Science.gov

Sample records for predevelopment water-level contours

  1. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  2. Water-level changes in the High Plains aquifer, predevelopment to 2009, 2007-08, and 2008-09, and change in water in storage, predevelopment to 2009

    USGS Publications Warehouse

    McGuire, V.L.

    2011-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area. This report presents water-level changes in the High Plains aquifer from the time before substantial groundwater irrigation development had occurred (about 1950 and termed "predevelopment" in this report) to 2009, from 2007-08, and from 2008-09. The report also presents change in water in storage in the aquifer, from predevelopment to 2009. Ninety-nine percent of the water-level changes from predevelopment to 2009 ranged from a rise of 41 feet to a decline of 178 feet. The area-weighted, average water-level changes in the aquifer were a decline of 14.0 feet from predevelopment to 2009, a decline of 0.1 foot from 2007-08, and a decline of 0.3 foot from 2008-09. Total water in storage in the aquifer in 2009 was about 2.9 billion acre-feet, which was a decline of about 274 million acre-feet since predevelopment.

  3. Changes in water levels and storage in the High Plains Aquifer, predevelopment to 2009

    USGS Publications Warehouse

    McGuire, V.L.

    2011-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the onset of substantial irrigation with groundwater from the aquifer (about 1950 and termed "predevelopment" in this fact sheet). By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (ft) (Luckey and others, 1981). In 1987, in response to declining water levels, Congress directed the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources entities, to assess and track water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment to 2009. Drainable water in storage is the fraction of water in the aquifer that will drain by gravity and can be withdrawn by wells. The remaining water in the aquifer is held to the aquifer material by capillary forces and generally cannot be withdrawn by wells. Drainable water in storage is termed "water in storage" in this report. A companion USGS report presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2011).

  4. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2007

    USGS Publications Warehouse

    McGuire, V.L.

    2009-01-01

    The High Plains aquifer underlies 111.6 million acres (174,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with ground water in the aquifer area. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment (before about 1950) to 2007 and serves as a companion product to a USGS report that presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2009).

  5. Estimated 2008 groundwater potentiometric surface and predevelopment to 2008 water-level change in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico

    USGS Publications Warehouse

    Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.

    2011-01-01

    The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of

  6. Water-level and storage changes in the High Plains aquifer, predevelopment to 2011 and 2009-11

    USGS Publications Warehouse

    McGuire, Virginia L.

    2013-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States--Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area. This report presents water-level changes in the High Plains aquifer from the time before substantial groundwater irrigation development began (generally before 1950, and termed "predevelopment" in this report) to 2011 and from 2009-11. The report also presents total water in storage, 2011, and change in water in storage in the aquifer from predevelopment to 2011. The methods to calculate area-weighted, average water-level changes; change in water in storage; and total water in storage for this report used geospatial data layers organized as rasters with a cell size of about 62 acres. These methods were modified from methods used in previous reports in an attempt to improve estimates of water-level changes and change in water in storage.Water-level changes from predevelopment to 2011, by well, ranged from a rise of 85 feet to a decline of 242 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 14.2 feet from predevelopment to 2011, and a decline of 0.1 foot from 2009-11. Total water in storage in the aquifer in 2011 was about 2.96 billion acre-feet, which was a decline of about 246 million acre-feet since predevelopment.

  7. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2005

    USGS Publications Warehouse

    McGuire, V.L.

    2007-01-01

    The High Plains aquifer underlies 111.4 million acres (174,000 square miles) in parts of eight States-Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the major agricultural regions in the world. Water-level declines began in parts of the High Plains aquifer soon after the beginning of extensive ground-water irrigation. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in cooperation with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level change in the aquifer. A report by the USGS, 'Water-Level Changes in the High Plains Aquifer, Predevelopment to 2005 and 2003 to 2005' (McGuire, 2007), shows the areas of substantial water-level changes in the aquifer from the time prior to substantial ground-water irrigation development (predevelopment or about 1950) to 2005 (fig. 1). In parts of the area, farmers began using ground water for irrigation extensively in the 1930s and 1940s. Estimated irrigated acreage in the area overlying the High Plains aquifer increased rapidly from 1940 to 1980 and changed slightly from 1980 to 2002: 1949-2.1 million acres, 1980-13.7 million acres, 1997-13.9 million acres, 2002-12.7 million acres. Irrigated acres in 2002 were 12 percent of the aquifer area, not including the areas with little or no saturated thickness (McGuire, 2007). Ground-water withdrawals for irrigation and other uses are compiled and reported by the USGS and agencies in each State about every 5 years. Ground-water withdrawals from the High Plains aquifer for irrigation increased from 4 to 19 million acre-feet from 1949 to 1974. Ground-water withdrawals for irrigation in 1980, 1985, 1990, and 1995 were from 4 to 18

  8. Digital map of changes in water levels from predevelopment to 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for contours of predevelopment to 1980 water-level elevation changes for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the contours for predevelopment to 1980 water-level elevation change from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer-System Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  9. Water Level Declines in the High Plains Aquifer: Predevelopment to Resource Senescence.

    PubMed

    Haacker, Erin M K; Kendall, Anthony D; Hyndman, David W

    2016-03-01

    A large imbalance between recharge and water withdrawal has caused vital regions of the High Plains Aquifer (HPA) to experience significant declines in storage. A new predevelopment map coupled with a synthesis of annual water levels demonstrates that aquifer storage has declined by approximately 410 km(3) since the 1930s, a 15% larger decline than previous estimates. If current rates of decline continue, much of the Southern High Plains and parts of the Central High Plains will have insufficient water for irrigation within the next 20 to 30 years, whereas most of the Northern High Plains will experience little change in storage. In the western parts of the Central and northern part of the Southern High Plains, saturated thickness has locally declined by more than 50%, and is currently declining at rates of 10% to 20% of initial thickness per decade. The most agriculturally productive portions of the High Plains will not support irrigated production within a matter of decades without significant changes in management. PMID:26014963

  10. Water-level changes and change in water in storage in the High Plains aquifer, predevelopment to 2013 and 2011-13

    USGS Publications Warehouse

    McGuire, Virginia L.

    2014-01-01

    Water-level changes from predevelopment to 2013, by well, ranged from a rise of 85 feet to a decline of 256 feet. Water-level changes from 2011 to 2013, by well, ranged from a rise of 19 feet to a decline of 44 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.4 feet from predevelopment to 2013, and a decline of 2.1 feet from 2011 to 2013. Total water in storage in the aquifer in 2013 was about 2.92 billion acre-feet, which was a decline of about 266.7 million acre-feet since predevelopment and a decline of 36.0 million acre-feet from 2011 to 2013.

  11. Conceptualization of the predevelopment groundwater flow system and transient water-level responses in Yucca Flat, Nevada National Security Site, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Sweetkind, Donald S.; Elliott, Peggy E.; Laczniak, Randell J.

    2012-01-01

    Contaminants introduced into the subsurface of Yucca Flat, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a set of contour maps developed to represent the hydraulic-head distribution within the two major aquifer systems underlying the area. Aquifers and confining units within these systems were identified and their extents delineated by merging and analyzing hydrostratigraphic framework models developed by other investigators from existing geologic information. Maps of the hydraulic-head distributions in the major aquifer systems were developed from a detailed evaluation and assessment of available water-level measurements. The maps, in conjunction with regional and detailed hydrogeologic cross sections, were used to conceptualize flow within and between aquifer systems. Aquifers and confining units are mapped and discussed in general terms as being one of two aquifer systems: alluvial-volcanic or carbonate. The carbonate aquifers are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater flow directions, approximated from potentiometric contours, are indicated on the maps and sections and discussed for the alluvial-volcanic and regional carbonate aquifers. Flow in the alluvial-volcanic aquifer generally is constrained by the bounding volcanic confining unit, whereas flow in the regional carbonate aquifer is constrained by the siliceous confining unit. Hydraulic heads in the alluvial-volcanic aquifer typically range from 2,400 to 2,530 feet and commonly are elevated about 20-100 feet above heads in the underlying regional carbonate

  12. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  13. Revised shallow and deep water-level and storage-volume changes in the Equus Beds Aquifer near Wichita, Kansas, predevelopment to 1993

    USGS Publications Warehouse

    Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.

    2013-01-01

    Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage

  14. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, Southeast New Mexico-Lea County Underground Water Basin

    USGS Publications Warehouse

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer and primary source of water in southeastern New Mexico. The Lea County portion of the aquifer covers approximately the northern two thirds of the 4,393-square-mile county. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context from which to estimate future trends given current aquifer-management policy. Maps representing water-level declines, current (2007) water levels, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Lea County Underground Water Basin were prepared in cooperation with the New Mexico Office of the State Engineer. Results of this mapping effort show the water level has declined as much as 97 feet in the Lea County Underground Water Basin from predevelopment (1914-54) to 2007 with rates as high as 0.88 feet per year.

  15. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, East-Central New Mexico-Curry County, Portales, and Causey Lingo Underground Water Basins

    USGS Publications Warehouse

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer in Curry and Roosevelt Counties, N. Mex., and primary source of water in southeastern New Mexico. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context to estimate future trends given current aquifer-management policy. This report provides a summary of the current (2007) water-level status of the Southern High Plains aquifer in New Mexico, including a basis for estimating future trends by comparison with historical conditions. This report includes estimates of the extent of ground-water level declines in the Curry County, Portales, and Causey-Lingo Ground-water Management Area parts of the High Plains Aquifer in eastern New Mexico since predevelopment. Maps representing 2007 water levels, water-level declines, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Curry County, Portales, and Causey Lingo Underground Water Basins were prepared in cooperation with the New Mexico Office of the State Engineer. The results of this mapping show the water level declined as much as 175 feet in the study area at rates as high as 1.76 feet per year.

  16. Approximate ground-water-level contours, April 1981, for the Soquel-Aptos area, Santa Cruz County, California

    USGS Publications Warehouse

    Bloyd, Richard M.

    1981-01-01

    Ground-water levels in selected wells were measured in the Soquel-Aptos, Calif., area in April 1981. On the basis of these measurements approximate ground-water-level contours were constructed. The general direction of ground-water movement in the Soquell-Aptos area is from the ridges in the northern part of the area, toward the adjacent canyons, and then southward toward the ocean. Ground-water pumping has caused ground-water levels to decline below sea level in the Capitola area, in the area just to the west and northwest of aptos, and in isolated local areas southwest of Rio Del Mar. Ground-water levels in the northern part of the area away from the seacoast have not declined much over time. (USGS)

  17. Map of the Carpinteria area and vicinity, Santa Barbara County, California, showing water-level contours for March 1983, and net change in water level between March 1982 and March 1983

    USGS Publications Warehouse

    Moyle, W.R., Jr.

    1984-01-01

    A water-level contour map of the Carpinteria area, California, was constructed using 34 water-level measurements made by the Carpinteria County Water District in March 1983. Also shown on the map are five hydrographs that show water-level fluctuations in each well between 1978 and 1983. In addition, a water-level net-change map for March 1982 to March 1983 is shown. (USGS)

  18. Generalized water-level contours, September-October 2000 and March-April 2001, and long-term water-level changes, at the U.S. Air Force Plant 42 and vicinity, Palmdale, California

    USGS Publications Warehouse

    Christensen, Allen H.

    2005-01-01

    Historically, the U.S. Air Force Plant 42 has relied on ground water as the primary source of water owing, in large part, to the scarcity of surface water in the region. Groundwater withdrawal for municipal, industrial, and agricultural use has affected ground-water levels at U.S. Air Force Plant 42, and vicinity. A study to document changes in groundwater gradients and to present historical water-level data was completed by the U.S. Geological Survey in cooperation with the U.S. Air Force. This report presents historical water-level data, hydrographs, and generalized seasonal water-level and water-level contours for September?October 2000 and March?April 2001. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently water availability. During September?October 2000 and March?April 2001 the U.S. Geological Survey and other agencies made a total of 102 water-level measurements, 46 during September?October 2000 and 56 during March?April 2001. These data document recent conditions and, when compared with historical data, document changes in ground-water levels. Two water-level contour maps were drawn: the first depicts water-level conditions for September?October 2000 map and the second depicts water-level conditions for March?April 2001 map. In general, the water-level contour maps show water-level depressions formed as result of ground-water withdrawal. One hundred sixteen long-term hydrographs, using water-level data from 1915 through 2000, were constructed to show water-level trends in the area. The hydrographs indicate that water-level decline occurred throughout the study area, with the greatest declines south of U.S. Air Force Plant 42.

  19. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Hale, G.S.; Trudeau, D.A.; Savard, C.S.

    1995-12-01

    The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather than ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.

  20. Altitude and configuration of the predevelopment water table in the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1982-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The altitude and configuration of the water table are shown for the eastern area (sheet 1) and for the Panhandle area (sheet 2). In the eastern area, consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties, water levels measured from the 1950's to the 1970's represent predevelopment conditions and were obtained from published and unpublished data in the files of the U.S. Geological Survey. In the Panhandle, predevelopment contours were based on measurements made from 1937 to 1940. Some water levels in Beaver County were measured as late as 1959 in areas where significant development had not occurred previously.

  1. Water-level changes in the high plains aquifer underlying parts of South Dakota, Wyoming, Nebraska, Colorado, Kansas, New Mexico, Oklahoma, and Texas; predevelopment through nonirrigation season 1987-88

    USGS Publications Warehouse

    Kastner, W.M.; Schild, D.E.; Spahr, D.S.

    1989-01-01

    The changes in water levels in the High Plains aquifer from the nonirrigation season 1986-87 through the nonirrigation season 1987-88 and from the nonirrigation season 1979-80 through the nonirrigation season 1987-88 are presented in maps for the entire High Plains aquifer area. Water level changes are caused by interacting changes in precipitation, land use, and annual pumpage. Water levels declined from conditions prior to development until 1980 through parts of the High Plains of Nebraska, Colorado, New Mexico, Oklahoma, and Texas. From 1980 through 1987 water level changes were mixed, with declines of more than 10 ft in the highly developed areas of Kansas, New Mexico, Oklahoma, and Texas and relatively stable to rising water tables throughout the remaining aquifer area. The net change was a rise of 0.8 ft. The 1981-87 period was generally wetter than normal and pumping for irrigated agriculture was therefore reduced. Water level changes were mixed during 1987. Declines continued in some highly developed areas, but water levels generally rose throughout most of the aquifer. The average area-weighted change was a rise of 0.28 ft. This rise was due to the generally greater than normal precipitation, decreased acreage under irrigation, and decreased pumpage for those areas irrigated. At the end of the growing season, the drought in the Midwest in 1988 affected only limited areas of the High Plains. The effects of the drought on water levels can not be assessed until the water-level measurements for the nonirrigation season of 1988-89 are compiled. (USGS)

  2. Change in Water in Storage in the High Plains Aquifer, Predevelopment to 2013

    NASA Astrophysics Data System (ADS)

    McGuire, V. L.

    2014-12-01

    The High Plains aquifer underlies about 175,000 square miles in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer is the principal source of water for irrigation and public supply in this area, which is one of the major agricultural areas in the United States. However, soon after groundwater irrigation began, water-level declines occurred in some parts of the aquifer. In response, the U.S. Geological Survey, in cooperation with numerous Federal, State, and local water-resource agencies, began monitoring groundwater levels in the aquifer. Water levels are measured annually primarily in irrigation wells in winter to early spring (generally January to May, depending on location), when water levels generally have recovered from groundwater pumping for irrigation in the previous growing season and before the current year's irrigation season. The water-level elevation for predevelopment (about 1950) conditions was determined using water-level measurements from more than 20,000 wells. The water-level elevation for 2013 was measured in more than 9,000 wells. The water-level measurements were analyzed and interpolated to map discrete intervals of water-level changes from predevelopment to the year 2013. The change in the volume of drainable water stored in the aquifer was calculated using the mapped area of each water-level-change interval, the average water-level change within each mapped interval, and the estimated average specific yield for the aquifer.

  3. Atmospheric lidar predevelopment program (ATLID)

    NASA Astrophysics Data System (ADS)

    Morancais, Didier; Marini, Andrea E.

    1997-09-01

    The Atmospheric Lidar (ATLID) is the backscatter lidar instrument developed for ESA, under the prime contractorship of MATRA MARCONI SPACE France. This kind of lidar has been selected for flight on an ESA Earth Explorer satellite, and will be based on ATLID concept and technologies. It is part of a multi-payload mission, named Earth Radiation, dedicated to the Earth radiative transfer study for climatology. The lidar will provide information on the atmosphere, such as cloud cover, top height of all cloud types and planetary boundary layer, thin cloud extent, optical depth and polarization. The instrument features a pulsed diode-pumped Nd-YAG laser (1.06 micrometers wavelength) together with a one-axis scanning 60 cm lightweight telescope. A technology pre-development program has been performed in order to raise the maturity of the instrument design. Elegant breadboard models have been realised and submitted to environmental tests. The laser transmitter, the laser thermal control subsystem (capillary-pumped two-phase loop), the diode laser power supply, the avalanche photodiode detection chain, the narrow-band filter, the scan mechanism, and the telescope lightweight primary mirror (C-SiC) have been breadboarded in the frame of the programme. The instrument design and performance have also been consolidated with regards to the successful hardware results.

  4. Session: Pre-development project risk assessment

    SciTech Connect

    Curry, Richard; Linehan, Andy

    2004-09-01

    This second session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The focus of the presentations was on the practices and methodologies used in the wind energy industry for assessing risk to birds and bats at candidate project sites. Presenters offered examples of pre-development siting evaluation requirements set by certain states. Presentation one was titled ''Practices and Methodologies and Initial Screening Tools'' by Richard Curry of Curry and Kerlinger, LLC. Presentation two was titled ''State of the Industry in the Pacific Northwest'' by Andy Linehan, CH2MHILL.

  5. Creative Contours.

    ERIC Educational Resources Information Center

    Fashing, Edward; Appenbrink, David

    1978-01-01

    Students often have difficulty relating contour lines to the shape of a landform. This article describes the construction of a simple landform model designed to help students better understand contour lines. (MA)

  6. Contour complexity and contour detection

    PubMed Central

    Wilder, John; Feldman, Jacob; Singh, Manish

    2015-01-01

    It is well-known that “smooth” chains of oriented elements—contours—are more easily detected amid background noise than more undulating (i.e., “less smooth”) chains. Here, we develop a Bayesian framework for contour detection and show that it predicts that contour detection performance should decrease with the contour's complexity, quantified as the description length (DL; i.e., the negative logarithm of probability integrated along the contour). We tested this prediction in two experiments in which subjects were asked to detect simple open contours amid pixel noise. In Experiment 1, we demonstrate a consistent decline in performance with increasingly complex contours, as predicted by the Bayesian model. In Experiment 2, we confirmed that this effect is due to integrated complexity along the contour, and does not seem to depend on local stretches of linear structure. The results corroborate the probabilistic model of contours, and show how contour detection can be understood as a special case of a more general process—the identification of organized patterns in the environment. PMID:26024453

  7. Contour Mapping

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.

  8. Estimated 2012 groundwater potentiometric surface and drawdown from predevelopment to 2012 in the Santa Fe Group aquifer system in the Albuquerque metropolitan area, central New Mexico

    USGS Publications Warehouse

    Powell, Rachel I.; McKean, Sarah E.

    2014-01-01

    Historically, the water-supply requirements of the Albuquerque metropolitan area of central New Mexico were met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. In response to water-level declines, the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began diverting water from the San Juan-Chama Drinking Water Project in December 2008 to reduce the use of groundwater to meet municipal demand. Modifications in the demand for water and the source of the supply of water for the Albuquerque metropolitan area have resulted in a variable response in the potentiometric surface of the production zone (the interval of the aquifer, from within about 200 feet below the water table to 900 feet or more, in which supply wells generally are screened) of the Santa Fe Group aquifer system. Analysis of the magnitude and spatial distribution of water-level change can help improve the understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies’ efforts to minimize future water-level declines and improve sustainability. The U.S. Geological Survey (USGS), in cooperation with the ABCWUA, has developed an estimate of the 2012 potentiometric surface of the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. This potentiometric surface is the latest in a series of reports depicting the potentiometric surface of the area. This report presents the estimated potentiometric surface during winter (from December to March) of water year 2012 and the estimated changes in potentiometric surface between predevelopment (pre-1961) and water year 2012 for the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. Hydrographs from selected piezometers are included to provide details of historical water-level changes. In general, water-level measurements used for this report were

  9. Meteosat Third Generation (MTG) critical technology pre-development activities

    NASA Astrophysics Data System (ADS)

    Aminou, Donny M. A.; Bézy, Jean Loup; Meynart, Roland; Blythe, Paul; Kraft, S.; Zayer, I.; Linder, M.; Falkner, M.; Luhmann, H. J.

    2009-09-01

    segment implementation in July 2009. This paper provides an overview of the critical technologies as established in the course of MTG space segment studies. It summarises the undertakings carried out for pre-developing the necessary technologies for the associated instruments relating to Imaging, IR Sounding and Lightning missions. It provides the status of the pre-development activities including long wave IR detectors, cryo-coolers, cryogenic wiring, scan mechanism assemblies, LI detectors and narrow band filters.

  10. 7 CFR Exhibit D to Subpart I of... - Self-Help Technical Assistance Grant Predevelopment Agreement

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 1944.410(d) of 7 CFR part 1944, subpart I, as necessary, to develop a complete program for a self-help... 7 Agriculture 13 2013-01-01 2013-01-01 false Self-Help Technical Assistance Grant Predevelopment... SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) HOUSING...

  11. Hydrogeology and Simulation of Ground-Water Flow near Mount Pleasant, South Carolina--Predevelopment, 2004, and Predicted Scenarios for 2030

    USGS Publications Warehouse

    Petkewich, Matthew D.; Campbell, Bruce G.

    2007-01-01

    Heavy water use from the Cretaceous Middendorf aquifer in South Carolina has created a large, regional cone of depression in the potentiometric surface of the Middendorf aquifer in Charleston and Berkeley Counties, South Carolina. Water-level declines of up to 249 feet have been observed in wells over the past 125 years and are a result of ground-water use for public-water supply, irrigation, and private industry. To address the concerns of users of the Middendorf aquifer, the U.S. Geological Survey, in cooperation with Mount Pleasant Waterworks, updated an existing ground-water flow model to incorporate additional data that have been compiled since 1989. The updated ground-water flow model incorporates water-level data collected from 349 wells in 2004, baseflow data measured at 17 streams, hydraulic property data from 265 wells, and water-use data compiled for more than 2,700 wells for the period between the early 1900s to 2004. The ground-water flow system of the Coastal Plain physiographic province of South Carolina and parts of Georgia and North Carolina was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000. The model was vertically discretized into nine layers to include the five aquifers of the surficial, the combined Floridan aquifer system and Tertiary sand aquifer, Black Creek, Middendorf, and Cape Fear, separated by four intervening confining units. Specified-head boundary conditions were used at the lateral boundaries of the model and for the lower Coastal Plain part of the surficial aquifer; no-flow boundary conditions were used at the updip and downdip extent of the model layers and at the base of the Cape Fear aquifer. Ground-water conditions for predevelopment and 2004 were simulated using steady-state and transient approximations, respectively. Simulated water levels generally matched the observed conditions, plus or minus a 20-foot calibration target, with 56.4 and 64.8 percent of the simulated values approximating the

  12. Simulation of ground-water flow and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina, predevelopment through 1992

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water flow and stream-aquifer relations were simulated for seven aquifers in Coastal Plain sediments in the vicinity of the U.S. Department of Energy, Savannah River Site (SRS), in Georgia and South Carolina to evaluate the potential for ground water containing hazardous materials to migrate from the SRS into Georgia through aquifers underlying the Savannah River (trans-river flow). The work was completed as part of a cooperative study between the U.S. Geological Survey, the U.S. Department of Energy, and Georgia Department of Natural Resources. The U.S. Geological Survey three-dimensional finite-difference ground-water flow model, MODFLOW, was used to simulate ground-water flow in three aquifer systems containing seven discrete aquifers: (1) the Floridan aquifer system, consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system, consisting of the Millers Pond, and upper and lower Dublin aquifers in sediments of Paleocene and Late Cretaceous age; and (3) the Midville aquifer system, consisting of the upper and lower Midville aquifers of sediments in Late Cretaceous age. Ground-water flow was simulated using a series of steady-state simulations of predevelopment (pre-1953) conditions and six pumping periods--1953-60, 1961-70, 1971-75, 1976-80, 1981-86, and 1987-92--results are presented for predevelopment (prior to 1953) and modern-day (1987-92) conditions. Total simulated predevelopment inflow is 1,023 million gallons per day (Mgal/d), of which 76 percent is contributed by leakage from the Upper Three Runs aquifer. Over most of the study area, pumpage induced changes in ground-water levels, ground-water discharge to streams, and water-budget components were small during 1953-92, and changes in aquifer storage were insignificant. Simulated drawdown between predevelopment and modern-day conditions is small (less than 7 feet) and of limited areal extent--the largest simulated declines occur in the upper and

  13. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included. (Woodard-USGS)

  14. Hydrogeology and Simulation of Regional Ground-Water-Level Declines in Monroe County, Michigan

    USGS Publications Warehouse

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    determination of inputs and outputs of water-leakage from glacial deposits and flows across model boundaries. The imposed demands on the groundwater system create additional discharge from the bedrock aquifer, and this discharge is documented by records and estimates of water use including: residential and industrial use, irrigation, and quarry dewatering. Hydrologic characterization of Monroe County and surrounding areas was used to determine the model boundaries and inputs within the ground-water model. MODFLOW-2000 was the computer model used to simulate ground-water flow. Predevelopment, 1991, and 2001 conditions were simulated with the model. The predevelopment model did not include modern water use and was compared to information from early settlement of the county. The 1991 steady-state model included modern demands on the ground-water system and was based on a significant amount of data collected for this and previous studies. The predevelopment and 1991 simulations were used to calibrate the numerical model. The simulation of 2001 conditions was based on recent data and explored the potential ground-water levels if the current conditions persist. Model results indicate that the ground-water level will stabilize in the county near current levels if the demands imposed during 2001 are held constant.

  15. 1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California

    USGS Publications Warehouse

    Predmore, Steven K.

    2003-01-01

    This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water basin for ground-water levels measured during the period January-October 1994. Water-level data were collected from 248 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,400 to 1,500 feet above sea level.

  16. Distributed Contour Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  17. Pre-development conditions to assess the impact of growth in an urbanizing watershed in Northern Virginia

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Godrej, Adil N.; Grizzard, Thomas J.

    2016-09-01

    Pre-development conditions are an easily understood state to which watershed nonpoint nutrient reduction targets may be referenced. Using the pre-development baseline, a "developed-excess" measure may be computed for changes due to anthropogenic development. Developed-excess is independent of many geographical, physical, and hydrological characteristics of the region and after normalization by area may be used for comparison among various sub-sets of the watershed, such as jurisdictions or land use types. We have demonstrated this method by computing pre-development nitrogen and phosphorus loads entering the Occoquan Reservoir from its tributary watershed in Northern Virginia. The pre-development loads in this study were computed using the calibrated water quality models for the period 2002-2007. Current forest land was used as a surrogate for pre-development land use conditions for the watershed and developed-excess was estimated for fluvial loads of Total Inorganic Nitrogen (TIN) and Orthophosphate-Phosphorus (OP) by subtracting simulated predevelopment loads from observed loads. It was observed that within the study period (2002-2007), the average annual developed-excess represented about 30% of the TIN and OP average annual loads exported to the reservoir. Comparison of the two disturbed land use types, urban and agricultural, showed that urban land uses exported significantly more excess nonpoint nutrient load per unit area than agricultural land uses.

  18. Ground-water levels spring 1985, and ground-water level changes spring 1983 to spring 1985, in three basalt units underlying the Columbia Plateau, Washington and Oregon

    USGS Publications Warehouse

    Lane, R.C.; Whiteman, K.J.

    1989-01-01

    Groundwater level contour maps for three basalt units of the Columbia Plateau regional aquifer system were constructed by using water levels measured in 1,105 wells during 1985. These measurements then were compared with similar measurements from spring 1983 to assess the changes in groundwater levels over the 2-year period for each of the basalt units. Configuration of the groundwater contours and water level changes reflect (1) recharge and discharge; (2) hydraulic conductivity; (3) use of imported surface water for irrigation; and (4) pumpage of groundwater. The movement of groundwater within each basalt unit is controlled mainly by the major rivers, streams, and coulees, whereas variations in flow directions between units are related to the occurrence, extent, and hydraulic conductivity of the basalt units and sedimentary interbeds and to differences in the amounts of recharge to each unit. (USGS)

  19. Ground-water levels in Wyoming, 1976

    USGS Publications Warehouse

    Ballance, W.C.; Freudenthal, Pamela B.

    1977-01-01

    Ground-water levels are measured periodically in a network of about 280 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1976 to 1977. Well history, highest and lowest water levels , and hydrographs for most wells also are included. The program of groundwater observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne. (Woodard-USGS)

  20. Contouring Trivariate Data

    NASA Technical Reports Server (NTRS)

    Stead, S. E.; Makatura, G. T.

    1985-01-01

    In many applications, the data consist of discrete 3-D points at which one or more parameters are given. To display contours, the data are represented by a continuous function which is evaluated at any point as needed for contouring. Contouring results are presented which are applicable both to artitrarily spaced data and to data which lie on a topologically rectangular three dimensional grid. the contours are assumed to be described by 3-D display lists for viewing on a dynamic color graphics device; that is, they will not simply be projected into 2-D and viewed as a static image on a frame buffer. Dynamic viewing of color contours may be essential to the proper interpretation of results. The gridded data lie on a topologically rectangular grid although two or more nodes may be the same point. Parametric tensor product methods may be used to fit the gridded data and to generate the contours. Rectangular elements are convenient but not necessary. For example, there are other methods which are effective for contouring over tetrahedral elements.

  1. Male Body Contouring.

    PubMed

    Singh, Babu; Keaney, Terrence; Rossi, Anthony M

    2015-09-01

    Men are increasingly turning to dermatologists and plastic surgeons to request procedures that correct or enhance physical features. With the advent of this emerging new patient population, alterations in preexisting aesthetic techniques, gender-specific uses of existing devices and overall approaches need to be revisited and adapted to obtain results that are suitable for the male patient. Recently, body contouring has become one of the most sought out procedures by men. Although the majority of clinical studies involving body contouring esthetics are performed with female patients, gains from such studies can be extrapolated to men. Body contouring can be broadly classified as non-invasive or invasive, depending on the modality used. Non-invasive contouring is most frequently performed with devices that target subcutaneous adipose with focused electrical or thermal energy, including low-level laser, cryolipolysis, ultrasonography, and radiofrequency. Invasive body contouring modalities useful for male body contouring include liposuction, pectoral and abdominal wall etching, jawline fillers, synthetic deoxycholic acid injections, and solid silicone implants. The purpose of this review is to bring attention to the unique aspects, strategies, and modalities used in aesthetic body contouring for the male patient. PMID:26355627

  2. Modeling robot contour processes

    NASA Astrophysics Data System (ADS)

    Whitney, D. E.; Edsall, A. C.

    Robot contour processes include those with contact force like car body grinding or deburring of complex castings, as well as those with little or no contact force like inspection. This paper describes ways of characterizing, identifying, and estimating contours and robot trajectories. Contour and robot are modeled as stochastic processes in order to emphasize that both successive robot cycles and successive industrial workpieces are similar but not exactly the same. The stochastic models can be used to identify the state of a workpiece or process, or to design a filter to estimate workpiece, shape and robot position from robot-based measurements.

  3. Variable contour securing system

    NASA Technical Reports Server (NTRS)

    Zebus, P. P.; Packer, P. N.; Haynie, C. C. (Inventor)

    1978-01-01

    A variable contour securing system has a retaining structure for a member whose surface contains a variable contour. The retaining mechanism includes a spaced array of adjustable spindles mounted on a housing. Each spindle has a base member support cup at one end. A vacuum source is applied to the cups for seating the member adjacent to the cups. A locking mechanism sets the spindles in a predetermined position once the member has been secured to the spindle support cups.

  4. Reconstruction of surfaces from planar contours through contour interpolation

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Woo, Boyeong; Pinter, Csaba; Fichtinger, Gabor

    2015-03-01

    Segmented structures such as targets or organs at risk are typically stored as 2D contours contained on evenly spaced cross sectional images (slices). Contour interpolation algorithms are implemented in radiation oncology treatment planning software to turn 2D contours into a 3D surface, however the results differ between algorithms, causing discrepancies in analysis. Our goal was to create an accurate and consistent contour interpolation algorithm that can handle issues such as keyhole contours, rapid changes, and branching. This was primarily motivated by radiation therapy research using the open source SlicerRT extension for the 3D Slicer platform. The implemented algorithm triangulates the mesh by minimizing the length of edges spanning the contours with dynamic programming. The first step in the algorithm is removing keyholes from contours. Correspondence is then found between contour layers and branching patterns are determined. The final step is triangulating the contours and sealing the external contours. The algorithm was tested on contours segmented on computed tomography (CT) images. Some cases such as inner contours, rapid changes in contour size, and branching were handled well by the algorithm when encountered individually. There were some special cases in which the simultaneous occurrence of several of these problems in the same location could cause the algorithm to produce suboptimal mesh. An open source contour interpolation algorithm was implemented in SlicerRT for reconstructing surfaces from planar contours. The implemented algorithm was able to generate qualitatively good 3D mesh from the set of 2D contours for most tested structures.

  5. 1992 Water-Table Contours of the Mojave River Ground-Water Basin, San Bernardino County, California

    USGS Publications Warehouse

    Predmore, Steven K.

    2003-01-01

    This data set consists of digital water-table contours for the Mojave River Basin. The U.S. Geological Survey, in cooperation with the Mojave Water Agency, constructed a water-table map of the Mojave River ground-water basin for ground-water levels measured in November 1992. Water-level data were collected from approximately 300 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,200 to 1,600 feet above sea level.

  6. 2000 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Predmore, Steven K.

    2003-01-01

    This data set consists of digital water-table contours for the Mojave River and the Morongo Ground-Water Basins. The U.S. Geological Survey constructed a water-table map of the Mojave River and the Morongo Ground-Water Basins for ground-water levels measured during the spring of 2000. Water-level data were collected from 498 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:175,512. The contour interval ranges from 3,400 to 1,500 feet above sea level.

  7. 1998 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Predmore, Steven K.

    2003-01-01

    This data set consists of digital water-table contours for the Mojave River and the Morongo Ground-Water Basins. The U.S. Geological Survey constructed a water-table map of the Mojave River and the Morongo Ground-Water Basins for ground-water levels measured during the spring of 1998. Water-level data were collected from 418 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:175,512. The contour interval rangs from 3,400 to 1,500 feet above sea level.

  8. Contour detection based on brightness and contour completion

    NASA Astrophysics Data System (ADS)

    Zou, Lamei; Wan, Min; Jin, Liujia; Gao, Yahong; Yang, Weidong

    2015-12-01

    The further research of visual processing mechanism provides a new idea for contour detection. On the primary visual cortex, the non-classical receptive field of the neurons has the orientation selectivity exerts suppression effect on the response of classical receptive field, which influences edge or line perception. Based on the suppression property of non-classical receptive field and contour completion, this paper proposed a contour detection method based on brightness and contour completion. The experiment shows that the proposed method can not only effectively eliminate clutter information, but also connect the broken contour points by taking advantage of contour completion.

  9. The Development of Contour Interpolation: Evidence from Subjective Contours

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2010-01-01

    Adults are skilled at perceiving subjective contours in regions without any local image information (e.g., [Ginsburg, 1975] and [Kanizsa, 1976]). Here we examined the development of this skill and the effect thereon of the support ratio (i.e., the ratio of the physically specified contours to the total contour length). Children (6-, 9-, and…

  10. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  11. Hydrologic budgets of regional aquifer systems of the United States for predevelopment and development conditions

    USGS Publications Warehouse

    Johnston, Richard H.

    1997-01-01

    Ground-water budgets are presented in this report for 14 regionally extensive aquifer systems; pumpage from 11 of these systems provided from 40 to 50 percent of the ground water withdrawn in the United States during the 1970's and 1980's. The budgets are based on simulation results from computer-based models developed as part of the Regional Aquifer-System Analysis Program of the U.S. Geological Survey. Most of the models cover large areas (30,000-300,000 square miles) and generally are constructed with coarse-mesh finite-difference grids designed to simulate regional ground-water flow. The groundwater budgets derived from these models generally do not include local flow that enters and exits regional aquifers after traveling only a few miles or flow in overlying surficial aquifers. Budgets are presented for predevelopment and recent pumping conditions for most of the aquifer systems.

  12. Agua Caliente Solar Feasibility and Pre-Development Study Final Report

    SciTech Connect

    Carolyn T. Stewart, Managing Partner; Red Mountain Energy Partners

    2011-04-26

    Evaluation of facility- and commercial-scale solar energy projects on the Agua Caliente Band of Cahuilla Indians Reservation in Palm Springs, CA. The Agua Caliente Band of Cahuilla Indians (ACBCI) conducted a feasibility and pre-development study of potential solar projects on its lands in southern California. As described below, this study as a logical and necessary next step for ACBCI. Support for solar project development in California, provided through the statewide California Solar Initiative (CSI), its Renewable Portfolio Standard and Feed-in Tariff Program, and recently announced Reverse Auction Mechanism, provide unprecedented support and incentives that can be utilized by customers of California's investor-owned utilities. Department of Energy (DOE) Tribal Energy Program funding allowed ACBCI to complete its next logical step to implement its Strategic Energy Plan, consistent with its energy and sustainability goals.

  13. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  14. Hydro static water level systems at Fermilab

    SciTech Connect

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  15. Reading Ground Water Levels with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  16. Application of TDR to water level measurement

    NASA Astrophysics Data System (ADS)

    Thomsen, A.; Hansen, B.; Schelde, K.

    2000-09-01

    A specialised time domain reflectometry (TDR) probe for measuring water level in tanks collecting surface runoff was developed, calibrated and field-tested. The water level probe — in the form of a slightly modified soil moisture probe — was developed as part of a TDR measuring system designed for continuous monitoring of soil water content and surface runoff in plot studies of water erosion and sediment transport. A computer algorithm for the analysis of TDR traces from the new probe was developed and incorporated into existing software for automated acquisition and analysis of TDR data. Laboratory calibration showed that water level could be measured with sufficient accuracy (standard deviation <2 mm) for a range of applications in hydrology. Soil erosion is typically a short duration process closely linked to soil moisture content and rainfall intensity. A major benefit of integrating time critical measurements of surface runoff and soil moisture into a single system is the synchronisation of measurements. Measurements were made on a regular schedule except during rainfall events when the measuring rate depended on rainfall intensity. In a parallel calibration study it was shown that the performance of the TDR probe was comparable to a commercial ultrasonic liquid level sensor used for measuring runoff at an erosion site not instrumented for automated TDR measurements.

  17. [Post bariatric body contouring.

    PubMed

    Winge, Rikke; Henriksen, Trine Foged; Printzlau, Andreas; Hülmich, Lisbet

    2014-03-17

    Post bariatric body contouring in Denmark is currently a field under development. The scope of this article is to give an overview of existing plastic surgery techniques being used to treat patients with massive weight loss, as well as the current indications for patient referral. Furthermore, we describe how to optimise the preoperative evaluation of the patient and give a brief description of potential surgical adverse effects and their prevalence. Further research can provide this field with invaluable data regarding the post-operative effects on patient rehabilitation and quality of life. PMID:25096208

  18. Contour Completion Without Region Segmentation.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-08-01

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite psychological evidences for its importance. This paper proposes a purely contour-based higher order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher order inference problem can be transformed into an integer linear program and be solved efficiently. Compared with the methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose. PMID:27168599

  19. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  20. Assessment of LID practices for restoring pre-development runoff regime in an urbanized catchment in southern Finland.

    PubMed

    Guan, Mingfu; Sillanpää, Nora; Koivusalo, Harri

    2015-01-01

    This study quantifies the effects of common stormwater management techniques on urban runoff generation. Simulated flow rates for different low impact development (LID) scenarios were compared with observed flow rates during different urban construction phases in a catchment (12.3 ha) that was developed from natural forest to a residential area over a monitoring period of 5 years. The Storm Water Management Model (SWMM) was calibrated and validated against the observed flow rates in the fully developed catchment conditions, and it was then applied to parameterize the LID measures and produce scenarios of their hydrological impacts. The results from the LID scenarios were compared with the observed flow rates in the pre-development and the partially developed catchment conditions. The results show that LID controls reduce urban runoff towards the flow conditions in the partially developed catchment, but the reduction effect diminishes during large rainfall events. The hydrographs with LID are still clearly different from the observed pre-development levels. Although the full restoration of pre-development flow conditions was not feasible, a combination of several measures controlling both volumes and retention times of storm runoff appeared to be effective for managing the stormwater runoff and mitigating the negative impacts of urban development. PMID:26442490

  1. Statistical analysis and mapping of water levels in the Biscayne aquifer, water conservation areas, and Everglades National Park, Miami-Dade County, Florida, 2000–2009

    USGS Publications Warehouse

    Prinos, Scott T.; Dixon, Joann F.

    2016-01-01

    Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990–1999 and 2000–2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990–1999 and 2000–2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000–2009 than during 1990–1999; and that inland water levels were generally lower during 2000–2009 than during 1990–1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland

  2. Precision contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip.

  3. Precision contour gage

    DOEpatents

    Bieg, L.F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip. 5 figs.

  4. GNSS-Reflectometry based water level monitoring

    NASA Astrophysics Data System (ADS)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  5. MAINE CONTOUR LINES 500 FEET

    EPA Science Inventory

    MECON500 contains 500 foot contour intervals for Maine, generated from USGS 1:250,000 DEMs. Arcs are coded by elevation. Due to the nature of the source data, the positional accuracy of these contour lines varies from good to poor. Use of these data at scales of greater then 1:2...

  6. MAINE CONTOUR LINES 60 FEET

    EPA Science Inventory

    MECON60 contains contours at 60 foot intervals for the entire state of Maine as generated from USGS 1:250,000 scale digital elevation models using ARC/INFO software. Arcs are coded by elevation. Due to the nature of the source data, the positional accuracy of these contour line...

  7. Sensory Information and Subjective Contour

    ERIC Educational Resources Information Center

    Brussell, Edward M.; And Others

    1977-01-01

    The possibility that subjective contours are an artifact of brightness contrast was explored. Concludes that subjective contour and brightness contrast are distinct perceptual phenomena but share a dependency on the processing of edge information transmitted through the achromatic channels of the visual system. (Editor/RK)

  8. Three-Dimensional Contour Maps

    ERIC Educational Resources Information Center

    Lee, Edward

    2005-01-01

    In summary, this highly conceptual activity helps middle school students understand that the lines on the contour map represent intersections of the surface of the landform with regularly spaced horizontal planes. Building the landform and relating its features to the contour map offer many opportunities for visualization, all grounded in concrete…

  9. A general purpose contouring system

    USGS Publications Warehouse

    Evenden, Gerald Ian

    1975-01-01

    Three Decsystem-10 FORTRAN IV programs provide a general purpose system for contouring two-dimensional data. The system can provide both quick or final, publication quality contour maps on either interactive or offline plotting devices. Complete user documentation, with examples, and program listings are presented.

  10. Film coatings for contoured surfaces

    NASA Technical Reports Server (NTRS)

    Flanery, H. E.; Frost, R. K.; Olson, A. J.

    1981-01-01

    Thickness of fluorocarbon elastomer films applied in contoured shapes by vacuum forming is difficult to control at sharply curved areas. Process for spraying contoured fluorocarbon elastomer films of uniform strength and thickness has been used instead of vacuum forming to fabricate curtain covering external tank of Space Shuttle. Conventional spray equipment may be used.

  11. Contour Integration across Spatial Frequency

    ERIC Educational Resources Information Center

    Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter

    2009-01-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed.…

  12. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  13. Nitrogen Loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005

    USGS Publications Warehouse

    Benotti, Mark J.; Abbene, Irene; Terracciano, Stephen A.

    2007-01-01

    Nitrogen loading to Jamaica Bay, a highly urbanized estuary on the southern shore of western Long Island, New York, has increased from an estimated rate of 35.6 kilograms per day (kg/d) under predevelopment conditions (pre-1900), chiefly as nitrate plus nitrite from ground-water inflow, to an estimated 15,800 kilograms per day as total nitrogen in 2005. The principal point sources are wastewater-treatment plants, combined sewer overflow/stormwater discharge during heavy precipitation, and subway dewatering, which account for 92 percent of the current (2005) nitrogen load. The principal nonpoint sources are landfill leachate, ground-water flow, and atmospheric deposition, which account for 8 percent of the current nitrogen load. The largest single source of nitrogen to Jamaica Bay is wastewater-treatment plants, which account for 89 percent of the nitrogen load. The current and historic contributions of nitrogen from seawater are unknown, although at present, the ocean likely serves as a sink for nitrogen from Jamaica Bay. Currently, concentrations of nitrogen in surface water are high throughout Jamaica Bay, but some areas with relatively little mixing have concentrations that are five times higher than areas that are well mixed.

  14. Contour Error Map Algorithm

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John

    2005-01-01

    The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.

  15. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    USGS Publications Warehouse

    Conrads, Paul A.; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    To hindcast and fill data records, 214 empirical models were developed—189 are linear regression models and 25 are artificial neural network models. The coefficient of determination (R2) for 163 of the models is greater than 0.80 and the median percent model error (root mean square error divided by the range of the measured data) is 5 percent. To evaluate the performance of the hindcast models as a group, contour maps of modeled water-level surfaces at 2-centimeter (cm) intervals were generated using the hindcasted data. The 2-cm contour maps were examined for selected days to verify that water surfaces from the EDEN model are consistent with the input data. The biweekly 2-cm contour maps did show a higher number of issues during days in 1990 as compared to days after 1990. May 1990 had the lowest water levels in the Everglades of the 21-year dataset used for the hindcasting study. To hindcast these record low conditions in 1990, many of the hindcast models would require large extrapolations beyond the range of the predictive quality of the models. For these reasons, it was decided to limit the hindcasted data to the period January 1, 1991, to December 31, 1999. Overall, the hindcasted and gap-filled data are assumed to provide reasonable estimates of station-specific water-level data for an extended historical period to inform research and natural resource management in the Everglades.

  16. Water levels and water quality in the Sparta-Memphis aquifer (middle Claiborne aquifer) in Arkansas, spring-summer 2011

    USGS Publications Warehouse

    Schrader, T.P.

    2014-01-01

    approximately 20 feet (ft) higher in 2011 than in 2009. The area enclosed within the 40-ft contour on the 2011 potentiometric-surface map has decreased in area, shifting north in Lincoln County and west in Arkansas County when compared with the 2009 potentiometric-surface map. The depression in Union County is roughly circular within the -60-ft contour. The lowest water-level altitude measurement was 157 ft below NGVD 29 in 2009, with a 37-ft rise to 120 ft below NGVD 29 in 2011. The depression in Union County has diminished and encloses a smaller area than in recent years. In 1993, the -60-ft contour enclosed 632 square miles (mi2). In 2011, the -60-ft contour enclosed 375 mi2, a decrease of 41 percent from 1993. The lowest water-level altitude measurement during 2011 in the center of the depression in Union County represents a rise of 79 ft since 2003. The area enclosed by the lowest altitude contour, 120 ft below NGVD 29, on the 2011 potentiometric-surface map is less than 10 percent of the area enclosed by that same contour on the 2009 potentiometric-surface map. A broad depression in western Poinsett and Cross Counties was first shown in the 1995 potentiometric-surface map. In 2011, the lowest water-level altitude measurement in this depression, 129 ft above NGVD 29, is 2 ft lower than in 2009. The 140-ft contour has extended southwest into northwestern St. Francis and east-central Woodruff Counties in 2011. In Columbia County in 2011, the area of the depression has decreased, with water levels rising about 1 ft since 2005 in the well with the lowest water-level altitude measurement. The depression in Bradley County in 2011 has decreased in area compared to 2007. A water-level difference map was constructed using the difference between water-level measurements made during 2007 and 2011 at 247 wells. The differences in water level between 2007 and 2011 ranged from -17.3 to 45.4 ft, with a mean of 4.1 ft. Water levels generally declined in the northern half of the study area

  17. Hydrostatic Water Level Systems At Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Stetler, L. D.; Volk, J. T.

    2009-12-01

    Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 μm per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 μm resolution) will be installed in the mine workings in the near future, some

  18. Ground-water levels in Anchorage, Alaska, 1985

    USGS Publications Warehouse

    Glass, R.L.

    1987-01-01

    Water-level data collected during 1985 for 146 Anchorage wells deeper than 40 feet are presented. Hydrographs of water levels in 20 wells for the period 1970 through 1985 are also given. The report describes groundwater conditions and seasonal fluctuations in water levels, and includes pumpage figures and well-construction data. (USGS)

  19. Recent and late quaternary changes in water level

    NASA Technical Reports Server (NTRS)

    Walcott, R. I.

    1975-01-01

    Water level changes of both the Great Lakes and the sea are described along with methods of analyzing water level data. The influence of elastic deformation of the earth and viscosity is discussed. Causes of water level changes reviewed include: earth movements, geoid changes, storm surges or meteorological phenomena, and melting ice in Antarctica, Greenland, and the mountain glaciers.

  20. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in

  1. Non-contact contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-18

    A fluid probe for measuring the surface contour of a machined part is provided whereby the machined part can remain on the machining apparatus during surface contour measurement. A measuring nozzle in a measuring probe directs a measuring fluid flow onto the surface. The measuring nozzle is on the probe situated midway between two guide nozzles that direct guide fluid flows onto the surface. When the guide fluid flows interact with the surface, they cause the measuring flow and measuring probe to be oriented perpendicular to the surface. The measuring probe includes a pressure chamber whose pressure is monitored. As the measuring fluid flow encounters changes in surface contour, pressure changes occur in the pressure chamber. The surface contour is represented as data corresponding to pressure changes in the pressure chamber as the surface is scanned.

  2. Wavelet Representation of Contour Sets

    SciTech Connect

    Bertram, M; Laney, D E; Duchaineau, M A; Hansen, C D; Hamann, B; Joy, K I

    2001-07-19

    We present a new wavelet compression and multiresolution modeling approach for sets of contours (level sets). In contrast to previous wavelet schemes, our algorithm creates a parametrization of a scalar field induced by its contoum and compactly stores this parametrization rather than function values sampled on a regular grid. Our representation is based on hierarchical polygon meshes with subdivision connectivity whose vertices are transformed into wavelet coefficients. From this sparse set of coefficients, every set of contours can be efficiently reconstructed at multiple levels of resolution. When applying lossy compression, introducing high quantization errors, our method preserves contour topology, in contrast to compression methods applied to the corresponding field function. We provide numerical results for scalar fields defined on planar domains. Our approach generalizes to volumetric domains, time-varying contours, and level sets of vector fields.

  3. Generalized gradient and contour program

    USGS Publications Warehouse

    Hellman, Marshall Strong

    1972-01-01

    This program computes estimates of gradients, prepares contour maps, and plots various sets of data provided by the user on the CalComp plotters. The gradients represent the maximum rates of change of a real variable Z=f(X,Y) with respect to the twodimensional rectangle on which the function is defined. The contours are lines of equal Z values. The program also plots special line data sets provided by the user.

  4. Estimated predevelopment discharge to streams from the High Plains Aquifer in northwestern Oklahoma, southwestern Kansas, and northwestern Texas

    USGS Publications Warehouse

    Luckey, R.R.; Becker, M.F.

    1998-01-01

    A study of the High Plains aquifer in Okla homa was initiated in 1996 to: (1) provide the information needed by the Oklahoma Water Resources Board to manage the quantity of water produced from the aquifer; and (2) provide base line water-chemistry data. The approach used to meet the first objective is to develop a digital ground-water flow model. The model will be cali brated, in part, by comparing simulated and esti mated predevelopment discharge from the aquifer to streams and cross-boundary flow. This report presents the estimated predevelopment discharge to streams from the High Plains aquifer. Streamflow data were the primary source of information used to estimate predevelopment dis charge from the High Plains aquifer. Data from 30 streamflow stations between the Arkansas and Canadian Rivers were considered in the analysis, and winter low-flow frequencies for 7-, 14-, and 30-day periods were determined for 25 stations. The 14-day low flow with a recurrence interval of 2 years was the primary value used to estimate pre development discharge from the aquifer. The streams that drain the eastern part of the High Plains aquifer in Kansas (generally east of 99.5 longitude) are estimated to have had large predevelopment discharge from the aquifer, and most of them received discharge from near their headwaters. For streams with more than one streamflow gage, the upper perennial reaches appeared to have gained more discharge from the aquifer than the lower reaches. The total predevel opment discharge from the aquifer in this area to several streams is estimated to have been about 312 cubic feet per second, not including discharge that probably went directly to the Arkansas River. The Cimarron River and its tributaries are estimated to have gained about 78 cubic feet per second, but nearly one-half that amount was lost in the lower reaches of the river. The cause of the loss in the lower reaches is unknown. The Beaver River and its tributaries are estimated to have

  5. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  6. Digital model of predevelopment flow in the Tertiary limestone (Floridan) aquifer system in West-Central Florida

    USGS Publications Warehouse

    Ryder, Paul D.

    1982-01-01

    A computer model was calibrated to approximate predevelopment flow conditions in a multilayered aquifer system in 10,600 square miles in west-central Floria. The lowermost aquifer, called the Floridan aquifer, is confined in most of the study area and consists of carbonate rocks ranging up to 1,300 feet thick. The Floridan aquifer is the chief source for large withdrawals and natural springflow in the study area. Daily springflows within the study area have averaged about 2.4 billion gallons. The secondary artesian and the surficial aquifers are much less permeable than the Floridan aquifer. Where they are present and have heads higher than those in the Floridan aquifer, they provide recharge to the Floridan. Initial estimates of recharge to the Floridan aquifer were from water-balance calculations for surface-water basins; initial estimates of transmissivity were from aquifer tests and flow-net analyses. The model was calibrated for the predevelopment era, wherein steady-state flow conditions were assumed. Calibrated transmissivities for the Floridan aquifer range from less than 15,000 to several million feet squared per day. Recharge to the system was about 3,700 cubic feet per second. About 90% was discharged as springflow, and 10% was upward leakage. (USGS)

  7. Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005

    USGS Publications Warehouse

    Schrader, T.P.; Jones, J.S.

    2007-01-01

    potentiometric contour encircles the three pumping centers. Seven smaller depressions are evident on the 2005 Sparta-Memphis potentiometric-surface map located in Webster and Winn Parishes, Louisiana, and Calhoun, Cleveland, western Columbia, Desha, and Lafayette Counties, Arkansas. The depression in Calhoun County initially was shown in the 1996-1997 potentiometric surface. The depression in Desha County initially was shown in the 1999 potentiometric surface. The depressions in Webster and Winn Parishes were shown as early as 1975. The depressions in Cleveland, western Columbia, and Lafayette Counties initially were shown in the 2003 potentiometric surface. A map of differences in water-level measurements between 2001 and 2005 was constructed using the difference between water-level measurements from 294 wells in Arkansas and 29 wells in Louisiana. The difference in water levels between 2001 and 2005 ranged from -30.1 to 44.6 feet. The largest rise of 44.6 feet in water level measured was in Union County in Arkansas. The largest decline of 30.1 feet in water level measured was in Columbia County in Arkansas. Areas with a general rise in water levels in Arkansas are shown in Arkansas, Columbia, Craighead, Jefferson, Prairie, and the western half of Union Counties. The area around west-central Union County had rises as much as 44.6 feet, with seven wells showing a rise of 20 feet or greater, which is an annual rise of 5 feet or greater. Areas in Arkansas with a general decline in water level are shown in western Bradley, eastern Calhoun, Cleveland, Cross, Desha, Drew, Lafayette, Lee, Lincoln, Lonoke, Poinsett, and the eastern half of Union Counties. In Louisiana, the water-level difference map showed a general rise in water levels in northern Claiborne, northern Webster, and northwestern Union Parishes mainly because of a decrease in industrial withdrawals in southern Arkansas, particularly Union County. Another rise in water level was indicated in western

  8. Water levels in the Yucca Mountain area, Nevada, 1993

    SciTech Connect

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-07-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.

  9. Ground-water levels and quality data for Georgia, 1978

    USGS Publications Warehouse

    Clarke, J.S.; Hester, W.G.; O'Byrne, M. P.

    1979-01-01

    Mean water levels in wells across Georgia were from 0.25 foot higher to 11.4 feet lower in 1978 than in 1977, and in some areas were the lowest on record. Water levels in the principal artesian aquifer underwent a long-term decline during the period 1969-78. In some areas water levels dropped more than 10 feet. Wells tapping the Clayton Limestone in the Albany area showed a long-term decline during the period 1969-78, and in some wells water levels dropped more than 20 feet. Water levels in the Cretaceous aquifer system showed little fluctuation during 1978; however, in a well located in Chattahoochee County, water levels declined 4.4 feet during 1969-78. In the Piedmont area mean water levels remained the same to 2.2 feet lower in 1978 than in 1977, and showed no long-term trend. Chloride concentrations in the principal artesian aquifer in the Savannah area remained stable and in the Brunswick area continued to rise during 1978. Daily mean water-level fluctuations and trends for 1978 and fluctuations of the monthly mean water level for the previous 10 years are shown in hydrographs of 33 selected observation wells in Georgia. Chloride concentrations in 11 wells in the Savannah and Brunswick areas are shown in graphs of monthly values over the previous 10 years. A short narrative explains fluctuations and trends in each of the hydrographs and chloride concentration graphs shown. (Woodard-USGS)

  10. Construction and use of special drawdown scales for use in prediction of water-level changes throughout heavily pumped areas

    USGS Publications Warehouse

    Conover, C.S.; Reeder, H.O.

    1957-01-01

    Problem and Proposed Method of Solution Frequently the Theis nonequilibrium formula is use din the quantitative analyses that are part of many-ground-water investigations. The computations associated therewith may become quite involved and tedious, especially when dealing with predictions of the decline of water levels throughout large areas in which there are many discharging wells. The process of predicting future water-level declines can be greatly simplified and shortened by preparing a special draw-down scale for given conditions. Through use of such a scale much of the computation can be reduced to scaling the values sought from a map, on which the pumped wells have been spotted. The net drawdown effect, which is the sum of the water-level declines caused by the many individual pumped wells, can be determined readily for any desired point in the area. If the net drawdown effect is desired, a summation of the effects of all the pumped wells can be repeated for each point. By determining the water-level change at a number of points, for a given period of time, a contour map of predicted water-level changes for the multiple-well system can be drawn.

  11. Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    The Chester County observation-well network was established in 1973 through a cooperative agreement between the Chester County Water Resources Authority (CCWRA) and the U.S. Geological Survey. The network was established to monitor local ground-water levels, to determine drought conditions, and to monitor ground-water-level trends. Drought-warning and drought-emergency water-level triggers were determined for 20 of the 23 wells in the Chester County observation-well network. A statistical test to determine either rising or declining water-level trends was performed on data for all wells in the network. Water-level data from both of these wells showed a rising trend. A decrease in ground-water pumping in the area near these wells was probably the reason for the rise in water levels.

  12. Map showing ground-water levels in the Columbia River Basalt Group and overlying materials, spring 1983, southeastern Washington State

    USGS Publications Warehouse

    Bauer, H.H.; Vaccaro, John J.; Lane, R.C.

    1985-01-01

    A 2 1/2-year study of the Columbia Plateau in Washington was begun in March 1982 to define spatial and temporal variations in dissolved sodium in aquifers of the Columbia River Basalt Group and to relate these variations to the groundwater system and its geologic framework. This report is part of that study and describes groundwater level contours for four major geohydrologic units in southeastern Washington, constructed from water-level data collected from approximately 1,100 wells during the spring of 1983, data from U.S. Geological Survey studies in the area, and other indirect methods. Configuration of the groundwater level contours is controlled by: (1) extent of a geohydrologic unit and geologic structure, (2) recharge from precipitation and surface water bodies, (3) rivers, lakes, and coulees that drain the groundwater system, and (4) hydraulic conductivities of each unit. Upgradient flexures of water level contours north of Connel, Washington, show effects of prolonged irrigation while downgradient flexures in an area south of Potholes Reservoir, in the vicinity of the East Low Irrigation Canal, show the effects of increased man-induced recharge. (USGS)

  13. Topological Cacti: Visualizing Contour-based Statistics

    SciTech Connect

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introduce a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.

  14. Gage for 3-d contours

    NASA Technical Reports Server (NTRS)

    Haynie, C. C.

    1980-01-01

    Simple gage, used with template, can help inspectors determine whether three-dimensional curved surface has correct contour. Gage was developed as aid in explosive forming of Space Shuttle emergency-escape hatch. For even greater accuracy, wedge can be made of metal and calibrated by indexing machine.

  15. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  16. Algorithm for Constructing Contour Plots

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Silva, F.

    1984-01-01

    General computer algorithm developed for construction of contour plots. algorithm accepts as input data values at set of points irregularly distributed over plane. Algorithm based on interpolation scheme: points in plane connected by straight-line segments to form set of triangles. Program written in FORTRAN IV.

  17. Measuring and Plotting Surface-Contour Deviations

    NASA Technical Reports Server (NTRS)

    Aragon, Lino A.; Shuck, Thomas; Crockett, Leroy K.

    1987-01-01

    Hand-held device measures deviation of contour of surface from desired contour and provides output to x-y plotter. Carriage on device rolled along track representing desired contour, while spring-loaded stylus on device deflects perpendicularly to track to follow surface. Operator moves carriage of contour-measuring device on beamlike track. Stylus on carriage traces contour of surface above it. Carriage of measuring device holds transducer measuring cross-track displacement of surface from desired contour, and multiple-turn potentiometer measuring position along track.

  18. Water levels and water quality in the Sparta-Memphis aquifer (middle Claiborne aquifer) in Arkansas, spring-summer 2009

    USGS Publications Warehouse

    Schrader, T.P.

    2013-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively) since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2009, 324 water levels were measured in wells completed in the Sparta-Memphis aquifer and used to produce a regional potentiometric-surface map. During the summer of 2009, 64 water-quality samples were collected and measured for specific conductance, temperature, and pH from wells completed in the Sparta-Memphis aquifer. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large groundwater withdrawals. The highest and lowest water-level altitudes measured in the Sparta-Memphis aquifer were 325 feet above and 157 feet below National Geodetic Vertical Datum of 1929, respectively. Eight depressions (generally represented by closed contours) are located in the following counties: Bradley; Ashley; Calhoun; Cleveland; Columbia; Arkansas, Jefferson, Lincoln, and Prairie; Cross and Poinsett; and Union. Two large depressions shown on the 2009 potentiometric-surface map, centered in Jefferson and Union Counties, are the result of large withdrawals for industrial, irrigation, or public supply. The depression centered in Jefferson County deepened and expanded in recent years into Arkansas and Prairie Counties. The area enclosed within the 40-foot contour on the 2009 potentiometric-surface map has expanded south to the Drew

  19. The hydrological impact of contour trenching in Vietnam

    NASA Astrophysics Data System (ADS)

    Pramana, K. E. R.; Ertsen, M. W.; Uhlenbrook, S.; de Laat, P.; Nonner, J.

    2009-04-01

    At the foothill in the driest rural area in Vietnam, at Ninh Thuan province, poor farmers cultivate up-land crops during the wet season. The area is about 9 hectares of deforested land with a slope up to 8% and has a geology surface of crusted sands and gravels. Water is scarce during the dry season and runs off rapidly during the wet season. Hence, to provide sustainable water resources and support crop growth, a project started in 2007 aiming introducing contour trenching. The main purpose of contour trenching is to trap run off, increase soil moisture for vegetation growth and recharge the groundwater. In order to investigate the impact of the trenches, a field monitoring program was initiated measuring rainfall, soil moisture content, surface water levels and groundwater levels. Recorded annual rainfall reached 600 mm. The groundwater levels are relatively deep and constant at -8 and -10 meters. The soil moisture content ranged from 3% at the driest condition to 37% below the trench at ponding. Water levels in trenches differed from uphill to downhill with higher levels at the first trench uphill. After ponding, water in the trenches infiltrates within a period of days. In this contribution, available field measurements are analyzed in two ways. First, runoff is analyzed. Immediately after significant rainfall events, the observed ponding levels in the trenches with defined uphill runoff areas can be related to the rainfall. The results show reduction of runoff coefficients per trench in downhill direction. Second, the two dimension numerical saturated-unsaturated model Hydrus 2-D was used to simulate the soil moisture content measurements. Model results confirm that infiltration is a quick process in this area with its loamy sand soils. Based on these analyzes, potential of contour trenches for local water retention and groundwater recharge will be discussed.

  20. Testing of New Materials and Computer Aided Optimization of Process Parameters and Clamping Device During Predevelopment of Laser Welding Processes

    NASA Astrophysics Data System (ADS)

    Weidinger, Peter; Günther, Kay; Fitzel, Martin; Logvinov, Ruslan; Ilin, Alexander; Ploshikhin, Vasily; Hugger, Florian; Mann, Vincent; Roth, Stephan; Schmidt, Michael

    The necessity for weight reduction in motor vehicles in order to save fuel consumption pushes automotive suppliers to use materials of higher strength. Due to their excellent crash behavior high strength steels are increasingly applied in various structures. In this paper some predevelopment steps for a material change from a micro alloyed to dual phase and complex phase steels of a T-joint assembly are displayed. Initially the general weldability of the materials regarding pore formation, hardening in the heat affected zone and hot cracking susceptibility is discussed. After this basic investigation, the computer aided design optimization of a clamping device is shown, in which influences of the clamping jaw, the welding position and the clamping forces upon weld quality are presented. Finally experimental results of the welding process are displayed, which validate the numerical simulation.

  1. Adjusting the Contour of Reflector Panels

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Giebler, M. M.

    1984-01-01

    Postfabrication adjustment of contour of panels for reflector, such as parabolic reflector for radio antennas, possible with simple mechanism consisting of threaded stud, two nuts, and flexure. Contours adjusted manually.

  2. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  3. Prediction of subsurface water level change from satellite data

    NASA Astrophysics Data System (ADS)

    Saykawlard, Suphan; Honda, Kiyoshi; Das Gupta, Ashim; Eiumnoh, Apisit; Chen, Xiaoyong

    2005-03-01

    This study explores the potential for predicting the spatial variation in subsurface water level change with crop growth stage from satellite data in Thabua Irrigation Project, situated in the northern central region of Thailand. The relationship between subsurface water level change from pumping water to irrigate rice in the dry season and the age of the rice was analysed. The spatial model of subsurface water level change was developed from the classification using greenness or (normalized difference vegetation index NDVI) derived from Landsat 5 Thematic Mapper data. The NDVI of 52 rice fields was employed to assess its relationship to the age of the rice. It was found that NDVI and rice age have a good correlation (R2 = 0.73). The low NDVI values (-0.059 to 0.082) in these fields were related to the young rice stage (0-30 days). NDVI and subsurface water level change were also correlated in this study and found to have a high correlation (Water level change (m day-1) = 0.3442 × NDVI - 0.0372; R2 = 0.96). From this model, the water level change caused by rice at different growth stages was derived. This was used to show the spatial variation of water level change in the project during the 1998-99 dry-season cropping. This simple method of using NDVI relationships with water level change and crop growth stages proves to be useful in determining the areas prone to excessive lowering of the subsurface water level during the dry season. This could assist in the appropriate planning of the use of subsurface water resources in dry-season cropping.

  4. Doubly rotated contoured quartz resonators.

    PubMed

    Sinha, B K

    2001-09-01

    Doubly rotated contoured quartz resonators are used in the design of temperature-compensated stable clocks and dual-mode sensors for simultaneous measurements of pressure and temperature. The design of these devices is facilitated by models that can predict frequency spectra associated with the three thickness modes and temperature and stress-induced frequency changes as a function of crystalline orientation. The Stevens-Tiersten technique for the analysis of the C-mode of a doubly rotated contoured quartz resonator is extended to include the other two thickness modes. Computational results for harmonic and anharmonic overtones of all three thickness modes of such resonators help in optimizing the radius of curvature of the contour and electrode shape for suppression of unwanted modes and prevention of activity dips. The temperature and stress-induced changes in thickness-mode resonator frequencies are calculated from a perturbation technique for small dynamic fields superposed on a static bias. The static bias refers to either a temperature or stress-induced static deformation of the resonator plate. Phenomenological models are also used for calculating the temperature and stress-induced changes in resonant frequencies as a function of crystalline orientation. Results for the SBTC-cut quartz plate with a spherical convex contour of 260 mm indicate that normal trapping occurs for the third (n = 3) and fifth (n = 5) harmonic of the A-mode, the fundamental (n = 1) and third (n = 3) harmonic of the B-mode, and the fundamental (n = 1) and fifth (n = 5) harmonic of the C-mode. PMID:11570746

  5. Ground-water levels in the lower Paleozoic and Precambrian crystalline rocks, southeastern Chester County, Pennsylvania, July and August 1986

    USGS Publications Warehouse

    Garges, John A.

    1987-01-01

    A water table contour map of the lower Paleozoic and Precambrian crystalline rocks of southeastern Chester County, Pennsylvania was constructed on the basis of water levels measured in 261 wells in July and August 1986, elevations of 11 springs that were flowing in July and August 1986, and water levels measured in 15 wells. Pre-1986 measurements were incorporated on the map to provide control in areas where more-recent data were not available. The area of crystalline rocks underlies Thornbury, Westtown, East Goshen, and West Goshen Townships, parts of East Whiteland and West Whiteland Townships; and West Chester Borough. Water table altitudes under natural conditions range from 544 ft. above National Geodetic Vertical Datum of 1929 (NGVD of 1929) near Immaculata College to 234 ft. above NGVD of 1929 near Cheyney College. (USGS)

  6. Intonation contour in synchronous speech

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Cummins, Fred

    2003-10-01

    Synchronous Speech (Syn-S), obtained by having pairs of speakers read a prepared text together, has been shown to result in interesting properties in the temporal domain, especially in the reduction of inter-speaker variability in supersegmental timing [F. Cummins, ARLO 3, 7-11 (2002)]. Here we investigate the effect of synchronization among speakers on the intonation contour, with a view to informing models of intonation. Six pairs of speakers (all females) read a short text (176 words) both synchronously and solo. Results show that (1) the pitch accent height above a declining baseline is reduced in Syn-S, compared with solo speech, while the pitch accent location is consistent across speakers in both conditions; (2) in contrast to previous findings on duration matching, there is an asymmetry between speakers, with one speaker exerting a stronger influence on the observed intonation contour than the other; (3) agreement on the boundaries of intonational phrases is greater in Syn-S and intonation contours are well matched from the first syllable of the phrase and throughout.

  7. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  8. 8. General view of movable span from water level, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. General view of movable span from water level, showing piers turntable, movable span, parts of west land span and east viaduct. VIEW NORTHEAST - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  9. 1. East side of lower dam shown with water level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. East side of lower dam shown with water level dropped. VIEW WEST - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  10. Digital map of water levels in 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for contours for 1980 water-level elevations for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the 1980 water-level elevation contours from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer Systems-Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  11. Water-Level and land-subsidence studies in the Mojave River and Morongo groundwater basins

    USGS Publications Warehouse

    Stamos, Christina L.; Glockhoff, Carolyn S.; McPherson, Kelly R.; Julich, Raymond J.

    2007-01-01

    What's New! Water-level data, contours, and meta data for spring 2008 are included in Version 2.0 of SIR 2007-5097 (http://ca.water.usgs.gov/mojave/wl_studies/wl2008.html). All the original data are still available on the web site. Introduction Since 1992, the U.S. Geological Survey (USGS), in cooperation with the Mojave Water Agency (MWA), has constructed a series of regional water-table maps for intermittent years in a continuing effort to monitor groundwater conditions in the Mojave River and Morongo groundwater basins. The previously published data, which were used to construct these maps, can be accessed on the interactive map. The associated reports describing the groundwater conditions for the Mojave River groundwater basin for 1992 (Stamos and Predmore, 1995), the Morongo groundwater basin for 1994 (Trayler and Koczot, 1995), and for both groundwater basins for 1996 (Mendez and Christensen, 1997); for 1998 (Smith and Pimentel, 2000), for 2000 (Smith, 2002), for 2002 (Smith and others, 2004), for 2004 (Stamos and others, 2004), and for 2006 (Stamos and others, 2007) can be accessed using this web site. Spatially detailed maps of interferometric synthetic aperture radar (InSAR) methods were used to characterize land subsidence associated with groundwater-level declines during various intervals of time between 1992 and 1999 in the Mojave River and Morongo groundwater basins (Sneed and others, 2003). Concerns related to the potential for new or renewed land subsidence in the basins resulted in a cooperative study between the MWA and the USGS in 2006. InSAR data were developed to determine the location, extent, and magnitude of vertical land-surface changes in the Mojave River and Morongo groundwater basins for time intervals ranging from about 35 days to 14 months between 1999 and 2000 and between 2003 and 2004. (interactive Google map) The results from many future land-subsidence studies, which are scheduled about every 10 years, will be available on this

  12. Simulation of saltwater movement in the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area, predevelopment-2004, and projected movement for 2000 pumping conditions

    USGS Publications Warehouse

    Provost, Alden M.; Payne, Dorothy F.; Voss, Clifford I.

    2006-01-01

    A digital model was developed to simulate ground-water flow and solute transport for the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area. The model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004), (2) project these trends from the present day into the future, and (3) evaluate the relative influence of different assumptions regarding initial and boundary conditions and physical properties. The model is based on a regional, single-density ground-water flow model of coastal Georgia and adjacent parts of South Carolina and Florida. Variable-density ground-water flow and solute transport were simulated using the U.S. Geological Survey finite-element, variable-density solute-transport simulator SUTRA, 1885-2004. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. The model was calibrated to September 1998 water levels, for single-density freshwater conditions, then refined using variable density and chloride concentration to give a reasonable match to the trend in the chloride distribution in the Upper Floridan aquifer inferred from field measurements of specific conductance made during 2000, 2002, 2003, and 2004. The model was modified to simulate solute transport by allowing saltwater to enter the system through localized areas near the northern end of Hilton Head Island, at Pinckney Island, and near the Colleton River, and was calibrated to match chloride concentrations inferred from field measurements of specific conductance. This simulation is called the 'Base Case.'

  13. Shape from equal thickness contours

    SciTech Connect

    Cong, G.; Parvin, B.

    1998-05-10

    A unique imaging modality based on Equal Thickness Contours (ETC) has introduced a new opportunity for 3D shape reconstruction from multiple views. We present a computational framework for representing each view of an object in terms of its object thickness, and then integrating these representations into a 3D surface by algebraic reconstruction. The object thickness is inferred by grouping curve segments that correspond to points of second derivative maxima. At each step of the process, we use some form of regularization to ensure closeness to the original features, as well as neighborhood continuity. We apply our approach to images of a sub-micron crystal structure obtained through a holographic process.

  14. 1996 Water-Table Contours of the Mojave River, the Morongo, and the Fort Irwin Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Predmore, Steven K.

    2003-01-01

    This data set consists of digital water-table contours for the Mojave River, the Morongo and the Fort Irwin Ground-Water Basins. The U.S. Geological Survey constructed a water-table map of the Mojave River, the Morongo and the Fort Irwin Ground-Water Basins for ground-water levels measured during the period January-September 1996. Water-level data were collected from 632 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:175,512. The contour interval ranges from 3,400 to 1,550 feet above sea level.

  15. Antenna surface contour control system

    NASA Technical Reports Server (NTRS)

    Ahl, Elvin L. (Inventor); Miller, James B. (Inventor)

    1989-01-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  16. Brightness alteration with interweaving contours

    PubMed Central

    Roncato, Sergio

    2012-01-01

    Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation) or when lines of different colours are collinear (neon effect) or adjacent (watercolour) to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread). The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975) and Kanizsa (1979) in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed. PMID:23483806

  17. Analysis for water level data for Everglades National Park, Florida

    USGS Publications Warehouse

    Buchanan, T.J.; Hartwell, J.H.

    1972-01-01

    Stage-duration curves were developed for five gaging stations in Everglades National Park, Florida. Four of the five curves show similar characteristics with an increase in the slope when the water level is below land surface. Monthly stage-duration curves, developed for one of the stations, reflect the seasonal trends of the water level. Recession curves were prepared for the same five stations. These curves represent the average water-level decline during periods of little or no rainfall. They show the decline in level at the end of 10, 20, and 60 days for any given initial stage. A family of curves was also prepared to give the recession from various initial stages for any period up to 60 days.

  18. Projection moire for remote contour analysis

    NASA Technical Reports Server (NTRS)

    Doty, J. L.

    1983-01-01

    Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.

  19. Subsidence at the Fairport Harbor Water Level Gauge

    NASA Astrophysics Data System (ADS)

    Conner, D. A.

    2014-12-01

    SUBSIDENCE AT THE FAIRPORT HARBOR WATER LEVEL GAUGE I will provide information on methods being used to monitor Lake Erie water levels and earth movement at Fairport Harbor, Ohio. Glacial Isostatic Adjustment (GIA) is responsible for vertical movement throughout the Great Lakes region. Fairport Harbor is also experiencing vertical movement due to salt mining, so the nearby water level gauge operated by the National Oceanic and Atmospheric Administration (NOAA) is affected by both GIA and mining. NOAA's National Geodetic Survey (NGS) defines and maintains the National Spatial Reference System (NSRS). The NSRS includes a network of permanently marked points; a consistent, accurate, and up-to-date national shoreline; a network of Continuously Operating Reference Stations (CORS) which supports three-dimensional positioning activities; and a set of accurate models describing dynamic, geophysical processes that affect spatial measurements. The NSRS provides the spatial reference foundation for transportation, mapping, charting and a multitude of scientific and engineering applications. Fundamental elements of geodetic infrastructure include GPS CORS (3-D), water level and tide gauges (height) and a system of vertical bench marks (height). When two or more of these elements converge they may provide an independent determination of position and vertical stability as is the case here at the Fairport Harbor water level gauge. Analysis of GPS, leveling and water level data reveal that this gauge is subsiding at about 2-3 mm/year, independent of the effects of GIA. Analysis of data from the nearby OHLA GPS CORS shows it subsiding at about 4 mm/yr, four times faster than expected due to GIA alone. A long history of salt mine activity in the area is known to geologists but it came as a surprise to other scientists.

  20. Ground-water levels in observation wells in Oklahoma, 1975

    USGS Publications Warehouse

    Goemaat, Robert L.

    1977-01-01

    The objectives of the observation-well program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate the future availability of ground-water supplies, and (3) to provide information for use in basic research. These selected records serve as a framework to which other types of hydrologic data may be related. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

  1. A siphon gage for monitoring surface-water levels

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold

  2. Analysis of water-level fluctuations in Wisconsin wells

    USGS Publications Warehouse

    Patterson, G.L.; Zaporozec, A.

    1987-01-01

    The long-term cyclicity of ground-water level fluctuations is shown on hydrographs of wells Sw-7, Ln-25a, Mt-7, Ju-8, and Ju-98. Seasonal variations that tend to obscure the long-term trends are eliminated by plotting the average annual water levels. The hydrographs are similar even though the wells are 80 to 100 miles apart and constructed in different geologic materials. The long-term trends and the duration of the cycles apparently depend little on the location and on the lithologic composition of the aquifers, but rathe

  3. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on

  4. Digital Map of Water-Level Changes in the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1997

    USGS Publications Warehouse

    Fischer, Brian C.; Kollasch, Keith M.; McGuire, Virginia L.

    2000-01-01

    This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, 1980 to 1997. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created from 5,233 wells measured in both 1980 and 1997. The water-level-change contours were drawn manually on mylar at a scale of 1:1,000,000. The contours then were converted to a digital map.

  5. Digital map of water-level changes in the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1996

    USGS Publications Warehouse

    Fischer, Brian C.; McGuire, Virginia L.

    1999-01-01

    This data set consists of digital water-level-change contours for the High Plains aquifer in the Central United States, 1980 to 1996. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created from 5,429 wells measured in both 1980 and 1996. The water-level-change contours were drawn manually on mylar. The contours were converted into a digital map at a scale of 1:1,000,000. The data should not be used at scales larger than 1:1,000,000.

  6. Digital map of water-level changes in the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1994

    USGS Publications Warehouse

    Fischer, Brian C.; McGuire, Virginia L.

    1999-01-01

    This data set consists of digital water-level-change contour for the High Plains aquifer in the Central United States, 1980 to 1994. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created from 6,143 wells measured in both 1980 and 1994. The water-level-change contours were drawn manually on mylar. The contours were converted into a digital map at a scale of 1:1,250,000. The data should not be used at scales larger than 1:1,250,000.

  7. Digital map of water-level changes in the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1995

    USGS Publications Warehouse

    Fischer, Brian C.; McGuire, Virginia L.

    1999-01-01

    This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, 1980 to 1995. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created from 5,892 wells measured in both 1980 and 1995. The water-level-change contours were drawn manually on mylar. The contours were converted to a digital map at a scale of 1:1,250,000. The data should not be used at scales larger than 1:1,250,000.

  8. Contoured insulation window for evacuated solar collector

    SciTech Connect

    Coppola, F. T.; Lentz, W. P.; Vandewoestine, R. V.

    1980-02-05

    An insulating contoured window is provided for use with an enclosed chamber such as an evacuated flat plate solar heat collector with the contoured solar window being of minimum thickness and supported solely about its peripheral edge portions. The window is contoured in both its longitudinal and transverse directions, such that in its longitudinal direction the window is composed of a plurality of sinusoidal corrugations whereas in its transverse direction the peaks of such corrugations are contoured in the form of paraboloids so that the structure may withstand the forces generated thereon by the atmosphere.

  9. Creation of digital contours that approach the characteristics of cartographic contours

    USGS Publications Warehouse

    Tyler, Dean J.; Greenlee, Susan K.

    2012-01-01

    The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).

  10. Naval Oil Shale Reserves 1 and 3. Five years of progress on the Oil Shale Predevelopment Program: summary

    SciTech Connect

    Not Available

    1982-06-01

    This report summarizes the predevelopment work done to date, and discusses the work remaining to be accomplished for the policy options pertaining to continuing developmental activities. The work can be divided into three technical areas: resource assessment, technology assessment, and environmental assessment. The resource assessment results show that NOSR 1 could sustain a production rate of 50,000 barrels per day for well over 100 years. NOSR 1 has the largest in-place resource, the third largest recoverable resource, comparable recovery economics, a greater recovery potential with improvements in low-grade recovery technology, and fewer technical, environmental, and institutional impediments to development. An assessment of six mining technologies showed that the only option technically and economically feasible was room and pillar mining. There are approximately 17 options for retorting shale available for screening. These options fall broadly into the categories of surface and in situ retorting, solvent processing, and bioleaching. Processes retained after initial screening consist of only surface retorting options: Lurgi-Ruhrgas, Paraho, Tosco II, Union B, and Superior Circular Grate. Surface retorting is also planned for all nearby oil shale projects. Environmental assessment has focused on two major thrusts: environmental baseline determination and preparation of a programmatic Environmental Impact Statement (EIS). 17 figures, 11 tables. (DMC)

  11. Status of ground-water levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2000-January 2003

    USGS Publications Warehouse

    Hansen, Cristi V.; Aucott, Walter R.

    2004-01-01

    The Equus Beds aquifer northwest of Wichita, Kansas, was developed to supply water to Wichita residents and for irrigation in south-central Kansas beginning on September 1, 1940. Ground-water pumping for city and agricultural use from the aquifer caused water levels to decline in a large part of the area. Irrigation pumpage in the area increased substantially during the 1970s and 1980s and accelerated water-level declines. A period of water-level rises associated with greater-than-average precipitation and decreased city pumpage from the study area began in 1993. An important factor in the decreased city pumpage was increased use of Cheney Reservoir as a water-supply source by the city of Wichita; as a result, city pumpage from the Equus Beds aquifer during 1993-2002 went from being greater than one-half to slightly less than one-third of Wichita's water usage. Since 1995, the city also has been investigating the use of artificial recharge in the study area to meet future water-supply needs and to protect the aquifer from the intrusion of saltwater from natural and human-related sources to the west. During January 2003, the direction of ground-water flow in the Equus Beds aquifer in the area was generally from west to east similar to predevelopment of the aquifer. The maximum water-level decline since 1940 for the period January 2000 to January 2003 was 29.54 feet in July 2002 at well 3 in the northern part of the area. Cumulative water-level changes from January 2000 to January 2003 typically were less than 4 feet with rises of less than 4 feet common in the central part of the area; however, declines of more than 4 feet occurred in the northwestern and southern parts of the area. The recovery of water levels and aquifer storage volumes from record low levels in October 1992 generally continued to April 2000. The recovery of about 182,000 acre-feet of storage volume in the area from October 1992 to April 2000 represents about a 64-percent recovery of the storage

  12. Body Contouring After Bariatric Surgery.

    PubMed

    Ellison, Jo M; Steffen, Kristine J; Sarwer, David B

    2015-11-01

    Individuals who undergo bariatric surgery generally experience rapid and dramatic weight loss. While the weight loss typically confers significant health benefits, an undesirable consequence is often excessive quantities of hanging, surplus skin. Some patients undergo body-contouring surgery (BCS) in order to improve health, mobility, appearance and psychological adjustment. While the majority of post-bariatric patients desire BCS in one or more body regions, a small percentage of patients receive such surgeries. Lack of knowledge about procedures, cost and (in the USA and several other countries) difficulty obtaining insurance reimbursement likely prevents many patients from undergoing BCS. Those who do undergo BCS appear to be at heightened risk for wound-healing complications. Despite these complications, the majority of patients report satisfactory BCS outcomes. The extant literature in this area provides a great deal of information about these issues; nevertheless, additional research is needed to further inform clinical management and improve patient outcomes. PMID:26395601

  13. Sodium Deoxycholate for Submental Contouring.

    PubMed

    Humphrey, S; Beleznay, K; Beleznay, J D A

    2016-09-01

    The chin and jaw line are integral parts of an individual's aesthetic profile, and the presence of submental fat detracts from this and can lead to displeasure with one's facial appearance. While liposuction and cosmetic surgery are regarded as the gold standard in treating submental fat, surgical intervention is not appealing to all patients and has potential surgical complications including longer recovery, and contour irregularities. Despite ample advances in aesthetic medicine to enhance the appearance of the face, very little is available in non-invasive options to reduce submental fat that has been supported by robust evidence. ATX-101, a proprietary formulation of deoxycholic acid that is synthetically derived, has been extensively explored in a vigorous clinical development program that has established the safety and efficacy of the injectable. It has recently received approval by regulatory authorities in Canada (Belkyra™) and the US (Kybella®) for the treatment of submental fat. PMID:27603325

  14. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    Most of the subsidence in the Houston-Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps showing 2010 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers, respectively; maps showing 1-year (2009-10) water-level-altitude changes for each aquifer; maps showing 5-year (2005-10) water-level-altitude changes for each aquifer; maps showing long-term (1990-2010 and 1977-2010) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000-10) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2009. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included. Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2009-March 2010. In 2010, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below National Geodetic Vertical Datum of 1929 or North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 49-foot decline to a 67

  15. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    Most of the subsidence in the Houston–Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris–Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing 2011 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2010–11) water-level-altitude changes for each aquifer; maps showing 5-year (2006–11) water-level-altitude changes for each aquifer; maps showing long-term (1990–2011 and 1977–2011) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–11) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2010. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included.Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2010–February 2011. In 2011, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 40-foot decline to a 33-foot rise (2010–11), from a 10-foot

  16. Ground-water levels in Arkansas, spring 1983

    USGS Publications Warehouse

    Edds, Joe

    1983-01-01

    About 640 ground-water level measurements were made in observation wells in Arkansas in the spring of 1981. In addition , the report contains potentiometric-surface maps and well hydrographs relating to the alluvial aquifer and the Sparta Sand , the most important aquifers with respect to ground-water availability and use in Arkansas. (USGS)

  17. Comparison Between Water Level and Precipitation in Rio Negro Basin

    NASA Astrophysics Data System (ADS)

    Figliuolo, G. C.; Santos Da Silva, J.; Calmant, S.; Seyler, F.; Correia, F.; Oliveira, R. J.

    2013-12-01

    The Amazon Basin holds a lot of difficulties for providing data that enable regional researching works, because of its large extension and for having areas, whose access is very difficult. Remote sensing data presents an excellent way for monitoring the Amazon Basin and collecting data for researches. This current study aims matching radar altimetry data from the JASON-2, with the rainfall data from the TRMM satellite in order to analyze the relation between the water level and the precipitation in two different points along the Rio Negro Basin. After data analysis, it was possible noting a difference on the responding process for both regions. Whilst at the NEGRO_089_03 station (located in the city of São Gabriel da Cachoeira) the graphic of precipitation and water level were very similar, in NEGRO_063 station (located in the city of Manaus) the graphic showed a two month discrepancy due to the difference of the river's bottom size in both regions, at NEGRO_089_03's area for having a smaller river and the water level rises faster, whereas in NEGRO_063 the water level takes about two months to respond to precipitation.

  18. Individual Differences and Development in Water-Level Task Performance.

    ERIC Educational Resources Information Center

    Thomas, Hoben; Turner, Geoffrey, F. W.

    1991-01-01

    Presents research on individuals' ability to perform Piaget's water-level task. At almost every age and for each sex, some subjects had high probability of success and some had low. Age-related improvement was not a result of children's increasing accuracy in task performance. Differences in performance between sexes were evident at all ages.…

  19. Modeling Tidal Water Levels for Canadian Coastal and Offshore waters

    NASA Astrophysics Data System (ADS)

    Robin, C. M. I.; MacAulay, P.; Nudds, S.; Godin, A.; de Lange Boom, B.; Bartlett, J.; Maltais, L.; Herron, T.; Craymer, M. R.; Veronneau, M.; Fadaie, K.

    2014-12-01

    IIn 2010, the Canadian Hydrographic Service initiated the Continuous Vertical Datum for Canadian Waters (CVDCW) project, the aim of which is to connect tidal water level datums (high and low water levels, chart datum, etc.) to a national geodetic reference frame over all Canadian tidal waters. Currently, water level datums are tied to a geodetic reference frame at approximately 400 tide stations which have been surveyed with GPS, whereas water levels vary significantly in space even a short distance away from tide stations. The CVDCW captures the relevant spatial variability between stations and offshore by integrating ocean models, gauge data (water level analyses and/or GPS observations), sea level trends, satellite altimetry, and a geoid model. The CVDCW will enable the use of Global Navigation Satellite System technologies (primarily GPS) for hydrographers and navigators. It will also be important for other users including oceanographers, environmental and climate scientists, surveyors and engineers. For instance, it will allow easier integration of hydrographic and terrestrial data, provide a baseline for storm surge modeling and climate change adaptation, and aid with practical issues such as sovereignty and the definition of the coastline. Once high and low water surfaces are complete, they will define a large portion of the vertical link between land and ocean, helping to delineate flooding thresholds and inter-tidal ecosystem zones and boundaries. Here we present an overview of the methodology using a set of prototype model results, and will outline features of interest for studies in coastal stability, climate change adaptation, and sea level change.

  20. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs.

    PubMed

    Yang, Jun; Lv, Hong; Yang, Jun; Liu, Lemian; Yu, Xiaoqing; Chen, Huihuang

    2016-07-01

    Globally aquatic ecosystems are likely to become more vulnerable to extreme water fluctuation rates due to the combined effects of climate change and human activity. However, relatively little is known about the importance of water level fluctuations (WLF) as a predictor of phytoplankton community shifts in subtropical reservoirs. In this study, we used one year of data (2010-2011) from four subtropical reservoirs of southeast China to quantify the effects of WLF and other environmental variables on phytoplankton and cyanobacteria dynamics. The reservoirs showed an apparent switch between a turbid state dominated by cyanobacteria and a clear state dominated by other non-cyanobacterial taxa (e.g., diatoms, green algae). Cyanobacterial dominance decreased, or increased, following marked changes in water level. Multiple regression analysis demonstrated that pH, euphotic depth, WLF, and total phosphorus provided the best model and explained 30.8% of the variance in cyanobacteria biomass. Path analysis showed that positive WLF (i.e. an increase in water level) can reduce the cyanobacteria biomass either directly by a dilution effect or indirectly by modifying the limnological conditions of the reservoirs in complex pathways. To control the risk of cyanobacterial dominance or blooms, WLF should be targeted to be above +2m/month; that is an increase in water level of 2m or more. Given that WLF is likely to be of more frequent occurrence under future predicted conditions of climate variability and human activity, water level management can be widely used in small and medium-sized reservoirs to prevent the toxic cyanobacterial blooms and to protect the ecosystem integrity or functions. PMID:27016690

  1. Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations

    NASA Astrophysics Data System (ADS)

    Ovakoglou, George; Alexandridis, Thomas K.; Crisman, Thomas L.; Skoulikaris, Charalampos; Vergos, George S.

    2016-09-01

    Lake morphometry is essential for managing water resources and limnetic ecosystems. For reservoirs that receive high sediment loads, frequent morphometric mapping is necessary to define both the effective life of the reservoir and its water storage capacity for irrigation, power generation, flood control and domestic water supply. The current study presents a methodology for updating the digital depth model (DDM) of lakes and reservoirs with wide intra and interannual fluctuations of water levels using satellite remote sensing. A time series of Terra MODIS satellite images was used to map shorelines formed during the annual water level change cycle, and were validated with concurrent Landsat ETM+ satellite images. The shorelines were connected with in-situ observation of water levels and were treated as elevation contours to produce the DDM using spatial interpolation. The accuracy of the digitized shorelines is within the mapping accuracy of the satellite images, while the resulting DDM is validated using in-situ elevation measurements. Two versions of the DDM were produced to assess the influence of seasonal water fluctuation. Finally, the methodology was applied to Lake Kerkini (Greece) to produce an updated DDM, which was compared with the last available bathymetric survey (1991) and revealed changes in sediment distribution within the lake.

  2. Interval and Contour Processing in Autism

    ERIC Educational Resources Information Center

    Heaton, Pamela

    2005-01-01

    High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group…

  3. Tongue Motion Averaging from Contour Sequences

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a method to get the best representation of a speech motion from several repetitions is presented. Each repetition is a representation of the same speech captured at different times by sequence of ultrasound images and is composed of a set of 2D spatio-temporal contours. These 2D contours in different repetitions are time aligned…

  4. Auditory and Visual Similarity of Pitch Contours.

    ERIC Educational Resources Information Center

    Hermes, Dik J.

    1998-01-01

    In two experiments, five phoneticians rated the dissimilarity of two pitch contours to investigate whether important audible differences would correspond with visually conspicuous differences between displayed pitch contours. Results indicate that visual feedback may be very effective in intonation training if auditorily relevant features of pitch…

  5. Measuring the Perceptual Similarity of Pitch Contours.

    ERIC Educational Resources Information Center

    Hermes, Dik J.

    1998-01-01

    This study investigated the effectiveness of four different methods for measuring the similarity of pitch contours. The correlation coefficient between two normalized contours was the best method; however, if pitch range is important, the mean distance and the root-mean-square distance should be considered first in automatic training in…

  6. Recognition and knowledge of the water-level principle.

    PubMed

    Howard, I P

    1978-01-01

    Piaget and Inhelder showed that children do not realize that the surface of a fluid remains horizontal in a tilted vessel. Several studies have since shown that many adults do not have an adequate concept of the water-level principle. However, in all these studies, drawings of vessels, or other abstract displays, were used. The present experiment is an investigation of whether adults who do not know the water-level principle are able to recognize the correct orientation of a fluid surface in realistic three-dimensional scenes and in cinematographic sequences. It was found that all subjects who could state the principle clearly, could precisely and accurately recognize the correct fluid level. More than half the subjects did not know the principle and all these subjects showed evidence in their judgments of only the crudest perceptual schema. PMID:652472

  7. Status of Water Levels and Selected Water-Quality Conditions in the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas, 2004

    USGS Publications Warehouse

    Schrader, T.P.

    2006-01-01

    During the spring of 2004, water levels were measured in 684 wells completed in the Mississippi River Valley alluvial aquifer in eastern Arkansas. Ground-water levels are affected by intense ground-water withdrawals resulting in extensive potentiometric depressions. In 2004, the highest water-level altitude measured was 293 feet above National Geodetic Vertical Datum of 1929 in northeastern Clay County. The lowest water-level altitude measured was 76 feet above National Geodetic Vertical Datum of 1929 in the center of Arkansas County. A large depression in the potentiometric surface was located in Arkansas, Lonoke, and Prairie Counties during 1998 and persisted to 2002. The area enclosed in the 100-foot contour in Arkansas County in 2004 is about the same as in 2002, however, the area enclosed in the 100-foot contour in Lonoke and Prairie Counties in 2004 has receded. Two shallower cones of depressions were located in Craighead, Cross, and Poinsett Counties and St. Francis, Woodruff, Lee, and Monroe Counties west of Crowleys Ridge during 1998. The 2004 potentiometricsurface map shows that the areas enclosed by the 140-foot contour have continued to expand. A map of changes in water-level measurements between 2000 and 2004 was constructed using the difference between water-level measurements from 625 wells reported in this report and the 2000 Mississippi River Valley alluvial aquifer report. Water-level changes between 2000 and 2004 ranged from -31.1 feet to 16.3 feet, with a mean of -0.7 feet (negative changes indicating water-level declines, positive changes indicating water-level rises). The largest rise of 16.3 feet is in Arkansas County and the largest decline of -31.1 feet is in Prairie County. Long-term water-level changes were calculated for 134 wells in the alluvial aquifer for the period from 1980 to 2004. The mean annual decline in water level for the entire study area was -0.31 feet per year with a range of -1.35 feet per year to 0.84 feet per year. The

  8. A high resolution water level forecast for the German Bight

    NASA Astrophysics Data System (ADS)

    Niehüser, Sebastian; Dangendorf, Sönke; Arns, Arne; Jensen, Jürgen

    2016-04-01

    Many coastal regions worldwide are potentially endangered by storm surges which can cause disastrous damages and loss of life. Due to climate change induced sea level rise, an accumulation of such events is expected by the end of the 21th century. Therefore, advanced storm surge warnings are needed to be prepared when another storm surge hits the coast. In the shallow southeastern North Sea these storm surge warnings are nowadays routinely provided for selected tide gauge locations along a coastline through state-of-the-art forecast systems, which are based on a coupled system of empirical tidal predictions and numerical storm surge forecasts. Along the German North Sea coastline, the Federal Maritime and Hydrographic Agency in cooperation with the German Weather Service is responsible for the storm surge warnings. They provide accurate, high frequency and real-time water level forecasts for up to six days ahead at selected tide gauge sites via internet, telephone and broadcast. Since water levels along the German North Sea coastline are dominated by shallow water effects and a very complex bathymetric structure of the seabed, the pointwise forecast is not necessarily transferable to un-gauged areas between the tide gauges. Here we aim to close this existing gap and develop water level forecasts with a high spatial (continuously with a resolution of at least 1 kilometer) as well as a high temporal (at least 15-minute values) resolution along the entire German North Sea coastline. We introduce a new methodology for water level forecasts which combines empirical or statistical and numerical models. While the tidal forecast is performed by non-parametric interpolation techniques between un-gauged and gauged sites, storm surges are estimated on the basis of statistical/empirical storm surge formulas taken from a numerical model hindcast. The procedure will be implemented in the operational mode forced with numerical weather forecasts.

  9. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  10. Transient response of Salix cuttings to changing water level regimes

    NASA Astrophysics Data System (ADS)

    Gorla, L.; Signarbieux, C.; Turberg, P.; Buttler, A.; Perona, P.

    2015-03-01

    Sustainable water management requires an understanding of the effects of flow regulation on riparian ecomorphological processes. We investigated the transient response of Salix viminalis by examining the effect of water-level regimes on its above-ground and below-ground biomass. Four sets of Salix cuttings, three juveniles (in the first growing season) and one mature (1 year old), were planted and initially grown under the same water-level regime for 1 month. We imposed three different water-level regime treatments representing natural variability, a seasonal trend with no peaks, and minimal flow (characteristic of hydropower) consisting of a constant water level and natural flood peaks. We measured sap flux, stem water potential, photosynthesis, growth parameters, and final root architecture. The mature cuttings were not affected by water table dynamics, but the juveniles displayed causal relationships between the changing water regime, plant growth, and root distribution during a 2 month transient period. For example, a 50% drop in mean sap flux corresponded with a -1.5 Mpa decrease in leaf water potential during the first day after the water regime was changed. In agreement with published field observations, the cuttings concentrated their roots close to the mean water table of the corresponding treatment, allowing survival under altered conditions and resilience to successive stress events. Juvenile development was strongly impacted by the minimum flow regime, leading to more than 60% reduction of both above-ground and below-ground biomass, with respect to the other treatments. Hence, we suggest avoiding minimum flow regimes where Salix restoration is prioritized.

  11. A new water level gauge for cold region application

    SciTech Connect

    Shih, H.H.; Moss, M.K.; Dixon, J.C.

    1995-12-31

    The traditional gas purging (bubbler) water level gauge has been widely sued because of its simplicity, ruggedness and ability to operate in areas of ice cover. However, its mechanically-based sensing and recording system and the need for density information to compute water level have caused inconveniences in field operations. This paper describes a new design that records and telemeters digital data and allows computation of water density directly from the pressure measurements. Major measurement error sources are also identified and quantified. The performance in water level measurement is comparable to the National Ocean Service`s standard air acoustic tide gauge. Deriving density from pressure measurements obviates the need for use of a separate conductivity/temperature/depth instrument, which can be prone to fouling. The uncertainty in density determination is less than 0.0005 g/cc in laboratory tests; in the field, it varies from 0.0015 g/cc under low wave conditions to 0.003 g/cc for high wave conditions. The instrument has been successfully deployed at several cold region sites including the Arctic and Antarctic regions.

  12. Ground-water levels, flow, and specific conductance in unconsolidated aquifers near Lake Erie, Cleveland to Conneaut, Ohio, September 1984

    USGS Publications Warehouse

    Coen, A. W., III

    1990-01-01

    This report described ground-water levels, flow, and specific conductance in aquifer along the southern shore of Lake Erie from Cleveland to Conneaut, Ohio. The data were collected in September 1984 as part of the U.S Geological Survey's Northeast Glacial Buried Valley Regional Aquifer-System Analysis. The study area is about 60 miles long, extends inland from the lake about 10 miles, and encompasses parts of Cuyahoga, Lake, and Ashtabula Counties. Water levels were measured in 202 existing wells, all of which were completed in the glacial deposits or at the contact with the underlying shale. Specific conductance was measured in 59 of the wells. Results o the survey are presented in table and map form. Unconsolidated material throughout the area consists primarily of till, whereas the bedrock consists of Devonian shale. The till is composed chiefly o silt and clay with some sand and gravel, and is less than 50 feet thick in most areas. Some valleys are filled with as much as 200 feet of glacial till and outwash deposits that are mainly sand and gravel. Ground-water levels in much of the area within 20 feet of the land surface. Contours of ground-water levels resemble a subdued version of those of the land surface, which indicates that ground water generally flows from high areas to low areas following the land-surface gradient. Locally, ground water discharges into streams. Regionally, flow is towards the north-northeast, to Lake Erie. Specific conductance ranged from 160 to 2,900 ?S/cm (microsiemens per centimeter at 25 degrees Celsius) with a median of 540 ?S/cm. Ground water with a specific conductance greater than 650 ?S/cm is localized, with no specific spatial pattern; possible sources of elevated specific conductance are road-deicing salt, leachate from landfills, natural brings associated with oil and gas drilling, and the leakage of saline water from bedrock.

  13. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  14. Wii mote as hydrological sensor: observation of water level fluctuations

    NASA Astrophysics Data System (ADS)

    Luxemburg, W.; Hut, R.; Weijs, S.; Hegnauer, M.

    2009-12-01

    The input device of the Nintendo Wii, the Wii-mote offers scientist a multitude of cheap, high quality sensors; ideal for proof of concept testing. For a specific application, i.e. the water level fluctuation in a floating evaporation pan the Wii-mote was tested as the observing device. It is shown that the controller can observe movements with high enough temporal and spatial resolution of up to 4 infrared LED’s to describe water level movements. Floating pans positioned in lakes and reservoirs better represent open water evaporation than evaporation pans installed on land. On the other hand performing water level measurements in a floating pan is more complicated due to movement of the pan and wave activities in the pan. The Wii-mote was mounted on the side of a standard class A-pan and a float was placed in the middle of the pan, with 4 LED’s on top moving along a fixed bar. The information that the Wii-mote wirelessly sends by blue tooth was captured on a laptop. With a MATLAB routine this data was converted into movement of the LED’s relatively to the controller. The observations show that wave activities are nicely captured with a typical spatial resolution smaller than 0.1 mm in our set-up and a temporal resolution of maximum 100 Hz. A frequency domain filter was applied to the observed datasets to obtain average water levels. In our laboratory setting the pan was placed in a large basin with a wave generator. A constant, but small, rate of water was added to the evaporation pan. The average pan levels from the filtered datasets showed systematically lower levels compared to the level without any wave activities. This is a typical effect of waves that occur in shallow basins. However, the added water with rates up to 5 mm/hour were clearly recognized in the filtered datasets which indicates that the Wii-mote is very well capable as a sensor for water level observations.

  15. Extreme_SeaState_Contour_v1

    SciTech Connect

    2015-10-19

    This software generates environmental contours of extreme sea states using buoy observations of significant wave height and energy period or peak period. The code transforms these observations using principal component analysis (PCA) to create an uncorrelated representation of the data. The subsequent components are modeled using probability distributions and parameter fitting functions. The inverse first-order reliability method (I-FORM) is then applied to these models in order to generate an extreme event contour based on a given return period (i.e., 100 years).The subsequent contour is then transformed back into the original input space defined by the variables of interest in order to create an environmental contour of extreme sea states.

  16. Holding fixture for variable-contour parts

    NASA Technical Reports Server (NTRS)

    Haynie, C. C.; Packer, P. N.; Zebus, P. P.

    1979-01-01

    Array of vacuum cups on spindles holds parts for safe machining and other processings. Variable-contour part resting on fixture is held firmly enough for machining, coating, or other mechanical treatment.

  17. Extreme_SeaState_Contour_v1

    Energy Science and Technology Software Center (ESTSC)

    2015-10-19

    This software generates environmental contours of extreme sea states using buoy observations of significant wave height and energy period or peak period. The code transforms these observations using principal component analysis (PCA) to create an uncorrelated representation of the data. The subsequent components are modeled using probability distributions and parameter fitting functions. The inverse first-order reliability method (I-FORM) is then applied to these models in order to generate an extreme event contour based on amore » given return period (i.e., 100 years).The subsequent contour is then transformed back into the original input space defined by the variables of interest in order to create an environmental contour of extreme sea states.« less

  18. The response of mire vegetation to water level drawdown

    NASA Astrophysics Data System (ADS)

    Kurki, Kirsi; Laine, Jukka; Vasander, Harri; Tuittila, Eeva-Stiina

    2010-05-01

    Mires have a significant role in climate change mitigation due to their enormous carbon storage and due to the fluxes of greenhouse gases between ecosystem and the atmosphere. Mire vegetation is controlled by ecohydrology, climate and by the competition of plants on light and nutrients. The water logged conditions create a challenging environment for both vascular plants and bryophytes; therefore majority of plants growing in these habitats are highly specialized. Global warming is predicted to affect mire vegetation indirectly through increased evapotranspiration leading to decreased water table levels down to 14-22 centimeters. Water level drawdown is likely to affect the vegetation composition and consequently the ecosystem functioning of mires. Previous studies covering the first years following water table level drawdown have shown that vascular plants benefit from a lower water table and hollow-specific Sphagnum species suffer. In addition to changes in plant abundances the diversity of plant communities decreases. The lawn and hollow communities of Sphagna and sedges are found to be the most sensitive plant groups. It has been shown that surveys on vegetation changes can have different results depending on the time scale. The short and long term responses are likely vary in heterogenous mire vegetation; therefore predictions can be done more reliably with longer surveys. We applied BACI (before-after-control-impact) experimental approach to study the responses of different functional mire plant groups to water level drawdown. There are 3 control plots, 3 treatment plots with moderate water level drawdown and 3 plots drained for forestry 40 years ago as a reference. The plots are located in meso-, oligo- and ombrotrophic sites in Lakkasuo (Orivesi, Finland). The vegetation was surveyed from permanent sampling points before ditching in 2000 and during the years 2001-2003 and 2009. The data was analyzed with NMDS (PC-Ord) and DCA (CANOCO). Overall results show

  19. Fuzzy Neural Networks for water level and discharge forecasting

    NASA Astrophysics Data System (ADS)

    Alvisi, Stefano; Franchini, Marco

    2010-05-01

    A new procedure for water level (or discharge) forecasting under uncertainty using artificial neural networks is proposed: uncertainty is expressed in the form of a fuzzy number. For this purpose, the parameters of the neural network, namely, the weights and biases, are represented by fuzzy numbers rather than crisp numbers. Through the application of the extension principle, the fuzzy number representative of the output variable (water level or discharge) is then calculated at each time step on the basis of a set of crisp inputs and fuzzy parameters of the neural network. The proposed neural network thus allows uncertainty to be taken into account at the forecasting stage not providing only deterministic or crisp predictions, but rather predictions in terms of 'the discharge (or level) will fall between two values, indicated according to the level of credibility considered, whereas it will take on a certain value when the level of credibility is maximum'. The fuzzy parameters of the neural network are estimated using a calibration procedure that imposes a constraint whereby for an assigned h-level the envelope of the corresponding intervals representing the outputs (forecasted levels or discharges, calculated at different points in time) must include a prefixed percentage of observed values. The proposed model is applied to two different case studies. Specifically, the data related to the first case study are used to develop and test a flood event-based water level forecasting model, whereas the data related to the latter are used for continuous discharge forecasting. The results obtained are compared with those provided by other data-driven models - Bayesian neural networks (Neal, R.M. 1992, Bayesian training of backpropagation networks by the hybrid Monte Carlo method. Tech. Rep. CRG-TR-92-1, Dep. of Comput. Sci., Univ. of Toronto, Toronto, Ont., Canada.) and the Local Uncertainty Estimation Model (Shrestha D.L. and Solomatine D.P. 2006, Machine learning

  20. Automatic bootstrapping and tracking of object contours.

    PubMed

    Chiverton, John; Xie, Xianghua; Mirmehdi, Majid

    2012-03-01

    A new fully automatic object tracking and segmentation framework is proposed. The framework consists of a motion-based bootstrapping algorithm concurrent to a shape-based active contour. The shape-based active contour uses finite shape memory that is automatically and continuously built from both the bootstrap process and the active-contour object tracker. A scheme is proposed to ensure that the finite shape memory is continuously updated but forgets unnecessary information. Two new ways of automatically extracting shape information from image data given a region of interest are also proposed. Results demonstrate that the bootstrapping stage provides important motion and shape information to the object tracker. This information is found to be essential for good (fully automatic) initialization of the active contour. Further results also demonstrate convergence properties of the content of the finite shape memory and similar object tracking performance in comparison with an object tracker with unlimited shape memory. Tests with an active contour using a fixed-shape prior also demonstrate superior performance for the proposed bootstrapped finite-shape-memory framework and similar performance when compared with a recently proposed active contour that uses an alternative online learning model. PMID:21908256

  1. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  2. Hyperspectral image segmentation using active contours

    NASA Astrophysics Data System (ADS)

    Lee, Cheolha P.; Snyder, Wesley E.

    2004-08-01

    Multispectral or hyperspectral image processing has been studied as a possible approach to automatic target recognition (ATR). Hundreds of spectral bands may provide high data redundancy, compensating the low contrast in medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) images. Thus, the combination of spectral (image intensity) and spatial (geometric feature) information analysis could produce a substantial improvement. Active contours provide segments with continuous boundaries, while edge detectors based on local filtering often provide discontinuous boundaries. The segmentation by active contours depends on geometric feature of the object as well as image intensity. However, the application of active contours to multispectral images has been limited to the cases of simply textured images with low number of frames. This paper presents a supervised active contour model, which is applicable to vector-valued images with non-homogeneous regions and high number of frames. In the training stage, histogram models of target classes are estimated from sample vector-pixels. In the test stage, contours are evolved based on two different metrics: the histogram models of the corresponding segments and the histogram models estimated from sample target vector-pixels. The proposed segmentation method integrates segmentation and model-based pattern matching using supervised segmentation and multi-phase active contour model, while traditional methods apply pattern matching only after the segmentation. The proposed algorithm is implemented with both synthetic and real multispectral images, and shows desirable segmentation and classification results even in images with non-homogeneous regions.

  3. Surgical correction of postliposuction contour irregularities.

    PubMed

    Chang, K N

    1994-07-01

    The surgical correction of postliposuction contour irregularities and the results are presented. Postliposuction contour irregularities are classified as major or minor according to the size of the area, severity of the irregularity, difficulty of the correction, visual impact, and the need for dermolipectomy. Methods of correction include (1) liposuction of the area of protuberance, (2) liposuction around the area of depression, (3) simultaneous fat grafting, and (4) dermolipectomy. Results of 22 patients with 43 areas of postliposuction contour irregularities were analyzed. Follow-up ranged from 1 to 4.8 years (mean 2.1 +/- 1.0 years). All patients had corrective liposuction except one, who required medial thigh dermolipectomy. Fat grafting was performed in 19 areas in 9 patients. Average number of operations performed was 1.4 per patient (range 1 to 3). Of 17 areas of minor postliposuction contour irregularities, 8 (47 percent) were improved and 8 (47 percent) were corrected. Of 26 areas of major postliposuction contour irregularities, 17 (65 percent) were improved and 8 (31 percent) were corrected. Of all 43 areas, 25 (58 percent) were improved and 16 (37 percent) were corrected. Overcorrection in two areas (4.7 percent) resulted in minor depressions in 2 patients. Results from 5 patients are presented. In summary, postliposuction contour irregularities were treated with various surgical techniques with a high rate of improvement or correction. PMID:8016225

  4. Digital model evaluation of the predevelopment flow system of the Tertiary limestone aquifer, Southeast Georgia, Northeast Florida, and South South Carolina

    USGS Publications Warehouse

    Krause, Richard E.

    1982-01-01

    A computer model using finite-difference techniques was used successfully to simulate the predevelopment flow regime within the multilayered Tertiary limestone aquifer system in Southeastern Georgia, Northeastern Florida, and Southern South Carolina as part of the U.S. Geological Survey 's Tertiary Limestone Regional Aquifer System analysis. The aquifer, of early Eocene to Miocene age, ranges from thin interbedded clastics and marl in the updip area to massive limestone and dolomite 1,500 feet thick in the downdip area. The aquifer is confined above by Miocene clay beds, and terminates at depth in low-permeability rocks or the saltwater interface. Model-simulated transmissivity of the upper permeable zone ranged from about 1 x 10 super 3 foot squared per day in the updip area and within parts of the Gulf Trough (a series of alinement basins filled by fine clastic in material) to about 1 x 10 super 6 foot squared per day in South Georgia, and area having large secondarily developed solution channels. The model results indicate that only about 540 cubic feet per second of water flowed through the predeveloped system, from the updip highland area of high altitude and in the areas north of Valdosta and southwest of Jacksonville, to discharge along streams in the updip area and diffuse upward leakage in the downdip area near the coast and offshore. (USGS)

  5. Reservoir Computing approach to Great Lakes water level forecasting

    NASA Astrophysics Data System (ADS)

    Coulibaly, Paulin

    2010-02-01

    SummaryThe use of echo state network (ESN) for dynamical system modeling is known as Reservoir Computing and has been shown to be effective for a number of applications, including signal processing, learning grammatical structure, time series prediction and motor/system control. However, the performance of Reservoir Computing approach on hydrological time series remains largely unexplored. This study investigates the potential of ESN or Reservoir Computing for long-term prediction of lake water levels. Great Lakes water levels from 1918 to 2005 are used to develop and evaluate the ESN models. The forecast performance of the ESN-based models is compared with the results obtained from two benchmark models, the conventional recurrent neural network (RNN) and the Bayesian neural network (BNN). The test results indicate a strong ability of ESN models to provide improved lake level forecasts up to 10-month ahead - suggesting that the inherent structure and innovative learning approach of the ESN is suitable for hydrological time series modeling. Another particular advantage of ESN learning approach is that it simplifies the network training complexity and avoids the limitations inherent to the gradient descent optimization method. Overall, it is shown that the ESN can be a good alternative method for improved lake level forecasting, performing better than both the RNN and the BNN on the four selected Great Lakes time series, namely, the Lakes Erie, Huron-Michigan, Ontario, and Superior.

  6. Portable FORTRAN contour-plotting subprogram

    SciTech Connect

    Haskell, K.H.

    1983-07-01

    In this report we discuss a contour plotting Fortran subprogram. While contour plotting subroutines are available in many commercial plotting packages, this routine has the following advantages: (1) since it uses the Weasel and VDI plot routines developed at Sandia, it occupies little storage and can be used on most of the Sandia time-sharing systems as part of a larger program. In the past, the size of plotting packages often forced a user to perform plotting operations in a completely separate program; (2) the contour computation algorithm is efficient and robust, and computes accurate contours for sets of data with low resolution; and (3) the subprogram is easy to use. A simple contour plot can be produced with a minimum of information provided by a user in one Fortran subroutine call. Through the use of a wide variety of subroutine options, many additional features can be used. These include such items as plot titles, grid lines, placement of text on the page, etc. The subroutine is written in portable Fortran 77, and is designed to run on any system which supports the Weasel and VDI plot packages. It also uses routines from the SLATEC mathematical subroutine library.

  7. Prostate Contouring Variation: Can It Be Fixed?

    SciTech Connect

    Khoo, Eric L.H.; Schick, Karlissa; Plank, Ashley W.; Poulsen, Michael; Wong, Winnie W.G.; Middleton, Mark; Martin, Jarad M.

    2012-04-01

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across sets of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.

  8. Development and evaluation of a water level proportional water sampler

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lange, A.; Doppler, T.

    2013-12-01

    We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.

  9. NOAA tsunami water level archive - scientific perspectives and discoveries

    NASA Astrophysics Data System (ADS)

    Mungov, G.; Eble, M. C.; McLean, S. J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Currently, NGDC archives and processes high-resolution data recorded by the Deep-ocean Assessment and Reporting of Tsunami (DART) network, the coastal-tide-gauge network from the National Ocean Service (NOS) as well as tide-gauge data recorded by all gauges in the two National Weather Service (NWS) Tsunami Warning Centers' (TWCs) regional networks. The challenge in processing these data is that the observations from the deep-ocean, Pacific Islands, Alaska region, and United States West and East Coasts display commonalities, but, at the same time, differ significantly, especially when extreme events are considered. The focus of this work is on how time integration of raw observations (10-seconds to 1-minute) could mask extreme water levels. Analysis of the statistical and spectral characteristics obtained from records with different time step of integration will be presented. Results show the need to precisely calibrate the despiking procedure against raw data due to the significant differences in the variability of deep-ocean and coastal tide-gauge observations. It is shown that special attention should be drawn to the very strong water level declines associated with the passage of the North Atlantic cyclones. Strong changes for the deep ocean and for the West Coast have implications for data quality but these same features are typical for the East Coast regime.

  10. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  11. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, G.A.; Stamos, C.L.; Predmore, S.K.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During 2002, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 660 wells, providing coverage for most of the basins. Twenty-eight hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 9 short-term (1997 to 2002) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 2000 and 2002 water levels throughout the basins. In the Mojave River ground-water basin, about 66 percent of the wells had water-level declines of 0.5 ft or more since 2000 and about 27 percent of the wells had water-level declines greater than 5 ft. The only area that had water-level increases greater than 5 ft that were not attributed to fluctuations in nearby pumpage was in the Harper Lake (dry) area where there has been a significant reduction in pumpage during the last decade. In the Morongo ground-water basin, about 36 percent of the wells had water-level declines of 0.5 ft or more and about 10 percent of the wells had water-level declines greater than 5 ft. Water-level increases greater than 5 ft were measured only in the Warren subbasin, where artificial

  12. Modified contour-improved perturbation theory

    SciTech Connect

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-11-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.

  13. Coding Long Contour Shapes of Binary Objects

    NASA Astrophysics Data System (ADS)

    Sánchez-Cruz, Hermilo; Rodríguez-Díaz, Mario A.

    This is an extension of the paper appeared in [15]. This time, we compare four methods: Arithmetic coding applied to 3OT chain code (Arith-3OT), Arithmetic coding applied to DFCCE (Arith-DFCCE), Huffman coding applied to DFCCE chain code (Huff-DFCCE), and, to measure the efficiency of the chain codes, we propose to compare the methods with JBIG, which constitutes an international standard. In the aim to look for a suitable and better representation of contour shapes, our probes suggest that a sound method to represent contour shapes is 3OT, because Arithmetic coding applied to it gives the best results regarding JBIG, independently of the perimeter of the contour shapes.

  14. Robot Hand Would Adapt To Contours

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Conceptual device uses hydraulic pressure to activate fingers. Projections on opposing fingers of proposed robot hand automatically conform to contours of object on contact. Pistons connected to common reservoir provide gentle, firm grip. Fingers communicate with each other via hydraulic pressure, without elaborate control system. Pistons move in and out, and tips slope to match contour of object. Their action tends to center object on finger. Hand used to grasp objects of various shapes and sizes. Conforming process passive; pressure of object on one or several pad elements forces other pad elements to touch it. Would not use elaborate mechanisms involving motors, cams, and cables.

  15. Leaf Shape Recognition using Centroid Contour Distance

    NASA Astrophysics Data System (ADS)

    Hasim, Abdurrasyid; Herdiyeni, Yeni; Douady, Stephane

    2016-01-01

    This research recognizes the leaf shape using Centroid Contour Distance (CCD) as shape descriptor. CCD is an algorithm of shape representation contour-based approach which only exploits boundary information. CCD calculates the distance between the midpoint and the points on the edge corresponding to interval angle. Leaf shapes that included in this study are ellips, cordate, ovate, and lanceolate. We analyzed 200 leaf images of tropical plant. Each class consists of 50 images. The best accuracy is obtained by 96.67%. We used Probabilistic Neural Network to classify the leaf shape. Experimental results demonstrated the effectiveness of the proposed approach for shape recognition with high accuracy.

  16. Contour-based classification of video objects

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Kuehne, Gerald; Schuster, Oliver

    2000-12-01

    The recognition of objects that appear in a video sequence is an essential aspect of any video content analysis system. We present an approach which classifies a segmented video object base don its appearance in successive video frames. The classification is performed by matching curvature features of the contours of these object views to a database containing preprocessed views of prototypical objects using a modified curvature scale space technique. By integrating the result of an umber of successive frames and by using the modified curvature scale space technique as an efficient representation of object contours, our approach enables the robust, tolerant and rapid object classification of video objects.

  17. Contour-based classification of video objects

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Kuehne, Gerald; Schuster, Oliver

    2001-01-01

    The recognition of objects that appear in a video sequence is an essential aspect of any video content analysis system. We present an approach which classifies a segmented video object base don its appearance in successive video frames. The classification is performed by matching curvature features of the contours of these object views to a database containing preprocessed views of prototypical objects using a modified curvature scale space technique. By integrating the result of an umber of successive frames and by using the modified curvature scale space technique as an efficient representation of object contours, our approach enables the robust, tolerant and rapid object classification of video objects.

  18. Water levels and water-level changes in the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers, Twin Cities metropolitan area, Minnesota, 1971-80

    USGS Publications Warehouse

    Schoenberg, Michael

    1984-01-01

    Water-level data suggest that (1) little variation in annual pumpage between 1971 and 1980 from the Prairie du Chien-Jordan aquifer produced generally stable water levels in that aquifer, (2) decreased annual pumpage from the Mount Simon-Hinckley aquifer from 1971 to 1980 caused water levels in that aquifer to rise, and (3) a greater seasonal component of pumpage from the Mount Simon-Hinckley aquifer than from the Prairie du Chien-Jordan produced larger and more widespread seasonal water-level declines in the Mount Simon-Hinckley than in the Prairie du Chien-Jordan, particularly during dry years.

  19. Water-Level Measurements for the Coastal Plain Aquifers of South Carolina Prior to Development

    USGS Publications Warehouse

    Aucott, Walter R.; Speiran, Gary K.

    1984-01-01

    Tabulations of water-level measurements for the Coastal Plain aquifers of South Carolina representing water levels prior to man-made development are presented. Included with the tabulations are local well number, location, land-surface altitude, well depth, screened interval, depth to water, water- level altitude, and date measured. These water-level measurements were used in compiling regional potentiometric maps for the Coastal Plain aquifers. This data set will be useful in the planning for future water-resource development.

  20. Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu

    NASA Astrophysics Data System (ADS)

    Beetham, Edward; Kench, Paul S.; O'Callaghan, Joanne; Popinet, Stéphane

    2016-01-01

    The influence of sea swell (SS) waves, infragravity (IG) waves, and wave setup on maximum runup (Rmax) is investigated across different tidal stages on Fatato Island, Funafuti Atoll, Tuvalu. Field results illustrate that SS waves are tidally modulated at the shoreline, with comparatively greater wave attenuation and setup occurring at low tide versus high tide. A shoreward increase in IG wave height is observed across the 100 m wide reef flat at all tidal elevations, with no tidal modulation of IG wave height at the reef flat or island shoreline. A 1-D shock-capturing Green-Naghdi solver is used to replicate the field deployment and analyze Rmax. Model outputs for SS wave height, IG wave height and setup at the shoreline match field results with model skill >0.96. Model outputs for Rmax are used to identify the temporal window when geomorphic activity can occur on the beach face. During periods of moderate swell energy, waves can impact the beach face at spring low tide, due to a combination of wave setup and strong IG wave activity. Under mean wave conditions, the combined influence of setup, IG waves and SS waves results in interaction with island sediment at midtide. At high tide, SS and IG waves directly impact the beach face. Overall, wave activity is present on the beach face for 71% of the study period, a significantly longer duration than is calculated using mean water level and topographic data.

  1. GPS water level measurements for Indonesia's Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  2. Determination of predevelopment denudation rates of an agricultural watershed (Cayaguas River, Puerto Rico) using in-situ-produced 10Be in river-borne quartz

    USGS Publications Warehouse

    Brown, E.T.; Stallard, R.F.; Larsen, M.C.; Bourles, D.L.; Raisbeck, G.M.; Yiou, F.

    1998-01-01

    Accurate estimates of watershed denudation absent anthropogenic effects are required to develop strategies for mitigating accelerated physical erosion resulting from human activities, to model global geochemical cycles, and to examine interactions among climate, weathering, and uplift. We present a simple approach to estimate predevelopment denudation rates using in-situ-produced cosmogenic 10Be in fluvial sediments. Denudation processes in an agricultural watershed (Cayaguas River Basin, Puerto Rico) and a matched undisturbed watershed (Icacos River Basin) were compared using 10Be concentrations in quartz for various size fractions of bed material. The coarse fractions in both watersheds bear the imprint of long subsurface residence times. Fine material from old shallow soils contributes little, however, to the present-day sediment output of the Cayaguas. This confirms the recent and presumably anthropogenic origin of the modern high denudation rate in the Cayaguas Basin and suggests that pre-agricultural erosional conditions were comparable to those of the present-day Icacos.

  3. Contour-measuring tool for composite layups

    NASA Technical Reports Server (NTRS)

    Fontes, M. J.

    1981-01-01

    Simple handtool helps form contours and complex shapes from laminae of resin-impregnated fabric. Tool, which consists of yoke having ballpoint pen and spindle and gage, is placed so that it straddles model. As toll is moved, pen draws constant thickness focus that is used as template.

  4. Camera Would Monitor Weld-Pool Contours

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.; Gutow, David A.

    1990-01-01

    Weld pool illuminated and viewed coaxially along welding torch. Proposed monitoring subsystem for arc welder provides image in which horizontal portions of surface of weld pool highlighted. Monitoring and analyzing subsystems integrated into overall control system of robotic welder. Control system sets welding parameters to adapt to changing conditions, maintaining surface contour giving desired pattern of reflections.

  5. Vascular active contour for vessel tree segmentation.

    PubMed

    Shang, Yanfeng; Deklerck, Rudi; Nyssen, Edgard; Markova, Aneta; de Mey, Johan; Yang, Xin; Sun, Kun

    2011-04-01

    In this paper, a novel active contour model is proposed for vessel tree segmentation. First, we introduce a region competition-based active contour model exploiting the gaussian mixture model, which mainly segments thick vessels. Second, we define a vascular vector field to evolve the active contour along its center line into the thin and weak vessels. The vector field is derived from the eigenanalysis of the Hessian matrix of the image intensity in a multiscale framework. Finally, a dual curvature strategy, which uses a vesselness measure-dependent function selecting between a minimal principal curvature and a mean curvature criterion, is added to smoothen the surface of the vessel without changing its shape. The developed model is used to extract the liver and lung vessel tree as well as the coronary artery from high-resolution volumetric computed tomography images. Comparisons are made with several classical active contour models and manual extraction. The experiments show that our model is more accurate and robust than these classical models and is, therefore, more suited for automatic vessel tree extraction. PMID:21138795

  6. Apparatus for electrolytically tapered or contoured cavities

    NASA Technical Reports Server (NTRS)

    Williams, L. A. (Inventor)

    1967-01-01

    An electrolytic machining apparatus for forming tapered or contoured cavities in an electrically conductive and electrochemically erodible piece is presented. It supports the workpiece and an electrode for movement relatively toward each other and has means for pumping an electrolyte between the workpiece and the electrode.

  7. Improved discrimination in photographic density contouring

    NASA Technical Reports Server (NTRS)

    Godding, R. A.

    1974-01-01

    Density discrimination can be accomplished through use of special photographic contouring material which has two sensitive layers (one negative, one positive) on single support. Process will be of interest to investigators who require finer discrimination of densities of original photograph for purposes such as identification of crops and analysis of energy levels of radiating objects.

  8. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  9. Expectations for Melodic Contours Transcend Pitch

    PubMed Central

    Graves, Jackson E.; Micheyl, Christophe; Oxenham, Andrew J.

    2015-01-01

    The question of what makes a good melody has interested composers, music theorists, and psychologists alike. Many of the observed principles of good “melodic continuation” involve melodic contour – the pattern of rising and falling pitch within a sequence. Previous work has shown that contour perception can extend beyond pitch to other auditory dimensions, such as brightness and loudness. Here, we show with two experiments that the generalization of contour perception to non-traditional dimensions also extends to melodic expectations. In the first experiment, subjective ratings for three-tone sequences that vary in brightness or loudness conformed to the same general contour-based expectations as pitch sequences. In the second experiment, we modified the sequence of melody presentation such that melodies with the same beginning were blocked together. This change produced substantively different results, but the patterns of ratings remained similar across the three auditory dimensions. Taken together, these results suggest that 1) certain well-known principles of melodic expectation (such as the expectation for a reversal following a skip) are dependent on long-term context, and 2) these expectations are not unique to the dimension of pitch and may instead reflect more general principles of perceptual organization. PMID:25365571

  10. Expectations for melodic contours transcend pitch.

    PubMed

    Graves, Jackson E; Micheyl, Christophe; Oxenham, Andrew J

    2014-12-01

    The question of what makes a good melody has interested composers, music theorists, and psychologists alike. Many of the observed principles of good "melodic continuation" involve melodic contour-the pattern of rising and falling pitch within a sequence. Previous work has shown that contour perception can extend beyond pitch to other auditory dimensions, such as brightness and loudness. Here, we show that the generalization of contour perception to nontraditional dimensions also extends to melodic expectations. In the first experiment, subjective ratings for 3-tone sequences that vary in brightness or loudness conformed to the same general contour-based expectations as pitch sequences. In the second experiment, we modified the sequence of melody presentation such that melodies with the same beginning were blocked together. This change produced substantively different results, but the patterns of ratings remained similar across the 3 auditory dimensions. Taken together, these results suggest that (a) certain well-known principles of melodic expectation (such as the expectation for a reversal following a skip) are dependent on long-term context, and (b) these expectations are not unique to the dimension of pitch and may instead reflect more general principles of perceptual organization. PMID:25365571

  11. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  12. Aircraft noise source and contour estimation

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.

    1973-01-01

    Calculation procedures are presented for predicting the noise-time histories and noise contours (footprints) of five basic types of aircraft; turbojet, turofan, turboprop, V/STOL, and helicopter. The procedures have been computerized to facilitate prediction of the noise characteristics during takeoffs, flyovers, and/or landing operations.

  13. Contour completion through depth interferes with stereoacuity

    NASA Technical Reports Server (NTRS)

    Vreven, Dawn; McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Local disparity signals must interact in visual cortex to represent boundaries and surfaces of three-dimensional (3D) objects. We investigated how disparity signals interact in 3D contours and in 3D surfaces generated from the contours. We compared flat (single disparity) stimuli with curved (multi-disparity) stimuli. We found no consistent differences in sensitivity to contours vs. surfaces; for equivalent amounts of disparity, however, observers were more sensitive to flat stimuli than curved stimuli. Poor depth sensitivity for curved stimuli cannot be explained by the larger range of disparities present in the curved surface, nor by disparity averaging, nor by poor sensitivity to the largest disparity in the stimulus. Surprisingly, sensitivity to surfaces curved in depth was improved by removing portions of the surface and thus removing disparity information. Stimulus configuration had a profound effect on stereo thresholds that cannot be accounted for by disparity-energy models of V1 processing. We suggest that higher-level 3D contour or 3D shape mechanisms are involved.

  14. Molding Compound For Inspection Of Internal Contours

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Ricklefs, Steve

    1988-01-01

    Material clean, sets rapidly, and easy to use. Silicone elastomer, Citrocon or equivalent, commonly used in dentistry, in combination with mold-release agent (Also see MFS-29240), speeds and facilitates making of impressions of interior surfaces so surface contours examined. Elastomer easily moved around in cavity until required location found.

  15. A Computer Language for ECG Contour Analysis

    PubMed Central

    McConnochie, John W.

    1982-01-01

    The purpose of this paper is to demonstrate contructively that criteria for ECG contour analysis can be interpreted directly by a computer. Thereby, the programming task is greatly reduced. Direct interpretation is achieved by the creation of a computer language that is well-suited for the expression of such criteria. Further development of the language is planned.

  16. Localizing Region-Based Active Contours

    PubMed Central

    Lankton, Shawn; Tannenbaum, Allen

    2009-01-01

    In this paper, we propose a natural framework that allows any region-based segmentation energy to be re-formulated in a local way. We consider local rather than global image statistics and evolve a contour based on local information. Localized contours are capable of segmenting objects with heterogeneous feature profiles that would be difficult to capture correctly using a standard global method. The presented technique is versatile enough to be used with any global region-based active contour energy and instill in it the benefits of localization. We describe this framework and demonstrate the localization of three well-known energies in order to illustrate how our framework can be applied to any energy. We then compare each localized energy to its global counterpart to show the improvements that can be achieved. Next, an in-depth study of the behaviors of these energies in response to the degree of localization is given. Finally, we show results on challenging images to illustrate the robust and accurate segmentations that are possible with this new class of active contour models. PMID:18854247

  17. Melodic Contour Identification by Cochlear Implant Listeners

    PubMed Central

    Galvin, John J.; Fu, Qian-Jie; Nogaki, Geraldine

    2013-01-01

    Objective While the cochlear implant provides many deaf patients with good speech understanding in quiet, music perception and appreciation with the cochlear implant remains a major challenge for most cochlear implant users. The present study investigated whether a closed-set melodic contour identification (MCI) task could be used to quantify cochlear implant users’ ability to recognize musical melodies and whether MCI performance could be improved with moderate auditory training. The present study also compared MCI performance with familiar melody identification (FMI) performance, with and without MCI training. Methods For the MCI task, test stimuli were melodic contours composed of 5 notes of equal duration whose frequencies corresponded to musical intervals. The interval between successive notes in each contour was varied between 1 and 5 semitones; the “root note” of the contours was also varied (A3, A4, and A5). Nine distinct musical patterns were generated for each interval and root note condition, resulting in a total of 135 musical contours. The identification of these melodic contours was measured in 11 cochlear implant users. FMI was also evaluated in the same subjects; recognition of 12 familiar melodies was tested with and without rhythm cues. MCI was also trained in 6 subjects, using custom software and melodic contours presented in a different frequency range from that used for testing. Results Results showed that MCI recognition performance was highly variable among cochlear implant users, ranging from 14% to 91% correct. For most subjects, MCI performance improved as the number of semitones between successive notes was increased; performance was slightly lower for the A3 root note condition. Mean FMI performance was 58% correct when rhythm cues were preserved and 29% correct when rhythm cues were removed. Statistical analyses revealed no significant correlation between MCI performance and FMI performance (with or without rhythmic cues). However

  18. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  19. Changes in flow in the upper North Canadian river basin of western Oklahoma, pre-development to 2000

    USGS Publications Warehouse

    Wahl, K.L.

    2001-01-01

    Water levels have declined in the southern part of the High Plains aquifer of the central USA since the mid-1960s in response to extensive irrigation development. The North Canadian River originates in western Oklahoma, and most of the basin is underlain by the High Plains aquifer. Average river flow in the headwaters near Guymon, Oklahoma, has decreased from about 0.9 m3/s before 1970 to near zero at present. Canton Lake, on the North Canadian River near Seiling, about 250 km downstream from Guymon, is a source of water supply for Oklahoma City. Precipitation data and streamflow data for gages upstream from Canton Lake were divided into an "early" period ending in 1971 and a "recent" period that begins in 1978. The early period represents conditions before ground-water levels had declined appreciably in the High Plains aquifer, and the recent period reflects the current condition, including the effects of storage reservoirs. Tests for trend and comparisons of flows between the early and recent periods show that the total annual volume of flow and the magnitudes of instantaneous annual peak discharges measured at most locations in the North Canadian River basin have decreased. Precipitation records for the area, however, show no corresponding changes. The decreases in average annual flow, expressed as a percentage of the average flows for the early period, ranged from 91 percent near Guymon to 37 percent near Canton Lake. A major contributing factor in the decreased flows appears to be the large declines in water levels in the High Plains aquifer.

  20. Prostate contours delineation using interactive directional active contours model and parametric shape prior model.

    PubMed

    Derraz, Foued; Forzy, Gérard; Delebarre, Arnaud; Taleb-Ahmed, Abdelmalik; Oussalah, Mourad; Peyrodie, Laurent; Verclytte, Sebastien

    2015-11-01

    Prostate contours delineation on Magnetic Resonance (MR) images is a challenging and important task in medical imaging with applications of guiding biopsy, surgery and therapy. While a fully automated method is highly desired for this application, it can be a very difficult task due to the structure and surrounding tissues of the prostate gland. Traditional active contours-based delineation algorithms are typically quite successful for piecewise constant images. Nevertheless, when MR images have diffuse edges or multiple similar objects (e.g. bladder close to prostate) within close proximity, such approaches have proven to be unsuccessful. In order to mitigate these problems, we proposed a new framework for bi-stage contours delineation algorithm based on directional active contours (DAC) incorporating prior knowledge of the prostate shape. We first explicitly addressed the prostate contour delineation problem based on fast globally DAC that incorporates both statistical and parametric shape prior model. In doing so, we were able to exploit the global aspects of contour delineation problem by incorporating a user feedback in contours delineation process where it is shown that only a small amount of user input can sometimes resolve ambiguous scenarios raised by DAC. In addition, once the prostate contours have been delineated, a cost functional is designed to incorporate both user feedback interaction and the parametric shape prior model. Using data from publicly available prostate MR datasets, which includes several challenging clinical datasets, we highlighted the effectiveness and the capability of the proposed algorithm. Besides, the algorithm has been compared with several state-of-the-art methods. PMID:26009857

  1. Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer (Middle Claiborne Aquifer) in Arkansas, Spring-Summer 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered

  2. Automatic liver contouring for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  3. Automatic liver contouring for radiotherapy treatment planning.

    PubMed

    Li, Dengwang; Liu, Li; Kapp, Daniel S; Xing, Lei

    2015-10-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  4. Effect of water level drawdown on decomposition in boreal peatlands

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Penttilä, Timo; Laiho, Raija

    2010-05-01

    Plant litter production and decomposition are key processes in element cycling in most ecosystems. In peatlands, there has been a long-term imbalance between litter production and decay caused by high water levels (WL) and consequent anoxia. This has resulted in peatlands being a significant sink of carbon (C) from the atmosphere. However, peatlands are experiencing both "natural" (global climate change) and anthropogenic (ditching) changes that threaten their ability to retain this ecosystem identity and function. Many of these alterations can be traced back to WL drawdown, which can cause increased aeration, higher acidity, falling temperatures, and a greater probability of drought. Such changes are also associated with an increasing decomposition rate, and therefore a greater amount of C released back to the atmosphere. Yet studies about how the overall C balance of peatlands will be affected have come up with conflicting conclusions, demonstrating that the C store could increase, decrease, or remain static. A factor that has been largely overlooked is the change in litter type composition following persistent WL drawdown. It is the aim of our study, then, to help to resolve this issue. We studied the effects of short-term (ca. 4 years) and long-term (ca. 40 years) persistent WL drawdown on the decomposition of numerous types of above-ground and below-ground plant litters at three boreal peatland sites: bog, oligotrophic fen and mesotrophic fen. We thus believe that enough permutations have been created to obtain a good assessment of how each factor, site nutrient level, WL regime, and litter type composition, influences decomposition. We used the litter bag method to measure the decomposition rates: placed measured amounts of plant litter, or cellulose strips as a control, into closed mesh bags, and installed the bags in the natural environment for decomposition for each litter type for varying amounts of time. Following litter bag recovery, the litter was

  5. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  6. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  7. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  8. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  9. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  10. A contour-based approach to multisensor image registration.

    PubMed

    Li, H; Manjunath, B S; Mitra, S K

    1995-01-01

    Image registration is concerned with the establishment of correspondence between images of the same scene. One challenging problem in this area is the registration of multispectral/multisensor images. In general, such images have different gray level characteristics, and simple techniques such as those based on area correlations cannot be applied directly. On the other hand, contours representing region boundaries are preserved in most cases. The authors present two contour-based methods which use region boundaries and other strong edges as matching primitives. The first contour matching algorithm is based on the chain-code correlation and other shape similarity criteria such as invariant moments. Closed contours and the salient segments along the open contours are matched separately. This method works well for image pairs in which the contour information is well preserved, such as the optical images from Landsat and Spot satellites. For the registration of the optical images with synthetic aperture radar (SAR) images, the authors propose an elastic contour matching scheme based on the active contour model. Using the contours from the optical image as the initial condition, accurate contour locations in the SAR image are obtained by applying the active contour model. Both contour matching methods are automatic and computationally quite efficient. Experimental results with various kinds of image data have verified the robustness of the algorithms, which have outperformed manual registration in terms of root mean square error at the control points. PMID:18289982

  11. EFFICIENT FEATURE-BASED CONTOUR EXTRACTION.

    SciTech Connect

    Gattiker, J. R.

    2001-01-01

    Extraction of contours in binary images is an important element of object recognition. This paper discusses a more efficient approach to contour representation and generation. This approach defines a bounding polygon as defined by its vertices rather than by all enclosing pixels, which in itself is an effective representation. These corners can be identified by convolution of the image with a 3 x 3 filter. When these corners are organized by their connecting orientation, identified by the convolution, and type, inside or outside, connectivity characteristics can be articulated to highly constrain the task of sorting the vertices into ordered boundary lists. The search for the next bounding polygon vertex is reduced to a one dimensional minimum distance search rather than the standard, more intensive two dimensional nearest Euclidean neighbor search.

  12. Thermal contouring of forestry data: Wallops Island

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The contouring of 8-13.5 micrometer thermal data collected over a forestry site in Virginia is described. The data were collected at an altitude of 1000 ft above terrain on November 4, 1970. The site was covered on three approximately parallel lines. The purpose of the contouring was to attempt to delineate pine trees attacked by southern pine bark beetle, and to map other important terrain categories. Special processing steps were required to achieve the correct aspect ratio of the thermal data. The reference for the correction procedure was color infrared photography. Data form and quality are given, processing steps are outlined, a brief interpretation of results is given, and conclusion are presented.

  13. Image Segmentation With Cage Active Contours.

    PubMed

    Garrido, Lluís; Guerrieri, Marité; Igual, Laura

    2015-12-01

    In this paper, we present a framework for image segmentation based on parametrized active contours. The evolving contour is parametrized according to a reduced set of control points that form a closed polygon and have a clear visual interpretation. The parametrization, called mean value coordinates, stems from the techniques used in computer graphics to animate virtual models. Our framework allows to easily formulate region-based energies to segment an image. In particular, we present three different local region-based energy terms: 1) the mean model; 2) the Gaussian model; 3) and the histogram model. We show the behavior of our method on synthetic and real images and compare the performance with state-of-the-art level set methods. PMID:26316128

  14. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  15. Numerosity underestimation in sets with illusory contours.

    PubMed

    Kirjakovski, Atanas; Matsumoto, Eriko

    2016-05-01

    People underestimate the numerosity of collections in which a few dots are connected in pairs by task-irrelevant lines. Such configural processing suggests that visual numerosity depends on the perceived scene segments, rather than on the perceived total area occupied by a collection. However, a methodology that uses irrelevant line connections may also introduce unnecessary distraction and variety, or obscure the perception of task-relevant items, given the saliency of the lines. To avoid such potentially confounding variables, we conducted four experiments where the line-connected dots were replaced with collinear inducers of Kanizsa-type illusory contours. Our participants had to compare two simultaneously presented collections and choose the more numerous one. Displays comprised c-shaped inducers and disks (Experiment 1), c-shaped inducers only (Experiments 2 and 4), or closed inducers (Experiment 3). One display always showed a 12- (Experiments 1-3) or 48-item reference pattern (Experiment 4); the other was a test pattern with numerosity varying between 9 and 15 (Experiments 1-3) or 36-60 items (Experiment 4). By manipulating the number of illusory contours in the test patterns, the level of connectedness increased or decreased respectively. The fitted psychometric functions revealed an underestimation that increased with the number of illusory contours in Experiments 1 and 2, but was absent in Experiments 3 and 4, where illusory contours were more difficult to perceive or larger numerosities were used. Results corroborate claims that visual numerosity estimation depends on segmented inputs, but only within moderate numerical ranges. PMID:27038561

  16. Semi-automated contour recognition using DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Wu, J.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Thomas, S.

    2014-03-01

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  17. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  18. Inlet contour and flow effects on radiation

    NASA Astrophysics Data System (ADS)

    Ville, J. M.; Silcox, R. J.

    1980-06-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  19. Breast Contour Detection with Stable Paths

    NASA Astrophysics Data System (ADS)

    Cardoso, Jaime S.; Sousa, Ricardo; Teixeira, Luís F.; Cardoso, M. J.

    Breast cancer conservative treatment (BCCT), due to its proven oncological safety, is considered, when feasible, the gold standard of breast cancer treatment. However, aesthetic results are heterogeneous and difficult to evaluate in a standardized way, due to the lack of reproducibility of the subjective methods usually applied. The objective assessment methods, considered in the past as being less capable of evaluating all aspects of BCCT, are nowadays being preferred to overcome the drawbacks of the subjective evaluation. A computer-aided medical system was recently developed to objectively and automatically evaluate the aesthetic result of BCCT. In this system, the detection of the breast contour on the patient's digital photograph is a necessary step to extract the features subsequently used in the evaluation process. In this paper an algorithm based on the shortest path on a graph is proposed to detect automatically the breast contour. The proposed method extends an existing semi-automatic algorithm for the same purpose. A comprehensive comparison with manually-drawn contours reveals the strength of the proposed method.

  20. Contour-Driven Atlas-Based Segmentation.

    PubMed

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2015-12-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  1. Ground Water Level Measurements in Selected Boreholes Near the Site of the Proposed Repository

    SciTech Connect

    Page, H. Scott

    2007-11-29

    The Harry Reid Center for Environmental Studies (HRC) at the University of Nevada, Las Vegas (UNLV) acquired quarterly and continuous data on water levels from approximately 26 boreholes that comprise a periodic monitoring network (Table 1) between October 2003 and September 2007. During this period we continued to observe and analyze short and long-term ground water level trends in periodically monitored boreholes. In this report we summarize and discuss four key findings derived from analysis of water level data acquired during this period: 1. Rapid ground water level rise after storm events in Forty Mile Canyon; 2. Seismically-induced ground water level fluctuations; 3. A sample of synoptic observations and barometric influences on short term fluctuations; and 4. Long term ground water level trends observed from mid-2001 through late-2005.

  2. Motion-based mechanisms of illusory contour synthesis.

    PubMed

    Anderson, B L; Barth, H C

    1999-10-01

    Neurophysiological studies and computational models of illusory contour formation have focused on contour orientation as the underlying determinant of illusory contour shape in both static and moving displays. Here, we report a class of motion-induced illusory contours that demonstrate the existence of novel mechanisms of illusory contour synthesis. In a series of experiments, we show that the velocity of contour terminations and the direction of motion of a partially occluded figure regulate the perceived shape and apparent movement of illusory contours formed from moving image sequences. These results demonstrate the existence of neural mechanisms that reconstruct occlusion relationships from both real and inferred image velocities, in contrast to the static geometric mechanisms that have been the focus of studies to date. PMID:10571236

  3. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as

  4. Water Levels In Major Artesian Aquifers Of The New Jersey Coastal Plain, 1988

    USGS Publications Warehouse

    Rosman, Robert; Lacombe, Pierre J.; Storck, Donald A.

    1995-01-01

    Water levels in 1,251 wells in the New Jersey Coastal Plain, Philadelphia County, Pennsylvania, and Kent and New Castle Counties, Delaware, were measured from October 1988 to February 1989 and compared with 1,071 water levels measured from September 1983 to May 1984. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements in 1988 or had been destroyed. New well sites were added in strategic locations to increase coverage where possible. Large cones of depression have formed or expanded in the nine major artesian aquifers that underlie the New Jersey Coastal Plain. Water levels are shown on nine potentiometric-surface maps. Hydrographs for observation wells typically show water-level declines for 1983, through 1989. In the confined Cohansey aquifer, the lowest water level, 20 feet below sea level, was measured in a well located at Cape May City Water Department, Cape May County. Water levels in the Atlantic City 800-foot sand declined as much as 21 feet at Ventnor, Atlantic County, over the 6-year period from the 1983 study to this study for 1988. Water levels in the Piney Point aquifer were as low as 56 feet below sea level at Seaside Park, Ocean County; 45 feet below sea level in southern Cumberland County; and 28 feet below sea level at Margate, Atlantic County. Water levels in the Vincentown aquifer did not change over the 6-year period. The lowest water levels in the Wenonah-Mount Laurel aquifer and the Englishtown aquifer system were 218 feet and 256 feet below sea level, respectively. Large cones of depression in the Potomac- Raritan-Magothy aquifer system are centered in the Camden County area and the Middlesex and Monmouth County area. Water levels declined as much as 46 feet in these areas over the 6-year period.

  5. Ground Water Levels for NGEE Areas A, B, C and D, Barrow, Alaska, 2012-2014

    DOE Data Explorer

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  6. Ground-water levels in observation wells in Oklahoma, 1963-64

    USGS Publications Warehouse

    Wood, P.R.

    1965-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1963-64), is the third of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). The second report, published in 1964, contains water-level records for the 2-year period (1961-62.) (available as photostat copy only)

  7. Stochastic modeling of Lake Van water level time series with jumps and multiple trends

    NASA Astrophysics Data System (ADS)

    Aksoy, H.; Unal, N. E.; Eris, E.; Yuce, M. I.

    2013-06-01

    In the 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey, has risen up about 2 m. Analysis of the hydrometeorological data shows that change in the water level is related to the water budget of the lake. In this study, stochastic models are proposed for simulating monthly water level data. Two models considering mono- and multiple-trend time series are developed. The models are derived after removal of trend and periodicity in the dataset. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. In the so-called mono-trend model, the time series is treated as a whole under the hypothesis that the lake water level has an increasing trend. In the second model (so-called multiple-trend), the time series is divided into a number of segments to each a linear trend can be fitted separately. Application on the lake water level data shows that four segments, each fitted with a trend line, are meaningful. Both the mono- and multiple-trend models are used for simulation of synthetic lake water level time series under the hypothesis that the observed mono- and multiple-trend structure of the lake water level persist during the simulation period. The multiple-trend model is found better for planning the future infrastructural projects in surrounding areas of the lake as it generates higher maxima for the simulated lake water level.

  8. High effectiveness contour matching contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Blakely, Robert L. (Inventor); Roebelen, George J., Jr. (Inventor); Davenport, Arthur K. (Inventor)

    1988-01-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  9. Shear-strain contours from moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Joh, D.

    1985-01-01

    The development of whole-field contour maps of shear strains gamma (xy), derived from displacement fields obtained by moire interferometry with 2400 lines/mm, is described. The use of mechanical differentiation to obtain cross-derivatives of displacements and the use of graphical additive moire to sum the cross-derivatives are explained. Quantitative analysis in the small-strain domain is possible because of the high sensitivity of moire interferometry. The applicability of this technique is shown by the testing of a short epoxy beam under three-point bending.

  10. Contour dynamics model for electric discharges.

    PubMed

    Arrayás, M; Fontelos, M A; Jiménez, C

    2010-03-01

    We present an effective contour model for electrical discharges deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The incorporation of curvature effects to the velocity propagation and not to the boundary conditions is a feature and makes it different from the classical Laplacian growth models. The dispersion relation for a nonplanar two-dimensional discharge is calculated. The development and propagation of fingerlike patterns are studied and their main features quantified. PMID:20365808

  11. Topologically correct reconstruction of tortuous contour forests

    PubMed Central

    Edwards, John; Bajaj, Chandrajit

    2011-01-01

    Motivated by the need for correct and robust 3D models of neuronal processes, we present a method for reconstruction of spatially realistic and topologically correct models from planar cross sections of multiple objects. Previous work in 3D reconstruction from serial contours has focused on reconstructing one object at a time, potentially producing inter-object intersections between slices. We have developed a robust algorithm that removes these intersections using a geometric approach. Our method not only removes intersections but can guarantee a given minimum separation distance between objects. This paper describes the algorithm for geometric adjustment, proves correctness, and presents several results of our high-fidelity modeling. PMID:22003256

  12. High effectiveness contour matching contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Blakely, Robert L.; Roebelen, George J., Jr.; Davenport, Arthur K.

    1988-08-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  13. Body contouring following massive weight loss

    PubMed Central

    Langer, Vijay; Singh, Amitabh; Aly, Al S.; Cram, Albert E.

    2011-01-01

    Obesity is a global disease with epidemic proportions. Bariatric surgery or modified lifestyles go a long way in mitigating the vast weight gain. Patients following these interventions usually undergo massive weight loss. This results in redundant tissues in various parts of the body. Loose skin causes increased morbidity and psychological trauma. This demands various body contouring procedures that are usually excisional. These procedures are complex and part of a painstaking process that needs a committed patient and an industrious plastic surgeon. As complications in these patients can be quite frequent, both the patient and the surgeon need to be aware and willing to deal with them. PMID:21713202

  14. Analysis of water levels in the Frenchman Flat area, Nevada Test Site

    USGS Publications Warehouse

    Bright, D.J.; Watkins, S.A.; Lisle, B.A.

    2001-01-01

    Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping fromthe alluvial aquifer at well WW-5c and pumping and discharge from well RNM-2s

  15. Analysis of water levels in the Frenchman Flat area, Nevada Test Site

    SciTech Connect

    Bright, D.J.; Watkins, S.A.; Lisle, B.A.

    2001-04-18

    Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping from the alluvial aquifer at well WW-5c and pumping and discharge from well RNM- 2s

  16. Ground-water levels in observation wells in Oklahoma, 1961-62

    USGS Publications Warehouse

    Wood, P.R.; Moeller, M.D.

    1964-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; and (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1960-62), is the second of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). (available as photostat copy only)

  17. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas, 1918-1998, with simulations of water levels caused by projected ground-water withdrawals through 2049

    USGS Publications Warehouse

    Reed, Thomas B.

    2003-01-01

    the model. Areally specified recharge rates ranged from 0 to about 30 inches and total recharge increased from 1972 to 1998 by a factor of about four. Water levels caused by projected ground-water withdrawals were simulated using the calibrated model. Simulations represented a period of 50 years into the future in three scenarios with either unchanged pumpage, pumpage increased by historic trends, or pumpage increased by historic trends except in two areas of the Grand Prairie. If pumping remains at 1997 rates, this produces extreme water-level declines (areas where model cells have gone dry or where the water level in the aquifer is equal to or less than the original saturated thickness, assuming confined conditions in the aquifer everywhere in the formation in predevelopment times) in the aquifer in two areas of the aquifer (one in the Grand Prairie area between the Arkansas and White Rivers and the other west of Crowleys Ridge along the Cache River) with about 400 square miles going dry. Increasing the pumping rates to that which would be projected using historic data led to increased extreme water-level declines in both areas with about 1,300 square miles going dry. Declines in both scenarios generally occurred most rapidly between 2009 and 2019. Reducing the pumping rates to 90 percent of that used for projected historic rates in areas between the Arkansas and White Rivers relating to two diversion projects of the U.S. Army Corps of Engineers and other agencies did little to decrease the extreme water-level declines. However, these pumpage reductions are small (amounting to about 16 percent of the reductions that could result from implementation of these diversion projects).

  18. Response priming evidence for feedforward processing of snake contours but not of ladder contours and textures.

    PubMed

    Schmidt, Filipp; Vancleef, Kathleen

    2016-09-01

    In contour integration, increased difficulty in detection and shape discrimination of a chain of parallel elements (a ladder contour) compared to collinear elements (a snake contour) suggests more extensive processing of ladders than of snakes. In addition, conceptual similarities between ladders and textures - which also involve grouping of parallel elements - raises the question whether ladder and texture processing requires feedback from higher visual areas while snakes are processed in a fast feedforward sweep. We tested this in a response priming paradigm, where participants responded as quickly and accurately as possible to the orientation of a diagonal contour in a Gabor array (target). The diagonal was defined either by a snake, ladder, texture, or a continuous line. The target was preceded with varying stimulus onset asynchrony (SOA) by a prime that was either a snake, ladder, or texture, and was consistent or inconsistent to the response demands of the target. Resulting priming effects clearly distinguished between processing of snakes, ladders, and textures. Effects generally increased with SOA but were stronger for snakes and textures compared to ladders. Importantly, only priming effects for snakes were fully present already in the fastest response times, in accordance with a simple feedforward processing model. We conclude that snakes, ladders, and textures do not share similar processing characteristics, with snakes exhibiting a pronounced processing advantage. PMID:25771400

  19. CONTOUR; a modification of G.I. Evenden's general purpose contouring program

    USGS Publications Warehouse

    Godson, R.H.; Webring, M.W.

    1982-01-01

    A contouring program written for the DEC-10 computer (Evenden, 1975) has been modified and enhanced to operate on a Honeywell Multics 68/80 computer. The program uses a device independent plotting system (Wahl, 1977) so that output can be directed to any of several plotting devices by simply specifying one input variable.

  20. Water-level records for the northern High Plains of Colorado, 1979-83

    USGS Publications Warehouse

    Blattner, Joe L.; Rasmuson, Bruce D.

    1983-01-01

    Water-level measurements were made in 638 wells in the winter of 1982-83, in the northern High Plains of Colorado. The water-level measurements for the winter of 1982-83 and for four preceding winters are given in a table, which also contains the location, depth, land-surface elevation and the aquifer for each well. (USGS)

  1. Water levels in continuously monitored wells in the Yucca Mountain Area, Nevada, 1989

    SciTech Connect

    Lobmeyer, D.H.; Luckey, R.R.; O`Brien, G.M.; Burkhardt, D.J.

    1995-02-01

    Water levels have been monitored hourly in 16 wells representing 24 intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water-level measurements. The amount of transducer output that was converted to water levels ranged from zero for one interval to 100 percent for one interval. Fifteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed. Transducer output is presented in graphic form and, where appropriate, water-level altitude is presented in graphical and tabular form.

  2. DOWNSTREAM-WATER-LEVEL CONTROL TEST RESULTS ON THE WM LATERAL CANAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On steep canals, distant downstream water-level control can be challenging. SacMan (Software for Automated Canal Management) was developed, in part, to test various distant downstream water level controllers. It was implemented on the WM canal of the Maricopa Stanfield Irrigation and Drainage Distri...

  3. Evaluating changes to reservoir rule curves using historical water-level data

    USGS Publications Warehouse

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Flood control reservoirs are typically managed through rule curves (i.e. target water levels) which control the storage and release timing of flood waters. Changes to rule curves are often contemplated and requested by various user groups and management agencies with no information available about the actual flood risk of such requests. Methods of estimating flood risk in reservoirs are not easily available to those unfamiliar with hydrological models that track water movement through a river basin. We developed a quantile regression model that uses readily available daily water-level data to estimate risk of spilling. Our model provided a relatively simple process for estimating the maximum applicable water level under a specific flood risk for any day of the year. This water level represents an upper-limit umbrella under which water levels can be operated in a variety of ways. Our model allows the visualization of water-level management under a user-specified flood risk and provides a framework for incorporating the effect of a changing environment on water-level management in reservoirs, but is not designed to replace existing hydrological models. The model can improve communication and collaboration among agencies responsible for managing natural resources dependent on reservoir water levels.

  4. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate. PMID:24111015

  5. Memory for pure tone sequences without contour.

    PubMed

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26903419

  6. Ground-water levels in observation wells in Oklahoma, 1967-68

    USGS Publications Warehouse

    Bingham, R.H.

    1969-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1967-68), is the fifth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); the third report, published in 1965, contains water-level records for the 2-year period (1963-64); and the fourth report contains water-level records for

  7. Ground-water levels in observation wells in Oklahoma, 1969-70

    USGS Publications Warehouse

    Moore, R.L.

    1972-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. In addition to the water-supply papers, the U.S. Geological Survey, cooperation with the Oklahoma Water Resources Board, has published the following informal reports on water levels in Oklahoma. Ground-water levels in observations wells in Oklahoma, 1956-60 Ground-water levels in observations wells in Oklahoma, 1961-62 Ground-water levels in observations wells in Oklahoma, 1963-64 Ground-water levels in observations wells in Oklahoma, 1965-66 Ground-water levels in observations wells in Oklahoma, 1967-68 Records of water-level measurements in wells in the Oklahoma Panhandle, 1966-70 Records of water-level measurements in wells in the Oklahoma Panhandle, 1971-72 The basic observation-well network in Oklahoma during the period 1969-70 included the following counties: Alfalfa, Beaver, Beckham, Caddo, Cimarron

  8. Multi-temporal, high spatial resolution water level monitoring of the Everglades

    NASA Astrophysics Data System (ADS)

    Hong, S.; Wdowinski, S.; Kim, S.

    2008-05-01

    Water level information in South Florida's Everglades is very important for understanding the hydrology of this fragile ecosystem. Currently water levels are determined by a dense stage (water level) network providing high spatial resolution observation. However, because there are a finite number of stage stations in Everglades, water levels in areas located between stage stations can only be estimated by interpolation. Space-borne Interferometric Synthetic Aperture Radar (InSAR) techniques were successfully used to detect high spatial resolution (20-50 meter pixel resolution) water level changes in the Everglades and other wetlands. However, the InSAR observations are relative, providing measure of water level changes (not absolute). In this study we presents a new InSAR technique which enables to estimate a time series of absolute water levels using radar observations acquired successively over the Everglades. In this preliminary stage, we limit our study to Water Conservation Area 1 (WCA1), which is a managed area located in the northern section of the Everglades. The main advantage of the new technique is the reconstruction of absolute water level information instead of previous approaches calculating only relative water level changes. The new technique is called Small Temporal Baseline Subset (STBAS), which utilizes highly coherent interferometric phases obtained only with relatively short time difference between two SAR acquisitions (e.g. 24 or 48 recurrence periods in Radarsat-1 SAR system). The observed interferometric observations have to be calibrated with ground truth data as the reference wetland sheet flow vary daily. We use daily stage data measured at 13 stage stations in WCA1 to calibrate the space-based observations. This information is integrated using the Singular Value Decomposition (SVD) method to generate a time series of absolute water levels. Our calibration-validation study shows a very good fit to the stage data. The correlation

  9. Aquifer compaction and ground-water levels in south-central Arizona

    USGS Publications Warehouse

    Evans, Daniel W.; Pool, Donald R.

    2000-01-01

    As of 1998, the U.S. Geological Survey is monitoring water-level fluctuationa dn aquifer compaction at 19 wells that are fitted with borehole extensometers in the Eloy Basin, Stanfield Basin, Avra Valley, and Upper Santa Cruz Basin. Decreased ground-water pumping has resulted in water-level recoveries of more than 100 feet at a well near Eloy and almost 200 feet at a well in Avra Valley. Aquifer compaction has continued in both areas despite the large water-level recoveries in Eloy and the stable water levels in Avra Valley. Extensometer sites in the Upper Santa Cruz Basin have recorded as much as 50 feet of water-level decline and 0.2 feet of aquifer compaction during 1980 to 1996. Rates of compaction vary throughout the extensometer network, with the greater rates of compaction being associated with the more compressible sediments of Eloy and Stanfield Basins.

  10. Effects of Water Level on Three Wetlands Soil Seed Banks on the Tibetan Plateau

    PubMed Central

    Ma, Miaojun; Ma, Zhen; Du, Guozhen

    2014-01-01

    Background Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. Methodology We examined the effects of water level (0 cm, 5 cm and 10 cm) on seed germination and seedling establishment from soil seed banks at 0–5 cm and 5–10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. Principal Findings Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. Conclusions/Significance Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank. PMID:24984070