascular system as a potent vasodilator, it also acts as an endogenous cytoprotective mediator in the ischemic tissue. Pretreatment with various pharmacological modulators of bradykinin has confirmed the involvement of bradykinin in ischemic conditioning-induced protection. The protective actions of bradykinin in three major paradigms of ischemic conditioning i.e. ischemic preconditioning, ischemic postconditioning and remote ischemic preconditioning involves activation and regulation of various endogenous signaling cascades to render the heart resistant to infarction. In ischemic preconditioning, bradykinin exerts cardioprotective effect via activation of PI3K/Akt/eNOS signaling pathway and regulation of redox state via NO release. The role of bradykinin and its B2 receptors in ischemic-postconditioning induced neuroprotection has been described mainly due to its increased redox signaling cascade and activation of mitochondrial anti-apoptotic pathway. Furthermore, its cardioprotective role during remote ischemic preconditioning has been associated with activation of B2 receptors mediated neurogenic pathway and internalization of B2 receptors along with the formation of signalosomes that activates intracellular cytoprotective transduction pathways. The present review focuses on the potential role of bradykinin in mediating different forms of ischemic conditioning (pre/post/remote)-induced cardioprotection and neuroprotection along with the possible mechanisms. PMID:26499976

  10. Management of Preconditioned Calves and Impacts of Preconditioning.

    PubMed

    Hilton, W Mark

    2015-07-01

    When studying the practice of preconditioning (PC) calves, many factors need to be examined to determine if cow-calf producers should make this investment. Factors such as average daily gain, feed efficiency, available labor, length of the PC period, genetics, and marketing options must be analyzed. The health sales price advantage is an additional benefit in producing and selling PC calves but not the sole determinant of PC's financially feasibility. Studies show that a substantial advantage of PC is the selling of additional pounds at a cost of gain well below the marginal return of producing those additional pounds. PMID:26139187

  11. A Combination of Remote Ischemic Perconditioning and Cerebral Ischemic Postconditioning Inhibits Autophagy to Attenuate Plasma HMGB1 and Induce Neuroprotection Against Stroke in Rat.

    PubMed

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-04-01

    Remote ischemic perconditioning (RIPerC) and ischemic postconditioning (IPOC) are well-acknowledged neuroprotective procedures during ischemic injury. The present study established a combined RIPerC and IPOC (RIPerC + IPOC) model in rats and studied how it would regulate the autophagy process and affect HMGB1 levels in a rat model of middle cerebral artery occlusion (MCAO). Rats with MCAO were treated with RIPerC by fastening and release of the left hind limb to achieve 4 cycles of 5 min remote ischemia reperfusion, 40 min prior to cerebral reperfusion, and then treated with IPOC by exposing the cerebral middle artery to 3 cycles of 30 s reperfusion/30 s occlusion at the onset of cerebral reperfusion. Infarction volumes, neurological deficits, and pathological changes were assessed 24 h after ischemia. The autophagy activator rapamycin (RAP) and the autophagy inhibitor 3-methyladenine (3-MA) were administrated for further mechanism. The expression and location of HMGB1 and the autophagy-related proteins like LC3, Beclin1, and P62 as well as plasma HMGB1 levels were measured. Our results suggested that RIPerC + IPOC attenuated plasma HMGB1 levels to intensify its neuroprotective effect against cerebral ischemic reperfusion injury via inhibiting the autophagy process. PMID:26852332

  12. Neuroprotection and antioxidants

    PubMed Central

    Lalkovičová, Maria; Danielisová, Viera

    2016-01-01

    Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality. PMID:27482198

  13. Therapeutic Hypothermia for Neuroprotection

    PubMed Central

    Karnatovskaia, Lioudmila V.; Wartenberg, Katja E.

    2014-01-01

    The earliest recorded application of therapeutic hypothermia in medicine spans about 5000 years; however, its use has become widespread since 2002, following the demonstration of both safety and efficacy of regimens requiring only a mild (32°C-35°C) degree of cooling after cardiac arrest. We review the mechanisms by which hypothermia confers neuroprotection as well as its physiological effects by body system and its associated risks. With regard to clinical applications, we present evidence on the role of hypothermia in traumatic brain injury, intracranial pressure elevation, stroke, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy. Based on the current knowledge and areas undergoing or in need of further exploration, we feel that therapeutic hypothermia holds promise in the treatment of patients with various forms of neurologic injury; however, additional quality studies are needed before its true role is fully known. PMID:24982721

  14. Neuroprotection and antioxidants.

    PubMed

    Lalkovičová, Maria; Danielisová, Viera

    2016-06-01

    Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality. PMID:27482198

  15. Neuroprotective potential of phytochemicals.

    PubMed

    Kumar, G Phani; Khanum, Farhath

    2012-07-01

    Cognitive dysfunction is a major health problem in the 21st century, and many neuropsychiatric disorders and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's Disease dementia, cerebrovascular impairment, seizure disorders, head injury and Parkinsonism, can be severly functionally debilitating in nature. In course of time, a number of neurotransmitters and signaling molecules have been identified which have been considered as therapeutic targets. Conventional as well newer molecules have been tried against these targets. Phytochemicals from medicinal plants play a vital role in maintaining the brain's chemical balance by influencing the function of receptors for the major inhibitory neurotransmitters. In traditional practice of medicine, several plants have been reported to treat cognitive disorders. In this review paper, we attempt to throw some light on the use of medicinal herbs to treat cognitive disorders. In this review, we briefly deal with some medicinal herbs focusing on their neuroprotective active phytochemical substances like fatty acids, phenols, alkaloids, flavonoids, saponins, terpenes etc. The resistance of neurons to various stressors by activating specific signal transduction pathways and transcription factors are also discussed. It was observed in the review that a number of herbal medicines used in Ayurvedic practices as well Chinese medicines contain multiple compounds and phytochemicals that may have a neuroprotective effect which may prove beneficial in different neuropsychiatric and neurodegenerative disorders. Though the presence of receptors or transporters for polyphenols or other phytochemicals of the herbal preparations, in brain tissues remains to be ascertained, compounds with multiple targets appear as a potential and promising class of therapeutics for the treatment of diseases with a multifactorial etiology. PMID:23055633

  16. Neuroprotective potential of phytochemicals

    PubMed Central

    Kumar, G. Phani; Khanum, Farhath

    2012-01-01

    Cognitive dysfunction is a major health problem in the 21st century, and many neuropsychiatric disorders and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's Disease dementia, cerebrovascular impairment, seizure disorders, head injury and Parkinsonism, can be severly functionally debilitating in nature. In course of time, a number of neurotransmitters and signaling molecules have been identified which have been considered as therapeutic targets. Conventional as well newer molecules have been tried against these targets. Phytochemicals from medicinal plants play a vital role in maintaining the brain's chemical balance by influencing the function of receptors for the major inhibitory neurotransmitters. In traditional practice of medicine, several plants have been reported to treat cognitive disorders. In this review paper, we attempt to throw some light on the use of medicinal herbs to treat cognitive disorders. In this review, we briefly deal with some medicinal herbs focusing on their neuroprotective active phytochemical substances like fatty acids, phenols, alkaloids, flavonoids, saponins, terpenes etc. The resistance of neurons to various stressors by activating specific signal transduction pathways and transcription factors are also discussed. It was observed in the review that a number of herbal medicines used in Ayurvedic practices as well Chinese medicines contain multiple compounds and phytochemicals that may have a neuroprotective effect which may prove beneficial in different neuropsychiatric and neurodegenerative disorders. Though the presence of receptors or transporters for polyphenols or other phytochemicals of the herbal preparations, in brain tissues remains to be ascertained, compounds with multiple targets appear as a potential and promising class of therapeutics for the treatment of diseases with a multifactorial etiology. PMID:23055633

  17. Rural water-supply and sanitation planning: The use of socioeconomic preconditions in project identification

    NASA Astrophysics Data System (ADS)

    Warner, Dennis B.

    1984-02-01

    Recognition of the socioeconomic preconditions for successful rural water-supply and sanitation projects in developing countries is the key to identifying a new project. Preconditions are the social, economic and technical characteristics defining the project environment. There are two basic types of preconditions: those existing at the time of the initial investigation and those induced by subsequent project activities. Successful project identification is dependent upon an accurate recognition of existing constraints and a carefully tailored package of complementary investments intended to overcome the constraints. This paper discusses the socioeconomic aspects of preconditions in the context of a five-step procedure for project identification. The procedure includes: (1) problem identification; (2) determination of socioeconomic status; (3) technology selection; (4) utilization of support conditions; and (5) benefit estimation. Although the establishment of specific preconditions should be based upon the types of projects likely to be implemented, the paper outlines a number of general relationships regarding favourable preconditions in water and sanitation planning. These relationships are used within the above five-step procedure to develop a set of general guidelines for the application of preconditions in the identification of rural water-supply and sanitation projects.

  18. Investigation of Reperfusion Injury and Ischemic Preconditioning in Microsurgry

    PubMed Central

    Wang, Wei Zhong

    2008-01-01

    Ischemia/reperfusion (I/R) is inevitable in many vascular and musculoskeletal traumas, diseases, free tissue transfers, and during time-consuming reconstructive surgeries in the extremities. Salvage of a prolonged ischemic extremity or flap still remains a challenge for the microvascular surgeon. One of the common complications after microsurgery is I/R-induced tissue death or I/R injury. Twenty years after the discovery, ischemic preconditioning (IPC) has emerged as a powerful method for attenuating I/R injury in a variety of organs or tissues. However, its therapeutic expectations still need to be fulfilled. In this article, the author reviews some important experimental evidences of I/R injury as well as preconditioning-induced protection in the fields relevant to microsurgery. PMID:18946882

  19. Mechanism of neuroprotection by donepezil pretreatment in rat cortical neurons chronically treated with donepezil.

    PubMed

    Takada-Takatori, Yuki; Kume, Toshiaki; Ohgi, Yuta; Izumi, Yasuhiko; Niidome, Tetsuhiro; Fujii, Takeshi; Sugimoto, Hachiro; Akaike, Akinori

    2008-12-01

    Previously, we showed that in rat cortical neurons, chronic donepezil treatment (10 microM, 4 days) up-regulates nicotinic receptors (nAChR) and makes neurons more sensitive to the neuroprotective effect of donepezil. Here we examined the mechanism of donepezil-induced neuroprotection in neurons chronically treated with donepezil. The mechanism of neuroprotection was examined under different conditions of exposure to glutamate, acute and moderate, that induce cell death associated with necrotic and apoptotic cell death, respectively. Concomitant treatment with antagonists of nAChRs but not muscarinic receptors inhibited donepezil pretreatment-induced neuroprotection against acute glutamate treatment-induced death. Donepezil pretreatment prevented acute glutamate- and ionomycin-induced neurotoxicity, but not S-nitrosocysteine-induced neurotoxicity, suggesting that donepezil protects neurons via nAChR at levels before nitric oxide synthase activation against acute glutamate neurotoxicity. Concomitant treatment with antagonists of nAChR or phosphatidylinositol 3-kinase (PI3K) signaling inhibitors significantly inhibited neuroprotection against moderate glutamate neurotoxicity and decreased the phosphorylation level of Akt. Neuroprotection was also inhibited by treatment with inhibitor of mitogen-activated protein kinase (MAPK) kinase. These results suggest that donepezil protects neurons against moderate glutamate neurotoxicity via nAChR-PI3K-Akt and MAPK signaling pathways. This study provides novel insight into the mechanism of donepezil-induced neuroprotection that involves nAChR up-regulation. PMID:18655200

  20. Preconditioning for multidimensional TOMBO imaging.

    PubMed

    Horisaki, Ryoichi; Tanida, Jun

    2011-06-01

    In this Letter, we propose a preconditioning method to improve the convergence speed of iterative reconstruction algorithms in a compact, multidimensional, compound-eye imaging system called the thin observation module by bound optics. The condition number of the system matrix is improved by using a preconditioner matrix. To calculate the preconditioner matrix, the system model is expressed in the frequency domain. The proposed method is simulated by using a compressive sensing algorithm called the two-step iterative shrinkage/thresholding algorithm. The results showed improved reconstruction fidelity with a certain number of iterations for high signal-to-noise ratio measurements. PMID:21633452

  1. Insulin Neuroprotection and the Mechanisms

    PubMed Central

    Yu, Li-Yun; Pei, Yu

    2015-01-01

    Objective: To analyze the mechanism of neuroprotection of insulin and which blood glucose range was benefit for insulin exerting neuroprotective action. Data Sources: The study is based on the data from PubMed. Study Selection: Articles were selected with the search terms “insulin”, “blood glucose”, “neuroprotection”, “brain”, “glycogen”, “cerebral ischemia”, “neuronal necrosis”, “glutamate”, “γ-aminobutyric acid”. Results: Insulin has neuroprotection. The mechanisms include the regulation of neurotransmitter, promoting glycogen synthesis, and inhibition of neuronal necrosis and apoptosis. Insulin could play its role in neuroprotection by avoiding hypoglycemia and hyperglycemia. Conclusions: Intermittent and long-term infusion insulin may be a benefit for patients with ischemic brain damage at blood glucose 6–9 mmol/L. PMID:25836621

  2. Nucleotides in neuroregeneration and neuroprotection.

    PubMed

    Miras-Portugal, M Teresa; Gomez-Villafuertes, Rosa; Gualix, Javier; Diaz-Hernandez, Juan Ignacio; Artalejo, Antonio R; Ortega, Felipe; Delicado, Esmerilda G; Perez-Sen, Raquel

    2016-05-01

    Brain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function is based on activation of endogenous adult neural stem/progenitor cells. The implication of purinergic signaling in stem cell biology, including regulation of proliferation, differentiation, and cell death has become evident in the last decade. In this regard, current strategies of acute transplantation of ependymal stem/progenitor cells after spinal cord injury restore altered expression of P2X4 and P2X7 receptors and improve functional locomotor recovery. The expression of both receptors is transcriptionally regulated by Sp1 factor, which plays a key role in the startup of the transcription machinery to induce regeneration-associated genes expression. Finally, general signaling pathways triggered by nucleotide receptors in neuronal populations converge on several intracellular kinases, such as PI3K/Akt, GSK3 and ERK1,2, as well as the Nrf-2/heme oxigenase-1 axis, which specifically link them to neuroprotection. In this regard, regulation of dual specificity protein phosphatases can become novel mechanism of actions for nucleotide receptors that associate them to cell homeostasis regulation. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26359530

  3. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology.

    PubMed

    Piermartiri, Tetsade; Pan, Hongna; Figueiredo, Taiza H; Marini, Ann M

    2015-01-01

    α-Linolenic acid (ALA) is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP) nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE) that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders. PMID:26569216

  4. The Microglial α7-Acetylcholine Nicotinic Receptor Is a Key Element in Promoting Neuroprotection by Inducing Heme Oxygenase-1 via Nuclear Factor Erythroid-2-Related Factor 2

    PubMed Central

    Parada, Esther; Egea, Javier; Buendia, Izaskun; Negredo, Pilar; Cunha, Ana C.; Cardoso, Silvia; Soares, Miguel P.

    2013-01-01

    Abstract Aims: We asked whether the neuroprotective effect of cholinergic microglial stimulation during an ischemic event acts via a mechanism involving the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) and/or the expression of its target cytoprotective gene, heme oxygenase-1 (HO-1). Specifically, the protective effect of the pharmacologic alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonist PNU282987 was analyzed in organotypic hippocampal cultures (OHCs) subjected to oxygen and glucose deprivation (OGD) in vitro as well as in photothrombotic stroke in vivo. Results: OHCs exposed to OGD followed by reoxygenation elicited cell death, measured by propidium iodide and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining. Acti